
Generic Parallel Algorithms

Nachum Dershowitz and Evgenia Falkovich

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
nachum.dershowitz@cs.tau.ac.il, jenny.falkovich@gmail.com

Abstract. We develop a nature-inspired generic programming language
for parallel algorithms, one that works for all data structures and control
structures. Any parallel algorithm satisfying intuitively-appealing postu-
lates can be modeled by a collection of cells, each of which is an abstract
state machine, augmented with the ability to spawn new cells. All cells
run the same algorithm and communicate via a shared global memory.

1 Introduction

Evolving systems – physical, biological, or computational – are typically viewable
on many distinct levels of abstraction. Let us imagine some closed ecosystem
as an example. An ecologist views species, populations, and their interactions;
population growth and shrinkage may be modeled, say, by predator-prey and
other resource equations. A biologist takes a different viewpoint, based on the
individual organisms; she may develop a kinetic model for swarming behavior,
for instance. On a lower level still, a biochemist sees interacting cell systems;
he might use a diffusion-reaction equation to describe the development of the
colorings on an animal’s coat. The chemist looks at reactions on the molecular
level; the physicist sees atoms and their constituents. The common denominator
of all these views is one of a complex of objects that evolve over time and that
interact with each other and with their environment according to a set of rules.
It is this generic notion of a system of interacting objects that we seek to capture.

It has been convincingly argued by Gurevich [15] (presaged by Post [16]) that
logical structures are the right way to view evolving algorithmic states, just as
they are ideal for capturing the salient features of static entities. The structure
stores the values (taken from the structure’s domain) of components of the state
that are updated during the computation (variables and program counters) as
well as the state’s functional capabilities (like arithmetic).

That there are multiple levels at which to understand the same overall sys-
tem necessitates an abstraction mechanism. Atomic physics is of no relevance
to the ecologist; the ecologist’s view of the system is the same regardless of
quantum physics. This means that the behavior of the entities at the ecological
level should be modeled independently of the underlying physical model, which
translates into the requirement that states qua structures are isomorphism-closed
(making them oblivious as to how the domain values they deal with are in fact
implemented) and that their evolution respects those isomorphisms. The impor-
tance of isomorphism-invariance for purposes of abstraction has been repeatedly
emphasized [7,13,15].

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 133–142, 2014.
c© Springer International Publishing Switzerland 2014



134 N. Dershowitz and E. Falkovich

On each level of the ecological system there are interacting entities: popula-
tions interact on the ecology level, organisms on the biological level, cells on the
biochemical level, etc. The interacting entities need not all have “algorithmic”
behavior. Aspects of the external environment (such as weather conditions) can
also be treated as entities with which algorithmic components trade informa-
tion. Accordingly, we need a model of communication between entities, which
we shall refer to as “cells”, in addition to a model of their individual evolu-
tion. To that end, we can allow the control of one cell to access values in an-
other cell – a shared-memory viewpoint, or request values from another cell – a
message-based framework. Similarly, we can allow one cell to set values in an-
other cell or to request those changes from the other cell (depending again on
one’s viewpoint). Interaction and coöperation have been considered within Gure-
vich’s framework [2,4]. We take the shared memory viewpoint here and assume
that cells work in discrete time with a shared clock.

Many systems, be they natural or artificial, create new entities as they evolve
in time. We will, therefore, need to model the “birth” of new component cells.
But we will not, in this paper, consider changes in channels of communication
(the “topology”) other than at birth (cf. [12]). Were it not for possible interaction
with external agents and for the birth of new components, one might have been
tempted to view a software system as one large evolving global “organism”, rather
than as a conglomerate of many interacting individual cells.

In the next two sections, we characterize parallel algorithms and their cells.
Then, in Sect. 4, we give a description of a parallel programming language based
on abstract state machines (ASMs) [14]. Section 5 proves that all parallel al-
gorithms, as characterized here, can be programmed with the constructs of the
proposed language. We conclude with a brief discussion.

2 System Evolution

Informally, a parallel algorithm consists of a (finite or infinite) set of cells, whose
individual states all evolve according to the same algorithm. The state of each
cell, at any moment, is a (logical) structure with a tripartite vocabulary F�F ′�G
consisting of private (internal) operations F , public (global) G, and embryonic
F ′, the latter having the same similarity type as F . (There could be any fixed
number of embryonic copies F ′, F ′′, . . . , F (k), but let us leave it simple for now,
one child at a time.) The individual cells all run a “classical” (sequential) algo-
rithm in the sense of [15,8].

Initially, all cells agree on G and their F ′ are pristine (completely undefined).
A single global step of the algorithm comprises of the following stages.

1. First, each cell C takes one classical step, producing a set of updates U .
2. Cells’ private operations F and embryonic operations F ′ are updated per U .
3. Then the union of all the cell’s public updates together are applied to every

cell’s public G. If there is any disagreement between cells regarding updates
to G (the same location getting contradictory new values), the whole system



Generic Parallel Algorithms 135

aborts. (Abortion could be replaced with nondeterministic behavior, should
one prefer.)

4. Assuming there are no conflicts, mitosis takes place as follows: Each cell
C in which the values of the operations F ′ were modified splits into two, a
mother C and daughter C′. The daughter C′ inherits G, as updated, from her
mother; her F is a copy of her mother’s F ′. For both mother and daughter,
F ′ is reinitialized to undefined.

5. If one wishes, an individual cell can be allowed to die and be dropped from
the global organism whenever it has no next state, as when it suffers an
internal clash.

3 Parallel Algorithms

An algorithm A, in general, is normally viewed as a state-transition system
composed of a collection (set, class) S of states, a (partial) transition function
τ : S ⇀ S and a (nonempty) subset S0 ⊆ S of initial states. We first explain what
states of a parallel algorithm look like and then discuss algorithmic transitions.

As explained above, states should be formalized as (first-order) logical struc-
tures over some (fixed by the algorithm) vocabulary. On the other hand, we need
for systems to comprise multiple local processes, what we called “cells”. Each cell
has its own unique identity (id), taken from some index set (or class) I. Since
we are dealing with parallel algorithms, with both private and shared memory,
each cell has a local state, which is a structure over a (finite) vocabulary G�F ,
where the (current) values of operations in G are stored (conceptually, at least)
in global locations, accessible to all cells i, while private data is stored as values
of operations in its personal copy of F . The global state of the algorithm will be
an algebra over the combined (possibly infinite) vocabulary V = G ∪ F ∗, were
F ∗ = ∪i∈IFi, where each Fi = {f1

i , . . . , f
k
i } consists of the k local operations of

cell i, with f j
i (j = 1, . . . , k) of the same arity for all cells. It will be convenient

in what follows to denote F j = ∪i∈I{f j
i }.

With this intuition in mind, we define a global state of federacy I, for a given
(countable or uncountable) set of identities I, to be an algebraX over vocabulary
V = G ∪ F ∗. A global (transition) system A (of federacy I) is composed of a
collection S of global states of federacy I, all over the same vocabulary, a (partial)
transition function τ : S ⇀ S and a subset S0 ⊆ S of states assumed to be the
full collection of initial states of A. If τ is undefined for some X ∈ S we will say
that X is a terminal state of A.

Let X be a state of A with domain U . Let g be some function in V (either in
G or in F ∗ = F 1 ∪ . . . ∪ F k) of arity n and ū = (u1, . . . , un) be an n-tuple over
that domain. If g(ū) = w in X , we denote this by gX(ū) = w or, alternatively,
will say that 〈g, ū, w〉 is a location-value of X . For any ground term t, we write
tX = w to mean that the value of t (as interpreted) in X is w.

We intend that cell i operate over vocabulary G∪Fi only. So we define the ith
localization Xi of global state X of federacy I to be the restriction of X to G∪Fi.
The ith cell is expected to manipulate this ith localization only, identifying its



136 N. Dershowitz and E. Falkovich

private F with the global Fi. We say that cell (local state) Xi is empty if f j
i is

undefined (⊥) for all j; on the other hand, we say that X is an i-cell if X = Xi

and is nonempty. When state X with transition τ is not terminal, we say that
δ = 〈g, ū, w〉 is an update of X if τ changes the value of g(ū) to be w. We define
by Δτ (X) the set of all updates of X .

To compare different cells we should ignore their individual identities. So we
define a depersonalization operator �; its application wipes out the id, dropping
the id-index from function symbols. Thus, the depersonalized X�

i is obtained
from a cell Xi by replacing its f j

i symbols by f j, for all j. So we write Xi = Yk if
X�

i = Y �
k for states X and Y and localizations Xi and Yk. Similarly, we say that

transition τ generates the same updates for Xi and Yk if Δτ (Xi)
� = Δτ (Yk)

�.
In this case, we will use the notation Δτ (Xi) = Δτ (Yk). We denote by Δi

τ (X)
the set of all updates of locations of f1

i , . . . , f
k
i in X . And again, we say that

transition τ generates the same Δi
τ (X) = Δl

τ (Y ) if Δi
τ (X)� = Δl

τ (Y )�.
To capture the uniform behavior of cells, we introduce templates, which are

terms over an unadorned vocabulary G ∪ {f1, . . . , fk}, where f i is a symbol of
the same arity as the f j

i ∈ F . For each i ∈ I, the template t induces a term
ti, obtained by replacing each occurrence of f j by f j

i . Given states X and Y
from the same transition system and given a template t, we say that X =T Y if
tiX = tiY for any i ∈ I (i.e. every term defined by t has the same value in both X
and Y ). To compare different cells we should again ignore their identities. So let
Xi and Xm be distinct localizations of global state X . We say that Xi =T Xm

if tiX = tmX for each t ∈ T . Similarly, we may compare localizations of two
distinct global states. Letting Xi be a localization of X and Ym a localization of
Y , we write Xi =T Ym if tiX = tmY for each t ∈ T .

Let A = (S,S0, τ) be a transition system of federacy I over vocabulary V =
G ∪ F 1 ∪ . . . ∪ F k. We deem a parallel process A to be algorithmic if it satisfies
several postulates, which we now proceed to explicate.

Postulate 1 (Genericity). The set of states (and also the sets of initial states
and of terminal states) is closed under isomorphism (of first-order structures).
The set of states is also closed under localizations: if X is a state of A then Xi

is also a state of A, for each i ∈ I. Transitions preserve the domain (universe)
of states, and, furthermore, isomorphic states are either both terminal (have no
transition) or else their next states are isomorphic (via the same isomorphism).

States as structures make it possible to consider any data structure sans en-
codings. In this sense, algorithms are generic. The structures are “first-order” in
syntax, though domains may include sequences, or sets, or other higher-order
objects, in which case the state would provide operations for dealing with those
objects. (States with infinitary operations, like the supremum of infinitely many
objects, are precluded.) Closure under isomorphism ensures that the algorithm
can operate on the chosen level of abstraction and that states’ internal repre-
sentation of data is invisible to the algorithm. This means that the behavior
of an algorithm, in contradistinction with its “implementation” as a program in



Generic Parallel Algorithms 137

some particular programming language, cannot depend on the memory address
of some variable.

It must be possible to describe the effect of transitions in terms of the infor-
mation in the current state.

Postulate 2 (Describability). There exists a finite set T of critical templates
such that Δτ (X) = Δτ (Y ) if X =T Y for any states X and Y of A.

The critical templates are those locations in the state named by the algorithm
(or program). If every referenced location has the same value in two states, then
the behavior of the algorithm must be the same for both those states. This, the
essence of what makes a process algorithmic, is a crucial insight of [15].

The updates created by an individual cell may not depend on its id, but only
on global and local locations that are available to it. Furthermore, each cell
is fully responsible for its dates, and no other cell may change them. Also, all
updates of a global state are generated by local cells only.

Postulate 3 (Locality). If Xi =T Yj for two states X and Y and localizations
i, j ∈ I, then Δτ (Xi) = Δτ (Yj) and Δi

τ (X) = Δj
τ (Y ).

Postulate 4 (Globality). Δτ (X) = ∪i∈IΔτ (Xi) for all states X.

If some localization of X is empty but is not empty for τ(X), this indicates
that a child has been born.

Postulate 5 (Fertility). There exists a (input-independent) bound n ∈ N such
that τ(X) has at most n non-empty localizations for any local i-cell X, i ∈ I.
The idea is that in one step a cell may participate in the creation of only a
bounded number of new cells. And each newborn cell has exactly one mother:

Postulate 6 (Motherhood). For every state X, if a localization Xi is empty,
but is non-empty for τ(X), then there is a j ∈ I such that Δi

τ (X) ⊆ Δτ (Xj).

With the above requirements in place, we state what a parallel algorithm is.

Definition 1. A global system is algorithmic if it satisfies Postulates 1–6.

We say that two parallel algorithmic systems are “congruent” if they are iden-
tical, up to permutation of identities I.

Definition 2. A parallel algorithm A is a family of all parallel algorithmic sys-
tems, congruent with some algorithmic system A.

Proposition 1. Let A be an algorithmic system over a finite vocabulary. Then
A may be described as an ordinary algorithm.

Proof. Imagine A is an algorithmic system over a finite vocabulary. Then instead
of V = G∪F ∗, we may assume that we only have V = G (and we required that G
be finite). So for this case, Postulates 3–6 are redundant, and A is only required
to satisfy the geniricity and describability postulates. Also, our final set of
critical templates T is just a finite set of terms over V = G. Then A is a classical
(sequential) algorithm with critical terms T , as defined in [15]. 	




138 N. Dershowitz and E. Falkovich

4 Parallel Programs

The two basic program statements are assignment and creation. These may be
composed in parallel and guarded by conditions.
Assignment. An atomic assignment is a rule of the form h(t1, . . . , tn) := t0,
where t0, . . . , tn are templates and h ∈ G ∪ F .

Let Xi be a localization of X , and suppose that tjiX = uj
i for j = 0, . . . , n. If

h ∈ G, then application of the assignment on X for i generates a global update
Δa(Xi) = {〈h, (u1

i , . . . , u
n
i ), u

0
i 〉}. If h ∈ F , then the application generates dates

Δa(Xi) = {〈hi, (u
1
i , . . . , u

n
i ), u

0
i 〉}. If any of the tj is undefined in Xi (tjXi

= ⊥) ,
then Δa(Xi) = ∅. The application of assignment a to global state X generates
the update set Δa(X) = ∪i∈IΔa(Xi).
Parallel assignment. More generally, a parallel assignment rule is a set
{a1, a2, . . . , an} of atomic assignments, written with ‖ between the atomic aj.

The update set generated by such parallel assignment a is Δa(X) =
∪n
j=1Δaj (X). If Δa(X) has conflicting updates (different values assigned to the

same location), then the rule fails.
Creation. The creation rule ν.a takes the form new a, where a is a parallel
assignment, atomic assignments in a are of the form f j(t1, . . . , tn) := t0, and n
is the arity of symbol f j ∈ F .

Let Xi be a localization, and suppose tjiX = uj
i for j = 0, . . . , n for an atomic

assignment. The transition initializes some empty localization Xki with location-
value 〈f j

ki
, (u1

i , . . . , u
n
i ), u

0
i 〉. So Δν.a(Xi) = {〈f j

ki
, (u1

i , . . . , u
n
i ), u

0
i 〉}. If any one

of the tj is undefined in Xi, then Δν.a(Xi) = ∅. For each cell i, the transition
chooses a unique ki and the cell’s updates are appended to the total set of
updates Δν.a(X) = ∪i∈IΔν.a(Xi). If a is a parallel assignment a1‖a2‖ · · · ‖an,
then application of ν.a chooses a unique empty Xki for each Xi in which all
arguments tj are defined, and Δν.a(Xi) = ∪n

�=1Δν.a�
(X). If there is no way to

choose ki for all i so that the rule applies, then it is not applied at all.
Guard. An atomic guard is a condition of the form s = t or s �= t. Guard t = s
evaluates to t (true) for localization Xi if tiX = siX . Similarly, a guard t �= s is
t if tiX �= siX . More generally, a guard g may be a conjunction of atomic guards
g1&g2& · · ·&gn, which is t for Xi if each gj is.
Guarded assignment. This is a rule g : a of form if g then a, where g is a guard
and a is a parallel assignment. Application of g : a to X generates the set of
updates Δg:a(X) = ∪{Δa(Xi) : i ∈ I s.t. gXi = t}.
Guarded creation. This is a rule g : ν.a of form if g then new a. The rule ν.a is
executed on each Xi for which g evaluates to t.

Definition 3 (Program). A (parallel) program is a finite set P of rules ri
as above, written r1‖ · · · ‖rn. To execute P on state X, all rules are executed
in parallel (simultaneously), that is, ΔP (X) = ∪ri∈PΔri(X). If ΔP (X) has
conflicting updates, then no updates are applied at all.

Note that for each application of creation, the program chooses in some fashion
new unused indices from I. So for each given initial state, the program may have



Generic Parallel Algorithms 139

multiple runs, depending on the choices made. Each choice is possible and none
is preferred. And it does not affect the computation’s final result or running
time (number of steps). So for each state X , we denote by P (X) any one of the
possible (congruent) states obtained by application of P to X .

5 Representation Theorem

A parallel program P is a characteristic program of algorithmic system A if
P (X) = τ(X) for each state X of A. A parallel program P is a characteristic
program of parallel algorithm A if it is a characteristic program for each algorith-
mic system A in A. We shall presume for simplicity that A is over a vocabulary
G∪F 1 only and denote it by G∪F . We will also assume that in Postulate 5 we
have at most one child born per step (n = 2). All proofs can be easily extended
to the general case.

By globality, Δτ (X) = ∪iΔτ (Xi). So we start with i-cells. We first prove that
the transitions of any i-cell can be described by a rule composed of assignment
and creation rules.

Let X be an i-cell of system A. According to the above simplifying assumption,
A has only one local function. Since X is an i-cell, its non-default locations are
over G∪{fi}. Furthermore, any cell may have at most one child in one transition.
Hence, non-default locations of τ(X) are over G ∪ {fi, fj} for some j ∈ I. So
we may consider X and τ(X) as ordinary states of an ordinary algorithm over
finite vocabulary G ∪ {fi, fj} with critical terms Ti ∪ Tj .

Let δ = 〈h, (u1, . . . , un), w〉 be an update in Δτ (X). According to [17, Lemma
5] for each k = 0, . . . , n there exists tk ∈ Ti ∪ Tj such that tkX = uk. Let Xδ

be an ordinary assignment rule h(t1, . . . , tn) := t0. Then ΔXδ
(X) = δ. We will

call Xδ an ordinary characteristic assignment of δ. Denote by X the ordinary
assignment obtained by parallel composition of Xδ for all δ ∈ Δτ (X). Obviously,
ΔX(X) = Δτ (X). Take a look at Xδ = h(t1, . . . , tn) := t0. As we said before,
tkX = uk for all k = 0, . . . , n. In particular, tk is defined over X . Since all non-
trivial locations of X are over G∪ {fi}, we may conclude that tk are over Ti for
all k = 0, . . . , n. And since all defined locations of τ(X) are over G∪{fi, fj}, we
may conclude that h ∈ G∪{fi, fj}. We partition X into two parallel assignment
rules: aX for all those rules with h ∈ G ∪ {fi} and nX for all the rest, rules of
the form fj(t

1, . . . , tn) := t0. Obviously, X = aX‖nX .
Let a�X be obtained from aX by replacing fi with f . Then a�X is an assignment

rule over templates T . From the definition of parallel-assignment application we
obtain that Δa�

X
(X) = ΔaX (X). Let n�

X be obtained from nX by replacing fi
and fj with f . From the definitions of parallel ν-rule application and of com-
paring updates for different cells, we obtain that Δν.n�

X
(X) = Δnx(X). Define

X = a�X ‖ ν.n�
X . Then ΔX(X) = Δa�

X
(X) ∪Δν.n�

X
(X) = ΔX(X).

Proposition 2. Let X be an i-cell of A. Then X(X) = X(X) = τ(X).

Proof. That X(X) is τ(X) follows from the above. That X(X) is τ(X) follows
from [17, Lemma 11]. 	




140 N. Dershowitz and E. Falkovich

Updates of i-cells depend on the values of critical terms only.

Proposition 3. Let X and Y be i-cells of A, such that X =T Y . Then Y(X) =
τ(X). And Y(X) = τ(X).

Proof. Since Y is a rule over T it generates updates based on the values of T only.
Hence ΔY(X) = ΔY(Y ), since X =T Y . It follows from the earlier discussion
that Y(Y ) = τ(Y ). According to locality, we have that Δτ (Y ) = Δτ (X), again
since X =T Y . Combining all, we conclude Y(X) = τ(X). Hence, we get the
following implication for i-cell X and j-cell Y : X =T Y ⇒ Y(X) = τ(X). 	


Let X be an i-cell. We define an equivalence relation ∼X on T by t ∼X s iff
tX = sX . We next show that updates of i-cell X depend on ∼X only. Let X be
an i-cell and Y be a j-cell of A. We write X ≈T Y if ∼X=∼Y .

Proposition 4. Let X be an i-cell of A and let Y be a j-cell of A such that
X ≈T Y and Y(X) = τ(X). Then Y(X) = τ(X).

Proof. First assume that i = j, i.e. that both X and Y are i-cells. Consider
X and Y to be ordinary states over finite vocabulary G ∪ {fi} (as we did at
the start of this section). By assumption, X and Y each have one child cell in
a single transition. Define ∼i

X on Ti by t ∼X s iff tX = sX for any t, s ∈ Ti.
Then ∼i

X=∼i
Y . It follows from [17, Lemma 13] that Y(X) = τ(X). And by

Proposition 2 we conclude that Y(X) = τ(X). Recall that we defined X = Y for
parallel states X and Y of the same system if they are equal up to a permutation
of identities of their cells. The general case follows immediately. 	

Lemma 1. For each parallel algorithmic transition system there exists a char-
acteristic parallel program.

Proof. Let ∼ be some binary relation on T . Then for any pair of distinct term-
templates s, t ∈ T we have that either s ∼ t or s �∼ t. For each s, t ∈ T we
define β∼(s, t) to be an atomic guard s = t if s ∼ t and s �= t otherwise. Define
a guard β∼ to be a conjunction of all atomic guards β∼(s, t) for all s, t ∈ T .
Choose an i-cell X of A for some i ∈ I such that ∼X is ∼. Denote it by X∼
Define a rule R∼ = if β∼ then X∼. Obviously β∼ evaluates to t on X . and
hence R∼(X∼) = X∼. According to Proposition 4, we have that X∼ = τ(X∼)
and so R∼(X∼) = τ(X∼).

Define P to be a parallel program consisting of rules R∼ for all binary relations
∼ of T . Note that since T is finite, it has only finitely many distinct binary
relations and so program P is finite. We claim that P is a characteristic program
of A, that is, P (X) = τ(X) for any state X of A. Assume first that X = X∼ for
some binary relation ∼ on T . Let ∼′ be another binary relation on T , distinct
from ∼. Then for some s, t ∈ T we have that β∼(s, t) �= β∼′(s, t). So β∼′(s, t)
is false for X and so is β∼′ . Then ΔR∼′ (X) = ∅ and that is for any binary
relation on T other than ∼. Hence P (X) = R∼(X) and according to the previous
discussion R∼(X) = τ(X), as desired. Assume next that X is an i-cell for some
i. Denote ∼X by ∼. As in the previous item, ΔR∼′ (X) = ∅ for any binary



Generic Parallel Algorithms 141

relation ∼′ on T , other then ∼. And so P (X) = R∼(X). Let X∼ be as above.
Then R∼(X) = X∼(X) (by the definition of R∼). According to Proposition 4 we
have that X∼(X) = τ(X). Combining everything together we conclude that in
this case again we have that P (X) = τ(X). Assume finally that X is a general
state of A. According to globality, the update of X is a union of updates of all
its localizations Xi, i.e. Δτ (X) = ∪i∈IΔτ (Xi). By the genericity axiom, Xi is
a state in A. According to locality, updates for Xi do not depend on whether
Xi is considered as a standalone state or a localization of a general state. So it
is enough to show that ΔP (Xi) = Δτ (Xi) for all i ∈ I. And that follows from
the previous paragraph. 	


Theorem 1 (Main). For each parallel algorithm, there exists a characteristic
parallel program.

Proof. Let A be an algorithmic system in A. By Lemma 1, there exists a charac-
teristic parallel program PA of A. If B is another algorithmic system in A, then
B is identical to A, up to permutation of indices in I. Then, obviously, PA is a
characteristic program of B as well. 	


6 Discussion

The starting point for this research was the desire to characterize parallel com-
putation in as generic a form as possible, with an eye especially towards the
effective special case. Blass and Gurevich [1,3] successfully characterized parallel
algorithms within the abstract-state-machine framework, but their approach is
not easily restricted to the effective case. In their setup, an unbounded number
of children may be created by a single cell in a single step.

Our model is simpler than Blass and Gurevich for the cases we consider. As we
do not have message passing, algorithms need not deal with process ids. Though
we bound the number of new cells created by a cell in a step, an infinite number of
initial cells for a non-effective parallel algorithm poses no problem. For example,
one can imagine a cell for each of uncountably many points on a line segment in
3D space and an algorithm that applies, in parallel, an affine transformation to
the coordinates of each point, resulting in a translated segment.

We’ve considered discrete-time systems, where all cells progress in lockstep
with each other, as in [1,3]. We plan to expand this work in several directions:

– Characterize what makes a parallel algorithm effective. Analogous to prior
work on classical effectiveness [11,5], we need to demand that the initial
global state be finitely describable. This decomposes into two main require-
ments: (i) each cell itself be an effective classical algorithm; (ii) there be only
finitely many cells initially, though their number may depend on the input.

– Prove the extended Church-Turing thesis for parallel algorithms: all effective
parallel models of computation can be polynomially simulated by a standard
model (like PRAM), as has been done for classical algorithms [10].



142 N. Dershowitz and E. Falkovich

– Distributed systems, where cells each progress at their own rate, require
separate treatment. This will require a sense of identity for cells and a means
of communication between them. Cf. [4].

– Systems that evolve in continuous time are a subject of ongoing research [6,9].

References

1. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. on Computation Logic 4, 578–651 (2003)

2. Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms (Parts I–III).
ACM Trans. on Computational Logic 7, 363–419; 8: art. 15–16 (2006-2007)

3. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: Cor-
rection and extension. ACM Trans. on Computation Logic 9, Art. 19 (2008)

4. Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step algo-
rithms (Parts I–II). LMCS 3: ppr. 3; 4: ppr. 43 (2007)

5. Boker, U., Dershowitz, N.: Three paths to effectiveness. In: Blass, A., Dershowitz,
N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 135–
146. Springer, Heidelberg (2010)

6. Bournez, O., Dershowitz, N., Falkovich, E.: Towards an axiomatization of simple
analog algorithms. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS,
vol. 7287, pp. 525–536. Springer, Heidelberg (2012)

7. Chandra, A.K., Harel, D.: Computable queries for relational data bases. Journal
of Computer and System Sciences 21, 156–178 (1980)

8. Dershowitz, N.: The generic model of computation. In: Proc. DCM, pp. 59–71
(2012)

9. Dershowitz, N.: Res Publica: The universal model of computation. In: Computer
Science Logic 2013, Turin, Italy. Leibniz International Proceedings in Informatics,
vol. 23, pp. 5–10 (2013)

10. Dershowitz, N., Falkovich, E.: A formalization and proof of the Extended Church-
Turing Thesis. In: Proc. 7th International Workshop on Developments in Compu-
tational Models. EPTCS, vol. 88, pp. 72–78 (2011)

11. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof
of Church’s Thesis. Bulletin of Symbolic Logic 14, 299–350 (2008)

12. Dowek, G.: Around the physical Church-Turing thesis: Cellular automata, formal
languages, and the principles of quantum theory. In: Dediu, A.-H., Martín-Vide,
C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 21–37. Springer, Heidelberg (2012)

13. Gandy, R.: Church’s thesis and principles for mechanisms. In: The Kleene Sympo-
sium, vol. 101, pp. 123–148. North-Holland (1980)

14. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

15. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Trans. on Computational Logic 1, 77–111 (2000)

16. Post, E.L.: Absolutely unsolvable problems and relatively undecidable propositions.
In: Davis, M. (ed.) Solvability, Provability, Definability: The Collected Works of
Emil L. Post, pp. 375–441. Birkhaüser, Boston (1994)

17. Reisig, W.: On Gurevich’s theorem on sequential algorithms. Acta Informatica 39,
273–305 (2003)


	Generic Parallel Algorithms
	1 Introduction
	2 System Evolution

	3 Parallel Algorithms
	4 Parallel Programs
	5 Representation Theorem
	6 Discussion
	References




