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Preface

CiE 2014: Language, Life, Limits
Budapest, Hungary, June 23–27, 2014

The year 2014 was a very special one for the CiE conference series: Computabil-
ity in Europe 2014 (CiE 2014) was the tenth meeting since the conference series
started in 2005. As emphasized by this year’s motto Language, Life, Limits,
CiE 2014 in particular focused on relations between computational linguistics,
natural and biological computing, and more traditional fields of computabil-
ity theory. This was understood in its broadest sense including computational
aspects of problems in linguistics, studying models of computation and algo-
rithms inspired by physical and biological approaches as well as exhibiting limits
(and non-limits) of computability when considering different models of compu-
tation arising from such approaches.

As with previous CiE conferences, the allover glueing perspective was to
strengthen the mutual benefits of analyzing traditional and new computational
paradigms in their corresponding frameworks both with respect to practical
applications and a deeper theoretical understanding.

The conference series Computability in Europe is organized by the Association
CiE. The association promotes the development of computability-related science,
ranging from mathematics, computer science and applications in various natural
and engineering sciences, such as physics and biology, as well as the promotion
of related fields, such as philosophy and history of computing. In particular,
the conference series successfully brings together the mathematical, logical and
computer sciences communities that are interested in developing computability
related topics.

The host of CiE 2014 was the Faculty of Informatics, Eötvös Loránd Uni-
versity, Budapest, Hungary, the venue of the conference was Hotel Mercure
Budapest Buda in Budapest.

The nine previous CiE conferences were held in Amsterdam (The Nether-
lands) in 2005, Swansea (Wales) in 2006, Siena (Italy) in 2007, Athens (Greece)
in 2008, Heidelberg (Germany) in 2009, Ponta Delgada (Portugal) in 2010, Sofia
(Bulgaria) in 2011, Cambridge (England) in 2012, and Milan (Italy) in 2013. The
proceedings of all these meetings were published in the Springer series Lecture
Notes in Computer Science. The annual CiE conference has become a major
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event and is the largest international meeting focused on computability theo-
retic issues. CiE 2015 will be held in Bucharest, Romania, and CiE 2016 in
Paris, France.

The series is coordinated by the CiE Conference Series Steering Commit-
tee consisting of Arnold Beckmann (Swansea, chair), Laurent Bienvenu (Paris),
Natasha Jonoska (Tampa FL), Benedikt Löwe (Amsterdam & Hamburg), Mariya
Soskova (Sofia & Berkeley CA), Susan Stepney (York), and Peter van Emde Boas
(Amsterdam).

The Programme Committee of CiE 2014 was chaired by Erzsébet Csuhaj-
Varjú (Budapest) and Klaus Meer (Cottbus). It was responsible for the selec-
tion of the invited speakers, the special session organizers and for running the
reviewing process of all submitted regular contributions.

Structure and Programme of the Conference

The Programme Committee invited 6 speakers to give plenary lectures: Lev Bek-
lemishev (Moscow), Alessandra Carbone (Paris), Maribel Fernández (London),
Przemyslaw Prusinkiewicz (Calgary), Éva Tardos (Cornell), and Albert Visser
(Utrecht). Elsevier B.V. sponsored the Elsevier TCS Lecture which was given by
Maribel Fernández.

In addition to the plenary lectures, the conference had two tutorials by Peter
Grünwald (Amsterdam & Leiden) and Wolfgang Thomas (Aachen).

Springer-Verlag generously funded a Best Student Paper Award that was
given during the CiE 2014 conference. The winner was Ludovic Patey for his
paper “The complexity of satisfaction problems in Reverse Mathematics.”

The conference CiE 2014 had six special sessions: two sessions,Computational
Linguistics and Bio-inspired Computation, were devoted to the special focus of
CiE 2014. In addition to this, new developments in areas frequently covered in the
CiE conference series were addressed in the further special sessions on History
and Philosophy of Computing, Computability Theory, Online Algorithms, and
Complexity in Automata Theory. Speakers in these special sessions were selected
by the special session organizers and were invited to contribute a paper to this
volume.

History and Philosophy of Computing.
Organizers. Lisbeth de Mol (Ghent) and Giuseppe Primiero (London).
Speakers. Federico Gobbo (Amsterdam) and Marco Benini (Varese), Jacque-
line Léon (Paris), James Power (Maynooth), Graham White (London).

Computational Linguistics.
Organizers. Maria Dolores Jiménez-López (Tarragona) and Gábor Prószéky
(Budapest).
Speakers. Leonor Becerra-Bonache (St. Etienne), Henning Christiansen
(Odense), Frank Drewes (Ume̊a), Frédérique Segond (Grenoble).

Computability Theory.
Organizers. Karen Lange (Wellesley) and Barbara Csima (Waterloo).
Speakers. Rachel Epstein (Swarthmore), Andy Lewis (London), Iskander
Kalimullin (Kazan), Keng Meng Ng (Nanyang).
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Bio-inspired Computation.
Organizers. Marian Gheorghe (Sheffield) and Florin Manea (Kiel).
Speakers. Harold Fellermann (Odense), Hendrik Jan Hoogeboom (Leiden),
Lars Wienbrandt (Kiel), Claudio Zandron (Milan).

Online Algorithms.
Organizers. Joan Boyar (Odense) and Csanád Imreh (Szeged).
Speakers. Kim Skak Larsen (Odense), Jǐŕı Sgall (Prague), Rob van Stee (Le-
icester), Adi Rosen (Paris).

Complexity in Automata Theory.
Organizers. Markus Lohrey (Siegen) and Giovanni Pighizzini (Milan).
Speakers. Artur Jez (Wroc�law), Christos Kapoutsis (Qatar), Martin Kutrib
(Giessen), James Worrell (Oxford).

We received 78 contributed paper submissions which were reviewed by the
Programme Committee and many expert referees. In the end, 35% of the submit-
ted papers were accepted for publication in this volume. In addition, this volume
contains 15 invited papers. Without the help of our expert referees, the produc-
tion of the volume would have been impossible. We would like to thank all the
sub-reviewers for their excellent work; their names are listed in the organization
section of this preface.

All authors who contributed to this conference are encouraged to submit
significantly extended versions of their papers with unpublished research content
to Computability. The Journal of the Association CiE.

The Steering Committee of the conference series CiE is concerned about the
representation of female researchers in the field of computability. In order to
increase female participation, the series started the Women in Computability
(WiC) program in 2007, first funded by the Elsevier Foundation, then taken
over by the publisher Elsevier. We were proud to continue this programme with
its successful annual WiC workshop and a grant programme for junior female
researchers in 2014.

Acknowledgments

The organizers of CiE 2014 would like to acknowledge and thank the following
entities for their financial support (in alphabetic order): the Association for Sym-
bolic Logic (ASL), Elsevier B.V., the European Association for Computer Sci-
ence Logic (EACSL), the European Association for Theoretical Computer Science
(EATCS), and Springer-Verlag. We would also like to acknowledge the support
of our non-financial sponsor, the Association Computability in Europe (CiE).
Finally, we would like to acknowledge both financial and non-financial support
of the following institutions: Faculty of Informatics, Eötvös Loránd University,
Budapest, Hungary, Faculty of Informatics and its Department of Computer
Science, University of Debrecen, Hungary.



VIII Preface

We thank Andrej Voronkov for his EasyChair system which facilitated the
work of the Programme Committee and the editors considerably.

April 2014 Arnold Beckmann
Erzsébet Csuhaj-Varjú

Klaus Meer
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Schröder, Matthias
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Törmä, Ilkka
Vasconcelos, Pedro
Vaszil, György
Viganò, Luca
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Computability and Categoricity

of Ultrahomogeneous Structures

Francis Adams and Douglas Cenzer

Department of Mathematics, University of Florida, P.O. Box 118105,
Gainesville, Florida 32611

fsadams@ufl.edu, cenzer@math.ufl.edu

Abstract. This paper investigates the effective categoricity of ultraho-
mogeneous structures. It is shown that any computable ultrahomogeneous
structure isΔ0

2 categorical. A structureA is said to beweakly ultrahomoge-
neous if there is a finite (exceptional) set of elements a1, . . . , an such that
A becomes ultrahomogeneous when constants representing these elements
are added to the language. Characterizations are obtained for the weakly
ultrahomogeneous linear orderings, equivalence structures, and injection
structures, and compared with characterizations of the computably cate-
gorical andΔ0

2 categorical structures.

Keywords: computability theory, ultrahomogeneous, injections, effec-
tive categoricity, computable model theory.

1 Introduction

Computable model theory studies the algorithmic properties of effective math-
ematical structures and the relationships among such structures. The effective
categoricity of a computable structureAmeasures the possible complexity of iso-
morphisms between A and computable copies of A, and is an important gauge
of the complexity of A.

We say a structure (model) A is computable if its universe A is computable
and all of its functions and relations are uniformly computable. Given two com-
putable structures, we will say they are computably isomorphic if there exists an
isomorphism between them that is computable. For a single computable struc-
ture A, we will say A is computably categorical if every computable structure
isomorphic to A is in fact computably isomorphic to A. More generally, we will
say two computable structures are Δ0

α isomorphic if there exists an isomorphism
between them that is Δ0

α and we will say a computable structure A is Δ0
α cate-

gorical if every computable structure isomorphic to A is Δ0
α isomorphic to A.

A structure A is said to be ultrahomogeneous if every isomorphism between
finitely generated substructures extends to an automorphism of A. Ultraho-
mogeneous structures were first studied by Fräıssé [5], who defined the age of
a structure to be the family of finitely generated substructures of A and gave
properties which characterized the age of an ultrahomogeneous structure. Csima,

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014



2 F. Adams and D. Cenzer

Harizanov, R. Miller and A. Montalban [4] studied computable ages and the com-
putability of the canonical ultrahomogeneous structures, called Fräıssé limits.

Here are some simple examples of countable ultrahomogeneous structures.
See [6] for more details. The linear ordering (Q, <) of the rationals is the unique
ultrahomogeneous countable linear ordering. The age here is just the set of all
finite linear orderings. This structure is computably categorical. An equivalence
structure (A,E) is ultrahomogeneous if and only if all equivalence classes have
the same size k, 1 ≤ k ≤ ℵ0; then the age is the set of all finite equivalence struc-
tures with all classes of size ≤ k. These structures are computably categorical.

An injection structure is a set with a single 1-1 unary function. This function
induces a partition of the set into distinct orbits: finite cycles, one-way infinite
orbits (ω-orbits), or two-way infinite orbits (Z-orbits). An injection structure
is ultrahomogeneous if and only if it has no ω-orbits. For example, there is
the injection structure with infinitely many Z-orbits, where the age is the set
of structures consisting of finitely many Z-orbits. There is also the injection
structure with exactly one orbit of size k for each finite k, where the age is the
family of finite injection structures with no more than one orbit of any size k. In
these examples, the ultrahomogeneous structure with infinitely many Z-orbits is
in fact not computably categorical, but is Δ0

2 categorical.
We observe that in the first two examples there are computable models of the

countable ultrahomogeneous structure. In the third example, one can have an
arbitrary number of orbits of various finite sizes and thus a structure which is
not computable.

In this paper, we will closely examine the effective categoricity of ultraho-
mogeneous structures. In section 2, we will prove that any computable ultra-
homogeneous structure is Δ0

2 categorical. In section 3, we introduce the notion
of weakly ultrahomogeneous structures, where A is weakly ultrahomogeneous if
there is a finite (exceptional) set of elements a1, . . . , an such that A becomes
ultrahomogeneous when constants representing these elements are added to the
language. We characterize the weakly ultrahomogeneous linear orderings, equiva-
lence structures, and injection structures. In section 4, we present our conclusions
and topics for future research, including nested equivalence structures.

2 Categoricity of Ultrahomogeneous Structures

In this section, we will show that any computable ultrahomogeneous structure is
Δ0

2 categorical. Some lemmas are needed. If A is an ultrahomogeneous structure
and A ∼= B, by composing maps it is easy to see that B is also ultrahomogeneous.
We also have the following stronger fact:

Lemma 1. Let A,B be isomorphic ultrahomogeneous structures. Let X,Y be
finitely generated substructures of A,B respectively. If ϕ : X → Y is an isomor-
phism, then there is an isomorphism of A and B extending ϕ.

Proof. Let θ : A → B be an isomorphism. Then θ−1 ◦ ϕ : X → A is an isomor-
phism of finitely generated substructures of A. So it extends to an automorphism
α : A → A. Then θ ◦ α : A → B is an isomorphism that extends ϕ. ��
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Let As[x1, . . . , xn] be the terms of height s starting with the xi, i.e. the set
obtained by starting with the elements of {x1, . . . , xn} and applying the functions
of the structure up to s-many times. Then 〈x〉 =

⋃
s∈ω As[x]. While the As[x]

aren’t structures, we will say that As[x] ∼= As[y] if for any terms t1, . . . tm of
height s and any relation R, we have R(t1[x], . . . , tm[x]) ⇔ R(t1[y], . . . , tm[y]).

Lemma 2. 〈x〉 ∼= 〈y〉 with xi → yi iff for all s ∈ ω we have As[x] ∼= As[y].
Thus, asking if two finitely generated substructures are isomorphic is a Π0

1 ques-
tion.

Proof. For the left to right direction, it is clear that the restriction of the isomor-
phism to any height is an instance of the desired map. The reverse implication
follows from the fact that given finitely many terms t1[x], . . . tm[x], they occur
by some finite height s. So the terms are in As[x], hence for any relation R we
have R(t1[x], . . . , tm[x]) ⇔ R(t1[y], . . . , tm[y]) and so the map t[x] → t[y] is an
isomorphism. ��

Theorem 1. Every computable ultrahomogeneous structure is Δ0
2-categorical.

Proof. Let A be a computable ultrahomogeneous structure and let B be isomor-
phic to A by the isomorphism ϕ. We want to build a Δ0

2- isomorphism θ. We do
this with a back-and-forth argument, building increasing partial isomorphisms
θn at each stage and letting θ =

⋃
θn. Let a0 ∈ A. Since 〈a0〉 ∼= 〈ϕ(a0)〉, set

θ0(a0) = ϕ(a0) = b0.
Suppose we have defined θ2n−1 for {a0, . . . a2n−1} with θ2n−1(ai) = bi. Choose

the least a2n ∈ A \ {a0, . . . a2n−1}. There exists a b ∈ B such that 〈a0, . . . a2n〉 ∼=
〈b0, . . . , b2n−1, b〉 and we can choose the isomorphism so it extends θ2n−1 by
Lemma 1. Now search for this b using a Π0

1 -oracle to check whether 〈a0, . . . a2n〉 ∼=
〈b0, . . . , b2n−1, b〉, call it b2n, and define θ2n(a2n) = b2n.

Now suppose we have defined θ2n for {a0, . . . a2n}with θ2n(ai) = bi. Choose the
least b2n+1 ∈ A \ {b0 . . . , b2n}. There exists an a ∈ B such that 〈a0, . . . a2n, a〉 ∼=
〈b0, . . . , b2n+1〉 and we can choose the isomorphism so it extends θ2n by Lemma 1.
Search for this a using aΠ0

1 -oracle to check if 〈a0, . . . a2n, a〉 ∼= 〈b0, . . . , b2n+1〉, call
it a2n+1, and define θ2n+1(a2n+1) = b2n+1.

The map θ : A → B thus constructed is a bijection, since we took the least ai

and bi at each stage. It is also clear that it is Δ0
2, since θ is defined using a Π0

1 -
oracle. To show that it is an isomorphism, fix an m-tuple x such that θ(ai) = bi
for each ai in x, and let y = θ(x). Choose any relation R, and any function f
of arity m. Then for some n, x ⊆ {a0, . . . , an}, so y ⊆ {b0, . . . , bn}, and since
〈a0, . . . , an〉 ∼= 〈b0, . . . , bn〉, we have R(x) ⇔ R(y) and θ(f(x)) = f(y). ��

The complexity of the isomorphism constructed in the theorem is a direct
result of the complexity of the problem of determining if two finitely generated
substructures are isomorphic. So if this problem is computable for a structure,
then that structure is computably categorical. If a structure is relational, then for
any finite subset X of the universe we have 〈X〉 = X and checking if two finite
structures are isomorphic is computable. Therefore, all computable relational
ultrahomogeneous structures are computably categorical.
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More generally, any computable ultrahomogeneous locally finite structure is
computably categorical, where locally finite means that every finitely generated
substructure is finite. The converse is false: an injection structure consisting of
a single Z-orbit is computably categorical, but is clearly not locally finite.

3 Weakly Ultrahomogeneous Structures

In this section, we introduce a weak version of ultrahomogeneity. Whereas ul-
trahomogeneous structures have the property that ‘all points look the same’ in
a very strong way, the weaker version will allow finitely many elements to look
different from the others.

Definition 2. A structure A is weakly ultrahomogeneous if there exists a finite
set {a1, a2, . . . , an} ⊆ A such that for all tuples x,y from A with 〈a,x〉 ∼=
〈a,y〉 where each ai is fixed, this isomorphism of substructures extends to an
automorphism of A. Call such a set {a1, a2, . . . , an} an exceptional set of A.

Alternatively, A is weakly ultrahomogeneous if there is a finite set a1, . . . , an

of elements of A such that (A, a1, . . . , an) is ultrahomogeneous in the extended
language with constants for a1, . . . , an. Thus we can prove the following.

Theorem 3. Every computable weakly ultrahomogeneous structure is Δ0
2-cate-

gorical.

If A is a finite structure, it is trivially weakly ultrahomogeneous since the
universe can be taken to be an exceptional set. As above, if A is weakly ultra-
homogeneous and locally finite, then A is computably categorical. Given any
exceptional set, we can add finitely many elements to it and obtain another
exceptional set. But more interesting are the minimal exceptional sets and the
senses in which such sets are unique. To see some instances of this definition, we
will look at the weakly ultrahomogeneous analogues of the examples of ultraho-
mogeneous structures considered in the introduction.

3.1 Linear Orders

We start with a characterization of computably categorical linear orders proved
in [3]. Say that an element in a linear order is a successivity if it has an immediate
successor, an immediate predecessor, or is an endpoint.

Theorem 4 (Remmel). A computable linear order A is computably categorical
iff A has finitely many successivities.

Next we give a characterization of weakly ultrahomogeneous linear orders.

Theorem 5. For a countable linear order A, the following are equivalent:

1. A is weakly ultrahomogeneous.
2. A has finitely many successivities.
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3. A = L0 +Q+ L1 +Q+ . . .+Q+ Ln where the Li are finite chains, L0, Ln

are possibly empty and |Li| ≥ 2 for 1 ≤ i ≤ n− 1.

Proof. [1 ⇒ 2]: Suppose A has infinitely many successivities. Let {a1, . . . , an}
be a finite subset of A; we will show it cannot be an exceptional set. The succes-
sivities of A occur in finite chains or in subsets of order type ω, ω∗ (the reverse
order of ω), or Z. If there is a subset C that has order type ω or Z, choose
elements x1 < x2 and y1 < y2 ∈ C greater than all ai ∈ C such that there
are more elements between x1 and x2 than there are between y1 and y2. Then
〈a, x1, x2〉 ∼= 〈a, y1, y2〉, but the isomorphism can’t be extended to an automor-
phism. If C is of order type ω∗, we can repeat the argument above by choosing
the elements below all ai in C. Finally, if A has infinitely many successivities
in finite chains, choose one of these chains containing none of the ai and from
it choose the first element x and the second element y. Then 〈a, x〉 ∼= 〈a, y〉,
but the isomorphism can’t be extended to an automorphism. With infinitely
many successivities one of these situations must occur, and in either case we see
{a1, . . . , an} isn’t exceptional, so A isn’t weakly ultrahomogeneous.

[2 ⇒ 3]: Suppose A has finitely many successivities; call this finite set S. Then
S can be partitioned into L0, . . . , Ln where x, y ∈ Li iff there are finitely many
elements between x and y, and so i < j implies that for all x ∈ Li and for all
y ∈ Lj , x < y. So between Li and Li+1 are infinitely many elements, none of
which are successivities, hence these elements compose a copy of Q.

[3 ⇒ 1]: Let S =
⋃

i≤n Li = {a1, . . . , ak}. We claim that this set is excep-
tional. To see this, suppose 〈a,x〉 ∼= 〈a,y〉 with ai → ai for i ≤ k and xj → yj
for j ≤ n. Also assume that xj , yj /∈ S for j ≤ n. So for each j ≤ n, xj and yj
are in the same copy of Q, since they bear the same relation to all elements of
S. If all the xi, and hence all yi are in the same copy of Q, by ultrahomogeneity
there is an automorphism of that copy of Q sending xi to yi. Then using the
identity elsewhere, we have an automorphism of the entire structure. If there are
xi in more than one copy, use ultrahomogeneity in each copy with an xi and the
identity elsewhere to get an automorphism of the whole structure. ��

Corollary 1. A computable linear order A is computably categorical iff A is
weakly ultrahomogeneous.

Corollary 2. For any countable weakly homogeneous linear order A, there is a
computable structure isomorphic to A.

Let us say that a an exceptional set S for a weakly ultrahomogeneous structure
is a minimal exceptional set if no proper subset of S is exceptional. Such as set
must exist since S is finite. We will try to characterize minimal exceptional sets
and determine whether they are unique to a structure, or perhaps unique up to
automorphism.

For an ultrahomogeneous linear order of the form L0 + Q + L1 + Q + . . . +
Q + Ln, as in Theorem 5, the set

⋃
i≤n Li is an exceptional set, but this set
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is not necessarily minimal. In general, exceptional sets for this ordering can be
described as follows.

Proposition 1. Let A = L0 + Q + L1 + Q + . . . + Q + Ln be a countable
weakly ultrahomogeneous linear order. The exceptional sets are those subsets S
of
⋃

i≤n Li such that

(i) A \ S doesn’t contain two consecutive successivities.
(ii) S contains each last element ofL0, . . . Ln−1 and each first element ofL1, . . . Ln.

Proof. If (i) fails for a set S = {a1, . . . , an}, let x, y be two consecutive succes-
sivities not in S; so both x and y are in some Li. Then 〈a, x〉 ∼= 〈a, y〉, but the
isomorphism can’t extend since they are in different positions in Li and have a
different number of immediate successors.

If (ii) fails for S = {a1, . . . , an}, let x witness its failure and let y be an element
of the copy of Q adjacent to x. Then 〈a, x〉 ∼= 〈a, y〉, but the isomorphism can’t
extend since x is a successivity and y isn’t.

Now suppose i) and ii) hold forS = {a1, . . . , an} and suppose 〈a,x〉 ∼= 〈a,y〉 by
ϕ. Any xi which are successivities are uniquely between two ai, or are the unique
element greater than or less than all ai if they are endpoints, hence they must be
fixed. Any non-successivity pairs xi, yi must be in the same copy of Q and by the
ultrahomogeneity of each copy, we can extend ϕ to an automorphism. ��

It follows that the minimal exceptional sets contain each last element of
L0, . . . , Ln−1 and each first element of L1, . . . , L)n and, for any other elements
a and b such that b is the successor of a, S contains exactly one of a, b. As an
example, consider the linear order Q+L0+Q where L0 = {a1 < a2 < . . . < a5}.
Then both {a1, a3, a5} and {a1, a2, a4, a5} are minimal exceptional sets. This
shows that, while we would like the exceptional sets of a weakly ultrahomo-
geneous structure to be unique in some way, minimal exceptional sets aren’t
necessarily unique and in fact need not even be isomorphic.

Recall that in a structure A, an element b ∈ A is definable from a set S ⊆ A if
{b} is a subset of A definable from S. Define the definable closure of S, D(S) =
{x ∈ A : x is definable from S}. An important fact about definability we will
use repeatedly is that if b is definable from S and σ is an automorphism of A
fixing all elements of S, then σ also fixes b. Looking at definable closures reveals
a sense in which minimal exceptional sets are unique.

Proposition 2. Let A be a weakly ultrahomogeneous linear order and let M =
{a1 < . . . < an} be a minimal exceptional set. Then D(M) is the set of succes-
sivities of A.

Proof. Suppose x is in one of the copies of Q in A. Using the ultrahomogeneity
of Q, there is an automorphism of A moving x while fixing M . So x /∈ D(M).
Now let x be a successivity of A; we may assume x /∈ M . Then x is the unique
element satisfying φ(y) : (y < ai) if it is a left endpoint of A, similarly for right
endpoints, or else it is the unique element satisfying φ(y) : (ai < y < ai+1) for
some i ≤ n. ��
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3.2 Equivalence Structures

The effective categoricity of equivalence structures was investigated by Calvert,
Cenzer, Harizanov and Morozov in [1]. The character of an equivalence structure
indicates the number of equivalence classes of each size. The structure is said to
have bounded character if there exists a k ∈ N such that all finite classes have
size at most k. It is proved in [1] that an equivalence structure A is computably
categorical iff A has finitely many finite classes, or A has finitely many infinite
classes, bounded character, and there is at most one k such that there are in-
finitely many classes of size k. This condition is equivalent to saying that all but
finitely many classes of A have the same size.

Theorem 6. For a countable equivalence structure A, the following are equiva-
lent:

1. A is weakly ultrahomogeneous.
2. All but finitely many equivalence classes of A have the same size.

In this case, a minimal exceptional set contains exactly one element from each
of the exceptional equivalence classes.

Proof. [1 ⇒ 2] Suppose that A has infinitely many classes of different sizes and
let {a1, . . . , an} be a finite subset. Then find elements x, y from classes of dif-
ferent sizes so neither is related to any ai. Then 〈a, x〉 ∼= 〈a, y〉, but this can’t
extend to an automorphism.

[2 ⇒ 1] If all but finitely many equivalence classes of A are of the same size,
let {a1, . . . , an} contain exactly one element from each of these exceptional
classes. Then suppose 〈a,x〉 ∼= 〈a,y〉 via the isomorphism ϕ so ϕ(xi) = yi
and ϕ(ak) = ak. Either each pair xi, yi is in an equivalence class with some ak,
or if not they are in classes of the same size. Then the isomorphism extends to
an automorphism as follows.

First, we will explain how the equivalence classes are mapped, and then we
will describe what happens to the elements of each class. Fix each exceptional
class as well as any classes which do not contain any xi or yi. If a nonexceptional
class has an xi, then map xi to yi and hence the class [xi] to the class [yi]. If
there are nonexceptional classes with a yi but no xi, there must be the same
number of nonexceptional classes with an xi but no yi. Send each class of the
first kind to one of the second kind. Thus we may end up with cycles, say [x1]
maps to [y1] and y1Ex3, so that [y1] maps to [y3], and then [y3] maps to [x1].

Within each class, do the following. For classes with no xi or yi, the class is
fixed and we also fix each element of the class. For the nonexceptional classes
containing some of the xi or yi, we have mapped the xi and yi above, and
the remaining elements can be mapped arbitrarily. For the exceptional classes
containing some of the xi or yi, it follows that ϕ(xi)Exi, thus we can map those
elements respecting ϕ using a cycle decomposition similar to that described
above for the nonexceptional classes. Now the remaining elements can simply be
fixed.
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The claim about the minimal exceptional sets follows since the proof shows
such a set is exceptional, and that a finite set disjoint from two classes of different
sizes is not exceptional. ��

Corollary 3. A computable equivalence structure A is weakly ultrahomogeneous
iff A is computably categorical.

Corollary 4. For any countable weakly homogeneous equivalence structure A,
there is a computable structure isomorphic to A.

With this characterization of weakly ultrahomogeneous structures and their
minimal exceptional sets, we can again investigate their uniqueness properties.
Given two minimal exceptional sets, there is an automorphism of the structure
sending one to the other by interchanging the two elements in each exceptional
class and fixing everything else. However, as opposed to linear orders we don’t
have uniqueness of the definable closures.

Proposition 3. Let A = (A,E) be a weakly ultrahomogeneous equivalence struc-
ture and let S = {a1, . . . , an} be a minimal exceptional set. Then x ∈ A is
definable from S iff x ∈ S or x is in an exceptional class of size at most 2.

Proof. If x ∈ A isn’t in an exceptional class, there is an automorphism fixing
all the exceptional classes but moving x by interchanging [x] with another class
of the same size. If x is in an exceptional class of size at most 2, then for some
i ≤ n, either x = ai or {x} = {y : yEai & y �= ai}. If x is in an exceptional
class of size greater than 2, then [x] contains ai for some i ≤ n and an element
y distinct from x and ai. In this case, switching x and y and using the identity
everywhere else is an automorphism of A moving x and fixing S. ��

3.3 Injection Structures

The effective categoricity of injection structures was studied by Cenzer, Harizanov
and Remmel in [2]. It was shown that an injection structure is computably cat-
egorical if and only if it has finitely many infinite orbits, and is Δ0

2 categorical if
and only if it either has only finitely many orbits of type Z or has only finitely
many orbits of type ω.

Proposition 4. A countable injection structure A is weakly ultrahomogeneous
iff it has finitely many ω-orbits. In this case, a minimal exceptional set contains
exactly one member from each ω-orbit.

Proof. Suppose that A is an injection structure having only finitely many ω-
orbits. Let {a1, . . . , an} contain exactly one element from each of the ω-orbits,
and assume that 〈a,x〉 ∼= 〈a,y〉 via the isomorphism ϕ. The isomorphism is
extended to an automorphism as follows.

First, orbits not containing any xi or yh are fixed. If xi is in a finite orbit of
size k, then yi is also in a finite orbit of size k, and the orbit of xi is mapped to
the orbit of yi. If there are finite orbits of size k containing some yj but no xi,
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then there must be an equal number of orbits of size k containing some xi but
no yj , and then we map each class of the first kind to one of the second kind.

If xi is in a Z-orbit, then ϕ maps the sequence (xi, f(xi), . . . ) to the sequence
(yi, f(yi), . . . ) and this can be extended to the entire orbits. Each ω-orbit must
be fixed, since it contains one of the ai, and ϕ fixes ai and respects f .

Now assume A has infinitely many ω-orbits, and let {a1, . . . , an} be a finite
set. In an ω-orbit containing none of the ai, let x0 be the initial element and
x1 = f(x0). Then 〈a, x0〉 ∼= 〈a, x1〉, but the isomorphism can’t extend since x1

is in the range of f while x0 isn’t. Thus A isn’t weakly ultrahomogeneous.
If a finite set S doesn’t include an element from each ω-orbit, we may repeat

the above argument with the orbit not intersecting S to show the finite set isn’t
exceptional. The claim about minimal exceptional sets follows. ��

It follows that, for computable injection structures, computable categoricity
implies weak ultrahomogeneity which implies Δ0

2-categoricity. Neither implica-
tion can be reversed as witnessed by computable injection structures consisting
of only infinitely many Z-orbits, and structures consisting of only infinitely many
ω-orbits, respectively.

Proposition 5. Let A be a weakly ultrahomogeneous injection structure and let
S = {a1, . . . , an} be a minimal exceptional set. Then D(S) may be characterized
in two cases as follows.

1. If A has exactly one orbit {a} of size 1, then D(S) consists of a together
with the union of the finitely many ω-orbits of A.

2. If A does not have exactly one orbit of size 1, then D(S) consists of a together
with the union of the finitely many ω-orbits of A.

Proof. Suppose that b ∈ A is not in an ω-orbit or in an orbit of size 1. Then
the map fixing all ω-orbits and sending x to f(x) otherwise is an automorphism
fixing S but moving a. Suppose next that there are two (or more) orbits {b}
and {c} of size 1. Then the map interchanging b and c and fixing every other
element shows that b and c are not definable from S. For the other direction,
suppose b is in an ω-orbit with ai for some i ≤ n. Then for some n ∈ N we have
f (n)(a) = ai or f (n)(ai) = a. In either case, a is definable from S. Finally, if {a}
is the unique orbit of size 1, then this fact provides a definition of a. ��

4 Conclusions and Future Research

In this paper, we have examined countable ultrahomogeneous and weakly ultra-
homogeneous structures. We observed that countable ultrahomogeneous linear
orderings and also countable ultrahomogeneous equivalence structures all have
computable models. We showed that for computable linear orders and com-
putable equivalence structures, the weakly homogeneous structures are exactly
the computably categorical structures. For computable injection structures, we
observed that there are ultrahomogeneous structures with no computable copy,
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and there are ultrahomogeneous structures which are not computably categor-
ical, although every computably categorical structure is weakly ultrahomoge-
neous. We proved that any computable weakly ultrahomogeneous structure is
Δ0

2 categorical.
We introduced the notion of a minimal exceptional set for weakly ultraho-

mogeneous structures. We gave characterizations of these sets for linear orders,
equivalence structures, and injection structures.

Future research topics include the study of other structures such as vector
spaces, Boolean algebras, Abelian p-groups, graphs and partial orderings. One
goal is to classify the weakly ultrahomogeneous structures. A second goal is
to determine the effective categoricity of computable weakly ultrahomogeneous
structures. We have also begun to look at nested equivalence structures.

For n < ω, an n-equivalence structure is a structure A = (A,E1, . . . , En)
where each Ei is an equivalence relation on A. An ω-equivalence structure is a
structure A = (A,E1, E2, . . .) where each Ei for i < ω is an equivalence relation.
For 1 ≤ n ≤ ω, an n-equivalence structure is nested if i < j ⇒ xEiy → xEjy,
i.e Ei ⊆ Ej as subsets of A×A.

It is easy to find a necessary condition for ultrahomogeneity.

Proposition 6. Let A be a n-equivalence structure, with 1 ≤ n ≤ ω. If A is
ultrahomogeneous, then for 1 ≤ i ≤ n, (A,Ei) is ultrahomogeneous.

In general, this condition is not sufficient. For a 2-equivalence structure A =
(A,E1, E2), if [x]1∩ [x]2 and [y]1∩ [y]2 have different cardinalities for some x, y ∈
A, then 〈x〉 ∼= 〈y〉 but the isomorphism can’t extend since such an automorphism
would have to be an isomorphism between the intersections. A similar condition
on the intersections must hold for any ultrahomogeneous n-equivalence structure
with n ≤ ω.

In the case of nested n-equivalence structures for finite n however, this condi-
tion on the ultrahomogeneity of the individual equivalence relations is enough.

Theorem 7. Let A = (A,E1, . . . , En) be an nested n-equivalence structure.
Then A is ultrahomogeneous iff for 1 ≤ i ≤ n, (A,Ei) is ultrahomogeneous.
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Abstract. In this paper, we consider the Target Set Selection prob-
lem: given a graph and a threshold value thr(v) for each vertex v of the
graph, find a minimum size vertex-subset to “activate” s.t. all the ver-
tices of the graph are activated at the end of the propagation process. A
vertex v is activated during the propagation process if at least thr(v) of
its neighbors are activated. This problem models several practical issues
like faults in distributed networks or word-to-mouth recommendations
in social networks. We show that for any functions f and ρ this prob-
lem cannot be approximated within a factor of ρ(k) in f(k) · nO(1) time,
unless FPT = W[P], even for restricted thresholds (namely constant and
majority thresholds). We also study the cardinality constraint maximiza-
tion and minimization versions of the problem for which we prove similar
hardness results.

1 Introduction

Diffusion processes in graphs have been intensively studied [1, 4, 6, 7, 14, 16,
21, 22]. One model to represent them is to define a propagation rule and choose
a subset of vertices that, according to the given rule, activates all or a fixed
fraction of the vertices where initially all but the chosen vertices are inactive.
This models problems such as the spread of influence or information in social
networks via word-of-mouth recommendations, of diseases in populations, or of
faults in distributed computing [14, 16, 21]. One representative problem that
appears in this context is the Influence Maximization problem introduced
by Kempe et al. [16]. Given a directed graph and an integer k, the task is to
choose a vertex subset of size at most k such that the number of activated vertices
at the end of the propagation process is maximized. The authors show that the
problem is polynomial-time ( e

e−1 + ε)-approximable for any ε > 0 under some

stochastic propagation rules, but NP-hard to approximate within a ratio of n1−ε

for any ε > 0 for general propagation rules.
In this paper, we use the following deterministic propagation model. We are

given an undirected graph, a threshold value thr(v) associated to each vertex
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v, and the following propagation rule: a vertex becomes active if at least thr(v)
many neighbors of v are active. The propagation process proceeds in several
rounds and stops when no further vertex becomes active. Given this model,
finding and activating a minimum-size vertex subset such that all the vertices
become active is known as the Target Set Selection problem and was in-
troduced by Chen [7].

Target Set Selection has been shown NP-hard even for bipartite graphs
of bounded degree when all thresholds are at most two [7]. Moreover, the prob-
lem was shown to be hard to approximate in polynomial time within a ratio
O(2log

1−ε n) for any ε > 0, even for constant degree graphs with thresholds at
most two and for general graphs when the threshold of each vertex is half its
degree (called majority thresholds) [7]. If the threshold of each vertex equals its
degree (unanimity thresholds), then the problem is equivalent to the vertex cover
problem [7] and, thus, admits a 2-approximation and is hard to approximate with
a ratio better than 1.36 [11]. Concerning the parameterized complexity, the prob-
lem is shown to be W[2]-hard with respect to (w.r.t.) the solution size, even on
bipartite graphs of diameter four with majority thresholds or thresholds at most
two [19]. Furthermore, it is W[1]-hard w.r.t. each of the parameters “treewidth”,
“cluster vertex deletion number”, and “pathwidth” [4, 9]. On the positive side,
the problem becomes fixed-parameter tractable w.r.t. each of the single param-
eters “vertex cover number”, “feedback edge set size”, and “bandwidth” [9, 19].
If the input graph is complete, has a bounded cliquewidth, or has a bounded
treewidth and bounded thresholds then the problem is polynomial-time solv-
able [4, 10, 19].

Motivated by the hardness of approximation and parameterized hardness we
showed in previous work [3] that the cardinality constraint maximization ver-
sion of Target Set Selection, that is to find a fixed number k of vertices
to activate such that the number of activated vertices at the end is maxi-
mum, is strongly inapproximable in fpt-time w.r.t. the parameter k, even for
restricted thresholds. For the special case of unanimity thresholds, we showed
that the problem is still inapproximable in polynomial time, but becomes r(n)-
approximable in fpt-time w.r.t. the parameter k, for any strictly increasing func-
tion r.

Continuing this line of research, we study in this paper Target Set Se-

lection and its variants where the parameter relates to the optimum value.
This requires the special definition of “fpt cost approximation” since in param-
eterized problems the parameter is given which is not the case in optimization
problems (see Section 2 for definitions). Fpt approximation algorithms were in-
troduced by Cai and Huang [5], Chen et al. [8], Downey et al. [12], see also
the survey of Marx [17]. Besides this technical difference observe that Target
Set Selection can be seen as a special case of the previously considered prob-
lem, since activating all vertices is a special case of activating a given number
of vertices. Strengthening the known inapproximability results, we first prove
in Section 3 that Target Set Selection is not fpt cost ρ-approximable, for
any computable function ρ, unless FPT = W[P], even for majority and constant
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thresholds. Complementing our previous work, we also study in Section 4 the
cardinality constraint maximization and minimization versions of Target Set

Selection. We prove that these two problems are not fpt cost ρ-approximable,
for any computable function ρ, unless FPT = W[1]. Due to space limitation,
some proofs are deferred to a full version of the paper.

2 Preliminaries and Basic Observations

In this section, we provide basic backgrounds and notation used throughout
this paper and define Target Set Selection. For details on parameterized
complexity we refer to the monographs of Downey and Fellows [13], Flum and
Grohe [15], Niedermeier [20]. For details on parameterized approximability we
refer to the survey of Marx [17].

Graph terminology. Let G = (V,E) be an undirected graph. For a subset S ⊆ V ,
G[S] is the subgraph induced by S. The open neighborhood of a vertex v ∈ V in
G, denoted by NG(v), is the set of all neighbors of v in G. The closed neighborhood
of a vertex v in G, denoted NG[v], is the set NG(v)∪{v}. The degree of a vertex
v is denoted by degG(v) and the maximum degree of the graph G is denoted
by ΔG. We skip the subscripts if G is clear from the context.

Parameterized complexity. A parameterized problem (I, k) is said fixed-parameter
tractable (or in the class FPT) w.r.t. parameter k if it can be solved exactly in
f(k) · |I|c time, where f is any computable function and c is a constant. The
parameterized complexity hierarchy is composed of the classes FPT ⊆ W[1] ⊆
W[2] ⊆ · · · ⊆ W[P]. AW[1]-hard problem is not fixed-parameter tractable (unless
FPT = W[1]) and one can prove the W[1]-hardness by means of a parameterized
reduction from a W[1]-hard problem. Such a reduction between two parameter-
ized problems A1 and A2 is a mapping of any instance (I, k) of A1 in g(k)· |I|O(1)

time (for some computable function g) into an instance (I ′, k′) for A2 such that
(I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k) for some function h.

Parameterized approximation. An NP-optimization problem Q is a tuple
(I, Sol, val, goal), where I is the set of instances, Sol(I) is the set of feasible
solutions for instance I, val(I, S) is the value of a feasible solution S of I, and
goal is either max or min. We assume that val(I, S) is computable in polynomial
time and that |S| is polynomially bounded by |I| i.e. |S| ≤ |I|O(1).

Let Q be an optimization problem and ρ : N → R be a function such that
ρ(k) ≥ 1 for every k ≥ 1 and k · ρ(k) is nondecreasing (when goal = min)
and k

ρ(k) is unbounded and nondecreasing (when goal = max). The following

definition was introduced by Chen et al. [8].
A decision algorithm A is an fpt cost ρ-approximation algorithm for Q (when

ρ satisfies the previous conditions) if for every instance I of Q and integer k,
with Sol(I) �= ∅, its output satisfies the following conditions:
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1. If opt(I) > k (when goal = min) or opt(I) < k (when goal = max), then A
rejects (I, k).

2. If k ≥ opt(I) · ρ(opt(I)) (when goal = min) or k ≤ opt(I)
ρ(opt(I)) (when goal =

max), then A accepts (I, k).

Moreover the running time of A on input (I, k) is f(k) · |I|O(1). If such a decision
algorithm A exists then Q is called fpt cost ρ-approximable.

The notion of a gap-reduction was introduced in [2] by Arora and Lund. We
use in this paper a variant of this notion, called fpt gap-reduction.

Definition 1 (fpt gap-reduction). A problem A parameterized by k is called
fpt gap-reducible to an optimization problem Q with gap ρ if for any instance
(I, k) of A we can construct an instance I ′ of Q in f(k) · |I|O(1) time while sat-

isfying the following properties: (i) If I is a yes instance then opt(I ′) ≤ g(k)
ρ(opt(I′))

(when goal = min) or opt(I ′) ≥ g(k)ρ(opt(I ′)) (when goal = max), (ii) If I is
a no instance then opt(I ′) > g(k) (when goal = min) or opt(I ′) < g(k) (when
goal = max), for some function g. The function ρ satisfies the aforementioned
conditions.

The interest of the fpt gap-reduction is the following result that immediately
follows from the previous definition:

Lemma 1. If a parameterized problem A is C-hard and fpt gap-reducible to an
optimization problem Q with gap ρ then Q is not fpt cost ρ-approximable un-
less FPT = C where C is any class of the parameterized complexity hierarchy.

Problem statement. Let G = (V,E) be an undirected graph and let thr : V → N
be a threshold function such that 1 ≤ thr(v) ≤ deg(v), ∀v ∈ V . The definition
of Target Set Selection is based on the notion of “activation”. Let S ⊆ V .
Informally speaking, a vertex v ∈ V gets activated by S in the ith round if at
least thr(v) of its neighbors are active after the previous round (where S are the
vertices active in the 0th round). Formally, for a vertex set S, letAi

G,thr(S) denote

the set of vertices of G that are activated by S at the ith round, with A0
G,thr(S) =

S and Ai+1
G,thr(S) = Ai

G,thr(S)∪{v ∈ V : |N(v)∩Ai
G,thr(S)| ≥ thr(v)}. For S ⊆ V ,

the unique positive integer r with Ar−1
G,thr(S) �= Ar

G,thr(S) = Ar+1
G,thr(S) is called

the number rG(S) of activation rounds. It is easy to see that rG(S) ≤ |V (G)|
for all graphs G. Furthermore, we call AG,thr(S) = ArG(S)

G,thr (S) the set of vertices
that are activated by S. If AG,thr(S) = V , then S is called a target set for G.
Target Set Selection is formally defined as follows.

Target Set Selection

Input: A graph G = (V,E) and a threshold function thr : V → N.
Output: A target set for G of minimum cardinality.

We also consider the following cardinality constrained version.
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Max Closed k-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and an integer
k.
Output: A subset S ⊆ V with |S| ≤ k maximizing |AG,thr(S)|.

The Max Open k-Influence problem asks for a set S ⊆ V with |S| ≤ k
such that |AG,thr(S) \ S| is maximum. We remark that this difference in the
definition is important when considering the approximability of these problems.
Finally, Min Closed k-Influence (resp. Min Open k-Influence) is also
defined similarly, but one ask for a solution S ⊆ V with |S| = k such that
|AG,thr(S)| is minimum (resp. |AG,thr(S) \ S| is minimum).

Directed edge gadget. We will use the directed edge gadget as used by Chen [7]
throughout our work: A directed edge gadget from a vertex u to another vertex v
consists of a 4-cycle {a, b, c, d} such that a and u as well as c and v are adjacent.
Moreover thr(a) = thr(b) = thr(d) = 1 and thr(c) = 2. The idea is that the
vertices in the directed edge gadget become active if u is activated but not if v
is activated. Hence, the activation process may go from u to v via the gadget
but not in the reverse direction.

3 Parameterized Inapproximability of Target Set
Selection

Marx [18] showed that the Monotone Circuit Satisfiability problem ad-
mits no fpt cost ρ-approximation algorithm for any function ρ unless FPT =
W[P]. In this section we show that we can transfer this strong inapproximability
result from Monotone Circuit Satisfiability to Target Set Selection.

Before defining Monotone Circuit Satisfiability, we recall the following
notations. A monotone (boolean) circuit is a directed acyclic graph. The nodes
with in-degree at least two are labeled with and or with or, the n nodes with
in-degree zero are input nodes, and due to the monotonicity there are no nodes
with in-degree one (negation nodes in standard circuits). Furthermore, there is
one node with out-degree zero, called the output node. For an assignment of the
input nodes with true/false, the circuit is satisfied if the output node is evaluated
(in the natural way) to true. The weight of an assignment is the number of input
nodes assigned to true. We denote an assignment as a set A ⊆ {1, . . . , n} where
i ∈ A if and only if the ith input node is assigned to true. The Monotone

Circuit Satisfiability problem is then defined as follows:

Monotone Circuit Satisfiability

Input: A monotone circuit C.
Output: A satisfying assignment of minimum weight, that is, a satisfying
assignment with a minimum number of input nodes set to true.

By reducing Monotone Circuit Satisfiability to Target Set Selec-

tion in polynomial time such that there is a “one-to-one” correspondence be-
tween the solutions, we next show that the inapproximability result transfers to
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Fig. 1. Illustration of the reduction described in Theorem 1. All arrows of the right
graph represent a directed edge gadget. Thresholds are represented inside each vertex.

Target Set Selection. First, we show one reduction working with general
thresholds and then describe, using further gadgets, how to achieve constant or
majority thresholds in our constructed instance.

3.1 General Thresholds

As mentioned above, we will reduce from Monotone Circuit Satisfiability,
and thus derive the same inapproximability result for Target Set Selection

as for Monotone Circuit Satisfiability.

Theorem 1. Target Set Selection is not fpt cost ρ-approximable, for any
computable function ρ, unless FPT = W[P].

Proof. Let C be an instance of Monotone Circuit Satisfiability. We con-
struct an instance of Target Set Selection as follows. Initialize G = (V,E)
as a copy of the directed acyclic graph C where each directed edge is replaced
by a directed edge gadget. We call a vertex in G an input vertex (resp. output
vertex, and-vertex, or-vertex) if it corresponds to an input node (resp. output
node, and-node, or-node). Next, for each and-node in C with in-degree d set the
threshold of the corresponding and-vertex in G to d and for each or-vertex in G
set the threshold to 1. Set the threshold of each input vertex in G to n+1. Next,
add n copies to G and “merge” all vertices corresponding to the same input
node. This means, that for an input node v with an outgoing edge (v, w) in C
the graph G contains n+1 vertices w1, . . . , wn+1 and n+1 directed edges from v
to wi, 1 ≤ i ≤ n + 1. Finally, add directed edges from each output vertex to
each input vertex. This completes our construction (see Figure 1).To complete
the proof, it remains to show that

(i) for every satisfying assignment A for C there exists a target set of size |A|
for G, and

(ii) for every target set S for G there exists a satisfying assignment of size |S|
for C.
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(i) Let A ⊆ {1, . . . , n} be a satisfying assignment for C. We show that the
set S of vertices of G that correspond to the input nodes in A form a target set.
Clearly, |S| = |A|. First, observe that by construction, all the n+1 output vertices
of G become active. Hence, also all input vertices that are not in S become
active. Thus, all remaining vertices in G are activated since thr(v) ≤ deg(v) for
all v ∈ V .

(ii) Let S ⊆ V be a target set for G. First, observe that we can assume
that |S| < n since otherwise the satisfying assignment simply sets all input
nodes to true. Next, observe that we can assume that S is a subset of the input
vertices. Indeed, since G contains n+1 copies of the circuit (excluding the input
vertices), there is at least one copy without vertices in S and, hence, the output
vertex in that copy becomes active solely because of the input vertices in S.
Finally, assume by contradiction that the set of input nodes that correspond to
the vertices in S do not form a satisfying assignment. Hence, the output node
of C is evaluated to false. However, due to the construction, this implies that
the vertices corresponding to the output node are not activated, contradicting
that S is a target set for G. ��

3.2 Restricted Thresholds

In this subsection, we enhance the inapproximability results to variants of Tar-
get Set Selection with restricted threshold functions. To this end, we use the
construction desbribed in Lemma 2 of Nichterlein et al. [19] which transforms in
polynomial time any instance I = (G = (V,E), thr) of Target Set Selection

into a new instance I ′ = (G′ = (V ′, E′), thr′) where thr′ is the majority function
such that

(i) for every target set S for I there is a target set S′ for I ′ with |S′| ≤ |S|+ 1,
and

(ii) for every target set S′ for I ′ there is a target set S for I with |S| ≤ |S′| − 1.

Hence, the next corollary follows.

Corollary 1. Target Set Selection with majority thresholds is not fpt
cost ρ-approximable, for any computable function ρ, unless FPT = W[P].

Next, we show a similar statement for constant thresholds.

Lemma 2. Let I = (G = (V,E), thr) be an instance of Target Set Se-

lection. Then, we can construct in polynomial time an instance I ′ = (G′ =
(V ′, E′), thr′) of Target Set Selection where thr′(v) ≤ 2 for all v ∈ V ′ and
G′ is bipartite such that

(i) for every target set S for I there is a target set S′ for I ′ with |S′| = |S|, and
(ii) for every target set S′ for I ′ there is a target set S for I with |S| ≤ |S′|.
Theorem 1 and Lemma 2 imply the following.

Corollary 2. Target Set Selection with thresholds at most two is not fpt
cost ρ-approximable even on bipartite graphs, for any computable function ρ,
unless FPT = W[P].
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4 Parameterized Inapproximability of Max and Min
k-Influence

We consider in this section the cardinality constraint maximization and mini-
mization versions of Target Set Selection.

Theorem 2. Max Closed k-Influence and Max Open k-Influence are
not fpt cost ρ-approximable even on bipartite graphs, for any computable function
ρ, unless FPT = W[1].

We remark that the proof of Theorem 2 shows a stronger result: Unless FPT =
W[1], there is no fpt cost ρ-approximation for Max Closed k-Influence and
Max Open k-Influence, for any computable function ρ, even if the running
time is of the form f(k, ) · nO(1). Here  is the cost-parameter passed as an
argument to the algorithm, that is,  indicates the number of activated vertices.

As the reductions behind Corollaries 1 and 2 are not fpt gap-reductions,
we cannot use them to prove the same cost inapproximability results for Max

Closed k-Influence or Max Open k-Influence with majority thresholds
and thresholds at most two.

Minimization variants. In contrast with the maximization versions, we can show
that the problems are polynomial-time solvable for unanimity thresholds.

Proposition 1. Min Open k-Influence and Min Closed k-Influence are
solvable in polynomial time for unanimity thresholds.

The next result shows that Min Closed k-Influence and Min Open k-
Influence are also computationally hard even for thresholds bounded by two.
To this end, we consider the decision version ofMin Closed k-Influence (resp.
Min Open k-Influence) denoted by Closed k-Influence≤ (resp. Open k-
Influence≤) and defined as follows: Given a graph G = (V,E), a threshold
function thr : V → N, and integers k and , determine whether there is a subset
S ⊆ V , |S| = k such that |AG,thr(S)| ≤  (resp. |AG,thr(S) \ S| ≤ ).

Theorem 3. Closed k-Influence≤ is W[1]-hard w.r.t. parameter (k, ) even
for threshold bounded by two and bipartite graphs. Open k-Influence≤ is NP-
hard even for threshold bounded by two, bipartite graphs and  = 0.

We remark that the previous theorem rules out the possibility of any fixed-
parameter algorithm with parameter  for Open k-Influence≤ assuming P �=
NP. Moreover, due to its NP-hardness when  = 0, Min Open k-Influence is
not at all fpt cost approximable, unless P = NP.

In the following, we provide a final result regarding fpt cost approximation of
Min Closed k-Influence.

Theorem 4. Min Closed k-Influence with thresholds at most two is not
fpt cost ρ-approximable even on bipartite graphs, for any computable function ρ,
unless FPT = W[1].
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Proof. We provide a fpt gap-reduction with gap ρ from Independent Set to
Min Closed k-Influence Given an instance (G = (V,E), k) of Independent
Set, we construct an instance (G′ = (V ′, E′), k′) of Min Closed k-Influence
by considering the incidence graph, that is G′ is a bipartite graph with two
vertex sets V and E and for each edge e = uv ∈ E, there is ue, ve ∈ E′. We
define thr(u) = 1, ∀u ∈ V and thr(e) = 2, ∀e ∈ E. We choose the function h such
that h(k) is an integer and k + h(k) + 1 ≥ kρ(k). Then, we add h(k) additional
vertices F of threshold 1 in G′ and a complete bipartite graph between E and
F . Define k′ = k, g(k) = k+h(k)+1. If G contains an independent set of size at
least k then, by activating the same k vertices in G′, we obtain a solution that

activates no more vertex in G′ and thus opt(I ′) = k ≤ g(k)
ρ(k) = g(k)

ρ(opt(I′)) .

If there is no independent set of size k, if one activate only two vertices from
F , it will activate the whole vertex set E on the next step, and then the whole
graph. Moreover, activating a vertex from the vertex set E will also activate the
whole set F on the next step, and then the whole graph. Finally, activating k
vertices of V will activate at least one vertex of E since there is no independent
set of size k. Note that activating k− 1 vertices from V and 1 from F will result
not be better since vertices of F are connected to all vertices of E. Therefore,
opt(I ′) ≥ k + h(k) + 1 = g(k).

The result follows from Lemma 1 together with the W[1]-hardness of Inde-
pendent Set [13]. ��

5 Conclusion

Despite the variety of our intractability results, some questions remains open.
Are Max Closed k-Influence and Max Open k-Influence fpt cost ap-
proximable for constant or majority thresholds? We believe that these problems
remain hard, but the classical gadgets used to simulate these thresholds changes
does not work for this type of approximation. Similarly, is Min Closed k-
Influence fpt cost approximable for majority thresholds?

Finally, the dual problemofTargetSetSelection (i.e. find a target set of size
at most |V | − k) seems unexplored. Using the fact that Target Set Selection

with unanimity thresholds is exactly Vertex Cover, we know that the dual problem
is therefore W[1]-hard, even with unanimity thresholds. But it is still the case for
constant ormajority thresholds?Moreover, is the dual of TargetSetSelection

fpt cost approximable?
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bounded target set selection in social networks. In: Bonizzoni, P., Brattka, V.,
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Abstract. Grammatical Inference refers to the process of learning gram-
mars and languages from data. Although there are clear connections be-
tween Grammatical Inference and Computational Linguistics, there have
been a poor interaction between these two fields. The goals of this article
are: i) To introduce Grammatical Inference to computational linguists; ii)
To explore how Grammatical Inference can contribute to Computational
Linguistics.

1 Introduction

According to the Association of Computational Linguistics, Computational Lin-
guistics (CL) is the scientific study of language from a computational perspective.
We can mainly distinguish two approaches:

– Theoretical approach: the goal is to provide models that can help us to better
understand how humans process natural language.

– Practical approach: the goal is to develop systems that can deal with natural
language data in an application context.

Enabling machines to have human-like linguistic abilities, also involves to
enable them to learn a grammar. It is here where we find the field of Grammatical
Inference (GI). GI is a subfield of Machine Learning that studies how grammars
can be learnt from data. We can also distinguish two approaches:

– Theoretical approach: the goal is to proof efficient learnability of grammars.
– Practical approach: the goal is to develop systems that learn grammars from

real data.

It is worth noting that theoretical results in GI have been used in discussions
on children’s language acquisition [18]. Moreover, empirical systems that learn
grammars have been applied to natural language; some research has been done
in syntactic parsing, morphological analysis of words and machine translation.

Although there are some clear connections between CL and GI, the interaction
between these two communities is scarce. The goal of this paper is to introduce
GI to computational linguists and explore how GI can contribute to CL.
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2 What is Grammatical Inference?

Machine learning concerns the development of techniques that allow computers
to learn. GI is a specialized subfield of Machine Learning that deals with the
learning of formal languages from a set of data. The learning process involves
two parts: a) a learner (or learning algorithm) that has to identify the language;
b) a teacher that provides information about the language (e.g., strings that
belong to the language) to the learner. For example, imagine that the language
to be learnt (i.e., the target language) is (ab)+:

– The teacher could provide to the learner strings that belong to the target
language (i.e., positive data), such as ab, abab, ababab....

– The learner, from this information, should infer that the target language is
(ab)+.

As we can see, there are some similarities with the process of natural language
acquisition. Instead of a teacher and a learner, we would have an adult and a
child. Like the learner in the above example, a child also learns a language
from the data he/she receives; a child in an English environment will learn to
speak English, and the same child in a Japanese environment, will learn to speak
Japanese.

In 1967, E.M. Gold gave the initial theoretical foundations of this field [23],
mainly motivated by the problem of how children acquire their native language.
His goal was “to construct a precise model for the intuitive notion ‘able to speak
a language’ in order to be able to investigate theoretically how it can be achieved
artificially.” [23, p. 447–448]. Moreover, he stated that the results and meth-
ods would have implications in CL, in particular the construction of discovery
procedures, and in Psycholinguistics, in particular the study of child learning.
Therefore, from the origins of GI, we can see clear connections between GI and
CL.

It is worth noting that GI researchers come from different areas: Machine
Learning, Pattern Recognition, CL, etc. Several conferences, workshops and tu-
torials have brought together GI researchers. The main conference devoted to
GI is called ICGI (International Colloquium on Grammatical Inference); it is or-
ganized every two years since 1994. Some workshops, schools and tutorials have
also been organized in conjunction with EACL, NIPS, IJCAI and ACL, some
of them directly related to CL (for ex., CLAGI: Workshop on Computational
Linguistic Aspects of Grammatical Inference).

For more information on GI, see [21].

3 Theoretical Approaches to GI

3.1 Learning Paradigms

We can distinguish three main learning paradigms in GI: identification in the
limit [23], active learning [3] and PAC learning [40]. Next we review the main
ideas of these models.
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We assume that the reader is familiar with some basic notions on formal
languages and automata theory. For detailed information, see [32].

Identification in the Limit. Identification in the limit was proposed by E.M.
Gold in [23]. In this model, the learner receives more and more examples from
the teacher, and has to produce a hypothesis of the target language. If the learner
receives a new example that is not consistent with its current hypothesis, then it
has to change it. The learner identifies the target language in the limit if, after
a finite number of examples, makes a correct hypothesis and does not change it.

Two kind of presentations are possible in this learning paradigm:

– Text : only strings that belong to the target language are given to the learner.
In this case we say that the learner learns from only positive data. For ex-
ample, imagine that the target language is {anbn : n ∈ N}. An example of a
text presentation would be: λ, a2b2, a8b8, ...

– Informant : strings that belong to the target language and strings that do
not belong to it are given to the learner. In this case, we say that the learner
learns from positive and negative data. Following the previous example, an
informant presentation would be: (λ,+), (abab,−), (aabb,+), ...

Active Learning. Active learning, also known as Query learning, was intro-
duced by D. Angluin in [3]. In this model, instead of passively receive strings of
the language (like in the Identification in the limit paradigm), the learner inter-
acts with the teacher through queries. Her motivation to introduce this learning
framework was that, in some scenarios (for example, a human expert in cancer
diagnosis, trying to communicate his/her method in that domain to an expert
system), it is more reasonable to investigate learning methods that are based on
helpful examples.

D. Angluin proposed to use a teacher (also called oracle) that knows the target
language and can correctly answer specific questions asked by the learner. The
learner, after asking a finite number of queries, has to return a hypothesis of the
language. Its hypothesis has to be the correct one, i.e. exact learning is required.

There exists different type of queries, but just two of them have been estab-
lished as the standard combination to be used:

– Membership query (MQ): the learner asks to the teacher if a string x is in
the language, and the teacher answers “yes” or “no”.

– Equivalence query (EQ): the learner asks to the teacher if its hypothesis
is the correct one, and the teacher answers “yes”, and otherwise returns a
counterexample (i.e., a string in the symmetric difference of the learner’s
hypothesis and the target language, that is, a string that is in the learner’s
hypothesis but not in the target language, or a string that is in the target
language but not in its hypothesis).

A teacher that is able to answer MQ and EQ is called a Minimally Adequate
Teacher (MAT).
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PAC Learning. PAC (Probably Approximately Correct) learning was intro-
duced by Valiant in [40]. He proposed a probabilistic model of learning from
random examples.

In this model, there exist an unknown distribution over the examples, and the
learner receives examples sampled under this distribution. It is required to learn
under any distribution, but in contrast to Identification in the limit and Active
learning, exact learning is not required (a small error is permitted). A successful
learner is one that finds, with high probability, a grammar whose error is small.

3.2 Main Formal Results

Researchers in GI have been specially focused on obtaining formal results. Many
works have been developed in the three learning settings explained in the previ-
ous section, specially in Identification in the limit and Active Learning. Moreover,
the classes of languages that have specially attracted their attention are regular
(REG) and context-free (CF), which constitute the first two levels of the Chom-
sky Hierarchy. There are very few studies about identifying classes of languages
more powerful than CF. One of the reasons is that it is already too hard to get
positive learnability results with these classes.

In Identification in the limit, one of the main results obtained is the one given
by Gold [23], who proved that superfinite classes of languages (i.e., classes that
contain all finite languages and at least one infinite language) are not identi-
fiable in the limit from positive data. This implies that none of the classes of
languages defined by Chomsky, including REG and CF, are identifiable in the
limit from positive data. The problem of learning with only positive data is that
overgeneralization can not be controlled; if our hypothesis consists of a grammar
whose language is larger than the target language, no positive example will be
able to refute our hypothesis.

Despite Gold’s results, it is desirable to learn from only positive data, since
in the most part of applications the available data is positive. For example, in
Natural Language Processing, large sets of positive data may be available for
learning, but it is not common to obtain a set of negative data. To overcome
this problem, researchers have adopted different solutions: to study subclasses
of the languages to be learned [2], to provide structural information [34] or to
make also available negative data [30].

In Active learning, one of the main results is the one obtanied by D. Angluin,
who proved that Deterministic Finite Automata (DFA) are learnable from MQs
and EQs in polynomial time [3]. After Angluin’s work, researchers developed
more efficient versions of the same algorithm, trying to increase the parallelism
level, to reduce the number of queries, etc. [7].

Is it possible to extend the polynomial MAT learnability beyond DFA? An-
gluin and Kharitonov [4] showed that the problem of identifying the class of
CF grammars by using MAT is computationally as hard as the cryptographic
problems (for which there is currently no known polynomial-time algorithm).
In order to avoid this problem, researchers have adopted different solutions: to
study subclasses of CF grammars [24], to provide structural information [33] or



How can Grammatical Inference Contribute to Computational Linguistics? 25

to reduce the learning problem to some other learning problem whose result is
known [35].

What about learning from another kind of queries? Based on studies on chil-
dren’s language acquisition, a new type of query called correction query was
proposed in [8]. Children, in the early stages of their linguistic development,
when produce an erroneous utterance (for example, “milk milk”), they are often
corrected by their parents (for example, “you want milk?”); these corrections
are made in the form of reformulations and they are mainly used by the parents
to be sure that they have understood their children [17]. Taking into account
all this, the idea of corrections was applied to GI studies, more concretely to
Angluin’s model.

In a correction query, the learner asks if a string is in the language, and if it
does not belong to the language, the teacher returns a correction. How does the
teacher correct the learner? Two different type of corrections have been mainly
developed in GI: i) A correction consists of the shortest extension of the queried
string; ii) A correction consists of a string of the language closed to the queried
string with respect to the edit distance. By using the first type of corrections,
it has been showed that it is possible to learn DFA [11], k-reversible languages
and pattern languages [39]. By using a correction based on edit distance, it
has been showed that it is possible to learn topological balls of strings (i.e.,
classes of languages defined via edit distance) [10], pattern languages and regular
expressions [27].

In PAC learning, more negative results have been proved than positive [21].
Even for the case of DFA, most results are negative. The requirement that the
learning algorithm must learn under any arbitrary (but fixed) probability distri-
bution seems too strong. To overcome this problem, one of the solutions adopted
has been to consider that the data are sampled according to a distribution that
is defined by a grammar or an automaton. The goal in this case is to learn this
distribution [20].

It is worth noting that a well studied technique in GI for learning automata
is state-merging. Positive learnability results have been obtained by using this
technique, in both probabilistic and non-probabilistic frameworks. Some of the
most well known algorithms are: RPNI [30] (for learning DFA from positive and
negative data), ALERGIA [14] (for learning probabilistic DFA from only positive
data) and OSTIA [31] (for learning subsequential transducers from only positive
data).

As we can see, there is a rich literature in GI about learning REG and CF
grammars, finite-state automata, transducers, etc. (due to space restrictions, we
have just reviewed some of them. For more details about formal results in GI,
see [21]). All these formal objects are also important in CL. Hence, CL could
explore how to benefit from all these results obtained in the field of GI.
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3.3 Which Classes are Relevant to Natural Languages?

Most research in GI has been focused on learning classes of languages with a
limited expressive power, i.e. REG and CF. However, a question very interesting
from a linguistic point of view is: what classes are relevant to natural languages?

CF grammar is the most popular used to define the syntax of natural lan-
guages. However, as it was showed in the 80’s, there are some examples of natural
language structures that cannot be described using a CF grammar; in particular,
examples of multiple agreement, crossed agreement and duplication were found
in some natural languages such as Dutch [13], Bambara [19] or Swiss German
[36]. These examples showed that natural languages are not CF and that more
generative capacity than CF grammar is needed to describe natural languages.

How much power beyond CF is it necessary? CF have not enough expres-
sive power, but a positive aspect is that they are computationally tractable. In
contrast, context-sensitive (CS) have enough expressive power to describe natu-
ral languages, but they are computationally complex to deal with. Therefore, it
would be desirable to find a class that is expressive enough to deal with natural
languages and that has good computational properties.

In 1985, A.K. Joshi introduced the notion of Mildly Context-Sensitive (MCS)
[25]. His idea was to provide a device capable of generating CF and non-CF
structures, keeping under control the generative power. Since then, several for-
malisms have been introduced and used to fabricate MCS families of languages,
such as: tree adjoining grammars, head grammars, combinatory categorial gram-
mars, linear indexed grammars, etc. [26]

It is worth noting that all these formalisms occupy a concentric position in
the Chomsky hierarchy, between CF and CS. However, as some researchers have
pointed out [29,28], there are some examples of natural languages constructions
that are neither REG or CF, and also some REG or CF constructions that do not
appear naturally in sentences. Therefore, these researchers suggest that natural
languages could occupy an orthogonal position in the Chomsky hierarchy.

If we take into account all these ideas, we can conclude that it would be
desirable to find new formalisms that have the following properties: i) They
generate MCS languages (i.e., they can generate multiple agreement, crossed
agreement and duplication structures, and they are computational feasible); ii)
They occupy an orthogonal position in the Chomsky hierarchy (i.e., they contain
some REG, some CF, but are included in CS).

Researchers in GI have tried to study classes with such desirable properties.
An example is the class of Simple p-dimensional External Contextual grammars
(SEC). It was proved that SEC can generate MCS languages and it is incompa-
rable with REG and CF, but it is included in CS [8]. Some positive learnability
results have also been obtained with this class [9]. Results on the learnability of
other classes that also generate MCS languages can be found in [42].

Therefore, GI researchers have studied the learnability of some classes that
seem to be appropriate candidates to model some aspects of natural language
syntax. It would be very interesting that computational linguists study the rel-
evance of these classes.



How can Grammatical Inference Contribute to Computational Linguistics? 27

4 Practical Approaches to GI

Although research in GI has been specially focused on obtaining formal results,
GI algorithms have also been applied to some other domains, such as natural
language learning.

According to [22], GI methods for natural language can be classified into:
i) unsupervised methods (the teacher does not interact with the learner, so the
learner does not have any information about the structure of correct sentences
in the language); ii) supervised methods (the learner can ask to the teacher if
its hypothesis about the language is correct. Treebank or structured corpus are
used); iii) semi-supervised methods (a combination of unstructured data with
small structured training sets are used). Most of the GI methods are based on
an unsupervised approach and only use positive data during the learning process.
Examples of such methods are:

– EMILE [1]: the general idea is to identify substitution classes by means of
clustering (expressions that occur in the same context are clustered together
and thus, substitutable in similar contexts).

– ABL (Alignment-Based Learning) [41]: the idea is to find possible con-
stituents by aligning sentences and then, select the best constituents by
using probabilistic methods.

– ADIOS (Automatic DIstillation Of Structure) [37]: since the information is
represented by a graph, the main idea is to find the best paths in the graphs.

Most of the GI methods are evaluated by using a treebank. One of the most
used is ATIS (Air Traffic Information System); English corpus that contains 577
sentences on air traffic.

It is worth noting that researchers in GI have also developed methods to
learn subsequential transducers for language understanding [16] and stochastic
transducers for machine translation [15]. These methods have been successfully
applied to different non-trivial tasks, such as: Miniature Language Acquisition
task (this task involves sentences that describe visual scenes), Traveler task (it
involves human-to-human communication situations in the front-desk of a hotel),
etc.

4.1 Learning with Semantics

Most works in GI reduce the learning problem to syntax learning and omit any
semantic information. However, as linguistic and cognitive studies suggest, se-
mantic and pragmatic information not only are available to children, but also
seem to play an important role in the early stages of children’s linguistic devel-
opment. For instance, let us take the example given in the previous section; if a
child produces an incorrect sentence such as “milk milk”, thanks to the context
in which it is produced, parents can understand the meaning of this sentence, al-
though it is not syntactically correct. Moreover, if parents reformulate the child’s
sentence to be sure that they have understood their child (“you want milk?”),
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this correction is going to be based on the meaning that the child intend to
express (i.e., the correction preserves the intended meaning of the child) [17].

The first attempt to incorporate semantics in the field of GI can be found in
[5,6]. Based on all these ideas, it was proposed a simple computational model
that takes into account semantics for language learning. Thanks to this model,
it was possible to investigate aspects of the roles of semantics and corrections
in the process of learning to understand and speak a natural language. In this
new approach, the teacher is able to understand a flawed utterance provided
by the learner and answer with a correct utterance for that meaning (by using
meaning-preserving corrections). Moreover, the learner can recognize that the
teacher’s utterance has the same meaning but different form. The model was
tested with limited sublanguages of ten different natural languages (a simplified
version of the Miniature Language Acquisition task was used). The empirical
results showed that the access to the semantics facilitates language learning,
and the presence of corrections by the teacher has an effect on language learning
by the learner (even if the learner does not treat corrections specially).

Following this line of research, a work based on pair-Hidden Markov Models
was proposed in [12]. It was showed that, by taking into account semantics, it is
possible to accelerate the language learning process.

5 Concluding Remarks

GI and CL have many aspects in common. From a theoretical point of view, one
of the goals of CL is to go deeper in the understanding of how humans learn
language. GI studies were initially motivated by the problem of natural language
acquisition. Research in GI have been specially focused on obtaining theoretical
results about the learnability of grammars and have provided tools for learning
grammars that could be of interest for computational linguists. Moreover, GI
researchers have tried to find new classes of languages that are relevant for
natural language and have studied their learnability.

GI and CL study the same formal objects: REG grammars, CF grammars,
finite-state automata, transducers, etc. GI has specially studied these objects
from a theoretical point of view and many relevant results have been obtained.
It would be interesting that computational linguists tried to benefit from the
results obtained in the field of GI.

From a practical point of view, one of the goals of CL is to develop systems
that deal with natural language data. We have seen that some works in this line
have also been developed in GI. Instead of proving the learnability of grammars,
researchers have focused on providing empirical systems that learn grammars
from real data. Moreover, GI methods for other tasks, such as machine transla-
tion, have been developed.

CL also aims to develop systems that behaves more and more like humans.
In GI there has also been several efforts for taking more natural aspects during
the learning process. An example of that is the development of models that take
semantics into account during the learning process.
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With this paper we hope to have showed the relevance of GI research for the
study of natural language, and in particular for CL, and to stimulate further
interaction between these two fields.
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Abstract. By analysing the explanation of the classical heapsort al-
gorithm via the method of levels of abstraction mainly due to Floridi,
we give a concrete and precise example of how to deal with algorith-
mic knowledge. To do so, we introduce a concept already implicit in the
method, the ‘gradient of explanations’. Analogously to the gradient of
abstractions, a gradient of explanations is a sequence of discrete levels
of explanation each one refining the previous, varying formalisation, and
thus providing progressive evidence for hidden information. Because of
this sequential and coherent uncovering of the information that explains
a level of abstraction—the heapsort algorithm in our guiding example—
the notion of gradient of explanations allows to precisely classify purposes
in writing software according to the informal criterion of ‘depth’, and to
give a precise meaning to the notion of ‘concreteness’.

1 Introduction

We are currently living in the age of the zettabyte (1021 bytes), a quantity of
information “expected to grow fourfold approximately every three years. . . every
day, enough new data is being generated to fill all US libraries eight times over”
Floridi [9], page 5. This quantity of information is mostly produced through
digital computers, and therefore it is algorithmic in nature, at least in part.
Even from a syntactic point of view, algorithmic information is of a very different
character than ordinary information: while the latter relies on the classic theory
by Shannon and Weaver, the fundamentals of algorithmic information are in the
theory of computation as initiated by Turing—see Chapter 14 in Allo et al [2].

Furthermore, we need semantics to upgrade information (the agent in the
state of being informed) to knowledge (the agent in the state of being able to
perform a conscious informational analysis). Chapter 10 of Floridi [8] solves this
problem by giving two different logics at the basis of the states above (see also
Allo [3,1]) while Primiero [15] analyses the special case of information locally
valid, i.e., when functional information is in charge. Functional information,
commonly used in information sciences, particularly in software engineering,
entails realisable instructions to obtain reliable data not yet available. The aim
of this paper is to analyse knowledge, in the sense above, in the case of algorithms
inside this line of research known as Philosophy of Information, see Allo et al [2].
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To do so, we will analyse the heapsort algorithm. The heapsort algorithm has
been chosen as the guiding example for two reasons: in the first place, heapsort
is a classical algorithm, deeply studied and used, and non elementary; in the
second place, heapsort exhibits in a nutshell all the features that appears in
larger and more complex software, so it provides an ideal case study to test and
to explain ideas about the epistemology of computing and programming.

The paper is organised as follows: in the next section, the terminology and
the basic concepts of the method of levels of abstraction are introduced, tailored
to our purposes. Section 3 is devoted to illustrate the heapsort algorithm from
three different points of view: the ones of a programmer, of a software designer,
and of an algorithm designer. Section 4 introduces the notion of gradient of
explanations, showing how the analysis conducted in Sect. 3 generates one, and
some consequences are drawn. The paper concludes with a brief summary and
discussion of possible future developments.

2 The Method of Levels of Abstraction

The method of levels of abstraction comes from modelling, a common practice
in science: in its standard presentation, variables model observations of reality,
where only necessary details are retained. The method is flexible, as it can be
used in qualitative terms without technicalities, as in Floridi [9], where ethical
issues are analysed, as well as in the advanced educational settings presented in
Gobbo and Benini [10]. Oppositely, the method can be used in a technical sense,
as for instance in the case of algorithmic information analysed in this paper.

In fact, algorithmic information presupposes that the informational organisms
in charge are computational in nature. In other words, computational informa-
tional organisms (c-inforgs), are formed by (at least) a human being and by some
kind of computing machine—typically a modern digital computer. As Gobbo
and Benini [13] argued information can be hidden to the eyes of the observers
according to the growth of complexity of the c-inforg itself, even if it can be
revealed if the agent holds the necessary knowledge to cope with the complexity
at the given level of abstraction. In fact, the key feature of a c-inforg is being
programmable, and not every variable in the given level of abstraction is granted
to be completely observable – instead it could be hidden, exactly because of the
nature of algorithmic information.

The method distinguishes three kinds of levels: proper Levels of Abstraction
(LoAs); the Levels of Organisation (LoO), the machinery part of the c-inforg,
and Levels of Explanation (LoE). In general, the LoAs and the LoOs are always
strictly connected in every kind of informational organisms. In particular, in
the case of c-inforgs, this connection is particularly clear. In fact, each software
abstraction (LoA) is run over a correspondent hardware abstraction (LoO): the
history of modern computing shows a continuous drift from hardware to software;
in our terms, more LoAs are introduced so to abstract over the hardware, see
Gobbo and Benini [12] for details. Moreover, for each pair of LoA/LoO it is
possible to identify more than one LoE because c-inforgs are programmable,



34 M. Benini and F. Gobbo

and at least the programmer’s and end-user’s views are possible for the same
pair LoA/LoO, see Gobbo and Benini [11].

If a range of LoAs is made of discrete variables and each level can be nested
into another within a sequence, that range is called nested Gradient of Ab-
straction (GoA)—see subsection 3.2.6 in Floridi [8]. As we will see in the next
section, the explanation of algorithms needs a new concept which is implicit in
the method presented until now, that is a Gradient of Explanation (GoE), which
holds if a GoA is in charge. We will justify the epistemic need of GoE inductively,
via the examination of heapsort algorithm.

3 The Heapsort Algorithm

The heapsort procedure is a classical topic in the study of algorithms, see, e.g.,
pages 144–148 of Knuth [14]. In the following, the presentation is mainly based
on Chapter 6 of Cormen et al [5], although we adopt the method of levels of
abstraction to make explicit the various hypotheses and building passages, to let
the non-technical reader follow our arguments.

Heapsort solves the problem of sorting an array: given an array A with homo-
geneous elements and a total ordering � among its elements, the problem asks
to construct an array B whose elements are ordered by �, i.e., B[1] � B[2] �
B[3] � · · · , and such that B is a permutation of A.

The reason why heapsort is an interesting solution to the sorting problem is
its efficiency: the resulting array B is constructed out of A using only a small and
constant amount of additional memory, in contrast with mergesort for example,
and the computing process takes a number of steps proportional to n logn, with
n the number of elements in A. The time complexity is optimal, because no
comparison-based solution to the sorting problem may be computed in a number
of steps whose order of magnitude is less than n logn in the worst case.

3.1 A Programmer’s View

When a programmer is asked to implement heapsort, he should consider to be
part of a c-inforg P . The LoO PO and the LoA PA describing the computing
device in P are known to the programmer. For the sake of clarity, let us assume
the LoA PA to be the bare programming language C and the LoO PO to be the
computer memory as seen through the primitives and libraries of the language.
The purpose of the programmer is to construct another LoA SA on the top of
PA, providing a new operation, the sorting algorithm, which becomes observable
in the corresponding LoO SO by the Heapsort syntax.

To perform the implementation, the programmer needs a complex and struc-
tured amount of knowledge. First, he knows the syntax of the programming lan-
guage that will be used to implement heapsort—C, in our illustration; also, he
knows how the various instructions and constructions of the language modify the
state of the machine, the so-called operational semantics of the language. These
pieces of knowledge come from being a programmer. Then, he needs to know the
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Heapsort(A : array) ≡
BuildMaxHeap(A)
for i← len(A) downto 2 do

exchange(A[1], A[i])
heapsize(A)← heapsize(A)− 1
MaxHeapify(A, 1)

BuildMaxHeap(A : array) ≡
heapsize(A)← len(A)
for i ← �len(A)/2� downto 1 do

MaxHeapify(A, i)

left(i : IN) ≡ 2i

right(i : IN) ≡ 2i+ 1

MaxHeapify(A : array, i : IN) ≡
m← i
l← left(i)
r ← right(i)
if l ≤ heapsize(A) & A[l] 	 A[m] then
m← l

if r ≤ heapsize(A) & A[r] 	 A[m] then
m← r

if m 
= i then
exchange(A[i], A[m])
MaxHeapify(A,m)

exchange(A[i] : element, A[j] : element) ≡
x←A[i];
A[i]←A[j];
A[j]← x

Fig. 1. The heapsort algorithm

description of the heapsort algorithm in some (semi-)formal notation which is
the specification of his task. For example, we may assume the programmer knows
the pseudo-code in Fig. 1. Of course, he needs to understand the notation: specif-
ically, he has to know that ← means assignment; that for x←e downto n do B
means a loop; that indentation is used for grouping instructions; and so on.

This knowledge is not yet enough. For example, the presented pseudo-code
assumes the array A to be a data structure having two operations: len(A) which
tells the number of elements in the array A, and A[i] which gives access to the
i-th element of A, provided 1 ≤ i ≤ len(A). A careful inspection of Fig. 1 reveals
that the pseudo-code assumes that the ordering relation � is embedded into the
algorithm rather than a parameter.

It is clear that the amount of information described so far is enough to allow
the programmer to fulfil his implementation task. Thus, this amount of infor-
mation forms an explanation of heapsort, the one allowing to implement the
algorithm inside the c-inforg P , producing a new pair (SA, S0) of LoA and LoO,
respectively. This new abstraction allows the programmer to use the computing
device in P in a new way, because a new concept is available, heapsort.

The new LoA SA and LoO SO are explained by a corresponding LoE SE;P

which can be stated in natural language as follows: ‘the LoE is all that is needed
to fulfill the purpose of encoding in C language the heapsort algorithm’.

The amount of knowledge necessary to fulfil the purpose is the one sketched
above, used by the programmer to implement SA and SO from PA and PO.
As we have seen, this kind of knowledge can be adequately represented in what
Primiero [15] calls functional information. Also, it should be clear that almost no
creativity is involved here, and so at this rather low level of abstraction program-
mers are not exploiting the artistic possibilities inside the act of programming –
see Gobbo and Benini [11].
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3.2 A Software Designer’s View

The point of view of a prototypical software designer is a step beyond the basic
programmer’s: in our terms, the LoE SE;P is nested in another, broader LoE.
In fact, the software designer has to provide a specification to the programmer
so that the implementation shall be coherent with the needs of a software which
contains many other algorithms. Thus, the designer is aware of the sorting prob-
lem and recognises the problem as a node in a larger network of problems, whose
overall solution forms the software where the heapsort implementation is only a
small component.

Hence, the software designer is part of the c-inforg P together with the pro-
grammer, and they share the same LoA PA and LoO PO. The programmer and
the software designer are similar to the carpenter whose LoE is to make a chair
(example in Floridi [8], section 3.4): the functional organisation (the blueprint)
and the realisation (the chair) are similar to the design of the algorithm and
its actual implementation in our example. The ‘only’ difference between making
the chair and the design and development of heapsort is the need for two agents
with different degrees of knowledge and specialisation. In fact, the designer and
the programmer have distinct LoEs, because their purposes are very different.
Precisely, the designer has to choose an algorithm which solves the problem he
is examining, the sorting problem in our example. The choice is guided by many
issues: how frequently the problem has to be solved inside the complete applica-
tion; the size of the array to be sorted; how the array data structure has to be
organised. All these issues, and maybe others, shape the particular instance of
the ‘right’ algorithm to choose. For example, the designer may choose heapsort
because he knows it is efficient—a feature which is relevant when arrays may be
large or it is not possible to predict their size in advance—and because stabil-
ity, the relative order of equal elements with respect to the ordering should not
necessarily be preserved by the sorting process. Also, he may choose heapsort in-
stead of mergesort or quicksort because a destructive manipulation of the array
is acceptable, and because a good performance in the worst case is preferred to a
better performance in the average case, which is the difference between heapsort
and quicksort, see Cormen et al [5].

But heapsort is an algorithm, i.e., an abstract, ideal computation, and before
becoming a valid specification, a number of decisions have to be taken. For exam-
ple, in Fig. 1 it is clear that the length of an arrayA is considered an attribute ofA;
alternatively, the length could have beenpassed to the heapsort procedure as an ad-
ditional parameter. Moreover, although it is clear that the heap data structure is a
sub-type of array, having to obey an additional constraint, and this fact is rendered
by adding the additional attribute heapsize to heaps only, there is no explicit ‘re-
casting’ of types in the specification, which means that this piece of information in
not required to be made explicit, e.g., to the language type-checker. Furthermore,
the ordering relation�, see Fig. 1, is not structurally linked to the arraydata struc-
ture, suggesting that� is not a parameter of the heapsort procedure—while it may
be, if different orderings are required in distinct contexts of the same program. Fi-
nally, the decision to abstract over exchanges of elements and the identification of
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left and right branches in the heap suggests that the designer may want to leave
space for changing the heapsort procedure in future maintenance releases of the
program.

All the above descriptions of the possible reasons behind the shape of the
presented pseudo-code, and possibly others, form the LoE SE;D which inter-
prets the LoA SA and the LoO SO. According to the designer’s perspective, the
programmer’s LoE could be fulfilled by other pairs LoA/LoO.

3.3 An Algorithm Designer’s View

Given a problem, usually arising from a concrete application, an algorithm de-
signer is faced with the task to conceive a computable method to calculate
its solutions. Often, software designers pick algorithms off the shelf, using and
adapting the vast literature Computer Science is continuing to produce. But,
ideally, an algorithm designer is another human agent in the same c-inforg P we
previously introduced: in fact, each instance of an algorithm has been conceived
for a specific computational architecture which has to be shared among the al-
gorithm designer, the software designer and the programmer to be effectively
implemented in the context (program) where it is intended to be used—recall
the parallel with the carpenter and the chair.

The first step in designing an algorithm is to polish the problem, to abstract
over what is not needed to solve it, and to eventually reveal the inner structure
which will be used to calculate the solution. This abstraction process is guided
by ingenuity and a well-established set of techniques (again Cormen et al [5]
for a comprehensive introduction). We will follow our example of heapsort to
illustrate the design process of an algorithm. At the first stage, the elements in
the array A can be considered to be composed by two distinct parts: the key
and the datum. Ordering considers just the key, so this is the only relevant part
with respect to the sorting problem. It is not important that elements really
have two distinct parts: as far as it is possible to extract the key value from an
element, the abstraction is fair, and this possibility amounts to have an effective,
computable predicate �, representing the ordering relation. It is worth noticing
that the above abstraction leaves a trace in the properties of a sorting algorithm:
it is exactly the separation between the key and the datum that identifies the
stability of an algorithm. In fact, if in the input array A, A[i] � A[j] and the
key of the i-th element equals the key of the j-th element, stability says that
in the sorted array B, A[i] ≡ B[k] � B[h] ≡ A[j] exactly when i ≤ j. Thus,
elements which are equal with respect to �, may be different when considered
as elements, revealing how they have been rearranged. In general, the fact that
equality may not be identity in Computer Science has a number of consequences,
discussed in Gobbo and Benini [10].

Since elements can be identified with their keys when solving the sorting
problem, the idea behind heapsort is to define a sub-class of arrays, the heaps,
whose members have a distinctive property of interest. Posing parent(i) = �i/2�,
left(i) = 2i and right(i) = 2i + 1, we can interpret the elements in an array as
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Fig. 2. A heap represented as a tree and as an array

if they were nodes in a tree, as illustrated in Fig. 2. Now, a heap H is an array
satisfying, for each valid index i > 1:

H [i] � H [parent(i)] . (1)

By abusing terminology, an array A will be called a heap when its initial segment
running from index 1 to a known index heapsize(A) satisfies (1). Hence, the root
node H [1] in a heap H is the greatest element in H , see Fig. 2, and moreover,
its left and right sub-trees are heaps, too. Thus, we can sort the array by moving
the root past the end of the heap, and then we can combine the left and the right
sub-trees to obtain a new heap. In fact, this is exactly how heapsort operates,
see the Heapsort procedure in Fig. 1.

Therefore, the algorithm designer is left with two sub-problems: building an
initial heap out of a given array, and constructing a heap given two heaps. The
former problem can be easily reduced to the latter: given an array A, its elements
beyond �len(A)/2� are leaves in the tree representation, so they are trivially
heaps. Each node i which is a parent of some other node, must satisfy (1): it is
immediate to see that exchanging the parent node with the greatest node among
A[i], A[left(i)], and A[right(i)] forces (1) to hold, except for the sub-tree whose
root has been changed—something which can be recursively restored. Thus,
recursively applying this process, coded by the MaxHeapify procedure in Fig. 1,
from the sub-trees with lowest depth, eventually the whole array A is rearranged
in a heap, as done by BuildMaxHeap in Fig. 1. Some caution should be taken
since the tree may not be complete, and so the first conjunct in the if statements
of MaxHeapify. It is clear that induction on the structure of trees allows to
prove that MaxHeapify, BuildMaxHeap, and Heapsort operate correctly, so the
algorithm designer can formally derive the first essential property of heapsort,
namely that it solves the sorting problem.

The second property the algorithm designer wants to establish is the compu-
tational complexity of heapsort: a detailed analysis of the derivation is presented
in Chapter 6 of Cormen et al. [5]. For our aims, it suffices to notice that recursion
plays a fundamental role in the algorithm, and thus computational complexity
gets calculated as the solution of a system of recurrence equations.

So, the LoE SE;A of the algorithm designer contains at least the theory of
binary trees, because of the induction and recursion principles used to derive the
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properties of heapsort, the mathematics of recurrence equations, to calculate the
complexities, and most of what is needed by the programmer and the software
designer, to ensure that heapsort will be implementable in the given architecture.

4 Gradients of Explanations

The heapsort example shows a very simple GoA: the c-inforg P , after the pro-
grammer has implemented the sorting procedure, exhibits two LoAs: the pair
(PA, PO) describing the computing device, and the pair (SA, SO) having heap-
sort as a primitive. The LoA SA abstracts over PA by hiding the implementation
of heapsort, and provides a new action, sorting, along with its specification; at
the same time, SO extends PO by adding a new observable, the reference to
the procedure Heapsort, which reifies the action. The relation between (PA, PO)
and (SA, SO) is given by the implementation, which is the encoding of the action
‘sorting’ of SA into PA. It is the presence of an encoding that justifies to consider
the sequence 〈(PA, PO) , (SA, SO)〉 as a GoA: encodings are an essential aspect
of c-inforgs, as discussed in Gobbo and Benini [10,11].

The sequence 〈SE;P , SE;D, SE;A〉 given by the LoEs of the programmer, the
software designer, and the algorithm designer as described in Sect. 3, behave
similarly, being nested one into the other: in fact, each LoE explains (SA, SO)
and, in turn, each LoE explains some parts of the preceding LoEs in the sequence.
For example, the algorithm designer proves that heapsort solves the sorting
problem and this statement together with its proof is in SE;A; the software
designer knows the statement but has no need for the proof, so just the statement
is in SE;D; also, the programmer knows the statement because this has to become
part of SA since the observable Heapsort has to be paired with a specification
but, again, the programmer has no need for the proof. Hence, the sequence
〈SE;P , SE;D, SE;A〉 is a gradient, and since it relates LoEs, it is called a Gradient
of Explanations (GoE).

The relations between the LoEs in the gradient is similar to encodings in
GoAs, but subtler. To understand these relations, it is useful to compare them
with encodings between pairs of LoAs: instead of considering an encoding as the
way a concept of the abstract LoA A gets implemented in the concrete LoA C,
we may think that the encoding is the way to construct the concept in A from
C. This construction resembles mathematical induction, since new objects are
built starting from simpler ones. But there is a dual construction, coinduction,
see [4]: starting from a given, large universe, coinduction operates by progres-
sively discarding the elements of the universe not satisfying the construction
property. In a GoE, the LoEs are linked to each other via a relation that follows
the coinductive pattern: starting from a very general, wide and abstract universe
of concepts, each LoE in the gradient refines the next one in the sequence in the
sense of hiding what is not strictly needed to provide a coherent explanation of
the purpose the LoE has to fulfil. The first LoE in the sequence, in turn, is re-
fined by the LoA it is called to explain. This fact suggests that each LoA should
be considered a LoE with no content deputed to explain.
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In the heapsort example, the LoA SA is explained by itself in an empty way—
a coherent explanation, but not so useful. In turn, SA is a refined explanation of
SE;P where the contribution of the programmer is thrown away. In the opposite
sense, which is the usual one when presenting LoEs, SE;P explains SA by the
knowledge a programmer has to provide in order to build the (SA, SO) pair from
(PA, PO). It is important to remark that the process of constructing gradients
is not necessarily inductive or coinductive: although, as a rule of thumb, GoAs
follow an inductive pattern, while GoEs follow a coinductive one, it is not difficult
to imagine counterexamples of any sort. It is the ‘direction’ of construction that
matters, not the instrument, exactly as in the case of the carpenter: a chair can
be made using different instruments, but the style and therefore the ‘personal
touch’ of the carpenter is given by the direction of construction.

An immediate consequence of having a GoE is the possibility to give a mea-
sure—in the sense stated by Gobbo and Benini [10]—of concreteness of the
various concepts that explain, in some sense, a piece in a c-inforg. Consider the
lowest LoE E in a gradient G over a LoA A that uses the concept C under ex-
amination: we define the measure of C with respect to A as the distance from A,
calculated by counting the number of LoEs separating E from A. This measure
is loosely related to Krull dimension in commutative algebra (Eisenbud [6]), but
this relation is out of the scope of the present paper. This measure is a direct
expression of the level of concreteness of C with respect to the LoA A: by def-
inition, it shows the distance between the ‘concrete’ basis of the GoE, the LoA
A, and the first occurrence of the concept C in the gradient. Also, the same
measure can be used to classify purposes. Since a purpose becomes explained in
some point of a GoE, the distance d between the concrete realisation of the pur-
pose, which is the explanation behind the LoA, and the first LoE that explains
the purpose, classifies the purposes. It is important to remark that the suggested
measure is relative to a gradient and based upon a LoA. It does not make sense
to use this measure to compare objects not pertaining to the same LoA or not
part of the same GoA.

5 Conclusions

By using the methods of levels of abstractions by Floridi [7], our analysis has
naturally driven the reader toward a novel concept, extending the aforementioned
method, which coherently fits into the epistemological framework. The newly
synthesised concept, called Gradient of Explanations (GoE) is analogous to the
Gradient of Abstractions (GoA) explained in paragraph 2.2.6 of Floridi [8], but
applied to levels of explanation instead of levels of abstractions. Despite this
similarity, which justifies why the new concept is conservative with respect to
the method, a GoE has a rather different epistemological status.

The consequences of the introduction of the GoE are not yet fully explored and
its formalisation is still preliminary. However, throughout this paper differences
in the status between GoE and GoA were clarified, permitting to derive some of
its consequences, using the heapsort example as a concrete guideline.
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stefano.beretta@itb.cnr.it, riccardo.dondi@unibg.it

Abstract. The reconciliation of a gene tree and a species tree is a well-
known method to understand the evolution of a gene family in order to
identify which evolutionary events (speciations, duplications and losses)
occurred during gene evolution. Since reconciliation is usually affected
by errors in the gene trees, they have to be preprocessed before the rec-
onciliation process. A method to tackle with this problem aims to correct
a gene tree by removing the minimum number of leaves (Minimum Leaf
Removal). In this paper we show that Minimum Leaf Removal is not ap-
proximable within factor b logm, where m is the number of leaves of the
species tree and b > 0 is a constant. Furthermore, we introduce a new
variant of the problem, where the goal is the correction of a gene tree with
the minimum number of leaf modifications. We show that this problem,
differently from the removal version, is W [1]-hard, when parameterized
by the number of leaf modifications.

1 Introduction

Genome evolution can be explained by a combination of different events: micro-
evolutionary events, such as insertions, deletions and substitutions, and macro-
evolutionary events, like duplications and losses. These latter events are funda-
mental in the evolution of species [8, 11] and can be responsible for the presence
of many gene copies inside a genome. Genes originating from duplications of a
single gene form a gene family.

Given a gene family, a gene tree G representing the evolution of sequences
associated with a set of species is usually built by using a micro-evolutionary
model. Then, the gene tree is compared with a species tree that represents the
speciation history of the genomes of the considered species, with the goal of
inferring the macro-evolutionary events that occurred during evolution. Such a
method in known as reconciliation [2–4, 7, 12, 13, 15, 18].

When no species tree is known, then the problem asks to infer a species
tree from a set of possibly discordant gene trees, usually with a parsimonious
evolution scenario [1, 4, 10].

It is known that reconciliation is highly sensitive to errors in the gene trees. It
has been shown that few errors can produce a completely misleading evolutionary
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scenario, usually increasing the number of duplications and losses [9, 15]. Hence
gene trees have to be preprocessed before the reconciliation process.

Errors in gene trees can be related to a special kind of duplications, called Non-
Apparent Duplications (NAD) [4]. NAD nodes are considered as potential results
of errors in the gene trees, since each NAD node represents a contradiction with
the structure of a species tree not explainable by gene duplications. Motivated
by this observation, a recent approach aims to correct a gene tree, before the
reconciliation, by removing misplaced leaves/labels [16]. In [5, 16], the complexity
of two combinatorial problems related to the removal of leaves/labels (Minimum
Leaf Removal and Minimum Label Removal) has been investigated. In [5] the two
problems have been shown to be APX-hard even if each label has at most two
occurrences in the gene tree. Other fixed-parameter results have been presented
in [5, 16], in particular showing that both Minimum Leaf Removal and Minimum
Label Removal are fixed-parameter tractable when parameterized by the number
of leaves/labels removed.

In this paper, we study the approximation complexity of Minimum Leaf Re-
moval, and we show in Section 3 that it is not approximable within factor b logm,
for some constant b > 0, where m is the number of leaves of the species tree,
even if each label has at most two occurrences in the input gene tree. Then, we
introduce a new variant of the problem, Minimum Leaf Modification, where the
aim is to correct the given gene tree by modifying the minimum number of leaves.
We show that this problem, differently from the removal version, is W [1]-hard
(Section 4), when parameterized by the number of leaf modification.

Due to space limitations some of the proofs are omitted.

2 Preliminaries

In this section, we introduce some preliminary definitions that will be useful in
the rest of the paper.

Consider a set Λ = {1, 2, . . . ,m} of integers, each one representing a different
species. Consider a tree U , then we denote by L(U) the set of its leaves, by Λ(U)
the set of labels associated with L(U), and by V (U) the set of its nodes. Given
an internal node x of U , xl (xr respectively) denotes the left child (the right
child respectively) of x. U [x] denotes the subtree of U rooted at node x, and
Λ(U [x]) denotes the set of labels associated with leaves of U [x]. When there is
no ambiguity on the tree, we consider C(x) = Λ(U [x]) (we call C(x) the cluster
of x). Any node on the path from the root of U to a node x is called an ancestor
of x; the parent y of x is the ancestor of x such that (y, x) is an arc of U .

In this paper, we consider two kinds of rooted binary trees leaf-labeled by the
elements of Λ: species trees and gene trees. For a species tree T there exists a
bijection from L(S) to Λ (hence each element of Λ labels at most one leaf of T ).
For a gene tree G there exists a function from L(G) to Λ (hence each element of
Λ may label more than one leaf of G). In the rest of the paper, we denote by m
the size of L(T ) and by n the size of L(G).

Given a tree U , a leaf removal of leaf l consists of: (1) removing l from U , and
(2) contracting the resulting node having degree two (that is the parent of l).
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A tree U ′ obtained from a tree U through a sequence of leaf removals, is said to
be included in U . Given a set X ⊆ Λ(U), we denote by U |X the homomorphic
restriction of subtree U to X , that is the subtree of U obtained by a sequence
of leaf removals, one for every leaf with a label in Λ(U) \X .

We compare a gene tree G and a species tree T both leaf-labeled by Λ by
means of the LCA mapping (Least Common Ancestor mapping), denoted as
lcaG,T . lcaG,T maps every node x of G to a node of T . Formally, lcaG,T = y,
where y is the node of T such that (1) C(y) ⊇ C(x), and (2) C(yl) �⊇ C(x),
C(yr) �⊇ C(x). A node x of G is a duplication node (or a duplication occurs in
x), when x and at least one of its children are mapped by lcaG,T to the same
node y of the species tree T . A node of G, which is not a duplication node, is a
speciation node.

Consider a duplication node x. Then if C(xl) ∩ C(xr) �= ∅, x is called an
Apparent Duplication node (AD node). It can be easily shown that if x is an AD
node, then x is a duplication node for any species tree T . A duplication node
x which is not an AD node, that is when C(xl) ∩ C(xr) = ∅, is called a Non-
Apparent Duplication node (NAD node). A gene tree G is said to be consistent
with a species tree T if and only if each node of G is either a speciation or an
AD node.

As observed in [4, 16], NAD nodes are related to errors in the gene tree. There-
fore, the following combinatorial problem, Minimum Leaf Removal Problem, has
been introduced in [16] for error-correction in gene trees.

Problem 1 Minimum Leaf Removal Problem[MinLeafRem]
Input: A gene tree G and a species tree T , both leaf-labeled by Λ.
Output: A tree G∗ consistent with T such that G∗ is obtained from G by a
minimum number of leaf removals.

Moreover, we introduce a new combinatorial problem, where we modify, instead
of removing, leaves of the gene tree so that the resulting tree is consistent with
the given species tree. Given a leaf x of G labeled by λx ∈ Λ, a leaf modification
consists of replacing λx with a label in Λ \ {λx}.

Problem 2 Minimum Leaf Modification Problem[MinLeafMod]
Input: A gene tree G and a species tree T , both leaf-labeled by Λ.
Output: A tree G∗ consistent with T such that G∗ is obtained from G by a
minimum number of leaf modifications.

3 Inapproximability of MinLeafRem

In this section, we consider the approximation complexity of the MinLeafRem
problem, even if each label has at most two occurrences in the gene tree.
We denote this restriction of MinLeafRem as MinLeafRem(2). We show that
MinLeafRem(2) is not approximable within factor c logm, for some constant
c > 0, by giving a factor preserving the reduction from the Minimum Set Cover
(MinSC) problem. We refer the reader to [17] for details on gap-preserving re-
duction. We recall that MinSC, given a collection C = {S1, . . . , Sp} of sets over
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a finite set U = {u1, . . . uq}, asks for a minimum subcollection C′ of C such that
each ux ∈ U belongs to at least one set of C′. Notice that MinSC is known to
be not approximable in polynomial time within factor b log q, for some constant
b > 0 [14].

Let (C, U) be an instance of MinSC. In the following, we define an instance of
MinLeafRem(2) associated with (C, U), consisting of a gene tree G and a species
tree T , both leaf-labeled by a set Λ.

First, we define the set Λ of labels. For each element ui ∈ U , let d(ui) = |{Sj :
ui ∈ Sj, 1 ≤ j ≤ p}|. Set k = p2q2, t = qk + 2pq + 1. The set Λ is defined as:

Λ =

⎛⎝ p⋃
j=1

Aj ∪Bj

⎞⎠ ∪
(

q⋃
i=1

Ui

)
∪ Z ∪ {α}.

where the sets Aj , Bj , 1 ≤ j ≤ p, Ui, 1 ≤ i ≤ q, and Z are defined as follows:
- Aj = {aj,l : 1 ≤ l ≤ k}, with 1 ≤ j ≤ p;
- Bj = {bj,l : ul ∈ Sj} ∪ {b′j,l : 1 ≤ l ≤ q − |Sj |}, with 1 ≤ j ≤ p;
- Ui = {ui,l : 1 ≤ l ≤ t} ∪ {u′

i,l : 1 ≤ l ≤ p − d(u(i))}, with 1 ≤ i ≤ q;
- Z = {zi : 1 ≤ i ≤ t}.

Let U be a tree, which is either the gene G, the species tree T , or a tree
included in G with a leaf labeled by α. The spine of U is the unique path that
connects the root of U to the unique leaf of U labeled by α.

The gene tree G is shown in Fig. 1. Informally, it consists of the following
subtrees connected to the spine of G:

1. a subtree G(Si), for each set Si in C, where Λ(Si) = Ai ∪Bi;
2. a collection of t subtrees G1(ui), . . . , Gt(ui), for each ui ∈ U , where Λ(Ui) =

Ui ∪ {bl,i : ui ∈ Sl}. Subtree G1(ui) is leaf labeled by the set {ui,1} ∪ {u′
i,l :

1 ≤ l ≤ p − d(u(i))} ∪ {bj,i : ui ∈ Sj} and subtree Gl(ui), 2 ≤ l ≤ t, is leaf
labeled by the set {ui,l−1, ui,l};

3. t leaves, each one labeled by a distinct zi, 1 ≤ i ≤ t.

Similarly, T is defined as in Fig. 2 and, informally, consists of the following
subtrees connected to the spine of T :

1. a subtree T (Si), for each set Si ∈ C, where Λ(T (Si)) = Ai ∪Bi;
2. t leaves, each one associated with a distinct label in Ui;
3. t leaves, each one labeled by a distinct zi, 1 ≤ i ≤ t.

It is easy to see that T is a species tree uniquely leaf-labeled by Λ. The gene G
is leaf-labeled by Λ, and each label in Λ is associated with at most two leaves
of G. Indeed the set of labels associated with more than one leaf consists of the
set {bj,i : ui ∈ Sj} (bj,i labels one leaf of the subtree G(Sj) and one leaf of the
subtree G(ui)), and the set {ui,l : 1 ≤ l ≤ t} (ui,l labels one leaf of the subtree
Gl(ui) and one leaf of the subtree Gl+1(ui)).

Before giving the details of the proof, we present an outline of the reduction.
First, we prove some local properties of the subtrees G(Sj), with Sj ∈ C: in
Remark 1 and in Lemma 1, we show that a solution of MinLeafRem(2) over
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Fig. 1. The gene tree G and the subtrees G|Z, G(Sj), G(ui). Notice that in G1(uq)
the leaves bjx,q, bjx−1,q , . . . , bji,q, . . . , bj1,q refer to the sets Sjx , Sjx−1 , . . . , Sji , . . . , Sj1

respectively, containing uq (with jx > jx−1 > · · · > ji > · · · > j1).

instance (G, T ) can be computed by removing leaves from G(Sj), in (essentially)
two possible ways: the set of leaves labeled by Aj or the set of leaves labeled by
Bj . Then, exploiting some properties of the subtrees Gl(ui), with ui ∈ U and
1 ≤ l ≤ t, and by Lemma 2 and Lemma 4, we are able to relate the former case
(the removal of leaves labeled by Aj) to a set Sj in a set cover (see Lemma 5),
and the latter (the removal of leaves labeled by Bj) to a set Sj not in a set cover
(see Lemma 6). First, we introduce two preliminary properties of G and T .

Remark 1. Let Sj be a set of C, and let G(Sj) (T (Sj) respectively) be the
subtree of G (of T respectively) associated with Sj. Then (1) the subtree of G(Sj)
obtained by removing the leaves with labels in Aj is consistent with T (Sj); (2) the
subtree of G(Sj) obtained by removing the leaves with labels in Bj is consistent
with T (Sj).

Remark 2. Consider the subtree G|Z of G. Each node v of G such that C(v) ⊇
Z is mapped to the root of S.

A consequence of Remark 2 is that every ancestor of G|Z in G is a duplication
node, either a NAD-node or an AD-node.

Next, we introduce a property of the subtrees G(Si) of G, with Si ∈ C.
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Fig. 2. The species tree T and the subtrees T |Z, T |Ui, T (Sj) of T

Lemma 1. Let Sj be a set of C, and consider the corresponding subtrees G(Sj)
of G and T (Sj) of T . Then: (1) a solution of MinLeafRem(2) over instance
(G, T ) removes at least q leaves from G(Sj); (2) a solution of MinLeafRem(2)
over instance (G, T ) that contains a leaf of G(Sj) with a label in Bj removes at
least k leaves from G(Sj).

Now, we show that we can assume that a solution of MinLeafRem(2) over in-
stance (G, T ) contains all the leaves of G with a label in Z.

Lemma 2. Given a solution G∗ of MinLeafRem(2) over instance (G, T ) that
removes less than t leaves from G and removes a leaf with a label in Z, we can
compute in polynomial time a solution of MinLeafRem(2) over instance (G, T )
that removes less leaves than G∗ and contains all the leaves with labels in Z.

Hence, in what follows we assume that all the leaves with a label in Z belong
to G. Now, we introduce some properties of the subtree G1(ui), 1 ≤ i ≤ q
(Lemma 3), and of the subtrees Gl(ui), 1 ≤ l ≤ t (Lemma 4). The two lemmata
imply that a solution contains all leaves labeled by ui,l, with 1 ≤ l ≤ t, for each
ui ∈ U .
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Lemma 3. Given ui ∈ U , let G1(ui) be the associated subtree of G. Each so-
lution of MinLeafRem(2) over instance (G, T ) removes at least p leaves from
G1(ui).

Proof. Let G∗ be a solution of MinLeafRem(2) over instance (G, T ), and let
G∗

1(ui) be the subtree of G included in G1(ui). Consider the internal node x of
G∗

1(ui) that is mapped by lcaG∗,T to the node y of T closest to the root of T .
Notice that y is a node on the spine of T . By construction, lcaG∗,T maps all the
internal node of G∗

1(ui) to y. Hence, G∗
1(ui) contains at most one internal node,

thus G∗
1(ui) contains at most two leaves. Since G1(ui) contains p + 2 leaves, at

least p leaves are removed from G1(ui). ��

Lemma 4. Let ui be an element of U and let G1(ui), G2(ui), . . . , Gt(ui) be
the associated subtrees of G. If a solution G∗ of MinLeafRem(2) over instance
(G, T ) removes the leaf labeled by ui,1 of G1(ui), then G∗ removes at least 2t− 1
leaves from G1(ui), G2(ui), . . . , Gt(ui).

Now, we are ready to show the two main technical results of the reduction.

Lemma 5. Let (C, U) be an instance of MinSC and let (G, T ) be the correspond-
ing instance of MinLeafRem(2). Then, starting from a set cover C′ of U , we can
compute in polynomial time a solution of MinLeafRem(2) over instance (G, T )
that it is obtained by removing at most k|C′|+ q(|C| − |C′|) + pq leaves from G.

Proof. (Sketch.) Let C′ be a set cover of (C, U), then we define a solution G∗ of
MinLeafRem(2) over instance (G, T ) by removing some leaves of G as follows:
(1) for each Si in C′, remove from the subtree G(Si) the set of leaves labeled
by Ai (hence G∗(Si) is obtained with k leaf removals); (2) for each Si not in C′,
remove from the subtree G(Si) the set of leaves labeled by Bi (hence G∗(Si) is
obtained with q leaf removals); (3) for each ui ∈ U , remove from G1(ui) all the
leaves, except for the leaf labeled by ui,1 and a leaf labeled by bj,i, where ui ∈ Sj

and Sj is in C′ (hence G∗
1(ui), with 1 ≤ i ≤ q, is obtained with p leaf removals).

It follows that G∗ is obtained by removing k|C′|+ q(|C| − |C′|) + pq leaves from
G. ��

Lemma 6. Let (C, U) be an instance of MinSC and let (G, T ) be the correspond-
ing instance of MinLeafRem(2). Then, from a solution of MinLeafRem(2) over
instance (G, T ) that is obtained by removing at most kh+ q(|C| − h) + pq leaves,
we can compute in polynomial time a solution of MinSC over instance (C, U)
that consists of at most h sets.

Proof. (Sketch.) Let G∗ be a solution of MinLeafRem(2) over instance (G, T ),
such that G∗ is obtained by removing at most kh + q(|C| − h) + pq leaves. By
Lemmata 1-4, we can assume that: (i) all the leaves with label in Z belong to
G∗; (ii) all the leaves with a label ui,w, 1 ≤ i ≤ q and 1 ≤ w ≤ t, belongs to
G∗; (iii) either G∗(Sj) has leafset Bj or it has leafset Aj . As a consequence we
can define a cover C′ of U as follows: C′ = {Sj : Λ(G

∗(Sj)) = Bi}. Since at most
kh + q(|C| − h) + pq leaves are removed from G∗, it follows that G∗ contains at
most h subtrees G∗(Sj), with Λ(G∗(Sj)) = Bi, hence |C′| = h. ��
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The inapproximability of MinLeafRem(2) follows from Lemma 5 and Lemma 6.

Theorem 1. MinLeafRem(2) is not approximable within factor c logm, for some
constant c > 0.

4 W[1]-hardness of MinLeafMod

In this section, we investigate the parameterized complexity of MinLeafMod and
we show that the problem is W[1]-hard when parameterized by the number of
modified leaves, by giving a parameterized reduction from the Maximum Inde-
pendent Set (MaxIS) problem. We recall that MaxIS, given a graph G = (V,E),
asks for a subset V ′ ⊆ V of maximum cardinality such that for each u, v ∈ V ′ it
holds {u, v} /∈ E. Notice that the parameterized version of MaxIS asks whether
there exists an independent set of G of size at least h. Hence, in what follows h
will denote the size of an independent set of G. We recall that MaxIS is known
to be W[1]-hard [6].

Now, consider an instance G of MaxIS. Then we will show how to construct
(in polynomial time) a corresponding instance (G, T ) of MinLeafMod. First, we
introduce the leafset Λ that labels the leaves of the two trees:
Λ = {xi, αi : 0 ≤ i ≤ |V |} ∪ {yi : 0 ≤ i ≤ h + 1} ∪ {β}.
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α|V |−1 x|V |
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α|V |
β
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Fig. 3. The gene tree G and the species tree T . Notice that the subtrees G1,q, Gt,|V |
encode the edges {v1, vq}, {vt, v|V |} of G. These subtrees are connected to the spine of
G following the lexicographic order of the corresponding edges.

Now, we describe the two trees (see Fig. 3). Similarly to the previous reduction,
the spine of G is the unique path that connects the root of G to the internal
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node of G denoted as r0, while the spine of T , is the unique path that connects
the root of T to the unique leaf of T labeled by y0.

The species tree T is a caterpillar over leafset Λ. Informally, G is built by
connecting the following subtrees to the spine of G:

– a subtree G(xi), 0 ≤ i ≤ |V |; G(x0) is a caterpillar over three leaves labeled
by α0, x0, x0 respectively; G(xi), 1 ≤ i ≤ |V |, is a caterpillar over three leaves
labeled by xi, αi−1 and αi respectively. The nodes of the spine connected to
G(xi), 0 ≤ i ≤ |V | are denoted as ri;

– h + 3 leaves each one labeled by yi, for each i, with 0 ≤ i ≤ h + 1;
– a leaf labeled by β;
– for each edge {vi, vj} ∈ E, a subtree Gi,j having two leaves labeled by xi

and xj respectively.

First, we state a property of the instance (G, T ).

Remark 3. Consider the instance (G, T ). Then each node that connects the
first leaf labeled by yi, 0 ≤ i ≤ h + 1, to the spine of the gene tree G is a NAD
node.

We call a leaf modification useless if it does not change the label of a leaf to
a label yi, 0 ≤ i ≤ h + 1. Next, we show that if there exists a solution of
MinLeafMod with at most h + 2 leaf modifications, then there exists a solution
with at most h + 2 leaf modification obtained without useless modifications.

Lemma 7. Consider a solution G∗ that modifies at most h+2 leaves. Then: (1)
none of the leaves labeled by yi, 0 ≤ i ≤ h + 1, is modified and (2) G∗ modifies
the labels of h+2 leaves of G[r|V |] and each of these leaves is assigned a distinct
label of {y0, . . . , yh+1}.

Lemma 8. Consider a solution that modifies at most h + 2 leaves. Then none
of the leaves labeled by αi is modified.

Now, we can present the main results of this section.

Lemma 9. Given an independent set of G size h, we can compute in polynomial
time a solution of MinLeafMod over instance (G, T ) that modifies exactly h + 2
leaves.

Proof. (Sketch.) Consider an independent set I of G of size at least h. Choose h
vertices, vi1 , . . . vih ∈ I and compute a solution G∗ as follows: modify every node
labeled by xij of G(xij ) by assigning the label yij , and the nodes labeled by x0

of G(x0) by assigning labels y0 and yh+1. Then, G∗ is consistent with T . ��

Lemma 10. Given a solution of MinLeafMod over instance (G, T ) that modifies
exactly h + 2 leaves, we can compute in polynomial time an independent set of
G consisting of at least h vertices.

Proof. Consider a solution G∗ of MinLeafMod that modifies exactly h+2 leaves.
By Lemma 7, it follows that the solution must modify exactly h + 2 leaves of



Gene Tree Correction by Leaf Removal and Modification 51

G[r|V |]. Then, for each tree Gi,j having leaves labeled by xi, xj , at least one of
the leaves in G[r|V |] labeled by xi, xj is not modified. If this is not the case, the
node on the spine of G∗ connected to the root of Gi,j is a NAD node. Moreover,
by Lemma 7 and by Lemma 8, it follows that the modified leaves of G∗[r|V |] are
associated with labels in {x0, . . . , x|V |}. Hence, define an independent set of G as
follows: V ′ = {vi ∈ V : xi is a label associated with a modified leaf of G∗[r|V |]}.
Then, since for each Gi,j , with leaves labeled by xi, xj , at least one of the leaves
in G[r|V |] is labeled by xi, xj , it follows that for each vi, vj ∈ V ′, it holds that
{vi, vj} /∈ E. Then, it follows that V ′ is an independent set of G of size h. ��

As a consequence of Lemma 8, of Lemma 9, and of the W [1]-hardness of MaxIS [6],
we have the following result.

Theorem 2. MinLeafMod is W[1]-hard.
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7. Durand, D., Haldórsson, B., Vernot, B.: A hybrid micro-macroevolutionary ap-
proach to gene tree reconstruction. Journal of Computational Biology 13, 320–335
(2006)

8. Eichler, E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution.
Science 301, 793–797 (2003)

9. Hahn, M.: Bias in phylogenetic tree reconciliation methods: implications for verte-
brate genome evolution. Genome Biology 8(R141) (2007)

10. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. on Comput. 30,
729–752 (2000)

11. Ohno, S.: Evolution by gene duplication. Springer, Berlin (1970)
12. Page, R.: Genetree: comparing gene and species phylogenies using reconciled trees.

Bioinformatics 14, 819–820 (1998)
13. Page, R., Cotton, J.: Vertebrate phylogenomics: reconciled trees and gene duplica-

tions. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)



52 S. Beretta and R. Dondi

14. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In: Leighton, F.T., Shor,
P.W. (eds.) STOC, pp. 475–484. ACM (1997)

15. Sanderson, M., McMahon, M.: Inferring angiosperm phylogeny from EST data
with widespread gene duplication. BMC Evolutionary Biology 7, S3 (2007)

16. Swenson, K.M., Doroftei, A., El-Mabrouk, N.: Gene tree correction for reconcilia-
tion and species tree inference. Algorithms for Molecular Biology 7, 31 (2012)

17. Vazirani, V.V.: Approximation algorithms. Springer (2001)
18. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary

species trees. Journal of Computational Biology 15, 981–1006 (2008)



Uniform Schemata for Proof Rules

Ulrich Berger and Tie Hou

Department of Computer Science, Swansea University, UK
{u.berger,cshou}@swansea.ac.uk
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interactive proof systems with rich sets of proof rules, we present a uni-
form system of rule schemata to generate proof rules for different styles
of logical calculi. The system requires only one schema for each logi-
cal operator to generate introduction and elimination rules in natural
deduction and sequent calculus style. In addition, the system supports
program extraction from proofs by generating realizers for the proof rules
automatically.

Keywords: Proof calculi, Semantics and logic of computation, Realiz-
ability.

1 Introduction

In mathematical logic, specifically in proof-theory, one usually tries to be min-
imalistic regarding the design of a logical calculus, that is, one tries to find a
minimal number of complete proof rules. The reason is that when reasoning
about a logical calculus one often argues by induction on the construction of
proofs, which generates a proof case for each proof rule. However, if one reasons
with a logical calculus, for example within an interactive theorem prover, one is
interested in a calculus that provides a rich set of rules in order to allow conve-
nient and fast proof development. In fact, in current interactive proof systems
one usually finds proof rules that correspond to natural deduction style, sequent
style, or combinations and variants thereof.

The main motivation for this work is to provide a systematic approach to a
concise and efficient implementation of logical calculi with such rich sets of proof
rules. We introduce a uniform system of rule schemata, which directly express
the meaning of logical operators and which, in a uniform way, allow to derive
the rules of different styles of proof calculi, such as sequent calculus and natural
deduction, but also further rules that are used in interactive proof assistants.
Surprisingly, the approach requires only one schema for each logical operator.
The introduction and elimination rules of natural deduction as well as left and
right rules in sequent calculus are derived automatically. Moreover, our system is
able to automatically derive realizers of intuitionistic proof rules, thus facilitat-
ing the implementation of proof systems that support program extraction from
proofs, such as Coq [4] and Minlog [7]. We are currently developing a prototype
of such a proof system using rule schemata as a basis of the implementation.

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 53–62, 2014.
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An additional advantage of rule schemata is the fact that they are built on a
data structure of finitary sets, a generalization of finite sets. Finitary sets have
the structure of a monad and can therefore be very conveniently implemented
and manipulated in a programming language that supports monads and provides
a special syntax for them.

2 Rule Schemata and Their Associated Generating Rules

Briefly, the global strategy is as follows. First we introduce rule schemata, from
which we derive generating rules. These generating rules are different rules that
correspond to different styles of proving e.g. sequent calculus, or natural deduc-
tion or the mixture of these two. Then from generating rules we obtain the real
rules in the proof system by instantiation and adding side formulas.

2.1 Finitary Sets

The premise and conclusion of a rule schema will be a set of sets of sequents. For
propositional logic finite sets would suffice, but in order to deal with quantifiers
the notion of finiteness needs to be slightly extended. Let us assume we are given
a class of objects e, called ’expressions’, for which the notions of free variable
and substitution e[x/t] are defined, where t is a tuple of objects called ’terms’.
A finitary set of expressions, f-set for short, is of the form

Ex.

where E is a finite set and x is finite tuple of variables called abstractions. The
intended meaning of Ex is the set {e[t/x] | e ∈ E, t terms }. In Ex all free
occurrences of the variables x in E are bound. In fact, regarding free and bound
variables Ex is analogous to the lambda abstraction λx.E. Using this analogy,
we can define a notion of substitution for f-sets, hence f-sets can be regarded as
expressions again, and the notion of an ‘f-set of f-sets’ makes sense.

The passage from expressions to f-sets of expression gives rise to a functor
which has the additional structure of a monad [8]. The monadic structure greatly
facilitates the implementation of f-sets in functional languages, such as Haskell,
that support monads and provide a concise and intuitive syntax [11] for them.
We took advantage of this syntax in our prototype implementation, but will not
use it here, because there is no space to explain it, and we wish to keep the paper
accessible to readers unfamiliar with it.

The union of two f-sets is defined as

Ex ∪ Fy = (E ∪ F )xy

where w.l.o.g. it is assumed that the tuples x and y are disjoint and don’t create
undesired bindings. Note that any finite set of expressions can be viewed as an
f-set of expression (with an empty tuple of abstractions).
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2.2 Rule Schemata

We consider first-order formulas �,⊥, P (t), A ∧ B,A ∨ B,A → B, ∀xA, ∃xA,
where � and ⊥ are symbols for truth and falsity, P ranges of predicate symbols
of fixed arities, and t ranges over finite vectors of first-order terms built from
variables, constants and function symbols. An atomic proposition is a predicate
symbol of arity 0. We identify an atomic proposition P with the formula P ().
An instance of a formula is obtained by substituting each constant by a term,
each function symbol f by a function abstraction λx . s (that is, replacing each
occurrence of a subterm f(t) by s[t/x]), and each predicate symbol P by a
comprehension term {x | A} (that is, replacing each occurrence of a subformula
P (t) by A[t/x]).

A sequent, S = Δ ! A, consists of a finite set of formulas Δ called antecedent,
and a formula A called succedent of S. We write a sequent {A1, . . . , An} ! B
as A1, . . . , An ! B and identify a formula A with the sequent ! A. A sequent
S = A1, . . . , An ! B represents the formula [S] = A1 ∧ . . . ∧ An → B. For an
f-set of sequents X = {S1, . . . , Sn}x we define the formulas∧

X = ∀x([S1] ∧ . . . ∧ [Sn]),
∨

X = ∃x([S1] ∨ . . . ∨ [Sn]).

For an f-set of f-sets of sequents, X = {X1, . . . , Xn}x, we define the formulas∧
X = ∀x(

∨
X1 ∧ . . . ∧

∨
Xn),

∨
X = ∃x(

∧
X1 ∨ . . . ∨

∧
Xn).

The general form of a rule schema (schema for short) is

X
Y (1)

where X and Y are f-sets of f-sets of sequents. The schema (1) represents the
formula ∨

X →
∧

Y.

2.3 Schemata for Intuitionistic Logic

The rule schemata for intuitionistic logic consist of a defining schema for each
logical operator plus a structural schema Ax that corresponds to an axiom or
assumption rule,

∧ {{A,B}}
{{A ∧B}}

∨ {{A}, {B}}
{{A ∨B}}

→ {{A ! B}}
{{A → B}}

∀ {{P (x)}x}
{{∀xP (x)}}

∃ {{P (x)}}x
{{∃xP (x)}}

� {{}}
{{�}}

⊥ {}
{{⊥}}

Ax
{{}}
{}

(2)

where A,B are different atomic propositions and P is a unary predicate symbol.



56 U. Berger and T. Hou

Theorem 1 (Soundness of Rule Schemata for Intuitionistic Logic). The
schemata for intuitionistic logic (2) are logically valid. The formulas represented
by defining schemata are of the form C → C where C is the formula in the
schema’s conclusion. The schema Ax represents the formula � → �.

Remark . If we regard schemata as formulas in a meta-logic, the defining schemata
in (2) can be viewed as definitions of the logical operators in a meta-logic (where
in this paper we refrain from distinguishing between operators from the meta-
logic and the object-logic). This is similar to categorical logic [5, 6] where one
defines the logical operators through appropriate adjunctions. In categorical logic
one can use the categorical laws to derive logical proof rules. Similarly, we will
use the laws of an intuitionistic meta-logic to derive (in Sect. 2.5 and 2.6) proof
rules of the object-logic. What we gain is the fact that the meta-logic can be
formalized with a minimal set of rules, but the resulting proof rules of the object-
logic will have a rich set of rules.

2.4 Invertible Rule Schemata

We call an f-set of f-sets of sequents X dualizable and define its dual δX if one
of the following two conditions holds:

(1) X = {{S1, . . . , Sn}x}, with δX = {{S1}, . . . , {Sn}}x.
(2) X = {{S1}, . . . , {Sn}}x, with δX = {{S1, . . . , Sn}x}.
Clearly, if X is dualizable, then δX is dualizable, and δδX is the same as X . A
rule schema

X
Y

is invertible if the sets X and Y are both dualizable. In this case the inverse is
defined as

δY
δX

Theorem 2. If X is an invertible f-set of f-sets of sequents, then
∨
X is equiva-

lent to
∧

δX , and
∧
X is equivalent to

∨
δX . Hence the inverse of an invertible

scheme represents the converse implication represented by the original scheme.

Clearly, the schemata for intuitionistic logic (2) are invertible, with inverses

∧− {{A ∧B}}
{{A}, {B}}

∨− {{A ∨B}}
{{A,B}}

→− {{A → B}}
{{A ! B}}

∀− {{∀xP (x)}}
{{P (x)}}x

∃− {{∃xP (x)}}
{{P (x)}x}

� {{�}}
{}

⊥− {{⊥}}
{{}}

Ax−
{{}}
{}

(3)
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Note that the schema Ax is identical to its inverse Ax−.

2.5 Generating Rules

We describe two ways (Rules 1, 2) of associating with a schema a generating
rule. There will also be Rules v1, v2 which produce variants of generating
rules.

The general form of a generating rule is

X
S

(4)

where X is a f-set of sequents and S is a sequent. (4) represents the formula∧
X → S

If X = {S1, . . . , Sn}x then we will display the generating rule (4) usually as

S1 . . . Sn x
S

Below, C denotes an atomic proposition not occurring in X,Y . We associate
with a schema

Ex
Fy

where E and F are finite sets of f-sets of sequents, generating rules according to
the following Rules 1, 2:

Rule1 associates with any f-set X ∈ E and f-sets (F1)u1
, . . . , (Fn)un

∈ F ,
where the Fi are finite sets of formulas (i.e. sequents with empty antecedents),
the generating rule

X ∪ {A1, . . . , An ! C | A1 ∈ F1, . . . , An ∈ Fn}u1,...,un

C
.

Note that the abstractions x and y are discarded.
Rule2 associates with X ∈ E and {Δ ! A} ∈ F the generating rule

X ∪Δ
A

Rulesv1 allows to produce variants of a given generating rule by moving
formulas from the premise to the antecedent of the conclusion. More precisely,
let a generating rule of the form

X ∪Δ′
Δ ! A

be given, where Δ′ is a finite (not just finitary) set of formulas, i.e the elements
of Δ′ are sequents with empty antecedent. We transform this into

X
Δ ∪Δ′ ! A
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Rulev2 transforms a generating rule

X
Δ ! A

into the variant
X ∪Δ ∪ {A ! C}

C

From the construction of the generating rules associated with schemata one
immediately sees:

Theorem 3 (Soundness of the Rules 1, 2, v1, v2). The generating rule
associated with a schema by rules 1 and 2 are intuitionistically implied by the
schema. Rules v1, v2 produce equivalent generating rules in the sense that the
sets of instances of formulas they represent are equivalent in intuitionistic logic.

2.6 Proof Rules

A proof rule is a set of rules of the form

Δ1 ! A1 . . . Δn ! An

Δ ! A
.

A generating rule generates a proof rule by adding side formulas and instantiating
predicate symbols. More precisely, a generating rule

Δ1 ! A1 . . . Δn ! An x
Δ ! A

generates the proof rule consisting of the rules

Γ ∪Δ′
1 ! A′

1 . . . Γ ∪Δ′
n ! A′

n

Γ ∪Δ′ ! A′

where Γ is a finite set of formulas (the side formulas) not containing x free, and
the primed Δs and As are instances of the Δs and As leaving x unchanged.

3 Deriving the Rules of Natural Deduction and Sequent
Calculus

We now discuss the generating rules associated with the schemata (2) and their
inverses (3) and show that all logical rules of intuitionistic natural deduction
and sequent calculus are generated. We omit the defining schema for � and its
inverse since their generating rules are less interesting and are largely subsumed
by the schema Ax. Note also that the defining schema for ⊥ has no associated
generating rule (but the inverse of this schema does have generating rules).

∧ {{A,B}}
{{A ∧B}}

. By Rules 1, 2, v1, v2 we have the generating rules
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1
A B A ∧B ! C

C
2

A B
A ∧B

and the variants

1.1
B A ∧B ! C

A ! C
1.2

A A ∧B ! C
B ! C

1.3
A ∧B ! C
A,B ! C

2.1
B

A ! A ∧B
2.2

A
B ! A ∧B

2.3 A,B ! A ∧B

2 corresponds to the ∧-introduction rule of natural deduction, which is the same
as the ∧-right rule of sequent calculus. 1.3 corresponds to the inverse of the ∧-left
rule in sequent calculus. 2.3 is the axiom of ∧-introduction. To give an example
of a generated proof rule, the proof rules corresponding to 2 consists of all rules
of the form

Γ ! A Γ ! B
Γ ! A ∧B

.

where Γ ranges over an arbitrary finite set of formulas and A,B range over
arbitrary formulas.

In the following we only show a selection of generating rules concentrating on
those that correspond to proof rules in natural deduction and sequent calculus.

∧− {{A ∧B}}
{{A}, {B}}

. We have the generating rules

A,B ! C

A ∧B ! C
A ∧B

A
A ∧B

B

which are the ∧-left rule of sequent calculus and the ∧-elimination rules of natural
deduction.

∨ {{A}, {B}}
{{A ∨B}}

. Only the generating rules derived from Rule 2 are of interest:

A
A ∨B

B
A ∨B

These are the ∨-introduction rules of natural deduction, which are the same as
the ∨-right rules of sequent calculus.

∨− {{A ∨B}}
{{A,B}}

. We have the generating rules

A ∨B A ! C B ! C
C

A ! C B ! C
A ∨B ! C

which are the ∨-elimination rule in natural deduction and the ∨-left rule in
sequent calculus.

→ {{A ! B}}
{{A → B}}

. Only the generating rule from Rule 2,
A ! B
A → B

, is

interesting. It corresponds to →-introduction in natural deduction which is the
same as the →-right rule in the sequent calculus.

→− {{A → B}}
{{A ! B}}

. The generating rules of interest are
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A → B A
B

A → B
A ! B

A B ! C
A → B ! C

which are →-elimination in natural deduction a.k.a. modus ponens, the inverse
of →-introduction, and (obtained from the former generating rule by applying
rules v2 and then v1) the →-left rule of sequent calculus.

∀ {{P (x)}x}
{{∀xP (x)}}

. By Rule 2, we have
P (x)

x
∀xP (x)

, which is the ∀-introduction

rule of natural deduction and the ∀-right rule of the sequent calculus. The cor-

responding proof rule is
Γ ! A(x)

Γ ! ∀xA(x)
where A(x) is an arbitrary formula and

Γ is a finite set of formulas not containing x free.

∀− {{∀xP (x)}}
{{P (x)}}x

. By Rules 1 and v1, we have
P (x) ! C

x
∀xP (x) ! C

, which is

the ∀-left rule of the sequent calculus. By Rule 2, we have
∀xP (x)

P (x)
, which is

the ∀-elimination rule of natural deduction. The corresponding proof rules are

Γ,A(t) ! C

Γ, ∀xA(x) ! C

Γ ! ∀xA(x)

Γ ! A(t)
.

∃ {{P (x)}}x
{{∃xP (x)}}

. By Rules 1 and v1, we have
∃xP (x) ! C

P (x) ! C
. By Rule 2,

we have
P (x)

∃xP (x)
, which is the ∃-introduction rule of natural deduction and

the ∃-right rule of the sequent calculus. The corresponding proof rules are

Γ, ∃xA(x) ! C

Γ,A(t) ! C

Γ ! A(t)

Γ ! ∃xA(x)
.

∃− {{∃xP (x)}}
{{P (x)}x}

. By Rule 1, we have
∃xP (x) P (x) ! C

x
C

, which is the

∃-elimination rule of natural deduction. By Rule v1, we have
P (x) ! C

x
∃xP (x) ! C

which is the ∃-left rule of sequent calculus. The corresponding proof rules are

Γ ! ∃xA(x) Γ,A(x) ! C

C

Γ,A(x) ! C

Γ, ∃xA(x) ! C
,

where Γ and C must not contain x free.

⊥− {{⊥}}
{{}}

. By Rule 1, we have
⊥
C

, which is the efq rule.

Ax
{{}}
{}

. By Rules 1 and v1, we have C ! C , which is the axiom or

assumption rule. By Rules 1 and v2, we have
C C ! C′

C′ , which is the cut

rule.
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Theorem 4 (Completeness of Schemata for Minimal Logic). The propo-
sitional rule schemata are complete for minimal Natural Deduction and Sequent
Calculus in the sense that every axiom or rule of these calculi is an instance of
a generating rule derived from one of the schemata (2) or their inverses (3) by
the Rule 1, 2, v1, v2.

4 Realizability

In addition to the generation of proof rules, schemata allow to automatically
generate realizers for proof rules. Regarding the notion of realizability we refer
to [10] and [2]. From a programming perspective, the most interesting aspect of
realizability is the Soundness Theorem stating that from an intuitionistic proof
of a formula A one can extract a realizer of A which can be viewed as solution to
the computational problem specified by A. The Soundness Theorem is based on
the fact that the proof rules of intuitionistic logic, more precisely, the formulas
they represent, are realizable. Therefore, the main building blocks of an imple-
mentation of program extraction based on realizability are (implementations of)
realizers of proof rules. Since the proof rules of intuitionistic logic and their in-
verses all represent formulas of the form A → A, they are trivially realized by
the identity function. The Rules 1, 2, v1, v2 correspond to simple transforma-
tions of realizers (one can view them as the programs extracted from the proof
of the Soundness Theorem for these rules (Thm 3)). Rule 1, which is based on
the fact that ∧ distributes over ∨ is realized by a cascade of case analyses. The
remaining rules are realized by simple combinations of projections, currying and
uncurrying. Applying these transformations to the identity function one obtains
realizers of the derived generating rules and hence realizers of the corresponding
proof rules.

5 Conclusion

We presented a uniform system of rule schemata for intuitionistic first-order logic
and showed how to derive generating rules corresponding to the usual proof rules
of natural deduction and sequent calculus as well as realizers thereof. The main
motivation for this work is to obtain a framework facilitating the implementation
of logic and program extraction from proofs.

Rule schemata are not restricted to first-order logic. In our prototype we ap-
ply them to an intuitionistic version of Church’s Simple Theory of Types [3]
extended by inductive and coinductive definitions (to be detailed in a forth-
coming publication). In Church’s Simple Theory of Types (which essentially is
higher-order logic) one can view predicate constants as higher-type variables and
write the collection of schemata 2 as a single f-set with A,B, P as abstracted
variables. Something similar can be done for the derived generating rules and
proof rules. This has the advantage that the process of instantiation of formulas
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and rules is covered by f-sets as well. One can also give a defining schema for
Leibniz equality

{{P (x) ! P (y)}P }
{{x = y}}

from which the expected proof rules can be derived.
Our rule schemata have some resemblance with the hypersequent calculus [1,

9]. A hypersequent is a finite set of sequents, hence the premise of a rule in
hypersequent calculus can be viewed as a set of sets of sequents. Note however,
that a hypersequent is always interpreted disjunctively, while in the context of
schemata the interpretation of an f-set of sequents depends on whether it ap-
pears in the premise or conclusion of a schema. Note also that the hypersequent
calculus is a proof calculus where sequents are replaced by hypersequents while
rule schemata are seeds for proof rules based on ordinary sequents. It is con-
ceivable though that rule schemata based on hypersequents can be developed
leading to a compact representation of the rules of the hypersequent calculus.
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Abstract. Gene rearrangements within the process of gene assembly in ciliates
can be represented using a 4-regular graph. Based on this observation, Burns et al.
[Discrete Appl. Math., 2013] propose a graph polynomial abstracting basic fea-
tures of the assembly process, like the number of segments excised. We show that
this assembly polynomial is essentially (i) a single variable case of the transition
polynomial by Jaeger and (ii) a special case of the bracket polynomial introduced
for simple graphs by Traldi and Zulli.

1 Introduction

Ciliates are an ancient group of unicellular organisms. They have the remarkable prop-
erty that their DNA is stored in two vastly different types of nuclei. During conjugation
a germline nucleus called the micronucleus (MIC) is transformed into a somatic nu-
cleus called the macronucleus (MAC). In this way, each MIC gene is transformed into
its corresponding MAC gene, in a process that we call gene assembly. Various formal
models for this gene transformation process are presented in [3].

One of these formal models is string based, with letters representing “pointers” (spe-
cial DNA sequences in a MIC gene) together with their relative orientation in the cor-
responding MAC gene [10]. The model postulates that three operations called loop
excision, hairpin recombination, and double loop recombination accomplish the trans-
formation of a MIC gene to its corresponding MAC gene. This model has been signifi-
cantly generalized using the notion of circle graph, see, e.g., [3, 10].

This string-based formal model can be very naturally fitted within the well-developed
theory of transformations of Eulerian circuits in 4-regular graphs [4]. An example us-
ing the Actin I gene of Sterkiella nova, taken from Prescott [18], is recalled below. It is
known that these Eulerian circuit transformations may in turn be viewed both as a spe-
cial case of a matrix operation called principal pivot transform (see [22]) and as a set
system operation called twist. It turns out that the interplay of the successive operations
can be much better understood in these more general settings compared to the string or
graph settings. These generalizations for gene assembly are outlined in [4].
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Fig. 1. Actin I gene of Sterkiella nova. Schematic diagram, based on [18]

Here we recall the 4-regular graph representation that represents both the MIC and
MAC form of a gene. We recall how the MIC and MAC form of a gene are two dif-
ferent sets of circuits in a 4-regular graph, and may be obtained from one another by
making different decisions where to continue a path at each vertex. Possible interme-
diate results of this recombination can also be read from this 4-regular graph. Based
on this observation, Burns et al. [7] have proposed the assembly polynomial, a graph
polynomial intended to abstract basic features of the assembly process, like the number
of molecules excised during this process.

In this paper we show that the assembly polynomial is closely related to the fol-
lowing graph polynomials: (i) the transition polynomial by Jaeger [13, 15] and (ii) the
bracket polynomial introduced for simple graphs by Traldi and Zulli [21]. We show
how notions and results related to these polynomials may be carried over to the assem-
bly polynomial. We note that the transfer of notions and results between other (related)
graph polynomials have been accomplished, as can be seen in [11, 12].

Gene Assembly as 4-Regular Graphs

Prescott and Greslin [19] have unraveled the different representations of genetic mate-
rial in the MIC and MAC form of genes in ciliates. We illustrate this using the example
of the Actin I gene of Sterkiella nova, the presentation of which is based on [18]. In
MIC form this gene consists of macronuclear destined sequences (MDSs for short),
which end up in the MAC form of this gene, that are scrambled (their order may be
permuted and some MDSs may be inverted). The segments in between the MDSs are
called internal eliminated sequences (IESs for short) that are excised and do not appear
in the MAC form of this gene.

The MIC of the Actin I gene can be written as I0 M3 I1 M4 I2 M6 I3 M5 I4 M7 I5 M9

I6 M2 I7 M1 I8 M8 I9, where Mi and I j represent MDSs and IESs, respectively. The final
MAC can be written as M1M2 . . .M8M9. Both the MIC and MAC form of this gene can
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Fig. 2. Graph Gw defined by string w = 145265123463, see Example 1. The edges trace the
Eulerian circuit Cw as defined by w according to the edge numbers given.

be read from the 4-regular graph G in Fig. 1. The vertices of G represent the pointers,
i.e., the places where recombination takes place, and the edges represent the MDSs and
IESs. Each vertex has two incoming and two outgoing edges. The MIC and MAC form
both trace paths in the diagram. For the MIC form successive incoming and outgoing
edges are chosen such that the two visits of a vertex do not cross, whereas for the MAC
form the successive visits are connected in a crossing fashion (see top right illustration).

Without loss of generality, in the abstract context considered in the next sections, the
initial edge and final edge are joined to form a single edge, in order to obtain an actual
4-regular graph.

2 Eulerian Circuits in 4-regular Graphs

The example in the introduction illustrates that 4-regular graphs are one of the key tools
for describing the transformation of a MIC gene into its MAC gene. The MIC gene
corresponds to an Eulerian circuit, while the MAC gene corresponds to a number of
circuits (each edge belongs to one such circuit), such that one of those contains the
MDSs in the proper order and orientation, while the other circuits contain only IESs
that are excised during the gene assembly process. We abstract from genes and describe
circuits in 4-regular graphs over an abstract alphabet (the elements of which, in effect,
denote pointers).

A double-occurrence string over an alphabet V contains each letter from V exactly
twice. Each double-occurrence string describes a 4-regular graph Gw together with an
Eulerian circuit Cw for Gw, choosing vertex set V and edges that follow consecutive
letters in w (in a cyclic fashion).

Example 1. Let V = {1, . . . ,6}. For w = 145265123463, the 4-regular graph Gw

is given in Fig. 2, where the edges are numbered according to the Eulerian circuit
Cw. Thus, first introduce a vertex for each element in V . Then continue by reading
w and adding (undirected) edges between consecutive letters (in a cyclic fashion):
1 1—4 2—5 3—2 4—6 5—5 6—1 7—2, etc. ��
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e

e1e2

e3

(a) (b) (c)

Fig. 3. Three ways to connect pairs of edges in a 4-regular graph relative to an (oriented) Eule-
rian circuit: (a) e→ v

e1→ following the circuit, (b) e→ v
e3→ in an orientation-consistent way, and

(c) e→ v
e2← in an orientation-inconsistent way

We discuss here the basic theory of splitting and joining Eulerian circuits in 4-regular
graphs, see [16] and also [14, Chapter 17]. Let G be a undirected 4-regular graph and C
an Eulerian circuit of G. We assume here that circuits are not oriented.

Consider a circuit partition P of G, i.e., a set of circuits of G that together contain
all the edges exactly once. We can describe P relative to C by considering at each
vertex how the circuits in P follow the edges relative to C. In fact, when during a walk
of P, P enters a vertex v, then P can leave in one of exactly three directions.1 They
can be classified as follows, cf. Fig. 3. Let . . .

e→ v
e1→ . . .

e2→ v
e3→ . . . be an arbitrary

orientation of C. (i) If, by entering v via e in P, P leaves v via e1, then we say that
P follows C at v. (ii) If P leaves v via e3, then we say that P is orientation-consistent
with C at v, and finally (iii) if P leaves v via e2, then we say that P is orientation-
inconsistent with C at v. In [15], the first two are called coherent and the last one is
called anticoherent. Moreover, in [7] the last two are called (parallel) p-smoothing and
n-smoothing, respectively.

We let D(C,P) = (D1,D2,D3) be the ordered partition (we allow some Di to be
empty) of V such that the vertices of P that (i) follow C are in D1, (ii) are orientation-
consistent with C are in D2, and (iii) are orientation-inconsistent with C are in D3. (We
return to this notion later, see Example 6 and Theorem 5.)

A transition at a vertex v is a partition in (unordered) pairs of the edges incident to
v. A transition system of G is a set of transitions, one for each vertex of G. Note that a
circuit partition uniquely determines a transition system. Indeed, if a circuit of P visits
vertex v, entering and leaving at v via a pair of edges, then another visit of v (which
may occur either in the same circuit or in another circuit of P) uses the remaining pair
of edges. In the same way, a transition system uniquely determines a circuit partition.

Remark 2. In the process of gene assembly in ciliates, the MIC form of a gene traces
an Eulerian circuit, while its corresponding MAC form has a different transition at each
vertex (i.e., pointer). For each vertex v, this transition is uniquely determined by the rel-
ative orientation in the MIC form of the two MDSs with edges incident to v. When the
MDSs have the same orientation, the orientation-consistent transition is taken; other-
wise, the orientation-inconsistent transition is taken. In this way, an intermediate result

1 In case G has loops one has to consider “half edges” to obtain three directions, but these
technicalities are left to the reader.
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Fig. 4. Changing the Eulerian circuit of Fig. 2 at vertex 5 in orientation-consistent and orientation-
inconsistent ways, respectively. The transition that follows Cw at vertex 5 is indicated on the left.

of the gene assembly process either follows the MIC or the MAC transition at each ver-
tex. Thus in modelling the rearrangements in gene assembly in ciliates one has to keep
track of the relative orientation of the MDS-segments.

In Fig. 3, we see that changing an Eulerian circuit at a single vertex by choosing
the transition in an orientation-consistent manner, splits the circuit into two circuits.
Choosing the orientation-inconsistent transition instead “inverts” part of the circuit.

Example 3. The Eulerian circuit Cw is given by w = 145265123463, cf. Example 1.
By changing Cw at vertex 5 in an orientation-consistent way, we have the transitions
2—5 6— and 5—5 3—, so we obtain two circuits 145123463 and 526. By recombining in

an orientation-inconsistent way we have the transitions 2—5 5— and 3—5 6—, so we obtain
a single circuit 145625123463 with segment inverted, see Fig. 4. ��

We noted that changing the transition of vertex v in an Eulerian circuit C to an
orientation-consistent way splits the circuit in two. However, when we in parallel change
transitions in an Eulerian circuit at distinct vertices u and v, both in an orientation-
consistent way, then again an Eulerian circuit is formed, provided that u and v are “inter-
laced” in C, i.e., they occur in the order · · ·u · · ·v · · ·u · · ·v · · · (again, strings are regarded
cyclic). In that case, two segments between the occurrences u and v are swapped. This
is an important observation in the context of intra-molecular models of gene assembly.
The interlacement of pairs of vertices is captured in an interlace graph (also called a
circle graph as it can be defined using a collection of chords in a circle with edges
denoting their intersection, see, e.g., [14, Chapter 17]).

The interlace matrix I(C) of C is the V ×V -matrix (i.e., the rows and columns are
not ordered, but indexed by V ) over GF(2) that has 1 at position (u,v) if vertices u and v
are interlaced in C, i.e., occur in the order · · ·u · · ·v · · ·u · · ·v · · · , and 0 otherwise. Since
I(C) is symmetric, I(C) may be viewed as the adjacency matrix of a simple graph G,
called the interlace graph of C. We are sloppy, and also use I(C) as a notation for G.

Example 4. For Cw defined by w= 145265123463, the interlace graph I(Cw) is given
in Fig. 5. ��
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Fig. 5. The interlace graph I(Cw) for w = 145265123463, cf. Example 4
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(a)

1

5 3

4

(b)

⎛⎜⎜⎝
1 3 4 5

1 1 0 1 0
3 0 1 1 0
4 1 1 0 0
5 0 0 0 0

⎞⎟⎟⎠

Fig. 6. Cf. Example 6. (a) Partition P of the edges of the 4-regular graph Gw into three closed
walks; edge numbers according to Cw. (b) Both the graphical and matrix representation of the
graph (I(Cw)+Δ ({1,3}))\{2,6}.

Cohn and Lempel [8] proved a surprisingly simple formula for the number of circuits that
result from an Eulerian circuit C in a 4-regular graph by changing C in an orientation-
consistent way at several vertices. The formula is in terms of the nullity (dimension of
the null space) of the interlace matrix. A more general treatment of this result is given
by Traldi [20], allowing one to change transitions in both orientation-consistent and
orientation-inconsistent ways. Above we have borrowed the terminology of [20].

Traldi has shown that the number of circuits in P can be elegantly expressed in terms
of the interlace matrix I(C) and the partition D(C,P). Let A be a V ×V -matrix. If D⊆V ,
then A\D denotes the restriction of A to the principal submatrix of A indexed by V \D,
and Δ(D) is the V ×V -matrix that has 1 only on diagonal elements (u,u) with u ∈ D,
and 0 elsewhere. Also, ν and ρ denote the nullity and rank of matrices computed over
GF(2), respectively.

Theorem 5 (Traldi-Cohn-Lempel). Let G be an undirected, connected 4-regular
graph with Euler cycle C, and let P be a circuit partition of E(G), such that D(C,P) =
(D1,D2,D3). Then |P|= ν((I(C)+Δ(D3))\D1)+ 1.

Example 6. We continue the running example. Fig. 6(a) shows a circuit partition P of
Gw in three parts, with circuits 14632, 1345, and 265. At vertex 5, the circuits trace
the transitions 2—5 6— and 5—5 3—, which is orientation-consistent w.r.t. the circuit Cw.
Hence 5 belongs to the second component of the partition D(Cw,P). Considering all
vertices, we find D(Cw,P) = ({2,6},{4,5},{1,3}). Graph (I(Cw)+Δ({1,3}))\{2,6}
is obtained from the interlace graph I(Cw) by deleting vertices 2,6 and adding loops
to 1,3. It is given in Fig. 6(b). The corresponding matrix has (dimension 4× 4, rank 2,
and) nullity 2. Indeed |P|= 2+ 1 satisfies Theorem 5. ��
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3 Graph Polynomials Motivated by Gene Rearrangement

One of the first graph polynomials is defined by Martin [17] for 4-regular graphs. Given
such a graph G, the coefficient of yk in its polynomial MG(y) equals the number of
circuit partitions P of G with |P| = k. Currently, there is an impressive body of results
on graph polynomials, see, e.g., the overview papers by Ellis-Monaghan and Merino
[11, 12]. Typical topics that are studied are algebraic and combinatorial in nature, and
include recursive formulations of the polynomials, and the interpretation of evaluations
at specific values. Generalizations have been obtained for structures like knots and ma-
troids [15]. Also, a multimatroid polynomial is proposed as a unified framework to
several polynomials for graphs and matroids [5].

The study of gene rearrangements has motivated the introduction of new polynomi-
als, most notably the interlace [1, 2] and assembly [7] polynomials, as, e.g., a feature
that could measure and compare the complexity of the rearrangement process. Both
these polynomials fit in the corpus of existing graph polynomials, and thus techniques
and results can be carried over. For the interlace polynomial it has been shown that it
is tied to the well-known Tutte polynomial [1, 5]. Here we discuss how the assembly
polynomial is related to other known polynomials.

The Transition Polynomial and Its Relatives

It was observed by Jaeger [15] that several polynomials for 4-regular graphs are spe-
cial cases of the transition polynomial, which is a multivariate/weighted polynomial.
Similar as the Martin polynomial, the transition polynomial counts circuit partitions P
w.r.t. an arbitrary Eulerian circuit C. However, the circuit partitions P have weights in
the transition polynomial that depend on D(C,P). Unfortunately, it seems that [15] is
not widely distributed.

We show that the assembly polynomial is closely related to the transition polynomial,
essentially by embedding its second variable into the weights. Secondly, we observe a
less obvious relation to the bracket polynomial for graphs in terms of the nullity of the
adjacency matrix of the circle graph using Theorem 5.

Burns et al. [7, Section 6] (see also [9]) define the assembly polynomial for a 4-
regular graph Gw together with an Eulerian circuit Cw belonging to a double-occurrence
string w over alphabet V . The assembly polynomial of Gw w.r.t. Eulerian circuit Cw is

S(Gw)(p, t) = ∑
s

pπ(s)tc(s)−1,

where the sum is taken over all 2|V | transition systems s that differ at each vertex from
the transition system corresponding to Cw (a transition that differs from the transition
of Cw is called a smoothing in [7]), π(s) equals the number of orientation-consistent
transitions of s w.r.t. Cw (called p-smoothings in [7]), and c(s) equals the number of
circuits in the circuit partition corresponding to s.

Example 7. Consider the double-occurrencestring w= 112323. In Fig. 7 we show that
its corresponding Eulerian circuit Cw in the 4-regular graph Gw (top-left) and its eight
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1
2 3

Fig. 7. Construction of Gw for w= 112323, and the eight smoothings that determine its assembly
polynomial, see Example 7

possible smoothings (at each vertex, vertical connections correspond to a consistent-
orientation change, i.e., a p-smoothing). Note that Gw has both a loop and parallel edges.
The assembly polynomial equals S(Gw) = p3t + 2p2t + p2 + pt2 + 2p+ t (as can be
verified using the Assembly Words online tool [6]).

We discuss the transition polynomial from [15]. Let P(G) be the set of all transition
systems of G. Note that |P(G)| = 3|V |, where V is the set of vertices of G. A weight
function W assigns a weight to each of the three possible transitions at each vertex. The
weight ω(s) of the transition system s is the product of the weights of s at each vertex.
The (weighted) transition polynomial of G is now defined as

q(G,W ;x) = ∑
s∈P(G)

ω(s)xc(s)−1.

We obtain the assembly polynomial as a special case of the transition polynomial
by fixing the weights W (C) relative to the Eulerian circuit C. Transitions that follow
C have weight 0 (so are not counted at all), orientation-consistent and and orientation-
inconsistent transitions have weight p and 1 respectively. We have ω(s) = pπ(s) if s
contains no transitions that follow C, and ω(s) = 0 otherwise. Hence S(Gw)(p, t) =
q(Gw,W (Cw);t).

The interlace polynomial on the other hand, is equal to a suitable generalisation of
the transition polynomial where zero weight is assigned to the orientation-inconsistent
transitions.

Various results are known for the transition polynomial. For example, let P be a
circuit partition of G and W (P) be such that the transitions belonging to P have weight
0, and the other transitions have weight 1. Then q(G,W (P);−2) = (−1)|V |(−2)c(P)−1,
see [15, Proposition 11]. Consequently, S(Gw)(1,−2) = (−1)|V | since P is the Euler
circuit Cw and c(Cw) = 1.

We now move to a second interpretation of the assembly polynomial. Consider a tran-
sition system s that never follows circuit C, as is relevant in this context. It determines
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a set of circuits Ps, and the number of circuits c(s) = |Ps| is given by the Traldi-Cohn-
Lempel formula, and equals ν(I(Cw)+Δ(D3))+1, where D(C,Ps) = (∅,D2,D3). Re-
call that s determines D(C,Ps) but also vice versa. Thus we reformulate the assembly
polynomial of Gw w.r.t. Cw replacing summation over transition systems s by summation
over partitions (∅,D2,D3). The notation ∪̇ represents disjoint set union.

S(Gw)(p, t) = ∑
D2∪̇D3=V

p|D2|tν(I(Cw)+Δ (D3)).

In this formulation we recognize a related graph polynomial defined by Traldi and Zulli
[21]. Let A (G) be the adjacency matrix of graph G. The bracket polynomial of a graph
G is

[G](A,B,d) = ∑
Δ

Aν(Δ )Bρ(Δ )dν(A (G)+Δ )

with a summand for each n× n diagonal matrix Δ = Δ(D) for some D ⊆V .
Now let D ⊆V , and set D3 = D and D2 =V \D. Then ν(Δ(D)) = |V |− |D3|= |D2|.

Taking A = p, B = 1, and d = t we see that the terms for the bracket and assembly
polynomials match. To be precise, the assembly polynomial S(Gw) of the 4-regular
graph Gw defined by the double-occurrence string w is equal to the bracket polyno-
mial [I(Cw)](p,1, t) of the interlace graph I(Cw). As a consequence, when two double-
occurrence strings have the same interlace graph, their 4-regular graphs have the same
assembly polynomial, cf. [9, Proposition 3].

The transition polynomial allows for a straightforward recursive relation [15, Propo-
sition 4], cf. [7, Lemma 6.4] for the case of the assembly polynomial. In fact, this
recursive relation characterizes the transition polynomial. In a similar way, the bracket
polynomial allows for a characteristic recursive relation [21], using a generalization
of Euler circuit transformations called local complementation and edge complementa-
tion (which in turn is a special case of the general matrix operation of principal pivot
transform [22]).

We hope these connections may be a starting point for transferring notions and results
from one of these fields to another.
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Abstract. Kleene algebra with tests (KAT) is a decidable equational
system for program verification that uses both Kleene and Boolean al-
gebras. In spite of KAT ’s elegance and success in providing theoretical
solutions for several problems, not many efforts have been made towards
obtaining tractable decision procedures that could be used in practical
software verification tools. The main drawback of the existing methods
relies on the explicit use of all possible assignments to boolean variables.
Recently, Silva introduced an automata model that extends Glushkov’s
construction for regular expressions. Broda et al. extended also Mirkin’s
equation automata to KAT expressions and studied the state complex-
ity of both algorithms. Contrary to other automata constructions from
KAT expressions, these two constructions enjoy the same descriptional
complexity behaviour as their counterparts for regular expressions, both
in the worst case as well as in the average case. In this paper, we general-
ize, for these automata, the classical methods of subset construction for
nondeterministic finite automata, and the Hopcroft and Karp algorithm
for testing deterministic finite automata equivalence. As a result, we ob-
tain a decision procedure for KAT equivalence where the extra burden
of dealing with boolean expressions avoids the explicit use of all possible
assignments to the boolean variables. Finally, we specialize the decision
procedure for testing KAT expressions equivalence without explicitly con-
structing the automata, by introducing a new notion of derivative and a
new method of constructing the equation automaton.

Keywords: Kleene algebrawith tests, automata, equivalence, derivative.

1 Introduction

Kleene algebra with tests (KAT) [12] is an equational system that extends Kleene
algebra (KA), the algebra of regular expressions, and that is specially suited to
capture and verify properties of simple imperative programs. In particular, it
subsumes the propositional Hoare logic which is a formal system for the spec-
ification and verification of programs, and that is, currently, the base of most
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of the tools for checking program correctness. The equational theory of KAT is
PSPACE-complete and can be reduced to the equational theory of KA, with an
exponential cost [9, 15]. Regular sets of guarded strings are standard models for
KAT (as regular languages are for KA). The decidability, conciseness and ex-
pressiveness of KAT motivated its recent automatization within several theorem
provers [4, 17, 18] and functional languages [3]. Those implementations use (vari-
ants of) the coalgebraic automaton on guarded strings developed by Kozen [14].
In this approach, derivatives are considered over symbols of the from αp, where
p is an alphabetic symbol (program) and α a valuation of boolean variables (the
guard, normally called atom). This induces an exponential blow-up on the num-
ber of states or transitions of the automata and an accentuated exponential com-
plexity when testing the equivalence of two KAT expressions. Recently, Silva [19]
introduced an automata model for KAT expressions that extends Glushkov’s
construction for regular expressions. In this automaton, transitions are labeled
with KAT expressions of the form bp, where b is a boolean expression (and not an
atom) and p an alphabetic symbol. Using similar ideas, Broda et al. [6] extended
the Mirkin’s equation automata to KAT expressions and studied the state com-
plexity of both algorithms. Contrary to other automata constructions for KAT
expressions, these two constructions enjoy the same descriptional complexity be-
haviour as their counterparts for regular expressions, both in the worst-case as
well as in the average-case. In this paper, we generalize, for these automata, the
classical methods of subset construction for nondeterministic finite automata,
and the Hopcroft and Karp algorithm for testing deterministic finite automata
equivalence. As a result, we obtain a decision procedure for KAT equivalence
where the extra burden of dealing with boolean expressions avoids the explicit
use of all possible assignments to the boolean variables. Finally, we specialize
the decision procedure for testing KAT expressions equivalence without explic-
itly constructing the automata, by introducing a new notion of derivative and a
new method of constructing the equation automaton.

Due to limited number of pages, proofs of lemmas and propositions can be
found in the extended version of this paper [7], which is available online.

2 KAT Expressions, Automata, and Guarded Strings

Let P = {p1, . . . , pk} be a non-empty set, usually referred to as the set of program
symbols, and T = {t0, . . . , tl−1} be a non-empty set of test symbols. The set of
boolean expressions over T together with negation, disjunction and conjunction,
is denoted by BExp, and the set of KAT expressions with disjunction, concate-
nation, and Kleene star, by Exp. The abstract syntax of KAT expressions, over
an alphabet P ∪ T, is given by the following grammar, where p ∈ P and t ∈ T,

BExp : b → 0 | 1 | t | ¬b | b + b | b · b
Exp : e → p | b | e + e | e · e | e�.

As usual, we will omit the operator · whenever it does not give rise to any
ambiguity. For the negation of test symbols we frequently use t instead of ¬t.
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The set At, of atoms over T, is the set of all boolean assignments to all elements
of T, At = {x0 · · ·xl−1 | xi ∈ {ti, ti}, ti ∈ T}. Each atom α ∈ At has associated
a binary word of l bits (w0 · · ·wl−1) where wi = 0 if ti ∈ α, and wi = 1 if ti ∈ α.

Now, the set of guarded strings over P and T is GS = (At ·P)� ·At. Regular sets
of guarded strings form the standard language-theoretic model for KAT [13]. For
x = α1p1 · · · pm−1αm, y = β1q1 · · · qn−1βn ∈ GS, where m,n ≥ 1, αi, βj ∈ At and
pi, qj ∈ P, we define the fusion product x " y = α1p1 · · · pm−1αmq1 · · · qn−1βn, if
αm = β1, leaving it undefined, otherwise. For sets X,Y ⊆ GS, X " Y is the set
of all x " y such that x ∈ X and y ∈ Y . Let X0 = At and Xn+1 = X " Xn, for
n ≥ 0. Given a KAT expression e, we define GS(e) ⊆ GS inductively as follows:

GS(p) = {αpβ | α, β ∈ At }
GS(b) = {α | α ∈ At ∧ α ≤ b }

GS(e1 + e2) = GS(e1) ∪ GS(e2)
GS(e1 · e2) = GS(e1) " GS(e2)
GS(e�1) = ∪n≥0GS(e1)

n,

where α ≤ b if α → b is a propositional tautology. For E ⊆ Exp, let GS(E) =⋃
e∈E

GS(e). Given two KAT expressions e1 and e2, we say that they are equivalent,

and write e1 = e2, if GS(e1) = GS(e2).
A (nondeterministic) automaton with tests (NTA) over the alphabets P and

T is a tuple A = 〈S, s0, o, δ〉, where S is a finite set of states, s0 ∈ S is the
initial state, o : S → BExp is the output function, and δ ⊆ 2S×(BExp×P)×S is
the transition relation. We denote by BExpA the set of boolean expressions that
occur in δ. In general, we assume that there are no transitions (s, (b, p), s′) ∈ δ
such that b is not satisfiable.

A guarded string α1p1 . . . pn−1αn, with n ≥ 1, is accepted by the automaton
A if and only if there is a sequence of states s0, s1, . . . , sn−1 ∈ S, where s0 is the
initial state, and, for i = 1, . . . , n−1, one has αi ≤ bi for some (si−1, (bi, pi), si) ∈
δ, and αn ≤ o(sn−1). The set of all guarded strings accepted by A is denoted
by GS(A). Formally, given an NTA A = 〈S, s0, o, δ〉, one can naturally associate
to the transition relation δ ⊆ 2S×(BExp×P)×S a function δ′ : S × (At · P) −→ 2S ,
defined by δ′(s, αp) = { s′ | (s, (b, p), s′) ∈ δ, α ≤ b }. Moreover, one can define a

function δ̂ : S ×GS −→ {0, 1} over pairs of states and guarded strings as follows

δ̂(s, α) =

{
1 if α ≤ o(s),
0 otherwise,

δ̂(s, αpx) =
∑

s′∈δ′(s,αp)

δ̂(s′, x) .

Given a state s, GS(s) = { x ∈ GS | δ̂(s, x) = 1 } is the set of guarded strings
accepted by s, and GS(A) = GS(s0). We say that a KAT expression e ∈ Exp is
equivalent to an automaton A, and write e = A, if GS(A) = GS(e).

Example 1. Given the KAT expression e = t1p(pq
�t2 + t3q)

�, an equivalent NTA
A, obtained by the equation algorithm (see [6]), is the following, where e0 = e,
e1 = (pq�t2+t3q)

� and e2 = q�t2(pq
�t2+t3q)

�. Both objects accept, for instance,
the guarded string t1t2t3pt1t2t3pt1t2t3qt1t2t3.
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e0 e1 e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (1, q)

(t2t3, q) t2

An NTA is called deterministic (DTA) if and only if for every pair (α, p) ∈
At × P and every state s ∈ S, there is at most one transition (s, (b, p), s′) ∈ δ
such that α ≤ b, i.e. δ′(s, αp) is either empty or a singleton.

3 Determinization

The standard subset construction for converting a nondeterministic finite au-
tomaton (NFA) into an equivalent deterministic finite automaton (DFA) may be
adapted as follows. Given a set of states X ⊆ S, whenever there are transitions
(s1, (b1, p), s

′
1), . . . , (sm, (bm, p), s′m), with s1, . . . , sm ∈ X , in the NTA, in the

equivalent DTA we consider “disjoint” transitions to subsets {s′i1 , . . . , s
′
ik
} ⊆

{s′1, . . . , s′m}, labeled by (bi1 · · · bik¬bik+1
· · · ¬bim)p, where {s′ik+1

, . . . , s′im} =

{s′1, . . . , s′m} \ {s′i1 , . . . , s′ik}.
Consider the set of atoms At = {α0, . . . , α2l−1}, with the natural order in-

duced by their binary representation. We define the function

V : BExp −→ 2{0,...,2
l−1}

b #−→ Vb = { i | αi ≤ b, 0 ≤ i ≤ 2l − 1 }.

This representation of boolean expressions is such that Vb = Vb′ if and only
if b and b′ are logically equivalent expressions. We consider Vb as a canonical
representation of b and write αi ≤ Vb if and only if i ∈ Vb. Conversely, to each
U ⊆ {0, . . . , 2l − 1} we associate a unique boolean expression B(U), where

B : 2{0,...,2
l−1} −→ BExp

U #−→
∑
i∈U

αi.

For b, b′ ∈ BExp we have V¬b = Vb, Vb+b′ = Vb ∪Vb′ and Vb·b′ = Vb ∩Vb′ , where
U = {0, . . . , 2l − 1} \ U for any U ⊆ {0, . . . , 2l − 1}.

Example 2. For T = {t1, t2} and At = {t1t2, t1t2, t1t2, t1t2}, we have Vt2 = {1, 3}
and Vt1+¬t2 = {0, 1, 3}. Also, B({1, 3}) = t1t2 + t1t2.

We now describe the subset construction that, given an NTA, A = 〈S, s0, o, δ〉
over the alphabets P and T, produces an DTA, Adet = 〈2S , {s0}, odet, δdet〉 over
P and T, such that GS(A) = GS(Adet). First, we define two functions

δ̃det : 2
S × (2{0,...,2

l−1} × P) −→ 2S and õdet : 2
S −→ 2{0,...,2

l−1}.
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Then, we take δdet = { (X, (B(V ), p), Y ) | (X, (V, p), Y ) ∈ δ̃det } as well as

odet = B ◦ õdet. For X ⊆ S, we define õdet(X) =
⋃
s∈X

Vo(s). To define δ̃det, we

consider the following sets. Given X ⊆ S and p ∈ P, Let

Γ (X, p) = { (b, s′) | (s, (b, p), s′) ∈ δ, s ∈ X },
Δ(X, p) = { s′ | (b, s′) ∈ Γ (X, p) }.

For s′ ∈ Δ(X, p), we define VX,p,s′ =
⋃

{ Vb | (b, s′) ∈ Γ (X, p) } , And for each

Y ⊆ Δ(X, p) the set

VX,p,Y =
⋂(

{ VX,p,s′ | s′ ∈ Y } ∪
{
VX,p,s′ | s′ ∈ Δ(X, p) \ Y

})
.

Finally, we have

δ̃det = { (X, (VX,p,Y , p), Y ) | X ⊆ S, Y ⊆ Δ(X, p), p ∈ P, VX,p,Y �= ∅ }.

Proposition 1. For every NTA A = 〈S, s0, o, δ〉, the automaton Adet is deter-
ministic and GS(A) = GS(Adet).

Example 3. Applying the construction above to the NTA from Example 1, we
obtain the following DTA:

e0 e1 e2 e1, e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (¬(t2t3), q)
(t2t3, q)

t2

(t3, q)

(1, p), (¬t3, q)
1

3.1 Implementation and Complexity

It is important to notice that in the determinization algorithm, the construction
of all the 2|S| subsets X of the set of states S can be avoided by considering
only reachable states from the initial state. In order to efficiently deal with
boolean operations it is essential to have an adequate representation for the
boolean expressions b as well as the sets Vb. A possible choice is to use OBDDs
(ordered binary decision diagrams), for which there are several software packages
available. The sets VX,p,Y may also be constructed using a (variant) of the
standard Quine-McCluskey algorithm.

In the worst case, the determinization algorithm exhibits an extra exponential
complexity to compute the sets VX,p,Y . The deterministic automaton Adet has
at most 2n states and k · 2n+l transitions where n = |S|, l = |T|, and k = |P|.
Contrary to what happens with other KAT automata where the set At is explicitly
used, in practice and with adequate data structures, we can expect that the
number of sets X ⊆ S and of sets VX,p,Y is kept within tractable limits. It is
an open problem to theoretically obtain the average-case complexity of both the
power set construction and the sets VX,p,Y .
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4 Equivalence of Deterministic Automata

Hopcroft and Karp [11] presented an almost linear algorithm (HK) for testing the
equivalence of two DFAs that avoids their minimization. Considering the merge
of the two DFAs as a single one, the algorithm computes the finest right-invariant
relation, on the set of states, that makes the initial states equivalent. Recently
this algorithm was analyzed and extended to NFAs in [2, 5]. In this section, we
extend it, again, for testing equivalence of deterministic automata for guarded
strings. We will only consider DTAs, A = 〈S, s0, o, δ〉, where all states are useful,
i.e. for every state s ∈ S, GS(s) �= ∅.

Given a DTA, A = 〈S, s0, o, δ〉, over the alphabets P and T, and s, t ∈ S, we
say that s and t are equivalent, and write s ≈ t, if GS(s) = GS(t). A binary
relation R on S is right invariant if for all s, t ∈ S if sRt then the following
conditions hold:

– ∀α ∈ At, α ≤ o(s) ⇔ α ≤ o(t);
– ∀αp ∈ At · P, (δ′(s, αp) = δ′(t, αp) = ∅) or (δ′(s, αp) = {s′}, δ′(t, αp) = {t′}

and s′Rt′).

It is easy to see that the relation ≈ is right invariant. Furthermore, whenever
R is a right-invariant relation on S and sRt, for s, t ∈ S, one has s ≈ t.

Let A1 = 〈S1, s0, o1, δ1〉 and A2 = 〈S2, r0, o2, δ2〉 be two DTAs over the alpha-
bets P and T, such that S1 ∩ S2 = ∅. The algorithm HK, given below, decides
if these two automata are equivalent, i.e. if GS(A1) = GS(A2), by building a
right-invariant relation that checks whether s0 ≈ r0. Consider A = 〈S, s0, o, δ〉,
where

S = S1 ∪ S2, o(s) =

{
o1(s) if s ∈ S1

o2(s) if s ∈ S2
and δ = δ1 ∪ δ2.

Lemma 1. Given two DTAs, A1 and A2, let A be defined as above. Then, s0 ≈
r0 (in A) if and only if GS(A1) = GS(A2).

The algorithm uses an initially empty stack H and a set partition P of S,
which are both updated during the computation. The set partition P is built us-
ing the UNION-FIND data structure [10]. Within this structure, three functions
are defined:

– MAKE(i): creates a new set (singleton) for one element i (the identifier);
– FIND(i): returns the identifier Si of the set which contains i;
– UNION(i, j, k): combines the sets identified by i and j into a new set Sk =

Si ∪ Sj ; Si and Sj are destroyed.

An arbitrary sequence of i operations MAKE, UNION, and FIND, j of which
are MAKE operations, necessary to create the required sets can, in worst-case,
be performed in O(iα(j)) time, where α(j) is related to a functional inverse of
the Ackermann function, and, as such, grows very slowly, and for practical uses
can be considered a constant. In the whole we assume that whenever FIND(i)
fails, MAKE(i) is called.
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Algorithm 1.1. HK algorithm for deterministic automata.

1 def HK(A1, A2 ) :
2 MAKE(s0 ) ; MAKE(r0 )
3 H = ∅
4 UNION(s0, r0, r0 ) ; PUSH(H, (s0, r0))
5 while (s, t) = POP(H) :
6 i f Vo(s) 
= Vo(t) : return False
7 for p ∈ P :
8 B1 = Γ ({s}, p)
9 B2 = Γ ({t}, p)

10 i f
⋃

(b1, )∈B1

Vb1 =
⋃

(b2, )∈B2

Vb2 :

11 for (b1, s
′) ∈ B1 :

12 for (b2, t
′) ∈ B2 :

13 i f Vb1 ∩ Vb2 
= ∅ :
14 s′ = FIND(s′ )
15 t′ = FIND(t′ )
16 i f s′ 
= t′ :
17 UNION(s′, t′, t′ )
18 PUSH(H, (s′, t′))
19 else : return False
20 return True

The algorithm terminates because every time it pushes a pair onto the stack
it performs a union of two disjoint sets in the partition, and this can be done
at most |S| − 1 times. Given that set operations introduce what can be consid-
ered a constant time factor, the worst-case running time of the algorithm HK
is O(m2kn), where n = |S|, k = |P|, and m = |BExpA|. The correctness of this
version of algorithm HK is given by the proposition below, whose proof follows
closely the one for DFAs.

Proposition 2. The algorithm returns True if and only if s0 ≈ r0.

5 Equivalence of Nondeterministic Automata

We can embed the determinization process directly into the HK algorithm, ex-
tending it, so that it can be used to test the equivalence of NTAs. As before,
given two NTAs with disjoint sets of states, A1 and A2, we consider them as
a single NTA, A = 〈S, s0, o, δ〉. The worst-case complexity of this combined al-
gorithm, which we denote by HKN, is consequently O(m2k2n), where n = |S|,
k = |P| and m = |BExpA|.
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Algorithm 1.2. HKN algorithm for nondeterministic automata.

1 def HKN(A1, A2 ) :
2 MAKE({s0} ) ; MAKE({r0})
3 H = ∅
4 UNION({s0}, {r0}, {r0} ) ; PUSH(H, ({s0}, {r0}))
5 while (X,Y ) = POP(H) :
6 i f õdet(X) 
= õdet(Y ) : return False
7 for p ∈ P :
8 B1 = Γ (X, p)
9 B2 = Γ (Y, p)

10 i f
⋃

(b1, )∈B1

Vb1 =
⋃

(b2, )∈B2

Vb2 :

11 for X ′ ⊆ Δ(X, p) :
12 for Y ′ ⊆ Δ(Y, p) :
13 i f VX,p,X′ ∩ VY,p,Y ′ 
= ∅ :
14 X ′ = FIND(X ′ )
15 Y ′ = FIND(Y ′ )
16 i f X ′ 
= Y ′ :
17 UNION(X ′, Y ′, Y ′ )
18 PUSH(H, (X ′, Y ′))
19 else : return False
20 return True

6 Equivalence of KAT Expressions

Given two KAT expressions, e1 and e2, their equivalence can be tested by first
converting each expression to an equivalent NTA and then, either by determiniz-
ing both and applying the HK algorithm (Section 4), or by directly using the
resulting NTAs in algorithm HKN (Section 5). In particular, we could use the
equation construction given in [6] to obtain NTAs equivalent to the given KAT
expressions and then apply the HKN algorithm. The equation automaton for
KAT expressions is an adaptation of Mirkin’s construction [16] for regular ex-
pressions. Given e0 ≡ e ∈ Exp, a set of KAT expressions π(e) = {e1, . . . , en}
is defined inductively by π(p) = {1}, π(b) = ∅, π(e + f) = π(e) ∪ π(f),
π(e · f) = π(e)f ∪ π(f), and π(e�) = π(e)e�. This set satisfies the follow-
ing system of equations ei =

∑n
j=1 bij1p1ej + · · ·+

∑n
j=1 bijkpkej + out(ei) for

i = 0, . . . , n, pr ∈ P, k = |P|, some bijr ∈ BExp, and where function out is
defined below. The equation automaton is Aeq(e) = 〈{e} ∪ π(e), e, out, δeq〉 with
δeq = { (ei, (bijr , pr), ej) | if bijrprej is a component of the equation for ei }.

In this section, we will use this construction to define an algorithm for testing
equivalence of KAT expressions by a recursive computation of their derivatives
without explicitly building any automaton. However, the correctness of this pro-
cedure is justified by the correctness of the equation automaton. We first present
a slightly different formalization of this automaton construction, which is more
adequate for our purposes. The construction resembles the partial derivative au-
tomaton for regular expressions (that is known to be identical to the Mirkin
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automaton [8]). The resulting decision procedure for KAT equivalence is also
similar to the ones recently presented for regular expressions (see [1, 2]) and
can be seen as a syntactic (and more compact) version of the one presented by
Kozen [14].

For e ∈ Exp and a program symbol p ∈ P, the set ∂p(e) of partial derivatives
of e w.r.t. p is inductively defined as follows:

∂p : Exp −→ BExp× Exp

∂p(p
′) =

{
{(1, 1)} if p′ ≡ p
∅ otherwise

∂p(b) = ∅

∂p(e + e′) = ∂p(e) ∪ ∂p(e
′)

∂p(ee
′) = ∂p(e)e

′ ∪ out(e)∂p(e
′)

∂p(e
�) = ∂p(e)e

�,

where out : Exp −→ BExp is defined by
out(p) = 0
out(b) = b

out(e1 + e2) = out(e1) + out(e2)
out(e1 · e2) = out(e1) · out(e2)

out(e�) = 1,

and for R ⊆ BExp × Exp, e ∈ Exp, and b ∈ BExp, Re = { (b′, e′e) | (b′, e′) ∈ R }
and bR = { (bb′, e′) | (b′, e′) ∈ R }. We also define Δp(e) = { e′ | (b, e′) ∈ ∂p(e) }.
The functions ∂p, out, and Δp are naturally extended to sets X ⊆ Exp. Moreover
we define the KAT expression

∑
∂p(e) ≡

∑
(bi,ei)∈∂p(e)

bipei.

Example 4. The states of the equation automaton in Example 1 satisfy the fol-
lowing system of equations:

e0 = t1pe1
e1 = 1pe2 + t3qe1 + 1
e2 = t2pe2 + t2t3qe1 + 1qe2 + t2.

For instance, note that ∂p(e2) = {(t2, e2)}, ∂q(e2) = {(t2t3, e1), (1, e2)},
out(e2) = t2, and e2 =

∑
∂p(e2) +

∑
∂q(e2) + out(e2).

Given e ∈ Exp, we define the partial derivative automaton Apd(e) = 〈{e} ∪
π(e), e, δpd, out(e)〉 where δ = { (e1, (b, p), e2) | p ∈ P, (b, e2) ∈ ∂p(e1) }.

Lemma 2. For e ∈ Exp, Apd(e) and Aeq(e) are identical.

Proposition 3. GS(Apd(e)) = GS(e).

Now, it is easy to see that we can define a procedure, HKK, that directly
tests the equivalence of any given two KAT expressions. For that, it is enough
to modify HKN by taking ({e1}, {e2}) as the initial pair and, for X ⊆ Exp,
õdet(X) = out(X), Γ (X, p) = ∂p(X) and Δ(X, p) = Δp(X).

7 Conclusions

We considered an automata model for KAT expressions where each transition
is labeled by a program symbol and, instead of an atom, a boolean expression.
Each transition can, thus, be seen as labeled, in a compact way, by a set of
atoms, the ones that satisfy the appropriate boolean expression. Recently, sym-
bolic finite automata (SFA) where transitions are labeled with sets of alphabetic
symbols were introduced in order to deal with large alphabets [20]. Although the
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extension of classical finite automata algorithms to SFAs bears similarities with
the ones here presented, SFAs are interpreted over sets of finite words and not
over sets of guarded strings. Experiments with the algorithms presented in this
paper must be carried out in order to validate their practical applicability and
also to suggest goals for a theoretical study of their average-case complexity.
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Algorithmic Randomness for Infinite Time
Register Machines

Merlin Carl

Abstract. A concept of randomness for infinite time register machines
(ITRMs), resembling Martin-Löf-randomness, is defined and studied.
In particular, we show that for this notion of randomness, computability
from mutually random reals implies computability and that an analogue
of van Lambalgen’s theorem holds.

1 Introduction

Martin-Löf-randomness (ML-randomness, see e.g. [5]) provides an intuitive and
conceptually stable clarification of the informal notion of a random sequence
over a finite alphabet. Since its introduction, several strengthenings and vari-
ants of ML-randomness have been considered; a recent example is the work of
Hjorth and Nies on Π1

1 -randomness, which led to interesting connections with
descriptive set theory ([7]).

We are interested in obtaining a similar notion based on machine models
of transfinite computations. In this paper, we will exemplarily consider infinite
time register machines. Infinite Time Register Machines (ITRMs), introduced
in [8] and further studied in [9], work similar to the classical unlimited register
machines (URMs) described in [4]. In particular, they use finitely many registers
each of which can store a single natural number. The difference is that ITRMs
use transfinite ordinal running time: The state of an ITRM at a successor ordinal
is obtained as for URMs. At limit times, the program line is the inferior limit of
the earlier program lines and there is a similar limit rule for the register contents.
If the limit inferior of the earlier register contents is infinite, the register is reset
to 0.

The leading idea of ML-randomness is that a sequence of 0 and 1 is random
iff it has no special properties, where a special property should be a small (e.g.
measure 0) set of reals that is in some way accessible to a Turing machine.
Classical Turing machines, due to the finiteness of their running time, have the
handicap that the only decidable null set of reals is the empty set: If a real
x is accepted by a classical Turing machine M within n steps, then M will
also accept every y agreeing with x on the first n bits. In the definition of
ML-randomness, this difficulty is overcome by merely demanding the set X in
question to be effectively approximated by a recursively enumerable sequence of
sets of intervals with controlled convergence behaviour. For models of transfinite
computations, this trick is unnecessary: The decidable sets of reals form a rich

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 84–92, 2014.
c© Springer International Publishing Switzerland 2014



Algorithmic Randomness for Infinite Time Register Machines 85

class (including all ML-tests and, by [8], all Π1
1 -sets). This is still a plausible

notion of randomness, since elements of an ITRM -decidable meager set can
still be reasonably said to have a special property. In fact, some quite natural
properties like coding a well-ordering can be treated very conveniently with our
approach. Hence, we define:

Definition 1. X ⊆ P(ω) is called ITRM -decidable iff there is an ITRM -
program P such that P x ↓= 1 iff x ∈ X and P x ↓= 0, otherwise. In this case we
say that P decides X . P is called deciding iff there is some X such that P decides
X . We say that X is decided by P in the oracle y iff X = {x | P x⊕y ↓= 1} and
P(ω)−X = {x | P x⊕y ↓= 0}. The other notions relativize in the obvious way.

Definition 2. Recall that a set X ⊆ P(ω) is meager iff it is a countable union
of nowhere dense sets. X ⊆ P(ω) is an ITRM -test iff X is ITRM -decidable
and meager. x ⊆ ω is ITRM -c-random iff there is no ITRM -test X such that
x ∈ X .

Remark: This obviously deviates from the definition of ML-randomness in that
we use meager sets rather than null sets as our underlying notion of ‘small’. The
reason is simply that this variant turned out to be much more convenient to
handle for technical reasons. The use of category rather than measure gives this
definition a closer resemblance to what is, in the classical setting, refered to as
genericity (see e.g. section 2.24 of [5]). We still decided to use the term ‘ITRM -
c-randomness’ to avoid confusion with the frequently used concept of Cohen
genericity, hence reserving the term ‘ITRM -random’ for reals that do not lie in
any ITRM -decidable null set. We are pursuing the notion of ITRM -randomness
in ongoing work. In contrast to strong Π1

1 -randomness ([7], [15]), it can be shown
that there is no universal ITRM -test.

We will now summarize some key notions and results on ITRMs that will be
used in the paper.

Definition 3. For P a program, x, y ∈ P(ω), P x ↓= y means that the program
P , when run with oracle x, halts on every input i ∈ ω and outputs 1 iff i ∈ y
and 0, otherwise. x ⊆ ω is ITRM -computable in the oracle y ⊆ ω iff there is
an ITRM -program P such that P y ↓= x, in which case we occasionally write
x ≤ITRM y. If y can be taken to be ∅, x is ITRM -computable. We denote the
set of ITRM -computable reals by COMP .

Remark: We occasionally drop the ITRM -prefix as notions like ‘computable’
always refer to ITRMs in this paper.

Theorem 4. Let x, y ⊆ ω. Then x is ITRM -computable in the oracle y iff
x ∈ LωCK,y

ω
[y], where ωCK,y

i denotes the ith x-admissible ordinal.

Proof. This is a straightforward relativization of Theorem 5 of [13], due to P.
Koepke.
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Theorem 5. Let Pn denote the set of ITRM -programs using at most n registers,
and let (Pi,n|i ∈ ω) enumerate Pn in some natural way. Then the bounded halting
problem Hx

n := {i ∈ ω|P x
i,n ↓} is computable uniformly in the oracle x by an

ITRM -program (using more than n registers).
Furthermore, if P ∈ Pn and P x ↓, then P x halts in less than ωCK,x

n+1 many
steps. Consequently, if P is a halting ITRM -program, then P x stops in less than
ωCK,x
ω many steps.

Proof. The corresponding results from [8] (Theorem 4) and [13] (Theorem 9)
easily relativize.

We will freely use the following standard proposition:

Proposition 6. Let X ⊆ [0, 1]× [0, 1] and X̃ := {x⊕ y | (x, y) ∈ X}. Then X
is meager/comeager/non-meager iff X̃ is meager/comeager/non-meager.

Most of our notation is standard. By a real, we mean an element of ω2. Lα[x]
denotes the αth level of Gödel’s constructible hierarchy relativized to x. For
a, b ⊆ ω, a ⊕ b denotes {p(i, j) | i ∈ a ∧ j ∈ b}, where p : ω × ω → ω is Cantor’s
pairing function.

2 Computability from Random Oracles

In this section, we consider the question which reals can be computed by an
ITRM with an ITRM -c-random oracle. We start by recalling the following
theorem from [3]. The intuition behind it is that, given a certain non-ITRM -
computable real x, one has no chance of computing x from some randomly chosen
real y.

Theorem 7. Let x be a real, Y be a set of reals such that x is ITRM -computable
from every y ∈ Y .

Then, if Y has positive Lebesgue measure or is Borel and non-meager, x is
ITRM -computable.

Corollary 8. Let x be ITRM -c-random. Then, for all i ∈ ω, ωCK,x
i = ωCK

i .

Proof. Lemma 46 of [3] shows that ωCK,x
i = ωCK

i for all i ∈ ω whenever x is
Cohen-generic over LωCK

ω
(see e.g. [3] or [14]) and that the set of Cohen-generics

over LωCK
ω

is comeager. Hence {x|ωCK,x
i > ωCK

i } is meager. For each program
P , the set of reals x such that P x computes a code for the ith x-admissible which
is greater than ωCK

i is decidable using the techniques developed in [1] and [2].
(The idea is to uniformly in the oracle x compute a real c coding LωCK,x

i+1
[x] in

which the natural numbers m and n coding ωCK
i and ωCK,x

i can be identified
in the oracle x, then check - using a halting problem solver for P , see Theorem
5 - whether P x computes a well-ordering of the same order type as the element
of LωCK,x

i+1
[x] coded by n and finally whether the element coded by m is an

element of that coded by n.) Hence, if x is ITRM -c-random, then there can be
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no ITRM -program P computing such a code in the oracle x. But a code for
ωCK,x
i is ITRM -computable in the oracle x for every real x and every i ∈ ω.

Hence, we must have ωCK,x
i = ωCK

i for every i ∈ ω, as desired.

Lemma 9. Let a ⊆ ω and suppose that z is Cohen-generic over LωCK,a
ω +1[a].

Then a ≤ITRM z iff a is ITRM -computable. Consequently (as the set Ca :=
{z ⊆ ω | z is Cohen-generic over LωCK,a

ω +1[a]} is comeager), Sa := {z ⊆ ω |
a ≤ITRM z} is meager whenever a is not ITRM -computable.

Proof. Assume that z is Cohen-generic over LωCK,a
ω +1[a] and a ≤ITRM z. By

the forcing theorem for provident sets (see e.g. Lemma 32 of [3]), there is an
ITRM -program P and a forcing condition p such that p � P Ġ ↓=ǎ, where
Ġ is the canonical name for the generic filter and ǎ is the canonical name of
a. Now, let y and z be mutually Cohen-generic over LωCK,a

ω +1[a] both extend-
ing p. Again by the forcing theorem and by absoluteness of computations, we
must have P x ↓= a = P y ↓, so a ∈ LωCK,x

ω
[x] ∩ LωCK,y

ω
[y]. By Corollary 8,

ωCK,x
ω = ωCK,y

ω = ωCK
ω . By Lemma 28 of [3], we have Lα[x]∩Lα[y] = Lα when-

ever x and y are mutually Cohen-generic over Lα and α is provident (see [14]).
Consequently, we have
a ∈ LωCK,x

ω
[x] ∩ LωCK,y

ω
[y] = LωCK

ω
[x] ∩ LωCK

ω
[y] = LωCK

ω
, so a is ITRM -

computable.
The comeagerness of Ca is standard (see e.g. Lemma 29 of [3]). To see that

Sa is meager for non-ITRM -computable a, observe that the Cohen-generic reals
over LωCK,a

ω +1[a] form a comeager set of reals to non of which a is reducible.

Definition 10. Let x, y ⊆ ω. Then x is ITRM -c-random relative to y iff there
is no meager set X such that x ∈ X and X is ITRM -decidable in the oracle y.
If x is ITRM -c-random relative to y and y is ITRM -c-random relative to x, we
say that x and y are mutually ITRM -c-random.

Intuitively, we should expect that mutually random reals have no non-trivial
information in common. This is expressed by the following theorem:

Theorem 11. If z is ITRM -computable from two mutually ITRM -c-random
reals x and y, then z is ITRM -computable.

Proof. Assume otherwise, and suppose that z, x and y constitute a counterex-
ample. By assumption, z is computable from x. Also, by Theorem 5, let P be a
program such that P a(i) ↓ for every a ⊆ ω, i ∈ ω and such that P computes z in
the oracle y. In the oracle z, the set Az := {a|∀i ∈ ωP a(i) ↓= z(i)} is decidable
by simply computing P a(i) for all i ∈ ω and comparing the result to the ith bit
of z. Clearly, we have Az ⊆ {a | z ≤ITRM a}. Hence, by our Lemma 9 above, Az

is meager as z is not ITRM -computable by assumption. Since Az is decidable
in the oracle z and z is computable from x, Az is also decidable in the oracle x.
Now, x and y are mutually ITRM -c-random, so that y /∈ Az . But P computes
z in the oracle y, so y ∈ Az by definition, a contradiction.
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While, naturally, there are non-computable reals that are reducible to a c-
random real x (such as x itself), intuitively, it should not be possible to compute
a non-arbitrary real from a random real. We approximate this intuition by tak-
ing ‘non-arbitrary’ to mean ‘ITRM -recognizable’ (see [9], [1] or [2] for more
information on ITRM -recognizability). It turns out that, in accordance with
this intuition, recognizables that are ITRM -computable from ITRM -c-random
reals are already ITRM -computable.

Definition 12. x ⊆ ω is ITRM -recognizable iff{x} is ITRM -decidable.RECOG
denotes the set of recognizable reals.

Theorem 13. Let x ∈ RECOG and let y be ITRM -c-random such that
x ≤ITRM y. Then x is ITRM -computable.

Proof. Let x ∈ RECOG − COMP be computable from y, say by program P
and let Q be a program that recognizes x. The set S := {z | P z ↓= x} is
meager as in the proof of Theorem 11. But S is decidable: Given a real z, use a
halting-problem solver for P (which exists uniformly in the oracle by Theorem
5) to test whether P z(i) ↓ for all i ∈ ω; if not, then z /∈ S. Otherwise, use Q
to check whether the real computed by P z is equal to x. If not, then z /∈ S,
otherwise z ∈ S. As P y computes x, it follows that y ∈ S, so that y is an
element of an ITRM -decidable meager set. Hence y is not ITRM -c-random, a
contradiction.

Remark: Let (Pi|i ∈ ω) be a natural enumeration of the ITRM -programs.
Together with the fact that the halting number h = {i ∈ ω | Pi ↓} for ITRMs
is recognizable (see [2]), this implies in particular that the halting problem for
ITRMs is not ITRM -reducible to an ITRM -c-random real. In particular, the
Kucera-Gacs theorem (see e.g. Theorem 8.3.2 of [5]) does not hold in our setting.

3 An Analogue to van Lambalgen’s Theorem

A crucial result of classical algorithmic randomness is van Lambalgen’s theorem,
which states that for reals a and b, a⊕b is ML-random iff a is ML-random and b
is ML-random relative to a. In this section, we demonstrate an analogous result
for ITRM -c-randomness.

Lemma 14. Let Q be a deciding ITRM -program using n registers and a ⊆ ω.
Then {y|Qy⊕a ↓= 1} is meager iff Qx⊕a ↓= 0 for all x ∈ LωCK,a

n+1 +3[a] that are
Cohen-generic over LωCK,a

n+1 +1[a].

Proof. By absoluteness of computations and the bound on ITRM -halting times
(see Theorem 5), Qx⊕a ↓= 0 implies that Qx⊕a ↓= 0 also holds in LωCK,a

n+1
[a]. As

this is expressable by a Σ1-formula, it must be forced by some condition p by
the forcing theorem over KP (see e.g. Theorem 10.10 of [14]).

Hence every y extending p will satisfy Qy⊕a ↓= 0. The set C of reals Cohen-
generic over LωCK,a

n+1 +1[a] is comeager. Hence, if Qx⊕a ↓= 0 for some x ∈ C, then
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Qx⊕a ↓= 0 for a non-meager (in fact comeager in some interval) set C′. Now,
for each condition p, LωCK,a

n+1 +3[a] will contain a generic filter over LωCK,a
n+1 +1[a]

extending p (as LωCK,a
n+1 +1[a] is countable in LωCK,a

n+1 +3[a]). Hence, if Qx⊕a ↓= 0 for
all x ∈ C∩LωCK,a

n+1 +3[a], then this holds for all elements of C and the complement
{y|Qy⊕a ↓= 1} is therefore meager.

If, on the other hand, Qx⊕a ↓= 1 for some such x, then this already holds for
all x in some non-meager (in fact comeager in some interval) set C′ by the same
reasoning.

Corollary 15. For a deciding ITRM -program Q using n registers, there exists
an ITRM -program P such that, for all x, y ∈ P(ω), P x ↓= 1 iff {y|Qx⊕y ↓= 1}
is non-meager.

Proof. From x, compute, using sufficiently many extra registers, a real code for
LωCK,x

n+1 +4 in the oracle x. This can be done uniformly in x. Then, using the
techniques developed in section 6 of [8], identify and check all generics in that
structure, according to the last lemma.

Corollary 16. x is ITRM -c-random iff x is Cohen-generic over LωCK
ω

.

Proof. Let S denote the set of Cohen-generic reals over LωCK
ω

. Then x ∈ S iff
x ∩D �= ∅ for every dense subset D ∈ LωCK

ω
of Cohen-forcing. Clearly, for every

such D, GD := {y | y ∩ D �= ∅} is comeager and ITRM -decidable, so every
ITRM -c-random real must be in every GD and hence in S.

On the other hand, if x ∈ S and P x ↓= 1 for some deciding ITRM -program
P , then there is some finite p ⊆ x such that P y ↓= 1 for every p ⊂ y ∈ S, so the
set decided by P is not meager as in the proof of Lemma 15. Hence x is not an
element of any ITRM -decidable meager set, so x is ITRM -c-random.

Our proof of the ITRM -analogue for van Lambalgen’s theorem now follows
a general strategy inspired by that used in [5], Theorem 6.9.1 and 6.9.2:

Theorem 17. Assume that a and b are reals such that a ⊕ b is not ITRM -c-
random. Then a is not ITRM -c-random or b is not ITRM -c-random relative to
a.

Proof. As a ⊕ b is not ITRM -c-random, let X be an ITRM -decidable meager
set of reals such that a ⊕ b ∈ X . Suppose that P is a program deciding X .

Let Y := {x|{y | x ⊕ y ∈ X} non-meager}. By Corollary 15, Y is ITRM -
decidable.

We claim that Y is meager. First, Y is provably Δ1
1 and hence has the Baire

property (see e.g. Exercise 14.5 of [10]). Hence, by the Kuratowski-Ulam-theorem
(see e.g. [11], Theorem 8.41), Y is meager. Consequently, if a ∈ Y , then a is not
ITRM -c-random.

Now suppose that a /∈ Y . This means that {y | a ⊕ y ∈ X} is meager. But
S := {y | a ⊕ y ∈ X} is easily seen to be ITRM -decidable in the oracle a and
b ∈ S. Hence b is not ITRM -c-random relative to a.
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Theorem 18. Assume that a and b are reals such that a⊕b is ITRM -c-random.
Then a is ITRM -c-random and b is ITRM -c-random relative to a.

Proof. Assume first that a is not ITRM -c-random, and let X be an ITRM -
decidable meager set with a ∈ X . Then X ⊕ [0, 1] is also meager and X ⊕ [0, 1]
is ITRM -decidable. As a ∈ X , we have a ⊕ b ∈ X ⊕ [0, 1], so a ⊕ b is not
ITRM -c-random, a contradiction.

Now suppose that b is not ITRM -c-random relative to a, and let X be a
meager set of reals such that b ∈ X and X is ITRM -decidable in the oracle
a. Let Q be an ITRM -program such that Qa decides X . Our goal is to define
a deciding program Q̃ such that Q̃a still decides X , but also {x|Q̃x ↓= 1} is
meager. This suffices, as then Q̃a⊕b ↓= 1 and {x|Q̃x ↓= 1} is ITRM -decidable.
Q̃ operates as follows: Given x = y ⊕ z, check whether {w | Qy⊕w} is meager,
using Corollary 15. If that is the case, carry out the computation of Qx and
return the result. Otherwise, return 0. This guarantees (since X is meager) that
{y | Q̃x⊕y ↓= 1} is meager and furthermore that Q̃a⊕x ↓= 1 iff Qa⊕x ↓= 1 iff
x ∈ X for all reals x, so that {x|Q̃a⊕x ↓= 1} is just X , as desired.

Combining Theorem 17 and 18 gives us the desired conclusion:

Theorem 19. Given reals x and y, x ⊕ y is ITRM -c-random iff x is ITRM -
c-random and y is ITRM -c-random relative to x. In particular, if x and y are
ITRM -c-random, then x is ITRM -c-random relative to y iff y is ITRM -c-
random relative to x.

We note that a classical Corollary to van Lambalgen’s theorem continues to
hold in our setting:

Corollary 20. Let x, y be ITRM -c-random. Then x is ITRM -c-random rela-
tive to y iff y is ITRM -c-random relative to x.

Proof. Assume that y is ITRM -c-random relative to x. By assumption, x is
ITRM -c-random. By Theorem 19, x⊕ y is ITRM -c-random. Trivially, y ⊕ x is
also ITRM -c-random. Again by Theorem 19, x is ITRM -c-random relative to
y. By symmetry, the corollary holds.

4 Some Consequences for the Structure of
ITRM -Degrees

In the new setting, we can also draw some standard consequences of van Lam-
balgen’s theorem.

Definition 21. If x ≤ITRM y but not y ≤ITRM x, we write x <ITRM y. If
x ≤ITRM and y ≤ITRM x, then we write x ≡ITRM y. If neither x ≤ITRM y nor
y ≤ITRM x, we call x and y incomparable and write x|ITRMy.

Clearly, ≡ITRM is an equivalence relation. We may hence form, for each real
x, the ≡ITRM -equivalence class [x]ITRM of x, called the ITRM -degree of x. It
is easy to see that ≤ITRM respects ≡ITRM , so that [x]ITRM ≤ITRM [y]ITRM

etc. are well-defined and have the obvious meaning.
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Corollary 22. If a is ITRM -c-random, a = a0 ⊕ a1, then a0|ITRMa1.

Proof. By Theorem 19, a0 and a1 are mutually ITRM -c-random. If a0 was
ITRM -computable from a1, then {a0} would be decidable in the oracle a1,
meager and contain a0, so a0 would not be ITRM -c-random relative to a1, a
contradiction. By symmetry, the claim follows.

Lemma 23. Let h be a real coding the halting problem for ITRMs as in the
remark following Theorem 13. Then there is an ITRM -c-random real x ≤ITRM

h.

Proof. Given h, we can compute a code for LωCK
ω +2, which contains a real x

which is Cohen-generic over LωCK
ω +1. Hence, x itself is ITRM -computable from

h. Assume that x is not ITRM -c-random, so there exists a decidable meager set
X ( x. Let P be a program deciding X . Then P x ↓= 1. By the forcing theorem
for Cohen-forcing, this must be forced by some condition p ⊆ x. The set Y of
y ⊇ p which are Cohen-generic over LωCK

ω +1 is non-meager (see above) and p ⊆ y
implies p � P y ↓= 1. As P decides X , we must have Y ⊆ X , a contradiction to
the assumption that X is meager.

As a corollary, we obtain an analogue to the Kleene-Post-theorem on Turing
degrees between 0 and 0′ (see e.g. Theorem VI.1.2 of [16]) for ITRMs.

Corollary 24. Withh as in Lemma23, there arex0, x1 such that [0]ITRM <ITRM

[x0]ITRM , [x1]ITRM ≤ h and x0|ITRMx1. In particular, there is a real x0 such that
[0]ITRM <ITRM [x0]ITRM <ITRM h.

Proof. Pick x as in Lemma 23, let x = x0 ⊕ x1, and use Corollary 22.

5 Conclusion and Further Work

The most pressing issue is certainly to strengthen the parallelism between ITRM -
randomness and ML-randomness by studying the corresponding notion for sets
of Lebesgue measure 0 rather than meager sets.

Still, ITRM -c-randomness shows an interesting behaviour, partly analogous
to ML-randomness, though by quite different arguments. Similar approaches
are likely to work for other machine models of generalized computations, in
particular ITTMs ([6]) (which were shown in [3] to obey the analogue of the
non-meager part of Theorem 7) and ordinal Turing Machines ([12]) (for which
the analogues of both parts of Theorem 7 turned out to be independent from
ZFC) which we study in ongoing work. This further points towards a more
general background theory of computation that allow unified arguments for all
these various models as well as classical computability. Furthermore, we want to
see whether the remarkable conceptual stability of ML-randomness (for example
the equivalence with Chaitin randomness or unpredictabiliy in the sense of r.e.
Martingales, see e.g. sections 6.1 and 6.3 of [5]) carries over to the new context.



92 M. Carl

Acknowledgements. I am indebted to Philipp Schlicht for several helpful dis-
cussions of the results and proofs and suggesting various crucial references. I also
thank the referees for suggesting several simplifications and clarifications.

References

[1] Carl, M.: The distribution of ITRM-recognizable reals. To appear in: Annals of
Pure and Applied Logic. In: Special Issue from CiE (2012)

[2] Carl, M.: Optimal Results on ITRM-recognizability. arXiv:1306.5128v1 (preprint)
[3] Carl, M., Schlicht, P.: Infinite Computations with Random Oracles.

arXiv:1307.0160v3 (submitted)
[4] Cutland, N.: Computability - An introduction to recursive function theory. Cam-

bridge University Press (1980)
[5] Downey, R.G., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory

and Applications of Computability. Springer LLC (2010)
[6] Hamkins, J., Lewis, A.: Infinite Time Turing Machines. Journal of Symbolic

Logic 65(2), 567–604 (2000)
[7] Hjorth, G., Nies, A.: Randomness in effective descriptive set theory. Journal of

the London Mathematical Society (to appear)
[8] Koepke, P., Miller, R.: An enhanced theory of infinite time register machines
[9] Carl, M., Fischbach, T., Koepke, P., Miller, R., Nasfi, M., Weckbecker, G.: The

basic theory of infinite time register machines
[10] Kanamori, A.: The higher infinite. Springer (2005)
[11] Kechris, A.: Measure and category in effective descriptive set theory. Annals of

Mathematical Logic 5(4), 337–384 (1973)
[12] Koepke, P.: Turing computations on ordinals. Bulletin of Symbolic Logic 11, 377–

397 (2005)
[13] Koepke, P.: Ordinal Computability. In: Ambos-Spies, K., Löwe, B., Merkle, W.

(eds.) CiE 2009. LNCS, vol. 5635, pp. 280–289. Springer, Heidelberg (2009)
[14] Mathias, A.R.D.: Provident sets and rudimentary set forcing (preprint),

https://www.dpmms.cam.ac.uk/~ardm/fifofields3.pdf
[15] Sacks, G.: Higher recursion theory. Springer (1990)
[16] Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer (1987)

https://www.dpmms.cam.ac.uk/~ardm/fifofields3.pdf


Constraint Logic Programming

for Resolution of Relative Time Expressions

Henning Christiansen

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, Denmark
henning@ruc.dk

Abstract. Translating time expression into absolute time points or du-
rations is a challenge for natural languages processing such as text min-
ing and text understanding in general. We present a constraint logic
language CLP(Time) tailored to text usages concerned with time and
calendar. It provides a simple and flexible formalism to express relation-
ships between different time expressions in a text, thereby giving a recipe
for resolving them into absolute time. A constraint solver is developed
which, as opposed to some earlier approaches, is independent of the order
in which temporal information is introduced, and it can give meaningful
output also when no exact reference time is available.

1 Introduction

Humans often prefer relative time expressions in text instead of explicitly time
stamping every event. Wordings like “two days later” are preferred when the
reference date is known, and it often gives good sense to the human reader even
without a reference date. For automated document analysis, correct identifica-
tion of the actual time or date may be important for text understanding and
data mining, where the goal may be to provide a time stamped list of events.

A document may also contain expressions that are relative to an implicit
time of writing. Here it may be interesting also to identify the time of writing.
References to known events may give a clue as in “Two years ago, when the last
Venus transit for the next 100 years took place, ...”, where a knowledge base of
astronomical events can help concluding that the text was written in 2014.

There are several problems involved in annotating a text with correct time
stamps. First of all, the time expressions, both relative and absolute, must be
identified; this a task for taggers and parsers for natural language. Secondly, the
relationship between the different time expressions must be determined (“two
years later than what?”), and thirdly, a bit of reasoning is needed to calculate
the correct time stamps from these relationships.

For the third task, constraint programming presents several advantages com-
pared to ad-hoc techniques. Constraints have been suggested for this earlier,
but has not gained popularity in any major text processing systems. We demon-
strate here how constraint logic programming (CLP) may give rise to an effective

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 93–102, 2014.
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mechanism for the third step, and also provide a flexible language in which to
express relationships between time expressions, thus also overlapping sub-task
two. CLP introduces a well-defined semantics, meaning that the calculated times
are correct solutions to the network of relationships set up by steps one and two.
It implies a robust and incremental evaluation scheme that is independent of the
order in which time expressions occur in the text: it can still manage if the only
absolute time is given at the very end of a text, or even if no absolute anchor
point in time is available. It also integrates in a natural way with knowledge
bases of known events which may help to situate a document in time.

We present a constraint logic languageCLP(Time) equipped with a constraint
solver tailored to the pragmatics of standard usages related to the Gregorian cal-
endar. It is implemented in the programming language of Constraint Handling
Rules [1], which provides a modular, rules-based and easily extendible architec-
ture. While time and duration in principle can be represented by integer and
interval arithmetic, we develop specific datatypes relating to calendric notions,
so we may, e.g., add two months to a given month without knowing the duration
of those months or the year. It is language independent, but may be extended
with new sorts of constraints that reflect special usages. CLP (Time) is currently
being developed to support arbitrary intervals, such as “in the late nineties” or
“between May and August”, which is not described here.

Related work and state of the art are reviewed in section 2 as a background
for the present approach. The facilities of the constraint language are introduced
in section 3, and it is briefly shown how it can be tested together with Prolog’s
Definite Clause Grammars and with pre-tagged text. Section 4 demonstrates how
it applies for different sorts of text. The implementation of a constraint solver
with Constraint Handling Rules is sketched in section 5. Some conclusions and
ideas for future work are given in the final section.

2 Related Work

To resolve time expressions in a text, one needs to 1) identify those expressions,
2) assign a formula to each such expression that sets the relationship to the
context of other time expressions in the text, and 3) to evaluate these formulas.1

The HeidelTime system [2,3], which is considered state of the art, is based on
a tagger which, via a specific rule format, can be adapted to different languages
and specific usages. Such rules are manually crafted, and they combine matching
of textual patterns with the building of a limited sort of arithmetic expressions;
this may involve relative distance to an assumed anchor time not specified ex-
plicitly in the rule. Evaluation has two different modes. In “narratives’ mode”,
all expressions are evaluated sequentially from the start of the document and

1 In the literature, e.g., [3], the term “normalization” has been used for the third phase.
Constraints provide more flexibility in phase 2 for specifying relationships. Phase 3
is a matter of a correct implementation of a constraint solver. Thus constraints tend
to make “normalization” a combination of phases 2 and 3.
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in “news’ mode” every expression is evaluated relative to a fixed document cre-
ation time. Evaluation is problematic for narratives until a first absolute time
is met, and for news articles when document creation time is missing, but good
recall and precision figures are reported for selected classes of documents [3].
Handling of inconsistency (over-specification) is not described. Machine learning
have been used for identifying the time of writing for news articles from mentions
of historical facts, e.g., [4,5,6]; see also [7] for an overview and more references.

HeidelTime and other works referenced above do not use constraint technol-
ogy for specification and evaluation of interdependencies, which could lead to
simpler and more transparent formulations; in fact constraint techniques are
not mentioned at all. Constraints, and especially constraint logic programming,
provide a uniform framework for expressing different dependencies and (under-)
specifications, which otherwise may give rise to a complex nomenclature (as
demonstrated by, e.g., [8,9]). Standard machine learning techniques have been
used to train recognizers of time expressions, but it helps only little for learning
how to evaluate them; we shall refrain from giving a literature overview of these
directions as the goals are different from ours.

Logically based formalisms for reasoning about time exist such as temporal
logics, the event calculus [10] or Allen’s theory [11], but they do not relate to
calendar conventions and everyday usages concerned with time and date. Con-
straint solvers related to time, dates and calendric data have been seen suggested,
e.g., [12,13]; these approaches involve very complex solving algorithms and do
not approach the problem of finding partial solutions in case of inconsistency.

No work has been found on constraint logic programming related to temporal
information in language usage. The work of [14] uses Constraint Handling Rules
(CHR) for relative time expressions in text already tagged with the methods
of [2,3] in order to correct for mistakes and unresolved expressions. This approach
used CHR as a programming language for flexible search back and forth in the
text in order to find reference points, but did not develop a proper constraint
solver as suggested in the present paper.

CHR has been used for semantic-pragmatic language analysis in combination
with parsers written in Prolog’s Definite Clause Grammar notation [15,16,17] or
using CHR for parsing [18,19]. CHR based techniques have been used for extract-
ing UML diagram from use case text [20,21]; this work includes an (although sim-
plistic) approach to pronoun resolution that has similarities to relative or indi-
rect time indications. Other applications of CHR for language processing include
parsing from Property Grammars [22], analyzing biological sequences [23,24] and
Chinese Word Segmentation [25].

3 A Constraint Language for Time Expressions

A constraint language called CLP(Time) is defined upon Prolog using its ex-
tension of Constraint Handling Rules [1]. We take over the basic nomenclature
of Prolog such as its terms, variables and operators, which may greatly en-
hance readability. In its present form, CLP(Time) can be tested immediately in
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language analyzers written with Prolog’s Definite Clause Grammars and with
pre-tagged text imported from other systems. An implementation under devel-
opment is available at http://www.ruc.dk/~henning/clptime.

3.1 Datatypes and Basic Constraints of CLP(Time)

In the present version, the finest granule of time corresponds to dates, and dis-
tinguished types of terms are used to represent different units of time.

〈date〉 ::= date(〈month〉, n) 〈decade〉 ::= decade(〈century〉, n)
〈month〉 ::= month(〈year〉, n) 〈century〉 ::= century(n)
〈year〉 ::= year(〈decade〉, n)

The occurrences of “n” represent integer numbers of relevant size. For example,
the term date(month(year(decade(century(20),1),4),1),1) represents the
date of New Years day 2014.2 Terms or subterms may be replaced by variables,
so that decade(C,9) may represent “the nineties” in a yet unknown century.
Such terms should only be instantiated as to represent legal times according to
the Gregorian calendar since 1582. Type constraints are available, e.g., month(M)
states that variable M can only be bound to terms of type month (type constraints
for variables can be left out when the type is clear from context).

Expressions of the different types can be formed by adding or subtracting
units of a number of granules of similar size. Examples:

date(month(year(decade(century(20),1),4),1),1) + 3 days

month(Y,1) + 12 months

The first one refers to the 4th of January 2014 and the second one to the month of
January in the year following whatever year Y may end up representing. Equality
terms of the same type can expressed using constraints *=* and order of time
by *<* and *=<*. Examples:

Y1 *=* Y0 + 1 years

month(Y,3) *=<* M, M *<* month(Y1,5), Y1 *=* Y + 1 years

month(Y,3) *=<* M, M *<* month((Y + 1 years),5)

The first one means that Y1 and Y0 are years with Y1 being one greater than
T0. Two next ones state in different ways that M is a month between March
in the year given by Y and April the following year; the comma understood
as conjunction. Restrictions on possible values for numerical variables can be
specified by interval notation as follows; notice that this compound expression
denotes a single year with some uncertainty and not an interval of several years.

Y *=* year(decade(century(20),1),4) + N years, N in [3;6]

2 This notation makes it easy to write different conditions involving time, but may
seem clumsy for writing specific dates. Utilities are supplied for this so that the date
shown can be created and assigned to variable D by mk date(2014-01-01,D).

http://www.ruc.dk/~henning/clptime
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Additional constraints are available for stating the day of the week, a leap year,
etc.. For example,

D1 *=* D0 + N days, N in [1;7], dayOfWeek(D1,2)

means that date D1 stands for “next Tuesday” relative to D0.
A constraint failed(· · ·) is used for handling inconsistencies caused by prob-

lems in the text; it should not be used in specifications of dependencies, but used
solely by the constraint solver; described in the end of section 5.

3.2 Using CLP(Time) with Definite Clause Grammars and Prolog

CLP(Time) can be used directly from Prolog programs, in particular its gram-
mar notation as demonstrated in the following fragment.

event(E,D) --> event(E), [happened, on], date(D).

date(D) --> [the], ordinal(O), [of], month(Mn), year(Yn),

{mk_year(Yn,Y), D *=* date(month(Y,Mn),O}.

year(_) --> [].

year(N) --> [N], {integer(N)}.

event(venus_transit) --> [the, transit, of, ’Venus’].

Parsing the fragment such as “The transit of Venus happened on the sixth of
June”, produces a syntax tree node event(e,d), where e describes the event
and d a date whose value is to be determined by the constraint solver. Calling a
constraint within the curly bracket part of a grammar rule means to cast it off
into the constraint store, so that the constraint solver can evaluate it.

Pre-tagged text may be converted into a Prolog list and processed by gram-
mars as above, adapted to take the different tags into account. CHR can also be
used for traversing a text represented as token constraints indexed by position
numbers as done by [14] or using CHR Grammars [19].

4 Semantics and Evaluation of Time Expressions

Here we demonstrate how CLP (Time) can model time dependencies in different
sorts of texts. Since this paper is not about syntax analysis, we show text frag-
ments (first column below) together with constraints (second column) modelling
their content with respect to time and indicate the solutions (third column) pro-
duced incrementally by the solver. The function symbols that define the data
types for the different time units are abbreviated to save space.

4.1 Narrative with Initial Time Indication

The following shows a text where every time expression can be evaluated im-
mediately from the value of the previous one, similarly to the narrative mode of
HeidelTime [2,3].

It all began in 1864 . . . Y0 *=* y(de(c(18),6),4) Y0 = y(de(c(18),6),4)

. . . three years later . . . Y1 *=* Y0 + 3 years Y1 = y(de(c(18),6),7)

. . . the 17th of May that year . . . D2 *=* d(m(Y1,5),17) D2 =
d(m(y(de(c(18),6),7),5),17)
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4.2 Narrative without Anchor Time or with Anchor Time at the
End

Also without a given anchor time, CLP (Time) and its constraint solver still
give meaningful output as it propagates also partly know information as far as
possible.

. . . some year . . . Y0 Y0 (uninstantiated)

. . . three years later . . . Y1 *=* Y0 + 3 years Y1 *=* Y0 + 3 years

. . . the 17th of May that year . . . D2 *=* d(m(Y1,5),17) D2 = d(m(Y1,5),17)

. . . the 18th of June Y3 *=* Y1 + 1 years Y3 *=* Y0 + 4 years
the following year . . . D3 *=* d(m(Y3,6),18) D3 = d(m(Y3,6),18)

. . . which was 1867 . . . Y3 *=* y(de(c(18),6),8) Y3 = y(de(c(18),6),8)
Y1 = y(de(c(18),6),7)
Y0 = y(de(c(18),6),4)
D3 =

d(m(y(de(c(18),6),8),6),18)
D2 =

d(m(y(de(c(18),6),7),5),17)

If the story had ended immediately before the last phrase, the collected result
can still be taken as meaningful output. When a time point that serves as anchor
is introduced at the end, everything resolves into definite times.

The following examples show that the solver adds offsets to dates whenever
it is safe, and propagates other safe information, but needs to delay in case an
end of a month, whose number of days is uncertain, is exceeded.

— D1 *=* D1 =
d(m(y(De,7),2),20) + 10 days d(m(y(De,7),3),2)

— D2 *=* D2 *=*
d(m(y(c(19,De),Y),2),20) d(m(y(c(19,De),Y),2),20)

+ 10 days + 10 days
D2 =
d(m(y(c(19,De),Y),3), )

In the first example, we add 10 days to Feb. 20 in a year ending with -7 so we
know that the month has 28 days, and the addition and shift of month is safe.
In the second we do the same but concerned with a February month in some
unknown year in the 20th century. The addition cannot be made, but the year
and new month being 3=March can be propagated into D2 which may trigger
yet other evaluations to be made.

4.3 News Style Article with Mixed Anchor Points

Here we illustrate a news style text which also has narrative style relationships.

(day of newspaper DayOfPrint *=* DayOfPrint =
is 2014-06-23) d(m(y(de(c(20),1),4),6),23) d(m(y(de(c(20),1),4),6),23)

. . . 2 years ago . . . DayOfPrint *=* d(YearOfPrint,_) YearOfPrint = y(de(c(20),1),4)
Y0 *=* YearOfPrint - 2 years Y0 = y(de(c(20),1),2)

. . . the Venus transit took D1 *=* D1 =
place June 6 . . . d(m(Y0,6),6) d(m(y(de(c(20),1),2),6),6)

. . . and a week later . . . D2 *=* D1 + 7 days D2 =
d(m(y(de(c(20),1),2),6),13)

This example may be varied, assuming that the issue date for the newspaper
is not known, but there is a knowledge base about astronomical events and the
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dates when they occurred in terms of a predicate event(event,date). Then we
might have as result in the second line that Y0 is still unknown, and then in
the third line a call event(venus transit,d(m(Y0,6),6)) would instantiate
Y0=y(de(c(20),1),2) and following that YearOfPrint=y(de(c(20),1),4).

5 A Constraint Solver for CLP(Time)

As mentioned, the constraint solver is implemented in Constraint Handling
Rules [1] (CHR). For reasons of space, we can only give a very brief sketch of
the principles. CHR can be understood as rewriting rules over constraint stores;
it has different sorts of rules, but in the fragment shown below we use only sim-
plification rules. A rule of form constraints-before <=> guard | constraints-after
can apply if a collection of constraints matching the pattern constraints-before is
found in the store and the test in guard succeeds; in that case constraints-before
are replaced by constraints-after. The after part may also refer to auxiliary code
written in Prolog. We show here some of the rules for processing constraints of
the form “· · · *=* date + n days” (they are preceded by rules that brings all
applications of plus into this form). The version shown here is slightly simplified
as it ignores constraints of the form “in numeric-interval”.

T *=* date(M,Dn) + N days <=>

ground(Dn), ground(N), DnN is Dn+N,

lastSafeDateInMonth(M,Max),

DnN =< Max

|

T *=* date(M,DnN).

T *=* date(M,Dn) + N days <=>

ground(Dn), ground(N), DnN is Dn+N,

lastDateInMonth(M, Max), DnN =< Max

|

T *=* date(M,DnN).

T *=* date(M,Dn) + N days <=>

ground(Dn), ground(N), DnN is Dn+N,

lastDateInMonth(M,Max), DnN > Max

|

Dn1 is DnN-Max-1,

T *=* date(M1,1) + Dn1 days,

M1 *=* M + 1 months.

The two first rules apply when an addition can be made giving a new day-of-
month guaranteed not to lead into the following month. The first one uses the
auxiliary predicate lastSafeDateInMonth; if the month is completely unspeci-
fied or is a Feb. in an unknown year, it returns 28, and when more information
is present it returns the highest safe number (28 or 29 for Feb., 30 or 31 for oth-
ers). The second rule takes care of cases not caught by the first rule using a more
precise test (due to the first rule, actually only involved when the incremented
date will be a 29th, 30 or 31). The last rule applies when the incremented date
is in a later month.
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Inconsistency Handling

An inconsistent set of constraints may arise due to misconceptions in a text.
A basic constraint solver, incapable of handling inconsistency, may include the
following rule.

T *=* month(Y,Mn) <=> T=month(Y,Mn).

It is executed when an absolute date is entered or an increment has been suc-
cessfully added. An inconsistency manifests itself by the left and righthand sides
being non-unifiable, and thus the execution of the equality predicate will result
in the whole computation failing – which is logically correct as there is no so-
lution to the total set of constraints. We can avoid this and still get a partial
solution using a constraint failed(· · ·) in the following way.

T *=* month(Y,Mn) <=> (T=month(Y,Mn) -> true ; failed((T=month(Y,Mn))).

The arrow-semicolon notation stands for if-then-else, so if the unification suc-
ceeds, everything is fine, otherwise we record that failure would have occurred
if the unification had been enforced. Evaluations before and after the critical
point are still executed. The constraint solver can be extended, so it indicates
the position of a possible source of inconsistency in the text.

6 Conclusions

A constraint logic language CLP(Time) is introduced which can specify a wide
range of dependencies between time expression in a natural language text. A con-
straint solver is demonstrated that can evaluate these expressions independently
of the order in which anchoring times may be introduced, and it can produce
meaningful results also when such anchors are absent. These properties, which
do not hold for some state-of-the-art systems, are inherent in constraint solv-
ing, so the main message of this paper is to advocate constraint technologies for
resolving time expressions.

CLP (Time) is intended to be used together with language analyzers capable
of setting up relevant constraints, which is not a trivial task, and the results
obtained will critically depend on the quality of the language analyzer. However,
realistic tests together with a capable analyzer are yet to be made. Fragments of
the constraint solver programmed in a rule-based fashion were shown, indicating
a highly modular and easily extendible structure. This makes it a reasonable
task to add new facilities, for example to match special usages in a particular
language or more specific, idiomatic expressions used in a particular corpus.

For the implementation, we avoided finite domain techniques that have some
drawbacks for calendric data. These techniques are not fitted for an incremen-
tal, detailed propagation of values necessary to figure out, say, that adding two
days to a date which is the 28th of some yet unknown month in the 1900 years
will preserve the century (and carry over variables referring to decade, year in
decade and perhaps to the month), as we have demonstrated. Furthermore, a
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finite domain constraint solver typically works in two phases, first it collects and
simplifies constraints, then at the end there is a grounding phase that attempts to
assign concrete values to the variables; this is opposite to the incremental prop-
agation of as much information as possible as we have aimed at. The modular
structure of an implementation in Constraint Handling Rules makes it possible
to add rules one by one for different special cases taking care of the particulari-
ties of calendric data and relationships that distinguish them from plan integer
arithmetic. As mentioned, CLP(Time) and its constraint solver is currently be-
ing extended to handle different sorts of time intervals that we did not describe
in the present paper. Our approach to handle inconsistency introduces a new
research topic of identifying a best or minimal repair of an inconsistent set of
time constraints, where our current version just pics an arbitrary one determined
by the constraint solver’s internal evaluation order.
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Abstract. In membrane systems, the maximal parallelism is a useful
tool for modeling real biotic/chemical interactions. After all, there are
many attempts to relax maximal parallelism at the definition level, e.g.
minimal parallelism, bounded parallelism etc., or even at the system level
as the metabolic P system. By the help of topological means, membrane
computations and maximal parallelism can be controlled. Besides, in nat-
ural processes, the events represented by communication rules take place
in the vicinity of the membranes. The authors, motivated by natural phe-
nomena, propose a framework in which the abstract notion of boundaries
along membranes is modeled. In this paper, behaviors of communication
rules restricted to these membrane boundaries are presented, in partic-
ular, showing how these restrictions affect the maximal parallelism.

Keywords: Membrane computing, communication P systems, maximal
parallelism, multiset theory, partial approximation of multisets.

1 Introduction

Parallelism is a fundamental aspect of real life processes. Moreover, it is of great
importance, e.g., in software design and database management systems.

In membrane systems, invented by Păun [14,15,17], the maximal parallelism is
a useful tool for modeling real biotic/chemical interactions. However, designing,
controlling parallelized computational processes, measuring the degree of par-
allelism (DoP), etc. are complicated tasks [1,2,5,18]. There are many attempts
to relax maximal parallelism in order to find more realistic P systems from a
biological point of view and, last but not least, be able to handle it exactly.
Just a few examples are: minimal or bounded parallelism [3,6] at the definition
level; assigning priorities, preferences to evolution/communication rules [18] at
the computation level; or even at the system level, e.g., the metabolic P system
[8,7]. Membrane computations and maximal parallelism can be controlled with
the help of topological means [4] as well.

Besides, the events in natural phenomena which are represented by com-
munication rules in P systems take place in the vicinity of the membranes.
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In particular, an object actually has to be close enough to a membrane in order
to be able to pass through it. Here, the words “vicinity”, “close” do not necessar-
ily refer to a space-like notion. Consequently, an abstract notion of boundaries
along the membranes in P systems is required.

In [9,11], such an abstract, not necessarily space-like, notion of “to be close
to a membrane” was proposed. Restricting the communication rules to these
boundaries, the movements of objects through membranes can locally be con-
trolled to a certain extent during the membrane computations. Although this
approach restricts, it preserves the two important principles of the basic version
of P systems, namely, the maximal parallelism and the nondeterminism. Thus,
this method may be a means to capture maximal parallelism in P systems.

In this paper, Section 2 and 3 outline the fundamentals of multiset approx-
imation framework and communication P systems. In Section 4, the abstract
notion of membrane boundaries is presented. Then, in Section 5, the behavior
of communication rules in the presence of membrane boundaries is investigated,
showing how the restrictions of communication rules affect maximal parallelism.

2 Basics of Multiset Approximation Framework

2.1 Multisets

Let U be a finite nonempty set and N denote the set of natural numbers. A
multiset M over U , or mset M for short, is a mapping M : U → N ∪ {∞}.

Let MS(U) denote the set of all msets over U .
M is finite if M(a) < ∞ (a ∈ U). M is the empty mset, denoted by ∅, if

M(a) = 0 for all a ∈ U . If M is finite, it can be represented by all permutations

of the string w = a
M(ak1

)

k1
a
M(ak2

)

k2
. . . a

M(akl
)

kl
if M �= ∅, and w = λ otherwise (λ

is the empty string). Any permutation of the string w also can represent M .
A set M of finite msets is called a macroset over U . The following two fun-

damental macrosets are defined: MSn(U) (n ∈ N), the set of all msets M over
U such that M(a) ≤ n for all a ∈ U , and MS<∞(U) =

⋃∞
n=0MSn(U).

Let M,M1,M2 ∈MS(U) and M⊆ MS(U).
Mset equality relation is: M1 = M2 if M1(a) = M2(a) for all a ∈ U ; mset

inclusion relation is: M1 * M2 if M1(a) ≤ M2(a) for all a ∈ U .
Mset intersection M1 �M2 is defined by (M1 �M2)(a) = min{M1(a),M2(a)}

(a ∈ U), and (
�
M)(a) = min{M(a) | M ∈ M} (a ∈ U). Set-type union M1�M2

is defined by (M1 � M2)(a) = max{M1(a),M2(a)} (a ∈ U), and (
⊔
M)(a) =

sup{M(a) | M ∈M} (a ∈ U). By definition,
⊔
∅ = ∅.

Mset addition and mset subtraction is defined by (M1 ⊕ M2)(a) = M1(a) +
M2(a) (a ∈ U) and (M1 +M2)(a) = max{M1(a)−M2(a), 0} (a ∈ U).

For n ∈ N, n-times addition of M , denoted by ⊕nM , is given by the following
inductive definition: 1) ⊕0M = ∅; 2) ⊕1M = M ; 3) ⊕n+1M = ⊕nM ⊕M .

The n-times inclusion relation (*n) is defined for any n ∈ N. Let M1(�= ∅),
M2 ∈MS(U). M1 *n M2 if ⊕nM1 * M2 but ⊕n+1M1 �* M2.
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2.2 Multiset Approximation Framework

In order to model the boundary zones along membranes in P systems, the ap-
proach of rough set theory (RST) [12,13] should be a plausible opportunity.
However, RST works within conventional set theory, therefore, its ideas have to
be generalized for multisets. It is called the multiset approximation framework.

A multiset approximation framework has five basic components [10,11]:

– a finite set of abstract objects called the alphabet ;
– a set of msets over the alphabet as the domain;
– some distinguished msets of the domain for the basis of approximations;
– definable msets derived from base msets;
– an approximation pair which determines lower and upper approximations.

Informally, the alphabet models different constituents of biotic/chemical en-
tities. Msets are unordered collections of these abstract objects in which the
multiplicities are allowed. The domain can be thought of as a set of observable
msets. Some distinguished members of the domain are chosen in order to keep
and use them together as a unit. It can be viewed as a stable joint occurrence
of one or more objects and it exactly is what is called the base mset. If a base
mset is stable then its n-times additions can also be viewed stable. Base msets
and their n-times additions can be taken as the representation of different kinds
of coexistence in chemical processes and symbiosis in living nature.

Formally, the ordered 5-tuple MAS(U) = 〈MS<∞(U),B,DB, l, u〉 is an mset
approximation space over a finite alphabet U with the domain MS<∞(U) if

1. B ⊆ MS<∞(U) and if B ∈ B, then B �= ∅. B is called the base system, its
members are called the base msets ;

2. DB ⊆ MS<∞(U) is an extension of B with the minimal requirement: if
B ∈ B, ⊕nB ∈ DB (n ∈ N); members in DB are called definable msets ;

3. the functions l, u : MS<∞(U) → MS<∞(U) (called lower and upper ap-
proximations) form a weak approximation pair 〈l, u〉 if

(C0) l(MS<∞(U)), u(MS<∞(U)) ⊆ DB (definability of l, u);1

(C1) the functions l and u are monotone (monotonicity of l, u);
(C2) u(∅) = ∅ (normality of u);
(C3) if M ∈MS<∞(U), then l(M) * u(M) (weak approximation property).

A weak approximation pair 〈l, u〉 is
(C4 ) granular if B ∈ B, then l(⊕nB) = ⊕nB (n ∈ N) (l is granular);
(C5) standard if D ∈ DB, then l(D) = D (l is standard).
(C6) lower semi-strong if l(M) * M (M ∈MS<∞(U)) (l is contractive);
(C7) upper semi-strong if M * u(M) (M ∈ MS<∞(U)) (u is extensive);
(C8) strong if it is lower and upper semi-strong simultaneously.

The general mset approximation space MAS(U) is a weak/granular/standard/
lower semi-strong/upper semi-strong/strong mset approximation space if the
approximation pair 〈l, u〉 is weak/granular/standard/lower semi-strong/upper
semi-strong/ strong, respectively.

1 l(MS<∞(U)), u(MS<∞(U)) denote the ranges of the functions l and u, respectively.
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3 Communication P Systems

There are some different variants of the basic version of P system. Among them,
the posed problem can adequately be discussed in communication P systems.
In the proposed model, communication rules are the classical symport/antiport
types which are applied in a nondeterministic and maximally parallel way.

A membrane structure μ of degree m (m ≥ 1) is a rooted tree with m nodes
identified with the integers 1, . . . ,m. It can be represented by the set Rμ ⊆
{1, . . . ,m}× {1, . . . ,m}. 〈i, j〉 ∈ Rμ means that there is an edge from i (parent)
to j (child) of the tree μ which is formulated by parent(j) = i.

Let μ be a membrane structure with m nodes and V be a finite alphabet.

Definition 1. The tuple Π = 〈V,E, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 is a com-
munication P system, or P system for short, where

1. E(⊆ V ) and objects from E are available in the environment in infinite
multiplicities;

2. wi ∈ MS<∞(V ) represent regions (i = 1, 2, . . . ,m);
3. Ri is a finite set of rules (i = 1, 2, . . . ,m) such that if r ∈ Ri

(a) symport rules: 〈u, in〉, 〈u, out〉, where u �= λ and there is an mset M ∈
MS<∞(V ) such that u represents M ; or

(b) antiport rule: 〈u, in; v, out〉, where u �= λ, v �= λ and there are msets
M1,M2 ∈MS<∞(V ) such that u, v represent M1,M2, respectively.

Example 1. Let us define a running example P system Π as follows.

Π = 〈V,E, μ, w1, w2, w3, w4, w5, R1, R2, R3, R4, R5〉,

where its constituents are the following:

•V = {a, b, c, d, e} is a finite alphabet;

•E = V ;

•μ is a membrane structure of degree 5

with Rμ = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈4, 5〉};
• the regions w1, w2, w3, w4, w5 are

represented by the msets

w1 = ce5, w2 = a3b2d, w3 = ab2c3d4,

w4 = a3b, w5 = abc2d3;

• the communication rules are:

R1 = {r1}, r1 = 〈c; out〉;
R2 = {r2}, r2 = 〈ce; in〉;
R3 = {r3}, r3 = 〈e3; in〉;
R4 = {r4}, r4 = 〈e3; in〉;
R5 = {r5}, r5 = 〈ab; out〉.

Fig. 1. An example P system represented as a set of nested membranes
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4 Membrane Boundaries

The proposed model is a two-component structure consisting of a P system and
a multiset approximation space. Let Π be a communication P system as the
first component of the model. In order to define the second component, a special
multiset approximation space is formed over the finite alphabet V of Π .

LetMAS(V ) = 〈MS<∞(V ),B,DB, l, u〉 be an mset approximation space with
the finite alphabet V of Π . Let B⊕ = {⊕nB | B ∈ B, n = 1, 2, . . .}.
Definition 2. MAS(V ) is a strictly set-union type mset approximation space if
DB is given by the following inductive definition:

1. ∅ ∈ DB B⊕ ⊆ DB, and
2. if B′ ⊆ B⊕, then

⊔
B′ ∈ DB.

Definition 3. Let MAS(V ) be a strictly set-union type mset approximation
space. The functions l, u, b : MS<∞(V ) → MS<∞(V ) form a Pawlakian mset
approximation pair 〈l, u〉 and the boundary if for any mset M ∈MS<∞(V )

1. l(M) =
⊔
{⊕nB | n ∈ N+, B ∈ B and B *n M},

2. b(M) =
⊔
{⊕nB | B ∈ B, B �* M, B �M �= ∅ and B �M *n M},

3. u(M) = l(M) � b(M).

A strictly set-union type approximation space with a Pawlakian mset approx-
imation pair is called a Pawlakian mset approximation space.

Proposition 1. If MAS(V ) is a Pawlakian mset approximation space, it is
lower semi-strong and granular.

If the P system Π = 〈V,E, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 is given, let
MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be a Pawlakian mset approximation space.
MAS(Π) is called a joint (mset) approximation space of the P system Π .

Lower/upper approximations and boundaries of the msets w1, w2, . . . , wm can
be formed in MAS(Π). They are called region lower/upper approximations and
boundaries. Region upper approximations and boundaries associated with not
skin membrane have to be adjusted to the membrane structure.

Definition 4. Let Π be a P system and MAS(Π) be its joint membrane approx-
imation space. If B ∈ B and i = 1, 2, . . . ,m, let

N(B, i) =

⎧⎨⎩
0, if B * wi or B � wi = ∅;
n, if i = 1 and B � w1 *n w1;
min{k, n | B � wi *k wi, and B + wi *n wparent(i)}, otherwise.

Then, the functions membrane boundaries, outside and inside membrane bound-
aries are defined as follows (i = 1, . . . ,m):

bnd(wi) =
⊔
{⊕N(B,i)B | B ∈ B};

bndout(wi) = bnd(wi)+ wi;
bndin(wi) = bnd(wi)+ bndout(wi).

Corollary 1. b(w1) = bnd(w1) and bnd(wi) * b(wi) (i = 2, . . . ,m).
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Using membrane boundaries, a rule r ∈ Ri of a membrane i (i = 1, . . . ,m)
has to work only in the membrane boundary. More precisely,

– symport rules of the form 〈u, in〉 and 〈v, out〉 are executed only in the case
when u * bndout(wi) and v * bndin(wi), respectively;

– an antiport rule of the form 〈u, in; v, out〉 is executed only in the case when
u * bndout(wi) and v * bndin(wi).

Example 2. Let Π be the P system as in Example 1. Let us define its joint
approximation space MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 as follows:

– V = {a, b, c, d, e} is the finite alphabet as in Π ;
– MS<∞(V ) is the domain of the approximation space;
– B = {a2, ab, b, cde} is the base system;
– DB is the set of definable sets in such a way that

• ∅ ∈ DB;
• B⊕ = {a2, a4, a6, . . . , ab, a2b2, a3b3, . . . , b, b2, b3, . . . ,

cde, c2d2e2, c3d3e3, . . . }, and for any B′ ⊆ B⊕,
⊔
B′ ∈ DB;

• DB does not have any other member;
– 〈l, u〉 is a Pawlakian approximation pair.

bnd(w1) = b(w1) = cde,

bndin(w1) = ce, bndout(w1) = d;

bnd(w2) = cde,

bndin(w2) = d, bndout(w2) = ce;

bnd(w3) = c3d3e3

bndin(w3) = c3d3, bndout(w3) = e3;

bnd(w4) = ∅,
bndin(w4) = ∅, bndout(w4) = ∅;
bnd(w5) = a2,

bndin(w5) = a, bndout(w5) = a.

Fig. 2. Membrane boundaries determined by Definition 4

5 Maximal Parallelism in P Systems in the Presence
of Membrane Boundaries

Communication rules in P systems compete for objects, so their maximal parallel
execution mode has to be defined on the level of the whole system. To this end,
sets of communication rules associated with different membranes are considered
disjoint. It can be achieved by labeling the rules by distinct labels [16].

First, for the sake of comparison, the maximal parallel executions of commu-
nication rules are determined without membrane boundaries.
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Let Π = 〈V,E, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 be a P system and
MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be its joint membrane approximation space.

Let Appl(Π) denote the set of all multisets of communication rules which are
applicable in Π regardless of membrane boundaries. Then, the set of multisets
of communication rules from Appl(Π) applicable to Π in the maximal parallel
mode can be defined as follows [16]:

Applmax(Π) = {r | r ∈ Appl(Π) and there is no r′ ∈ Appl(Π) with r′ ��= r}.

In this case, communication rules associated with neighboring membranes
compete for objects in “shared” regions.

Example 3. Let the P system Π be as in Example 1. The set of multisets of
communication rules applicable to Π regardless of membrane boundaries is:

Appl(Π) = {r1, r2, r3, r4, r5, r1r3, r1r4, r1r5, r2r3, r2r4, r2r5, r3r5, r4r5,
r1r3r5, r1r4r5, r2r3r5, r2r4r5}.

Then, Applmax(Π) = {r1r3r5, r1r4r5, r2r3r5, r2r4r5}.

When the communication rules are executed in the maximally parallel mode
in the presence of membrane boundaries, they also compete for objects in general.
However, in this case, the competition for objects takes place not in “shared”
regions but “shared” inside/outside membrane boundaries. Consequently, the set
of all multisets of communication rules applicable to Π depends on the mutual
relation of neighboring inside and/or outside membrane boundaries.

Let ApplBndCi(Π) (i ∈ I) denote the set of all multisets of communication
rules applicable to Π in the presence of membrane boundaries, where I is a finite
index set which may be empty. ApplBndCi(Π)’s pertain to the different rela-
tions, configurations for short, of neighboring inside and/or outside membrane
boundaries.

ApplBndCi
max(Π)’s can be defined similar to Applmax(Π):

ApplBndCi
max(Π) = {r | r ∈ ApplBndCi(Π) and there is no r′ ∈ ApplBndCi(Π)

with r′ ��= r} (i ∈ I).

It is straightforward that ApplBndCi
max(Π) � ApplBndCi(Π) and any multiset

from ApplBndCi(Π) can be executed regardless of membrane boundaries. For
the sake of easy reference, these observations are formulated in a lemma.

Lemma 1. ApplBndCi
max(Π) � ApplBndCi(Π) � Appl(Π) (i ∈ I).

However, ApplBndCi
max(Π) �� Applmax(Π) in general.

If r ∈ ApplBndCi
max(Π), r ∈ Appl(Π) also holds by Lemma 1. Then, by the

maximal property of Applmax(Π), the following statement immediately follows.

Proposition 2. Forany r ∈ ApplBndCi
max(Π) (i ∈ I) there is an r′ ∈ Applmax(Π)

in such a way that r * r′.
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Any maximal multiset of communication rules r ∈ ApplBndCi
max(Π) starting

from the initial msets in the regions w1, . . . , wm leads to the same new msets as
if r should be executed without membrane boundaries. However, r have a signif-
icant influence on the inside/outside boundaries of w1, . . . , wm. Thus, after ev-
ery transition step, membrane boundaries and ApplBndCi(Π), ApplBndCi

max(Π)
have to be recalculated.

Example 4. Let the P system Π be as in Example 1 and its joint mset approx-
imation space MAS(Π) be as in Example 2.

In this example, in the presence of membrane boundaries, membrane compu-
tation in Π is investigated starting from its initial configuration, see Fig. 1.

The communication rules r4 and r5 cannot be executed since bndout(w4) = ∅
and ab �* bndin(w5) = a, respectively (Fig. 2).

The communication rules r1, r2, r3 can be executed (see Fig. 2) because

– c * bndin(w1) = ec, i.e., r1 = 〈c; out〉 is applicable;
– ce * bndout(w2) = ce, i.e., r2 = 〈ce; in〉 is applicable;
– e3 * bndout(w3) = e3, i.e., r3 = 〈e3; in〉 is applicable;.
One can observe that r1, r2, r3 compete for objects. More precisely, r1, r2

compete for one c, and r2, r3 compete for e’s.
In order to determine the set of all multisets of communication rules applicable

to Π , first, we have to take into account how rules r1, r2, r3 compete for objects.
There are six possibilities denoted by Ci (i ∈ I = {1, 2, 3, 4, 5, 6}).

In all configurations Ci’s, bnd
in(w1) and bndout(w2) have one joint clone of c.

The further features of different configurations are the following.
If bndin(w1), bnd

out(w2) have two different clones of e (Fig. 3(1)-(4)),

C1: bndout(w3) have other three clones of e;
C2: bndin(w1), bnd

out(w3) have one joint clone of e, bndout(w3) have other two
clones of e;

C3: bndout(w2), bnd
out(w3) have one joint clone of e, bndout(w3) have other two

clones of e;
C4: bndin(w1), bnd

out(w3) have one joint clone of e, bndout(w2), bnd
out(w3) have

one joint clone of e, bndout(w3) have another clone of e.

If bndin(w1), bnd
out(w2) have one joint clone of e (Fig. 3(5)-(6)),

C5: bndout(w3) have other three clones of e;
C6: bndin(w1), bnd

out(w2), bnd
out(w3) have one joint clone of e, bndout(w3) have

other two clones of e.

The possible multisets of communication rules applicable to Π are:

– ApplBndC1(Π) = {r1, r2, r3, r1r3, r2r3}, ApplBndC1
max(Π) = {r1r3, r2r3};

– ApplBndC2(Π) = {r1, r2, r3, r1r3, r2r3}, ApplBndC2
max(Π) = {r1r3, r2r3};

– ApplBndC3(Π) = {r1, r2, r3, r1r3}, ApplBndC3
max(Π) = {r2, r1r3};

– ApplBndC4(Π) = {r1, r2, r3, r1r3}, ApplBndC4
max(Π) = {r2, r1r3};

– ApplBndC5(Π) = {r1, r2, r3, r1r3, r2r3}, ApplBndC5
max(Π) = {r1r3, r2r3};

– ApplBndC6(Π) = {r1, r2, r3, r1r3}, ApplBndC6
max(Π) = {r2, r1r3}.
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(1) (2) (3)

(4) (5) (6)

Fig. 3. Mutual relations between inside/outside boundaries

Note that although ApplBndC1
max(Π) = ApplBndC2

max(Π) = ApplBndC5
max(Π)

and ApplBndC3
max(Π) = ApplBndC4

max(Π) = ApplBndC6
max(Π), after the execu-

tions of the same maximal multiset of rules setting from different configurations,
the result inside/outside membrane boundaries may be different fundamentally.

6 Conclusion and Future Work

In this paper, a two-component structure consisting of a communication P sys-
tem and a multiset approximation space with common finite alphabet has been
proposed. Execution of communication rules are restricted to membrane bound-
aries generated by the multiset approximation space. Although this approach
restricts, it preserves the two important principles of the original model of P
system, the maximal parallelism and the nondeterminism.

In the future, the mutual relation between communication P systems and
approximation spaces will be investigated.
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parallelism in membrane systems. Theoretical Computer Science 372(2-3), 183–195
(2007)

6. Ibarra, O.H., Yen, H.C., Dang, Z.: On various notions of parallelism in P systems.
Int. J. Found. Comput. Sci. 16(4), 683–705 (2005)

7. Manca, V.: Fundamentals of metabolic P systems. In: Păun et al., [17], pp. 475–498
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10. Mihálydeák, T., Csajbók, Z.E.: Partial approximation of multisets and its applica-
tions in membrane computing. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S.,
Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 99–108. Springer, Heidel-
berg (2013)
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Abstract. We consider the notion of intuitive learnability and its rela-
tion to intuitive computability. We briefly discuss the Church’s Thesis.
We formulate the Learnability Thesis. Further we analyse the proof of the
Church’s Thesis presented by M. Mostowski. We indicate which assump-
tions of the Mostowski’s argument implicitly include that the Church’s
Thesis holds. The impossibility of this kind of argument is strengthened
by showing that the Learnability Thesis does not imply the Church’s
Thesis. Specifically, we show a natural interpretation of intuitive com-
putability under which intuitively learnable sets are exactly algorithmi-
cally learnable but intuitively computable sets form a proper superset of
recursive sets.

Keywords: computability, algorithmic learnability, potential infinity,
FM-representability, low sets, Learnability Thesis, Church’s Thesis.

1 Intuitive Computability and the Church’s Thesis

Before the emergence of computability theory as a branch of modern logic, many
algorithms had been known. Historically, the first non-trivial algorithm, the Eu-
clidean algorithm, dates back to circa 300 BC when the Greek mathematician,
Euclid of Alexandria, formulated his method for calculating the greatest common
divisor. In 1900, shortly before the appearance of the first mathematical models
of computation, Hilbert formulated his tenth problem of finding an algorithm
for deciding whether a given equation is solvable in integers. These and many
other historical examples convince us that even before the era of computability
we had some intuitive notion of algorithm, precise enough to be incorporated
by science. The era of the computability theory started in the 1930s and was
marked with the appearance of the first mathematical models of computation
[1], [4], [9], [13]. Almost immediately the following question arose: are the no-
tions of intuitive computability and, for example, λ-definability or, what comes
to the same thing, Turing-computability, equivalent? In other words, is the class
of intuitively computable sets equal to the class of recursive sets? The affirmative
answer to this question is known as the Church’s Thesis and was first formulated
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in [1], [13].1 The Church’s Thesis, if not treated as definition, and we actually do
not treat it as such,2 is a statement about the equality of two classes of objects.
From now on, by IC we mean a subset of P(ω), consisting of intuitively com-
putable sets of natural numbers. The class of recursive sets is known to be Δ0

1

in arithmetical hierarchy.3 Having this notation, the Church’s Thesis presents
shortly as follows:

Thesis 1 (Church’s Thesis). IC = Δ0
1.

The inclusion Δ0
1 ⊆ IC is generally accepted as a rule. The whole mystery lies in

IC ⊆ Δ0
1. IC is not fully understood. We have some intuitions based on practice

in devising intuitive algorithms and writing computer programs. Our intuitions
are strengthened by deep insights of computability theory. However, it is still
possible, though unlikely, that Δ0

1 �= IC. This possibility is essentially used in
the proof of the main theorem (Theorem 6) which is based on the notion of
intuitive learnability.

2 Intuitive Learnability and the Learnability Thesis

The notion of intuitive learnability is based entirely on the notion of intuitive
computability. Given the intuitive notion of an algorithm, one can define the
notion of intuitive learnability as follows:

Definition 1 (Intuitive Learnability). A decision problem is intuitively learn-
able if there is an (possibly infinite) intuitive algorithm that for each example of
the problem produces a finite sequence of yeses and nos such that the last answer
in the sequence is correct.

The origins of the notion of intuitive learnability can be traced back to the
same Euclid of Alexandria that is known as the author of the first non-trivial
algorithm. His Elements contains the first exposition of the axiomatic method.
The search for a proof of a sentence in a given axiomatic system may be viewed as
an example of an intuitive algorithm that generates a finite sequence of answers
as to whether the input sentence is provable. At the beginning the negative
answer is produced. Then the space of proofs is systematically explored. If the
input sentence is provable, the exploration finishes once the proof is found, the
positive answer is produced, the algorithm stops and the generated sequence of
answers is ”no”, ”yes”, with the last answer being correct. If the input sentence
is not provable, the exploration goes on forever, and the generated sequence
is always ”no”. This intuitive algorithm shows that the set of theorems of a
recursive set of axioms is intuitively learnable.

1 Another formulation of the Church’s Thesis, in terms of functions, states that the
class of intuitively computable functions is identical with the class of partial recursive
functions. We restrict ourselves to the first formulation.

2 Observe that treating IC = Δ0
1 as a definition of IC strips away the whole problem,

since then, IC ⊆ Δ0
1 holds.

3 For a detailed exposition of arithmetical hierarchy see, for example, [11].
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Modern science, dating back to 17th century, provides another example of
intuitive learnability. Consider a simplified model of the activity of a modern
scientist. The scientist proposes a system of hypotheses. The system is to de-
scribe the world correctly. Initially, the positive answer is produced, meaning
that hypotheses are considered true. Then the scientist proceeds to testing. If
hypotheses are correct, testing goes on forever and the generated sequence of
answers is always ”yes”. If hypotheses are incorrect, some test fails, the negative
answer is produced, the activity stops and the generated sequence of answers is
”yes”, ”no”, with the last answer being correct. This intuitive algorithm shows
that the problem of whether a system of empirical hypotheses describes the
world correctly is intuitively learnable.4

The axiomatic method and the scientific method had appeared long before
1960s when algorithmic learning theory was established. The emergence and en-
durance of these sophisticated learning techniques provide a rationale that we
had some intuitive understanding of learnability in times preceding its mathe-
matical models.

Mathematical notion of learnability is due to Gold [3] and Putnam [10]. Here
is Putnam’s definition of algorithmic learnability that accounts for a mathemat-
ical counterpart of an intuitive idea of a set ”decidable” by a mind-changing
procedure:

Definition 2 (Algorithmic Learnability). Let A ⊆ ω. A is algorithmically
learnable if there is a total computable function g : ω2 → {0, 1} such that for all
x ∈ ω: limt→∞ g(t, x) = 1 ⇔ x ∈ A and limt→∞ g(t, x) = 0 ⇔ x /∈ A.

Algorithmic learnability is equivalent with many natural notions. One of them
is the notion of FM-representability proposed by Mostowski in [8]. His research
was motivated by computational foundations of mathematics and the search for
the semantics under which first-order sentences would be interpreted in poten-
tially infinite domains. Potentially infinite domains are understood as growing
sequences of finite models. We consider the latter to have purely relational vo-
cabulary and initial segments of natural numbers as universes. Let R ⊆ ωr.
Then by R(n) we denote R ∩ {0, 1, . . . , n}r. For any model on natural numbers
A over the signature σ = (R1, . . . , Rk) we define the FM-domain of A as fol-

lows: FM(A) = {An : n ∈ ω}, where An = ({0, 1, . . . , n}, R(n)
1 , . . . , R

(n)
k ). By

N we denote the standard model of arithmetic (ω,R+, R×) of the vocabulary
σ = (R+, R×), where instead of function symbols +, ×, we have corresponding
relational symbols R+, R×, interpreted in the same way as +, ×.

Definition 3 (FM-representability). We say that the relation R ⊆ ωr is
FM-represented in FM(A) by a formula ϕ(x1, . . . , xr) if and only if for each
a1, . . . , ar ∈ ω both of the following conditions hold:

R(a1, . . . , ar) if and only if ∃m ∀k ≥ m Ak |= ϕ(a1, . . . , ar) (1)

4 Our description is simplified. However, it seems, that it captures the main idea,
that the system of empirical hypotheses cannot be conclusively justified but can be
conclusively rejected (falsified).
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¬R(a1, . . . , ar) if and only if ∃m ∀k ≥ m Ak |= ¬ϕ(a1, . . . , ar) (2)

We say that R is FM-representable in FM(A) if there is a formula ϕ such
that it FM-represents R in FM(A). If a relation is FM-representable in FM(N)
we say that it is FM-representable.

FM-representability is a good model of the semantic meaningfulness of math-
ematical concepts that we learn. The simplest argument is that objects, concepts
and phenomena that are in the scope of cognitive accessibility and computational
tractability for a human mind are of a finite character. Even if it is actually in-
finite, we may experience only its finite parts – hence we assume that the only
epistemically reasonable notion of infinity we may adopt is the notion of potential
infinity, explicated within the framework of FM-domains.

Subsequent theorem is a collection of notions that turned out to be equivalent
to algorithmic learnability.

Theorem 1 (Limit Lemma). Let R ⊆ ωr. Then the following are equivalent:5

1. R is recursive with recursively enumerable oracle,
2. deg(R) ≤ 0′,
3. R is algorithmically learnable,
4. R is Δ0

2,
5. R is FM-representable.

Algorithmic learnability and equivalent notions given in the Limit Lemma are
of mathematical nature. However, as we showed in the Definition 1, the notion of
learnability has also a very clear intuitive content that may be formulated using
the notion of intuitive computability. Therefore we actually have two notions of
learnability: the intuitive one, given in the Definition 1, and the mathematical
one, given by any of equivalent statements in the Limit Lemma. And just as in
the case of the notions of intuitive and, for example, Turing-computability, we
face the question of whether the notion of intuitive learnability is equivalent to
the notion of algorithmic learnability. In other words, is the class of intuitively
learnable sets equal to the class of algorithmically learnable sets? We put forward
a claim, under the name of Learnability Thesis, that intuitive learnability is
equivalent to algorithmic learnability. From now on, by IL we mean a subset
of P(ω), consisting of intuitively learnable sets of natural numbers. The class of
algorithmically learnable sets is, by the Limit Lemma, Δ0

2. Having this notation,
the Learnability Thesis presents shortly as follows:

Thesis 2 (Learnability Thesis). IL = Δ0
2.

At this point, a natural question to ask is: why should we accept this claim?
It is not our main purpose to argue in favour of the Learnability Thesis (we
need it in our argumentation for the impossibility of the specific kind of proof

5 The equivalence between 1, 2 and 4 is due to Shoenfield [12]. The equivalence between
3 and 4 is due to Gold [3] and Putnam [10]. The equivalence between 1-4 and 5 is
due to Mostowski [5], [8] and is called the FM-representability theorem.
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of the Church’s Thesis). Nevertheless, as the Limit Lemma indicates, algorith-
mically learnable sets form a very natural class of objects. So far, the class has
been discovered by researchers from three different domains: computability the-
ory (Shoenfield), artificial intelligence (Gold), logic and philosophy (Putnam,
Mostowski). Moreover, it is easy to see, that Δ0

2 ⊆ IL – the argument goes anal-
ogously to the one that shows Δ0

1 ⊆ IC. The tricky part is IL ⊆ Δ0
2. However,

assuming the Church’s Thesis, the argument trivialises (we provide it only for
illustrative purposes).

Proposition 1. The Church’s Thesis entails the Learnability Thesis.

Proof. Assume the Church’s Thesis.
(Δ0

2 ⊆ IL) Let A ∈ Δ0
2. Let g : ω2 → {0, 1} be as in the Definition 2. By the

Church’s Thesis, g is an intuitively computable total function. Devise an intuitive
infinite procedure for A, satisfying the Definition 1. Let x ∈ ω. Set t = 0. In the
infinite loop do: intuitively compute g(t, x), output the result in case it differs
from the result obtained previously, increment t. This shows A ∈ IL.

(IL ⊆ Δ0
2) Let A ∈ IL. Then there is an intuitive algorithm, say G, sat-

isfying the Definition 1. Without loss of generality, G never stops. Devise an
intuitive algorithm G′ that takes (t, x) as an input and returns the last answer
generated by G on the input x up to t steps of the intuitive computation. By
the Church’s Thesis, the function intuitively computed by G′ is recursive. Let g
be that function. Clearly, g is total and satisfies the Definition 2. Hence, by the
Limit Lemma, A is Δ0

2.

The main theorem of this paper (Theorem 6) states that the reverse implica-
tion does not hold. Before we give a proof, we analyse the proof of the Church’s
Thesis presented by Mostowski [6]. The proof of Mostowski goes in the direction
that the Theorem 6 considers impossible. Of course, the proof of Mostowski uses
some additional assumptions. We carefully discuss them and indicate their weak
points.

3 Analysis of the Proof of Mostowski

In [6] M. Mostowski gives an argument for the Church’s Thesis. The argument
is based on three assumptions. Ontological assumption: there exist finitely,
but potentially infinitely many objects. Semantical assumption: satisfaction
and truth relations in finite models are recursive. Epistemological assump-
tion: there exists a recursive enumeration of the FM-domain. It is namely as-
sumed that cognitively accessible reality is finite, but potentially infinite, that
our knowledge is expressible in our language and that it is decidable whether a
given (without loss of generality - arithmetical) formula is satisfied in a finite, but
sufficiently large (arithmetical) model and that enlarging the domain of the finite
model we perform the computations (more generally: cognitive activity) in is re-
cursive. Further, it is argued by the FM-representability theorem that the class
of concepts that may be meaningfully described in a potentially infinite domain
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with recursive truth relation and recursive enumeration of finite approximations
of the model is identical to the class of Δ0

2 sets. Finally, an epistemological crite-
rion separates computable relations from other FM-representable ones. The key
notion employed in Mostowski’s justification of the Church’s Thesis is the notion
of a testing formula.

Definition 4 (Testing Formula). Let R ⊆ ωn and ϕ(x1, . . . , xn) be a formula.
A formula ψ(x1, . . . , xn) is a testing formula for ϕ(x1, . . . , xn) and R if:

– for each a1, . . . , an ∈ ω there is n0 ∈ ω such that for each finite model M ,
M |= ψ(a1, . . . , an) if and only if |M | ≥ n0,

– for each a1, . . . , an ∈ ω and each finite model M , if M |= ψ(a1, . . . , an), then
R(a1, . . . , an) if and only if M |= ϕ(a1, . . . , an).

The conditions defining the notion of a testing formula for ϕ and R may be
read as an explication of the concept of knowing the answer (and achieving the
answer effectively) to the query of the form: is a tuple a1, . . . , an in the relation
R? Testing formulae then serve the abovementioned epistemological criterion
of separating decidable relations from other FM-representable notions. This is
justified by the following theorem.

Theorem 2 (Mostowski [7]). Let R ⊆ ωn. R is decidable if and only if there
are formulae ϕ(x1, . . . , xn), ψ(x1, . . . , xn) such that ψ(x1, . . . , xn) is a testing
formula for ϕ(x1, . . . , xn) and R.

Proof. Fix R ⊆ ωn.
(⇒) Let T (e, x1, . . . , xn, c) be the Kleene predicate meaning that c is the

code of the computation of the algorithm with code e on input x1, . . . , xn (note
that every quantifier occurring in T is bounded by c). Let U(c, y) mean that a
computation with code c accepts if y = 1 or rejects if y = 0. Suppose that R is
decidable and let e be the code of an algorithm deciding R. We define:

ψ(x1, . . . , xn) = ∃c T (e, x1, . . . , xn, c),

ϕ(x1, . . . , xn) = ∃c (T (e, x1, . . . , xn, c) ∧ U(c, 1)).

Fix a = a1, . . . , an ∈ ω. We show that ψ is a testing formula for ϕ and R. We
have N |= ∃c T (e, a, c) thus for some n0 ∈ ω it holds that N |= T (e, a, n0). Since
the computation of e on a is unique, so is n0. Therefore for m ∈ ω, Nm |= ψ(a)
if and only if m ≥ n0.

Now fix m ∈ ω such that Nm |= ψ(a). Let n0 ∈ ω be such that
N |= T (e, a, n0). Then for every m ≥ n0 it holds that Nm |= T (e, a, n0). If
R(a), then N |= U(n0, 1) and Nm |= ϕ(a). On the other hand if ¬R(a), then
N |= U(n0, 0) and Nm |= ¬ϕ(a).

Therefore ψ(x1, . . . , xn) is a testing formula for ϕ and R.
(⇐) Let ψ(x1, . . . , xn) be a testing formula for ϕ(x1, . . . , xn) and R. The

algorithm deciding R is the following.
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Algorithm 1. Algorithm deciding R

Input: a1, . . . , an ∈ ω
Output: truth value of R(a1, . . . , an)
1: i ← 0
2: while Ni 
|= ψ(a1, . . . , an) do
3: i ← i+ 1
4: end while
5: return truth value of Ni |= ϕ(a1, . . . , an)

The algorithm implicitly uses subroutines to compute i #→ �Ni� and Ni |= α
which are both recursive. It also always halts since ψ(x1, . . . , xn) is a testing
formula for ϕ(x1, . . . , xn) and R. This ends the proof.

It is clear now that the Theorem 2 enables to identify recursive relations as the
class for which we are able to know the model in which the truth of the relation’s
representing formula fixes. As we see, the proof of the Theorem 2 depends on
two following statements:

1. There is a recursive enumeration of finite models,
2. Every finite model Nm has a recursive satisfaction relation.

While the second assumption is not controversial we take a closer look at 1.
This takes us directly to key considerations needed in the proof of the Theo-
rem 6. It is worth noting that the main assumptions of Mostowski’s argument
(namely the abovementioned ontological one and semantical one) taken together
with the FM-representability theorem are actually equivalent to a version of the
Learnability Thesis. It is so, since by those assumptions we model relations that
can be meaningfully described in potentially infinite by an appropriate growing
sequence of finite models with computable satisfaction relation. To put it in
an even stronger way, one might say that any formal model compatible with
ontological and semantical assumptions of Mostowski (which by the way seem
to be plausible philosophical statements in general) shall be a class of finite
models such that meaningful concepts are computed in the limit. In particular,
such semantics gives us a class of formulae decidable in the limit, i.e. such that
their interpretations stabilise after finitely many steps within an (potentially)
infinite trial-and-error computable procedure. Such formulae express exactly
intuitively learnable concepts. By the FM-representability theorem the set of
such concepts is identical to the set of Δ0

2 relations.

4 Learnability Thesis Does Not Entail Church’s Thesis

So far, we have worked in relational arithmetical vocabulary σ = (R+, R×). Now
we extend it to σ′ = σ ∪ {A}, where A is an additional 1-place predicate.

Theorem 3. Let (N, A) be any σ′-model, R ⊆ ωn. R is decidable in A if and
only if there are σ′-formulae ϕ(x1, . . . , xn), ψ(x1, . . . , xn) such that ψ(x1, . . . , xn)
is a testing formula in FM((N, A)) for ϕ(x1, . . . , xn) and R.
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Proof. The proof is an easy generalisation of the proof of the Theorem 2.
(⇒) It suffices to consider the Kleene predicate TA(e, x1, . . . , xn, c) for oracle

machines, meaning that c is the code of the computation of the oracle algorithm
with Gödel number e on input x1, . . . , xn using A as an oracle.

(⇐) The algorithm deciding R is essentially the same as the one from the
proof of the Theorem 2, but since the map i #→ �(Ni, A

(i))� is recursive in A, R
is recursive in A (rather than just recursive as in the original proof).

Taking FM(N) as our formal model is aimed at distinguishing exactly those
properties that are essential for performing intuitive computations. It seems that
considering the FM-domain of the finite cuts of an arithmetical model in which
all predicate symbols have recursive interpretations, just as in case of FM(N), is
actually equivalent to assuming that intuitively computable relations are exactly
recursive ones, namely the Church’s Thesis itself. Observe that if we admit the
existence of some non-recursive but intuitively computable relations, we could
intuitively compute the function i #→ �(Ni, A

(i))� and by the theorem 2 exactly
those relations which are recursive in A have testing formulae.

The arithmetical hierarchy can be naturally relativised to capture notions
concerning computations relative to oracles. By extending the arithmetical vo-
cabulary by an additional predicate and interpreting it as an oracle we obtain
a relativised arithmetical hierarchy of definable notions relative to the oracle. A
relation R is ΔA

2 if it is definable both by ΣA
2 and ΠA

2 formulae i.e.:

R(a) ≡ ∃x∀y R(x, y, a), (3)

R(a) ≡ ∀x∃y S(x, y, a), (4)

for some recursive in A predicates R and S. The following theorem is obvious
by the relativisation of the Limit Lemma:

Theorem 4. Let R ⊆ ωn. Then R is FM-representable in FM((N, A)) if and
only if R is ΔA

2 .

Definition 5 (Low Sets). Let A ⊆ ω. A is low if deg(A)′ = 0′.

Of course every recursive set is low, but the converse does not hold. The
existence of non-recursive low sets is a folklore (see for example [2]).

Theorem 5. Let A be a low set. Then ΔA
2 = Δ0

2.

Proof. Fix a low set A. The non-obvious inclusion is ΔA
2 ⊆ Δ0

2.
Fix a ΔA

2 relation R. Then for some recursive in A predicates R and S we
have:

R(a) ≡ ∃x∀y R(x, y, a)︸ ︷︷ ︸
≤deg(A)′

, (5)

R(a) ≡ ∀x∃y S(x, y, a)︸ ︷︷ ︸
≤deg(A)′

. (6)

Since A is low, deg(A)′ = 0′. Therefore by the generalised Post’s theorem R
is recursive in 0′ and thus, by the Limit Lemma, R is Δ0

2.
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Now, by an easy application of Theorems 4 and 5, we obtain:

Corollary 1. Let A be a low set and R ⊆ ωn. Then R is FM-representable in
FM((N, A)) if and only if R is Δ0

2.

By the Corollary 1, adding any low set A to the FM-domain does not affect
the class of FM-representable relations and therefore the Learnability Thesis
itself.

We are ready to prove our main theorem:

Theorem 6. The Learnability Thesis does not entail the Church’s Thesis.

Proof. Let A be a low, non-recursive set. Let the interpretation of IC be {R :
R ≤T A}. Therefore under such an interpretation the Church’s Thesis fails. On
the other hand consider an FM-domain FM((N, A)). We may consider such an
FM-domain since A ∈ IC. By the Corollary 1 relations FM-representable in
FM((N, A)) are exactly those which are Δ0

2. Therefore the Learnability Thesis
holds in such a model. We have shown that there is an interpretation of IC such
that IC �= Δ0

1 and IL = Δ0
2. Therefore the Learnability Thesis does not entail

Church’s Thesis.

5 Concluding Remarks

In this paper we have described the Learnability Thesis and argued that an
attempt of justifying the Church’s Thesis based only on the Learnability Thesis
must fail, by the Theorem 6. The clue of the argument is that there exists an
interpretation of intuitive computability consistent with the Learnability Thesis
such that certain intuitively computable sets are by no means recursive.

One of the paths of criticism towards our main result could proceed by ques-
tioning the naturality of our interpretation of IC, namely that it is only theoret-
ically admissible.6 This is why we have performed the proof of the Theorem 6 in
the framework that Mostowski used in his argument. This enabled us to justify
the naturality of the interpretation of IC as {R : R ≤T A}, for some low set A.7

Mostowski used a very natural notion of a testing formula to show that recursive
relations are exactly those FM-representable relations (equivalently - intuitively
learnable) which have testing formulae. We have pointed out a flaw in his argu-
ment to show that if we admit some non-recursive but intuitively computable

6 The discussion on the naturality of the interpretation of IC started with our first
attempt to prove that the Learnability Thesis does not entail Church’s Thesis in
which we considered IC = {R : R ≤T A, for any low set A}. Such an interpretation
of intuitive computability, however, would have very unnatural properties since for
instance there are low sets A,B such that their recursive sum A ⊕ B is Turing-
equivalent to 0′. Therefore a very natural operation such as taking a recursive sum
of some two intuitively computable sets would lead to intuitively non-computable
set (assuming the Learnability Thesis).

7 Under such an interpretation, IC is closed under Turing-reducibility and therefore
also under recursive sums, hence it is more natural.
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relations we are able to consider FM-domains expanded with their interpreta-
tions. This has led to singling out the relations recursive in A as those which
have testing formulae in FM((N, A)). On the other hand, by the Corollary 1,
relations FM-representable in such FM-domain are still Δ0

2.
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Abstract. Since Jeff Paris introduced them in the late seventies [Par78],
densities turned out to be useful for studying independence results. Moti-
vated by their simplicity and surprising strength we investigate the com-
binatorial complexity of two such densities which are strongly related
to the pigeonhole principle. The aim is to miniaturise Ramsey’s Theo-
rem for 1-tuples. The first principle uses an unlimited amount of colours,
whereas the second has a fixed number of two colours. We show that
these principles give rise to Ackermannian growth. After parameterising
these statements with respect to a function f : N → N, we investigate for
which functions f Ackermannian growth is still preserved.
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1 Introduction

The pigeonhole principle is one of the most well-know combinatorial principles,
due to both its simplicity and usefulness. The principle is also known as the
chest-of-drawers principle or Schubfachprinzip and is attributed to Dirichlet in
1834. The pigeonhole principle can also be considered as a finite instance of
Ramsey’s theorem for 1-tuples. So, if RTn

k stands for Ramsey’s Theorem for n
dimensions and k colours, i.e.

RTn
k ↔ For every G : [N]n → k there exists an infinite set H

such that G � [H ]n is constant,
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then the pigeonhole principle is a finite instance of RT1
<∞ = ∀kRT1

k. In this
paper we will investigate miniaturisations of the statements RT1

<∞ and RT1
2. Let

us recall some results from reverse mathematics: for any fixed natural number
k, RCA0 ! RT1

k, whereas WKL0 � RT1
<∞. Both results are due to Hirst (see

[Hir87], Theorem 6.3 and Theorem 6.5). In addition, there it is also proved
that RT1

<∞ does not imply ACA0 over RCA0. As it does not fit nicely into the
programme of reverse mathematics, one might be tempted to think that RT1

<∞
is of little importance. However, it pops up every now and then in the literature.
It is, for instance, equivalent to Rado’s Lemma over RCA0 (see [Hir87], Theorem
6.6).

For miniaturising RT1
<∞ and RT1

2 we define two notions of density, n-density
and (α, 2)-density, which are parametrised by a function f : N → N. Using these
notions we define two first order assertions and study their provability with
respect to IΣ1, the first-order part of RCA0.

We show which f give rise to Ackermannian growth and determine the exact
phase transition. In case of n-density Ackermannian growth is obtained for f(i) =

i
1

A
−1
ω (i) , whereas for f(i) = i

1

A
−1
d

(i) it is not. Here Ad denotes the d-th branch of
the Ackermann function Aω. Our proof will show that in these results Aω (Ad)
could be replaced by any non decreasing unbounded non primitive recursive
function (resp. by any non decreasing unbounded primitive recursive function).
In the case of (α, 2)-density we restrict ourselves to only two colours and strength
disappears, as expected. Surprisingly, iterating up to ω2 suffices to gain proof
theoretic strength again. It turns out that f(i) = 1

A−1
d (i)

log(i) gives rise to

no more than primitive recursive growth, but f(i) = 1
A−1

ω (i)
log(i) does. Our

proof will show that also in these results Aω (Ad) could be replaced by any
non decreasing unbounded non primitive recursive function (resp. by any non
decreasing unbounded primitive recursive function).

We would like to mention that the n-density threshold functions are exactly
the same as those for the parameterised Kanamori-McAloon principle, whereas
the (ω2, 2)-density functions equal those for the parameterised Paris-Harrington
principle [KLOW08, WVH2012]. It is our hope that by investigating miniaturi-
sations of RT1

<∞ and RT2
2 one could obtain insights into the seemingly difficult

question whether RT2
2 does or does not prove the totality of the Ackermann

function (the so called Ramsey for pairs problem).
For related work we also we also refer to [DSW08] and the unpublished PhD

thesis of the first author [DS11].

2 n-Density

Henceforth, let f : N → N be any (elementary recursive function), such that
1 ≤ f(x) ≤ x, for x large enough. We define the functions Ff,k and Ff , depending
on f , by
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Ff,0(n) := n + 1

Ff,k+1(n) := Ff,k(. . . (Ff,k︸ ︷︷ ︸
f(n) times

(n)) . . .) := F
f(n)
f,k (n)

Ff (n) := Ff,n(n),

for every k, n ∈ N.
If it is clear which f we are working with, we leave out the subscript f and

simply write Fk and F , instead of Ff,k and Ff , respectively. We also consider
functions f with non integer values. It is then understood that we round a value
f(i) down to �f(i)�, the biggest natural number below f(i). Moreover we assume
that f has always values at least as big as 1. It is easy to verify that the functions
Ff,k and Ff are strictly monotonic increasing if the parameter function f is non
decreasing.

In case of f(i) = i we write Aω for Ff and Ad for Ff,d. Aω is a standard choice
for the well known Ackermann function, which is a recursive but not a primitive
recursive function. The function Ad is called the d-th branch of the Ackermann
function. Every function Ad is primitive recursive. In [OW09] a classification is
given of those functions f for which Ff is primitive or non primitive recursive.

Let us define n-density, the first density notion related to the pigeonhole
principle. In this case the number of colours depends on the minimum of X and
the function f .

Definition 1. X is called 0-dense(f) if |X | ≥ max{f(minX), 3}. X is called
(n + 1)-dense(f) if for all G : X → f(minX), there exists Y ⊆ X, such that Y
is homogeneous for G and Y is n-dense(f).

Lemma 1. Assume that k ≤ l and that X ⊆ [k, l] and that f, g : [k, l] → N are
two functions such that f(i) ≤ g(i) for all i ∈ [k, l]. If X is n-dense(g) then X
is n-dense(f).

Proof. One verifies the claim easily by induction on n.

2.1 Upper Bound

Lemma 2. Let f be non decreasing. Let n ∈ N and X ⊆ N be a finite set. If X
is n-dense(f), then maxX ≥ Ff,n(minX).

Proof. Being of no importance for the proof itself, we leave out the subscript f .
Henceforth, let x0 = minX and c = f(x0). The proof goes by induction on n.

If X is 0-dense(f), then |X | ≥ max{f(x0), 3}. Thus, maxX ≥ x0+2 ≥ F0(x0).
Secondly, assume the statement is proven for n and X is (n + 1)-dense(f).

Consider the following partition of X = ∪0≤i<cYi, where Yi is defined by

Yi = {x ∈ X |F i
n(x0) ≤ x < F i+1

n (x0)}
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for 0 ≤ i < c− 1 and Yc−1 = {x ∈ X |F c−1
n (x0) ≤ x}. Now, define G : X → c, as

follows

G(x) := i,

for x ∈ Yi. Since X is (n + 1)-dense(f), there exists a subset Y of X , such that
Y is n-dense(f) and homogeneous for G. By contradiction assume Y ⊆ Yi0 for
some i0 with 0 ≤ i0 < c − 1. The n-density of Y and the monotonicity of Fn

yield

F i0+1
n (x0)− 1 ≥ maxYi0 ≥ maxY ≥ Fn(min Y ) ≥
Fn(minYi0) ≥ Fn(F

i0
n (x0)) = F i0+1

n (x0),

a contradiction. So Y ⊆ Yc−1, which implies

maxX = maxYc−1 ≥ maxY ≥ Fn(min Y ) ≥
Fn(minYc−1) ≥ Fn(F

c−1
n (x0)) = F c

n(x0) = F f(x0)
n (x0) = Fn+1(x0),

by the n-density of Y . This concludes the induction argument.

Definition 2. Define PHPf : N → N by

PHPf (n) := min{n′ ∈ N|[n, n′] is n-dense(f)}.

Let f(i) = i
1

A
−1
ω (i) , where Aω denotes the Ackermann fuction. Then Ff is

Ackermannian, due to Theorem 1 in [OW09]. If f would be non decreasing then
Lemma 2 would yield

PHPf (n) ≥ Ff,n(n) = Ff (n),

for all n ∈ N, hence also PHPf would Ackermannian. Since the provably total
functions of IΣ1 are exactly the primitive recursive functions, we would imme-
diately obtain that PHPf would not be provably recursive in IΣ1. We now show
how to overcome this problem.

Theorem 1. If f(i) = i
1

A
−1
ω (i) , then

IΣ1 � (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Let p(n) := 4+ 3n+1 + (n+1)n+1 and let fk(i) := i
1
k . It suffices to show

that PHPf (p(n)) > Aω(n) Assume that PHPf (p(n)) ≤ Aω(n). Then for i ≤
Aω(n) one has that A−1

ω (i) ≤ n which yields f(i) ≥ fn(i) for all i ≤ PHPf (p(n)).
The proof of Claim 2.12 from [KLOW08] yields Ffn+1,n+n2+4n+5(p(n) > Aω(n).
Together with Lemma 1 this yields

PHPf (p(n)) ≥ PHPfn(p(n)) ≥ Ffn+1,n+n2+4n+5(p(n)) > Aω(n)

which is a contradiction.
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2.2 Lower Bound

Let f(i) = i
1

A
−1
d

(i) , where Ad denotes the d-th branch of the Ackermann function
Aω. This function is not weakly increasing on its domain. For i ∈ [Ad(k), Ad(k+
1)− 1] one has that A−1

d (i) = k and on such intervals f will be non decreasing.
In intervals of the form i ∈ [Ad(k)−1, Ad(k)] the function A−1

d jumps from k−1
to k. But since the intervals of the form [Ad(k), Ad(k + 1) − 1] are rather long
it is very easy to find enough points b such that f(b) ≥ f(i) for all i ≤ b. One
simply has to choose b so large that f majorizes f(c) where c is the initial point
of a last jump interval which comes before b. With this caveat we can consider
f basically as non decreasing function although it in fact is not.

Theorem 2. If f(i) = i
1

A
−1
d

(i) , then

IΣ1 ! (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Assume that n and a are given. Put b := 2Ad(a2
n+1)2n+1

. Then f(i) ≤ f(b)

for all i ≤ b. We claim that any Y ⊆ [a, b] with |Y | > 2Ad(a2
n+1)2k is k-dense(f).

To prove the claim we proceed by induction on k.

Assume the claimholds for k−1 and consider Y ⊆ [a, b] with |Y | > 2Ad(a2
n+1)2k .

Since 2Ad(a2
n+1)2n+1

> Ad(2
n+1), we have

f(minY ) < f(b) = (2Ad(a2
n+1)2n+1

)
1

A
−1
d

(2Ad(a2n+1)2n+1
)

≤ (2Ad(a2
n+1)2n+1

)
1

A
−1
d

(Ad(2n+1))

= (2Ad(a2
n+1)2n+1

)
1

2n+1 = 2Ad(a2
n+1) ≤ 2Ad(a2

n+1)2k−1

.

Let c = f(minY ) and G : Y → c be any function. Consider the partition of Y
induced by G, i.e.

Y = ∪0≤i<cYi,

with Yi = {y ∈ Y |G(y) = i}. By contradiction, assume that |Yi| ≤ 2Ad(a2
n+1)2k−1

for every 0 ≤ i < c. Then

2Ad(a2
n+1)2k < |Y | ≤ c · 2Ad(a2

n+1)2k−1

= f(min Y ) · 2Ad(a2
n+1)2k−1

< 2Ad(a2
n+1)2k−1

· 2Ad(a2
n+1)2k−1

= 2Ad(a2
n+1)2k−1+Ad(a2

n+1)2k−1

= 2Ad(a2
n+1)2k ,

a contradiction. Thus, there exists an index i0 ∈ {0, . . . , c− 1}, such that |Yi0 | >
2Ad(a2

n+1)2k−1

. The induction hypothesis yields that Yi0 is (k − 1)-dense(f) and
by definition Yi0 is homogeneous for G, so Y is k-dense(f).

If k = 0 then |Y | > 2Ad(a2
n+1) > f(minY ), which completes the induction

argument and proves the claim.
Now return to [a, b]. [a, b] is n-dense(f) since |[a, b]| ≥ 2Ad(a2

n+1)2n+1 − a ≥
2Ad(a2

n+1)2n . Remarking that the function E : N×N → N, defined by E(a, n) =

2Ad(a2
n+1)2n+1

is primitive recursive, completes the proof.

Let PHPf stand for “(∀n)(∀a)(∃b)([a, b] is n-dense(f))”. Then we obtain the
following picture.
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i

1
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ω
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Fig. 1. Phase transition for PHPf

3 (α, 2)-Density

In this section we work with a fixed number of colours, namely two. For a limit
ordinal not exceeding ω2 we define the fundamental sequence as follows. We put
ω · (k + 1)[n] = ω · k + n and we set ω2[n] = ω · n.

Definition 3. X is called (0, 2)-dense(f) if |X | ≥ max{f(minX), 3}. X is
called (α + 1, 2)-dense(f) if for all G : X → 2 there exists Y ⊆ X, such that Y
is (α, 2)-dense(f) and Y is homogeneous for G. If λ is a limit ordinal, then X
is called (λ, 2)-dense(f) if for all G : X → 2 there exists Y ⊆ X, such that Y is
(λ[minX ], 2)-dense(f) and Y is homogeneous for G.

Lemma 3. Let k ≤ l and f, g : [k, l] → N be non decreasing such that f(i) ≤ g(i)
for all i ∈ [k, l]. If X ⊆ [k, l] is (n, 2)-dense(g) then X is is (n, 2)-dense(g).

3.1 Upper Bound

In this section we will use another hierarchy which we call Bf,α and which turns
out to be related to Ff,k. We define Bα, depending on f , by

Bf,0(n) := n + 1

Bf,α+1(n) := Bf,α(Bf,α(n)) := B2
f,α(n)

Bf,λ(n) := Bf,λ[f(n)](n),

for all n ∈ N and ordinals α and λ, with the latter a limit ordinal. As for Ff ,
we leave out the subscript f and write Bα if it is clear which f we are working
with. We first show a simple lemma concerning the relation between the two
hierarchies defined in this paper. This lemma might be considered as folklore.

Lemma 4. Let k, l and m be natural numbers. Then Bf,ω·k+l(m) = F 2l

2f ,k(m).

Proof. We proceed by main induction on k and subsidiary induction on l.
If k equals l equals zero, we have Bf,0(m) = m + 1 = F2f ,0(m).
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Assume the statement is proven for k− 1, we will prove it for k by subsidiary
induction on l.

If l = 0, then the main induction hypothesis yields

Bf,ω·(k−1)(m) = F2f ,k−1(m).

Assume the claim is proven for l − 1. We have

Bf,ω·(k−1)+l(m) = Bf,ω·(k−1)+l−1(Bf,ω·(k−1)+l−1(m))

= F 2l−1

2f ,k−1(F
2l−1

2f ,k−1(m)) = F 2l

2f ,k−1(m),

which proves the statement for k − 1 and every l. Using this fact, we obtain

Bf,ω·k(m) = Bf,ω·(k−1)+ω[f(m)](m)) = Bf,ω·(k−1)+f(m)(m))

= F 2f(m)

2f ,k−1(m) = F2f ,k(m),

which concludes the main induction and proves the statement.

Lemma 5. Let f be non decreasing. Let α be any ordinal not extenting ω2. If
X ⊆ N is (α, 2)-dense(f), then maxX ≥ Bf,α(minX).

Proof. Being of no importance for the proof itself, we leave out the subscript f .
Henceforth, let x0 = minX . The proof goes by transfinite induction on α.

If X is (0, 2)-dense(f), then |X | ≥ max{f(x0), 3}. Thus, maxX ≥ x0 + 2 >
x0 + 1 = B0(x0).

Assume the statement is proven for α and X is (α + 1, 2)-dense(f). Define
G : X → 2 as follows

G(x) :=

{
0 if x0 ≤ x < Bα(x0)

1 if Bα(x0) ≤ x
,

for all x ∈ X . Since X is (α + 1, 2)-dense(f), there exists a subset Y of X ,
such that Y is (α, 2)-dense(f) and Y is homogeneous with respect to G. By
contradiction, assume G takes colour 0 on Y . Then, by the induction hypothesis,

Bα(x0)− 1 ≥ maxY ≥ Bα(min Y ) = Bα(x0),

a contradiction. So, the colour needs to be 1, which implies

Y ⊆ {x ∈ X |Bα(x0) ≤ x}.

The induction hypothesis yields

maxX ≥ maxY ≥ Bα(min Y ) = Bα(Bα(x0)) = Bα+1(x0).

Finally, assume the statement is proven for all α < λ, with λ a limit ordinal, and
X is (λ, 2)-dense(f). There exists a subset Y which is (λ[f(x0)], 2)-dense(f). We
obtain by the induction hypothesis

maxX ≥ maxY ≥ Bλ[f(x0)](min Y ) ≥ Bλ[f(x0)](x0) = Bλ(x0).

This completes the proof.
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Definition 4. Define PHP2f : N → N by

PHP2f(n) := min{n′ ∈ N|[n, n′] is (ω2, 2)-dense(f)}.

Fix f(i) = 1
A−1

ω (i)
log(i) for the rest of this subsection.

Lemma 6. Let fn(i) := 1
n · log2(i). Then PHP2fn(2

n2

) ≥ F2fn (n) holds for
every n ∈ N.

Proof. Let X = [2n
2

,PHP2f (2
n2

)]. Define G : X → 2 by G(x) = 0 for ev-
ery x ∈ X . Since X is (ω2, 2)-dense(fn) there exists Y ⊆ X , such that Y is

(ω2[fn(minX)], 2)-PHP2-dense(fn), i.e. (ω ·fn(2n
2

), 2)-dense(fn). Lemma 4 and
Lemma 5 yield

PHP2(2n
2

) ≥ maxY ≥ Bfn,ω·f(minY )(minY ) ≥ Bfn,ω·f(2n2)(2
n2

)

= F2fn ,fn(2n
2 )(2

n2

) ≥ F2fn ,n(n) = F2fn (n),

since fn(2
n2

) = n.

Corollary 1. If f(i) = 1
A−1

ω (i)
log(i), then

IΣ1 � (∀a)(∃b)([a, b] is (ω2, 2)-dense(f)).

Proof. Let p(n) = 4+3n+1+(n+1)n+1 and fk(i) :=
1
k log2(i). It suffices to show

that PHP2f (2
p(n)2) > Aω(n). Assume for a contradiction that PHP2f(2

p(n)2) ≤
Aω(n). For i ≤ Aω(n) one has A−1

ω (i) ≤ n hence f(i) ≥ fn(i) for all i ≤
PHP2f (2

p(n)2). This yields PHP2f (2
p(n)2) ≥ PHP2fn(2

p(n)2) ≥ F2fn (p(n) >
Aω(n). Contradiction!

3.2 Lower Bound

As in Section 2.2 let f(i) = 1
A−1

d (i)
log(i), where Ad denotes the dth branch of the

Ackermann function Aω. Recall from Section 2.2 that f is almost non decreasing
and that it is easy to identify the jumps for f .

Theorem 3. If f(i) = 1
A−1

d (i)
log(i), then

IΣ1 ! (∀a)(∃b)([a, b] is (ω2, 2)-dense(f)).

Proof. Assume that a is given. Put b := 2Ad(2
a+2)2a+1

. Then f(i) ≤ f(b) for all

i ≤ b. We claim that any Y ⊆ [a, b], with |Y | > 2Ad(2
a+2)2k is (ω · k, 2)-dense(f).

The proof goes by induction on k.
Let k = 0. Since 2Ad(2

a+2)2a+1

> Ad(2
a+2), we have

f(minY ) < f(b) =
1

A−1
d (2Ad(2a+2)2a+1)

log(2Ad(2
a+2)2a+1

)

<
1

2a+2
Ad(2

a+2)2a+1 < Ad(2
a+2),
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so, |Y | > 2Ad(2
a+2) > max{f(minY ), 3}, i.e. Y is (0, 2)-dense(f).

Assume the assertion holds for k − 1 and consider Y ⊆ [a, b] with |Y | >

2Ad(2
a+2)2k . We claim that if Z ⊆ Y and |Z| > 2Ad(2

a+2)2k−1+l, then Z is (ω ·
(k − 1) + l, 2)-dense(f). The proof goes by subsidiary induction on l.

If l = 0, then the claim follows by the main induction hypothesis. Assume the

claim holds for l − 1 and |Z| > 2Ad(2
a+2)2k−1+l. Let G : Z → 2 be any function.

Consider the partition of Z induced by G, i.e.

Z = Z0 ∪ Z1,

with Zi = {z ∈ Z|G(z) = i}. By contradiction, assume that

|Zi| ≤ 2Ad(2
a+2)2k−1+l−1,

for i = 0, 1. Then

2Ad(2
a+2)2k−1+l < |Z| ≤ 2 · 2Ad(2

a+2)2k−1+l−1 = 2Ad(2
a+2)2k−1+l,

a contradiction. Thus, there exists an index i0 ∈ {0, 1}, such that |Zi0 | >

2Ad(2
a+2)2k−1+l−1. The induction hypothesis yields Zi0 is (ω · (k − 1) + l − 1, 2)-

dense(f), and so Z is (ω · (k − 1) + l, 2)-dense(f), since Zi0 is homogeneous for
G. This proves the latter claim.

Now return to Y . Let G : Y → 2 be any function. Consider the partition of
Y induced by G, i.e.

Y = Y0 ∪ Y1,

with Yi = {y ∈ Y |G(y) = i}. In the same way as above, one can prove there
exists an index i0 ∈ {0, 1}, such that

|Yi0 | > 2Ad(2
a+2)2k−1 = 2Ad(2

a+2)2k−1+Ad(2
a+2)2k−1−1.

Since
Ad(2

a+2)2k−1 ≥ Ad(2
a+2) ≥ f(minY ) + 1,

we have |Yi0 | > 2Ad(2
a+2)2k−1+f(minY ). The latter claim yields Yi0 is (ω · (k −

1)+ f(minY ), 2)-dense(f), i.e. (ω ·k[f(minY )], 2)-dense(f). Thus Y is (ω ·k, 2)-
dense(f), since Yi0 is homogeneous for G.

We finally prove that [a, b] is (ω2, 2)-dense(f). Let G : [a, b] → 2 be any
function and consider the partition of [a, b] induced by G, i.e.

[a, b] = Y0 ∪ Y1,

with Yi = {y ∈ [a, b]|G(y) = i}. Remark that |[a, b]| > 2Ad(2
a+2)2a+1 − a ≥

2Ad(2
a+2)2a+1. Similarly as before, there exists an index i0 ∈ {0, 1}, such that

|Yi0 | > 2Ad(2
a+2)2a ≥ 2Ad(2

a+2)2f(a)

.

The main claim yields Y is (ω · f(a), 2)-dense(f), i.e. (ω2[f(a)], 2)-dense(f). In
combination with Yi0 being homogeneous for G, this implies [a, b] is (ω2, 2)-
dense(f).
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Fig. 2. Phase transition for PHP2f

Let PHP2f stand for “(∀n)(∀a)(∃b)([a, b] is (ω2, 2)-dense(f))”. Once again, we
obtain the following picture.

In accordance with the referees (for which we are grateful for valuable com-
ments) we expect that it will be not too hard to show that for natural choices
of f the principles PHPlog ◦f and PHP2f are equivalent over IΣ1.
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Abstract. We develop a nature-inspired generic programming language
for parallel algorithms, one that works for all data structures and control
structures. Any parallel algorithm satisfying intuitively-appealing postu-
lates can be modeled by a collection of cells, each of which is an abstract
state machine, augmented with the ability to spawn new cells. All cells
run the same algorithm and communicate via a shared global memory.

1 Introduction

Evolving systems – physical, biological, or computational – are typically viewable
on many distinct levels of abstraction. Let us imagine some closed ecosystem
as an example. An ecologist views species, populations, and their interactions;
population growth and shrinkage may be modeled, say, by predator-prey and
other resource equations. A biologist takes a different viewpoint, based on the
individual organisms; she may develop a kinetic model for swarming behavior,
for instance. On a lower level still, a biochemist sees interacting cell systems;
he might use a diffusion-reaction equation to describe the development of the
colorings on an animal’s coat. The chemist looks at reactions on the molecular
level; the physicist sees atoms and their constituents. The common denominator
of all these views is one of a complex of objects that evolve over time and that
interact with each other and with their environment according to a set of rules.
It is this generic notion of a system of interacting objects that we seek to capture.

It has been convincingly argued by Gurevich [15] (presaged by Post [16]) that
logical structures are the right way to view evolving algorithmic states, just as
they are ideal for capturing the salient features of static entities. The structure
stores the values (taken from the structure’s domain) of components of the state
that are updated during the computation (variables and program counters) as
well as the state’s functional capabilities (like arithmetic).

That there are multiple levels at which to understand the same overall sys-
tem necessitates an abstraction mechanism. Atomic physics is of no relevance
to the ecologist; the ecologist’s view of the system is the same regardless of
quantum physics. This means that the behavior of the entities at the ecological
level should be modeled independently of the underlying physical model, which
translates into the requirement that states qua structures are isomorphism-closed
(making them oblivious as to how the domain values they deal with are in fact
implemented) and that their evolution respects those isomorphisms. The impor-
tance of isomorphism-invariance for purposes of abstraction has been repeatedly
emphasized [7,13,15].
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On each level of the ecological system there are interacting entities: popula-
tions interact on the ecology level, organisms on the biological level, cells on the
biochemical level, etc. The interacting entities need not all have “algorithmic”
behavior. Aspects of the external environment (such as weather conditions) can
also be treated as entities with which algorithmic components trade informa-
tion. Accordingly, we need a model of communication between entities, which
we shall refer to as “cells”, in addition to a model of their individual evolu-
tion. To that end, we can allow the control of one cell to access values in an-
other cell – a shared-memory viewpoint, or request values from another cell – a
message-based framework. Similarly, we can allow one cell to set values in an-
other cell or to request those changes from the other cell (depending again on
one’s viewpoint). Interaction and coöperation have been considered within Gure-
vich’s framework [2,4]. We take the shared memory viewpoint here and assume
that cells work in discrete time with a shared clock.

Many systems, be they natural or artificial, create new entities as they evolve
in time. We will, therefore, need to model the “birth” of new component cells.
But we will not, in this paper, consider changes in channels of communication
(the “topology”) other than at birth (cf. [12]). Were it not for possible interaction
with external agents and for the birth of new components, one might have been
tempted to view a software system as one large evolving global “organism”, rather
than as a conglomerate of many interacting individual cells.

In the next two sections, we characterize parallel algorithms and their cells.
Then, in Sect. 4, we give a description of a parallel programming language based
on abstract state machines (ASMs) [14]. Section 5 proves that all parallel al-
gorithms, as characterized here, can be programmed with the constructs of the
proposed language. We conclude with a brief discussion.

2 System Evolution

Informally, a parallel algorithm consists of a (finite or infinite) set of cells, whose
individual states all evolve according to the same algorithm. The state of each
cell, at any moment, is a (logical) structure with a tripartite vocabulary F.F ′.G
consisting of private (internal) operations F , public (global) G, and embryonic
F ′, the latter having the same similarity type as F . (There could be any fixed
number of embryonic copies F ′, F ′′, . . . , F (k), but let us leave it simple for now,
one child at a time.) The individual cells all run a “classical” (sequential) algo-
rithm in the sense of [15,8].

Initially, all cells agree on G and their F ′ are pristine (completely undefined).
A single global step of the algorithm comprises of the following stages.

1. First, each cell C takes one classical step, producing a set of updates U .
2. Cells’ private operations F and embryonic operations F ′ are updated per U .
3. Then the union of all the cell’s public updates together are applied to every

cell’s public G. If there is any disagreement between cells regarding updates
to G (the same location getting contradictory new values), the whole system
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aborts. (Abortion could be replaced with nondeterministic behavior, should
one prefer.)

4. Assuming there are no conflicts, mitosis takes place as follows: Each cell
C in which the values of the operations F ′ were modified splits into two, a
mother C and daughter C′. The daughter C′ inherits G, as updated, from her
mother; her F is a copy of her mother’s F ′. For both mother and daughter,
F ′ is reinitialized to undefined.

5. If one wishes, an individual cell can be allowed to die and be dropped from
the global organism whenever it has no next state, as when it suffers an
internal clash.

3 Parallel Algorithms

An algorithm A, in general, is normally viewed as a state-transition system
composed of a collection (set, class) S of states, a (partial) transition function
τ : S ⇀ S and a (nonempty) subset S0 ⊆ S of initial states. We first explain what
states of a parallel algorithm look like and then discuss algorithmic transitions.

As explained above, states should be formalized as (first-order) logical struc-
tures over some (fixed by the algorithm) vocabulary. On the other hand, we need
for systems to comprise multiple local processes, what we called “cells”. Each cell
has its own unique identity (id), taken from some index set (or class) I. Since
we are dealing with parallel algorithms, with both private and shared memory,
each cell has a local state, which is a structure over a (finite) vocabulary G.F ,
where the (current) values of operations in G are stored (conceptually, at least)
in global locations, accessible to all cells i, while private data is stored as values
of operations in its personal copy of F . The global state of the algorithm will be
an algebra over the combined (possibly infinite) vocabulary V = G ∪ F ∗, were
F ∗ = ∪i∈IFi, where each Fi = {f1

i , . . . , fk
i } consists of the k local operations of

cell i, with f j
i (j = 1, . . . , k) of the same arity for all cells. It will be convenient

in what follows to denote F j = ∪i∈I{f j
i }.

With this intuition in mind, we define a global state of federacy I, for a given
(countable or uncountable) set of identities I, to be an algebra X over vocabulary
V = G ∪ F ∗. A global (transition) system A (of federacy I) is composed of a
collection S of global states of federacy I, all over the same vocabulary, a (partial)
transition function τ : S ⇀ S and a subset S0 ⊆ S of states assumed to be the
full collection of initial states of A. If τ is undefined for some X ∈ S we will say
that X is a terminal state of A.

Let X be a state of A with domain U . Let g be some function in V (either in
G or in F ∗ = F 1 ∪ . . . ∪ F k) of arity n and ū = (u1, . . . , un) be an n-tuple over
that domain. If g(ū) = w in X , we denote this by gX(ū) = w or, alternatively,
will say that 〈g, ū, w〉 is a location-value of X . For any ground term t, we write
tX = w to mean that the value of t (as interpreted) in X is w.

We intend that cell i operate over vocabulary G∪Fi only. So we define the ith
localization Xi of global state X of federacy I to be the restriction of X to G∪Fi.
The ith cell is expected to manipulate this ith localization only, identifying its
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private F with the global Fi. We say that cell (local state) Xi is empty if f j
i is

undefined (⊥) for all j; on the other hand, we say that X is an i-cell if X = Xi

and is nonempty. When state X with transition τ is not terminal, we say that
δ = 〈g, ū, w〉 is an update of X if τ changes the value of g(ū) to be w. We define
by Δτ (X) the set of all updates of X .

To compare different cells we should ignore their individual identities. So we
define a depersonalization operator �; its application wipes out the id, dropping
the id-index from function symbols. Thus, the depersonalized X�

i is obtained
from a cell Xi by replacing its f j

i symbols by f j, for all j. So we write Xi = Yk if
X�

i = Y �
k for states X and Y and localizations Xi and Yk. Similarly, we say that

transition τ generates the same updates for Xi and Yk if Δτ (Xi)
� = Δτ (Yk)

�.
In this case, we will use the notation Δτ (Xi) = Δτ (Yk). We denote by Δi

τ (X)
the set of all updates of locations of f1

i , . . . , fk
i in X . And again, we say that

transition τ generates the same Δi
τ (X) = Δl

τ (Y ) if Δi
τ (X)� = Δl

τ (Y )�.
To capture the uniform behavior of cells, we introduce templates, which are

terms over an unadorned vocabulary G ∪ {f1, . . . , fk}, where f i is a symbol of
the same arity as the f j

i ∈ F . For each i ∈ I, the template t induces a term
ti, obtained by replacing each occurrence of f j by f j

i . Given states X and Y
from the same transition system and given a template t, we say that X =T Y if
tiX = tiY for any i ∈ I (i.e. every term defined by t has the same value in both X
and Y ). To compare different cells we should again ignore their identities. So let
Xi and Xm be distinct localizations of global state X . We say that Xi =T Xm

if tiX = tmX for each t ∈ T . Similarly, we may compare localizations of two
distinct global states. Letting Xi be a localization of X and Ym a localization of
Y , we write Xi =T Ym if tiX = tmY for each t ∈ T .

Let A = (S,S0, τ) be a transition system of federacy I over vocabulary V =
G ∪ F 1 ∪ . . . ∪ F k. We deem a parallel process A to be algorithmic if it satisfies
several postulates, which we now proceed to explicate.

Postulate 1 (Genericity). The set of states (and also the sets of initial states
and of terminal states) is closed under isomorphism (of first-order structures).
The set of states is also closed under localizations: if X is a state of A then Xi

is also a state of A, for each i ∈ I. Transitions preserve the domain (universe)
of states, and, furthermore, isomorphic states are either both terminal (have no
transition) or else their next states are isomorphic (via the same isomorphism).

States as structures make it possible to consider any data structure sans en-
codings. In this sense, algorithms are generic. The structures are “first-order” in
syntax, though domains may include sequences, or sets, or other higher-order
objects, in which case the state would provide operations for dealing with those
objects. (States with infinitary operations, like the supremum of infinitely many
objects, are precluded.) Closure under isomorphism ensures that the algorithm
can operate on the chosen level of abstraction and that states’ internal repre-
sentation of data is invisible to the algorithm. This means that the behavior
of an algorithm, in contradistinction with its “implementation” as a program in
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some particular programming language, cannot depend on the memory address
of some variable.

It must be possible to describe the effect of transitions in terms of the infor-
mation in the current state.

Postulate 2 (Describability). There exists a finite set T of critical templates
such that Δτ (X) = Δτ (Y ) if X =T Y for any states X and Y of A.

The critical templates are those locations in the state named by the algorithm
(or program). If every referenced location has the same value in two states, then
the behavior of the algorithm must be the same for both those states. This, the
essence of what makes a process algorithmic, is a crucial insight of [15].

The updates created by an individual cell may not depend on its id, but only
on global and local locations that are available to it. Furthermore, each cell
is fully responsible for its dates, and no other cell may change them. Also, all
updates of a global state are generated by local cells only.

Postulate 3 (Locality). If Xi =T Yj for two states X and Y and localizations
i, j ∈ I, then Δτ (Xi) = Δτ (Yj) and Δi

τ (X) = Δj
τ (Y ).

Postulate 4 (Globality). Δτ (X) = ∪i∈IΔτ (Xi) for all states X.

If some localization of X is empty but is not empty for τ(X), this indicates
that a child has been born.

Postulate 5 (Fertility). There exists a (input-independent) bound n ∈ N such
that τ(X) has at most n non-empty localizations for any local i-cell X, i ∈ I.

The idea is that in one step a cell may participate in the creation of only a
bounded number of new cells. And each newborn cell has exactly one mother:

Postulate 6 (Motherhood). For every state X, if a localization Xi is empty,
but is non-empty for τ(X), then there is a j ∈ I such that Δi

τ (X) ⊆ Δτ (Xj).

With the above requirements in place, we state what a parallel algorithm is.

Definition 1. A global system is algorithmic if it satisfies Postulates 1–6.

We say that two parallel algorithmic systems are “congruent” if they are iden-
tical, up to permutation of identities I.

Definition 2. A parallel algorithm A is a family of all parallel algorithmic sys-
tems, congruent with some algorithmic system A.

Proposition 1. Let A be an algorithmic system over a finite vocabulary. Then
A may be described as an ordinary algorithm.

Proof. Imagine A is an algorithmic system over a finite vocabulary. Then instead
of V = G∪F ∗, we may assume that we only have V = G (and we required that G
be finite). So for this case, Postulates 3–6 are redundant, and A is only required
to satisfy the geniricity and describability postulates. Also, our final set of
critical templates T is just a finite set of terms over V = G. Then A is a classical
(sequential) algorithm with critical terms T , as defined in [15]. ��
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4 Parallel Programs

The two basic program statements are assignment and creation. These may be
composed in parallel and guarded by conditions.
Assignment. An atomic assignment is a rule of the form h(t1, . . . , tn) := t0,
where t0, . . . , tn are templates and h ∈ G ∪ F .

Let Xi be a localization of X , and suppose that tjiX = uj
i for j = 0, . . . , n. If

h ∈ G, then application of the assignment on X for i generates a global update
Δa(Xi) = {〈h, (u1

i , . . . , u
n
i ), u

0
i 〉}. If h ∈ F , then the application generates dates

Δa(Xi) = {〈hi, (u
1
i , . . . , u

n
i ), u

0
i 〉}. If any of the tj is undefined in Xi (tjXi

= ⊥) ,
then Δa(Xi) = ∅. The application of assignment a to global state X generates
the update set Δa(X) = ∪i∈IΔa(Xi).
Parallel assignment. More generally, a parallel assignment rule is a set
{a1, a2, . . . , an} of atomic assignments, written with ‖ between the atomic aj.

The update set generated by such parallel assignment a is Δa(X) =
∪n
j=1Δaj (X). If Δa(X) has conflicting updates (different values assigned to the

same location), then the rule fails.
Creation. The creation rule ν.a takes the form new a, where a is a parallel
assignment, atomic assignments in a are of the form f j(t1, . . . , tn) := t0, and n
is the arity of symbol f j ∈ F .

Let Xi be a localization, and suppose tjiX = uj
i for j = 0, . . . , n for an atomic

assignment. The transition initializes some empty localization Xki with location-
value 〈f j

ki
, (u1

i , . . . , u
n
i ), u

0
i 〉. So Δν.a(Xi) = {〈f j

ki
, (u1

i , . . . , u
n
i ), u

0
i 〉}. If any one

of the tj is undefined in Xi, then Δν.a(Xi) = ∅. For each cell i, the transition
chooses a unique ki and the cell’s updates are appended to the total set of
updates Δν.a(X) = ∪i∈IΔν.a(Xi). If a is a parallel assignment a1‖a2‖ · · · ‖an,
then application of ν.a chooses a unique empty Xki for each Xi in which all
arguments tj are defined, and Δν.a(Xi) = ∪n

=1Δν.a�
(X). If there is no way to

choose ki for all i so that the rule applies, then it is not applied at all.
Guard. An atomic guard is a condition of the form s = t or s �= t. Guard t = s
evaluates to t (true) for localization Xi if tiX = siX . Similarly, a guard t �= s is
t if tiX �= siX . More generally, a guard g may be a conjunction of atomic guards
g1&g2& · · ·&gn, which is t for Xi if each gj is.
Guarded assignment. This is a rule g : a of form if g then a, where g is a guard
and a is a parallel assignment. Application of g : a to X generates the set of
updates Δg:a(X) = ∪{Δa(Xi) : i ∈ I s.t. gXi = t}.
Guarded creation. This is a rule g : ν.a of form if g then new a. The rule ν.a is
executed on each Xi for which g evaluates to t.

Definition 3 (Program). A (parallel) program is a finite set P of rules ri
as above, written r1‖ · · · ‖rn. To execute P on state X, all rules are executed
in parallel (simultaneously), that is, ΔP (X) = ∪ri∈PΔri(X). If ΔP (X) has
conflicting updates, then no updates are applied at all.

Note that for each application of creation, the program chooses in some fashion
new unused indices from I. So for each given initial state, the program may have
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multiple runs, depending on the choices made. Each choice is possible and none
is preferred. And it does not affect the computation’s final result or running
time (number of steps). So for each state X , we denote by P (X) any one of the
possible (congruent) states obtained by application of P to X .

5 Representation Theorem

A parallel program P is a characteristic program of algorithmic system A if
P (X) = τ(X) for each state X of A. A parallel program P is a characteristic
program of parallel algorithm A if it is a characteristic program for each algorith-
mic system A in A. We shall presume for simplicity that A is over a vocabulary
G∪F 1 only and denote it by G∪F . We will also assume that in Postulate 5 we
have at most one child born per step (n = 2). All proofs can be easily extended
to the general case.

By globality, Δτ (X) = ∪iΔτ (Xi). So we start with i-cells. We first prove that
the transitions of any i-cell can be described by a rule composed of assignment
and creation rules.

Let X be an i-cell of system A. According to the above simplifying assumption,
A has only one local function. Since X is an i-cell, its non-default locations are
over G∪{fi}. Furthermore, any cell may have at most one child in one transition.
Hence, non-default locations of τ(X) are over G ∪ {fi, fj} for some j ∈ I. So
we may consider X and τ(X) as ordinary states of an ordinary algorithm over
finite vocabulary G ∪ {fi, fj} with critical terms Ti ∪ Tj .

Let δ = 〈h, (u1, . . . , un), w〉 be an update in Δτ (X). According to [17, Lemma
5] for each k = 0, . . . , n there exists tk ∈ Ti ∪ Tj such that tkX = uk. Let Xδ

be an ordinary assignment rule h(t1, . . . , tn) := t0. Then ΔXδ
(X) = δ. We will

call Xδ an ordinary characteristic assignment of δ. Denote by X the ordinary
assignment obtained by parallel composition of Xδ for all δ ∈ Δτ (X). Obviously,
ΔX(X) = Δτ (X). Take a look at Xδ = h(t1, . . . , tn) := t0. As we said before,
tkX = uk for all k = 0, . . . , n. In particular, tk is defined over X . Since all non-
trivial locations of X are over G∪ {fi}, we may conclude that tk are over Ti for
all k = 0, . . . , n. And since all defined locations of τ(X) are over G∪{fi, fj}, we
may conclude that h ∈ G∪{fi, fj}. We partition X into two parallel assignment
rules: aX for all those rules with h ∈ G ∪ {fi} and nX for all the rest, rules of
the form fj(t

1, . . . , tn) := t0. Obviously, X = aX‖nX .
Let a�

X be obtained from aX by replacing fi with f . Then a�
X is an assignment

rule over templates T . From the definition of parallel-assignment application we
obtain that Δa�

X
(X) = ΔaX (X). Let n�

X be obtained from nX by replacing fi
and fj with f . From the definitions of parallel ν-rule application and of com-
paring updates for different cells, we obtain that Δν.n�

X
(X) = Δnx(X). Define

X = a�
X ‖ ν.n�

X . Then ΔX(X) = Δa�
X
(X) ∪Δν.n�

X
(X) = ΔX(X).

Proposition 2. Let X be an i-cell of A. Then X(X) = X(X) = τ(X).

Proof. That X(X) is τ(X) follows from the above. That X(X) is τ(X) follows
from [17, Lemma 11]. ��
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Updates of i-cells depend on the values of critical terms only.

Proposition 3. Let X and Y be i-cells of A, such that X =T Y . Then Y(X) =
τ(X). And Y(X) = τ(X).

Proof. Since Y is a rule over T it generates updates based on the values of T only.
Hence ΔY(X) = ΔY(Y ), since X =T Y . It follows from the earlier discussion
that Y(Y ) = τ(Y ). According to locality, we have that Δτ (Y ) = Δτ (X), again
since X =T Y . Combining all, we conclude Y(X) = τ(X). Hence, we get the
following implication for i-cell X and j-cell Y : X =T Y ⇒ Y(X) = τ(X). ��

Let X be an i-cell. We define an equivalence relation ∼X on T by t ∼X s iff
tX = sX . We next show that updates of i-cell X depend on ∼X only. Let X be
an i-cell and Y be a j-cell of A. We write X ≈T Y if ∼X=∼Y .

Proposition 4. Let X be an i-cell of A and let Y be a j-cell of A such that
X ≈T Y and Y(X) = τ(X). Then Y(X) = τ(X).

Proof. First assume that i = j, i.e. that both X and Y are i-cells. Consider
X and Y to be ordinary states over finite vocabulary G ∪ {fi} (as we did at
the start of this section). By assumption, X and Y each have one child cell in
a single transition. Define ∼i

X on Ti by t ∼X s iff tX = sX for any t, s ∈ Ti.
Then ∼i

X=∼i
Y . It follows from [17, Lemma 13] that Y(X) = τ(X). And by

Proposition 2 we conclude that Y(X) = τ(X). Recall that we defined X = Y for
parallel states X and Y of the same system if they are equal up to a permutation
of identities of their cells. The general case follows immediately. ��

Lemma 1. For each parallel algorithmic transition system there exists a char-
acteristic parallel program.

Proof. Let ∼ be some binary relation on T . Then for any pair of distinct term-
templates s, t ∈ T we have that either s ∼ t or s �∼ t. For each s, t ∈ T we
define β∼(s, t) to be an atomic guard s = t if s ∼ t and s �= t otherwise. Define
a guard β∼ to be a conjunction of all atomic guards β∼(s, t) for all s, t ∈ T .
Choose an i-cell X of A for some i ∈ I such that ∼X is ∼. Denote it by X∼
Define a rule R∼ = if β∼ then X∼. Obviously β∼ evaluates to t on X . and
hence R∼(X∼) = X∼. According to Proposition 4, we have that X∼ = τ(X∼)
and so R∼(X∼) = τ(X∼).

Define P to be a parallel program consisting of rules R∼ for all binary relations
∼ of T . Note that since T is finite, it has only finitely many distinct binary
relations and so program P is finite. We claim that P is a characteristic program
of A, that is, P (X) = τ(X) for any state X of A. Assume first that X = X∼ for
some binary relation ∼ on T . Let ∼′ be another binary relation on T , distinct
from ∼. Then for some s, t ∈ T we have that β∼(s, t) �= β∼′(s, t). So β∼′(s, t)
is false for X and so is β∼′ . Then ΔR∼′ (X) = ∅ and that is for any binary
relation on T other than ∼. Hence P (X) = R∼(X) and according to the previous
discussion R∼(X) = τ(X), as desired. Assume next that X is an i-cell for some
i. Denote ∼X by ∼. As in the previous item, ΔR∼′ (X) = ∅ for any binary
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relation ∼′ on T , other then ∼. And so P (X) = R∼(X). Let X∼ be as above.
Then R∼(X) = X∼(X) (by the definition of R∼). According to Proposition 4 we
have that X∼(X) = τ(X). Combining everything together we conclude that in
this case again we have that P (X) = τ(X). Assume finally that X is a general
state of A. According to globality, the update of X is a union of updates of all
its localizations Xi, i.e. Δτ (X) = ∪i∈IΔτ (Xi). By the genericity axiom, Xi is
a state in A. According to locality, updates for Xi do not depend on whether
Xi is considered as a standalone state or a localization of a general state. So it
is enough to show that ΔP (Xi) = Δτ (Xi) for all i ∈ I. And that follows from
the previous paragraph. ��

Theorem 1 (Main). For each parallel algorithm, there exists a characteristic
parallel program.

Proof. Let A be an algorithmic system in A. By Lemma 1, there exists a charac-
teristic parallel program PA of A. If B is another algorithmic system in A, then
B is identical to A, up to permutation of indices in I. Then, obviously, PA is a
characteristic program of B as well. ��

6 Discussion

The starting point for this research was the desire to characterize parallel com-
putation in as generic a form as possible, with an eye especially towards the
effective special case. Blass and Gurevich [1,3] successfully characterized parallel
algorithms within the abstract-state-machine framework, but their approach is
not easily restricted to the effective case. In their setup, an unbounded number
of children may be created by a single cell in a single step.

Our model is simpler than Blass and Gurevich for the cases we consider. As we
do not have message passing, algorithms need not deal with process ids. Though
we bound the number of new cells created by a cell in a step, an infinite number of
initial cells for a non-effective parallel algorithm poses no problem. For example,
one can imagine a cell for each of uncountably many points on a line segment in
3D space and an algorithm that applies, in parallel, an affine transformation to
the coordinates of each point, resulting in a translated segment.

We’ve considered discrete-time systems, where all cells progress in lockstep
with each other, as in [1,3]. We plan to expand this work in several directions:

– Characterize what makes a parallel algorithm effective. Analogous to prior
work on classical effectiveness [11,5], we need to demand that the initial
global state be finitely describable. This decomposes into two main require-
ments: (i) each cell itself be an effective classical algorithm; (ii) there be only
finitely many cells initially, though their number may depend on the input.

– Prove the extended Church-Turing thesis for parallel algorithms: all effective
parallel models of computation can be polynomially simulated by a standard
model (like PRAM), as has been done for classical algorithms [10].
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– Distributed systems, where cells each progress at their own rate, require
separate treatment. This will require a sense of identity for cells and a means
of communication between them. Cf. [4].

– Systems that evolve in continuous time are a subject of ongoing research [6,9].
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Abstract. Cohesive sets play an important role in computability theory.
Here we use cohesive sets to build nonstandard versions of the rationals.
We use Koenigsmann’s work on Hilbert’s Tenth Problem to establish that
these nonstandard fields are rigid. As a consequence we obtain results
about automorphisms of the lattices of computably enumerable vector
spaces arising in the context of Ash’s conjecture.

1 Introduction

This paper is motivated by the 30-year open problem of finding automorphisms
of the lattice L∗(V∞). As in Metakides and Nerode [16], the space V∞ is the
canonical computable ℵ0-dimensional vector space over a computable field F .
The lattice of computably enumerable (c.e.) subspaces of V∞ is denoted by
L(V∞). The lattice L(V∞) modulo finite dimension is denoted by L∗(V∞). For
all undefined notions, as well as more background on computability theory and
c.e. vector spaces, the reader can consult [18] and [16], correspondingly. Guichard
[7] established that there are countably many automorphisms of L(V∞) because
they are generated by computable semilinear transformations. Ash conjectured
that the automorphisms of L∗(V∞) are generated by special computable semi-
linear transformations.

Definition 1. An automorphism of L∗(V∞) is called an Ash automorphism if
it is generated by a semilinear transformation with finite dimensional kernel and
co-finite dimensional image in V∞.

Conjecture 1. (Ash) Every automorphism of L∗(V∞) is an Ash automorphism.

Definition 2. (1) An infinite set C ⊂ ω is cohesive if for every c.e. set W
either W ∩ C or W ∩ C is finite.
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(2) A set M is maximal if M is c.e. and M is cohesive.
(3) A set B is quasimaximal if it is the intersection of finitely many maximal

sets.

For sets A and B we use A =∗ B to denote that A and B differ on at
most finitely many elements, and A ⊂∗ B to denote that all but finitely many
elements of A are also elements of B. For vector spaces we use the same notation
where “finitely many elements” is replaced by “finite dimension.” Let A be a
computable basis of V∞ and let B be a quasimaximal subset of A. Let E∗(B, ↑)
denote the principal filter of B in the lattice E∗ of c.e. sets modulo =∗. It is known
that E∗(B, ↑) is isomorphic to a finite Boolean algebra Bn. Let V = cl(B) be the
closure of B in V∞. In contrast to E∗(B, ↑), the principal filter of V in L∗(V∞),
L∗(V, ↑), is not always isomorphic to Bn. Rather, as shown in [2] and [3], these
filters are isomorphic to either:

(1) a finite Boolean algebra,
(2) a lattice of subspaces of an n-dimensional vector space W over a certain

extension of F (denoted by L(n, F̃ )), or
(3) a finite product of structures from the previous two cases.

The extension F̃ of F mentioned in (2), which is denoted by
∏
C

F , is called the

cohesive power of F , and is defined below. In the context of computable vector
spaces the main interesting cases occur when F is finite or F = Q. For finite F
we have

∏
C

F ∼= F. The first key result in this paper is that
∏
M1

Q ∼=
∏
M2

Q iff the

maximal sets M1 and M2 are of the same 1-degree up to finitely many elements
(see Definition 7). This result implies the following theorem when F = Q.

Theorem 1. (i) The principal filters L∗(V, ↑) of type (2) fall into infinitely
many non-isomorphic classes even when these filters are isomorphic to lattices
of subspaces of finite dimensional vector spaces of the same dimension (≥ 3).

(ii) Every automorphism of L∗(V∞) preserves m-degrees of the spaces in (2).

A bijective semilinear map Φ on a vector space W over a field F is defined by

Φ(av + bw) = f(a)Φ(v) + f(b)Φ(w), (4)

where f is an automorphism of F . Such a bijective semilinear map Φ on the
space W in (2) above generates an automorphism τΦ of L(n, F̃ ). Moreover, by

the fundamental theorem of projective geometry, all automorphisms of L(n, F̃ )
for n ≥ 3 are generated by such semilinear maps. By (2) above we can regard
τΦ as an automorphism of L∗(V, ↑). When Φ is merely semilinear, τΦ is not the
restriction of any Ash automorphism to L∗(V, ↑). When Φ is linear, τΦ has a
natural extension τΦ to an automorphism of L∗(V∞) as described in the con-
struction in the proof of Theorem 2.1 in [5]. This τΦ is an Ash automorphism of
L∗(V∞). In certain cases we may hope to generalize this construction in the case
when Φ is merely semilinear and thereby generating a non-Ash automorphism.
However, our second key result is that

∏
C

F has only the trivial automorphism

when F = Q and we can establish the following results.
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Theorem 2. (i) Any automorphism of L∗(V∞) of the form τΦ for every bijective
semilinear map Φ is an Ash automorphism.

(ii) Any automorphism of L∗(V, ↑), where L∗(V, ↑) is of type (2) and n ≥ 3,
can be extended to an automorphism of L∗(V∞).

The result that the cohesive power
∏
M

Q is rigid, and its proof are of indepen-

dent interest. Our proof uses a recent number-theoretic result about definability
of Z in Q by Koenigsmann [11] (see [1] for additional background). This result
allows us to apply work in nonstandard models of arithmetic to our problem.

In Section 2, we define a cohesive power of a computable structure A over a
cohesive set C of natural numbers,

∏
C

A. We give a natural way of embedding∏
C

N into
∏
C

Q. In Section 3, we prove that
∏
C

N is definable in both
∏
C

Z and∏
C

Q. The main result in this section implies that if M1 and M2 are maximal

sets of natural numbers, then
∏
M1

Q∼=
∏
M2

Q iff M1 ≡∗
1 M2. Finally, in Section 4,

we prove that if C is a co-maximal (hence co-c.e.) set, then
∏
C

Q is rigid.

2 Effective Ultraproducts and Isomorphisms

Homomorphic images of the semiring of computable functions have been studied
as models of fragments of arithmetic in [6], [8], and [12]. Let C be an r-cohesive
set. Fefferman, Scott, and Tennenbaum considered the quotient structureR/ ∼C

, where R is the set of all unary (total) computable functions and ∼C is the
equivalence relation on R defined by:

f ∼C g ⇔ C ⊆∗ {n ∈ ω | f(n) = g(n)}. (5)

They proved that there is a specific Π0
3 sentence σ such that N |= σ butR/∼C � σ

(see Theorem 2.1 in [12]). Lerman [12] further proved that if R1 ≡m R2 are
r-maximal sets, then R/ ∼R1

∼= R/ ∼R2
. Moreover, Corollary 2.4 in [12] states

that if M1 and M2 are maximal sets of different m-degrees, then R/ ∼M1
and

R/ ∼M 2
are not even elementary equivalent. These models of fragments of

arithmetic have been further studied by Hirschfeld, Wheeler, and McLaughlin in
[8], [9], [13], [14], and [15], and are special cases of what we call cohesive powers.
The cohesive powers of fields, which were used in [3] to characterize the principal
filters of quasimaximal spaces, motivated the following general definition in [4].
As usual, we will denote the equality of partial functions by 1.

Definition 3. Let A be a computable structure with domain A in a computable
language L, and and let C ⊂ ω be a cohesive set. The cohesive power of A over
C, denoted by

∏
C

A, is a structure B for L with domain B such that the following

holds.
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1. The set B = (D/ =C), where D = {ϕ | ϕ : ω → A is a partial computable
function, and C ⊆∗ dom(ϕ)}.
For ϕ1, ϕ2 ∈ D, we have ϕ1 =C ϕ

2
iff C ⊆∗ {x : ϕ1(x) ↓= ϕ2(x) ↓}.

The equivalence class of ϕ with respect to =C will be denoted by [ϕ]C , or
simply by [ϕ] (when the reference to C is clear from the context).

2. If f ∈ L is an n-ary function symbol, then fBis an n-ary function on B such
that for every [ϕ1], . . . , [ϕn] ∈ B, we have fB([ϕ1], . . . , [ϕn]) = [ϕ], where for
every x ∈ A,

ϕ(x) 1 fA(ϕ1(x), . . . , ϕn(x)). (6)

If P ∈ L is an m-ary predicate symbol, then PB is an m-ary relation on B

such that for every [ϕ1], . . . , [ϕm] ∈ B,

PB([ϕ1], . . . , [ϕm]) iff C ⊆∗ {x ∈ A | PA(ϕ1(x), . . . , ϕm(x))}. (7)

If c ∈ L is a constant symbol, then cB is the equivalence class of the (total)

computable function on A with constant value cA.

Remark 1. Let C and B be as in Definition 3.
(i) The requirement that C is cohesive can be weakened to C being r-cohesive.
(ii) If C is co-c.e., then for every [ϕ] ∈ B there is a computable function f

such that f =C ϕ. In this case the structures
∏
C

N and R/ ∼C are isomorphic.

Versions of restricted �Loś’s theorem were given in [13], [14] for models of
fragments of arithmetic. The version of �Loś’s theorem for cohesive powers of
computable structures was given in [4] and was called the fundamental theorem
of cohesive powers. Here is a part of the theorem that we will use in the proof
of Proposition 1.

Theorem 3. [4] If Φ(y1, . . . , yn) is a formula in L that is a Boolean combination
of Σ0

1 and Π0
1 formulas and [ϕ1], . . . , [ϕn] ∈ B, then∏

C

A |= Φ([ϕ1], . . . , [ϕn]) iff C ⊆∗ {x : A |= Φ(ϕ1(x), . . . , ϕn(x))}. (8)

The structure
∏
C

N can be embedded naturally into
∏
C

Q by mapping the

equivalence class of [ϕ] ∈
∏
C

N to the larger equivalence class of the same [ϕ] in∏
C

Q. With the following general approach we can also obtain
∏
C

Q from
∏
C

N.

Definition 4. Let M1 be a structure for the language L = {+, ·, 0, 1}, which
satisfies the commutative semiring axioms.

Let M2 be a ring with domain (M1 ×M1)≡+ where (a1, b1) ≡+ (a2, b2) iff
a1 + b2 = b1 + a2. Suppose that the natural definition of the ring operations of
M2 is such that M2 is an integral domain.

Let M3 be a field with domain (M2 ×M2)≡· where (a1, b1) ≡· (a2, b2) iff
a1 · b2 = b1 · a2 and the field (of quotients) operations of M3 are naturally
defined.
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Remark 2. Let M1 be as in Definition 4. If M1 =
∏
C

N, then M2
∼=
∏
C

Z and

M3
∼=
∏
C

Q. The natural embedding of M1 into M3 yields the natural embed-

ding of
∏
C

N into
∏
C

Q mentioned earlier.

Lemma 1. (i) Any automorphism of Mi induces an automorphism of Mj for
i < j ≤ 3.

(ii) If Mi is definable in Mj for i < j ≤ 3, then any automorphism of Mj

induces an automorphism of Mi.
(iii) If Mj is rigid, then so is Mi for i < j ≤ 3.
(iv) If Mi is definable in Mj for i < j ≤ 3 and Mi is rigid, then so is Mj.

Proof. We will prove only (ii) and (iv) and leave the rest of the theorem to the
reader.

(ii) Let Γ be an automorphism of M3. To define an automorphism

Γ1 : M2 →M2, (9)

let a ∈ M2. The natural embedding ofM2 into M3 maps a to [(a, 1)]≡· . Let φ be
a first-order formula in L that defines the set { [(x, 1)]≡· | x ∈ M2} in M3. Then
M3 |= φ([(a, 1)]≡·), so M3 |= φ(Γ ([(a, 1)]≡·)). Then Γ ([(a, 1)]≡·) = [(c, 1)]≡· for
a unique c ∈ M2. Let Γ1(a) = c. The proofs for the other cases are similar.

(iv) We will only prove that M3 is rigid provided that M2 is rigid. Suppose
that Γ is an automorphism of M3. Since M2 is first-order definable in M3, Γ1

defined in (ii) is an automorphism of M2. Let a ∈ M3, and let b1, b2 ∈ M2 be
such that a = [(b1, b2)]≡· . Then

Γ (a) = Γ ((b1, 1)) · Γ ((1, b2)) = [(Γ1(b1), Γ1(b2))]≡· = [(b1, b2)]≡· = a (10)

because M2 is rigid.

Remark 3. Note that if M1 is rigid in a language L and a relation R is definable
in M1, then M1 is rigid in L∪{R}. We will later use this fact when the relation
R is <.

3 Definability and Isomorphisms

We will now prove that
∏
C

N is definable both in
∏
C

Z and
∏
C

Q. The definability

of Z in Q (by a Π0
3 formula) has been established by J. Robinson in [10]. More

recently, Koenigsmann [11] gave a Π0
1 definition of Z in Q. He proved that there

is a positive integer n and a polynomial p ∈ Z[y, z1, . . . , zn] such that

y ∈ Z ⇔ ∀z1 · · · ∀zn[p(y, z1, . . . , zn) �= 0]. (11)

We note that the intended range of all quantified variables in formulas (11)
through (14) is Q. The proof of Proposition 1 below essentially uses the Koenigs-
mann’s definition and cannot work with a definition of higher complexity.
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The definability of N in Z (by various Σ0
1 formulas) has been established by

R. Robinson in [17]. We will use the formula that defines the natural numbers
as sums of squares of four integers. Using these results we obtain that N can be
defined in Q as follows:

x ∈ N ⇔ ∃y1 · · · ∃y4[
∧
i≤4

yi ∈ Z ∧ x = y2
1 + y2

2 + y2
3 + y2

4 ] (12)

x ∈ N ⇔ ∃y1 · · · ∃y4∀z1 · · · ∀zn[
∧
i≤4

p(yi, z1, . . . , zn) �= 0 ∧ x = y2
1 + y2

2 + y2
3 + y2

4 ],

(13)
which we will abbreviate as

x ∈ N ⇔ ∃y∀zθ(x, y, z), (14)

where φ(x, y, z) is a quantifier-free formula in the language of ringsL = {+, ·, 0, 1}.
Note that there is a natural embedding of

∏
C

N into
∏
C

Z, and of
∏
C

Z into
∏
C

Q.

Proposition 1. The natural embedding of
∏
C

N is definable in
∏
C

Q by the same

formula ∃y∀zθ(x, y, z) that defines N in Q.

Proof. First, assume that for some [ϕ] ∈
∏
C

Q we have

∏
C

Q |= ∃y∀zθ([ϕ] , y, z), (15)

and that yi = [ψi] are such that∏
C

Q |= ∀zθ([ϕ] , [ψi], z). (16)

By Theorem 3, we have that:

C ⊆∗ {n : Q |= ∀zθ(ϕ(n), ψi(n), z)}. (17)

Using the definition of θ(x, y, z) we obtain that C ⊆∗ {n : ϕ(n) ∈ ω}, which
means that [ϕ] ∈

∏
C

N.

Now, assume that [ϕ] ∈
∏
C

N. We will prove that

∏
C

Q |= ∃y∀zθ([ϕ] , y, z). (18)

Define the partial computable functions ξi : ω → Q (i ≤ 4) as follows. If at stage
s we have ϕs(n) = m and m ∈ ω, then find the least (b1, . . . , b4) ∈ ω4 such that

m =
4∑

i=1

b2i and let ξi(n) = bi.
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By the definition of the functions yi, we have that

C ⊆∗ {n : Q |= [
∧
i≤4

(ξi(n) ∈ Z) ∧ ϕ(n) =
∑
i≤4

ξi(n)
2]}. (19)

Again, by Theorem 3, we obtain that∏
C

Q |= ∀zθ([ϕ] , [y1], . . . , [y4], z), (20)

which implies that ∏
C

Q |= ∃y∀zθ([ϕ] , y, z). (21)

For convenience we will introduce additional notation. Let

(1) ϕ1(x) =def ∃y1 · · · ∃y4[x = y2
1 + y2

2 + y2
3 + y2

4], and

(2) ϕ2(x) =def ∀z1 · · · ∀zn[p(x, z1, . . . , zn) �= 0].

Definition 5. Let ϕ(x) be a formula in a prenex normal form. Define ϕ∗(x)
inductively as follows:

(1) ϕ∗(x) =def ϕ(x) if ϕ is a quantifier-free formula,

(2) ϕ∗(x) =def ∃y[ϕ2(y) ∧ ψ∗(x, y)] if ϕ(x) = ∃yψ(x, y),

(3) ϕ∗(x) =def ∀y[ϕ2(y) ⇒ ψ∗(x, y)] if ϕ(x) = ∀yψ(x, y).

Note that in this case: x ∈ N ⇔ ϕ∗
1(x) ⇔ ∃y∀zθ(x, y, z).

Definition 6. Let ϕ(x) be a formula in a prenex normal form. Define ϕ
†
(x)

inductively as follows:

(1) ϕ†(x) =def ϕ(x) if ϕ is a quantifier-free formula

(2) ϕ
†
(x) =def ∃y[ϕ∗

1(y) ∧ ψ
†
(x, y)] if ϕ(x) = ∃yψ(x, y),

(3) ϕ
†
(x) =def ∀y[ϕ∗

1(y) ⇒ ψ
†
(x, y)] if ϕ(x) = ∀yψ(x, y).

The idea for this definition is that φ
†
(x) essentially expresses the formula

φ(x) with the scope of its quantifiers limited from Q to N (and from
∏
C

Q to
∏
C

N

because of Proposition 1).

Proposition 2.
∏
C

Q and Q are not elementary equivalent.

Proof. Let T be Kleene’s predicate. By a result by Fefferman, Scott, and Ten-
nenbaum (see Theorem 2.1 in [12]), we know that for

φ = ∀x∃t∀e∀z[(e < x ∧ T (e, x, z))⇒ z < t], (22)

N |= φ but
∏
C

N � φ. (23)
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We can assume that φ is a sentence in L = (+, ·, 0, 1) since both Kleene’s T

predicate and < are definable in N. Then Q |= φ
†
iff N |= φ, and

∏
C

Q � φ
†
iff∏

C

N � φ. This finally gives us that

Q �≡
∏
C

Q. (24)

Definition 7. ([4]) The sets A ⊆ ω and B ⊆ ω have the same 1-degree up to
=∗ (denoted by A ≡∗

1 B) if there are C =∗ A and D =∗ B such that C ≡1 D.

Remark 4. Using Myhill’s Isomorphism Theorem (see [18], p. 24), we conclude
that A ≡∗

1 B iff there is a computable permutation σ of ω such that σ(A) =∗ B.

Proposition 3. Let M1 ⊆ ω and M2 ⊆ ω be maximal sets.

1. If M1 ≡∗
1 M2, then

∏
M1

Q∼=
∏
M2

Q.

2. If M1 �≡∗
1 M2, then

∏
M1

Q �≡
∏
M2

Q.

Proof. (1) This fact has been proven in [4] for an arbitrary computable structure
A. If σ is a computable permutation of ω such that σ(M1) =

∗ M2, then the map
Φ :
∏
M1

A →
∏
M2

A such that Φ([ψ]) = [ψ ◦ σ] is an isomorphism.

(2) Note that for maximal sets we have M1 ≡∗
1 M2 iff M1 =m M2. For the

proof in the nontrivial direction, assume that M1 ≤m M2 via f and M2 ≤m M1

via g. Since M1 is cohesive, g ◦ f(M1) ∩ M1 is infinite and, by Proposition 2.1
in [12], g ◦ f |M1

and I|M1
differ only on finitely many elements. Then, to define

the computable permutation σ, we enumerate M1 and let

σ(n) =

{
n, if n is enumerated into M1 first;

f(n), if g(f(n)) = n.
Note that σ(n) will be defined for almost every n ∈ ω, and let σ(n) = n in

the finitely many remaining cases.
If M1 �=m M2, then we apply Theorem 2.3 from [12]. In fact, Lerman provided

a specific sentence θ (originally in the language L< = {+, ·, 0, 1, <}) for which∏
M1

N |= θ while
∏
M2

N |=�θ. As before, we can assume that the sentence θ is

equivalent to a sentence in the language L. Thus, for the relativisation θ
†
, we

have
∏
M1

Q |= θ
†
, while

∏
M2

Q |=�θ
†
.

4 Automorphisms

We now assume that C is a co-maximal (co-c.e. and cohesive) set and will prove
that the field

∏
C

Q is rigid (i.e., it has only the trivial automorphism). To do this



Isomorphisms of Non-Standard Fields and Ash’s Conjecture 151

we will show that
∏
C

N is a special case of arithmetic (exactly Δ0
1) ultrapowers

studied by Hirschfeld, Wheeler, and McLaughlin. Specifically, they studied the
structures Fn/U , where U is a non-principal ultrafilter in the Boolean algebra
of Δ0

n sets, and Fn is the set of all total functions with Σ0
n graphs. In Theorem

2.11 of [14], McLaughlin proved that Fn/U is rigid for the language L< =
{+, ·, 0, 1, <} . To apply McLaughlin’s result we need to make a few observations.
First, clearly, the theorem also holds for the language L = {+, ·, 0, 1} because
of the definability of the relation “<”. Second, we will see how the equivalence
relation induced by the co-maximal set C is equivalent to the one induced by a Δ0

1

ultrafilter. Finally, the domain of
∏
C

N consists of partial computable functions,

while the functions in F1 are total. The last two points are addressed in the
following proposition.

Proposition 4. (1) UC = {R | R ∈ Δ0
1 and C ⊆∗ R} is an ultrafilter in the

Boolean algebra Δ0
1.

(2)
∏
C

N ∼= F1/UC

Proof. (1) It is straightforward to show that UC is a filter. Since C is cohesive,
we have (∀R ∈ Δ0

1)[C ⊆∗ R ∨ C ⊆∗ R] and therefore, UC is maximal.

To prove (2) we will show that for every partial computable function ϕ for
which C ⊆∗ dom(ϕ), there is a computable function fϕ such that [ϕ]C = [fϕ]C .

We simply define

fϕ(n) =

{
ϕ(n), if ϕ(n) ↓ first;
0, if n is enumerated into C first.

Obviously, fϕ(n) is defined for all but finitely many n. For the finitely many
n for which fϕ(n) is not defined, we let fϕ(n) = 0. It is immediate that fϕ is
computable and [ϕ]C = [fϕ]C . It is also immediate that if [ϕ]C = [ψ]C , then
A = {n : fϕ(n) = fψ(n)} is a computable set such that C ⊆∗ A, and so A ∈ U
and [fϕ] =U [fψ].

Then the map Φ :
∏
C

N → F1/UC given by Φ([ϕ]C) = [fϕ]UC
is an isomor-

phism.

Corollary 1. The structure
∏
C

N is rigid.

Theorem 4. The structure
∏
C

Q is rigid.

Proof. IfM1 =
∏
C

N andM3
∼=
∏
C

Q, thenM1 is definable inM3 by Proposition

1, andM1 is rigid by Proposition 4. Then the rigidity ofM3 follows from Lemma
1, part (4).

Corollary 2. If co-maximal powers
∏
M1

Q and
∏
M2

Q are isomorphic, then there

is a unique isomorphism between them.
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Proof. If f1 and f2 are isomorphisms that map
∏
M1

Q to
∏
M2

Q, then f−1
2 ◦f1 must

be the identity automorphism of
∏
M1

Q.
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Abstract. This article presents a naturalist approach to cognition understood as
a network of info-computational, autopoietic processes in living systems. It pro-
vides a conceptual framework for the unified view of cognition as evolved from
the simplest to the most complex organisms, based on new empirical and theo-
retical results. It addresses three fundamental questions: what cognition is, how
cognition works and what cognition does at different levels of complexity of living
organisms. By explicating the info-computational character of cognition, its evo-
lution, agent-dependency and generative mechanisms we can better understand its
life-sustaining and life-propagating role. The info-computational approach con-
tributes to rethinking cognition as a process of natural computation in living be-
ings that can be applied for cognitive computation in artificial systems.

1 Introduction

It is a remarkable fact that even after half a century of research in cognitive science,
cognition still lacks a commonly accepted definition [1]. E.g. Neissers description of
cognition as “all the processes by which sensory input is transformed, reduced, elabo-
rated, stored, recovered and used” [2] is so broad that it includes present day robots. On
the other hand, the Oxford dictionary definition: “the mental action or process of ac-
quiring knowledge and understanding through thought, experience, and the senses” ap-
plies only to humans. Currently the field of cognitive robotics is being developed where
we can learn by construction what cognition might be and then, returning to cognitive
systems in nature find out what solutions nature has evolved. The process of two-way
learning [3] starts from nature by reverse engineering existing cognitive agents, while
simultaneously trying to design cognitive computational artifacts. We have a lot to learn
from natural systems about how to engineer cognitive computers. [4]

Until recently only humans were commonly accepted as cognitive agents (anthro-
pogenic approach in Lyon). Some were ready to ascribe certain cognitive capacities to
all apes, and some perhaps to all mammals. The lowest level cognition for those with
the broadest view of cognition included all organisms with nervous system. Only a few
were prepared to go below that level. Among those very few, the first who were ready to
acknowledge a cognitive agency of organisms without nervous system were Maturana
and Varela [5][6], who argued that cognition and life are identical processes. Lyons
classification, besides describing the anthropogenic approach, includes a biogenic ap-
proach based on self-organizing complex systems and autopoiesis. The adoption in the
present paper of the biogenic approach through the definition of Maturana and Varela is
motivated by the wish to provide a theory that includes all living organisms and artificial
cognitive agents within the same framework.

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 153–162, 2014.
c© Springer International Publishing Switzerland 2014
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2 The Computing Nature, Computational Naturalism
and Minimal Cognition

Naturalism is the view that nature is the only reality. It describes nature through its
structures, processes and relationships using a scientific approach. Naturalism studies
the evolution of the entire natural world, including the life and development of humanity
as a part of nature. Computational naturalism (pancomputationalism, naturalist compu-
tationalism) is the view that the nature is a huge network of computational processes
which, according to physical laws, computes (dynamically develops) its own next state
from the current one. Representatives of this approach are Zuse, Fredkin, Wolfram,
Chaitin and Lloyd, who proposed different varieties of computational naturalism. Ac-
cording to the idea of computing nature, one can view the time development (dynamics)
of physical states in nature as information processing (natural computation). Such pro-
cesses include self-assembly, self-organization, developmental processes, gene regula-
tion networks, gene assembly, protein-protein interaction networks, biological transport
networks, social computing, evolution and similar processes of morphogenesis (cre-
ation of form). The idea of computing nature and the relationships between two basic
concepts of information and computation are explored in [7] and [8].

In computing nature, cognition should be studied as a natural process. If we adopt
the biogenetic approach to cognition, the important question is what is the minimal cog-
nition? Recently, a number of empirical studies have revealed an unexpected richness
of cognitive behaviors (perception, information processing, memory, decision making)
in organisms as simple as bacteria. Single bacteria are too small to be able to sense any-
thing but their immediate environment, and they live too briefly to be able to memorize
a significant amount of data. On the other hand bacterial colonies, swarms and films
exhibit an unanticipated complexity of behaviors that can undoubtedly be characterized
as biogenic cognition, [9][10][11][12][13][14].

Apart from bacteria and similar organisms without nervous system (such as e.g. slime
mold, multinucleate or multicellular Amoebozoa, which recently has been used to com-
pute shortest paths), even plants are typically thought of as living systems without cog-
nitive capacities. However, plants too have been found to possess memory (in their
bodily structures that change as a result of past events), the ability to learn (plastic-
ity, ability to adapt through morphodynamics), and the capacity to anticipate and direct
their behavior accordingly. Plants are argued to possess rudimentary forms of knowl-
edge, according to [15] p. 121, [16] p. 7 and [17] p. 61.

In this article we focus on primitive cognition as the totality of processes of self-
generation, self-regulation and self-maintenance that enables organisms to survive us-
ing information from the environment. The understanding of cognition as it appears in
degrees of complexity can help us better understand the step between inanimate and
animate matter from the first autocatalytic chemical reactions to the first autopoietic
proto-cells.

3 Informational Structure of Reality for a Cognitive Agent

When we talk about computing nature, we can ask: what is the hardware for this
computation? We, as cognizing agents interacting with nature through information
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exchange, experience nature cognitively as information. Informational structural real-
ism [18][19][20] is a framework that takes information as the fabric of the universe
(for an agent). The physicists Zeilinger [21] and Vedral [22] suggest that information
and reality are one. For a cognizing agent in the informational universe, the dynamical
changes of its informational structures make it a huge computational network where
computation is understood as information dynamics (information processing). Thus the
substrate, the “hardware”, is information that defines data-structures on which compu-
tation proceeds.

Info-computationalism is a synthesis of informational structural realism and natural
computationalism (pancomputationalism) - the view that the universe computes its own
next state from the previous one [23]. It builds on two basic complementary concepts:
information (structure) and computation (the dynamics of informational structure) as
described in [24] [25] and [26].

The world for a cognizing agent exists as potential information, corresponding to
Kants das Ding an sich. Through interactions, this potential information becomes ac-
tual information, “a difference that makes a difference” [27]. Shannon describes the
process as the conversion of latent information into manifest information [28]. Even
though Batesons definition of information as a difference that makes a difference (for
an agent) is a widely cited one, there is a more general definition that includes the fact
that information is relational and subsumes Batesons definition:

“Information expresses the fact that a system is in a certain configuration
that is correlated to the configuration of another system. Any physical system
may contain information about another physical system.” Hewitt [29] p. 293

Combining the Bateson and Hewitt insights, at the basic level, information is a dif-
ference in one physical system that makes a difference in another physical system.

When discussing cognition as a bioinformatic process of special interest, there is
the notion of agent, i.e. a system able to act on its own behalf [26]. Agency has been
explored in biological systems by Kauffman and Deacon [30] [31] [32]. The world as
it appears to an agent depends on the type of interaction through which the agent ac-
quires information, [33]. Agents communicate by exchanging messages (information)
that help them coordinate their actions based on the (partial) information they possess
(a form of social cognition).

4 Information Self-Structuring through
Morphological/Physical/Intrinsic Computation
and PAC Algorithms

Regarding computational models of biological phenomena, we must emphasize that
within the info-computational framework computation is defined as information pro-
cessing. This differs from the traditional Turing machine model of computation that is
an algorithm/effective procedure/recursive function/formal language. The Turing ma-
chine is a logical construct, not a physical device. Cooper [34] points towards definabil-
ity as a form of higher order computation, and its relationship to embodiment. Modeling
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computing nature adequately, including biological information processing with its self-
generating and learning real-time properties, requires new models of computation such
as interactive and networked concurrent computation models, as argued in [7] and [35]
with reference to [36] and [37].

Computation in nature can be described as a self-generating system consisting of
networks of programs [38], a model inspired by the self-modifying systems of [39].
In the course of the development of the general theory of networked physical infor-
mation processing, the idea of computation becomes generalized. Examples of new
computing paradigms include natural computing [40] [41] [42] [43]; superrecursive
algorithms [44]; interactive computing [45]; actor model [36] and similar “second gen-
eration” models of computing [37].

Among novel models of computation of special interest are Valiants ecorythms or
algorithms satisfying “Probably Approximately Correct” criteria (PAC) as they explic-
itly model natural systems “learning and prospering in a complex world”. [46] The
difference between PAC learning algorithms and the Turing machine model is that the
latter does not interact with the environment, and thus does not learn. It has unlimited
resources, both space (memory) and time, and even though it is sequential, it does not
operate in real time. In order to computationally model living nature, we need suitable
resource-aware learning algorithms, such as ecorithms, described by Valiant:

“The model of learning they follow, known as the probably approximately cor-
rect model, provides a quantitative framework in which designers can evaluate
the expertise achieved and the cost of achieving it. These ecorithms are not
merely a feature of computers. I argue in this book that such learning mech-
anisms impose and determine the character of life on Earth. The course of
evolution is shaped entirely by organisms interacting with and adapting to their
environments.” [46] p. 8

A different approach to evolution is taken by Chaitin, who argues for Darwins theory
from the perspective of gene-centric metabiology [47]. The interesting basic idea that
life is software (executable algorithms) run by physics is applied in the search for bi-
ological creativity (in the form of increased fitness). Darwins idea of common descent
and the evolution of organisms on earth is strongly supported by computational models
of self-organization through information processing i.e. morphological computing. [48]

The cognitive capacity of living systems depends on the specific morphology of or-
ganisms that enables perception, memory, information processing and agency. As ar-
gued in [48], morphology is the central idea connecting computation and information.
The process of mutual evolutionary shaping between an organism and its environment
is a result of information self-organization. Here, both the physical environment and the
physical body of an agent can be described by their informational structure that con-
sists of data as atoms of information. Intrinsic computational processes, which drive
changes in informational structures, result from the operation of physical laws. The
environment provides an organism with a variety of inputs in the form of both informa-
tion and matter-energy, where the difference between information and matter-energy
is not in the kind, but in the use the organism makes of it. As there is no information
without representation [49], all information is carried by some physical carrier (light,
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sound, radio-waves, chemical molecules, etc.). The same physical object can be used by
an organism as a source of information and as a source of nourishment/matter/energy.
In general, the simpler the organism, the simpler the information structures of its body,
the simpler the information carriers it relies on, and the simpler its interactions with the
environment.

5 Cellular Computation

The environment is a resource, but at the same time it also imposes constraints that
limit an agents space of possibilities. In an agent that can be described as a complex
informational structure, constraints imposed by the environment drive the time devel-
opment (computation) of its structures to specific trajectories. This relationship between
an agent and its environment is called structural coupling by Maturana and Varela[5].
Experiments with bacteria performed by Ben-Jacob and Bassler show that bacteria in-
teract with the environment, sense it, and extract its latent/potential information. This
information triggers cognitive processes (“according to internally stored information”)
that result in changes of their structure, function and behavior. Moreover, Ben-Jacob
explains how information can be seen as inducing “an internal condensed description
(model of usable information)” of the environment, which directs its behavior and func-
tion. This is a process of intracellular computation, which proceeds via “gene computa-
tion circuits or gene logical elements”, that is gene circuits or regulatory pathways. As
bacteria multiply by cell division, complex colony forms.

Every single bacterium is an autonomous system with internal information manage-
ment capabilities: interpretation, processing and storage of information. Ben-Jacob has
found that complex forms emerge as a result of the communication between bacteria
as interplay of the micro-level vs. macro-level (single organism vs. colony). Chemical
sign-processes used by bacteria for signaling present a rudimentary form of language.
Waters and Bassler [14] describe the process of “quorum sensing” and communication
between bacteria that use two kinds of languages – intra-species and inter-species chem-
ical signalling. That is how they are capable of building films consisting of a variety of
species.

Experiments show that the colony as a whole “behaves much like a multi-cellular or-
ganism” governed by the distributed information processing with message broadcasting
that stimulates changes in individual bacteria (plasticity). Communication, cooperation
and self-organization within a swarm/colony enable decision-making at the group level
as a form of social cognition.

“The cells thus co-generate new information that is used to collectively
assume newly engineered cell traits and abilities that are not explicitly stored
in the genetic information of the individuals. Thus, the bacteria need only have
genetically stored the guidelines for producing these capabilities.” [12] p. 88

A bacteria colony changes its morphology and organization through natural dis-
tributed information processing and thus learns from experience (such as encounters
with antibiotics). Ben-Jacob concludes that they “ possibly alter the genome organi-
zation or even create new genes to better cope with novel challenges.” All those pro-
cesses can be modelled as distributed concurrent computation in networks of networks
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of programs, where individual bacteria form networks and bacteria themselves can be
modelled as networks of programs (processes or executing algorithms).

Empirical studies of the cognitive abilities of bacteria swarms, colonies and films
confirm the result of Harms [50], proving a theorem that natural selection will always
lead a population to accumulate information, and so to ’learn’ about its environment.
Okasha points out that

“any evolving population ’learns’ about its environment, in Harms’ sense,
even if the population is composed of organisms that lack minds entirely, hence
lack the ability to have representations of the external world at all.” [51]

Experimental results by [10][11][12][13][14] have shown that bacteria indeed learn
from the environment even though the mechanisms of bacterial cognition are limited
to relatively simple chemical information processes.

6 Self-organization, Cognitive Info-computation and Evolution of
Life

In computational (information processing) models of bacterial cognition, the biological
structure (hardware) is at the same time a program (software) that controls the behavior
of that hardware both internally and in the interactions with the environment. Already
in 1991 Kampis proposed a unified model of computation as the mechanism underlying
biological processes through self-generation of information by non-trivial change (self-
modification) of systems [39]. This process of self-organization and self-generation of
information is what is elsewhere described as morphological computation on different
levels of organization of natural systems. Current research in adaptive networks goes in
the same direction, [7].

However, understanding of the basic evolutionary mechanisms of information ac-
cumulation, with resulting increase in information-processing capacities of organisms
(memory, anticipation, computational efficiency), is only the first step towards a fully-
fledged evolutionary understanding of cognition, though it is probably the most difficult
one, as it requires a radical redefinition of fundamental concepts of information, com-
putation and cognition in naturalist terms. According to Maturana:

“A cognitive system is a system whose organization defines a domain of
interactions in which it can act with relevance to the maintenance of itself,
and the process of cognition is the actual (inductive) acting or behaving in
this domain. Living systems are cognitive systems, and living as a process is a
process of cognition. This statement is valid for all organisms, with and without
a nervous system.” [6] p. 13

The role of cognition for a living agent, from bacteria to humans is to efficiently deal
with the complexity of the world, helping an agent to survive and thrive. The world is
inexhaustible and largely complex and exceeds by all accounts what a cognizing agent
can take in. Cognition is then the mechanism that enables cognizing agents to control
their own behavior in order to deal with the complexity of the environment, make sense
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of the world and use it as a resource for survival, [52] p. 234. In this view, “ cognition ‘
shades off’ into basic biological processes such as metabolism.”

Through autopoietic processes with structural coupling (interactions with the envi-
ronment) a biological system changes its structures and thereby the information pro-
cessing patterns in a self-reflective, recursive manner [5]. But self-organisation with
natural selection of organisms, responsible for nearly all information that living systems
have built up in their genotypes and phenotypes, is a simple albeit costly method to de-
velop. Higher organisms (which are more expensive to evolve in terms of resources)
have developed language and reasoning as a more efficient way of learning. The step
from genetic learning (typical of more primitive forms of life) to the acquisition of cog-
nitive skills on higher levels of organisation of the nervous system (such as found in
vertebrata) will be the next step to explore in the project of cognitive info-computation,
following Jablonka and Lamb [53] who distinguish genetic, epigenetic, behavioral, and
symbolic evolution. The studies of bacterial cognition suggest that there are some impor-
tant processes that operate during evolution such as self-organization and auto-poiesis,
which guarantee growth of order, and the propagation of structures in spite of the ran-
domness of environmental influences. Also, colonies, swarms and films seem to play a
prominent role in bacterial evolution (as swarm intelligence, i.e. distributed cognition).

Interesting question arises in connection to AI and AL which are not based on
chemical processes: is molecular computation necessary for cognition? For example
[9] proposed that minimal cognition can be identified with sensorimotor coordination.
However, even though fundamental, sensorimotor coordination is not enough to explain
cognition in biological systems. Chemical processes of autopoiesis based on molecu-
lar computation (information processing) are essential, not only for simple organisms
like bacteria, but also for the functioning of the human nervous system. In the words of
Shapiro:

“molecular biology has identified specific components of cell sensing, in-
formation transfer, and decision-making processes. We have numerous precise
molecular descriptions of cell cognition, which range all the way from bacterial
nutrition to mammalian cell biology and development.” [54] p. 24

Info-computational approach provides an appropriate framework for studying the
above question of minimal cognition. The advantages of info-computational approaches
to the modeling of cognition are that they bridge the Cartesian gap between matter and
mind, providing a unified naturalist framework for a vast range of phenomena, and they
are testable. Dennett declared in a talk at the International Computers and Philosophy
Conference, Laval, France in 2006: “AI makes philosophy honest.” Paraphrasing Den-
nett we can say that info-computational models make cognition honest - transparent
and open for critical investigation and experimentation. In that sense parallel research
in biology and cognitive robotics present a “reality check” where our understanding of
cognition, information processing and morphological computation can be tested in a
rigorous manner.
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7 Conclusions

Studied as a natural phenomenon, cognition can be seen as info-computational pro-
cesses in living systems. The aim of this article is to present methodological and prac-
tical grounds for a naturalist computational approach to cognition supported by new
experimental results on cognition of simplest living organisms such as bacteria. The
hope is to contribute to the elucidation of the following fundamental questions accord-
ing to [55] [1] and [9]:

What cognition is. The nature of cognition, the question about how the concept of
cognition should be defined. In the info-computational framework it becomes trans-
formed into the question: what in the computing nature is cognition? Cognition for an
adaptive, developing and evolving living agent is the process of learning that operates
according to the PAC (Probably Approximately Correct) strategy [46]. Results from the
studies of natural cognitive systems will help resolve the question concerning artifactual
computational cognition.

How cognition works. Cognition as information processing happening in an informa-
tional network of cognizing agents with distributed computational dynamics connects
the agents intrinsic structures with the outside world of potential information, through
interactions. Those interactions include all four levels on which evolution operates: ge-
netic, epigenetic, behavioral, and symbolic [53]. We have shown in the example of
bacterial cognition how all four levels contribute.

What cognition does. By elucidating the info-computational and evolutionary char-
acter of cognition we can understand its agent-dependency, its generative mechanisms
and its life-sustaining and life-propagating role. Cognition is the mechanism that en-
ables cognizing agents to deal with the complexity of the environment, through control
of their own behavior, [52] p. 234.

The info-computational approach can contribute to rethinking cognition as informa-
tion self-organising processes of morphological/chemical/molecular/natural computa-
tion in all living beings. Thus, we can start to learn how to adequately computationally
model living systems, which has up to now been impossible, [33]. “Second generation
computational models” [37] under current development promise to enble us to frame
theoretically, simulate and study living organisms in their full complexity. Based on
current work in the related fields such as information science, computability and theory
of computing, logic, molecular biology, and evolution, a new more coherent picture of
cognition can be expected to emerge. As a complement to Woframs idea of mapping
and mining the computational universe [56] this article suggests mapping and mining
the biological universe by computational tools with the goal to reverse engineer cogni-
tion and find smart cognitive computational strategies.

References

1. Lyon, P.: The biogenic approach to cognition. Cognitive Processing 7, 11–29 (2005)
2. Neisser, U.: Cognitive psychology. Appleton-Century Crofts (1967)
3. Rozenberg, G., Kari, L.: The many facets of natural computing. Communications of the

ACM 51, 72–83 (2008)



Modeling Life as Cognitive Info-computation 161

4. Modha, D.S., Ananthanarayanan, R., Esser, S.K., Ndirango, A., Sherbondy, A.J., Singh, R.:
Cognitive computing. Communications of the ACM 54(8), 62–71 (2011)

5. Maturana, H., Varela, F.: Autopoiesis and cognition: the realization of the living. D. Reidel
Pub. Co. (1980)

6. Maturana, H.: Biology of Cognition. Defense Technical Information Center (1970)
7. Dodig-Crnkovic, G., Giovagnoli, R.: Computing Nature. Springer (2013)
8. Dodig-Crnkovic, G., Burgin, M.: Information and Computation. World Scientific Pub. Co.

Inc. (2011)
9. van Duijn, M., Keijzer, F., Franken, D.: Principles of minimal cognition: Casting cognition

as sensorimotor coordination. Adaptive Behavior 14, 157–170 (2006)
10. Ben-Jacob, E., Shapira, Y., Tauber, A.: Seeking the foundations of cognition in bacteria.

Physica A 359, 495–524 (2006)
11. Ben-Jacob, E.: Social behavior of bacteria: from physics to complex organization. The Eu-

ropean Physical Journal B 65(3), 315–322 (2008)
12. Ben-Jacob, E.: Learning from bacteria about natural information processing. Annals of the

New York Academy of Sciences 1178, 78–90 (2009)
13. Ng, W.L., Bassler, B.L.: Bacterial quorum-sensing network architectures. Annual Review of

Genetics 43, 197–222 (2009)
14. Waters, C.M., Bassler, B.L.: Quorum sensing: Cell-to-cell communication in bacteria. An-

nual Review of Cell and Developmental Biology 21, 319–346 (2005)
15. Pombo, O., Torres, J., Symons, J. (eds.): Special Sciences and the Unity of Science. Springer

(2012)
16. Rosen, R.: Anticipatory Systems. Pergamon Press (1985)
17. Popper, K.: All Life is Problem Solving. Routledge (1999)
18. Floridi, L.: Informational realism. In: Weckert, J., Al-Saggaf, Y. (eds.) Selected Papers from

Conference on Computers and Philosophy, vol. 37, pp. 7–12. Australian Computer Society,
Inc. (2003)

19. Sayre, K.M.: Cybernetics and the Philosophy of Mind. Routledge and Kegan Paul (1976)
20. Stonier, T.: Information and meaning: an evolutionary perspective. Springer (1997)
21. Zeilinger, A.: The message of the quantum. Nature 438, 743–743 (2005)
22. Vedral, V.: Decoding reality: the universe as quantum information. Oxford University Press

(2010)
23. Chaitin, G.: Epistemology as information theory: From leibniz to omega. In: Dodig Crnkovic,

G. (ed.) Computation, Information, Cognition, The Nexus and The Liminal, pp. 2–17. Cam-
bridge Scholars Pub. (2007)

24. Dodig-Crnkovic, G.: Dynamics of information as natural computation. Information 2(3),
460–477 (2011)

25. Dodig-Crnkovic, G.: Investigations into Information Semantics and Ethics of Computing.
Mälardalen University Press (2006)

26. Dodig-Crnkovic, G.: Information, computation, cognition. Agency-based hierarchies of lev-
els. In: Müller, V.C. (ed.) Fundamental Issues of Artificial Intelligence (Synthese Library).
Springer (forthcoming, 2014)

27. Bateson, G.: Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry,
Evolution, and Epistemology. University of Chicago Press (1972)

28. McGonigle, D., Mastrian, K.: Introduction to information, information science, and infor-
mation systems. In: Nursing Informatics and the Foundation of Knowledge. Jones & Bartlett
(2012)

29. Hewitt, C.: What is Commitment? Physical, Organizational, and Social. In: Noriega, P.,
Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.)
COIN 2006. LNCS (LNAI), vol. 4386, pp. 293–307. Springer, Heidelberg (2007)



162 G. Dodig-Crnkovic

30. Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and
Complexity. Oxford University Press (1995)

31. Kauffman, S.: Origins of Order: Self-Organization and Selection in Evolution. Oxford Uni-
versity Press (1993)

32. Deacon, T.: Incomplete Nature. How Mind Emerged from Matter. W. W. Norton and Com-
pany (2011)

33. Dodig-Crnkovic, G., Müller, V.: A dialogue concerning two world systems: Info-
computational vs. mechanistic. In: Dodig Crnkovic, G., Burgin, M. (eds.) Information and
Computation, pp. 149–184. World Scientific (2011)

34. Cooper, S.B.: Turing’s Titanic Machine? Communications of the ACM 55(3), 74–83 (2012)
35. Dodig-Crnkovic, G.: Significance of Models of Computation from Turing Model to Natural

Computation. Minds and Machines 21(2), 301–322 (2011)
36. Hewitt, C.: What is computation? Actor model versus Turing’s model. In: Zenil, H. (ed.) A

Computable Universe, Understanding Computation and Exploring Nature As Computation.
World Scientific Publishing Company/Imperial College Press (2012)

37. Abramsky, S.: Information, processes and games. In: Benthem van, J., Adriaans, P. (eds.)
Philosophy of Information, pp. 483–549. North-Holland (2008)

38. Goertzel, B.: Chaotic Logic. Language, Thought, and Reality from the Perspective of Com-
plex Systems Science. Plenum Press (1994)

39. Kampis, G.: Self-Modifying Systems in Biology and Cognitive Science: A New Framework
for Dynamics, Information, and Complexity. Pergamon Press (1991)
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Abstract. We show that it is decidable whether a given a regular tree language
belongs to the classΔ0

2 of the Borel hierarchy, or equivalently whether the Wadge
degree of a regular tree language is countable.

1 Introduction

In [14] there was given an algorithm which for a deterministic parity tree automaton
A decides whether the language L(A) is Borel. This was further extended to a finer
classification in [12] and finally to a full Wadge classification in [13]. The algorithms
look for a pattern in the graph of the automaton and decide the Borel and Wadge classes
upon finding of these special patterns.

Similar problems for non-deterministic parity tree automata seem to be much harder.
Recently in [2] was provided an algorithm which decides for a given non-deterministic
parity tree automaton A, whether L(A) is a Boolean combination of open sets. For
other Borel classes there was no known algorithm. This paper provides a relatively
simple extension of the result in [2] to the class of Δ0

2 = Σ0
2 ∩Π0

2 sets, that is the sets
which are simultaneously presentable as countable unions of closed sets and countable
intersections of open sets. This result is presented in Section 4 in Theorem 1. The proofs
in [2] are based on an analysis of an algebraic structure computable fromA and the main
result states that the language L(A) is a Boolean combination of open sets if and only if
a certain finite number of algebraic requirements hold. Since the class Δ0

2 is bigger, in
order to characterize this class, the set of algebraic requirements must be relaxed. In this
paper we show that indeed this is the case. Our proofs closely follow the proofs from
[2] with some necessary adjustments. In particular the crucial concept of the topological
cutting game introduced in [2] is considered in this paper not only in the finite, but also
in the infinite case.

The approach presented in [2] and in the present paper in a certain sense is a rem-
iniscent of the approach applied to deterministic automata in [12,13,14]. Namely, the
algebraic structure computed from a given automaton A induces a graph with edges re-
flecting the algebraic properties. In the deterministic case it is possible to decide Borel
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and Wadge classes analyzing patterns in the graph of the automaton, in the present paper
we are looking for patterns in the algebraic graph.

Finally let us mention results which provide information about the set-theoretical
complexity of a language accepted by a non-deterministic automaton A assuming some
additional properties of A:

– Rabin in [16] proved, that if L and its complement are accepted by a non-
deterministic Büchi tree automata, then L is weakly definable, in particular it is
Borel.

– Recently in [5] it was shown using decidability results about the cost functions,
that for a given non-deterministic Büchi tree automaton it is decidable whether the
language is weakly definable.

– In [9] the decidability results regarding deterministic automata were lifted to a more
general context of game automata.

This paper consists of four Sections: the Introduction, a preliminary Section 2 introduc-
ing automata, set-theoretical and algebraic notations, a Section 3 introducing topologi-
cal games and linking these games to the Wadge hierarchy and Section 4 containing the
main result. All missing proofs can be found in the long version of the present paper
[8].

2 Preliminaries

Trees and Contexts. Given a finite alphabet A, a tree over A is a partial function
t : {0, 1}∗ → A such that its domain dom(t) is prefix closed. A node of a tree t is an
element v ∈ dom(t). A left child of a node v of t is the node v0, while its right child
is v1. A leaf of a tree is a node without children. We denote by TA the family of all
trees over A. A set of trees over A is called a tree language, or simply a language. A
multi-context over A is a tree c over A ∪ {�}, where

– � /∈ A, and
– � only labels some leaves of c.

A leaf of c labelled by � is called a port. Notice that a multi-context may have infinitely
many ports. For a multi-context c and a function η mapping each port of c to a tree t
over A, by c[η] we denote the tree given by inserting into every port x a tree η(x). When
η(x) = t for each port x, we just write c[t]. We say that a tree t extends a multi-context
c if there is a mapping η such that c[η] = t. Given a multi-context c and a language
L, by [c]−1L we denote the language of trees t ∈ L extending c. The class generated
by c and all possible mappings η is denoted by c[TA]. A finite multi-context is called a
prefix. A multi-context with only one port is called a context.

Topology. For a finite alphabet A, we equip the class TA of all trees over A with the
prefix topology. That is the basic open sets are sets of the form p[TA], for a prefix p over
A, and thus the open sets are of the form

⋃
p∈P p[TA] for some set P of prefixes.

The class of Borel tree languages of TA is the closure of the class of open sets of
TA with respect to countable unions and complementations. Given TA, the initial finite
levels of the Borel hierarchy are defined as follows:
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– Σ0
1(TA) is the class of open subsets of TA,

– Π0
n(TA) consists of complements of sets from Σ0

n(TA),
– Σ0

n+1(TA) consists of countable unions of sets from Π0
n(TA).

A much finer measure of the topological complexity is the Wadge degree (see [10,
Chapter 21.E]). If L ⊆ TA and M ⊆ TB , we say that L is continuously (or Wadge)
reducible to M , if there exists a continuous function f : TA → TB such that L =
f−1(M). We write L ≤W M iff L is continuously reducible to M . This pre-ordering
is called the Wadge ordering. If L ≤W M and M ≤W L, then we write L ≡W M .
If L ≤W M but not M ≤W L, then we write L <W M . The Wadge hierarchy is the
partial order induced by <W on the equivalence classes given by ≡W . A language L is
called self dual if it is equivalent to its complement, otherwise it is called non self dual.

Given a certain family of sets C, we say that M is C-hard if L ≤W M for every
L ∈ C. A C-hard set L is said to be C-complete if moreover L ∈ C.

Algebra. The Wadge hierarchy of the regular languages of infinite words is well under-
stood thanks to a classification result by K. Wagner ([18]). In particular from Wagner’s
result one can derive an algorithm which decides whether a given regular language of
infinite words is a Boolean combination of open sets. Being a Boolean combination
of open sets is equivalent to being in Δ0

2 class in the context of regular languages of
infinite words. This is not true for the regular languages of infinite trees (see [2, Section
4.1] and Proposition 7 in [8] - the long version of the present paper - for an analysis of
one special case). A natural algebraic interpretation of Wagner’s result can be found in
[15, Theorem V.6.2]. In the case of languages of infinite trees, the algebraic theory is
not yet fully developed. As a general reference may serve papers [1,2,3,4]. For details
of the approach applied in the present paper refer to [2, Section 3].

Following the approach presented in [2], the family of all trees TA is divided into
finitely many Myhill-Nerode equivalence classes HL. Similarly, there are finitely many
equivalence classes VL of contexts. The same holds for multi-contexts with a fixed
number of holes. Starting from an automaton accepting language L, one can compute
families HL and VL. The equivalence class of a tree t or a context v is denoted αL(t),
αL(v), respectively. For a given tree t and contexts v1, v2 multiplication of contexts
and trees v1t, v1v2 naturally induces multiplication between elements of HL and VL.
Similarly, for a given context v the operation of infinite power v∞ = vv . . . induces a
mapping from VL to HL.

Given a regular language L, its strategy graph GL is the pair (VL×HL, E) such that
((v, h), (v′, h′)) ∈ E iff there exists a tree t of type h such that t can be decomposed
as the concatenation of a context of type v and another tree, and each prefix of t can be
completed into a context of type v′. We thus say that the strategy graph is recursive if
there exists a strongly connected component that contains two nodes (v, h) and (v′, h′)
with h �= h′. For a more formal approach to the strategy graph refer to [2, Section G].
We will need the following

Proposition 1 ([2]). If there exists a path from (v, h) to (v′, h′) in GL, then there exists
an edge from (v, h) to (v′, h′).
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3 Topological Complexity and Games

Topological Games. Let L and M be two languages. The Wadge game W(L,M) is an
infinite two-player game between Player I and Player II. It is defined as follows. During
a play Player I constructs a tree t and Player II a tree t′. At the first round Player I plays
a root of t and Player II plays a root of t′, and at each consecutive round both players
add a level to their corresponding tree (thus either Player adds some child to a leaf or
Player signalizes that the node will be also a leaf of the final resulting tree of the play
by not adding any children to it). Player I plays first and Player II is allowed to skip
her turn but not forever. Player II wins the game iff t ∈ L ⇔ t′ ∈ M . The game was
designed precisely in order to obtain a characterisation of continuous reducibility.

Lemma 1 ([17]). Let L,M be two languages. Then L ≤W M iff Player II has a
winning strategy in the game W(L,M).

From Borel determinacy ([11]), if both L and M are Borel, then W(L,M) is deter-
mined. The ordering <W restricted to the Borel sets is well-founded (see [10, Theorem
21.15]). The Wadge degree for sets of finite Borel rank can be defined inductively. First,
we remark that since every self dual set A is Wadge equivalent to the disjoint union of
a certain non self dual set B and its complement B�, it is enough to start associating a
Wadge degree only to non self dual sets and say that the Wadge degree of A equals the
Wadge degree of B. For each degree there are exactly three equivalence classes with the
same degree, represented by L, L� and L± — the disjoint union of L and L�. Clearly
L,L� <W L± and L± is self dual.

In [6], J. Duparc showed that for non self dual sets, it is possible to determine its
sign, + or −, which specifies precisely the ≡W -class. For instance, ∅ and complete
open sets have sign −, while the whole space and complete closed sets have sign +.
All self dual sets by definition have sign ±. Let κ be the length of Wadge hierarchy
of Borel sets of finite rank. Thus an ordinal α < κ determines a ≡W -class, denoted
[α]ε for ε ∈ {+,−,±}. In the same paper, in the context of Wadge degrees, Duparc
defined set-theoretical counterparts of ordinal multiplication by a countable ordinal,
and (quasi) exponentiation of base ω1. From now on [α]ε will also denote the canonical
sets of Wadge degree generated with Duparc’s operations.

Cutting Games. Below we define a family of two-player games of perfect information,
called cutting games. These games were introduced in [2]. For the argument in [2] the
most important was the finite version of the game. In the present paper we will consider
both infinite and finite versions of the cutting game.

Let Li (i = 1, 2, . . . ) be languages over the alphabet A, and let p be a prefix over the
alphabet A. The simple cutting game of length k, denoted Hp

k(L1, . . . , Lk) is played by
two players, Constrainer and Alternator. For each i ∈ {1, . . . , k} the i-th round of the
game is played as follows:

– Alternator chooses a tree ti ∈ Li extending the prefix chosen in the previous round
by the Constrainer; in the first round of the game Alternator must choose an exten-
sion of the given prefix p,

– Constrainer chooses a prefix of the tree ti.
– If Alternator cannot move, she loses, but if she survives k rounds then she wins.
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The infinite cutting game, denoted by Hp
∞(L1, . . . ), is played just like a simple game

but without the restriction to a fixed given number of rounds. Alternator wins iff she
can make infinitely many moves.

Let X be a language over the alphabet A. The X-delayed cutting game, denoted by
HX

ω (L1, . . . ) is similar to a simple cutting game, except that a mini game is played to
determine the prefix p and the length k of the match. The mini game goes as follows.
Firstly, Alternator chooses a tree t ∈ X . Then Constrainer chooses a prefix p of t
and a finite ordinal k. Finally the two players start to play the simple cutting game
Hp

k(L1, . . . , Lk).
When L2i = L and L2i+1 = L�, then we simply write Hp

k(L,L�),Hp∞(L,L�) and
HX

ω (L,L�). It was verified in [2] that a given language M has a Wadge degree less
than ω iff Constrainer has a winning strategy in Hε

k(M,M�), for all but finitely many
k < ω. In [2] it was also remarked that the language L described in [2, Section 4.1]
and in Proposition 7 in [8], even if it is such that Alternator has a winning strategy in
every corresponding finite cutting game, she looses the infinite one. In the next two
propositions we establish a link between delayed cutting games and infinite Wadge
degrees on the one hand, and infinite simple cutting games and uncountable Wadge
degrees on the other hand.

Proposition 2. Let L be a tree language, [ω]+ ≤W L iff Alternator has a winning
strategy in HL

ω(L
�, L).

Proposition 3. Let L be a tree language. For every prefix p, dW ([p]−1L) ≥ ω1 iff
Alternator has a winning strategy in Hp∞(L,L�).

4 A Characterization of Languages of Uncountable Degree

Games on Types and Strategy Trees. Following [2], for a given regular language
of trees L, a prefix p and types hi ∈ HL (i = 1, 2, . . . ) we define games on types
Hp

k(h1, . . . , hk) and Hp
∞(h1, h2, . . . ). The Constrainer plays as in the simple and infi-

nite cutting games and the task of the Alternator is to play in the i–th round a tree of
type hi, that is an element of α−1

L (hi).
A type tree for L is a tree over the finite alphabet HL. For a given tree t, there is a

type tree σt induced by t such that for every node w ∈ dom(σt),

σt(w) is the type of the tree t.w. (1)

Let σ be a type tree, and t a tree. We say that a type tree σ is locally consistent with a
tree t if dom(σ) = dom(t) and for every node w ∈ dom(t) such that t(w) = a,

– if w is a leaf, then σ(w) is the type of a,
– if w has two children m and mr, then σ(w) is the type obtained by applying a to

the pair (σ(m), σ(mr)).

Definition 1. A finite strategy tree is a tuple s = (t, σ1, . . . , σk) where

– t is a tree, the support of the strategy and σ1 = σt,
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– σ is locally consistent with t, for each  ≤ k,
– for each w ∈ dom(t), Alternator has a winning strategy in Hε

k(σ1(w), . . . , σk(w)).

An infinite strategy tree s = (t, σ1, σ2, . . . ) is defined analogously.

The root sequence of a strategy tree s = (t, σ1, σ2, . . . ) is the sequence of types
(σ1(ε), σ2(ε), . . . ). We define the alternation of a sequence (h1, . . . , h) of types as the
cardinality of the set {i : hi �= hi+1}. The same definition applies to infinite sequences
of types. Let s be a finite strategy tree. The root alternation of s is the alternation of
the root sequence, while the limit alternation of s is the maximal number k such that
infinitely many subtrees of s have root alternation at least k. We say that a set S of finite
strategy trees has bounded root alternation if there is a k such that the root alternation
of each s ∈ S is at most k, unbounded otherwise. Analogously for limit alternation.

A finite or infinite strategy tree s = (t, σ1, . . . ) is locally optimal if for every strategy
tree s′ = (t, σ′

1, . . . ) with same root sequence, and every i > 1, the depth at which σi

and σi+1 first differ is greater than or equal to the depth at which σ′
i and σ′

i+1 first differ.
The next Proposition is a very important technical point of [2].

Proposition 4 (Lemma G.2 in Appendix of [2]). For a regular tree language L, if
S is a set of locally optimal finite strategy trees with both root and unbounded limit
alternation, then the strategy graph GL is recursive.

The next Proposition establishes an important link between infinite cutting games and
strategy trees.

Proposition 5. Assume Alternator has a winning strategy in Hε
∞(L,L�). Then there is

an infinite strategy tree s∞ with infinite root alternation.

Proof. Assume Alternator has a winning strategy f in Hε
∞(L,L�). The infinite strategy

tree s∞ is constructed as follows. First of all, we can represent f as a tree satisfying the
following properties:

– the root is labelled by ε, and its unique child is labelled by Alternator’s move ob-
tained by applying the winning strategy f at the first round of the game,

– if a node v is labelled with a tree t, then for every prefix p of t there is a unique
child of v labelled by p,

– if a node v is labelled with a prefix p, then v has a unique child, and such a child is
labelled by the answer obtained by applying the winning strategy f to the position
in the cutting game given by the labels of the path from the root to v.

Notice that nodes at odd depth represent Alternator’s moves (according to f ) and are
therefore labelled by trees, while nodes at even depth represent Constrainer’s move and
are thus labelled by prefixes. From now on, we always identify f and the aforemen-
tioned tree.

Claim. For every node v of f labelled by a prefix p, there is an infinite sequence of
strategy trees (sv :  < ω) such that for each 

1. sv = (t, σ1, . . . , σ), with the type σ2k+1(ε) included in L and the type σ2k(ε)

included L� if v is at depth 2i with i even, else dually. In particular this means that
σ2k+1(ε) �= σ2k(ε);
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2. sn+1 extends sv , that is sv+1 = (t, σ1, . . . , σ, σ+1) and sn = (t, σ1, . . . , σ).

Given the Claim, from Property 1 we have that for each node v labelled by a prefix
p, and each  = 1, 2, . . . , sv has root alternation  and defines a winning strategy for
Alternator in Hp

 (L,L�) if v is at depth 2i with i even, in Hp
 (L

�, L) otherwise. Let

sε = (t, σ1, . . . , σ) for  = 1, 2, . . . .

The required infinite stategy tree is defined as s∞ = (t, σ1, . . . ).It remains to prove
the Claim. Firstly, by induction with respect to  = 1, 2, . . . we will assign a strategy
tree sv to each node v of f labelled by a prefix. In the process of inductive construc-
tion we will also verify that Property 1 of the Claim is satisfied. Verification of Prop-
erty 2 will be done later. Let us start from a remark that given an infinite sequence
of type trees (σ1, . . . ), by compactness there is a converging subsequence (σ′

1, . . . ).
We assume that every time we have to choose a converging subsequence (σ′

1, . . . ) of a
given sequence (σ1, . . . ), we always choose the same subsequence and denote it’s limit
as limit(σ1, . . . ). We also assume that given a tree t, we have fixed an enumeration
(p1, . . . ) of all its prefixes such that sequence (pk)k=1,2,... converge to the tree t. For
 = 1, it is enough to take for each node v

sv1 = (t, σt),

where t is given by applying f to the considered position and σt is defined by formula
(1) at the beginning of this section. By choice of σt, Property 1 is satisfied. For  > 1
we proceed as follows. We assume the construction performed for −1. Fix any node v
labelled by a prefix p. Assume that a tree t is the answer given by f at the position in the
game given by the path from the root to the node v. To every prefix p of t corresponds
a child w of v to which we already associated a strategy tree sw−1 = (tp, σp

2 , . . . , σ
p
 ).

Let us thence consider the sequence (p1, . . . ), with limit t and the sequences (tp1 , . . . ),
(σp1

2 . . . ), . . . , (σp1

 . . . ). The limits limit(σpk

2 ), . . . , limit(σpk

 ) were chosen in advance
and are equal σ∗

2 , . . . , σ
∗
 . Since each tpk extends pk, the limit t∗ of (tp1 , tp2 , . . . ) is t.

Now, for each p, the type trees (σp
2 , . . . , σ

p
 ) are locally consistent with tp. Furthermore,

given a sequence of trees (t1, . . . ) that converges to t∗ and a sequence of type trees
(σ1, . . . ) that converges to σ∗, if σk is locally consistent with tk for every k, then σ∗ is
locally consistent with t∗. From this fact follows that the limits σ∗

2 , . . . , σ
∗
k are locally

consistent with t. Finally, define σ∗
1 to be σt as in formula (1). We have just proved

that sv = (t, σ∗
1 , . . . , σ

∗
 ) is a strategy tree. From induction hypothesis together with

definition of σt and preservation of Property 1 under limits follows that sv also satisfies
Property 1.

We now verify that the described procedure preserves Property 2. For  = 1 there
is nothing to check. For the induction step, we reason as follows. Assume the Property
holds for each node and for each k < . Now, let us consider an arbitrary node v. We
have to prove that sv+1 extends sv . By induction hypothesis, sw−1 = (tp, σp

2 , . . . , σ
p
 )

and sw = (tp, σp
2 , . . . , σ

p
 , σ

p
+1), for every node w in the described procedure. Since

the limits have been fixed in advance, we have that sw = (t, σt, σ
∗
2 , . . . , σ

∗
 ) and sv+1 =

(t, σt, σ
∗
2 , . . . , σ

∗
 , σ

∗
+1), meaning that the latter extends the former. This concludes the

proof of the Claim.
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Using the above Proposition, we can generalize to infinite games Proposition 5.2
from [2]:

Proposition 6. For a regular language L the following conditions are equivalent.

1. Alternator wins the game Hε
∞(L,L�),

2. There are tree types h, g ∈ HL, such that h �= g and Alternator wins Hε
∞(h, g).

We will use the following Lemma, presented in [2] for finite strategy trees, with proof
extending straightforwardly to infinite strategy trees.

Lemma 2. For every finite or infinite strategy tree, there is a locally optimal strategy
tree with same root sequence.

The next Lemma follows immediately from the definition of a strategy tree.

Lemma 3. Let s = (t, σ1, . . . , σ) be a strategy tree. For the gameHε
(σ1(ε), . . . , σ(ε))

and a strategy of Constrainer given by always cutting at level i, Alternator wins by play-
ing as follows:

– at first, Alternator plays t, then
– for each port w at level i of the multi context given by Constrainer’s move, Alter-

nator plugs in the tree given by her winning strategy Hε
(σ1(w), . . . , σ(w)).

In particular, if from a certain j <  on σk(w) = σk+1(w), j ≤ k < , then for each
round k such that j < k <  Alternator always plugs in the same tree of type σj(w)
chosen at round j.

An Effective Characterization. Everything now is ready to prove the main result of
this paper.

Theorem 1. Let L be a regular tree language given by a non-deterministic tree au-
tomaton A. The following conditions are equivalent:

1. The strategy graph GL is recursive.
2. dW (L) ≥ ω1

In particular, since the graph GL is computable from the automaton A, it is decidable
whether the language accepted by A is of Wadge degree greater than or equal to ω1.

Proof. (1) ⇒ (2). Assume the strategy graph is recursive. This means that there exists
a strongly connected component that contains two nodes (v, h) and (v′, h′) with h �= h′.
Thanks to Proposition 1, if there exists a path between (v, h) and (v′, h′), there is also
an edge between (v, h) and (v′, h′). Moreover, for vertices (v1, h1), (v2, h2), . . . , if
for every i = 1, 2, . . . there is an edge from (vi, hi) to (vi+1, hi+1), this means that
Alternator has a winning strategy in Hε

∞(h1, h2, . . . ). So, take (vi, hi) = (v, h) for i
even, and (vi, hi) = (v′, h′) for i odd. This shows that Alternator has a winning strategy
in Hε

∞(h, h′). By Proposition 6 Alternator has a winning strategy in Hε
∞(L,L�).

(2) ⇒ (1). By Propositions 3 and 4, it is enough to verify that if Alternator has a
winning strategy in Hε

∞(L,L�) then there is a set S of locally optimal finite strategy
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trees with both root and limit unbounded alternation. Assume Alternator has a winning
strategy f in Hε

∞(L,L�). From Proposition 5 there is a strategy tree s∞ = (t, σ1, . . . )
with infinite root alternation. By Lemma 2 we can assume that s∞ is locally optimal.
Let us define

S = {(t, σ1, . . . , σk) : k = 1, 2, . . .}.
Note that each element of S is locally optimal. Now, assume limit alternation of S is
bounded. From this fact and since every element of S is a prefix of s∞, it holds that
with respect to s∞, the set of subtrees of t with infinite root alternation has to be finite.
This means that s∞ satisfies the following property:

(*) there is a finite set X of nodes of t satisfying the following properties:
– the root is included in X , and each node of X is at most at depth i in t,
– σk(v) �= σk′ (v), for every node v in the set X , and σk(w) = σk′ (w), for every

node w of t of depth i + 1, for some k, k′ , with k < k′ ≤ j.

The strategy tree s = (t, σ1, . . . , σj) from S, where j is given by the previous property,
also satisfies the property (*) above (for the same X and the same k, k′).

Let us consider the game Hε
j(σ1(ε), . . . , σj(ε)) where at first Alternator plays t and

then Constrainer uses the strategy given by cutting always at level i+1. We can therefore
apply Lemma 3 and assume that Alternator plays the winning strategy described there.
This implies that the trees played at round k and k′ are the same, say t′ (from the root
to level i they are the same, because the Constrainer insists on this and below they are
the same, because the Alternator plays the same answers in rounds k and k′). But by
local consistency, since σk(ε) �= σk′ (ε), the two trees should have two different types,
a contradiction. We therefore conclude that limit alternation of S is unbounded.

5 Conclusion

The algorithm provided in [2] decides whether a given non-deterministic automaton
accepts a language which is a Boolean combination of open sets or equivalently is
of a Wadge degree smaller than ω. By the same approach we showed an algorithm
which decides whether a given non-deterministic automaton accepts a language in Δ0

2

or equivalently, a language of a Wadge degree smaller than ω1. We propose for further
research the following three generalizations of the result presented in this paper:

1. For a given n = 1, 2, . . . there are natural topological games which characterize
languages of Wadge degrees smaller than ωn. Moreover, there are known examples
of regular languages of degree ωn. It would be a desirable and perhaps more involved
extension of results in [2] if for a given n one can provide an algorithm deciding whether
a given non-deterministic automaton accepts a language of degree smaller than ωn.

2. In the absence of examples of regular languages between Wadge degree ωω and
Wadge degree ω1, one could reasonably expect, that the decidability result in the present
paper should show that indeed any regular language of countable Wadge degree is of
Wadge degree smaller than ωω. However, this question still remains open.

3. Regarding higher Borel classes, in particular regular languages which are Boolean
combinations of Σ0

2 sets, the following extension of the method in [2] seems to be



172 A. Facchini and H. Michalewski

plausible. The cutting game is based around restrictions of moves by prefixes, that is by
languages in Δ0

1. Its topological counterpart on the next Borel level is a game, where
the Constrainer is allowed to play constraints which are regular languages in Δ0

2. This
leads to a natural topological characterization similar to the results in Section 3, but the
algebraic counterpart of this generalized cutting game is not yet fully understood.
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3. Bojańczyk, M.: Algebra for trees. In: Handbook of Automata Theory, European Mathemati-
cal Society Publishing House (to appear)
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guages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 261–273.
Springer, Heidelberg (2007)

8. Facchini, A., Michalewski, H.: Deciding the Borel complexity of regular tree languages
(2014), http://arxiv.org/abs/1403.3502

9. Facchini, A., Murlak, F., Skrzypczak, M.: Rabin-Mostowski index problem: a step beyond
deterministic automata. In: LICS 2013 (2013)

10. Kechris, A.: Classical Descriptive Set Theory. Springer (1995)
11. Martin, D.A.: Borel determinacy. The Annals of Mathematics 102, 363–371 (1975)
12. Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong, L. (ed.)

CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)
13. Murlak, F.: The Wadge Hierarchy of Deterministic Tree Languages. In: Bugliesi, M., Preneel,

B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 408–419. Springer,
Heidelberg (2006)
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Abstract Biological systems employ compartmentalisation in order to
orchestrate a multitude of biochemical processes by simultaneously
enabling “data hiding” and modularisation. In this paper, we present
recent research projects that embrace compartmentalisation as an organ-
isational programmatic principle in synthetic biological and biomimetic
systems. In these systems, artificial vesicles and synthetic minimal cells
are envisioned as nanoscale reactors for programmable biochemical syn-
thesis and as chassis for molecular information processing. We present P
systems, brane calculi, and the recently developed chemtainer calculus
as formal frameworks providing data hiding and modularisation and thus
enabling the representation of highly complicated hierarchically organ-
ised compartmentalised reaction systems. We demonstrate how compart-
mentalisation can greatly reduce the complexity required to implement
computational functionality, and how addressable compartments permit
the scaling-up of programmable chemical synthesis.

1 Introduction

Biological systems employ compartmentalisation in order to orchestrate a multi-
tude of biochemical processes. Such organisation is prominently featured in the
cytoplasm, where a multitude of biochemical compounds is highly organised in
vesicular compartments that co-locate reactants of desired reactions while sep-
arating those of undesired reactions. Surface markers on these compartments
are used for vesicular trafficking, as well as vesicle budding and fusion, thereby
allowing for the fine-tuned control of biochemical reaction cascades [1,2].

The desire to harvest compartmentalisation as a way of providing data hiding
and modular organisation for next generation chemical synthesis and molecu-
lar computation has led to various approaches. For example Chaplin et al. [3]
have demonstrated that photochromic molecules such as NitroBIPS, a kind of
spiropyran, can be localised inside a collection of static polydimethylsiloxane sil-
icone polymer (PDMS) microwells and used to implement registers, logic gates
and circuits. Other studies have focused on utilising supermolecular compart-
ments as nanoscale “nano-bioreactors” [4,5,6,7]. In this regard, several pathways

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 173–182, 2014.
© Springer International Publishing Switzerland 2014
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Fig. 1. DNA mediated compartment association – here in the case of emulsion droplets.
Compartment surfaces are decorated with two different DNA single strands via biotin-
streptavidin linkers (left) and stained according to the respective DNA sequence. If the
DNA sequences are complementary, droplets bind with each other (center). If they are
non-complementary, they do not associate (right). The different arrangements impact
the rate of compartment fusion such that associated compartments are more likely to
fuse than dissociated ones. Figures taken from [10].

for vesicle aggregation [8,9,10], budding [11], and fusion [12,13,14] have been
suggested.

In particular, Hadorn et al. employ DNA tags for the specific interaction of
reaction compartments. In their approach, the surface of either phospholipid
vesicles [10] or oil-in-water emulsion droplets [9] are decorated non-covalently
with short single stranded DNA sequences of typically 15 nucleotides via biotin-
streptavidin linkers (see Figure 1). If the DNA markers of two compartments are
complementary, they force the compartments to aggregate as a consequence of
DNA hybridization, whereas aggregation of compartments with non-complemen-
tary DNA markers is prohibited.

In this paper, we present recent research in computer science that embraces
compartmentalization in synthetic biological and biomimetic systems. In Sec-
tion 2, we review state-of-the-art frameworks that are capable of expressing re-
actions in and of hierarchically compartmentalized reaction systems, and present
a novel theoretical framework that closely follows the work of Hadorn et al. in
Section 3. The novel framework is put to the test by applying it to approaches in
programmable chemical synthesis in Section 4 as well as molecular information
processing in Section 5.

2 Formal Frameworks for Compartmentalized Reactions

While chemistry in well-stirred reaction vessels has been described mathematic-
ally already in the late 19th century [15], formal frameworks for compartmental-
ised reaction systems have been suggested only within the last 15 years. The two
main branches that concern themselves with compartmentalized reaction sys-
tems are P systems, proposed by Păun in 1998 [16], and brane calculi, proposed
by Cardelli in 2005 [17].

Both frameworks employ a language of balanced parentheses to capture the
topological organisation of nested compartments. Each compartment can hold
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a multiset of arbitrary chemicals as well as other compartments. In P systems,
compartments are traditionally labeled and the molecular content is given by
associating a multiset of molecules to each compartment label. In brane calculi,
the grammar for parentheses is extended to include molecules directly. Thus, the
formal language is defined by the recursive production rules

P := ∅ � P+ P � �P� � mj (1)

for the non-terminal and start symbol P, the terminals {∅,+,�,�}∪{mj | j∈J}
and the broken vertical bar indicating choice. Here, M = {mj | j∈J} is a set of
chemicals for some index set J and the halfmoon parentheses denote compart-
ments. Structural equivalence relations are introduced to give (M,+, ∅) associ-
ative and commutative semantics with the neutral element ∅.

Over the state space defined by the grammar in Eq. (1), chemical reactions
can be introduced as bulk reactions

P −→ P ′ (2)

for multisets P =
∑

i νimi and P ′ =
∑

j μjmj of simple educt and product
molecules with stoichiometric coefficients νi and μj . In addition, reactions can
describe trans-membrane processes

P + �Q� −→ P ′ + �Q′�, (3)

where P, P ′, Q,Q′ are again simple multisets of molecules. For example, the
action of a sodium potassium pump could be codified by the reaction

2K+ + �3Na+ + ATP� −→ 3Na+ + �2K+ + ADP�. (4)

In traditional P systems, all compartments of a membrane structure are
labeled and each compartment has its specific set of reaction rules. Brane calculi
also associate reaction rules with individual membranes but employ a dedicated
syntax that directly attaches the rule to the respective membrane. For example,
reaction (3) would be associated to an empty compartment by writing

!P (Q)�P ′(Q′)��. (5)

Importantly, the brane calculus defines a process algebra for sequential and par-
allel composition of rules. For example, the exclamation mark in the above nota-
tion signifies that the rule is not consumed upon application.

Avoiding explicit labeling of compartments has the advantage, that one can
introduce reactions that fundamentally alter the arrangement of the compart-
ments themselves, such as compartment fusion

matei�P� + mate�i�Q� −→ �P + Q� (6)

where two compartments with contents P and Q fuse to form a single compart-
ment of mixed content. Fusion is triggered by a mate action associated with one
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compartment and a respective co-action associated with the other compartment.
Compartments fuse if and only if the two actions match. Similarly, a drip action
can initiate compartment fission:

drip�P + Q� −→ �P� + �Q� (7)

Note that this brief summary barely touches the surfaces of both frameworks.
For a complete introduction to P systems and brane calculi the reader is advised
to consult Refs. [16] and [17]. While both frameworks where originally developed
with non-deterministic semantics, the subsequent development of stochastic se-
mantics [18] now allows for their use e.g. in stochastic simulation.

3 Compartments as Programmable Nano-bioreactors

Recently, Fellermann and Cardelli [19] have developed the chemtainer calcu-
lus in an attempt to bring the theoretical framework of brane calculi closer to
a potential experimental implementation in a biomimetic setup: following the
experimental accomplishments of Hadorn et al. [9,10] the chemtainer calculus
employs membrane associated DNA markers to govern the fate of supramolecu-
lar compartments, where two different types of DNA markers are used. On the
one hand, single stranded, or simple, DNA tags are used for compartment re-
cognition and fusion similar to the mate action in the original brane calculus:

σ�P� + σ��Q� −→ σ||�P + Q� (8)

Here, σ signifies a DNA single strand with a specific sequence, σ� its comple-
ment, and σ|| the conjugated double strand. Hybridization of the double strand
is controlled by temperature, and the two single strands are recovered when
surpassing the melting temperature of the double strand:

σ||�P� ←→ σ+σ��P� (9)

Join gates, on the other hand, are multi-strand DNA constructs that allow for
the specification of DNA-based computational processes [20]. In this approach to
DNA computation, one DNA strand that is composed of several logical domains,
with all but one domain being hybridised to one or more complementary strands.
The only initially exposed single strand domain of the gate is a short toehold
region. This toehold can reversibly bind a complementary signal strand which is
designed to be longer than the toehold domain and complementary to the next
domain(s) of the template. The newly binding signal is then able to hybridise
to all matching domains of the template, thereby displacing strands that where
previously bound and possibly exposing new toeholds. The displaced strands can
either be output signals, or signals that bind to toehold regions of downstream
gates. By choosing domains of appropriate length, it can be guaranteed that
toehold binding is reversible, whereas the total strand displacement process is
effectively irreversible, thus computation is energetically downhill and kinetically
irreversible, if and only if all correct input strands are present.
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Disregarding the details of strand displacement, the chemtainer calculus en-
codes join gates with the syntax

s∗ � s′, (10)

where s∗ denotes the set of input strands that the gate recognizes, and s′ denotes
the gates’ output strand. The action of the gate is then given by the transition

s∗ � s′ + s∗ −→ s′. (11)

That is, the gate exposes its output strand s′ if and only if all its inputs are
present, and inputs are consumed upon firing of the gate. Just like simple DNA
tags, join gates are membrane bound.

Note that the original chemtainer calculus uses slightly different fusion se-
mantics, has the additional notion of physical locations, and defines a small
programming language for external nano-bioreactor manipulation. Here, we re-
strict ourselves to the elements of the calculus that are used in the applications
that follow. For a concise exposition, the reader is referred to Ref. [19].

4 Programmable Chemical Synthesis

In Refs. [21] and [19], we have employed the chemtainer calculus for the pro-
grammed synthesis of oligosaccharides. Oligosaccharides are branched hetero-
polymers composed of typically five to ten individual sugar monomers such as
mannose, galactose, and glucose. This diverse class of biochemicals is involved in
various physiological processes pertaining e.g to cell-cell recognition, intra- and
intercellular trafficking, and metabolic modulation [22]. However, their combin-
atorial richness poses a challenge for chemical oligosaccharide synthesis based on
conventional chemical manufacturing techniques [23].

Chemical one-pot synthesis of a given target structure is challenging, because
repetition of bindings sites in the oligomer structure can lead to undesired side
products. The number of potential side products can be controlled, however,
by forcing some reaction steps to occur sequentially while others are allowed to
proceed in parallel.Weyland et al. [21] present an algorithm that identifies such
optimal reaction cascades. For example, assume that the structure P3 shown in
Figure 2 can be produced with the reaction cascade

Gal + E∗
Gal-4Gal + E∗

Gal-4Man −→ P0 + 2EGal-4 (12)
E∗
Man-6Man + E∗

Man-6Glc + E∗
Man-3Glc −→ E∗

Man-6P1 + EMan-6 + EMan-3 (13)
E∗
Man-3Man + E∗

Man-2Gal + E∗
Gal-4Glc −→ E∗

Man-3P2 + EMan-2 + EGal-4 (14)
P0 + E∗

Man-6P1 + E∗
Man-3P2 −→ P3 + EMan-6 + EMan-3, (15)

where each reaction combines three reagents to create either an intermediate or
the final product. It has to be ensured that reactions (12) through (14) occur in
isolation and prior to reaction (15) in order to avoid undesired side products.
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Fig. 2. Programmed chemical synthesis of the target oligosaccharide P3 by subsequent
co-location of intermediate reactants. Thick outlines indicate compartments and gray
arrows show chemical reactions triggered by programmed compartment fusion. Figure
modified from [19].

Assuming that all initial reactants are provided in uniquely DNA tagged re-
action compartments, we can introduce a single empty compartment that is dec-
orated with complementary DNA strands as well as join gates. While the simple
DNA tags orchestrate co-location of reactants via fusion, join gates reflect the
outcome of the respective chemical reaction by altering the DNA markers on the
surface. This is shown here for reaction (12):

α�+β�+γ�+αβγ�κ�� + α�Gal� + β�E∗
Gal-4Gal� + γ�E∗

Gal-4Man�
α||+β�+γ�+αβγ�κ�Gal� + β�E∗

Gal-4Gal� + γ�E∗
Gal-4Man�

α||+β||+γ�+αβγ�κ�Gal + E∗
Gal-4Gal� + γ�E∗

Gal-4Man�
α||+β||+γ||+αβγ�κ�Gal + E∗

Gal-4Gal + E∗
Gal-4Man�

α+α�+β+β�+γ+γ�+αβγ�κ�Gal + E∗
Gal-4Gal + E∗

Gal-4Man�
α�+β�+γ�+κ�P0 + 2EGal-4�.

(16)

The newly exposed κ tag signifies that the compartment is ready for down-
stream processing. Here, the complementary tags α� a.s.o. are effectively garbage,
and could easily be avoided by feeding the join gate αα�ββ�γγ� � κ instead.

Noteworthy, from a standard library of monomers, we can control a reaction
cascade to obtain any desired target compound simply by providing compart-
ments that are decorated with appropriate DNA tags and gates. Paired with
automatised equipment such as liquid handling robots and microfluidic techno-
logy, this opens up for truly programmable chemical synthesis.

5 Modular Molecular Computing

In Ref. [24], Smaldon et al. construct molecular logical gates from gene regulat-
ory networks. Each gene features a promoter site, an operator site, and a protein
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Fig. 3. Gene regulatory network implementation of a 3-bit ripple counter by Smaldon
et al. a) Modular circuits are built from operons comprising a promoter, an operator
site, and a gene encoding region. In the absence of the repressor protein Y , protein Z is
expressed. In the presence of Y , protein Z is repressed. Thus, the operation implements
a NOT gate. b) Two NOT gates in parallel build a NAND gate. c) Eight NAND gates
and one NOT gate can be wired to form a D-flipflop. d) Three D-flipflops and a 5-bit
ring oscillator built from serial NOT gates form the 3-bit ripple counter. e) Trajectories
of the output bits obtained from stochastic simulation show that the ripple counter
operates reliably with a 5-bit ring oscillator clock (lower data set) whereas the flipflops
sometimes fail to switch when driven by a faster, 3-bit ring oscillator clock (upper data
set). Figure modified from Ref. [24].

encoding region, with proteins that serve as repressors by binding to operator
sites of other genes. The authors demonstrate that such operons can serve as
NOT gates and proceed to construct modular gates of successively higher com-
plexity (c.f. Figure 3). The most complex example is a 3-bit ripple counter that is
implemented by 56 operons that express 32 mRNAs and corresponding proteins.
The overall circuit is thus composed of 120 molecular species that is specified
using P-systems and compiled into, and simulated using, a Dissipative Particle
Dynamics engine.

Although the authors study the effect of encapsulating logical gates into single
vesicles, the full advantage of compartmentalisation becomes apparent when
distributing individual logical gates over several compartments. Inspecting the
structure of the ripple counter in Figure 3.d shows that the circuit is built from
three D-flipflops and one 5-bit ring oscillator – each of them being built from
more elementary modules. While the D-flipflop circuit, for example, is built from
17 operons that express nine distinct proteins, it is wired to other modules only
by two repressor proteins – one serving as input and the other one as output. The
remaining seven regulator proteins serve only for internal wiring of the module.
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Fig. 4. a) Transducers are built from un-inhibiting operons: in the absence of the
activator protein Y , an inhibitor X suppresses gene expression. In the presence of Y , the
inhibitor X dissociates from the operon and protein Z is expressed. b) Transducers are
used in the compartmentalized reimplementation of the ripple counter from Figure 3.d.
Thick lines indicate compartment boundaries, and only molecules representing clk, bit0,
bit1, and bit2 are permeable.

This observation motivates a circuit design where modules are encapsulated
into separate compartments that are permeable for proteins that wire modules
among each other, while being impermeable for proteins that wire gates within
each module. Doing so, allows to reuse the same molecular species for multiple
instances of a module type, e.g. the D-flipflops in the ripple counter. This can
drastically reduce the number of required molecular species.

For the 3-bit ripple counter, we choose permeable proteins for the clock signal
and the three counter bits. However, a naïve reimplementation of the circuit shown
in Figure 3.d would still require us to use distinct DNA sequences for five of the
17 operons that make up each flipflop, because the module input and output is
wired to five operons per flipflop. We can do better by adding transducer gates at
the input and output of the original flipflops. One transducer senses an input sig-
nal that corresponds to a permeable protein, and expresses the flipflop’s original
input, which is now also an impermeable protein. The second transducer senses
the original output signal and expresses a permeable output signal. Although the
number of operons per gate now increases from 17 to 19, the total number of op-
erons decreases from 56 to 28 because operons forming a flipflop module can be
reused without modification. The resulting circuit and its encapsulation is shown
in Figure 4.

We now employ the chemtainer calculus to assemble the different modules of
the ripple counter and their wiring from a library of general parts. Our strategy
is to provide a set of compartments that contain flipflops, and counters without
any external wiring, and fuse them with compartments that contain transducers
to implement the specific wiring among modules.

For the case of a flipflop F (x, y) with original (impermeable) input x and
output y, and two transducers T (clk, x) and T (y, bit0) for the permeable species
clk and bit0, the corresponding operation in the chemtainer calculus reads:

α�+β�+γ��� + α�F (x, y)� + β�T (clk, x)� + γ�T (y, bit0)�
−→ α||+β||+γ||�F (clk, bit0)�. (17)
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Following this procedure, we can generate the entire ripple counter

�C(clk)� + �F (clk, bit0)� + �F (bit0, bit1)� + �F (bit1, bit2)� (18)

where we have omitted the DNA tags.
Importantly, compartments with intricate internal logic, such as the flipflop

α�F (x, y)� or clock δ�C(x)� can be provided as a general library, whereas
containers that determine the specific wiring, such as β�T (clk, x)� comprise
only one internal and one surface associated DNA strand.

6 Conclusion

Recent advances in our understanding of chemical and biological complexity as
well as in the availability of powerful computational formalisms for the rapid
model prototyping of programmable biological and chemical cells are opening a
new frontier in computing science: algorithmic living matter. The availability of
new theoretical tools as well as practical implementations for algorithmic living
matter, we believe, will lead to a new revolution in computing science based on
“programmable everywhere”, namely, the ability to program all kinds of materials
in all kinds of environments at all scales.
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Abstract. PORGY is a visual modelling tool, where a system is defined
by a strategic graph program. In this paper, we provide an operational
semantics for strategic graph programs by means of an abstract machine.
The semantics specifies the valid transformation steps, providing a link
between the model and its implementation in PORGY.
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1 Introduction

PORGY [2,9,13] is a visual, interactive environment for the specification, simu-
lation and analysis of complex systems, based on port graph rewriting [1]. Port
graph rewriting systems are a general class of graph rewriting systems [6], which
have been used to model systems in a wide variety of domains (e.g., biochem-
ical systems, interaction nets, games, fractals). PORGY provides a graphical
interface (see Fig. 1), where users can define a system and specify its dynamics
by means of port graph rewrite rules. To control the rewriting engine, PORGY
provides a strategy language.

Reduction strategies (see [4] for general definitions) have been extensively
studied for the λ-calculus and term rewriting systems. They are present in func-
tional programming languages and can be explicitly defined in, e.g., Stratego [17]
and Maude [11]. They are also present in graph transformation tools such as
PROGRES [16], AGG [7], Fujaba [12] and GP [15]. A distinctive feature of
PORGY’s language is that it allows users to define strategies using not only op-
erators to combine graph rewriting rules but also operators to deal with graph
traversal and management of rewriting positions in a graph. Port graphs have
node, port and edge attributes, whose values are taken into account in port
graph morphisms (used to define rewriting steps) and in strategy expressions
(to control the application of rules).

Strategic graph programs, consisting of an initial port graph (usually called
a model) and a set of rewrite rules controlled by a strategy, are the essence of
PORGY. Our main contribution is a formal operational semantics for strategic

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 183–193, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Overview of PORGY: (1) editing one state of the model (2) editing a rule (3)
rewriting rules (4) portion of the derivation tree (5) the strategy editor

graph programs in the form of an abstract machine, which defines, for each
program, a set of rewrite derivations – a derivation tree.

PORGY provides a visual representation of the derivation tree, and its graph-
ical interface permits to interact with the system and extract strategies that
ensure specific behaviours. It includes features such as cycle detection, to facili-
tate debugging. Strategies are used to select subgraphs of the model as focusing
positions for rewriting and to select the rewrite rules to be applied. PORGY’s
strategy language offers separate primitives for rule selection and position selec-
tion, following the separation of concerns principle, which makes programs easier
to maintain and adapt.

This paper is organised as follows. In Section 2, we recall port graph rewriting.
In Section 3, we present strategic graph programs. Section 4 presents the abstract
machine. Section 5 concludes.

2 Port Graph Rewriting

A port graph is a labelled graph where edges are attached to ports. Let N , E ,P
be sets of nodes, edges and ports, respectively. A signature ∇ consists of pair-
wise disjoint sets∇N (node labels), XN (node label variables),∇P (port labels),
XP (port label variables), ∇E (edge labels), XE (edge label variables), ∇A (at-
tribute labels), XA (attribute variables), ∇V (values) and XV (value variables).
Each node label has a finite interface: Interface(N) ⊆ ∇P for all N ∈ ∇N , and
Interface(X) ⊆ ∇P ∪ XP for all X ∈ XN . Also, each N ∈ ∇N ∪ XN and each
P ∈ Interface(N) has a finite set of attributes. Similarly, for each E ∈ ∇E ∪ XE ,
Attribute(E) ⊆ ∇A ∪XA . An attributemay have an associated value in∇V ∪XV .
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Definition 1 (Port graph with attributes). A port graph with attributes,
over a signature ∇, is a tuple G = (VG, lvG, EG, leG) where:

– VG ⊆ N is a finite set of nodes.
– lvG is a function that returns, for each v ∈ VG, a label N ∈ ∇N ∪ XN (the

node’s name), a set {p1, . . . , pn} = Interface(N) of port labels (each with its
own sets of attribute labels and values), and a set of attribute labels (each
with a value).

We see lvG as a family of functions: lvGname, lvGports, lvGattributes,
lvGattributeV alue, lvGportAttributes, lvGportAttributeV alue.

– EG ⊆ E is a finite set of undirected edges, each with two attachment ports
(v1, p1), (v2, p2), where vi ∈ VG, pi ∈ Interface(lvGname(vi)). Two nodes
may be connected by more than one edge on the same ports.

– leG is a labelling function for edges, which returns for each e ∈ EG a label
in ∇E ∪ XE (the edge’s name), its attachment ports (v1, p1), (v2, p2) and its
set of attribute labels, each with an associated value.

Note that in a port graph, two nodes with the same node label must have the
same set of port and attribute labels, however, the values of the attributes may
be different. Similarly, ports with the same port label belonging to nodes with
the same node label must have the same set of attribute labels but their values
may be different. Label variables are used in rewriting rules (see below). Figure 1
(panel 1) shows a port graph representing four complex molecules and a set of
simpler molecules.

Let G and H be two port graphs over ∇, where G may contain variable labels
but H does not. A port graph morphism f : G → H instantiates variables in G
and maps nodes, ports, edges, node attributes and their values, port attributes
and their values, and edge attributes and their values, from G to H , such that all
labels are preserved, the attachment of edges is preserved and the set of pairs of
attributes and values for nodes, ports and edges are also preserved. Intuitively,
the morphism identifies a subgraph of H that is equal to G except for variable
occurrences.

To define port graph rewrite rules we assume that ∇N includes a family of
node labels ⇒n, where Interface(⇒n) = {p1, . . . , pn} and each pi has an at-
tribute type, which can have three different values (bridge, wire and blackhole)
to indicate how to connect the ports during rewriting; we give details below.

Definition 2 (Port graph rewrite rule). A port graph rewrite rule is a port
graph consisting of two port graphs L and R over the signature ∇, called the
left-hand side and right-hand side, respectively; an arrow node labelled by ⇒n;
and a set of arrow-edges that each connect a port of the arrow node to ports in
L or R. This set must satisfy the following conditions:

1. A port of type bridge must have edges connecting it to L and to R (one edge
to L and one or more to R).

2. A port of type blackhole must have edges connecting it only to L (at least
one edge).
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3. A port of type wire must have exactly two incident edges from L and no edges
connecting it to R.

The arrow node and arrow-edges are omitted if they are obvious from L and R.

The set of arrow-edges is used to control the rewiring, ensuring that no edges
are left dangling (see [5]). This definition generalises the one in [1], by including
case (3.) above, inspired by interaction nets [10].

Fig. 2. The four rules of the model shown in Fig. 1. The rule at the top left is the rule
shown in the panel 2 of Fig. 1.

Figure 2 shows four examples of rules. The edges in the top right rule are arrow
edges connected through an arrow node (represented in black) in the middle of
the drawing.

Definition 3 (Rewrite step). A rewriting step on G using a rule L ⇒ R and
morphism g : L → G, written G →g

L⇒R G′, transforms G into a new graph G′

obtained from G by performing the following operations in three phases: First, a
copy Rc = g(R) (i.e., an instantiated copy of the port graph R) is added to G.
The rewiring phase then redirects edges to the copy of R as follows:

For each port p in the arrow node:

– If p is a bridge port and pL ∈ L is connected to p
for each port piR ∈ R connected to p,
find all the ports pkG in G that are connected to g(pL) and are not in g(L),
and for each pkG create an edge connecting pkG and piRc

, then destroy the edge

connecting pkG and g(pL) in G.
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– If p is a wire port connected to two ports p1 and p2 in L, then take all the
ports outside g(L) that are connected to g(p1) in G and connect each of them
to each port outside g(L) connected by an edge to g(p2).

– If p is a blackhole: for each port pL ∈ L connected to p, destroy all the edges
connected to g(pL) in G.

Finally, g(L) is deleted.

3 Strategic Graph Programs

Definition 4. A located graph GQ
P is a port graph G with two distinguished

subgraphs P and Q, called respectively the position and banned subgraphs.
A strategic graph program [SR, GQ

P ] (or simply [S,GQ
P ] when R is obvious)

consists of a strategy expression S (see Fig. 3) and a located graph GQ
P .

In a located graph GQ
P , P is the focus of the rewriting and Q represents the

part of G where rewriting is forbidden; the intuition is that subgraphs of G that
overlap with P may be rewritten, if they are outside Q.

A located rewrite rule, defined below, specifies two disjoint subgraphs M and
N of the right-hand side R that are used to update the position and banned
subgraphs, respectively. Below, we use the operators ∪,∩, \ to denote union,
intersection and complement. These operators are defined in the natural way on
port graphs considered as sets of nodes, ports and edges.

Definition 5 (Located rewrite rule). A located rewrite rule is given by a port
graph rewrite rule L ⇒ R, and optionally a subgraph W of L and two disjoint

subgraphs M and N of R. It is denoted LW ⇒ RN
M . We write GQ

P →g

LW⇒RN
M

G′Q′
P ′

and say that the located graph GQ
P rewrites to G′Q′

P ′ using LW ⇒ RN
M at position

P avoiding Q, if G →L⇒R G′ with a morphism g such that g(L)∩P = g(W ) or
simply g(L) ∩ P �= ∅ if W is not provided, and g(L) ∩ Q = ∅. The new position
subgraph P ′ and banned subgraph Q′ are defined as P ′ = (P \ g(L)) ∪ g(M),
Q′ = Q ∪ g(N); if M (resp. N) are not provided then we assume M = R (resp.
N = ∅).

Strategy expressions are generated by the grammar in Figure 3 from S, and
combine applications of located rewrite rules generated by A, and position up-
dates generated by U , using focusing expressions generated by F .

Focusing. The grammar for F generates expressions that are used to change the
rewriting position P and banned subgraph Q (e.g., to specify graph traversals).

CrtGraph, CrtPos and CrtBan, applied to a located graph GQ
P , return respec-

tively G, P and Q. AllNgb, OneNgb and NextNgb denote functions that apply to
pairs consisting of a located graph GQ

P and a subgraph G′ of G: If Pos denotes
a subgraph G′ of the current graph G, then AllNgb(Pos) denotes the subgraph
of G consisting of all immediate successors of the nodes in G′, where an imme-
diate successor of a node v is a node that has a port connected to a port of v.
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Let LW ⇒ RN
M be a located rule, m an integer, pi=1...m ∈ [0, 1], Σm

i=1pi = 1

n ∈ ∇N ∪∇E ∪ ∇P, att ∈ ∇A and v ∈ ∇V ∪ XV .

(Strategy) S ::= A | U | S;S | repeat(S) | while(S)do(S) | (S)orelse(S)
| if(S)then(S)else(S) | ppick(S1, p1, . . . , Sm, pm)

(Application) A ::= Id | Fail | all(T ) | one(T )
(Transform) T ::= LW ⇒ RN

M

(Position) U ::= setPos(F ) | setBan(F ) | isEmpty(F )

(Focusing) F ::= CrtGraph | CrtPos | CrtBan | AllNgb(F ) | OneNgb(F )

| NextNgb(F ) | Property(ρ, F ) | F ∪ F | F ∩ F | F \ F | ∅
(Property) ρ := (Elem,Expr) | (Function, funct-name)

Elem := Node | Edge | Port
Expr := Label = n | Label 
= n | att op v | att op att

op := = | 
= |> |< | ≤ | ≥

Fig. 3. Syntax of the Strategy Language

OneNgb(Pos) returns a subgraph of G consisting of one immediate successor of
a node in G′, chosen non-deterministically. NextNgb(Pos) computes successors
of nodes in G′ using for each node only the subset of its ports that have the
attribute “next”; we call the ports in this distinguished subset the next ports.
Property(ρ, F ) selects a subgraph of a given graph that satisfies a certain prop-
erty, specified by ρ. Function refers to a user-defined or built-in function to be
used to compute the subgraph. In the grammar for Expr, Label refers to the label
of a node, edge or port.1 For example, Property((Port, Label = Principal), F )
returns all the nodes of the subgraph defined by the expression F that have a
port labelled Principal.

Transformations. The most basic transformation is a located rule, which can
only be applied to a located graph GQ

P if at least a part of the redex is in P , and
it does not involve Q.

Strategies. Id and Fail are two basic strategies that respectively denote success
and failure. all(T ) denotes all possible applications of the transformation T on
the located graph at the current position, creating a new located graph for each
application. one(T) non-deterministically computes only one of the possible ap-
plications of the transformation. By default, T stands for one(T ). setPos(F )
(resp. setBan(F )) sets the position subgraph P (resp. Q) to be the graph re-
sulting from the expression F . They always succeed. isEmpty(F ) behaves like

1 In the implementation, every node, port and edge has a predefined attribute called
Label, to store its label, so we assume Label 
∈ ∇A .
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Id if F returns an empty graph and Fail otherwise; this can be used for in-
stance inside the condition of an if or while. The expression S;S′ represents
sequential application of S followed by S′. The strategy ppick(S1, p1, . . . , Sn, pn)
picks one of the strategies for application, according to the given probabilities.
if(S)then(S′)else(S′′) checks if the application of S on (a copy of) GQ

P returns

Id, in which case S′ is applied to (the original) GQ
P , otherwise S′′ is applied to

the original GQ
P . (S)orelse(S

′) applies S if possible, otherwise applies S′. It fails
if both S and S′ fail. while(S)do(S′) keeps on sequentially applying S′ while
the expression S succeeds on a copy of the graph. If S fails, then Id is returned.
repeat(S) simply iterates the application of S until it fails, then Id is returned.

Examples. The well-known outermost and innermost strategies used in term
rewriting languages can be easily defined, and we can also specify an “outside-
in” strategy for interaction nets, to compute interface normal forms [8]. We define
start � Property((Function, Interface), CrtGraph), which selects the subgraph
containing nodes with free ports (i.e., the interface), define the next ports to be
the principal ports, and use the following strategy:

setPos(start);
while(not(isEmpty(CrtPos)))do(

if(R)then(R ; setPos(start))else(
if(isEmpty((CrtPos∪ NextNgb(CrtPos)) \ CrtPos))then(

setPos(∅))else(setPos(CrtPos∪ NextNgb(CrtPos)))))

where not(S) is the strategy if(S)then(Fail)else(Id).
The biochemical network represented in Figure 1 (panel 1) contains different

types of molecules; the strategy that explains its behaviour is:
repeat(

ppick(r1,0.5,r4,0.5); ppick(r2,0.5,r4,0.5); ppick(r3,0.75,r4,0.25)
)

4 An Abstract Machine for Strategic Graph Programs

The operational semantics of PORGY is given by an abstract machine: a tran-
sition system defined by a set of configurations and a transition relation [14].

Definition 6. A configuration is a tuple 〈T, L,Res,A〉 of a derivation tree T ,
a list L of current models, a list Res of results, and an auxiliary stack A. L may
be empty, written [], or have the form (c, p) : L′ where c is a control stack and p
a pointer to a leaf in T ; Res may be empty or contain pointers to leaves in T . A
derivation tree T has the form Tree(GQ

P , LT ) where GQ
P is a located graph, and

LT is a (possibly empty) list of trees. We denote by T |p the located graph GQ
P in

the node pointed by p in T .

Stacks are inductively defined: an empty stack is denoted by nil, and a non-
empty stack i · c is obtained by pushing an element i on a stack c. A list e1 :
(e2 : . . . : (en : []) . . .) is abbreviated [e1, . . . , en]. In our implementation, which is
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built as a Tulip plugin, each node in the derivation tree Tree(GQ
P , [T1, . . . , Tn])

contains a pointer to Tulip’s heap, where GQ
P is stored, and a list of pointers to

the trees T1, . . . , Tn. A leaf is a particular case of tree of the form Tree(GQ
P , []).

There is a special leaf, called a Failure node, where the graph GQ
P has just one

node labelled by Fail.

Definition 7 (Initial and Final Configurations). To execute a strategic

graph program [S,GQ
P ], we start the abstract machine from an initial configu-

ration of the form 〈Tree(GQ
P , []), [(S ·nil, Root)], [], nil〉 where Root points to the

root of the derivation tree. A configuration of the form 〈T, [], Res, nil〉 is final.

The transition relation, denoted by →, is a binary relation between configu-
rations, specified by a set of transition rules. Each transition corresponds to a
step of computation, determined by the strategy expression at the top of the
control stack in the leftmost current model. We show the transition rules for the
deterministic sublanguage.

If a control stack is empty, there are no steps of computation to perform in
the corresponding current model, so we have reached a result.

〈T, (nil, p) : L,Res,A〉 → 〈T, L, p : Res,A〉

For basic strategies Id, Fail, the rules are:

〈T, (Id · c, p) : L,Res,A〉 → 〈T, (c, p) : L,Res,A〉
〈T, (Fail · c, p) : L,Res,A〉 → 〈NewFail(T, p), L,Res,A〉

where the function NewFail extends the derivation tree T by creating a failure
leaf as a child of the node pointed by p (in our implementation, failure leaves
are shown in red, see Fig. 1).

〈T, (all(LW ⇒ RN
M ) · c, p) : L,Res,A〉 → 〈T ′, (c, p1) : . . . : (c, pn) : L,Res,A〉

where T ′ is an extension of T , where a new child of the node pointed by p is
created for each legal reduct of T |p. Legal reducts are computed by the auxiliary
function LSLW⇒RN

M
(as explained below). The newly created leaves pointed by

pi (1 ≤ i ≤ n) become current models and are placed at the front of the current
model list, reflecting the fact that we are building the derivation tree in a depth-
first fashion. If breadth-first was preferred, then the pairs (c, pi) should be placed
at the back of L. If the list of legal reducts of a current model p is empty, then T ′

is simply T with an extra failure leaf (as a child of the current model p), which
will not be included in the new list of current models.

The function LSLW⇒RN
M
, when applied to a located graph GQ

P , computes the

list of located graphs Gi
Qi

Pi
(1 ≤ i ≤ k) such that GQ

P →gi
LW⇒RN

M

Gi
Qi

Pi
and

g1, . . . , gk are pairwise different. Note that all possible applications of the rule
are considered and there is a failure if the rule is not applicable.
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Next we give the transition rules for the commands used to specify and update
positions via focusing constructs.

〈T, (setPos(F ) · c, p) : L,Res,A〉 → 〈NewPos(F, T, p), (c, p) : L,Res,A〉
〈T, (setBan(F ) · c, p) : L,Res,A〉 → 〈NewBan(F, T, p), (c, p) : L,Res,A〉
〈T, (isEmpty(F ) · c, p) : L,Res,A〉 → 〈T, (Id · c, p) : L,Res,A〉 if F (T |p) = ∅
〈T, (isEmpty(F ) · c, p) : L,Res,A〉 → 〈T, (Fail · c, p) : L,Res,A〉 if F (T |p) �= ∅

where NewPos(F, T, p) (resp. NewBan(F, T, p)) updates the located graph T |p
by setting the position graph (resp. banned graph) to be F (T |p), where the fo-
cusing expression F (see Fig. 3) has a functional semantics: it denotes a function
that applies to the current located graph, and computes a subgraph as follows.

CrtGraph(GQ
P ) = G CrtPos(GQ

P ) = P CrtBan(GQ
P ) = Q

AllNgb(F )(GQ
P ) = G′ where G′ consists of all immediate successors of

nodes in F (GQ
P )

NextNgb(F )(GQ
P ) = G′ where G′ consists of the immediate successors,

via ports labelled “next”, of nodes in F (GQ
P )

Property(ρ, F )(GQ
P ) = G′ where G′ is ρ(F (GQ

P ))

(F1 op F2)(G
Q
P ) = F1(G

Q
P ) op F2(G

Q
P ) where op is ∪,∩, \

The rule for sequences, given below, ensures that S1 is applied first. The be-
haviour of the strategy if(S1)then(S2)else(S3) depends on the result of the
strategy S1, and the semantics of the iterative construct is defined using a con-
ditional.

〈T, (S1;S2 · c, p) : L,Res,A〉 → 〈T, (S1 · S2 · c, p) : L,Res,A〉
〈T, (if(S1)then(S2)else(S3) · c, p) : L,Res,A〉 →

〈T, [(S1 · nil, p)], [], 〈T, (S2 · S3 · c, p) : L,Res, []〉 · A〉
〈T, [], Res, 〈T ′, (S2 · S3 · c, p) : L,Res′, []〉 ·A〉 → 〈T ′, (S2 · c, p) : L,Res′, A〉

if Res �= []
〈T, [], [], 〈T ′, (S2 · S3 · c, p) : L,Res′, []〉 ·A〉 → 〈T ′, (S3 · c, p) : L,Res′, A〉

〈T, (while(S1)do(S2) · c, p) : L,Res,A〉 →
〈T, if(S1)then(S2; while(S1)do(S2))else(Id) · c, p) : L,Res,A〉

Definition 8 (Semantics of Strategic Graph Programs). The program

[S,GQ
P ] produces the results Res if 〈Tree(GQ

P , []), [(S · nil, Root)], [], nil〉 →∗

〈T, [], Res, nil〉.

We can prove that there are no blocked programs: either the abstract machine
can perform a transition, or we have reached a final configuration.

Theorem 1 (Progress). If the abstract machine starting with the initial

configuration 〈Tree(GQ
P , []), [(S · nil, Root)], [], nil〉 stops with a configuration

〈T, L,Res,A〉 then L is empty.
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5 Conclusions

Graph rewriting is implemented in a variety of tools (see, e.g., [7,16,15]). A
distinctive feature of PORGY is the fact that the derivation tree is a first-class
component of the system, which helps analysing and debugging the model. The
implementation follows the operational semantics given in this paper. Some of
the transition rules require a copy of the graph, which is done efficiently in
PORGY thanks to the cloning functionalities of TULIP [3].
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Abstract. We investigate the computational complexity of deciding the
occurrence of many different dynamical behaviours in reaction systems,
with an emphasis on biologically relevant problems (i.e., existence of
fixed points and fixed point attractors). We show that the decision prob-
lems of recognising these dynamical behaviours span a number of com-
plexity classes ranging from FO-uniform AC0 to ΠP

2 -completeness with
several intermediate problems being either NP or coNP-complete.

1 Introduction

Reaction systems (RS) are a computational model recently introduced by Ehren-
feucht and Rozenberg [5] which was inspired by chemical reactions. Interest in
this model has grown due to its ability to be used to investigate practical prob-
lems while retaining a formulation clean enough to allow a theoretical investi-
gation of its properties. One of the main research trends in RS is the study of
their dynamics, like checking the complexity of the behaviours obtainable with
limited resources [4] or the probability of a system to reach a halting state [3].
Other studies focused on understanding the complexity of deciding if a certain
dynamical behaviour is present in a given RS or not [14,13].

The present paper follows this trend by extending the first results on complex-
ity proved in [5,14,13], where the idea that RS can be used to evaluate Boolean
formulae was introduced. In particular, we investigate the complexity of estab-
lishing if a RS admits a fixed point (NP-complete) or a fixed point attractor
(NP-complete). We also study the complexity of finding if two RS share all fixed
points (coNP-complete), or all fixed point attractors (ΠP

2 -complete).
Since RS can be used to model and study biological processes [2], determining

if a particular biological system exhibits a certain behaviour is an important task
with potential real-life impact. The dynamics of qualitative models (i.e., where
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A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 194–203, 2014.
c© Springer International Publishing Switzerland 2014



Fixed Points and Attractors of Reaction Systems 195

only the presence or absence of a substance is measured), like Boolean networks,
has always been important in the modelling of biological systems. For example,
attractors can represent cellular types or cellular states (cf., proliferation or
differentiation) [16] and determining the presence of fixed points and cycles is
essential when modelling gene regulatory networks [8,1]. Furthermore, in [9] the
importance of studying robustness in complex biological systems is highlighted.
The identification of attractors is a necessary first step in this direction.

The paper is structured as follows. Section 2 provides the basic notions on
RS and a short comparison with related models. Section 3 gives a description in
logical terms of the problems we investigate. The decision problems regarding
fixed points are collected in Section 4 and the ones regarding fixed point attrac-
tors in Section 5. A summary of the results and of possible future developments
is given in Section 6.

2 Basic Notions

We recall the definitions of reaction, reaction system, and the associated notation
from [5].

Definition 1. Consider a finite set S, whose elements are called entities. A
reaction a over S is a triple (Ra, Ia, Pa) of subsets of S. The set Ra is called the
set of reactants, Ia the set of inhibitors, and Pa is the set of products. Denote
by rac(S) the set of all reactions over S.

Definition 2. A reaction system A is a pair (S,A) where S is a finite set, called
the background set, and A ⊆ rac(S).

Given a state T ⊆ S, a reaction a is said to be enabled in T when Ra ⊆ T
and Ia ∩ T = ∅. The result function resa : 2

S → 2S of a, where 2S denotes the
power set of S, is defined as

resa(T ) =

{
Pa if a is enabled in T

∅ otherwise.

The definition of resa naturally extends to sets of reactions. Indeed, given T ⊆ S
and A ⊆ rac(S), define resA(T ) =

⋃
a∈A resa(T ). The result function resA of a

RS A = (S,A) is resA, i.e., it is the result function of the whole set of reactions.

Example 1 (XOR gate). Consider the RS A = ({10, 11, 1out}, A), where the en-
tities represent the first two inputs and the output when they assume value 1,
respectively. The set A contains ({10}, {11}, {1out}) and ({11}, {10}, {1out}). The
system, starting from a state that is a subset of {10, 11} encoding the bits set
to 1 in the input, produces 1out in one step iff the XOR gate on the same input
produces 1.

In the sequel, we are interested in the dynamics of RS, i.e., the study of
the successive states of the system under the action of the result function resA
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starting from some initial set of entities. Given a set T ⊆ S, the sequence of
states visited by the system is (T, resA(T ), res2A(T ), . . .) (i.e., for every t ∈ N,
the t-th element of the sequence is restA(T )). Since S is finite any sequence of
visited states is ultimately periodic, i.e., for any T ⊆ S, there exist h, p ∈ N
such that for all t ∈ N we have resh+pt

A (T ) = resh+t
A (T ); here h is the length of

the transient. A state T ⊆ S is part of a cycle if the sequence of states starting
from T is ultimately periodic with a transient of length 0; in this case, the least p
satisfying the previous equation is called the period of the cycle. A fixed point T
is a cycle with period 1 (i.e., resA(T ) = T ). An attractor of an RS A is a
cycle T1, . . . , Tp for which there exists a state U not belonging to the cycle such
that resA(U) = Ti for some 1 ≤ i ≤ p. A fixed point attractor is a fixed point
that is also an attractor. Given a RS A, we say that a state T is a fixed point
(resp., attractor) for A if it is a fixed point (resp., attractor) for resA.

2.1 Related Models

Other bio-inspired models having features in common with RS are membrane
systems, Boolean networks, and chemical reaction networks.

Membrane systems [11] also provide an idealisation of chemical reactions in
the context of a cell. The main difference between RS and membrane systems
is the presence of multiplicity, that is, the state of the membrane system is a
multiset and not a set, and the rewriting rules consume the substances that they
use. Furthermore, the main characteristic of membrane systems is the presence
of membranes that partition the system into multiple regions with limited com-
munications. The idea of linking membrane systems and RS is not new and has
already been explored [12].

Synchronous Boolean networks [7,15] can be viewed as a generalisation of RS.
Indeed, they can be used to simulate RS by associating an entity to each node of
the network; the value of a node denotes the absence or presence of an entity in
the current state of the simulated RS, that is, the state of the Boolean network
is the characteristic vector of the state of the RS. The update function of a node
can be written as a Boolean formula in disjunctive normal form that holds iff
the entity denoted by the node is generated by some reaction of the RS. The
resulting Boolean network has a description of polynomial length with respect to
the description of the RS. The converse simulation, while possible, might require
an exponential number of reactions, depending on the encoding of the Boolean
network.

Chemical reaction networks (CRN) are a model in which a set of entities
(called signals in CRN) is modified by means of chemical reactions described by
reactants, products, and catalysts [18]. Reactants are consumed to generate the
products when both they and the catalysts are present in the current state of
the system. The operations of CRN can be implemented in multiple ways, for
example by means of logical circuits or DNA strand displacement systems. The
main differences between CRN and RS are that the state used by the former is
a multiset (i.e., the multiplicity is considered) and there are no inhibitors in the
reactions.
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3 Logical Description

This section provides a tool that will be used in many proofs of the paper. It
consists of a logical description of RS and formulae related to their dynamics.
This description (or a slight adaptation) will be sufficient for proving membership
in many complexity classes. For the background notions of logic and descriptive
complexity we refer the reader to Neil Immerman’s classical book [6].

In the sequel, we will study several classes of problems over RS, and each of
them can be characterised by a logical formula. A RS A = (S,A) with back-
ground set S ⊆ {0, . . . , n − 1} and |A| ≤ n can be described by the vocabu-
lary (S,RA, IA,PA), where S is a unary relation symbol and RA, IA, and PA are
binary relation symbols. The intended meaning of the symbols is the following:
the set of entities is S = {i : S(i)} and each reaction aj = (Rj , Ij , Pj) ∈ A
is described by the sets Rj = {i ∈ S : RA(i, j)}, Ij = {i ∈ S : IA(i, j)}, and
Pj = {i ∈ S : PA(i, j)}.

We will also need some additional vocabularies: (S,RA, IA,PA,T), where T is
a unary relation representing a subset of S, (S,RA, IA,PA,T1,T2) with two addi-
tional unary relations representing sets, and (S,RA, IA,PA,RB, IB,PB) denoting
two RS over the same background set.

The following formulae describe basic properties of A. The first is true if a
reaction aj is enabled in T :

enA(j, T ) ≡ ∀i(S(i) ⇒ (RA(i, j) ⇒ T (j)) ∧ (IA(i, j) ⇒ ¬T (j)))

the latter is verified if resA(T1) = T2 for T1, T2 ⊆ S:

resA(T1, T2) ≡ ∀i(S(i) ⇒ (T2(i) ⇔ ∃j(enA(j, T1) ∧ PA(i, j))).

Since enA and resA are both first-order (FO) formulae, the following is imme-
diately proved.

Theorem 1. Given a RS A = (S,A) and two sets T1, T2 ⊆ S, deciding whether
resA(T1) = T2 is in FO (which is equivalent to FO-uniform AC0 [6]). ��

FO logic will quickly prove insufficient for our purposes; therefore we will
formulate some problems using stronger logics: existential second order logic
SO∃ characterising NP (Fagin’s theorem); universally quantified second order
logic SO∀ giving coNP; second order logic with one alternation of universal
and existential quantifiers (SO∀∃, giving ΠP

2 ). As an abbreviation, we define
the bounded second order quantifiers (∀X ⊆ Y ) ϕ and (∃X ⊆ Y ) ϕ as a short-
hand for ∀X(∀i(X(i)⇒ Y (i)) ⇒ ϕ) and ∃X(∀i(X(i)⇒ Y (i))∧ϕ). We say that
a formula is SO∃, SO∀, or SO∀∃ if it is logically equivalent to a formula in the
required prenex normal form.

4 Fixed Points

We investigate the complexity of determining if a given state is a fixed point
for an RS, if an RS admits fixed points, and if two RS share at least one or
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all fixed points. First, we are interested in determining if the first-order for-
mula fixA(T ) ≡ resA(T, T ) holds for a given state T . Substituting T2 = T1 in
Theorem 1, we get the following corollary:

Corollary 1. Given a RS A = (S,A) and a state T ⊆ S, deciding whether T is
a fixed point of resA is in FO. ��

As usual, CNF (resp., DNF) means conjunctive (resp., disjunctive) normal
form. Given a formula ϕ in CNF, we denote by neg(ϕ) (resp., pos(ϕ)) the set
of variables that occur negated (resp., non-negated) in ϕ. The notation t 	 ϕ
means that ϕ is satisfied by the assignment t.

While it is easy to decide if a point is fixed, determining if a RS admits a
fixed point is a vastly more difficult task as proved by the following theorem.

Theorem 2. Given a RS A = (S,A), it is NP-complete to decide if A has a
fixed point.

Proof. The problem is in NP, since (∃T ⊆ S)fixA(T ) is a SO∃ formula. In order
to show NP-hardness, we reduce SAT [10] to this problem. Given a Boolean
formula ϕ ≡ ϕ1∧· · ·∧ϕm in CNF over the variables V = {x1, . . . , xn}, construct
a RS A = (S,A) with S = V ∪ {♠,♣} and the following reactions:

(neg(ϕj), pos(ϕj) ∪ {♣,♠}, {♠}) for 1 ≤ j ≤ m (1)

({xi},∅, {xi}) for 1 ≤ i ≤ n (2)

({♠},∅, {♣}) (3)

({♣}, {♠}, {♠}). (4)

Given a state T ⊆ S, let X = T ∩ V . The set X encodes an assignment of ϕ
in which the variables having true value are those in X . Reactions of type (1)
generate ♠ when there exists a clause ϕj not satisfied by X (hence ϕ itself is
not satisfied). Reactions of type (2) preserve the current assignment in the next
state. Finally, reactions (3) and (4) rewrite ♠ into ♣ and ♣ into ♠ (if ♠ is
missing). Hence, the RS behaves as follows:

resA(T ) =

⎧⎪⎨⎪⎩
(T ∩ V ) = T if T ⊆ V ∧ T 	 ϕ

(T ∩ V ) ∪ {♠} if (T ⊆ V ∧ T � ϕ) ∨ (♣ ∈ T ∧ ♠ /∈ T )

(T ∩ V ) ∪ {♣} if ♠ ∈ T

i.e., there exists a fixed point if and only if ϕ is satisfiable. The mapping ϕ #→ A
is computable in polynomial time, hence deciding the existence of fixed points
is NP-hard. ��

A direct consequence of the theorem above is that determining if there exists
a state that is a fixed point in common between two RS remains NP-complete.

Corollary 2. Given two RS A and B over the same background set S, deciding
if A and B have a common fixed point is NP-complete.
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Proof. The problem lies in NP, since (∃T ⊆ S)(fixA(T ) ∧ fixB(T )) is a SO∃
formula. By letting A = B, NP-hardness follows from Theorem 2. ��

Differently from above, determining if two reaction systems have all fixed
points in common is in coNP, instead of NP. This is expected since the description
of the problem involves universal instead of existential quantification.

Theorem 3. Given two RS A = (S,A) and B = (S,B), it is coNP-complete to
decide whether A and B share all their fixed points.

Proof. The problem lies in coNP, since (∀T ⊆ S)(fixA(T ) ⇔ fixB(T )) is a SO∀
formula. In order to show coNP-hardness, we reduce TAUTOLOGY (also known
as VALIDITY [10]) to this problem. Given a Boolean formula ϕ = ϕ1 ∨ · · · ∨ ϕm

in DNF over the variables V = {x1, . . . , xn}, build the RS A consisting of the
background set S = V ∪ {♥} and the following reactions:

(pos(ϕj) ∪ {♥}, neg(ϕj), {♥}) for 1 ≤ j ≤ m (5)

({xi,♥},∅, {xi}) for 1 ≤ i ≤ n. (6)

Let T be a state of A and X = T ∩ V . When ♥ ∈ T , each reaction of type (5)
evaluates a term ϕj under the assignment encoded by X , producing ♥ when
X 	 ϕj (hence X 	 ϕ). Reactions of type (6) preserve the state when ♥ ∈ T .
Thus the RS behaves as follows:

resA(T ) =

⎧⎪⎨⎪⎩
T if T ∩ V 	 ϕ and ♥ ∈ T

T − {♥} if T ∩ V � ϕ and ♥ ∈ T

∅ if ♥ /∈ T .

The fixed points of A are ∅ and all states of the form X ∪ {♥} with X ⊆ V
and X 	 ϕ. Now let B be defined by the following reactions:

({xi,♥},∅, {xi}) for 1 ≤ i ≤ n

({♥},∅, {♥}).

They preserve the current state T if ♥ ∈ T and yield ∅ otherwise. Hence, the
fixed points of B are ∅ and all states of the form X ∪ {♥} with X ⊆ V .

By construction, the two RS A and B share all fixed points exactly when all
assignments satisfy ϕ. Since the mapping ϕ #→ (A,B) is computable in polyno-
mial time, deciding the former property is coNP-hard. ��

5 Fixed Point Attractors

In this section we investigate the same problems of Section 4 reformulated for
fixed point attractors.

The fact that a set T is a fixed point attractor can be expressed by the
following formula: attA(T ) ≡ (∃U ⊆ S)(fixA(T )∧resA(U, T )∧¬resA(T, U)).
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Theorem 4. Given a RS A = (S,A) and a state T ⊆ S, it is NP-complete to
decide whether T is a fixed point attractor.

Proof. Since attA(T ) is a SO∃ formula, the problem lies in NP. We reduce SAT
to this problem. Given a formula ϕ = ϕ1 ∧ · · · ∧ ϕm in CNF over the set of
variables V = {x1, . . . , xm}, let C = {ϕ1, . . . , ϕn} and let A be the RS having
the background set S = V ∪ C ∪ {♠,♣} and the following reactions:

({x}, C ∪ {♠,♣}, {ϕj}) for 1 ≤ j ≤ m and x ∈ pos(ϕj) (7)

(∅, C ∪ {x,♠,♣}, {ϕj}) for 1 ≤ j ≤ m and x ∈ neg(ϕj) (8)

(C, S − C,C) (9)

(neg(ϕj), pos(ϕj) ∪ C ∪ {♠,♣}, {♠}) for 1 ≤ j ≤ m (10)

({♠},∅, {♣}) (11)

({♣}, {♠}, {♠}). (12)

If the state of A is X ⊆ V , the reactions of kinds (7) and (8) produce the subset
of C corresponding to the clauses of ϕ satisfied by X . If all clauses are generated
(i.e., X 	 ϕ), they are preserved by reaction (9). On the other hand, if at least
one clause is not satisfied by X , one or more reactions of type (10) are enabled
and produce ♠. As in the proof of Theorem 2, reactions (11) and (12) generate
a cycle between the states {♠} and {♣}. The result function of A is then

resA(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C if T = C or if T ⊆ V and T 	 ϕ

D ∪ {♠} if T ⊆ V , D � C and T satisfies the clauses in D

but not the clauses in C −D

{♣} if ♠ ∈ T

{♠} if ♣ ∈ T and ♠ /∈ T

∅ otherwise.

Notice that A has exactly one fixed point, the state C, which is reachable from
another state T (i.e., C is an attractor) iff T ⊆ V and T 	 ϕ, i.e., iff ϕ is
satisfiable. Since the mapping ϕ #→ A can be computed in polynomial time,
the NP-hardness of the problem follows. ��

As immediate corollaries, finding if a fixed point attractor exists or if it exists
as a shared fixed point between two RS, remain NP-complete.

Corollary 3. Given a RS A = (S,A), deciding if A has a fixed point attractor
is an NP-complete problem.

Proof. The problem is in NP, since (∃T ⊆ S) attA(T ) is a SO∃ formula. Its
NP-hardness follows from the construction in the proof of Theorem 4, where for
any Boolean formula ϕ in CNF, the RS A has exactly one fixed point, which is
an attractor iff ϕ is satisfiable. ��

Corollary 4. Given two RS A and B with the same background set S, it is
NP-complete to decide whether A and B have a common fixed point attractor.
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Proof. The problem lies in NP since (∃T ⊆ S)(attA(T ) ∧ attB(T )) is a SO∃
formula. Given a Boolean formula ϕ in CNF having clauses C = {ϕ1, . . . , ϕm},
let A be the RS in the proof of Theorem 4, and let B be the RS having (∅,∅, C)
as its only reaction. Clearly, B has C as its only fixed point attractor. Hence, A
and B share a fixed point attractor iff ϕ is satisfiable. This proves that the
problem is NP-hard. ��

Perhaps surprisingly, verifying if two systems share all their fixed point at-
tractors goes one level up in the polynomial hierarchy w.r.t. the other problems
pertaining fixed point attractors, thus providing a further example of a natu-
ral ΠP

2 -complete problem.

Theorem 5. Given two RS A and B with a common background set S, it is
ΠP

2 -complete to decide whether A and B share all their fixed point attractors.

Proof. The problem lies in ΠP
2 , since (∀T ⊆ S)(attA(T )⇔ attB(T )) is a SO∀∃

formula. We prove the ΠP
2 -hardness by reduction from the ∀∃SAT problem [17].

Let V = {x1, . . . , xn}, V1 ⊆ V , and V2 = V −V1; let (∀V1)(∃V2)ϕ be a quantified
Boolean formula over V with ϕ = ϕ1 ∧ · · · ∧ ϕm quantifier-free and in CNF.
Finally, let V ′

1 = {x′ : x ∈ V1} and C = {ϕ1, . . . , ϕm}. Define a RS A with
background set S = V ∪ V ′

1 ∪ C ∪ {♠,♣} and the reactions

({x}, C ∪ V ′
1 ∪ {♠,♣}, {ϕj}) for 1 ≤ j ≤ m, x ∈ pos(ϕj) (13)

(∅, {x} ∪C ∪ V ′
1 ∪ {♠,♣}, {ϕj}) for 1 ≤ j ≤ m, x ∈ neg(ϕj) (14)

({x}, C ∪ V ′
1 ∪ {♠,♣}, {x′}) for x ∈ V1 (15)

(neg(ϕj), pos(ϕj) ∪C ∪ V ′
1 ∪ {♠,♣}, {♠}) for 1 ≤ j ≤ m (16)

({♠},∅, {♣}) (17)

({♣}, {♠}, {♠}) (18)

(C, V ∪ {♠,♣}, C) (19)

({x′} ∪ C, V ∪ {♠,♣}, {x′}) for x′ ∈ V ′
1 . (20)

When the current state of A is X ⊆ V , the reactions of types (13) and (14) pro-
duce the set of clauses satisfied by the assignment encoded by X ; simultaneously,
reactions of type (15) produce “primed” copies of the elements encoding the par-
tial assignment to the universally quantified variables of ϕ (while the elements
encoding the partial assignment to the existentially quantified variables are im-
plicitly discarded). If one of the clauses is not satisfied by X , the corresponding
reaction of type (16) is enabled and produces ♠. Any state containing ♠ or ♣
end up in a cycle between {♠} and {♣} by means of reactions (17) and (18).
If all clauses appear in the current state, they are preserved by reaction (19),
together with any element of V ′

1 (reactions of type (20)). The inhibitors of re-
actions (13)–(20) ensure that “bad” states, i.e., those not of the form X ⊆ V
or C ∪U with U ⊆ V ′

1 , are mapped to {♠}, {♣}, or ∅ (which is a subset of V ).
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Summarising, the RS A defines the result function

resA(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C ∪ U where U = {x′ ∈ V ′
1 : x ∈ V1 ∩ T } if T ⊆ V and T 	 ϕ

T if T = C ∪ U with U ⊆ V ′
1

D ∪ {♠} if T ⊆ V , D � C and T satisfies the clauses in D

but not the clauses in C −D

{♠} if ♣ ∈ T and ♠ /∈ T

{♣} if ♠ ∈ T

∅ otherwise.

The RS A admits 2|V1| fixed points, all of them of the form C ∪U with U ⊆ V ′
1 ;

a state of this form is an attractor iff there exists a state X = {x : x′ ∈ U} ∪ Y ,
with Y ⊆ V2, such that X 	 ϕ. Hence, A has 2|V1| fixed point attractors
iff (∀V1)(∃V2)ϕ is valid. Let B be a RS having the reactions ({x′},∅, {x′})
for x′ ∈ V ′

1 , and (∅,∅, C). The result function of B is resB(T ) = C ∪ (T ∩ V ′
1),

having the same fixed points as A; each fixed point of B is an attractor, since
we have resB(C ∪ U ∪ {♠}) = C ∪ U for each U ⊆ V ′

1 . Hence, the RS A and B
have the same fixed point attractors iff (∀V1)(∃V2)ϕ is valid. Since the map-
ping

(
(∀V1)(∃V2)ϕ

)
#→ (A,B) is computable in polynomial time, the problem

is ΠP
2 -hard. ��

6 Conclusions

In this paper we have studied the complexity of checking the presence of many
different dynamical behaviours of a RS. Deciding if a point is fixed is easy (FO,
i.e., FO-uniform AC0), however it gets increasingly hard to determine the exis-
tence of a fixed point (NP-complete), or if two RS have the same fixed points
(coNP-complete). When considering fixed point attractors, the majority of the
problems are NP-complete, but determining if two RS share all fixed point at-
tractors is one of the few “natural” examples of a ΠP

2 -complete problem.
The paper discloses many possible research directions. First of all, it would

be very interesting to understand why the comparison of local attractors is a
ΠP

2 -complete problem and if there are other relevant dynamical properties that
populate (supposedly) different levels of the polynomial hierarchy. We are also
investigating the complexity of determining the existence of global attractors,
cycles, and attractor cycles.

The RS studied in the paper are deterministic. However many significant
modelling questions involve RS where extra entities are provided externally (i.e.,
RS with context). These RS are, in some sense, non-deterministic, since starting
from the same initial state, we can obtain different dynamics depending on the
context. It is interesting to understand how the complexity of decision problems
about dynamics changes in this case.

Another promising research direction is the study of minimality, i.e., under-
standing what is the complexity of the problem of deciding if a given RS is
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the minimal one (e.g., with respect to the number of reactions) having a given
dynamical behaviour.
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Abstract. The systematic development of large biological models can
benefit from an iterative approach based on a refinement process that
gradually adds more details regarding the reactants and/or reactions of
the model. We focus here on data refinement, where the species of the
initial model are substituted with several subspecies in the refined one,
each with its own individual behavior in the model. In this context, we
distinguish between structural refinement, where the aim is to gener-
ate meaningful refined reactions, and quantitative refinement, where one
looks for a data fit at least as good as that of the original model. The
latter generally requires refitting the model and additional experimental
data, a computationally expensive process. A fit-preserving refinement,
i.e. one that captures the same species dynamics as the original model,
can serve as a suitable alternative or as initialization for parameter es-
timation routines. We focus in this paper on the problem of finding all
numerical setups that yield fit-preserving refinements of a given model
and formulate a sufficient condition for it. Our result suggests a straight-
forward, computationally efficient automation of the quantitative model
refinement process. We illustrate the use of our approach through a dis-
cussion of the Lotka-Volterra model for prey-predator dynamics.

Keywords: biomodeling, model fit, parameter estimation, quantitative
model refinement.

1 Introduction

The development of models for large biological systems often starts top-down
with an abstraction of the biological phenomena via a relatively small number of
chemical reactions that illustrate the main mechanisms of the considered process.
A mathematical model is then attached to this abstraction in order to describe
the dynamic behavior of the system. The numerical setup for the mathematical
model comes from various computational procedures that fit the model with
existing experimental data.

The model is then iteratively refined by adding details to it. Refinement can
involve the replacement of one (or more) species with subspecies, in which case
it is called data refinement, or the replacement of a generic reaction with a
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set of reactions that gives more details about the same process by providing
intermediary steps, in which case it is called process refinement [3].

Instead of refitting the model after every refinement, a computationally ex-
pensive process, it would be useful to take advantage of the well-fitted model
from the previous step. The iterative step-by-step refinement of a formal speci-
fication towards an executable implementation is well established in Computer
Science, in connection to software engineering and formal methods, see, e.g., [1].
In Systems Biology, refinement has been considered in the context of rule-based
[5] and reaction-based models [9]. The implementation of model refinement using
various standard modeling frameworks is discussed in [7].

The method of [9] for the numerical setup of a refined reaction-based model
aims to preserve the numerical fit of the original model. The approach applies to
the data refinement of models that rely on mass-action kinetics [10] and consists
of inspecting the ordinary differential equations (ODEs) of the refined model and
assigning parameter values in such a way that the ODEs describing the original
model can be recovered as a sum of ODEs from the refined model.

To see why this is worthwhile, let us consider refinement from a machine
learning perspective. The original model provides us with an approximate char-
acterization of the dynamic behavior of some system. The refined model, by
having more independent parameters, should allow us to obtain a better charac-
terization of the same system. Instead, what we are looking for in fit-preserving
data refinement is a model that leads to the same dynamics as the original
model, but also accounts for the possible subspecies of species from the original
model. Such a refinement is for example appropriate if we are already satisfied
with the approximation given by the original model (i.e. it falls within measure-
ment error), if existing experimental data is not enough to support the number
of parameters of the refined model, or if fitting the refined model is unfeasible
resource-wise. But even when we are looking for a better approximation, fit-
preserving refinements can serve as initialization for iterative algorithms that
estimate the parameters of the refined model. Furthermore, fit-preserving refine-
ment enables us to construct a hierarchy of models to describe the same process
using various levels of detail.

In this paper we provide a sufficient condition that links the refined parameters
to those of the original model and guarantees that the refinement preserves the
numerical fit of the original model. The constraints can easily be turned into an
automatic procedure for setting the values of the refined parameters without the
need for inspecting the ODEs.

Our result also addresses an open problem presented in [4]. Given a refined
model for which some of the parameters are known or can be measured experi-
mentally, the question is whether there exists a numerical setup for the unknown
parameters such that the refined model preserves the numerical fit of the origi-
nal model. Our result provides a partial answer to this question: as long as the
values that are known do not already violate the fit-preservation constraints that
we propose in this paper, there exists at least one solution and, moreover, the
corresponding parameter values can be computed automatically.
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Furthermore, we provide a more precise mathematical framework for data
refinement by separating structural refinement (aimed at generating the refined
reactions) from quantitative refinement, where the goal is to obtain at least
as good a fit as that of the original model. In this framework, fit-preserving
refinement becomes a special kind of quantitative refinement, where we look for
a computationally efficient numerical setup at the expense of not improving the
fit of the model (but not making it worse either).

The paper is structured as follows. Section 2 provides an introduction to
chemical reaction networks and the formal notation that we use throughout the
paper, roughly based on [2]. In Section 3 we formally discuss data refinement and
state the main result of this paper. We apply our approach to a simple example
in Section 4. We discuss the implications of our result in Section 5.

2 Reaction Networks

We first fix some notations used throughout the paper. We denote by N the set
of non-negative integers and by N+ the set of positive integers. We denote by
R≥0 the set of non-negative real numbers and by R+ the set of positive real
numbers. For two sets X , Y we denote by XY the set of mappings f : Y → X ;
for a finite set Y , XY is also the set of vectors of dimension |Y | with elements
from X . Throughout this paper we will always denote vectors with a lower-case
bold-faced letter.

We consider in this paper only irreversible reactions; any reversible reaction
will be replaced by its ‘left-to-right’ and ‘right-to-left’ directions. Reactions are

typically denoted as rewriting rules, such as 2A1+A2
k1−−→ A3, where k1 denotes

the kinetic rate constant. We formalize a reaction in the style of [2] by denoting
the species on its left and right hand side, together with their stoichiometric
coefficients, using a vectorial notation. Throughout the paper we denote by S =
{S1, S2, . . . , Sm} a finite alphabet whose elements we refer to as species. A vector
in NS is called a complex over S . Note that this notion of complex refers to a
linear combination of species that may occur on either side of the reaction. It
should not be confused with the concept of a chemical complex, which would be
represented in our model through a single species.

With this notation, a reaction is defined as a pair of complexes (c,d) ∈ Nm×
Nm, standing for its left- and right-hand side complexes, resp.; the reaction will
also be written as c → d. For our example above, we define S = {A1, A2, A3},
c = [2, 1, 0]T and d = [0, 0, 1]T . For a reaction c → d, we use kc→d to denote its
kinetic rate constant.

We are now ready to give the formal definition of reaction networks.

Definition 1. A reaction network is a tuple N = (S ,C ,R, k), where S is a
finite set of species, C ⊆ NS is a finite set of complexes, R ⊆ C ×C is a finite
set of reactions and k : R → R≥0 gives the kinetic rate constant of each reaction
from R.
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Using the notation from [3], let us consider the following reaction network,
consisting of n reactions and m species:

rj :

m∑
i=1

cijAi
kj−−→

m∑
i=1

dijAi, for 1 ≤ j ≤ n . (1)

The dynamic behavior of this network, under mass-action kinetics, see, e.g.,
[10], can be described by the following system of ODEs:

ȧi =

n∑
j=1

(dij − cij)kj

m∏
q=1

acqj
q , for 1 ≤ i ≤ m , (2)

where ai : R≥0 → R≥0 stands for the concentration of species Ai at time t ≥ 0
and ȧi is used for the derivative of ai with respect to time. Our goal in what
follows is to provide a more concise representation of (2) based on the vectorial
notation introduced above. Given two vectors x,y ∈ Rn, we will denote xy =∏n

i=1 xyi

i . With this, (2) can be rewritten as

ȧ =
∑

c→d∈R

kc→da
c(d− c) . (3)

Consider now the initial conditions of our system of ODEs. The differential
equation ẋ = F (t,x) with initial conditions given by x(t0) = x0, is known to
have a unique solution in a neighborhood of t0 as long as the function F is
continuously differentiable in a neighborhood of (t0,x0), see [8]. In the case of
reaction networks that follow mass-action dynamics, e.g. equation (3) with initial
condition a(t0) = a0, the function F is a polynomial, and so it is continuously
differentiable on its entire domain. Furthermore, since there is no explicit depen-
dence on time in (3), i.e. the system is autonomous, it follows that solutions are
time-invariant in the following sense: given a solution a′ for the initial condition
a′(0) = a0, the solution for the initial condition a(t0) = a0 can be written as
a(t) = a′(t− t0). Thus, without any loss of generality, it suffices to only consider
the problem with initial conditions specified at t = 0, say a(0) = α. Moreover,
since the solution depends (even continuously, see [8]) on the actual initial val-
ues α, we will make this explicit by writing the solution a as a[α] whenever its
dependence on α is relevant.

3 Fit-Preserving Data Refinement

The data refinement of a reaction network is about adding some details into a
network, e.g. through replacing one or more species of the network with a set of
subspecies carrying more detailed and potentially differentiated behavior. In the
general setting, we assume to have two sets of species S and S ′ and a relation
ρ ⊆ S × S ′ that links each species from S to its corresponding subspecies
in S ′. The intuition of species refinement is formally captured in Definition 2.
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Definition 2. Let S and S ′ be two sets of species. A relation ρ ⊆ S ×S ′ is
a species refinement relation iff it satisfies the following conditions:

i) for each A ∈ S there exists A′ ∈ S ′ such that (A,A′) ∈ ρ;

ii) for each A′ ∈ S ′ there exists exactly one A ∈ S such that (A,A′) ∈ ρ.

Intuitively, when (A,A′
1), . . . , (A,A′

r) are all the elements of ρ with A on their
left position, we mean that species A is refined and replaced in the refined model
by its subspecies A′

1, . . . , A
′
r. Each species from the original model should be

refined to at least one species in the refined model (more than one in the case of
non-trivial refinements) and each species of the refined model should correspond
to exactly one “parent” species from the original model.

The species refinement ρ can also be written as a matrix Mρ ∈ RS×S ′
:

Mρ = (mA,A′)A∈S ,A′∈S ′ , with mA,A′ =

{
1, if (A,A′) ∈ ρ ;

0, otherwise .
(4)

As a convention, we will denote matrices throughout this paper with upper-case,
bold-faced letters.

Definition 3. Let S and S ′ be two sets of species, and ρ ⊆ S ×S ′ a species
refinement relation. Let c and c′ be two complexes over S and S ′, respectively.
We say that c′ is a ρ-refinement of c (or simply a refinement if ρ is clearly
understood in that context) if, for every species S ∈ S , the stoichiometric coef-
ficients of its subspecies in c′ add up to its stoichiometric coefficient in c. This
can be written using matrix notation as Mρc

′ = c.
We say that complex c is ρ-refined to the set of complexes C ′ over S ′ if all

the elements of C ′ are ρ-refinements of c. The set of all possible ρ-refinements
of c is denoted by Δρ(c).

Finally, we say that reaction (c,d) over S is ρ-refined to the set of reactions
R′ over S ′ if, for every (c′,d′) ∈ R′, c′ is a ρ-refinement of c and d′ is a
ρ-refinement of d. The set of all possible ρ-refinements of (c,d) can be written
as Δρ(c)×Δρ(d).

Let us consider again the reaction from the previous section 2A1 +A2 → A3.
Assume we refine A1 to B11 and B12, A2 to B2 and A3 to B31, B32 and B33, i.e. we
consider the refinement relation ρ = {(A1, B11), (A1, B12), (A2, B2), (A3, B31),
(A3, B32), (A3, B33)}. Then the possible refinements of the original reaction are:
2B11 +B2 → B31, 2B11 +B2 → B32, 2B11 +B2 → B33, B11 +B12 +B2 → B31,
B11+B12+B2 → B32, B11+B12+B2 → B33, 2B12+B2 → B31, 2B12+B2 → B32

and 2B12 + B2 → B33.
With Definition 3 we are ready now to introduce the notion of reaction

network refinement. Since our notion of a network has two components, the
species-reaction structure and the ODE-based quantitative dynamics, our defi-
nition of network refinement is given in two parts: a structural refinement and
a fit-preserving refinement. The former one is immediate following Definition 3.
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Definition 4. Let N = (S ,C ,R, k) and N ′ = (S ′,C ′,R′, k′) be two reaction
networks and ρ ⊆ S × S ′ a species refinement relation. We say that N ′ is a
structural refinement of N if

C ′ =
⋃
c∈C

Δρ(c) and R′ ⊆
⋃

c→d∈R

Δρ(c)×Δρ(d) . (5)

We say that N ′ is the full structural refinement of N if we have equality in the
definition of R′ in (5).

The quantitative part of our notion of network refinement focuses on preserv-
ing the experimental data fit of the original model; in other words, the kinetic
rate constants of the model obtained through structural refinement should be
set so that the dynamics of a species in the original model is identical to the
dynamics of the sum of its subspecies in the refined model. We formalize this
condition in what follows.

Definition 5. Let N = (S ,C ,R, k) and N ′ = (S ′,C ′,R′, k′) be two reaction
networks and ρ ⊆ S ×S ′ a species refinement relation; we denote by Mρ the

matrix representation of ρ. Let α ∈ RS
≥0, β ∈ RS ′

≥0 be the initial conditions for
N and N ′, resp. We say that β is a ρ-refinement of α if α = Mρβ.

Let the ODEs describing the two reaction networks be:

ȧ =
∑

c→d∈R

kc→da
c(d − c) and ḃ =

∑
c′→d′∈R′

k′
c′→d′bc

′
(d′ − c′) , (6)

where a : R≥0 → RS
≥0, b : R≥0 → RS ′

≥0

We say that N ′ is a fit-preserving refinement of N if it is a structural refine-
ment of N and, for any initial conditions α ∈ RS

≥0 and β ∈ RS ′
≥0 such that β is a

ρ-refinement of α, the solutions a and b of equations (6) satisfy a(t) = Mρb(t)
in a neighborhood of 0.

Note that in Definition 5 we can assume without loss of generality that N ′

is the full structural refinement of N . Indeed, any other structural refinement
can be extended to the full one by adding to it the missing refined reactions and
then setting their kinetic rate constants to 0.

Note also that we required that (6) holds for all values of t in a neighborhood
of 0 and not for all t ≥ 0, as in [3]. This formulation is enough for the formal
result we are going to prove and, moreover, it is also applicable when the solution
of the ODEs is not defined for all non-negative values of t. More precisely, the
solution is unique for its full domain of existence.

The problem that we focus on is how to effectively construct a fit-preserving
refinement of a given reaction network N when given the species refinement
relation ρ. The first part is to build the full structural ρ-refinement of N ; this
can be done by constructing Δρ(c) × Δρ(d) for all reactions (c,d) of N . The
second part is to set the kinetic rate constants of the refined model so that it
yields a fit-preserving refinement.
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To check whether a given numerical setup of the full structural refinement
yields a fit-preserving refinement seems to require in general to solve the sys-
tems of ODEs in Equation (6). A difficulty is that those systems of ODEs are
non-linear and cannot be solved analytically in general. We recall the following
problem of [4].

Problem 1. [4] Let N be a reaction network, ρ a species refinement relation, and
N ′ the full structural ρ-refinement of N . Assuming that numerical values of some
of the kinetic rate constants of N ′ are fixed, find a numerical setup for all its
other kinetic rate constants so that N ′ is a fit-preserving refinement of N .

The following result gives a partial answer, i.e. a sufficient condition, to Prob-
lem 1.

Theorem 1. Let N = (S ,C ,R, k) be a reaction network, S ′ a set of subspecies
and ρ ⊆ S ×S ′ a species refinement relation. Let N ′ be the full structural ρ-
refinement of N , N ′ = (S ′,C ′,R′, k′). If, for every c → d ∈ R and for every
c′ ∈ Δρ(c), we have that∑

d′∈Δρ(d)

k′
c′→d′ =

(
c

c′

)
kc→d , with

(
c

c′

)
=

∏|S |
i=1 ci!∏|S ′|
j=1 c′j !

, (7)

then N ′ is a fit-preserving data refinement of N .

Due to space constraints we do no provide the proof here, the reader may find
it in our technical report [6].

Note that the constraint (7) is not far from what one would expect. Indeed,
the rate constants of all refined reactions that share the same left-hand side c′

depend on the rate constant of the parent reaction, kc→d, and on its left hand
side c. The interesting aspect is the linear character of the dependency.

We can apply Theorem 1 for assigning rate constants to a given structural
network refinement so that we obtain a fit-preserving refinement. Even if we
are given a partially specified structural data refinement (i.e. one where several
rate constants are fixed to predefined values, such as zero for reactions that are
assumed impossible), we can turn it into a fit-preserving refinement as long as
the fixed values do not already lead to a violation of Equation (7). This might
happen because rate constants are non-negative so there is no way to reduce
a sum that already exceeds the value prescribed by (7). In the absence of any
information about the rate constants of the refined model, we can choose a
symmetric assignment, i.e. all rate constants in any sum described by (7) are set
to be equal, see also the discussion in the next section.

We can also apply Theorem 1 in order to check that a given structural data
refinement is fit-preserving; this only gives a partial answer because the condition
of Theorem 1 is only sufficient, but not always necessary. Indeed, it is shown in [2]
that it is possible to have two reaction networks that differ only in the assignment
of rate constants, but describe the same dynamics (translate to the same ODEs).
Let N1 = (S ,C ,R, k1) and N2 = (S ,C ,R, k2) be two such networks. A fit-
preserving data refinement constructed for N1 based on Theorem 1 is also a
fit-preserving data refinement of N2, but it may fail to satisfy (7) for N2.
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4 A Simple Example

In this section we are going to use the constraints from Theorem 1 for the data
refinement of a simple reaction network, corresponding to the Lotka-Volterra
system for modeling prey-predator dynamics [11].

A
k1−−→ 2A A + B

k2−−→ 2B B
k3−−→ ∅ (8)

In the equations, A stands for the prey and B for the predator. The set of
species in this case is S = {A,B} and the set of complexes C = {[1, 0]T , [2, 0]T ,
[1, 1]T , [0, 2]T , [0, 1]T , [0, 0]T}. Now, assume that we can distinguish two different
kinds of prey. This corresponds to a species refinement ρ = {(A,A1), (A,A2),
(B,B′)}. The set of subspecies is S ′ = {A1, A2, B

′}.
The full structural ρ-refinement of the model (with the same notation as in

[3]) can be written as

A1
r1−−→ 2A1 ,

A2
r4−−→ 2A1 ,

A1 + B′ r7−−→ 2B′ ,

A1
r2−−→ A1 + A2 ,

A2
r5−−→ A1 + A2 ,

A2 + B′ r8−−→ 2B′ ,

A1
r3−−→ 2A2 ,

A2
r6−−→ 2A2 ,

B′ r9−−→ ∅ .

(9)

If we identify each reaction by the name of its rate constant, we can write
the corresponding refinement of each reaction from the original model: k1 →
{r1, r2, r3, r4, r5, r6}, k2 → {r7, r8}, k3 → {r9}.

The sums given by Equation (7) in this case are the following:

r1 + r2 + r3 =

(
[1, 0]T

[1, 0, 0]T

)
k1 = k1 , r4 + r5 + r6 =

(
[1, 0]T

[0, 1, 0]T

)
k1 = k1 ,

r7 =

(
[1, 1]T

[1, 0, 1]T

)
k2 = k2 , r8 =

(
[1, 1]T

[0, 1, 1]T

)
k2 = k2 ,

r9 =

(
[0, 1]T

[0, 0, 1]T

)
k3 = k3 .

(10)

Equation (10) can now be used in a versatile way to construct very different
refined models. For example, assume that all reactions involving both subspecies
A1 and A2 should be eliminated from the refined model based on biological
arguments. We can easily remove them from the model and still obtain a fit-
preserving refinement by taking r2 = r3 = r4 = r5 = 0 and then consider the
problem of finding values for the remaining rate constants so that (10) is satisfied.
In this particular case, the solution obtained is r1 = r6 = k1, r7 = r8 = k2, and
r9 = k3.

As another example, assume that we may allow reactions involving both A1

and A2, but with no quantitative distinction between them; in this case the
constants in each of the sums of Equation (10) could be set equal, as follows,
and as set also in [3]: r1 = r2 = r3 = k1/3, r4 = r5 = r6 = k1/3, r7 = k2, r8 =
k2, r9 = k3.
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A similar approach can be taken when some of the rate constants of the
refined model are known or can be measured/estimated experimentally. In such
cases, for each sum in (7), all known rate constants are subtracted, and the
remainder, if non-negative, can be split (perhaps evenly) between the unknown
rate constants. If, e.g., we know from the literature that r1 = r4 = k1/2, then we
can obtain a fit-preserving refinement by choosing any value for the remaining
constants so that r2 + r3 = k1/2 and r5 + r6 = k1/2.

5 Conclusions

In this paper we introduced a new mathematical framework for the notion of
reaction network model and model refinement. We focused on the problem of
finding fit-preserving refinements and we proposed a sufficient condition for the
rate constants of a structural refinement of a reaction network so that the re-
sulting model describes the same dynamics as the original model (with respect
to the species of the original model). Our result is versatile and can be combined
with partial information about some of the rate constants of the refined model.
In particular, this leads to an algorithmic assignment of rate constant values
that can be performed automatically and be used as initialization for parameter
estimation software.

Since the constraint (7) of Theorem 1 only partitions the rate constants of the
refined model into sets that should add up to particular values that depend on
the original model, this means that in general there is still a lot of freedom left in
the choice of the actual values. On one hand, this is useful for the initialization
of parameter estimation algorithms, since it provides room for randomization in
order to avoid local optima. On the other hand, this also raises an interesting
question for further research, namely whether among all possible assignments
there are some that offer other desirable properties in addition to fit-preservation.
Such properties may, for example, be based on the internal structure of species
and some desired conservation laws and, in such cases, the symmetric assignment
of the remaining values might no longer be the most appropriate thing to do.

An implicit assumption in our considerations is that the kinetic constants are
fixed throughout the model dynamics. This may not be the case if some of them
depend on temperature and the model includes, e.g., some exothermic reactions.
It seems an interesting question whether our approach can be extended to such
models.

Our result also provides a partial answer to the open question of [4] on the
existence of rate constant values that can turn a structural refinement (possibly
with some of the values fixed in advance based on existing literature) into a
fit-preserving one with respect to the original model. The answer that follows
from Theorem 1 is that such an assignment is guaranteed to exist, as long as the
already fixed values do not lead to a violation of the fit-preservation constraints
(this can happen for example if the sum of the fixed values already exceeds the
required value, since the rate constants can only take non-negative values).

One possible use of fit-preserving refinement that we have mentioned in the
introduction of this paper is the construction of hierarchical models to capture



Fit-Preserving Data Refinement 213

different levels of detail for the same biological process. Refinement in this case
allows us to go from one model to a more detailed one. The fit-preservation
constraints, on the other hand, enable us to go backward, i.e. obtain a more
general model from a detailed one. In this context, it is also interesting to in-
vestigate whether it is also possible to retrieve the more general model after the
detailed one has been refitted (and the fit-preservation constraints may not hold
anymore).

The proof of our result relies on the interplay between multinomial expansion
and the formulation of mass-action dynamics to yield very simple constraints.
On the other hand, it would be interesting to investigate fit-preserving data
refinement for other kinetic models as well. Another problem that remains open
is to find necessary conditions for the numerical setup of refined models, thus
aiming for a full solution of Problem 1.

References

1. Back, R.J., von Wright, J.: Refinement Calculus. Graduate Texts in Computer
Science. Springer (1998)

2. Craciun, G., Pantea, C.: Identifiability of chemical reaction networks. Journal of
Mathematical Chemistry 44(1), 244–259 (2008)

3. Czeizler, E., Czeizler, E., Iancu, B., Petre, I.: Quantitative model refinement as
a solution to the combinatorial size explosion of biomodels. Electronic Notes in
Theoretical Computer Science 284, 35–53 (2012)

4. Czeizler, E., Rogojin, V., Petre, I.: The phosphorylation of the heat shock factor
as a modulator for the heat shock response. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 9(5), 1326–1337 (2012)

5. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling,
symmetries, refinements. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054,
pp. 103–122. Springer, Heidelberg (2008)

6. Gratie, C., Petre, I.: Fit-preserving data refinement of mass-action reaction net-
works. Technical report, TUCS (2014)

7. Gratie, D.E., Iancu, B., Azimi, S., Petre, I.: Quantitative model refinement in
four different frameworks, with applications to the heat shock response (2013)
(submitted)

8. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential equations, dynamical systems
and an introduction to chaos, 2nd edn. Pure and Applied Mathematics, vol. 60.
Academic Press (2004)

9. Iancu, B., Czeizler, E., Czeizler, E., Petre, I.: Quantitative refinement of reaction
models. International Journal of Unconventional Computing 8(5-6), 529–550 (2012)

10. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in
Practice. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2005)

11. Volterra, V.: Variation and fluctuations of the number of individuals of animal
species living together. In: Animal Ecology, pp. 409–448. McGraw-Hill (1931)



On Maximal Block Functions

of Computable η-like Linear Orderings

Charles M. Harris

Department of Mathematics,
University of Bristol,

Bristol BS8 1TW, U.K.

Abstract. We prove the existence of a computable η-like linear ordering
L such that, for any Π0

2 function G : Q → N \ {0} and linear ordering
B ∼= L , B does not have order type τ =

∑{G(q) | q ∈ Q }.

Keywords: Computable, linear ordering, η-like, Π0
2 , maximal block.

1 Introduction

Given their relative simplicity, the study of η-like linear orderings has attracted
attention as a preliminary test case for obtaining general results for computable
linear orderings. An example of this is Kierstead’s [Kie87] construction of a com-
putable linear ordering of order type 2 · η with no nontrivial Π0

1 automorphism,
and subsequent conjecture that every computable copy of a computable linear
ordering L has a strongly nontrivial1 Π0

1 automorphism if and only if the order
type τ of L contains an interval of order type η. This conjecture is supported by
the Theorem in [DM89] that every computable discrete linear ordering L has a
computable copy with no strongly nontrivial Π0

1 self embedding. In the context
of η-like linear orderings, Downey and Moses deduced that Kierstead’s result for
the order type 2 · η can be generalised to the case of any η-like order type2 τ

1 Kierstead defines an automorphism f of a linear ordering L to be fairly trivial if
it is nontrivial but maps every element x to an element y with [x, y] finite and f to
be strongly nontrivial if it is neither trivial nor fairly nontrivial. Note that if L is
η-like then any nontrivial automorphism of L is strongly nontrivial.

2 The powerful choice set method—a choice set of a linear ordering is a set containing
precisely one element from each maximal block—used by Moses and Downey in the
context of embeddings of discrete linear orderings [DM89], would need to be modified
in order to be applicable to any such order type τ . Indeed suppose that L is a com-
putable η-like linear ordering with a strongly η-like interval. Choose elements a <L b
in one such interval such that a is the rightmost and b the leftmost element of its re-
spectivemaximal block, and such that, for some n, the interval (a, b) contains infinitely
many maximal blocks of size n and no maximal block of size m > n. Then the set of
leftmost elements (and, in fact, for any 1 ≤ i ≤ n, the set of i to leftmost elements) of
the maximal blocks of size n in the interval (a, b) forms an infinite Σ0

2 set. Hence any
construction that diagonalises against Σ0

2 subsets of a choice set containing, for exam-
ple, the leftmost element in each maximal block, will not be applicable if L contains
a strongly η-like interval. (Note that a proof based on similar techniques to those used
in [Kie87] can be applied in this context—see [LHC14].)

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 214–223, 2014.
c© Springer International Publishing Switzerland 2014



On Maximal Block Functions of Computable η-like Linear Orderings 215

provided that τ has a Π0
2 maximal block function and no interval of order type

η. This last result is the starting point of the present paper as it prompts the
question of whether it can be applied to the whole class of computable η-like lin-
ear orderings and hence, in particular, of whether every computable η-like linear
ordering L has a copy B with a Π0

2 maximal block function. We answer this
question in the negative in Theorem 2 by constructing a counterexample B via
a diagonalisation argument applied using the basic properties of isomorphisms
of linear orderings in this context. We note that this solves a question mentioned
by several authors including Fellner [Fel76], Lerman and Rosenstein [LR82] and
Downey and Moses [DM89].

2 Preliminaries

We assume {We}e∈N to be a standard listing of c.e. sets with associated c.e.
approximation {We,s}e,s∈N. ∅′ denotes the standard halting set for Turing ma-
chines in this context, i.e. the set { e | e ∈ We } and 0′ denotes the Turing
degree of ∅′. We suppose q0, q1, q2, . . . to be a fixed computable listing of Q. We
also assume 〈x, y〉 to be a standard computable pairing function over N extended
to use over Q via the above listing. {Dn}n∈N denotes the canonical computable
listing of all finite sets of nonnegative integers. Note that under this listing, for
any m,n ∈ N, if Dm ⊆ Dn then m ≤ n.

For any set X , we use |X | to denote the cardinality of X . For any function3

F with domain and range in N or Q we use G(F ) to denote the set { 〈x, y〉 |
F (x) ↓ = y }, i.e. the graph of F coded into N via the pairing function 〈·, ·〉.
(Note that in this context we identify a pair (x, y) with its code 〈x, y〉 so that,
for example, the shorthand G(F ) ⊆ Q × N makes sense.) We define F to be Γ ,
for some predicate of sets Γ , if G(F ) ∈ Γ .

Note 1. Any4 Σ0
2 function F with domain Q and codomain N is Δ0

2. Indeed
using a 0′ oracle we can compute F (q), for any q ∈ Q, as the number n found
by enumerating G(F ) until we find 〈x, n〉 with x = q.

Let L = 〈L,<L 〉 be a linear ordering. We call S ⊆ L an interval if, for all
a, b ∈ S, and any c that lies <L between a and b, c is also in S. Notice that S
does not necessarily have endpoints. Note that we also use the term interval in
direct reference to the order type of L with obvious meaning. For any a, b ∈ L,
we say that a, b are finitely far apart—written a ∼∗ b—if the interval S of
elements lying between a and b is finite. (By definition S = ∅ if a = b.) Note
that ∼∗ is an equivalence relation. If L is countably infinite we define L to be
η-like if { c | c ∼∗ a } is finite for all a ∈ L or, equivalently, if L has order type
τ =

∑
{F (q) | q ∈ Q } for some function F : Q → N \ {0}. We call any finite

3 We use the convention here and in further work that maximal block functions are
usually denoted using upper case letters whereas automorphisms of linear orderings
are usually denoted using lower case letters.

4 This is a particular case of the same (standard) observation generalised from n = 2
to any n ≥ 1, when the domain (and codomain) of F are computable.
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interval in L a block and we call the equivalence classes under ∼∗ maximal
blocks. If L is η-like we call such a function F a maximal block function of
L . We say that L is strongly η-like if in addition F has finite range (i.e. the
maximal block size is bounded). For any maximal block I of size p ≥ 1 (written
|I| = p) we use terminology of the form I = k1 <L · · · <L kp to denote I
and we call k1 (kp) the leftmost (rightmost) element of I. If A = 〈A,<A 〉 is
a countably infinite linear ordering we assume that A = N and derive a listing
a0, a1, a2, . . . of A computable in <A . We say that A is computable if <A is
computable.

We assume the reader to be conversant with the Arithmetical Hiearchy and
Turing reducibility (≤T). We refer the reader to [Odi89] for further background
and notation in computability theory and to [Dow98] for a review of computabil-
ity thoeretic results in the context of linear orders.

3 The Complexity of Maximal Block Functions

Fellner determined a bound for the arithmetical complexity of maximal block
functions of a computable η-like linear ordering.

Theorem 1 ([Fel76]). If B is a computable η-like linear ordering then there
is a Δ0

3 function F such that B has order type τ =
∑
{F (q) | q ∈ Q }.

Our present concern is with the extent to which the bound in Theorem 1 can
be tightened. However before proceeding we need to take into account that care
is needed when dealing with the notion of maximal block functions for η-like
linear orderings.

Note 2. Let A be an η-like linear ordering. Then A may have many different
maximal block functions. For example, if A contains maximal blocks of size
n + 1 for all n ≥ 0 then, for each n ≥ 0 we can define a distinct maximal block
function Fn for A such that Fn(q0) = n + 1.

Note 3. If A is an η-like linear ordering and F is a maximal block function of A
we say that a listing I(0), I(1), I(2), . . . of maximal blocks of A is an assignment
of F to A if F (qn) = |I(n)| for all n ≥ 0. Note that there may be many different
such assignments of F to A . For example5, suppose that A is made up of sets
of maximal blocks of size 2 and 3 and that each of these sets is dense (in the
standard sense) in A . Let I(0), I(1), I(2), . . . be some listing of the maximal
blocks of A and let I(i0), I(i1), I(i2), . . . be a sublisting of maximal blocks of
size 2. Then we can define a block function F of A with F (q0) = 2 such that
for every k ≥ 0 there is a distinct assignment Ik(0), Ik(1), Ik(2), . . . of F to A
such that Ik(0) = I(ik).

Our next Lemma restates a well known property of the class of Π0
2sets, orig-

inally proved by Jockusch [Joc68], in a form directly applicable to our main
Theorem.
5 An even easier but less interesting example of this phenomemon is when A has order
type n · η for some n ≥ 1.
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Lemma 1. There exists a computable listing {Ue}e∈N of the Π0
2 sets with asso-

ciated computable approximation {Ue,s}e,s∈N satisfying, for all e ≥ 0, Ue = { x |
∀t(∃s ≥ t)[x ∈ Ue,s ] } and such that, for any finite sets E0, . . . , Ee with Ei ⊆ Ui

for all 0 ≤ i ≤ e, there exist infinitely many stages s such that Ei ⊆ Ui,s for all
0 ≤ i ≤ e.

We now proceed to our main Theorem.

Theorem 2. There exists a computable linear ordering L of order type κ =∑
{F (q) | q ∈ Q } such that F : Q → N \ {0}, and such that, for any Π0

2

function G : Q → N \ {0} and linear ordering B ∼= L , B does not have order
type τ =

∑
{G(q) | q ∈ Q }.

Note. By Note 1 we can replace “Π0
2” by “Σ0

2 ∪ Π0
2” in the statement of Theo-

rem 2. Notice that, taken in conjunction with Theorem 1, this implies that any
computable B ∼= L has a properly Δ0

3 maximal block function. In particular we
will see that this is the case for the function F constructed below.

Proof. Assume {Ue}e∈N to be a standard listing of the class of Π0
2 sets with

associated computable Π0
2 approximation {Ue,s}e,s∈N as prescribed by Lemma 1.

The construction aims to construct L of order type
∑
{F (q) | q ∈ Q } such

that F : Q → N \ {0} and such that F satisfies, for all e ∈ N, the following
requirements:

Re : (∀k, j ≤ e)[ 〈qk, F (e)〉 /∈ Uj ∨ ∃m∃l[m 
= l & 〈qk,m〉 ∈ Uj & 〈qk, l〉 ∈ Uj ] ].

We shall see in the course of the verification below that satisfaction of {Re}e∈N

ensures that, for any j ∈ N, if Uj is the graph of a maximal block function Gj

and B is a linear ordering of order type γ =
∑
{Gj(q) | q ∈ Q }, then B � L .

For clarity, we use <Q and <N when we need to differentiate between the
respective standard orderings of Q and N. Our aim is to construct a computable
linear ordering L = 〈L,<L 〉 with domain L = N arranged in a set of maximal
blocks { I(n) | n ∈ N } such that, for all n ≥ 0, F (qn) = |I(n)| and also
such that I(n) is ordered relative to { I(k) | k �= n } as qn is ordered relative
to { qk | k �= n }; i.e. under our present terminology, such that the listing
I(0), I(1), I(2), . . . is an assignment of F to L .

We will proceed by stages s ≥ 0 defining a finite linear ordering Ls =
〈Ls, <

s
L 〉 at stage s such that, for some ns, rs ≥ 0, Ls = N�ns and such that

Ls is arranged as a finite set of blocks { I(n, s) | n < rs } where, for all n < rs,
I(n, s) is the s stage approximation to maximal block I(n). We say that n is
the label of I(n, s) and use this terminology quite generally in order to distin-
guish this use of N from our use of N as the domain of the linear ordering. The
ordering <s

L is defined by the internal ordering applied within each block and
the ordering between blocks dictated by <Q over { qn | n < rs }. Note that,
in the construction, at any stage s ≥ 0, if I(n, s) �= ∅, then for any elements
k,m ∈ I(n, s), k <s

L m ⇔ k <N m. In other words the internal ordering of
blocks always coincides with the natural ordering of N. During the construction,
for any stage s, and k,m ∈ Ls, if k <s

L m then k <t
L m for all t ≥ s. Hence we

will in general use <L as shorthand for <s
L .
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We choose some d > 0 as a default maximal block size for the construction.

Notation. During the construction we use the term new to refer to any finite set
of numbers S which has not yet been enumerated into L at the present point in
the construction and which is the minimal such set of cardinality |S|.
Block Rebuilding. At stage s + 1 we may want to rebuild block I(n, s) for some
n < rs. This means that there are distinct integers6 n̂ ≥ 0 and m̂ > 0 such that
|I(n, s)| = n̂ whereas we need |I(n, s + 1)| = m̂. We then proceed as follows
according to whichever of the two cases below applies.

(a) n̂ > m̂. In this case we search for the least labels b1, . . . , bn̂−m̂ ≥ rs such
that qn <Q qb1 <Q · · · <Q qbn̂−m̂

<Q qa where I(a, s) is the successor block
to I(n, s) in Ls (so that qn <Q qa) or qa is simply any rational to the right
of qn if no such successor block exists. We define S = { bj | 1 ≤ j ≤ n̂− m̂ }
and T = { d | rs ≤ d ≤ maxS }. Suppose that k1 <L · · · <L kn̂−m̂ are the
n̂− m̂ rightmost elements in I(n, s). We remove {k1, . . . , kn̂−m̂} from I(n, s)
to obtain |I(n, s + 1)| = m̂ and proceed as follows. We firstly construct
I(b1, s+1) by constructing it as the singleton block consisting of k1 if d = 1
and otherwise we define it as k1 <L p̂ <L · · · <L p̂ + d− 2 (i.e. as a block
of d elements) with {p̂, . . . , p̂ + d− 2} a set of d− 1 new numbers. We then
proceed for each kj such that 1 < j ≤ n̂ − m̂ by constructing I(bj , s + 1) in
a similar fashion. Finally, for all b ∈ T \ S we construct I(b, s + 1) using d
new numbers. (Note that each I(b, s+ 1) is inserted into Ls+1 according to
qb’s position under <Q relative to { qn | n < rs } ∪ { qm | m ∈ T } \ {qb}.)

(b) n̂ < m̂. In this case, supposing that I(n, s) = k1 <L · · · <L kn̂ we choose
a new set of m̂ − n̂ numbers {p̂, . . . , p̂ + r} where r = m̂− n̂− 1 and define
I(n, s + 1) = k1 <L · · · <L kn̂ <L p̂ <L · · · <L p̂ + r.

Note that, as this is the only rebuilding process applied during the construction
we will be able to see, by inspection of the construction, that the following two
conditions hold.

(i) For any n ≥ 0, m̂ > 0 and stages 0 ≤ s ≤ t, such that |I(n, r)| ≥ m̂ for
all s ≤ r ≤ t, the block consisting of the m̂ leftmost (i.e. least) elements in
I(n, t) is the same as that in I(n, s).

(ii) For any n, b, k ≥ 0 and stages t > s ≥ 0, if k is removed from I(n, s) at
stage s+1 due to rebuilding and inserted into I(b, s+1) as described above,
then k ∈ I(b, t). Note that this follows from (i) as k is the least number in
I(b, s + 1). In other words any number can move from one block to another
at most once.

The Diagonalisation Witness and Domain for Re. For s ≥ e, witness m(e, s) for
Re is the construction’s guess as to a number such that 〈qk,m(e, s)〉 /∈ Uj , for
all 0 ≤ k, j ≤ e such that Uj is the graph of a function Q → N \ {0}. For all

6 In fact n̂ > 0 for any such n ≤ s with the possible exception of n = s at early stages
of the construction.
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stages s > e, m(e, s) = |I(e, s)| = Fs(e), where Fs is the s stage approximation
to F . The set of diagonalisation pairs for index e is defined to be

P e = { (i, j) | 0 ≤ i, j ≤ e } .

Thus |P e| = (1+e)2. Letting xe
0, . . . , x

e
(1+e)2−1 be the computable ordering of P e

induced by the standard pairing function 〈·, ·〉 we have the computable listing

De
0, . . . , D

e
2(1+e)2−1

of all subsets of P e defined using the canonical listing of finite sets {Di}i∈N

specified above. (Note that De
0 = ∅ under this listing.) It is important to reiterate

here that this means (by definition of the latter listing) that, for all i, j ≥ 0,

De
i ⊆ De

j ⇒ i ≤ j .

We now define the diagonalisation domain for Re to be:

Ze = Xe
0 ∪ . . . ∪ Xe

2(1+e)2−1

where, for each 0 ≤ i ≤ 2(1+e)2 − 1, Xe
i is an interval of numbers associated

with De
i such that (i) |Xe

i | ≥ |De
i |+ 1 (for reasons explained below) and (ii) for

i �= 0, minXe
i > maxXe

i−1. To do this, for simplicity we define Xe
i such that

|Xe
i | = (1 + e)2 + 1 for every 0 ≤ i ≤ 2(1+e)2 − 1 by defining:

Xe
i = {i(1 + e)2 + (i + 1), . . . , (i + 1)(1 + e)2 + (i + 1)} .

Accordingly Ze is the interval {1, . . . , |Ze|} partitioned by the Xe
i and having

cardinality |Ze| = 2(1+e)2((1 + e)2 + 1).

The point here is that, at stage s we choose an index i(e, s) for e in such a way
that, (k, j) ∈ Di(e,s) if and only if there exists at most one number n ∈ Ze such
that 〈qk, n〉 ∈ Uj,s. Since |Xe

i(e,s)| ≥ |Di(e,s)|+ 1 we know that

Xi(e,s) \ { r | r ∈ Ze & (∃(k, j) ∈ Di(e,s))[ 〈qk, r〉 ∈ Uj,s ] } �= ∅

so that we can define the s stage witness m(e, s) to be a number in this set.

The Construction

Stage s = 0.

Set L0 = 〈L0, <L 〉 with L0 =<L = ∅. Define I(n, 0) = ∅, m(n, 0) = 0 and let
i(n, 0) be undefined for all n ≥ 0. Set n0 = r0 = 0.

Stage s + 1.

We suppose that ns and rs are such that Ls = N�ns and {n | I(n, s) �= ∅ } =
N�rs. There are now s + 1 substages 0 ≤ e ≤ s as follows.

Substage e.
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Process requirement Re as follows. Define i(e, s+1) ∈ N�2(1+e)2 to be the index
l satisfying

(k, j) ∈ De
l ⇔ |{ 〈qk, r〉 | r ∈ Ze } ∩ Uj,s+1| ≤ 1

for all 0 ≤ k, j ≤ e. Let i = i(e, s+1). If i = 0—i.e. if De
i = ∅—define M e(s+1) =

Xe
i . Otherwise define M e(s + 1) as follows.

Notation. The individual out-age of m ∈ Xe
i relative to any pair (k, j) ∈ De

i at
stage s + 1—denoted be(m, (k, j), s + 1)—is defined to be 0 if 〈qk,m〉 ∈ Uj,s+1

and otherwise is defined to be the greatest 0 < r ≤ s+1 such that 〈qk,m〉 /∈ Uj,t

for all (s + 1) − r < t ≤ s + 1. The out-age of m ∈ Xe
i relative to De

i at stage
s + 1 is defined to be

ae(m, s + 1) = min { be(m, (k, j), s + 1) | (k, j) ∈ De
i } .

Define

M e(s + 1) = {m | m ∈ Xe
i & (∀n ∈ Xe

i )[ a
e(m, s + 1) ≥ ae(n, s + 1) ] } , (1)

i.e. M e(s + 1) contains all m ∈ Xe
i of maximal out-age relative to De

i . (Note
that, by construction, ae(m, s+ 1) = ae(n, s+ 1) > 0 for any n,m ∈ M e(s+ 1).
Notice also that M e(s + 1) contains precisely those numbers m ∈ Xe

i for which
it appears most likely that 〈qk,m〉 /∈ Uj for all (k, j) ∈ De

i .)
Define the s + 1 stage witness m(e, s + 1) = minM e(s + 1). If m(e, s + 1) =

m(e, s) do nothing (so that I(e, s + 1) = I(e, s)). Otherwise rebuild I(e, s + 1)
from I(e, s) as described under the Block Building above with7 n̂ = |I(e, s)| and
m̂ = m(e, s + 1)—so that |I(e, s + 1)| = m(e, s + 1).

Ending Substage e.

If e < s proceed to substage e+1. If e = s define Ls+1 = 〈Ls+1, <L 〉 as follows.
Let I(n, s+1) = I(n, s) for any labels s < n < rs, i.e. for n such that I(n, s) was
a block in Ls but such that the block I(n, s) was not rebuilt during one of the
substages 0 ≤ e ≤ s during this stage. Set rs+1 = max {n | I(n, s) �= ∅ } + 1,
and ns+1 = max {m | (∃n < rs+1)[m ∈ I(n, s+1) ] }+1. Define Ls+1 = N�ns+1

and define <L as dictated by the arrangement of the blocks { I(n, s+ 1) | n <
rs+1 } in Ls+1 (and <L ’s coincidence with the natural ordering inside each
block). Proceed to stage s + 2 in this case.

Verification

Define L = 〈L,<L 〉 with L =
⋃

s≥0 Ls. Let

U = { 〈e,m〉 | ∀t(∃s ≥ t)[m(e, s) = m ] }

and notice that U is a Π0
2 set (as m(e, s) is computable). Define

F (qe) = μm[ 〈e,m〉 ∈ U ] . (2)

7 For e < s, |I(e, s)| = m(e, s). However for e = s we have m(e, s) = 0 whereas it may
be that |I(e, s)| 
= 0 due to previous rebuilding activity for the sake of some Ri with
i < e.
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Note that F (qe) is defined for all e as m(e, s) is defined as an element of the finite
set Ze for all s > e. Notice also that F : Q → N \ {0} (and that the construction
of F is Δ0

3 as witnessed by (2)).
We see by inspection that L = N and that L has order type

∑
{F (q) | q ∈

Q }. Indeed by construction n ∈ Ln+1 ⊆ L. Moreover n can be moved from
one block I(b, s) into another block I(a, s + 1) at stage s + 1 only via the Block
Rebuilding process. However in this case n ∈ I(a, t) for all t ≥ s+1 as explained in
remark (ii) on page 218. Thus n changes blocks at most once. Now consider e ≥ 0.
Let se be a stage such that m(e, se) = F (qe) and such that m(e, s) ≥ m(e, se)
for all s ≥ se. Then |I(e, se)| = F (qe) and { s | |I(e, s)| = F (qe) } is infinite.
Moreover, as stated in observation (i) on page 218, the leftmost block of F (qe)
is preserved in I(e, t) for all t ≥ se. I.e. I(e) is well defined as a maximal block
with cardinality F (qe).

For e ≥ 0 as above, define i(e) to be the index satisfying

(k, j) ∈ De
i(e) ⇔ |{ 〈qk, r〉 | r ∈ Ze } ∩ Uj | ≤ 1

for all 0 ≤ k, j ≤ e. Let te > se be a stage such that

|{ 〈qk, r〉 | r ∈ Ze } ∩ Uj,s| ≤ 1

for all (k, j) ∈ De
i and s ≥ te. Then, by definition, at any such stage s, De

i(e) ⊆
De

i(e,s) and so i(e) ≤ i(e, s). For each 0 ≤ j ≤ e define8

Ej = { 〈qk, r〉 | r ∈ Ze & k ≤ e & (k, j) /∈ De
i(e) } ∩ Uj (3)

By Lemma 1, there are infinitely many stages s such that Ej ⊆ Uj,s for all
0 ≤ j ≤ e. Moreover, at each such stage s ≥ te, i(e) = i(e, s) by definition of the
construction. On the other hand, as |Xi(e)| > |Di(e)|, we see that Xi(e) = S ∪ T
with S �= ∅ and S ∩ T = ∅ where

T = { r | (∃(k, j) ∈ De
i(e))[ 〈qk, r〉 ∈ Uj ] } ∩ Xi(e)

and S = Xi(e) \ T . By definition of S there is a stage t̂e ≥ te such that, for all

s ≥ t̂e, and for every r ∈ S, there is no (k, j) ∈ Di(e) such that 〈qk, r〉 ∈ Uj,s.
For each r ∈ S, let the in-age of r relative to Di(e) be the greatest stage s such
that 〈qk, r〉 ∈ Uj,s for some (k, j) ∈ Di(e) if such a stage exists, and otherwise
define the in-age of r to be 0. Define M ⊆ S to be the elements of S of least
in-age relative to Di(e), and choose m to be the least number in M . (Note that
by definition M = Xi(e) if i(e) = 0.) Now, for each 0 ≤ j ≤ e define

Êj = { 〈qk, r〉 | r ∈ Xi(e) & k ≤ e & (k, j) ∈ De
i(e) } ∩ Uj .

By Lemma 1 we know that there exists a stage ue ≥ t̂e such that, not only
Ej ⊆ Uj,ue for all 0 ≤ j ≤ e (with Ej defined as in (3)), so that i(e, ue) = i(e),

8 We could also simply define Ej = { 〈qk, r〉 | r ∈ Ze & k ≤ e } ∩ Uj with the same
result.
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but also Êj ⊆ Uj for each such j so that, by definition m(e, ue) = m and
moreover, m(e, s) = m for all stages s ≥ ue such that i(e, s) = i(e). Accordingly,
letting m(e) = m we see that m(e) is the witness for Re at every such stage s
and |I(e, s)| = m(e). Moreover, at every stage s ≥ se such that i(e, s) �= i(e), we
know that i(e, s) > i(e) as ue ≥ se. However this implies that m(e, s) > m(e) at
every such stage s as m(e, s) ∈ Xi(e,s) and minXi(e,s) > maxXi(e) ≥ m(e). It
follows that F (qe) = |I(e)| = m(e).

Note 4. Suppose that B is a linear ordering and ι : B ∼= L is an isomorphism.
Suppose also that F̂ : Q → N \ {0} is a maximal block function of B and that

Î(0), Î(1), Î(2), . . . is an assignment of F̂ to B. Now note that we have a listing
of labels of L ,

m0,m1,m2, . . .

such that

ι : Î(j) ∼= I(mj)

(i.e. I(mj) is the isomorphic image of Î(j) under ι) for all j ≥ 0. Moreover
there must be infinitely many labels j of B such that mj ≥ j. Indeed, suppose
otherwise so that for some l, for all j ≥ l we have mj < j. Choose m = max {mj |
j < l } ∪ {l}+ 1. Then, under our assumption,

ι∗({n | n ≤ m }) ⊆ {n | n < m }

where ι∗ is the map over labels induced by ι. Thus ι∗ is not one-one. This
contradicts the fact that ι is an isomorphism. We therefore conclude that there
are infinitely many pairs of labels (k, e) with k ≤ e such that ι : Î(k) ∼= I(e).

Choose any B, ι, F̂ and assignment Î(0), Î(1), Î(2), . . . as in Note 4. Consider
any index j ≥ 0 and suppose that Uj is the graph of a function Gj with domain

Q. As above, choose k ≥ j such that ι : Î(k) ∼= I(e) for some e ≥ k. Now, by
definition of the construction, (k, j) ∈ Di(e). However this implies that

Gj(qk) �= m(e) = F (qe) = |I(e)| = |Î(k)| .

Note in the above argument that the choice of F̂ , and of its assignment to
B, as also of the isomorphism ι : B ∼= L , was in each case arbitrary. Notice
also that the same observation holds for the choice of the index j ≥ 0, and of
the linear ordering B ∼= L . We can thus conclude that, for any Π0

2 function
G : Q → N \ {0} and any B ∼= L , B does not have order type τ =

∑
{G(q) |

q ∈ Q }. ��

Note 5. We can choose any p ≥ 0 and replace F : Q → N \ {0} by F : Q →
N\{0, . . . , p} in the statement of Theorem 2, by a simple adjustment of the proof,
so ensuring that L contains no maximal blocks of size p or less. We can also
clearly force F to be injective (so making L rigid). For example if we define each
Ze as before but such that minZe+1 > maxZe we obtain F strictly increasing.
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We conclude by noting another application of our proof technique and how
this yields an alternative proof9 of Theorem 2 via the work of either Kach or
(Kenneth) Harris. Indeed, a straightforward adaptation of the framework of the
proof of Theorem 2 can be applied to show that there exists a 0-limitwise mono-
tonic set10 S ⊆ N \ {0, 1} such that S is the range of no Π0

1 function11 G (with
domain N). Relativising this result we obtain a 0′-limitwise monotonic set S such
that the shuffle sum of S derived via the proof of Proposition 2.1 of [Kac08] and
the η-representation of S derived via the proof of Theorem 3.3 of [Har08] are
both examples of η-like computable linear orderings having no isomorphic copy
with Π0

2 maximal block function12.
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Abstract. We provide an automata-theoretic approach to analyzing an
abstract channel modeled by a transducer and to characterizing its lossy
rates. In particular, we look at related decision problems and show the
boundaries between the decidable and undecidable cases.

Keywords: automata, transducers, Shannon information.

1 Introduction

Modern digital communications are realized through channels. A communication
system is modeled as a sender, a channel, and a receiver. The channel input is
generated by the sender as an encoding of source input information. This process
is referred to as channel encoding. The channel output is delivered to a receiver
for decoding. Traditional analysis of such a system uses probability and random
processes to model channel behavior. In the view of automata theory, the channel
is a transducer, which is an automaton (not necessarily of finite states) having
both input instructions and output instructions. In automata theory, textbook
results [11] focus on formal language aspects of the input-output relationship
exhibited in a transducer, without formulation of any probabilistic description
of a transducer’s behavior. It would be interesting to see if automata theory can
be used to investigate certain key characteristics in a communication channel.
In this paper, we use an automata-theoretic approach in studying the lossy rate
of a channel modeled by a transducer.

A communication channel can be noisy. That is, the input symbols during
transmission can be dropped or altered, or unwanted symbols added. As a result,
the output of the channel may not be uniquely decoded back to the input. We
abstract the problem as an automata theory problem: Given a transducer T ,
determine whether T is L-lossy. (That is, are there distinct words in L that
are translated into the same word with T ?) In the paper, the problem is shown
decidable for nondeterministic finite state transducers (NFTs) as well as some
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NFTs augmented with reversal-bounded counters and their variations, while L
is a regular language or in a certain class of nonregular languages. On the other
hand, the problem is undecidable in general. Indeed, as shown in the paper, the
undecidability remains even under a very restricted case: the T is a deterministic
finite state transducer (DFT) augmented with the capability of making one turn
on its input and the L is the universe. Hence, the decidability/undecidability
boundary of the problem is subtle.

We also study the lossy rate of a channel modeled by a transducer. In the
paper, we define the lossy rate based on a notion introduced by Shannon [19],
which we call information rate. Using this definition, the input lossy rate (the
output lossy, defined accordingly in the paper, as well) of the transducer T can
be computed through computing the information rates of the input language,
the output language, as well the language of input-output pairs, of T , without,
as in traditional communication engineering analysis, explicitly introducing a
probabilistic or stochastic model. Later in the paper, among other results, we
show that the lossy rates are computable for NFT.

Because of space limitation, we omit most of the proofs here. Complete proofs
will appear in the journal version of this paper.

2 Decision Problems: Decidable and Undecidable Cases

We first recall reversal-bounded nondeterministic counter machines [12] used
subsequently in this paper. A counter is a nonnegative integer variable that can
be incremented by 1, decremented by 1, or stay unchanged. In addition, a counter
can be tested against 0. Let k be a nonnegative integer. A nondeterministic k-
counter machine (NCM) is a one-way nondeterministic finite automaton, with
input alphabet Σ, augmented with k counters. For a nonnegative integer r, we
use NCM(k,r) to denote the class of k-counter machines where each counter is
r-reversal-bounded; i.e., it makes at most r alternations between nondecreasing
and nonincreasing modes in any computation; e.g., the following counter value
sequence ‘0 0 1 2 2 3 3 2 1 0 0 1 1’ is of 2-reversal, where the reversals are
underlined. For convenience, we sometimes refer to a machine M in the class
as an NCM(k,r). In particular, when k and r are implicitly given, we call M a
reversal-bounded NCM. When M is deterministic, we use ‘D’ in place of ‘N’; e.g.,
DCM. As usual, L(M) denotes the language that M accepts. If M is augmented
with a pushdown stack, we call it a reversal-bounded NPCM (resp., DPCM in
the deterministic case).

Reversal-bounded NCMs and NPCMs have been extensively studied since
their introduction in 1978 [12], and many generalizations have been identified,
e.g., ones equipped with multiple tapes, with two-way tapes, etc. In particular,
reversal-bounded NCMs and NPCMs have found applications in areas like Alur
and Dill’s [1] time-automata [8,7], Paun’s [17] membrane computing systems
[13], and Diophantine equations [24].

Two fundamental results in the theory of reversal-bounded NCMs and NPCMs
are the following [12].
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Theorem 1. It is decidable to determine, given a reversal-bounded NPCM M ,
whether L(M) is empty (resp., infinite).

A two-way reversal-bounded NCM M is finite-turn if, for a given nonnegative
integer c, M makes at most c turns on its two-way input tape.

Theorem 2. It is decidable to determine, given a finite-turn two-way reversal-
bounded NCM M , whether L(M) is empty (resp., infinite).

We now formalize the problem under study. A transducer T is a nondetermin-
istic automaton that accepts pairs of words; i.e., the set of pairs accepted by T
is L(T ) ⊆ Σ∗ × Δ∗. For a pair (u,w) ∈ L(T ), u is an input word and w is an
output word. Suppose that L is the language from which an input u is drawn.
T is L-lossy if there are u, v, w such that u �= v ∈ L, and, both (u,w) and (v, w)
are in L(T ). That is, a lossy transducer can translate distinct input words into
the same output word. T is L-lossless if it is not L-lossy. If L = Σ∗ (i.e., the
set of all finite-length input strings), then we will just use the terms lossless and
lossy (omitting Σ∗). We are interested in algorithmic solutions to the problem
of deciding whether a transducer is L-lossy:

Given: A transducer T and an input word language L.
Question: Is T L-lossy?

Clearly, like most decision problems in automata theory, the decidability relies
on the exact classes of languages and automata to which L and T , respectively,
belong.

Consider a nondeterministic finite transducer (NFT) T , which is an NFA with
outputs. An instruction of T is of the form (p, a) → (q, b), where q, p are states,
and a, b are in Σ∪{ε}. The instruction means that M in state p reads a, outputs
b, and enters state q. (Notice that the instruction can be an ε-instruction; i.e.,
when a or b is the null symbol ε.) As usual, L(T ) denotes the set of pairs (u,w)
such that T enters an accepting state after it reads the input word u while it
outputs w. It is fairly well known that it is decidable to determine, given an
NFT T and a regular language accepted by an NFA M , whether T is L-lossy.
We will generalize this.

In the results below, “augmented with reversal-bounded counters” will mean
“augmented with a finite number of reversal-bounded counters”.

Theorem 3. It is decidable to determine, given an NFT T augmented with
reversal-bounded counters and a language L accepted by a reversal-bounded NCM
M , whether T is L-lossy.

Proof. We construct a finite-turn two-way (with end markers on the input)
reversal-bounded NCM M ′ to simulate T on L = L(M). The idea is for M ′

to accept some string w if there are two distinct strings u and v in L such that
they are mapped into w by T .

M ′ has one new 1-reversal counter, C. M ′, when given input w, makes two
sweeps on the input. On the first sweep, M ′ nondeterministically guesses the
symbols comprising some string u = a1...ak (but not writing them) and checking
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that, at the end of the sweep, u is in L(M). Also during the sweep, M ′ checks
that the outputs of T match the symbols in w . Furthermore, M ′ uses counter C
to store a nondeterministically chosen 1 ≤ i ≤ k (by incrementing the counter)
and remembering in its finite control the guessed symbol ai.

When M and T accept, M ′ returns to the left end marker and executes the
same process as above, but this time guessing the symbols comprising v = b1...bn.
Now, it decrements counter C for every symbol that it guesses. When C becomes
zero and the symbol bi it has guessed is different from ai and M and T accept,
M ′ accepts w.

Note that the case when u (resp., v) is a proper prefix of v (resp., u) and hence
different is taken care of in the above process. Clearly, L(M ′) is not empty if and
only if T is L-lossy. The result follows, since the emptiness problem for finite-
turn two-way reversal-bounded NCMs is decidable by Theorem 2. ��

We can further generalize Theorem 3. A two-way reversal-bounded NCM M
is finite-crossing if for a given nonnegative integer c, M crosses the boundary
between any adjacent cells of the input at most c times.

Theorem 4. It is decidable to determine, given an NFT T augmented with
reversal-bounded counters and a language L accepted by a two-way finite-crossing
reversal-bounded NCM M , whether T is L-lossy.

A question arises whether Theorem 4 still holds when T has a two-way input.
We will show that the answer is no, even when T is deterministic and makes
only one turn on its input tape: a left-to-right sweep and then a right-to-left
sweep (the output is one-way). In the proof, we use the undecidability of the
Post Correspondence Problem (PCP).

Theorem 5. It is undecidable to determine, given a 1-turn DFT T , whether T
is lossy.

A transducer T is single-valued on a language L if for every u in L, there is at
most one w such that (u,w) is in L(T ). In contrast to Theorem 5, it is known
that it is decidable, given a finite-crossing two-way NFT M augmented with
reversal-bounded counters and a language L accepted by a reversal-bounded
NCM, whether T is single-valued on L [10].

A transducer T is k-lossy if for any word w, there are at most k words that
are mapped by T into w. T is finite-lossy if it is k-lossy for some k. A related
notion that has been extensively studied in automata theory is the notion of
k-valuedness of transducers (see, e.g., [18], for an early reference). We say that
a transducer T is k-valued if, for every input word u, there are at most k output
words w such that (u,w) ∈ T . That is, T cannot have more than k outputs on
any input word. T is finite-valued on L if it is k-valued for some k. Given an NFT
T , we can construct another NFT T ′ such that L(T ′) = {(w, u) : (u,w) ∈ L(T )}.
Clearly, T is lossless (resp., finite-lossy, k-lossy for a given k) if and only if T ′ is
single-valued (resp., finite-valued, k-valued). The converse is also true.

The case when T is finite-lossy (resp., k-lossy for a given k) is interesting. It
implies that for some k (resp., for the given k), every output word w received
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has at most k possible choices of decoded input words (no matter how long w
is). Hence, this number k can also be used as an indicator on how lossy the
transducer is.

It is decidable to determine, given an NFT T , whether it is finite-valued (i.e.,
it is k-valued for some k) [22]. It is also decidable to determine whether it is
k-valued for a given k [10]. Hence, we have:

Theorem 6. It is decidable to determine, given an NFT T and a regular lan-
guage L, whether T is finite-lossy on L. In the affirmative case, the minimal k0
such that T is k0-lossy on L is computable.

Currently, we do not know if the first part of Theorem 6 holds when M is
an NFT augmented with an infinite memory (e.g., a reversal-bounded counter).
However, we can prove the following.

Theorem 7. It is decidable to determine, given an NFT T augmented with
reversal-bounded counters, a language L accepted by a two-way finite-crossing
reversal-bounded NCM M , and an integer k ≥ 1, whether T is k-lossy on L.

For deterministic pushdown transducers (DPDTs), the following result can be
shown:

Theorem 8. It is undecidable to determine, given a 1-reversal DPDT (i.e., the
stack makes exactly one reversal: once it pops it can no longer push), whether T
is lossless (resp., k-lossy for a given k, finite-lossy).

For the case when the NPDT’s input is bounded, we have:

Theorem 9. It is decidable to determine, given an NPDT T augmented with
reversal-bounded counters whose input comes from x∗

1 · · ·x∗
k (where x1, . . . , xk are

not necessarily distinct words) and a language L accepted by a reversal-bounded
NCM M , whether T is L-lossy.

Again, the theorem above generalizes to the case when L is accepted by a
finite-crossing two-way reversal-bounded NCM.

Next, we investigate the subtle relationship between ambiguity in automata
and lossiness in transducers. Let M be a (one-way) acceptor, e.g., DFA, NFA,
DPDA, NPDA, etc. We say that a transducer T is of the same type as M , if
when T ’s output is suppressed, it reduces to an acceptor in the class where M
belongs. So a DFT (resp., NFT, DPDT, NPDT, etc,) is of the same type as DFA
(resp., NFA, DPDA, NPDA, etc.) We assume that in an acceptor or transducer,
an accepting state is a halting (i.e., the device has no move when it enters an
accepting state).

Theorem 10. The following statements are equivalent, where M and T are of
the same type:

1. It is undecidable, given a nondeterministic acceptor M , whether M is un-
ambiguous (resp., k-ambiguous for a given k, or finitely-ambiguous).
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2. It is undecidable, given a deterministic transducer T , whether T is lossless
(resp., k-lossy for a given k, or finite-lossy).

The above result is interesting because it relates the ambiguity question of a
nondeterministic acceptor to the lossiness question of a deterministic transducer
of the same type as the acceptor. For example, it is undecidable, given a 1-
reversal NPDA (which is equivalent to a linear context free grammar), whether
it is unambiguous (resp., k-ambiguous for a given k, unboundedly ambiguous)
[23]. Hence, it is also undecidable, given a 1-reversal DPDT (deterministic 1-
reversal pushdown transducer), whether it is lossless (resp., k-lossy for a given
k, finite-lossy).

Clearly, Theorem 10 is not valid if M is deterministic. This is because such
an acceptor is always unambiguous. Hence the unambiguity question is trivially
decidable (since the acceptor is always unambiguous). However, from Theorem 8,
the losslessness question for 1-reversal DPDT is undecidable.

Similarly, Theorem 10 is not valid if T is nondeterministic. Consider the fol-
lowing example: Let P be the class of 1-reversal NPDAs M , where M always
starts in initial state q0 and on input ε goes to state q01 and q02, and in the next
step, the next state from q01 or q02 are the same. Clearly, any 1-reversal NPDA
can be simulated by a machine in P and, hence, any machine in P is ambigu-
ous (because, by definition of the class P , any input accepted by the machine
has at least two distinct accepting computations). It follows that the unambi-
guity question for P is decidable. Now let T be the class of 1-reversal NPDTs
of the type defined in class P . Clearly, any 1-reversal DPDT can be simulated
by a transducer in T . Hence, from Theorem 8, the losslessness problem for T is
undecidable.

The next result shows that undecidability of losslessness implies undecidability
of k-lossiness for any k.

Theorem 11. Let T be a class of deterministic transducers. Then losslessness
for T is undecidable if and only if k-lossiness for T is undecidable for any given
k ≥ 1.

We now define a form of transducers that are Shannon channels mentioned in
the Introduction. Let T be a transducer of any given type. Suppose that (u,w)
is in L(T ). Thus, on input u, T outputs w. However, if we observe the behavior
of T , i.e., we look at exactly the way that we feed T with symbols in u and we
observe symbols in w to be sent out, we obtain an observed sequence which is a
shuffle of the pair (u,w). For instance, if u = ABC and w = deffg, an observed
sequence could be ABdefCfg. That is, on input A, T runs but emits no output.
Then on input B, we have output def . Finally, on input C, we have output fg.
The input distance of the sequence is 3 (the length of def), that is the maximal
number of output symbols between two consecutive input symbols (B and C).

Formally, define the input distance (resp., output distance) of T on (u,w) to be
the maximal number of output (resp., input) symbols between two consecutive
input (resp., output) symbols in the shuffled input/output behavior sequence.
The input (resp., output) distance of T is the maximal input distance for all
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(u,w) in L(T ). T is k-input Shannon (resp., k-output Shannon) if its input
distance (resp., output distance) is at most k. T is finite-input (resp. finite-
output) Shannon if it is k-input Shannon (resp., k-output Shannon) for some
k.

Theorem 12. The following are decidable, given a reversal-bounded NPCMT
T (NPCMT is an NPCM with output):

1. Given k ≥ 1, is T k-input Shannon (resp., k-output Shannon)?
2. Is T finite-input Shannon (resp. finite-output Shannon)?

3 Lossy Rates of Transducers

The previous section focuses on the problem of deciding whether a channel mod-
eled as a transducer T is L-lossy for a given input language L. Suppose that T
is L-lossy. Without introducing probabilities into T , can we still define a notion
that characterizes how lossy T is? Before we proceed further, we first illustrate
the intuition behind the definitions.

Consider a pair (u,w) of an input word u and an output word w produced by
T . The “information” contained in (u,w) is composed of the information in u and
the information in w. However, since u and w are not necessarily independent,
there is certain amount of mutual information shared between u and w.

The input lossy rate measures the “number” of inputs to which an average
output can be decoded. Intuitively, the input lossy rate, using the classic Venn
diagram of Shannon information theory, should be the information contained in
the input u, given the output w. Notice that the lengths of the input and the out-
put are in general unbounded and hence, a more scientific measurement would
be information rate (in bits per symbol) instead of information (in bits). How-
ever, there is a problem. In computing the aforementioned information/mutual
information, one usually needs a probability distribution which, unfortunately,
the transducer T does not have and which, in practice, would be very hard to
obtain.

Without an explicit probabilistic model, can we still define an information
rate? There has already been a fundamental notion shown below, proposed by
Shannon [19] and later Chomsky and Miller [3], that we have evaluated through
experiments over C programs [25,16,9,4,5], fitting our need for the aforemen-
tioned complexity. For a number n, we use Sn(L) to denote the number of words
in a language L whose length is n. The information rate λL of L is defined as

λL = lim logSn(L)
n . Where the limit does not exist, we take the upper limit, which

always exists for a finite alphabet.
The following result is fundamental.

Theorem 13. The information rate of a regular language L is computable [3].

The case when L is non-regular (e.g., L is the external behavior set of a software
system containing (unbounded) integer variables like counters and clocks) is
more interesting, considering the fact that a complex software system nowadays



Lossiness of Communication Channels Modeled by Transducers 231

is almost always of infinite state , yet the notion of information rate has been
applied to software testing [4,21]. However, in such a case, computing the infor-
mation rate is difficult (sometimes even not computable [14]) in general. Existing
results (such as unambiguous context-free languages [15], Lukasiewicz-languages
[20], and regular timed languages [2]) are limited and mostly rely on Mandelbrot
generating functions and the theory of complex/real functions, which are also
difficult to generalize. A recent important result, using a complex loop analysis
technique, is as follows.

Theorem 14. The information rate of the language accepted by a reversal-
bounded DCM is computable [6].

Note that the case for a reversal-bounded NCM is open.
We now return to our definitions. Assume that T is length-preserving. That

is, for all (u,w) ∈ L(T ), we have |u| = |w|. Example channels modeled by such
transducers are binary channels that can alter a bit but never drop one. We now
consider L(T, L) = {(u,w) : (u,w) ∈ L(T ), u ∈ L}. Recall that the information
rate λL(T,L) is the average bit rate (number of bits per symbol) of (the string
encoding of) a pair (u,w) ∈ L(T, L). We use a simple shuffle encoding [u,w]
of (u,w); e.g., [aaa, bbb] = ccc, where c is a symbol representing the pair (a, b).
Hence, the length of [u,w] is the same as |u| (as well as |w|). It is not hard
to imagine that the bit rate λL(T,L) of [u,w] is “contributed” by the average
bit rate λL in u and the average bit rate λT (L) in w. Herein, T (L) = {w :
(u,w) ∈ L(T, L)}. Notice that u and w are not completely independent, since
(u,w) ∈ L(T, L). What is the meaning of the bit rate amount λL(T,L) − λT (L)?
It characterizes, for (u,w) ∈ L(T, L), the average bit rate amount in u that is
independent of w. Notice that, if T is L-lossless, the amount is simply zero. This
is because, in this case, the output w completely decides the input u. Now, we
define the input lossy rate λin(L, T ) to be λL(T,L) − λT (L). Symmetrically, we
define the output lossy rate λout(L, T ) to be λL(T,L)−λL. Notice that λin(L, T ) =
λout(T (L), T−1), where T−1 is the inverse of T . Hence, for theoretical purposes,
it suffices for us to consider only the input lossy rate in many cases.

We first consider the case when T is a length-preserving NFT (i.e., without
ε-instructions).

Theorem 15. The input and output lossy rates are computable when T is an
NFT without ε-instructions and L is a regular language.

We now consider a DFT T augmented with reversal-bounded counters. In
every instruction of T , if the instruction reads a non-null inout symbol, it will
also output a non-null symbol and vice versa. We call such a T non-null and
obviously it is length-preserving. The following result uses Theorem 14.

Theorem 16. The output lossy rate is computable when T is a non-null DFT
T augmented with reversal-bounded counters and L is the language accepted by
a reversal-bounded DCM.

We currently do not know if Theorem 16 can be generalized to the input
lossy rate. This is because in computing the input lossy rate, one needs λT (L),
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where T (L) can be accepted by a reversal-bounded NCM (instead of a DCM)
and hence Theorem 14 is not applicable.

Currently, we are not clear on how to generalize the definitions of input and
output lossy rates to the case when T is not necessarily length-preserving. The
difficulty is that, in this case, T can map a low (resp., high) bit rate input to
a high (resp., low) one, even when T is one-to-one. Hence, it is not obvious
how information rates used in the definitions can faithfully catch the intuitive
meaning of lossy rates. We leave this generalization for future work.
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Predicate Characterizations

in the Polynomial-Size Hierarchy

Christos A. Kapoutsis

Carnegie Mellon University in Qatar

Abstract. The polynomial-size hierarchy is the hierarchy of ‘minicom-
plexity’ classes which correspond to two-way alternating finite automata
with polynomially many states and finitely many alternations. It is de-
fined by analogy to the polynomial-time hierarchy of standard complexity
theory, and it has recently been shown to be strict above its first level.

It is well-known that, apart from their definition in terms of polynomial-
time alternating Turing machines, the classes of the polynomial-time hi-
erarchy can also be characterized in terms of polynomial-time predicates,
polynomial-time oracle Turing machines, and formulas of second-order
logic. It is natural to ask whether analogous alternative characterizations
are possible for the polynomial-size hierarchy, as well.

Here, we answer this question affirmatively for predicates. Starting
with the first level of the hierarchy, we experiment with several natural
ways of defining what a ‘polynomial-size predicate’ should be, so that
existentially quantified predicates of this kind correspond to polynomial-
size two-way nondeterministic finite automata. After reaching an appro-
priate definition, we generalize to every level of the hierarchy.

1 Introduction

The k-th level of the polynomial-size hierarchy consists of the classes 2�k and 2�k

of all (families of) regular languages which are decided by (families of) two-way
alternating finite automata (2afas) with polynomially many states (i.e., of poly-
nomial ‘size’), where the start state is respectively existential or universal and
every computation path on any input alternates <k times between existential
and universal steps, if k > 0; or uses only deterministic steps, if k = 0. The
question whether this hierarchy is strict was raised in [6] and answered in the
affirmative by Geffert [3] for all levels above the lowest two: for all k ≥ 1,

2�k � 2�k+1 and 2�k � 2�k & 2�k � 2�k and 2�k � 2�k+1 .

For k = 0, the question is still open: the classes 2�0 and 2�1 are respectively the
classes 2D and 2N of all (families of) regular languages decided by (families of)
deterministic and nondeterministic two-way finite automata (2dfas and 2nfas)
with polynomially many states; hence, proving that 2�0 � 2�1 is equivalent to
confirming the long-standing Sakoda-Sipser conjecture that 2D � 2N [11,6].

The hierarchy is defined by analogy to the polynomial-time hierarchy of stan-
dard complexity theory, whose k-th level consists of the classes �kP and �kP

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 234–244, 2014.
c© Springer International Publishing Switzerland 2014
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of languages decided by polynomial-time alternating Turing machines (atms)
where the number of alternations is bounded as above [13,12]. The question
whether this hierarchy is strict is, of course, a well-studied open problem, also
hosting on its lowest two levels the famous question whether P = NP.

An important feature of the polynomial-time hierarchy, highlighting its ro-
bustness, is that its classes can be defined in several equivalent ways, which are
all quite natural but also quite different from each other conceptually. Indeed,
apart from their standard definition in terms of polynomial-time atms, these
classes can also be defined in terms of:

• Polynomial-time predicates. For example, a language is in class �1P = NP
iff it consists of every string which can, together with a suitable ‘certificate’,
satisfy a binary predicate which is decided by a deterministic Turing machine
(dtm) in time polynomial in the length of the string [12].

• Polynomial-time oracle Turing machines. For example, a language is in class
�2P = NPNP iff it is decided by a polynomial-time nondeterministic Turing
machine (ntm) which has access to an oracle for a language of NP [10,12].

• Logical formulas. For example, a language is in PH =
⋃

k≥0 �kP iff it consists
of every string which satisfies a formula in second-order logic [2,4].

It is natural to ask whether the classes of the polynomial-size hierarchy also
admit analogous alternative definitions, next to their original one in terms of
polynomial-size 2afas. That is, what kind of (i) ‘polynomial-size predicates’,
(ii) ‘polynomial-size oracle two-way finite automata’, and (iii) logical formulas
match 2afas with polynomially many states and finitely many alternations?

In this article we study (i). We identify a proper definition for polynomial-size
predicates such that suitably quantified predicates of this kind characterize the
classes 2�k and 2�k, for all k. Starting with the case k = 1, we experiment with
several natural ways of defining predicates which characterize 2�1 = 2N, namely
the (families of) languages decided by polynomial-size 2nfas. After we reach the
correct definition for this class, we generalize for all classes of the hierarchy.

This settles part (i). Part (ii) remains open: We know of no model of ‘oracle
two-way finite automaton’ for characterizing the classes of the polynomial-size
hierarchy. As for (iii), a partial answer was given in [8], where a class of suitably
structured formulas of monadic second-order logic with successor were proven
equivalent to polynomial-size sweeping 2nfas (i.e., 2nfas which turn their head
only on the endmarkers) when the length is polynomial and certain structural
parameters are appropriately bounded; the full answer involves suitably struc-
tured formulas of first-order logic with successor and transitive closure [9].

1.1 Preparation

If n ≥ 0, then [n] := {0, 1, . . . , n−1}. If Σ is an alphabet and the symbols !,6 /∈ Σ
are endmarkers, then Σe := Σ ∪ {!,6}. If z ∈ Σ∗ is a string over Σ, then |z| is
its length and zi is its i-th symbol, if 1 ≤ i ≤ |z|; or !, if i = 0; or 6, if i = |z|+1.
A language L ⊆ Σ∗ is decided (or solved) by a machine M if M accepts exactly
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the strings in L. A language family1 (Lh)h≥1 is decided (or solved) by a family
of machines (Mh)h≥1 if every Mh solves Lh. A family of automata (Mh)h≥1 is
polynomial-size if Mh has ≤ p(h) states, for some polynomial p and all h.

A two-way alternating finite automaton (2afa) is a tuple M = (Q,U,Σ, δ, qs),
where Q is a set of states, Σ is an alphabet, and δ ⊆ Q× Σe ×Q × {l,r} is the
transition relation, for l,r two direction-indicating tags; one state qs is special
(start/accept) and each state is universal, if in U ⊆ Q, or existential, if in Q\U .

An input z ∈ Σ∗ is presented on the tape between the endmarkers, as !z6.
The automaton starts at qs and on !. Whenever at a state p and on a symbol a, it
switches to state q and moves its head in direction d, for every q and d such that
(p, a, q, d) ∈ δ —never violating an endmarker, except to move off 6 into qs. The
result is a tree of configurations, i.e., state-position pairs from Q×{0, . . . , |z|+2},
with (qs, 0) as root; we call this tree the computation of M on z, compM (z).

The unique accepting configuration is (qs, |z|+2). A rejecting configuration is
any (p, i) where i ≤ |z|+1 and δ contains no tuple of the form (p, zi, . , . ). The
accepting and rejecting configurations are called halting. A non-halting config-
uration (p, i) is existential or universal, according to what p is; it is also called
deterministic, if δ contains exactly 1 tuple of the form (p, zi, . , . ).

A full computation path in compM (z) is any path π which starts at the root
and is infinite (looping) or ends at a leaf (halting); in the latter case, π is either
accepting or rejecting, according to what the leaf is. A full computation tree in
compM (z) is any subtree τ such that (1) τ contains the root, (2) each existential
configuration in τ has exactly 1 of its children in τ , and (3) each universal
configuration in τ has all of its children in τ . We call τ looping, if it is infinite;
accepting, if it is finite and all its leaves are accepting; and rejecting, otherwise.
If compM (z) contains an accepting full computation tree, then M accepts z.

Let k ≥ 1. If every full computation path in compM (z) for any z switches
<k times between existential and universal configurations, we say M is a 2�kfa,
if qs �∈ U, or a 2�kfa, if qs ∈ U —a 2�1fa is also called nondeterministic (a 2nfa).
If every non-halting configuration ever exhibited by M is actually deterministic,
we say M is a 2�0fa or a 2�0fa or simply deterministic (a 2dfa). If δ never uses
the l tag, we say M is one-way (1afa, 1nfa, 1dfa).

Let k ≥ 0. The class 2�k (respectively, 2�k) consists of every language family
which is solved by a polynomial-size family of 2�kfas (respectively, 2�kfas):

2�k :=
{
(Lh)h≥1

∣∣∣ there exists a 2�kfas family (Mh)h≥1 and a polynomial p
such that every Mh solves Lh with ≤ p(h) states.

}
,

and similarly for 2�k. Easily, 2�k, 2�k ⊆ 2�k+1, 2�k+1 for all k. We also write
2D for 2�0 = 2�0; 2N for 2�1; and 2H for ∪k≥02�k = ∪k≥02�k.

2 The Case of 2N

The class 2N is the minicomplexity analogue of NP. The predicate characteriza-
tion of NP is given by the following well-known fact (which uses Def. 1):

1 For an example of a language family, see twl = (twlh)h≥1 on page 237.
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Theorem 1. A language L is in NP iff there exists a polynomial-time binary
predicate R such that, for all x: x ∈ L ⇐⇒ (∃y)R(x, y). 2

Definition 1. A binary predicate R is polynomial-time if there is a dtm M and
a polynomial p such that, for all x,y: R(x, y) ⇐⇒ M accepts 〈x,y〉 in time p(|x|).
E.g., if L is sat (the satisfiability problem [12]), then R is the predicate which is
true whenever x is a Boolean formula (the instance) and y is a truth-assignment
which satisfies it (the certificate); M is the dtm which computes the value of x
under y and accepts iff the result is “true”; and p is the small polynomial which
bounds the time spent by M as a function of the length of x.

Our goal is to replicate this setting for 2N. That is, we want a characterization
of 2N as captured by the following statement and definition:

Theorem 2. A language family (Lh)h≥1 is in 2N iff there exists a polynomial-
size binary predicate family (Rh)h≥1 such that, for all h and all x:

x ∈ Lh ⇐⇒ (∃y)Rh(x, y) .

Definition 2. A binary predicate family (Rh)h≥1 is polynomial-size if there ex-
ists a family of ‘deterministic finite-state acceptors’ (Mh)h≥1 and a polynomial p
such that, for all h and all x,y:

Mh has ≤ p(h) states & Rh(x, y) ⇐⇒ Mh accepts 〈x,y〉.
E.g., if Lh is twlh (the two-way liveness problem on h-tall graphs [6,7]), then
Rh should be the predicate which is true whenever x is a string of h-tall two-
column graphs and y is a path from the leftmost to the rightmost column of the
respective multi-column graph; Mh should be some kind of a deterministic finite-
state machine which scans the arrows of y and accepts iff they are all present
in the graph of x, the first one departs from the leftmost column, and the last
one arrives at the rightmost column; and p should be a polynomial bounding
the number of states needed to perform these checks.

All we need to do, in order to complete this setting, is to clarify what type of
acceptors we should use in Def. 2 so that Th. 2 holds. We explore our options in
the next sections. We start with two naive attempts, and explain why they fail.
We then continue with a more educated guess which, although it fails, too, it
captures a different minicomplexity class. The correct choice is given in Sect. 2.3.

2.1 Two Naive Attempts
Mh

b 00 0 1a b b 01 1#a

yx

The straightforward attempt is to
simply have each Mh be a 2dfa
which receives the pair 〈x,y〉 on its
input tape as the #-delimited con-
catenation x#y. But this model is
too weak. Intuitively, to check Rh(x, y), Mh must compare corresponding sym-
bols of x and y (i.e., symbols around xi with symbols around yi), a task which
is impossible for a finite-state machine when x and y become arbitrarily long.

2 Note that y need never be more than polynomially long, as R is polynomial-time.
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Mh

00 0 101 1
y

ba b ba
x

To enable Mh to compare corresponding symbols
of x and y, we may place x and y on different tapes,
each with its own, independent, two-way head. For-
mally, Mh = (Q,Σ,Δ, δ, qs), where Σ and Δ are
the alphabets for instances and certificates, respec-
tively, and the transition function has the form
δ : Q × Σe × Δe −→ Q × {l,r} × {l,r}. But now
the model is too strong: Mh can use the distance be-
tween ! and the head on the second tape as counter
to solve problems that are even non-regular.

2.2 A Better Attempt

00 0 101 1

Mh

ba b ba
x

y

To fix our problems, we must prevent Mh from using
its second head as counter. One way to do this, is to
first require that x and y are (almost) equally long,
then remove the ability of the heads to move inde-
pendently. Formally, we require that |y| = |x| + 2
and δ : Q× Σe × Δ −→ Q× {l,r}. Let us call this
type of machine a synchronous two-way determin-
istic finite verifier (2dfv∗). It looks promising.

For one, we can now prove the forward direction of Th. 2. It follows from the
next lemma, when we apply it to every member of a family (Lh)h≥1 ∈ 2N.

Lemma 1. If L is solved by an s-state 2nfa, then some binary predicate R is
solved by an s-state 2dfv∗ and is such that, for all x: x ∈ L ⇐⇒ (∃y)R(x, y).

Proof. Let N = (Q,Σ, δ, qs) be the 2nfa which solves L.
To motivate R, consider any x ∈ L. Let n := |x|. Consider any accepting com-

putation of N on x. Remove all cycles from it, to get the corresponding minimal
accepting computation —call it c. Because c is minimal, its representation in
the configuration graph of N on x (i.e., the graph with all configurations in
Q×{0, . . . , n+2} as vertices, and all computation steps allowed by δ as arrows)
is a path where no two arrows have a common endpoint. Split this (n+3)-column
representation into n+2 three-column graphs f0, f1, . . . , fn+1, one for each col-
umn but the last one, where each fi represents only the steps performed on xi.

f4f0 f1

· · ·

· · ·a b b

x2 x3 x4x0 x1

c

Since no two arrows have a common endpoint, each fi is really a partial injection
from Q to Q×{l,r}. Let Δ := (Q → Q×{l,r}) be the alphabet of all such partial
injections. Then, we can use y := f0f1 . . . fn+1 ∈ Δ∗ as a certificate for x.
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Indeed, define R ⊆ Σ∗×Δ∗ so that R(x, y) holds iff (1) |x|+2 = |y|; (2) the
(|x|+3)-column graph derived from y (by viewing each yi as a three-column
graph; then identifying the last two columns of each yi with the first two columns
of yi+1; then dropping the first column of the leftmost yi) contains a path from
the top of the leftmost column to the top of the rightmost one; and (3) every ar-
row (p, q, d) of every yi is a legal step of N on xi: (p, q, d) ∈ yi =⇒ (p, xi, q, d) ∈ δ.
Then the argument of the previous paragraph proves that x ∈ L =⇒ (∃y)R(x, y).
Conversely, if R(x, y), then (3) means that the path guaranteed by (2) is an ac-
cepting computation of N on x, and thus x ∈ L.

Finally, R is solved by the s-state 2dfv∗ M = (Q,Σ,Δ, δ′, qs) which, on
input 〈x,y〉, interprets y as a (|x|+3)-column graph as above and follows the
unique path out of qs of the leftmost column, verifying that all arrows in the
graph are consistent with δ and that the path terminates at qs of the rightmost
column. Formally, every δ′(p, a, f) is either f(p), if f(p) is defined and all arrows
in f are consistent with δ; or undefined, otherwise. ��

To complete the proof of Th. 2, we would need the converse lemma: If a
binary predicate R is solved by an s-state 2dfv∗, then L := {x | (∃y)R(x, y)} is
solved by a poly(s)-state 2nfa. However, in trying to prove this claim, one would
find it hard to build the desired 2nfa N for L from the given 2dfv∗ for R: the
natural approach, where N simply guesses y symbol-by-symbol, fails because,
upon returning to an input symbol xi that has been visited before, N would
need to re-guess the corresponding yi identically as in all previous visits.

As a matter of fact, the backward direction of Th. 2 is false:

Lemma 2. There exists a polynomial-size binary predicate family (Rh)h≥1 such
that the language family (Lh)h≥1 where Lh := {x | (∃y)Rh(x, y)} is not in 2N.

Proof. For every h, let Rh ⊆ {0}∗×[2h]∗ be a binary predicate such that Rh(x, y)

holds only when x = 02
h−2 and y is the ordered string of all symbols of [2h]:

y := 0 1 2 3 . . . 2h−2 2h−1

A 2dfv∗ Mh can solve Rh by focusing on y and checking that (1) it starts with 0;
(2) each of the other symbols is derived from its previous one by adding 1; and
(3) the last symbol is 2h−1. To check (2), Mh goes through every pair of succes-
sive symbols, yi and yi+1, and checks that yi+1 = yi+1 by zig-zagging h times be-
tween the two positions and comparing the binary representations of yi and yi+1

bit-by-bit. Easily, this requires O(h) states, so (Rh)h≥1 is polynomial-size.

Finally, the only x admitting a certificate under Rh is 02
h−2, so Lh = {02h−2},

which needs ≥ 2h−2 states on a 2nfa [1, Fact 5.2]. Hence, (Lh)h≥1 /∈ 2N. ��

Overall, our current definitions led us to a strict superset of 2N (Lemmas 1, 2).
Before modifying them, let us see which class they really capture. The next two
lemmas show that it is the class 21N corresponding to exponential-size 1nfas [6].

Lemma 3. If L is solved by an s-state 1nfa, then some binary predicate R is
solved by a O(log s)-state 2dfv∗ and satisfies x ∈ L ⇐⇒ (∃y)R(x, y), for all x.
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Proof. Let N = (Q,Σ, δ, qs) be the 1nfa which solves L, with |Q| = s. Without
loss of generality, assume that Q = [s] and that qs = 0. Let t := 7log2 s8.

To motivate R, consider any x ∈ L. Let n := |x|. Pick any accepting compu-
tation of N on x. This is a list p0, p1, . . . , pn+2 ∈ Q such that p0 = qs = pn+2

and (pi, xi, pi+1,r) ∈ δ for all i. Recast this (n+3)-item list into the list of n+2
successive pairs π0, π1, . . . , πn+1, where πi := (pi, pi+1).

qsq3

π0

q3q7

π1

q7q2

π2

q2q4

π3

q4qs

π4a b b

x2 x3 x4x0 x1

q3qs q7 q2 q4 qs

Now, letting Δ := Q×Q be the alphabet of all pairs of states, we can use the
string of pairs y := π0π1 . . . πn+1 ∈ Δ∗ as a certificate for x.

Therefore, we define R ⊆ Σ∗×Δ∗ so that R(x, y) holds iff (1) |x|+2 = |y|;
(2) y is really a sequence of states (i.e., every two successive symbols are of the
form ( . , p) and (p, . ) for some p) from qs to qs (the first and last symbols are
of the form (qs, . ) and ( . , qs), respectively); and (3) this sequence of states is a
computation of N on x (i.e., every symbol yi = (p, q) is a legal step of N on xi,
namely (p, xi, q,r) ∈ δ). Then the argument of the last paragraph shows that
x ∈ L =⇒ (∃y)R(x, y). Conversely, if R(x, y), then (3) means that the sequence
guaranteed by (2) is an accepting computation of N on x, and thus x ∈ L.

Finally, R is solved by a 2dfv∗ M which, on input 〈x,y〉, works as follows. It
scans y and, on every two successive symbols yi = (pi, qi) and yi+1 = (pi+1, qi+1),
checks that qi = pi+1 by zig-zagging t times between yi and yi+1 to test that
the corresponding bits of qi, pi+1 ∈ [s] are identical. At the start and end of the
scan, M also checks that the first and last symbols of y have respectively the
form (0, . ) and ( . , 0). This confirms condition (2). Condition (3) is checked in
the same scan: whenever M reads a new symbol yi = (pi, qi), it also verifies that
(pi, xi, qi,r) ∈ δ. Easily, M needs no more than O(t) = O(log s) states. ��

Lemma 4. If a binary predicate R is solved by an s-state 2dfv∗, then the lan-
guage L := {x | (∃y)R(x, y)} is solved by a 2O(s)-state 1nfa.

Proof. Let M = (Q,Σ,Δ, δ, qs) be the 2dfv∗ which solves R, with |Q| = s.
Pick any x ∈ Σ∗. Let n := |x|. To check whether x ∈ L, a 1nfa N guesses a

(n+2)-long y ∈ Δ∗ and an accepting computation of M on x and the guessed y.
The certificate is guessed one symbol per step, as N scans x on its tape; likewise,
the accepting computation is guessed one frontier per step [5, p. 547].

Formally, N := (Q′, Σ, δ′, Fs) for Q′ := {(U, V ) | U,V ⊆ Q & |U |+1 = |V |}
the set of all frontiers of M and Fs := (∅, {qs}). When at a state (U, V ) reading an
input symbol a ∈ Σe, the automaton guesses a corresponding certificate symbol
b ∈ Δ, together with a frontier (U ′, V ′) such that (U, V ) is (a, b)-compatible to it
(with respect to δ [5, Def. 2]), and moves to state (U ′, V ′):(
(U,V ), a, (U ′, V ′),r

)
∈ δ′ ⇐⇒ (∃b ∈ Δ)

[
(U,V ) is (a, b)-compatible to (U ′, V ′)

]
.

Therefore, N accepts x iff there exists a sequence of guesses bi, (Ui+1, Vi+1) for
i = 0, 1, . . . , n+1 such that the sequence of frontiers Fs = (U0, V0), (U1, V1), . . . ,
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(Un+1, Vn+1), (Un+2, Vn+2) = Fs fits the string (!, b0)(x1, b1) · · · (xn, bn)(6, bn+1)
of symbols over Σe×Δ [5, Def. 3], and thus contains an accepting computation
of M on 〈x, b0b1 · · · bn+1〉 [5, Lemma 2 and converse]. Hence, N accepts x iff there
exists y ∈ Δ∗ and an accepting computation of M on 〈x, y〉; i.e., iff (∃y)R(x, y).

Finally, the number of states of N is
(

2s
s+1

)
= 2O(s) [5, p. 552]. ��

Theorem 3. A language family (Lh)h≥1 is in 21N iff there exists a binary pred-
icate family (Rh)h≥1 which is solved by a polynomial-size family of 2dfv∗s and
is such that, for all h and all x: x ∈ Lh ⇐⇒ (∃y)Rh(x, y).

By similar arguments, we can also characterize the class 1N corresponding
to polynomial-size 1nfas in terms of synchronous one-way deterministic finite
verifiers (1dfv∗s), the restriction of 2dfv∗s where the heads move only forward.

Theorem 4. A language family (Lh)h≥1 is in 1N iff there exists a binary pred-
icate family (Rh)h≥1 which is solved by a polynomial-size family of 1dfv∗s and
is such that, for all h and all x: x ∈ Lh ⇐⇒ (∃y)Rh(x, y).

2.3 The Right Choice

Mh

ba b ba
x

00 0 101 1 0
y

· · ·

To fix our problems, we must restore Mh’s ability
to move its heads independently, but still prevent
the use of the second head as counter. One way
to do this, is to have the second head be one-way.
Formally, δ : Q×Σe×Δ −→ Q×{l,r} again, but
now l,r indicate only the first head’s motion; the
second head moves always right. Let us call this
a two-way deterministic finite verifier (2dfv).

Now we can finally prove Th. 2. It follows from the next two lemmas.

Lemma 5. If L is solved by an s-state 2nfa, then some binary predicate R is
solved by an s-state 2dfv and is such that, for all x: x ∈ L ⇐⇒ (∃y)R(x, y).

Proof. Let N = (Q,Σ, δ, qs) be the 2nfa which solves L. To motivate R, pick
any x ∈ L. Pick any accepting computation c of N on x. Let m be its length. The
‘instructions’ followed by N along c are the pairs ι1, . . . , ιm ∈ Q× {l,r}, where
ιi := (q, d) iff in the i-th step N switched to q and moved its head towards d.

a b b

x2 x3 x4x0 x1

q3qs q7

qsq2q4q2 q1

r r l r r r r

ι1
q3

ι2
q7

ι3
q2

ι4
q4

ι5
q2

ι6
q1

ι7
qs

Hence, letting Δ := Q×{l,r}, we can use y := ι1 · · · ιm ∈ Δ∗ as certificate for x.
So, we define R ⊆ Σ∗×Δ∗ so that R(x, y) holds iff the list of state-position

pairs derived from (qs, 0) by following the instructions y1, · · · , ym ∈ Δ is an
accepting computation of N on x. It should be clear that x ∈ L ⇐⇒ (∃y)R(x, y).
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Moreover, R is solved by the 2dfv M = (Q,Σ,Δ, δ′, qs) which, on input 〈x,y〉,
simply follows the instructions in y and accepts iff they lead it off 6 into qs and
never violate δ: when at state p reading a ∈ Σe and (q, d) ∈ Δ, it checks that
(p, a, q, d) ∈ δ and, if so, switches to q and moves towards d. Easily, M ac-
cepts 〈x, y〉 iff y causes an accepting computation of N on x; i.e, iff R(x, y). ��

Lemma 6. If a binary predicate R is solved by an s-state 2dfv, then the lan-
guage L := {x | (∃y)R(x, y)} is solved by an s-state 2nfa.

Proof. Let M = (Q,Σ,Δ, δ, qs) be the 2dfv which solves R. Pick any x ∈ Σ∗. To
check that x ∈ L, a 2nfa N := (Q,Σ, δ′, qs) simulates M on 〈x, y〉, for y ∈ Δ∗

a certificate which is guessed on the fly, symbol-by-symbol. When at state p
reading symbol a ∈ Σe, the automaton guesses the next symbol b ∈ Δ on the
certificate tape, then switches to q and moves towards d, where (q, d) = δ(p, a, b).
Formally, (p, a, q, d) ∈ δ′ ⇐⇒ (∃b ∈ Δ)[(q, d) = δ(p, a, b)].

Easily, N accepts x iff there is a sequence of guesses b0, b1, . . . , bm such that
M accepts 〈x, b0b1 · · · bm〉; namely, iff there exists y ∈ Δ∗ such that R(x, y). ��

Note that all our certificates are finite strings, which makes sense for 2�1. But
we may also work with infinite certificates: easily, Lemmas 5 and 6 (and Th. 2)
hold even when R ⊆ Σ∗ × Δω, where Δω := {all infinite strings over Δ}, and
2dfvs have infinite certificate tape. This variation of our definitions is optional
for 2�1; however, for 2�1 and for general 2�k, 2�k it is essential.

3 The General Case

We now turn to classes 2�k and 2�k for arbitrary k. For concreteness, we treat
only 2�3. (Our proof does generalize to 2�k, it is straightforward but tedious;
then, 2�k is handled by a dual argument.) So, our goal is to prove the following.

Theorem 5. A language family (Lh)h≥1 is in 2�3 iff there is a polynomial-size
quaternary predicate family (Rh)h≥1 such that, for all h and all x:

x ∈ Lh ⇐⇒ (∃z1)(∀z2)(∃z3)Rh(x, z1, z2, z3) .

Definition 3. A quaternary predicate family (Rh)h≥1 is polynomial-size if some
family of 2dfvs (Mh)h≥1 and polynomial p are such that, for all h and x,z1,z2,z3:

Mh has ≤ p(h) states & Rh(x, z1, z2, z3) ⇐⇒ Mh accepts 〈x, z1, z2, z3〉.

Now, each predicate relates a finite string x with three infinite strings z1, z2, z3.
Accordingly, a 2dfv M has three infinite certificate tapes, one per zj , with its
own head hj . Crucially, the heads are used in order : first, M reads from h1, keep-
ing h2, h3 stationary; later, it deactivates h1 and starts reading from h2, keep-
ing h3 stationary; eventually, it deactivates h2 too, and starts reading from h3.
Formally, M = (Q, J,Σ,Δ, δ, qs), where again δ : Q×Σe×Δ −→ Q×{l,r} but
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now the single certificate symbol always comes from the currently active head;
and J ⊆ Q is the states which cause a jump to the next certificate tape: entering
q ∈ J causes M to deactivate the currently active head hj and activate hj+1.

As usual, the proof consists of two lemmas, each for a single direction and h.

Lemma 7. If L is solved by an s-state 2�3fa, then some quaternary predicate R
is solved by an O(s)-state 2dfv and is such that, for all x:

x ∈ L ⇐⇒ (∃z1)(∀z2)(∃z3)R(x, z1, z2, z3) .

Proof idea. Let A = (Q, . , Σ, . , . ) be a 2�3fa for L. Then A follows ‘instruc-
tions’ from Δ := Q×{l,r} and we define R ⊆ Σ∗×(Δω)3 so that R(x, z1, z2, z3)
iff either z1z2z3 is the list of instructions followed along an accepting full compu-
tation path on x, and z2 consists of those followed from universal configurations;
or z1z2z3 starts as such a list, but contains an invalid instruction in z2. ��

Lemma 8. If a quaternary predicate R is solved by an s-state 2dfv, then the
language L := {x | (∃z1)(∀z2)(∃z3)R(x, z1, z2, z3)} is solved by a 3s-state 2�3fa.

Proof idea. Let M = (Q, . , Σ,Δ, . , qs) be a 2dfv for R. Then a 2�3fa A :=
(Q1 ∪ Q2 ∪ Q3, Q2, Σ, . , q1s ), where each Qj := {pj | p ∈ Q} is a copy of Q,
checks whether an input x ∈ Σ∗ is in L by simulating M on 〈x, z1, z2, z3〉, for
some strings z1, z2, z3 ∈ Δω which are respectively guessed, universally selected,
and guessed, each of them up to some prefix and on the fly. This works in three
phases, where each phase j uses states exclusively from Qj . ��
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Abstract. In the context of second-order polynomial-time computabil-
ity, we prove that there is no general function space construction. We
proceed to identify restrictions on the domain or the codomain that do
provide a function space with polynomial-time function evaluation con-
taining all polynomial-time computable functions of that type.

As side results we show that a polynomial-time counterpart to admis-
sibility of a representation is not a suitable criterion for natural represen-
tations, and that the Weihrauch degrees embed into the polynomial-time
Weihrauch degrees.
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1 Introduction

Computable analysis (e.g. [32]) deals with computability questions for operators
from analysis such as integration, differentiation, Fourier transformation, etc..
In general, the actual computation is envisioned to be performed on infinite
sequences over some finite or countable alphabet, this model is then lifted to
the spaces of interest by means of representations. Thus, an adequate choice of
representations for the various relevant spaces is the crucial foundation for any
investigation in computable analysis.

At first, the search for good representations proceeded in a very ad-hoc fash-
ion, exemplified by Turing’s original definition of a computable real number as
one with computable decimal expansion [29] and later correction to one with a
computable sequence of nested rational intervals collapsing to the number [30]1.

The development of more systematic techniques to identify good representa-
tions had two interlocked main components: One, the identification of admissi-
bility as the central criterion whenever the space in question already carries a

� A full version containing the omitted proofs is available on the arXiv as [18].
1 This choice of a representation, which is indeed a correct one, is credited to Brouwer

by Turing.
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natural topology by Kreitz and Weihrauch [20] and later Schröder [28].
Two, the observation that one can form function spaces in the category of rep-
resented spaces (e.g. [31], [2]). Using the ideas of synthetic topology [7], this
suffices to obtain good representations of spaces just from their basic structure2

(demonstrated in [23]).
While computable analysis has obtained a plethora of results, for a long time

the aspect of computational complexity has largely been confined to restricted
settings (e.g. [33]) or non-uniform results (e.g. [19]). This was due to the absence
of a sufficiently general theory of second-order polynomial-time computability
– a gap which was filled by Cook and the first author in [15]. This theory
can be considered as a refinement of the computability theory. In particular,
this means that for doing complexity theory, one has to choose well-behaved
representations for polynomial-time computation out of the equivalence classes
w.r.t. computable translations.

Various results on individual operators have been obtained in this new frame-
work [13,16,17,26], leaving the field at a very similar state as the early investiga-
tion of computability in analysis: While some indicators are available what good
choices of representations are, an overall theory of representations for computa-
tional complexity is missing. Our goal here is to provide the first steps towards
such a theory by investigating the role of admissibility and the presence of func-
tion spaces for polynomial-time computability.

2 Background on Second-Order Polynomial-Time
Computability

We will use (a certain class of) string functions to encode the objects of interest.
We fix some alphabet Σ. We say that a (total) function ϕ : Σ∗ → Σ∗ is regular if
it preserves relative lengths of strings in the sense that |ϕ(u)| ≤ |ϕ(v)| whenever
|u| ≤ |v|. We write Reg for the set of all regular functions. We restrict attention
to regular functions (rather than using all functions from Σ∗ to Σ∗) to keep the
notion of their size (to be defined shortly) simple.

We use an oracle Turing machine (henceforth just “machine”) to convert
regular functions to regular functions.

Definition 1. A machine M computes a partial function F :⊆ Reg → Reg
if for any ϕ ∈ domF , the machine M on oracle ϕ and any string u outputs
F (ϕ)(u) and halts.

Remark 2. For computability, this is equivalent to the model where a Turing ma-
chine converts infinite strings to infinite strings. For the discussion of polynomial-
time computability, however, we really need to use strings functions in order to
encode information efficiently and to measure the input size, as we will see below.

2 The concept of structure here goes beyond topologies, as witnessed e.g. by the treat-
ment of hyperspaces of measurable sets and functions in [24].
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Regular functions map strings of equal length to strings of equal length. There-
fore it makes sense to define the size |ϕ| : N → N of a regular function ϕ to be
the (non-decreasing) function |ϕ|(|u|) = |ϕ(u)|. We will use Mon to denote the
strictly monotone functions from N to N. For technical reasons, we will tacitly
restrict ourselves to those regular functions ϕ with |ϕ| ∈ Mon, this does not
impede generality3.

We will make use of a polynomial-time computable pairing function 〈, 〉 :
Σ∗ × Σ∗ → Σ∗, which we want4 to satisfy |〈u, v〉| = |u| × |v|. This is then
lifted to a pairing function on Reg via 〈ϕ, φ〉(u) = 〈ϕ(u), ψ(u)〉, and to a mixed
pairing function for 〈−,−〉 : Σ∗ ×Reg → Reg.

Now we want to define what it means for a machine to run in polynomial time.
Since |ϕ| is a function, we begin by defining polynomials in a function, following
the idea of Kapron and Cook [12]. Second-order polynomials (in type-1 variable L
and type-0 variable n) are defined inductively as follows: a positive integer is a
second-order polynomial; the variable n is also a second-order polynomial; if P
and Q are second-order polynomials, then so are P + Q, P · Q and L(P ). An
example is

L
(
L(n · n)

)
+ L
(
L(n) · L(n)

)
+ L(n) + 4. (1)

A second-order polynomial P specifies a function, which we also denote by P ,
that takes functions L ∈ Mon to another function P (L) ∈ Mon in the obvious
way. For example, if P is the above second-order polynomial (1) and L(n) = n2,
then P (L) is given by

P (L)(n) =
(
(n · n)2

)2
+ (n2 · n2)2 + n2 + 4 = 2 · n8 + n2 + 4. (2)

As in this example, P (L) is a (usual first-order) polynomial if L is.

Definition 3. A machine M runs in polynomial time if there is a second-order
polynomial P such that, given any ϕ ∈ Reg as oracle and any u ∈ Σ∗ as input,
M halts within P (|ϕ|)(|u|) steps.

This defines the class of (polynomial-time) computable functions from Reg to
Reg. We can suitably define some other complexity classes related to nondeter-
minism or space complexity, as well as the notions of reduction and hardness [15].

A representation δ of a set X is formally a partial function from Reg to
X that is surjective—that is, for each x ∈ X , there is at least one ϕ ∈ Reg
with δ(ϕ) = x. We say that ϕ is a δ-name of x. A represented space is a pair
X = (X, δX) of a set X together with a representation δX of it. For a function
f :⊆ X → Y between represented spaces X, Y and F :⊆ Reg → Reg, we call F
a realizer of f (notation F ! f), iff δY (F (p)) = f(δX(p)) for all p ∈ dom(fδX).

3 Given some ϕ ∈ Reg, let ϕ′ be defined by ϕ′(v) = vϕ(v). Then the function ·′ :
Reg → Reg is polynomial-time computable, and has a polynomial-time computable
inverse. Moreover, |ϕ′| ∈ Mon for all ϕ ∈ Reg.

4 While this choice is a bit wasteful, it is useful for technical reasons, and ultimately
does not matter for polynomial-time computability.
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A map between represented spaces is called (polynomial-time) computable, iff it
has a (polynomial-time) computable realizer.

Type-2 complexity theory generalizes classical complexity theory, as we can
regard the objects of the latter as special Reg-represented spaces. In the fol-
lowing, we will in particular understand N to be represented via δN(ϕ) = |ϕ(0)|,
i.e. using an adaption of the unary representation (although not much would
change if the binary representation were used instead).

3 Some Properties of Second-Order Polynomials

We will establish some properties of second-order polynomials as the founda-
tion for our further investigations. For this, we first introduce the notion of the
second-order degree of a second-order polynomial by deg(1) = 0, deg(n) = 0,
deg(P + Q) = max{deg(P ), deg(Q)}, deg(P × Q) = max{deg(P ), deg(Q)} + 1
for P,Q �= 0 and deg(L(P )) = deg(P ) + 1. Just as the degree of an ordinary
polynomial uniquely determines its O-notation equivalence class, we find a sim-
ilar result for the second-order degree and second-order polynomials. The role
of the monomials xn are taken by the second-order polynomials Pn defined via
P0(p)(k) = k and Pn+1(p)(k) = p(Pn(p)(k)).

Lemma 4. For any second-order polynomial Q there are q ∈ Mon and n ∈ N
such that Q(p)(k) ≤ Pmax{deg(Q),1}(p× q)((k + 1)n) for all p ∈ Mon, k ∈ N.

Proof. Omitted.

Lemma 5. For no q ∈ Mon, n,m ∈ N we have Pn+1(p)(k) ≤ Pn(p × q)((k +
1)m) for all p ∈ Mon, k ∈ N.

Proof. Omitted.

4 Failure of Cartesian Closure

We shall show that the category of Reg-represented spaces and polynomial-time
computable functions is not cartesian closed. For this we define the functions
Φn : Reg → Reg via Φ0(ϕ)(w) = w and Φn+1(ϕ)(w) = ϕ(Φn(ϕ)(w)). Then
computing Φn(ϕ)(w) takes time Ω(Pn(|ϕ|)(|w|)), as already the length of the
output provides a lower bound.

Theorem 6. Let the second-order polynomial P witness polynomial-time com-
putability of the function F :⊆ Reg ×Reg → Reg. For no ψ ∈ Reg we may
have F (ψ, ϕ) = Φdeg(P )+1(ϕ) for all ϕ ∈ Reg.

Proof. If one considers the runtime bounds available for F by assumption, and
for Φdeg(P )+1 as above, the claim becomes an immediate consequence of Lemma
5.

Corollary 7. There cannot be an exponential in the category of Reg-represented
spaces and polynomial-time computable functions.

Proof. Any realizer of the evaluation operation would violate Theorem 6.
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5 Clocked Type-Two Machines

Despite the negative result above, we can identify spaces of functions with some
of the desired properties of exponentials. The required technical tool is a type-
two version of clocked Turing machines. We pick a Universal Turing Machine
(UTM) M which simulates efficiently, meaning that on input n, ϕ,w the time M
needs to compute the output of the nth Oracle Turing machine on input w with
oracle ϕ is bounded by a quadratic polynomial in n and the time T needed by the
nth Turing machine itself to compute the output on w with oracle ϕ (5). Then
M is extended by a clock evaluating the standard second-order polynomial6 Pm

on |〈n, ϕ〉|, |w|l for fixed m and some l ∈ N encoded as (x #→ xl) ∈ Mon and
aborts the computation of M once the runtime exceeds the value of Pm. Denote
the resulting machine with MT=Pm . The runtime of MT=Pm can be bounded by
KP 2

m+1+K for some constant K ∈ N. In particular we find that the second-order
degree of the runtime of MT=Pm is m + 1.

Theorem 8. For any partial function f :⊆ Reg → Reg computable in polyno-
mial time P with deg(P ) ≤ m there are some ψ ∈ Reg, n, l ∈ N such that for
any ϕ ∈ dom(f) we find f(ϕ) = MT=Pm(〈n, 〈ϕ, ψ〉, xl〉).

Proof. Omitted.

Based on the preceding theorem, we see that rather than a single function
space, we obtain a family of function spaces indexed by a natural number corre-
sponding to the second-order degree. Given two Reg-represented spaces X, Y
we define the function space CT=Pm(X,Y) by letting 〈n, ψ, xl〉 ∈ Reg be a name
for f : X → Y if ϕ #→ MT=Pm(〈n, 〈ϕ, ψ〉, xl〉) is a realizer of f . This definition
just enforces that Eval : CT=Pm(X,Y)×X → Y is computable with polynomial
time bound KP 2

m+1 + K.
We can then reformulate Theorem 6 as CT=Pm(Reg,Reg) � CT=Pm+1(Reg,

Reg) and Theorem 8 as f ∈ CT=Pm(X,Y) for any f : X → Y computable in
a polynomial time-bound of deg ≤ m. We can easily obtain an even stronger
version of the latter by adapting the proof:

Corollary 9. For a function f : X → Y the following properties are equivalent:

1. f is computable in polynomial time P with deg(P ) ≤ m.
2. f ∈ CT=Pm(X,Y) has a polynomial time computable name.

6 Effectively Polynomial-Bounded Spaces

Our next goal is to investigate restrictions we can employ on X (and later
on Y) in order to force the collapse of the time hierarchy CT=Pm(X,Y) ⊆
5 A straight-forward adaption of the classical result by Hennie and Stearns [10]
provides the existence of such a universal machine.

6 More generally, we could use an arbitrary time-constructible function in place of Pm.
That Pm actually is time-constructible is witnessed by Φm.
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CT=Pm+1(X,Y). The collapse will only occur at the second level, as this is the
minimal level where a query to the second-order input may depend on the result
of another such query, which is required in order to fully utilize the function-
argument depending on the input-argument.

Definition 10. We call X effectively polynomially bounded (epb)7 , iff it admits
a Reg-representation δX such that there is a constant c ∈ N and a monotone
polynomial Q : N → N s.t.:

∀ϕ ∈ dom(δX) ∀i ∈ N |ϕ|(i) ≤ c|ϕ|(c)cQ(i)

Theorem 11. Let X be epb. Then for any m ≥ 2 we find CT=P2(X,Y) ∼=
CT=Pm(X,Y) where ∼= denotes polytime isomorphic.

Proof. It suffices to show only the direction ⊆: CT=Pm(X,Y) → CT=P2(X,Y).
Let M be the UTM used in the definition of CT=Pm(X,Y), let M ′ behave with
the oracle 〈ϕ, 〈ψ, ψ′〉〉 in exactly the same way as M does with 〈ϕ, ψ〉, and then
finally, use M ′ to define CT=P2(X,Y).

The assumption that X is epb allows us to estimate:

Pm(|〈ϕ, ψ〉|)(k) = |〈ϕ, ψ〉|(Pm−1(|〈ϕ, ψ〉|)(k))
≤ c|ϕ|(c)cQ(Pm−1(|〈ϕ, ψ〉|)(k)) × |ψ|(Pm−1(|〈ϕ, ψ〉|)(k))
≤ (cQc × |ψ|)(Pm−1(|〈ϕ, ψ〉|)((k + 1)c))

≤ (cQc × |ψ|)
(
(cQc + |ψ|)(Pm−2(|〈ϕ, ψ〉|)((k + 1)c

2

))
)

≤ (cQc × |ψ|)(m)(|〈ϕ, ψ〉|((k + 1)c
m

))
≤ P2(|〈ϕ, ψ〉| × (cQc × |ψ|)(m))((k + 1)c

m

)

Now given ψ, we can compute some ψ′ with |〈ϕ, ψ〉|×(cQc×|ψ|)(m) ≤ |〈〈ϕ, ψ〉, ψ′〉|
in polynomial time (note that Q, c and m are all constants here). The l in the
original name is replaced by lcm.

It is worthwhile pointing out that the function spaces for computability do
not only contain the computable functions as elements, but comprise exactly the
continuous functions as discussed very well in [1], yielding a structure dubbed
category extension in [23,22]. This is due to the fact that the (partial) functions
f :⊆ NN → NN arising as sections of computable (partial) functions F :⊆ NN ×
NN → NN are just the continuous functions.

In a similar way, we shall investigate which functions appear in a space
CT=P2(X,Y) for epb X. It turns out that (a modification of) uniform continuity
plays a central role. A connection between run-time bounds and the modulus of
continuity was also found for multivalued functions in [25].

7 Note that the epb-condition acts on the domain of the representation only, it does
not relate to any hypothetical additional structure available on X (such as a metric).
In particular, this condition is unrelated to the notion of a concise representation
introduced by Weihrauch in [33].
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Definition 12. We call a partial function f :⊆ Reg → Reg polytime-locally
uniformly continuous, if there is a polynomial-time computable function χ :⊆
Reg → N, such that dom(f) ⊆ dom(χ) and any f |χ−1({n}) is uniformly contin-
uous.

Theorem 13. Let X ⊆ Reg be epb. Then for f : X → Reg the following are
equivalent:

1. f is polytime-locally uniformly continuous
2. f ∈ CT=P2(X,Reg)

Proof. 1. ⇒ 2. Given Theorem 11 and Corollary 9, it suffices to show that
such an f is polynomial-time computable relative to some oracle ψ. We
start by some Λ ∈ Mon such that i #→ Λ(〈n, i〉) is a modulus of conti-
nuity of f |χ−1({n}). Then f(ϕ)(u) depends only on values ϕ(w) with |w| ≤
Λ(〈χ(ϕ), |u|〉), and we may encode this dependency in some table ψ. In order
to write the query to ψ, the machine needs time 2Λ(〈χ(ϕ),|u|〉). By providing
〈2Λ, ψ〉 as an oracle, this time is made available.

2. ⇒ 1. Omitted.

Note that the same argument used for 1. ⇒ 2. in the preceding proof also
establishes that CT=P2(R,R) contains all the continuous functions, where R is
represented as suggested in [15], as observed by the first author in [14]. In par-
ticular, R as defined there is an epb space – and the best example of an epb
space available to us.

Observation 14. If X and Y are epb, then so are X+Y and X×Y. Any sub-
space of an epb-space is epb itself. However, CT=P2(X,Y) is not necessarily epb.
If X ∼= X′, we also cannot conclude that X′ is epb, as X′ may have superfluous
fast-growing names8.

7 Padding and Polytime Admissibility

In this section we shall explore two distinct but similar arguments based on
using padding-like concepts on the codomain of a function in order to make time
bounds irrelevant. This technique both reveals polynomial-time admissibility as
a far too restrictive concept (as opposed to computable admissibility) and allows
us to draw some conclusions about degree structures.

We define a Reg-representation π of Cantor space via dom(π) = {ϕ ∈ Reg |
range(|ϕ|) = N} and π(ϕ)(i) = ϕ(0n)(i) where n = min{j ∈ N | |ϕ(0j)| =
i}. Now any Cantor-representation δ can be turned into a Reg-representation
by composing with π, and by this we obtain a strong correspondence between
computability and polynomial-time computability.

8 This aspect raises the question whether there is a convenient characterization of
representations that are polynomial-time equivalent to an epb representation.
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Proposition 15. A function f : X → (Y, δY) is computable if and only if
f : X → (Y, δY ◦ π) is polynomial-time computable.

Proof. Omitted.

Weihrauch reducibility (e.g. [6,5,4,11]) is a computable many-one reduction
between multivalued functions that serves as the basis of a metamathematical
research programme. Likewise, a reduction that could be called polynomial-time
Weihrauch reducibility has been investigated by some authors (e.g. [3,15]). In
[21,22] abstract principles were demonstrated that provide a very similar de-
gree structure for both. Let (W,⊕,+,×) and (P,⊕,+,×) be the corresponding
degree structures for Weihrauch reducibility and polynomial-time Weihrauch re-
ducibility. We then find:

Corollary 16. (W,⊕,+,×) embeds as a substructure into (P,⊕,+,×).

The characterization of admissibility that admits a translation into the setting
of computational complexity is due to Schröder [27] (see also [23]). Given
the Sierpiński space S and the function space C(−,−), we find that there is a
canonic map κX : X → C(C(X, S), S) with κ(x)(f) = f(x). A space X is called
computably admissible, if κX admits a computable partial inverse.

The space S has the underlying set {�,⊥}, and the representation δS : Reg →
S defined by δS(ϕ) = � iff ∃w . ϕ(w) = 1. By the same argument as Proposi-
tion 15, any computable function into S is computable in polynomial time –
in fact, even linear time suffices. Thus, just as in Section 6 we can use the
space CT=P1(X, S) as a function space and subsequently obtain a definition of
polynomial-time admissibility by calling X polynomial-time admissible iff the
(polynomial-time computable) map κX : X → CT=P1(CT=P1(X, S), S) has a
polynomial-time computable partial inverse. However, this notion is of limited
use:

Proposition 17. If x ∈ X for polynomial-time admissible X has a computable
name, then it has a polynomial-time computable name.

Proof. Omitted.

Note that this implies that all the representations suggested in [15] fail to be
polynomial-time admissible, despite appearing to be very reasonable choices9.

8 Conclusions

The trusted techniques developed for the theory of represented spaces and com-
putable functions are insufficient to fully comprehend polynomial-time com-
putability. Function spaces are not always available, and even where they are,

9 Nevertheless, there are non-trivial polynomial-time admissible spaces. In particular,
any space CT=P1(X, S) will be polynomial-time admissible. Consequently, we find
that there is a polynomial-time admissible space in any equivalence class regard-
ing computable translations that is computably admissible – but for these spaces,
the formally defined polynomial-time computability actually is just computability,
without any complexity-theoretic flavour to it.
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they might differ from the familiar one of the continuous functions10. Instead,
some form of uniform continuity will be appear as the central notion.

What can be used as a guiding principle for the choice of representations is
the epb property. If compatible with other criteria, choosing a representation
that makes a space epb also makes function spaces well-behaved. For example,
separable metric spaces are traditionally represented by encoding points by fast
converging sequences of basic elements. For computability theory it does not
matter what fast means – for complexity theory it does. A sensible choice could
be: As fast as possible while retaining the epb property. Whether this already
determines a representation up to polynomial-time equivalence is open, though.
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sonal communication), this would change the notion of computability, too.



254 A. Kawamura and A. Pauly

13. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-
space complete. Computational Complexity 19(2), 305–332 (2010)

14. Kawamura, A.: On function spaces and polynomial-time computability. Dagstuhl
Seminar 11411 (2011)

15. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans-
actions on Computation Theory 4(2), Article 5 (2012)
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Abstract. The operation problem for several classes of automata and
other language descriptors is addressed: Fix an operation on formal lan-
guages. Given a class of automata (or other language descriptors), is the
application of this operation to the given class still a language represented
by a device of that class? In particular, several aspects of complexity in
connection with these problems are considered. Is the problem decidable
or not? What is the computational complexity of the decision procedure,
or what is its precise level in the arithmetic hierarchy? What is the blow-
up of the size of the resulting device, if it exists, in terms of the sizes
of the given ones? Otherwise, is there a so-called non-recursive trade-off
between the representation by devices combined with the operation and
the representation by just one device? We present some selected results
on the computational and descriptional complexity of operation prob-
lems and draw attention to the overall picture and some of the main
ideas involved.

1 Introduction

From an implementation point of view, the operation problem is related to the
question whether, for example, a parser or acceptor for a given language can be
decomposed into several simpler parsers. Advantages of simpler parsers, whose
combination according to the operation is equivalent to the given device, are
obvious. For example, the total size of the simpler devices could be smaller than
the given parser, the verification is easier, etc. So, there is a natural interest
in efficient decomposition algorithms. From this point of view, the complexity
of the converse question, whether the composition of languages yields a given
language, is interesting. The operation problem can be seen as a weaker class of
such problems.

Here we address several aspects of complexity in connection with these prob-
lems. If a class is closed under a certain operation, the decidability of the problem
is trivial. In this case the descriptional complexity is of particular interest: What
is the blow-up of the size of the resulting device in terms of the sizes of the
given ones? If a class is not closed under a certain operation, an immediate
question asks for the decidability of the problem whether or not the result still
belongs to the class. At this point the operation problem has strong relations to
computational complexity. What is the complexity of the decidability process?

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 255–264, 2014.
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Or else, what is its precise level in the arithmetic hierarchy? Also in these cases
descriptional complexity issues are interesting. Is there a so-called non-recursive
trade-off between the representation by devices combined with the operation and
the representation by just one device, if the latter is possible at all? The phe-
nomenon of non-recursive trade-offs means that the trade-offs are not bounded
by any recursive function. With other words, the gain in economy of description
can be arbitrary. At this point, the operation problem has strong relations to
computability.

The reader is assumed to be familiar with the basic notions of automata theory
as contained, for example, in [22]. In the present paper we will use the following
notational conventions. An alphabet Σ is a non-empty finite set, its elements
are called letters or symbols. We write Σ∗ for the set of all words over the finite
alphabet Σ. The complement of a language L ⊆ Σ∗ is denoted by L. We use ⊆
for inclusions and ⊂ for strict inclusions.

2 Closed Classes

We turn to the operation problem for classes of automata that are closed under
the operation. Seemingly, this scenario is very simple, since the decision problem
becomes trivial, just answer yes, and its computational complexity is constant.
However, one can ask for the sizes of the representations of the language by one
automaton as opposed to one or more automata combined with the operation.
Here the descriptional complexity turns out to be a finer apparatus compared
with computational complexity. In the following we exemplarily consider the
classes of deterministic (DFA), nondeterministic (NFA), alternating (AFA), and
Boolean finite automata (BFA).

Now, the problem for DFAs and a regularity preserving binary operation ◦
reads as follows:

– Given two DFAs A and B of sizes m and n.

– Which size is sufficient and necessary in the worst case (in terms of m and n)
for a DFA to accept the language L(A) ◦ L(B)?

Clearly, this problem generalizes as well to unary language operations as, for
example, complementation, and to other devices such as, for example, NFA,
AFA, BFA, and their two-way variants. As implied by the definition, here we
deal with the language operation problem in terms of worst case complexity. In
the following the notion state complexity is used to express that the size of the
finite automata is measured by their number of states.

Concerning the main historical development of operational state complexity
of finite automata, first observations for DFAs can be found in [36] without proof
and in [32]. Later, the field of research was revitalized in [49]. Recent surveys
of results dealing with this topic are [20,47,48]. A systematic study of language
operations in connection with NFAs is [19] (cf. [23]). Tight bounds for AFAs and
BFAs have recently been obtained in [24] (cf. [11]).
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The bounds for some basic operations on DFAs, NFAs, AFAs, and BFAs
accepting general and unary regular languages are summarized and compared
in Table 1.

Table 1. DFA, NFA, AFA, and BFA state complexities, where t is the number of
accepting states of the “left” automaton. The tight lower bounds for union, intersection,
and concatenation of unary DFAs require m and n to be relatively prime.

DFA NFA AFA BFA

general unary general unary general general

∪ m+ n+ 1 m+ n+ 1 mn mn m+ n+ 1 m+ n

∼ n n 2n 2Θ(
√

n·log n) n n

∩ mn mn mn mn m+ n+ 1 m+ n

R 2n n n+ 1 n 2n ≤ · ≤ 2n + 1 2n

· m2n − t2n−1 mn m+ n m+ n− 1 ≤ · ≤ m+ n 2m + n ≤ · ≤ 2m + n+ 1 2m + n

∗ 3 · 2n−2 (n− 1)2 + 1 n+ 1 n+ 1 2n ≤ · ≤ 2n + 1 2n ≤ · ≤ 2n + 1

+ n n

We chose the complementation from the range of possible operations and
discuss it in more detail. Complementation often plays a crucial role in connec-
tion with nondeterminism. In fact, compared with DFAs the complementation
of NFAs is expensive. Since the complementation operation on DFAs neither
increases nor decreases the number of states (simply exchange accepting and
rejecting states), we obtain the upper bounds for the NFA complementation by
determinization, that is, 2n states [35,39,40]. The story of the lower bound is a
little longer: In [45] an example of languages over a growing alphabet size is given
which reaches the upper bound 2n. In [3] the result for a three-letter alphabet
was claimed and later corrected to a four-letter alphabet in [4]. In [19] the lower
bound 2n−2 is achieved for a two-letter alphabet and, finally, by a fooling set
technique the bound 2n was proven to be tight for a two-letter alphabet [23].

Interestingly, the complementation becomes cheap again, when the nonde-
terminism is generalized to alternations. The tight bound of n follows from a
construction presented in [11].

It turned out that the unary case is different for NFAs compared with DFAs.
In [8] it has been shown that for any unary n-state NFA there exists an equiv-

alent (2Θ(
√
n·logn))-state deterministic finite automaton, and in [19] it is shown

that this is a tight bound in the order of magnitude for the unary NFA com-
plementation. More detailed results on the relation between the sizes of unary
NFAs and their complements are obtained in [38]. In particular, if a unary lan-
guage L has a succinct NFA, then nondeterminism cannot help to recognize its
complement, namely, the smallest NFA accepting the complement of L has as
many states as the minimal DFA accepting it.

The operational state complexity for two-way deterministic finite automata
(2DFA) has recently been investigated in [25]. Before, in [13] it has been shown
that the complement of any n-state 2DFA can be accepted by a 4n-state 2DFA
that always halts. In the same paper, the polynomial upper bound of O(n8)
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has been obtained for unary two-way nondeterministic finite automata. Here
we have a station where one can change the train to computational complexity.
The challenging open question about the costs for simulating 2NFAs by 2DFAs
raised by Sakoda and Sipser in [45] is unanswered for decades. The best known

upper bound is of order 2O(ln2 n) [12]. As shown in [14], a tightness proof of
such bound (or any other superpolynomial lower bound) would imply the sep-
aration between the classes L and NL, thus solving another long-standing open
problem. Now let s(n) be the state complexity for the simulation of 2NFAs by
2DFAs. Then for any given n-state 2NFA there is an equivalent s(n)-state 2DFA
and, hence, a 4s(n)-state 2DFA (and thus 2NFA) accepting the complement of
the language accepted by the given 2NFA. So, if the answer to the open ques-
tion of the operational state complexity of 2NFA and complementation yields a
superpolynomial lower bound, then L and NL would be separated. Other inter-
esting connections between the problem of Sakoda and Sipser and the question
whether L equals NL have been proved in [2] and, recently, in [26,27].

3 Classes with Closed Subclasses

Here we focus on the operation problem for classes of automata that are not
closed under the operation, but some non-trivial subclasses are closed. Clearly,
only subclasses that are decidable make sense from this point of view. Now the
scenario is twofold. For the subclasses the decidability of the operation problem is
again trivial, while it may be undecidable in general. Here we mention exemplar-
ily the classes of deterministic pushdown automata, nondeterministic one-turn
pushdown automata (that accept the linear context-free languages), and one-
way multi-head finite automata. These classes have in common that their unary
subclasses accept only regular languages. So, for unary devices the operation
problem for regularity preserving operations becomes decidable. Though deep
results on descriptional complexity issues of these important subclasses have
been obtained (see, for example, [30,31,42,43]), a systematic study of operation
problems is a still open and challenging task.

In the following, we turn to the undecidability of operation problems for the
devices in question and, in particular, their level in the arithmetic hierarchy [44].
In [9] the recursively enumerable one-one Turing degrees were investigated and it
was shown that various unsolvable problems, including some operation problems,
of formal languages are in these degrees. A definition of the arithmetic hierarchy
can be given as follows:

Σ1 = {L | L is recursively enumerable } and

Σn+1 = {L | L is recursively enumerable in some A ∈ Σn }, for n ≥ 1,

where a language L is said to be recursively enumerable in some A if there is
a Turing machine with oracle A that semi-decides L. The complement of Σn is
denoted by Πn, that is, Πn = {L | L is in Σn }. Notice, that Σ1∩Π1 is the class
of all recursive sets. Completeness and hardness are always meant with respect
to many-one reducibilities.
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In [5] the following theorem is shown. It gives an upper bound on the unsolv-
ability of the operation problem, if some easy properties are met.

Let M1,M2, . . . be an effective enumeration of machines of a certain type,
so that the induced language class {L(Mi) | i ≥ 1 } is effectively included in
the class NSPACE(lin). Further let ◦ be a k-ary operation, k ≥ 1, under which
NSPACE(lin) is effectively closed. Then the ◦ operation problem for the induced
language class is contained in Σ2.

Notice, that the theorem applies to the devices in question and, for example,
to the operations union, intersection, complementation, (marked) concatena-
tion, (marked) Kleene star, non-erasing homomorphism, non-erasing substitu-
tion, shuffle, and root. In [5] the Σ2-completeness for deterministic pushdown
automata and nondeterministic one-turn pushdown automata and all these op-
erations has been shown, if the corresponding class is not closed under the op-
eration. The proofs use the major technique of (in)valid computations of Turing
machines. For Boolean operations the result reads as follows.

1. Given two nondeterministic one-turn pushdown automata, the problems
whether the intersection of both accepted languages, or whether the com-
plement of an accepted language is again accepted by a nondeterministic
one-turn pushdown automaton is Σ2-complete.

2. Given two deterministic pushdown automata, the problems whether the in-
tersection of both accepted languages, or whether their union is again ac-
cepted by a deterministic pushdown automaton is Σ2-complete.

For example, the Σ2 hardness of the intersection problems can be derived as
follows. Basically, a valid computation of a deterministic Turing machine with
one single tape and one single read-write head is a word built from a sequence
of configurations passed through in an accepting computation. In [1] it has been
shown that such a valid computation can be represented by the intersection
of two deterministic linear context-free languages and that the corresponding
acceptors can effectively be constructed. Another result in [1] says that the lan-
guage accepted by an arbitrary Turing machine is finite if and only if the valid
computations of that Turing machine are context free. So, the finiteness prob-
lem for Turing machines reduces to the intersection problem for the pushdown
automata. Since the finiteness problem for Turing machines is Σ2-complete [44],
the Σ2-hardness follows. Together with the above mentioned Σ2-containment we
obtain the Σ2-completeness.

4 Classes with Decidable Subclasses

In this section we consider a scenario which is slightly different from the above.
Here we are interested in classes of languages and operations so that the oper-
ation problem is undecidable in general, but is decidable for some non-trivial
subclasses not closed under the operation. In this setting, the level of undecid-
ability as well as the decidability procedure and its computational complexity
are of natural interest.
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In order to discuss briefly another aspect of operation problems, here we
stick with the decidability procedure itself. As classes of languages we chose
Lindenmayer systems (L systems for short). These systems have been introduced
to describe the development of lower organisms [33,34]. L systems can be seen as a
parallel counterpart to sequential rewriting mechanisms, they can be considered
as finite substitutions over a free monoid, which are iteratively applied to a
designated element of the monoid, the so-called axiom of the system. Basically, in
every derivation step, all symbols in the sentential form have to be rewritten (in
parallel), and there is no distinction between terminal and nonterminal symbols.

Formally, a T0L system is a tuple G = 〈Σ,P1, P2, . . . , Pr, ω〉, where r is a
positive integer, Σ is an alphabet, ω ∈ Σ+ is the axiom, and Pi, for 1 ≤ i ≤ r, is
a finite subset of Σ×Σ∗ such that for every a ∈ Σ, there is a word v ∈ Σ∗ with
(a, v) ∈ Pi. The sets Pi are called the tables of G. A T0L system is propagating
(a PT0L system) if all tables of G are finite subsets of Σ ×Σ+. A 0L system is
a T0L system with only one table, that is, r = 1. A 0L system is propagating (a
P0L system) if the only table of G is a finite subset of Σ ×Σ+.

The elements of the tables are called rules and define how a symbol of the
current sentential form may be rewritten. In a single step of a T0L system,
all symbols are rewritten in parallel according to one of its tables. More pre-
cisely, with every table P we associate the finite substitution σP defined by
σP (a) = { v | (a, v) ∈ P }. Now, the language generated by a T0L system is de-
fined as follows. A word x ∈ Σ+ directly derives a word y ∈ Σ∗ if there is i with
1 ≤ i ≤ r, such that y ∈ σPi (x). We write x ⇒ y in this case. The language L(G)
generated by G is defined to be the set L(G) = {w ∈ Σ∗ | ω ⇒∗ w }, where ⇒∗

refers to the reflexive, transitive closure of the derivation relation ⇒.
By definition, every P0L language is also a 0L, PT0L as well as a T0L lan-

guage, and both every 0L and every PT0L language is also a T0L language.
The operation problem for families of languages generated by L systems has

been investigated only for the union of 0L and propagating 0L languages [10],
where also the unary variant for 0L was studied. It was shown that in general the
union problem for 0L languages is undecidable, while for the restricted variants
of PD0L and unary 0L languages the problem becomes decidable. In [6] the op-
eration problem for the families of 0L and T0L languages and their propagating
variants are investigated to a large extent. For intersection, substitution, and
all AFL operations but Kleene star, the problem turned out to be non-semi-
decidable, that is, Π1 is a lower bound. The proof is by reduction of the Post’s
Correspondence Problem.

Further results in [6] show the decidability of the operation problems for
Kleene star, complementation, and intersection with regular sets for unary L
systems. The proofs utilize the following characterization [18]: If L is a unary
0L language over alphabet {a}, then either L is regular, that is, there is a finite
set F and integers d ≥ 1 and 1 ≤ i1 < i2 < · · · < ik, for some k ≥ 0, such
that L = F ∪ {ai1 , ai2 , . . . , aik}{ad}∗, or there are integers i ≥ 1 and k ≥ 2 such
that L = { ai·kn | n ≥ 0 }. Moreover, given a 0L system, there is an algorithm
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to determine the parameters of the language. A simple application of this result
yields the following theorem.

Given a unary 0L language L over a unary alphabet, it is decidable, whether
or not the Kleene star of L is a 0L language.

In order to give evidence of the assertion, recall that the Kleene star of any
unary language is regular. Due to the effective characterization, for a given unary
0L system G a finite automaton accepting L(G)∗ can effectively be constructed.
Since it is decidable whether a given regular language is a 0L language [46], it
is decidable whether or not L(G)∗ is a 0L language.

5 Classes Defined by Operations

In this section we consider the operation problem from a slightly different point
of view. We use an operation to define a class of languages. For example, given
two (incomparable) classes of languages where each has its own neat properties,
the intersection of both classes should – to some extend – have the best prop-
erties of both classes, it can be the best of the two worlds. Again exemplarily,
we discuss the intersection of context-free languages (CFL) and Church-Rosser
languages (CRL). The known upper bound on the time complexity for the mem-
bership problem of CFL still exceeds O(n2). Church-Rosser languages have been
introduced in [37]. They are defined via finite, confluent, and length-reducing
Thue systems. Church-Rosser languages are incomparable to the context-free
languages [7]. They parse rapidly in linear time, contain non-semilinear as well
as inherently unambiguous languages [37]. Moreover, they are characterized by
deterministic automata models [7,41] and contain the deterministic context-free
languages as well as their reversals properly [37]. The intersection CFL ∩ CRL
has been studied in [29].

Any language from the intersection CFL ∩ CRL has two representations, say
in terms of context-free grammars and length-reducing Thue systems (or in
terms of the equivalent automata types). One immediate question is about the
succinctness of these two equivalent representations, which one is more succinct?
As it turns out this question is closely related to the decidability problem whether
or not a given context-free language is Church-Rosser, or vice versa. The answer
to the questions reveals an interesting phenomenon, there are so-called non-
recursive trade-offs between context-free and Church-Rosser languages and vice
versa. This means, given a language from the intersection which is represented
by one of the mechanism, say of size n, there is no recursive function bounding
from above the size of the other representation in terms of n. We now turn to
discuss this phenomenon in more detail.

For our purposes, the set of context-free grammars as well as the set of finite,
confluent, and length-reducing Thue systems are called descriptional systems.
The descriptional complexity of elements from the systems is measured by the
lengths of their representations, by their sizes (over some fixed alphabet). A
total function f : N → N is an upper bound for the increase in complexity when
changing from a representation r1 in one system to an equivalent representation
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in the other system, if there is always a representation r2 in the other system
so that the size of r2 is at most f applied to the size of r1. However, for the
systems in question this function is not effectively computable. One can choose
an arbitrarily large recursive function f but the gain in economy of description
eventually exceeds f when changing the representation. For establishing non-
recursive trade-offs the following general result from [28] is useful which is a
slightly generalized and unified form of a result in [17]. In particular, it empha-
sizes the relation to decidability problems (see, for example, [15,16,21,28] for
more on non-recursive trade-offs).

Let S1 and S2 be two descriptional systems for recursive languages such that
any descriptor D in S1 and S2 can effectively be converted into a Turing machine
that decides L(D). If there exists a descriptional system S3 and a property P
that is not semi-decidable for descriptors from S3, such that, given an arbitrary
D3 ∈ S3, (i) there exists an effective procedure to construct a descriptor D1

in S1, and (ii) D1 has an equivalent descriptor in S2 if and only if D3 does not
have property P , then the trade-off between S1 and S2 is non-recursive.

The following levels of unsolvability have been shown in [29].

1. Given a Church-Rosser language L, the problem whether L is context free
is Σ2-complete.

2. Given a context-free language L, the problem whether L is Church-Rosser
is Σ2-complete.

In order to apply the above technique to derive non-recursive trade-offs, let S1

be the class of nondeterministc pushdown automata and S2 be the class of finite,
confluent, and length-reducing Thue systems. The descriptional system S3 is set
to be S1, and property P is to have no equivalent descriptor in S2. The converse
non-recursive trade-off follows symmetrically.
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Abstract. In this paper, we propose a novel approach to enforcing
eXtensible Access Control Markup Language (XACML) policy specifica-
tions in distributed environments. Our approach is based on a formal lan-
guage theoretic construction, a variant of networks of parallel language
processors. The language processors form teams, send and receive infor-
mation through component and team level filters. The hierarchical nature
of the network supports multiple levels of nesting. Consequently, differ-
ent security needs can be defined at varying levels of granularity. We use
various context conditions for filtering information, thus controlling infor-
mation flow. Our theoretical contributions include establishing the con-
nection between the growth of the number of strings at the components
of the networks and the growth functions of developmental systems.

Keywords: distributed access control enforcement, XACML, rule com-
bining algorithms, networks of parallel multiset string processors, infor-
mation dynamics, developmental systems.

1 Introduction

Distributed computing systems have led to the development of new technologies,
such as peer–to–peer (P2P) networks, Service–Oriented Architecture (SOA), web
services and cloud computing. With the increase in the amount of exchanged
and published information and the rapid growth in the number of computing
resources such as sensors, smart phones, desktop and portable computers and vir-
tual (cloud–based) resources, the need to integrate these computing resources of
many types into ongoing computations, has become an increasingly difficult task
to manage. Furthermore, the protection of sensitive information has to be guar-
anteed. Several models have been developed to express access control require-
ments in distributed systems (e.g. [5], [13]). These models, however, do not fully
embrace the dynamic nature of the open environment, where participants join
and leave a network in an unpredictable manner. Minsky et al. presented a decen-
tralized coordination and control mechanism, called Law–Governed Interaction
(LGI) for distributed systems [10]. LGI enables a distributed, often large, het-
erogeneous and open group of actors or agents to engage in interaction governed
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by an explicitly specified policy, called the interaction law of the group. This law
is enforced, turning a disparate group of actors into a community with members
relying on each other to comply with the given law. Rather than building a cen-
tralized security policy, LGI supports the concept of conformance based on the
hierarchical structure of the system. Our work is closely related to LGI, since it
supports LGI–type information flow control. In addition, our model is able to
incorporate concepts specified by powerful access control policy languages, such
as the eXtensible Access Control Markup Language (XACML) [1]. The XACML
policy language model has three main components: rules, policies and policy
sets. The rule is the most elementary unit of the policy, each rule either allows
(Permit) or denies (Deny) an access control request. A policy comprises a set
of rules, a policy set a set of policies or other policy sets. The rule combining
algorithm (RCA) determines how to combine the results of evaluating the com-
ponent rules when evaluating the policy. The policy combining algorithm (PCA)
specifies how to combine the results of evaluating the component policies when
evaluating the policy set. In this paper, we focus on RCAs. In particular, we
build formalisms for the Deny–overrides and Permit–overrides RCAs. The result
of the Deny–overrides RCA is Deny, if any decision is Deny. The result of the
Permit–overrides RCA is Permit, if any decision is Permit.

Our approach is based on a formal language theoretic construction, a variant
of networks of parallel language processors [4]. The language processors form
teams, send and receive information through component and team level filters.
We extend the model proposed in [6] and [7] by developing a framework that can
accommodate a more versatile access control model. The hierarchical nature of
our network supports multiple levels of nesting, and as a consequence different
security needs can be defined at varying levels of granularity (e.g. individual,
unit, organization, etc.). We use various context conditions for filtering infor-
mation, thus controlling information flow. Our theoretical contributions include
establishing the connection between the growth of the number of strings at the
components of the networks and the growth functions of developmental systems.

The organization of this article is as follows. In Sect. 2, we overview the
notations and definitions used throughout this paper. In Sect. 3, we provide a
formal specification of RCAs in XACML in our distributed networks. In Sect. 4,
we characterize the dynamics of information in these networks. Finally, in Sect.
5, we summarize our achievements and propose some further research directions.

2 Preliminaries

In the followings, V ∗ will denote the set of words over V for an alphabet V , and
V + = V ∗ \ {λ}, the set of all nonempty words, where λ is the empty string.
length(x) denotes the length of x ∈ V ∗ and alph(x) the set of symbols occurring
in x ∈ V ∗. For L ⊆ V ∗, let alph(L) =

⋃
x∈L alph(x). For V ′ ⊆ V , |x|V ′ is the

number of occurrences of letters V ′ in x ∈ V ∗. If V ′ = {a}, then we simply
write |x|a. For a finite set A, card(A) stands for the number of elements of A. N
denotes the set of natural numbers and N0 = N ∪ {0}. For further notions from
formal language theory, the reader is referred to [11] and [12].
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A multiset is a pair M = (V, f), where V is an arbitrary (not necessarily
finite) set (the universe) of objects of U and f : U → N0 is a mapping that
assigns the multiplicity to each object, such that if a /∈ V , then f(a) = 0. We
define the support of M = (V, f) by supp(M) = {a ∈ V | f(a) ≥ 1}. M is a
finite multiset, if supp(M) is finite. The set of all finite multisets over the set
V is denoted by V ◦. card(M) =

∑
a∈V f(a) defines the cardinality of a finite

multiset M = (V, f). a ∈ M = (V, f), if a ∈ supp(M), and M1 = (V1, f1) ⊆
M2 = (V2, f2), if supp(M1) ⊆ supp(M2) and for all a ∈ V1, f1(a) ≤ f2(a).
(M1 ∪ M2) = (V1 ∪ V2, f

′), where for all a ∈ V1 ∪ V2, f
′(a) = f1(a) + f2(a),

defines the union of two multisets. M is an empty multiset, denoted by ε, if
supp(M) = ∅. A multiset M over the finite set of objects V can be represented
by a string ω over the alphabet V with |w|a = f(a), a ∈ V , and λ represents
the empty multiset ε. The finite multiset of objects with the word ω over V
representing M is identified by M = (V, f), hence ω ∈ V ◦ is written.

By a context condition % over V ∗, where V is an alphabet, we mean a com-
putable mapping % : V ∗ → {true, false}. % is of type reg (regular context
condition), given by a regular language L ⊆ V ∗, if %(ω) = true for any ω ∈ V ∗,
where ω ∈ L, and %(ω) = false otherwise. % is of type rc (random context
condition), given by a pair (Q,R), where Q,R ⊆ V , if %(ω) = true for any
ω ∈ V ∗ that contains each element of Q, but no element of R, and %(ω) = false
otherwise. We call Q the permitting and R the forbidding context condition.

A 0L system (an interactionless Lindenmayer system) is a triplet G =
(V, ω, P ), where V is an alphabet, ω ∈ V + is the axiom, and P is a finite
set of context–free rewriting rules over V , such that for each a ∈ V , there is a
rule a → x in P (we say that P is complete). A deterministic 0L system is called
a D0L system. If the axiom is replaced by a finite language, then we have an
F0L (FD0L) system. Since the production set P of a D0L system G = (V, ω, P )
defines a homomorphism h : V → V ∗, G = (V, ω, h) is often used instead of the
first notation. By a word sequence of a D0L system G = (V, ω, h), we mean the
following sequence: h0(ω) = ω, h(ω), h2(ω), h3(ω), . . . . Function f : N0 → N0

defined by f(t) = length(ht(ω)), t ≥ 0, is called the growth function of G, and
sequence length(ht(ω)) for t = 0, 1, 2, . . . , is its growth sequence.

3 Formal Specification of Rule Combination in XACML

We introduce the notion of hierarchical networks of parallel multiset string pro-
cessors with component and team level filtering. We show how our model can sup-
port rule combination strategies expressed by the XACML policy specifications.

Definition 1. A hierarchical network of parallel multiset string processors with
component and team level filtering (an HctNPMPF0L system) is a construct Γ =
(V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj , υj) | 1 ≤ j ≤ m}), where
– V is an alphabet, the alphabet of the system,
– ti, 1 ≤ i ≤ n, is the i–th team, ti = {ti1 , . . . , tisi , cī1 , . . . , cīsī } �= ∅, where
{i1, . . . , isi} ⊆ {1, . . . , n} \ {i}, {ī1, . . . , īsī} ⊆ {1, . . . ,m}, 0 ≤ si ≤ n, 0 ≤
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sī ≤ m, {ti1 , . . . , tisi }∩{tj1 , . . . , tjsj } = ∅, if 1 ≤ i �= j ≤ n, (teams comprise

other teams and/or components of the network; a component may belong to
different teams simultaneously, but teams are not allowed to have common
team members),

– θi, ξi, 1 ≤ i ≤ n, are context conditions over V ∗, the exit filter and the
entrance filter of the i–th team (these filters limit access to strings at team
level information filtering),

– cj = (Pj , Fj), 1 ≤ j ≤ m, is the j–th component (entity), where
• Pj is a finite and complete set of pure context–free rules over V (i.e.
rules of the form A → α with A ∈ V , α ∈ V ∗ and for each A ∈ V , there
is a rule A → α in Pj), the production set of the j–th component,

• Fj ∈ V ◦ is a non–empty finite multiset of strings (e.g. advertisements,
messages), the multiset of axioms of the j–th component, and

– ψj, υj, 1 ≤ j ≤ m, are contexts conditions over V ∗, the exit filter and the
entrance filter of the j–th component (these filters limit access to strings at
component level information filtering).

According to the type of the filters and the type of the production sets we dis-
tinguish different classes of HctNPMP systems. We denote by HcXtYNPMPZ the
class of HctNPMP systems with (X)–type component and (Y )–type team level
filters, where X,Y ∈ {reg, rc} and Z ∈ {0L, D0L, F0L,. . . }. The HctNPMPF0L

system functions by changing its states.

Definition 2. By a state (or a configuration) of an HctNPMPF0L system Γ =
(V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj , υj) | 1 ≤ j ≤ m}), we mean a tuple

st = (M
(t)
1 , . . . ,M

(t)
m ), where M

(t)
j ∈ V ◦, 1 ≤ j ≤ m, t ∈ N0, is the state of

the j–th component at step t and it represents the multiset of strings present at
component j at that step. s0 = (F1, . . . , Fm) is the initial state of the system.

For the sake of legibility, we introduce the following notations. Let Γ =
(V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj , υj) | 1 ≤ j ≤ m}) be an HctNPMPF0L

system as it is defined in Definition 1. We say that tp ≺ tq (tp precedes tq / tq
succeeds tp), 1 ≤ p �= q ≤ n, if tp ∈ tq and tq /∈ tp. tp and tp are incomparable,
if neither tp ≺ tq, nor tq ≺ tp is true. If tp ≺ tq and tq ≺ ts, then tp ≺ ts.
Furthermore, let us suppose that cj ∈ tk1 , for some j, 1 ≤ j ≤ m, and that
tk1 ≺ tk2 . . . ≺ tksk

, {k1, . . . , ksk} ⊆ {1, . . . , n}, 0 ≤ sk ≤ n. We say that tk1 is
the minimal team with respect to cj . Let us denote this fact by cj ≺min tk1 .

Definition 3. (Configuration transition.) Let Γ = (V, {(ti, θi, ξi) | 1 ≤ i ≤
n}, {(cj, ψj , υj) | 1 ≤ j ≤ m}) be an HctNPMPF0L system. Let st =

(M
(t)
1 , . . . ,M

(t)
m ), st+1 = (M

(t+1)
1 , . . . ,M

(t+1)
m ) be two states of Γ at step t and

t + 1, respectively, t ∈ N0. We say that
1. st+1 is derived from st by a rewriting step in Γ , written as

(M
(t)
1 , . . . ,M

(t)
m ) ⇒ (M

(t+1)
1 , . . . ,M

(t+1)
m ),

if M
(t)
j = {{αj1 , . . . , αjgj

}}, M
(t+1)
j = {{βj1 , . . . , βjgj

}}, where αjk , βjk ∈
V ∗, αjk ⇒ βjk in Pj, 1 ≤ k ≤ gj , 1 ≤ j ≤ m.
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2. st+1 is derived from st by a communication step in Γ , written as

(M
(t)
1 , . . . ,M

(t)
m ) ! (M

(t+1)
1 , . . . ,M

(t+1)
m ),

(a) through the application of the Deny–overrides rule combining algorithm,

if for every 1 ≤ j ≤ m, M
(t+1)
j = M

(t)
j ∪ Cj ∪ Ij , where

i. Cj = {{γ | γ ∈ M
(t)
k , θe(γ) = true, ξd(γ) = true, cj ≺min td, ck ≺min

te, 1 ≤ d �= e ≤ n, 1 ≤ k ≤ m, k �= j, and for all d′, e′, 1 ≤ d′ �= e′ ≤
n, td ≺ td′ , te ≺ te′ : θe′(γ) = true, ξd′(γ) = true}}, and

ii. Ij = {{γ | γ ∈ M
(t)
k , ψk(γ) = true, υj(γ) = true, cj ≺min td, ck ≺min

te, 1 ≤ d, e ≤ n, 1 ≤ k ≤ m, k �= j, for all d′, e′, 1 ≤ d′, e′ ≤ n, td ≺
td′ , te ≺ te′ : θe′(γ) = true, ξd′(γ) = true, and there exists f, 1 ≤ f ≤
n, td ≺ tf , te ≺ tf : θf (γ) = true, ξf (γ) = true}},

(b) through the use of the Permit–overrides rule combining algorithm, if for

every 1 ≤ j ≤ m, M
(t+1)
j = M

(t)
j ∪ Cj ∪ Ij , where

i. Cj = {{γ | γ ∈ M
(t)
k , cj ≺min td, ck ≺min te, 1 ≤ d �= e ≤ n, 1 ≤

k ≤ m, k �= j, 1 ≤ d′ �= e′ ≤ n, td ≺ td′ , te ≺ te′ , and there exist
e′′ ∈ {e, e′ | te ≺ te′}, d′′ ∈ {d, d′ | td ≺ td′} : θe′′(γ) = true, ξd′′(γ) =
true}}, and

ii. Ij = {{γ | γ ∈ M
(t)
k , cj ≺min td, ck ≺min te, 1 ≤ d, e ≤ n, 1 ≤ k ≤

m, k �= j, 1 ≤ d′, e′ ≤ n, td ≺ td′ , te ≺ te′ , and ψk(γ) = true, υj(γ) =
true, or there exist e′′ ∈ {e, e′ | te ≺ te′}, d′′ ∈ {d, d′ | td ≺ td′} :
θe′′ (γ) = true, ξd′′(γ) = true}}.

In Cond.1 of Def. 3, as a result of the rewriting step, only one new string can
be derived from each string through the application of 0L productions. Moreover,
some of these strings may be identical. The components communicate the copies
of the strings at their disposal. In accordance with the XACML policy specifi-
cations, we interpret the allowance and the denial of access control decisions as
true and false logical values, respectively, yielded by the filters in our framework.
In more details, in Cond. 2(a)i, Cj consists of all those strings that are allowed
to penetrate the exit filters of the minimal team of ck (the sender) and the teams
that succeed the minimal team of ck, the entrance filters of the minimal team of
cj (the receiver) and the teams that succeed the minimal team of cj . In Cond.
2(a)ii, Ij comprises all those strings that are permitted to pass the exit filters of
ck (the sender), the minimal team of ck and the teams that succeed the minimal
team of ck, the entrance filters of cj (the receiver), the minimal team of cj and
the teams that succeed the minimal team of cj. In Cond. 2(b)i, Cj consists of
all those strings that are allowed to penetrate the exit and the entrance filters of
the minimal teams of ck (the sender) and cj (the receiver), or at least one of the
exit filters of the teams that succeed the minimal team of ck and at least one of
the entrance filters of the teams that succeed the minimal team of cj . In Cond.
2(b)ii, Ij comprises all those strings that are permitted to pass the exit and the
entrance filters of ck (the sender) and cj (the receiver), or at least one of the exit
filters of the minimal team of ck and the teams that succeed the minimal team
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of ck and at least one of the entrance filters of the minimal team of cj and the
teams that succeed the minimal team of cj .

A sequence of subsequent states determines a computation in Γ . Let Γ =
(V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj , υj) | 1 ≤ j ≤ m}) be an HctNPMPF0L

system. By a computation C in Γ we mean a sequence of states s0, s1, . . . ,
where st ⇒ st+1, if t = 2j + 1, j ≥ 0, and st ! st+1, if t = 2j, j ≥ 1.

4 Information Dynamics

In the followings, we characterize the dynamics of information in
HcrctrcNPMPFD0L systems.

Definition 4. Let Γ = (V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj , υj) | 1 ≤ j ≤ m}),
be an HcrctrcNPMPFD0L system and let (M

(t)
1 , . . . ,M

(t)
m ) be the state of Γ at step

t during the computation in Γ , where t ≥ 0. We define
1. the population growth function of Γ by m : N0 → N0, m(t) =∑m

j=1 card(M
(t)
j ), for t ≥ 0;

2. the population growth function of Γ at node j, 1 ≤ j ≤ m, by mj : N0 → N0,

mj(t) = card(M
(t)
j ), for t ≥ 0;

3. the communication functions of Γ from node k to node l (cases 3(a)i and
3(b)i: the minimal teams of nodes k and l have no common successor, cases
3(a)ii and 3(b)ii: the minimal teams of nodes k and l have a common suc-
cessor) by
(a) (if we apply the Deny–overrides rule combining algorithm:)

i. fDENY
k,l : N0 → N0, fDENY

k,l (t) = card({{γ ∈ M
(t−1)
k | θe(γ) =

true, ξd(γ) = true, cl ≺min td, ck ≺min te, 1 ≤ d �= e ≤ n, 1 ≤ l ≤
m, k �= l, and for all d′, e′, 1 ≤ d′ �= e′ ≤ n, td ≺ td′ , te ≺ te′ :
θe′(γ) = true, ξd′(γ) = true}}), for t = 2k′, k′ ≥ 1, and fDENY

k,l (t) =
0 otherwise;

ii. f̄DENY
k,l : N0 → N0, f̄DENY

k,l (t) = card({{γ ∈ M
(t−1)
k | ψk(γ) =

true, υl(γ) = true, cl ≺min td, ck ≺min te, 1 ≤ d, e ≤ n, 1 ≤ l ≤
m, k �= l, for all d′, e′, 1 ≤ d′, e′ ≤ n, td ≺ td′ , te ≺ te′ : θe′(γ) =
true, ξd′(γ) = true, and there exists f, 1 ≤ f ≤ n, td ≺ tf , te ≺ tf :
θf (γ) = true, ξf (γ) = true}}), for t = 2k′, k′ ≥ 1, and f̄DENY

k,l (t) =
0 otherwise;

(b) (if we use the Permit–overrides rule combining algorithm:)

i. fPERMIT
k,l : N0 → N0, fPERMIT

k,l (t) = card({{γ ∈ M
(t−1)
k | cl ≺min

td, ck ≺min te, 1 ≤ d �= e ≤ n, 1 ≤ l ≤ m, k �= l, 1 ≤ d′ �= e′ ≤ n, td ≺
td′ , te ≺ te′ , and there exist e′′ ∈ { e, e′ | te ≺ te′}, d′′ ∈ { d, d′ |
td ≺ td′} : θe′′(γ) = true, ξd′′(γ) = true}}), for t = 2k′, k′ ≥ 1, and
fPERMIT
k,l (t) = 0 otherwise;

ii. f̄PERMIT
k,l : N0 → N0, f̄PERMIT

k,l (t) = card({{γ ∈ M
(t−1)
k | cl ≺min

td, ck ≺min te, 1 ≤ d, e ≤ n, 1 ≤ l ≤ m, k �= l, 1 ≤ d′, e′ ≤ n, td ≺
td′ , te ≺ te′ , and ψk(γ) = true, υj(γ) = true, or there exist e′′ ∈
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{e, e′ | te ≺ te′}, d′′ ∈ {d, d′ | td ≺ td′} : θe′′(γ) = true, ξd′′(γ) =
true}}), for t = 2k′, k′ ≥ 1, and f̄PERMIT

k,l (t) = 0 otherwise.

The population growth function of Γ , m, describes the increase in the number
of pieces of information in the network, the population growth function of Γ at
node j, mj , the increase in the number of pieces of information at node j, and the
communication functions of Γ from node k to node l, fDENY , f̄DENY , fPERMIT

and f̄PERMIT , the increase in the number of pieces of information at a given
time step during the communication between node k and node l, respectively.

We demonstrate that the change of the rewritten and the communicated string
collections using random context filters can be described by developmental sys-
tems.

Theorem 1. Let Γ = (V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj , υj) | 1 ≤ j ≤ m}), be
an HcrctrcNPMPFD0L system. Let us suppose that we apply the Deny–overrides
(Permit–overrides) RCA throughout the function of the network. Then a D0L
system H = (Σ,ω, h) can be constructed, such that
1. m(t) = f(t), where m is the population growth function of Γ and f is the

growth function of H;
2. mj(t) = card(h̄j(h

t(ω))) for some erasing homomorphism h̄j : Σ → Σ,
where mj is the population growth function of Γ at node j;

3. (Communication functions.)

(a) fDENY
j,k (t) = card(h̄j,k(h

t(ω))) (fPERMIT
j,k (t) = card(h̄′

j,k(h
t(ω)))) for

some erasing homomorphism h̄j,k : Σ → Σ (h̄′
j,k : Σ → Σ), where

fDENY
j,k (fPERMIT

j,k ) is the communication function of Γ from node j
to node k, t ≥ 0, cj ≺min tr, ck ≺min tq, 1 ≤ r �= q ≤ n, 1 ≤ j �=
k ≤ m, tr ≺ trx , tq ≺ tqy , 1 ≤ x ≤ gj, 1 ≤ y ≤ hk, 0 ≤ gj , hk ≤ n,
{tr1 , . . . , trgj } ∩ {tq1 , . . . , tqhk

} = ∅.
(b) f̄DENY

j,k (t) = card(h̄j,k(h
t(ω))) (f̄PERMIT

j,k (t) = card(h̄′
j,k(h

t(ω)))) for

some erasing homomorphism h̄j,k : Σ → Σ (h̄′
j,k : Σ → Σ), where

f̄DENY
j,k (f̄PERMIT

j,k ) is the communication function of Γ from node j
to node k, t ≥ 0, cj ≺min tr, ck ≺min tq, 1 ≤ r, q ≤ n, 1 ≤ j �=
k ≤ m, tr ≺ trx , tq ≺ tqy , 1 ≤ x ≤ gj, 1 ≤ y ≤ hk, 0 ≤ gj , hk ≤ n,
{tr, tr1 , . . . , trgj } ∩ {tq, tq1 , . . . , tqhk

} �= ∅.

Proof. D0L systems define homomorphism and the number of strings with a fixed
minimal alphabet at a node is known, therefore the number of strings with the
same minimal alphabet at the nodes can be calculated after we have performed
the rewriting step. Through the context conditions we can check the presence
and/or absence of various symbols in the string. Since the (minimal) alphabet of
the string is known, we can decide whether the string satisfies the given context
condition. As a consequence, we can represent any multiset of strings present
at some stage of computation in Γ by a multiset of symbols. These multisets of
symbols identify the different alphabets in a unique manner.
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Theorem 1 describes how to construct a communication graph by means of
communication functions, since the sequence of communication functions with
respect to a given time step defines a sequence of communication graphs.

By the theory of D0L systems (see [11]), we obtain the following corollaries:

Corollary 1. Let Γ = (V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj, υj) | 1 ≤ j ≤ m}),
be an HcrctrcNPMPFD0L system. Let us assume that we apply the Deny–overrides
(Permit–overrides) RCA throughout the function of the network. Then the pop-
ulation growth function of an HcrctrcNPMPFD0L system is either exponential or
polynomially bounded, which is decidable.

Corollary 1 guarantees that the access control model reaches a decision.

Corollary 2. Let Γ = (V, {(ti, θi, ξi) | 1 ≤ i ≤ n}, {(cj, ψj, υj) | 1 ≤ j ≤ m}),
be an HcrctrcNPMPFD0L system. Let us assume that we apply the Deny–overrides
(Permit–overrides) RCA throughout the function of the network. Suppose that
H = (Σ,ω, h) is the D0L system for which conditions 1, 2 and 3 of Theorem 1
hold. Let ω = ω0, ω1, ω2, . . . , be the word sequence generated by the D0L system
H. Then the sets Σi = alph(ωi), i ≥ 0, form an almost periodic sequence, i.e.
there are numbers p > 0 and q ≥ 0, such that Σi = Σi+p holds for every i ≥ q.
If a letter a ∈ Σ occurs in some Σi, then it also appears in some Σj, with
j ≤ card(Σ)− 1.

According to Corollary 2, after some time the function of these
HcrctrcNPMPFD0L systems results in the saturation of information. When the
system reaches the state of saturation, we can evaluate all disclosed information,
i.e. the components cannot disclose any additional data under the current access
control specification.

Corollary 3. Let Γz = (Vz , {(tiz , θiz , ξiz ) | 1 ≤ i ≤ n}, {(cjz , ψjz , υjz ) | 1 ≤
j ≤ m}), be an HcrctrcNPMPFD0L system for z = 1, 2. Let us suppose that we
apply the Deny–overrides (Permit–overrides) RCA throughout the function of
the network. Then the sequence and language equivalence problems are decidable
for the D0L systems Hz = (Σz, ωz, hz), z = 1, 2, constructed for Γz , z = 1, 2, and
satisfying conditions 1, 2 and 3 of Theorem 1.

Corollary 3 implies that it is decidable for two HcrctrcNPMPFD0L systems
whether they function in the same manner concerning the dynamics of informa-
tion. Informally, it means that given two networks, we can determine whether
they accumulate/transmit information in the same order.

5 Conclusions and Future Work

The transition from centralized and monolithic systems to open and distributed
architecture made it necessary to develop access control models that are suitable
to accommodate the new, dynamic environments. XACML has become the de
facto standard for specifying access control policies for distributed networks.
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Existing policy specification languages usually define a fixed set of rule and policy
combining algorithms. Extensibility and flexibility of RCAs and PCAs, however,
are desirable to meet the needs of distributed applications. Despite the fact that
XACML explicitly allows additional user–defined combining algorithms, it does
not provide a formal language for specifying new RCAs and PCAs [8]. Without
such a specification language, automated processing is impossible, and each new
RCA and PCA must be hard–coded in policy evaluation engines, which makes
the wide deployment of RCAs and PCAs infeasible in practice. Thus formal
language theoretic–based approaches to XACML are justifiable by all means.

In this paper, we used a variant of networks of parallel multiset string pro-
cessors to present an approach to XACML–based access control management in
distributed networks. In our model, the multiset string processors form teams,
send and receive information through filters. The teams are organized into a
hierarchical structure. Our approach allows the participants to specify their own
local policies as well as to adopt the policies of any organizational units as needed.
Our model supports autonomy of the individual components while guarantees
the satisfaction of team–level policies. We established the connection between
the growth of the number of strings at the components of networks of parallel
multiset string processors employing the Deny–overrides and Permit–overrides
RCAs and the growth functions of developmental systems.

In our future work, we plan to refine the model presented herein and con-
struct new computational models, examine how our tools can be employed to
give an appropriate description of additional features in XACML, study proper-
ties such as computational and descriptional complexity, patterns and dynam-
ics of behaviour, the dependence of these properties on the structure, the orga-
nization and the functioning of the system. We aim at investigating other norma-
tiveRCAsandPCAs [1] (e.g.Ordered–deny–overrides,Ordered–permit–overrides,
First–applicable and Only–one–applicable) of XACML and extending the PCAs
proposed in [8] (e.g.Weak–consensus, Strong–consensus,Weak–majority, Strong–
majority, Super–majority–permit). Besides the combining algorithms, we plan to
deal with policy integration algorithms [9] (to define a common policy for resources
jointly owned by multiple parties, i.e. to compose different or even conflicting ac-
cess control policies into a coherent policy), as well. To this end, wewill incorporate
different measures into our model to describe the different types of rule and policy
similarity (convergence, divergence, restriction, extension and shuffle).

Though XACML is a powerful access control specification language, it still
lacks some features to fully support regulations mandating how private informa-
tion collected by organizations can be used or disclosed [3]. The missing features
include event history and obligations. Privacy rules may restrict a request for
disclosure or usage of protected information based on some past events. These
rules may impose obligations associated with deadlines on the network entities
in conjunction with the enforcement of an authorization decision. In our model,
we can keep track of the event history in the network on the basis of the con-
figuration transitions, however, the study of how changing the enforcement of
an authorization decision influences the behaviour of the system, is a subject of
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further research. We will also examine how the incorporation of time constraints
into the model impacts on its properties.

Our future research targets applications that would benefit early disease de-
tection, medical treatment (e.g. controlled drug delivery) and at–a–distance di-
agnosis (personalized health care) built upon new technologies (P2P, SOA, web
services and cloud computing) in distributed computing. In these systems, bi-
ological hardware offers an alternative to silicon hardware and ensures energy–
efficiency. Furthermore, the secure access control to life–critical data has to be
guaranteed. We will consider bio–inspired operations (e.g. operations used in the
existing models of DNA and cellular computing [2]) to describe access control
requirements. We anticipate that our approach will simplify the policy modifi-
cation process. The architectures using bio–inspired operations give us insights
into the limits of these operations. We will explore the limits of these operations.
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Abstract. Early Machine Translation was devised as a war technology originat-
ing in war sciences, and was intended to provide mass translations for the stra-
tegic purposes of the Cold war. Linguistics, which did not belong to war 
sciences, did not play any role at the beginning of Machine Translation. How-
ever, thanks to machine translation, the language sciences have been engaged in 
the process of the second mathematization of language which can be called the 
computational mathematization of language. In my paper, I propose to examine 
how linguistics integrated such a technology and entered into the second ma-
thematization by doing a comparative study of two European traditions, the 
British tradition and the Russian tradition. 

Keywords: Machine Translation, mathematization of language, universal lan-
guages, history. 

1 Introduction 

Early experiments in Machine Translation started in 1949 and marked the beginning 
of the application of computers to the language sciences. Machine translation, al-
though one of the most difficult task in Natural Language Processing, was the first 
non digital application of computers. It was devised as a war technology, originating 
in the war sciences [7] which were characterized by the intertwining of engineering 
with fundamental research prevailing during the 2nd World War. They were devised 
at MIT (Massachussetts Institute of Technology), which was the very place of the 
new scientifico-technological configuration. In that context, Machine Translation was 
intended to provide mass translations for the strategic purposes of the Cold war. 

It should be said that linguistics, which did not belong to the war sciences, did not 
play any role at the beginning of Machine Translation. However, thanks to Machine 
Translation, the language sciences have been engaged in the second mathematization 
of language which can be called the computational mathematization of language. The 
question remains to know how linguistics integrated such a technology which dealt 
with language, especially with the translation of one language into another, without 
using its methods and theoretical insights. We assume that, in order to perform that 
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integration, the language sciences rested on specific intellectual and cultural traditions 
of knowledge. Thus, the computerization of the language sciences took various forms 
according to the traditions of the fourth main protagonists of the Cold War, the USA, 
the URSS, Great Britain and France, especially according to their respective anchor-
age in the first mathematization of language of the 1930s [11]. 

In my paper, I will first focuse on early Machine Translation. Second, I will ad-
dress two European traditions comparatively, the British tradition and the Russian 
tradition, and examine how they dealt with the integration of machine translation into 
the language sciences. I will examine which theoretical and methodological transfers 
had been necessary to carry out such an integration. 

2 Early Machine Translation 

Early Machine translation was mainly anchored in “the first mathematization of lan-
guage” of the 1930s which was characterized by the rise of formalization promoted 
by the School of Vienna as a common objective for every science. Thanks to comput-
er programming, the interaction of syntax, logical mathematics, formal languages and 
algorithms became dynamic and formed the second mathematization of language. 
This framework was the common background of the two main personalities who 
promoted Machine Translation, Warren Weaver (1894-1978) and Yehoshua Bar-
Hillel (1915-1975). In addition to those personalities, three reports guided the setting 
of Machine Translation on the institutional level: 

(i) 1949 [17] : Translation, Warren Weaver. 
(ii) 1960 [6]: The present Status of Automatic Translation of Languages, Yehoshua 

Bar-Hillel. 
(iii) 1966 [9] : Language and Machines. Computers in translation and linguistics, 

Automatic Language Processing Advisory Committee (ALPAC) of the National Re-
search Council. 
 

Warren Weaver (1894–1978), trained as a mathematician and the co-author of 
Shannon and Weaver’s Mathematical Theory of Communication [16] was a most 
influential personality. Before and after the second World War, he was the director of 
The Natural Sciences Division of the Rockefeller foundation, and spent many years 
promoting scientific programs in the USA and Europe. He was an active player of the 
War Sciences1. He managed the D2 “fire control” section at MIT during the war, and 
was one of the founder of the Rand Corporation after the war. Machine translation 
was thus conceived as a war technology, suitably adapted to Culture (Cold) War ob-
jectives: the intertwining of engineering with fundamental research; the belief that 
science is able to resolve every problem; huge financial and human means provided 
mainly by the State; the development of Operational Research, inspired by the mili-
tary, advocating to deal with one unique and measurable objective; finally a strong 
tendency to the automation of every human task. 
                                                           
1  Mathematics, logics, physics, electronics, neurosciences, cryptography and computering 

belonged to war sciences. 
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Weaver’s Memorandum “Translation”, he sent to a hundred prominent personali-
ties in 1949, boosted the creation of centers for Machine Translation, mainly in the 
universities. The objective was to produce mass translations of scientific texts from 
Russian into English. His view was that the translations thus produced did not need to 
be perfect. Actually tolerance for errors was permitted provided translated texts be 
understandable by scientists. In order to provide such rough translations, only “ma-
chine linguistics” was necessary, in other words grammatical rules which did not need 
to meet linguists’ descriptive requirements were sufficient. In that view, Machine 
Translation was a flawed technology which denied any legitimacy to linguistics. 

Yehoshua Bar-Hillel (1915-1975), an Israeli philosopher of language and one of 
Carnap’s followers, was the second key player of the second mathematization of lan-
guage. In 1951 he was appointed as full-time researcher in Machine Translation at 
MIT, where he developed an operational syntax for Machine Translation, “A Quasi-
arithmetical notation for syntactic description” [5] based on Harris’s distributional 
method and Ajdukiewicz’s logical notation. In 1958, he was appointed by the Nation-
al Science Foundation to assess the Machine Translation groups at work in the USA 
and elsewhere in the world. His critical report, published in 1960, rested on several 
arguments, one of them concerned more specifically the feasability of Machine Trans-
lation. For him, « Fully Automatic High Quality Translation” as a goal cannot be 
achieved. The only reasonable objective was machine-aided translation or human-
aided translation. Actually, the results were very poor given the amounts of human 
and financial means invested in Machine Translation. They did not meet the expecta-
tions in the public mainly encouraged by the press. In the face of such a situation a 
second assessment report was commissioned by the NSF which was published in 
1966. The report Language and Machines. Computers in translation and linguistics 
written by the Automatic Language Processing Advisory Committee (ALPAC) was 
published in 1966 and led to the end of Machine Translation research in the USA, as 
well as elsewhere in the world2. In so doing, the ALPAC report promoted Computa-
tional Linguistics to replace Machine Translation which has become totally infamous. 
Its disgrace remained till the end of the 1970s. Computational Linguistics was essen-
tially based on Bar-Hillel’s early views, the primacy of logical syntax and formal 
languages, and was dominated by syntactic parsing. For years, those views have been 
at the core of natural language processing. 

3 Machine Translation and the Language Sciences. Horizon of 
Retrospection and Horizon of Projection 

Linguistics did not belong to the War sciences, and Machine Translation experimen-
ters ignored linguists’ works completely. In other words, neither Machine Translation 
nor its successor, Computational Linguistics, belonged to the “horizon of retrospec-
tion” of linguists or could be part of their “horizon of projection” [3,4]. 

                                                           
2 Except in France, where Machine Translation, supported by the Centre National de la Re-

cherche Scientifique, did not need to be a profitable business.  
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« Because it is a social (and not a biological) phenomenon, scientific activity 
cannot be carried out without the transmission of knowledge, without the insti-
tutionalization of training and of knowledge accumulation (in libraries for in-
stance), and without individual memory. The scientific text comprises two 
types of expressions essentially. The first ones refer to the sole domain of phe-
nomena which can be dealt with concepts belonging to common knowledge… 
the second ones refer to other works, that is earlier works by definition. Let us 
call « horizon of retrospection », this set of references … the structure of the 
horizon of retrospection is involved in the momentary scientific produc-
tion…Conversely, the structure of scientific systems determines the structure 
of horizons of retrospection » [3 p.29]. 

 
« Because it is limited, the act of knowing has a temporal thickness by defi-

nition, a horizon of retrospection, as well as a horizon of projection. Know-
ledge (or the instances that implement it) does not destroy its past, as is often 
mistakenly believed. It organizes it, elects it, forgets it, imagines it or idealizes 
it, in the same way that it anticipates the future by dreaming it when building 
it. Without memory and without projects, there simply is no knowledge » [4 
p.49]. 

 
It could be said that the second mathematization of language, that is the interaction 

between formal languages, syntax, algorithms and programming, set up a new horizon 
of retrospection for the language sciences. The question remains to know how the 
language sciences integrated the new horizon of restrospection, in other words how 
the computerization of the language sciences was carried out.  

4 Early Machine Translation in Britain and in the Soviet Union 

In the last section of my paper, I will examine how British and Russian Machine 
Translation experimenters dealt with the new horizons imposed on them with the 
second mathematization of language. Most surprisingly, early machine translation 
experiments in Britain and in the USSR showed similarities. Both began research on 
Machine Translation in the wake of the first demonstration on (IBM) computer which 
took place in New York in 1954. While working completely separately, both the Brit-
ish and the Russians, while most of the time3 ignoring completely their respective 
work, developed Machine Translation methods based on semantic intermediary lan-
guages, anchored in their linguistic and philosophic specific traditions.  

Contrary to the Americans, who privileged syntactic analysis, the British and the 
Russians, for different reasons, gave priority to meaning and the transfer of meaning 
in the translation process. However they were not equally familiar with the first ma-
thematization. Thanks to Russell’s, Turing’s and Wittgenstein’s works, the British 
were well aware of the first mathematization. Besides, they had their own school of 

                                                           
3 Some Russians knew the British works but it was one-sided and the British never mentioned 

the Russian ones.  
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Information Theory led by Colin Cherry, Dennis Gabor and David McKay. The situa-
tion was quite different in the former Soviet Union. The researchers in Machine 
Translation had only access to the first mathematization of language through the de-
bates on cybernetics and the complex process of the reception of Wiener’s work [14]. 

The most significative point is that Semantic intermediary languages were, in both 
cases, anchored in strong traditions of international languages and universal language 
schemes. Thus, the earliest Machine Translation projects were based on Esperanto, 
showing the importance of universal languages in researchers’s horizon of retrospec-
tion. This was the case of the machine translation project designed by the Soviet  
engineer Smirnov-Trojanskij (1894-1950) in 1931 – thus before the apparition of 
computer machines [2]. This was also the case for the project called ‘Pidgin English’ 
proposed by Andrew D. Booth (1918-2009) and Richard H. Richens (1919-1984). 
Pidgin English was a mixture of the source language, the target language4 and inflec-
tional endings borrowed from Esperanto [15].  

British early machine translation was essentially carried out at the Cambridge Lan-
guage Research Unit (CLRU). Led by a Wittgensteinian philosopher, Margaret Mas-
terman (1910–1986), the center was not, contrary to the Americans, under political 
and economic pressure to provide swift and cost-effective results. The group consist-
ing of linguists (Martin Kay and M.A.K. Halliday), mathematicians and computer 
scientists (A.F. Parker-Rhodes, Yorick Wilks and Karen Spark-Jones) … and botan-
ists (Richard Richens) did not comprise any engineer.  

As a method for machine translation, they designed a semantically-based interme-
diary language at the crossroads of two trends of the British tradition : XVIIth century 
universal language schemes and contextual theories of meaning of the 1930s [10]. It 
should be noted that universal languages schemes and intermediary language projects 
were both anchored in a strong social demand for interlingual means of communica-
tion respectively in the XVIIth century and in the XXth century. 

Three projects were developed : Nude, Nude II, and templates. Richens’Nude was 
inspired by Dalgarno’s Ars Signorum (1661) and Wilkins’ Essay towards a real cha-
racter and a philosophical language (1668). As one of Wilkins’ descendants was the 
botanist Linné, it may be assumed that Richens was well aware of this hierarchical 
type of classification. The intermediary language was a semantic network composed 
of fifty ‘naked ideas’ where the source language structural characteristics had been 
deleted. Composed of semantic primitives and syntactic operators, the semantic net-
work was what remained invariant during the translation process. As such it was used 
for machine translation. Margaret Masterman designed a second project which was 
based on three distinct sources of inspiration : Nude, Roget’s thesaurus and Wittgens-
tein’s conception of meaning by usage [12]. The simultaneous recourse to universal 
languages and to meaning by usage, which might seem contradictory at first sight, 
was justified by Masterman’s use of a thesaurus. As Wittgenstein’s pupil, Margaret 
Masterman could not develop Nude primitives as universal concepts. She agreed with 
Wittgenstein that the logic unit for studying language should not be word or proposi-
tion but word context, in particular word use. Because of its structure, based on the 

                                                           
4 In their paper, Richens and Booth gave examples of twenty languages translated into English. 
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classification of words organized by a set of contexts, Masterman chose the  thesau-
rus organization to create a new intermediary language, “ a thesauric interlingua ”. 

As a third project, Yorick Wilks (b. 1939) adapted Nude in order to resolve semantic 
ambiguities. In the line of Wittgenstein, Firth and Masterman, he envisaged solving 
semantic ambiguities by implementing context of usage. Wilks modified Nude in order 
to resolve semantic ambiguities in texts. Contrary to the  common view of Machine 
Translation experimenters, according to whom ambiguities should be defined with ref-
erence to dictionaries, Wilks chose to define them within a text. He was then led to 
develop what he called “ preferential semantics ”: for a given text, a specific meaning is 
chosen preferably over another, so that no definitive choice should be made. He devised 
a system of semantic representation of texts based on templates [18]. 

The Soviets undertook research on machine translation in 1954, just after Stalin’s 
death and once cybernetics was back in favor. Contrary to the USA, Machine Transla-
tion did not play a strategic part in the Soviet conception of the Cold War [2], so that 
computers were reserved for secret services and military objectives. Machine Transla-
tion, at least during the first years, remained confined to speculative research projects. 
The researchers making Machine Translation belonged to domains such as mathemat-
ics and linguistics which were considered ideologically harmless. In the USSR, the 
aim was less to translate English into Russian than Russian into the other languages of 
the Union. Finally, translation was not the only objective : Machine Translation was 
considered the first step of a more ambitious and general program aiming at informa-
tion retrieval from texts written in various languages. 

Russian researchers conceived translation as the transfer of meaning from one lan-
guage to another. That view led them to give more importance to synthesis than to 
analysis and to work out a semantic approach based on intermediary languages. Two 
main projects were devised. Nikolaj Dmitrivic Andreev (1920-1997), who led the 
translation laboratory at the University of Leningrad, conceived a model of interme-
diary language based on the idea of unequivocal information language promoted by 
1930s language planners such as Drezen. His method rested on the statistical treat-
ment of linguistic invariants and on a conception of languages as social facts [1]. 

Igor Mel’čuk (b.1932) chose a method based on a semantic intermediary language 
when facing languages with completely different word order systems, such as Hunga-
rian, where pure syntactic treatment was impossible. The intermediary language he 
developed was based on a protolanguage, originated from the Russian tradition of 
comparative linguistics, more specifically from Vjačeslav Ivanov’s protolanguage 
scheme [8]. Such an intermediary language was neither totally an artificial language, 
nor a natural language. It was based on properties extracted from natural languages. 
For this type of Machine Translation process, synthesis should be preferred over 
analysis. The reason was that synthesis needs only linguistic knowledge while analy-
sis often requires disambiguisation which cannot be solved without the recourse to 
extra-linguistic context. 

5 Conclusion 

As a conclusion, let us say that, for the British as for the Russians, translation from 
one language into another involved cultural issues and long-term views. What was 
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imported in the translation process were models stemming from universal language 
schemes, philosophy of language, comparative linguistics and linguistic planning 
pertaining to their respective intellectual and cultural traditions. More than transfer-
ring concepts and methods between theories of meaning and language sciences, com-
putering acted as a catalyst. Semantic models were implemented in computer systems 
in order to achieve practical tasks. Finally, the computerization of translation gave 
way to new models for the language sciences which can be regarded as the horizon of 
projection of Machine Translation projects. The CLRU works gave way to semantic 
networks and artificial intelligence projects, raising debates on non referential seman-
tics. Mel’čuk’s intermediary language led to his meaning-text project still at work in 
Natural Language Processing. 
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Abstract. We prove that there is, in every direction in Euclidean space,
a line that misses every computably random point. We also prove that
there exist, in every direction in Euclidean space, arbitrarily long line
segments missing every double exponential time random point.

Keywords: randomness, algorithmic geometric measure theory, com-
putable analysis.

1 Introduction

One objective of the theory of computing is to investigate the fine-scale geometry
of algorithmic information in Euclidean space. Recent work along these lines has
included algorithmic classifications of points lying on computable curves and
arcs [6, 14, 22, 25, 31] and in more exotic sets [8, 18, 21].

This paper concerns a simple, fundamental question: Can the direction of a
line in Euclidean space force the line to meet at least one random point? That is,
can the set of Martin-Löf random points, which is everywhere dense and contains
almost every point in Euclidean space, be avoided by lines in every direction?
For example, it is reasonable to conjecture that every line of random slope in
R2 contains a random point. We show here that this conjecture is false, and in
fact that—regardless of slope—every line can be translated so that it contains
no Martin-Löf random point. Moreover, the line can miss the larger class of all
computably random points.

Our solution of this problem builds on a very old—and ongoing—line of re-
search in geometric measure theory. In 1917 Fujiwara and Kakeya [13,16] posed
the question of the minimum area of a plane set in which a unit segment can be
continuously reversed without leaving the set, a Kakeya needle set. This ques-
tion was resolved in 1928 by Besicovitch [2]: such a set can have arbitrarily small
measure. The work made use of a construction by Besicovitch from 1919 [1] (but
not widely circulated until its republication in 1928 [3]) of a plane set of area
0 containing a unit line segment in every direction, a Kakeya set. This set was
constructed using a clever iterated process of partitioning and translating the
pieces of an equilateral triangle.
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In 1964 Besicovitch used a duality principle to construct a plane set with area
0 that contains a line in every direction, a Besicovitch set [5]. Falconer [10, 11]
used an alternative duality principle to give a somewhat simpler construction
of a Besicovitch set. This latter set B, which is the point-line dual of a simply
defined “fractal dust,” is described in detail in Section 4. Our main result is
achieved by showing that B has computable measure 0, as does its Cartesian
product with Rn, for every n ∈ N. We also sketch an alternative proof suggested
to us by Turetsky (personal communication) and an anonymous reviewer.

Our main result leads us to conjecture that there is, in every direction in
Euclidean space, a line that misses not only every computably random point,
but every point that is feasibly random (i.e., polynomial time random, as defined
in Section 2). We are unable to prove this conjecture at this time, but in Section 5
we prove a weaker result along these lines. Specifically, we show that there exist,
in every direction in the Euclidean plane, arbitrarily long line segments missing
every point that is double exponential time random (a randomness condition
defined in Section 2). Our proof of this fact uses Besicovitch’s above-mentioned
1919 construction of a Kakeya set, together with later refinements of this proof
by Perron [24], Schoenberg [28], and Falconer [11].

More recent work on the “sizes” of Besicovitch sets and Kakeya sets has
focused on their dimensions. Davies showed that every Kakeya set in R2 has
Hausdorff dimension 2 [7], and the famous Kakeya conjecture states that Kakeya
sets in Rn have Hausdorff dimension n for all n ≥ 2. For more on this history,
consult [11, 17].

The remainder of the paper is organized as follows. Section 2 contains pre-
liminary information regarding computable and time-bounded measure and ran-
domness in Rn. In Section 3, we present a class of martingales for betting on
open sets. In Section 4, we describe Falconer’s Besicovitch set B and prove the
main theorem in R2. In Section 5 we briefly describe a Kakeya set K and use it
to prove our result on segments missing every double exponential time random
point in R2. Section 6 extends our two theorems to Rn (n ≥ 2). Section 7 men-
tions open problems. All proofs are omitted from this proceedings version of the
paper.

2 Computable and Time-Bounded Randomness in Rn

We now discuss the elements of computable measure and randomness in Rn. For
each r ∈ N and each u = (u1, ..., un) ∈ Zn, let

Qr (u) =
[
u1 · 2−r, (u1 + 1) · 2−r

)
× ...×

[
un · 2−r, (un + 1) · 2−r

)
be the r-dyadic cube at u. Note that each Qr (u) is “half-open, half-closed” in
such a way that, for each r ∈ N, the family

Qr =
{
Qr (u)

∣∣ u ∈ {0, ..., 2r − 1}n
}
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is a partition of the unit cube Q0 (0) = [0, 1)n. The family

Q =

∞⋃
r=0

Qr

is the set of all dyadic cubes in [0, 1)
n
.

A martingale on [0, 1)n is a function d : Q → [0,∞) satisfying

d (Qr (u)) = 2−n
∑

a∈{0,1}n

d (Qr+1 (2u+ a)) (1)

for all Qr (u) ∈ Q. Intuitively, a martingale d is a strategy for placing successive
bets on the location of a point x ∈ [0, 1)n. After r bets have been placed, the
bettor’s capital is

d(r) (x) = d (Qr (u)) ,

where u us the unique element of {0, ..., 2r − 1}n such that x ∈ Qr (u). The
bettor’s next bet is on which of the 2n immediate subcubes Qr+1 (2u+ a) of
Qr (u) has x as an element. The condition (1) says that the bettor’s expected
capital after this bet is exactly the bettor’s capital before the bet, i.e., the payoffs
are fair. A martingale d succeeds at a point x ∈ [0, 1)n if

lim sup
r→∞

d(r) (x) = ∞ .

A well known theorem of Ville [29], restated in the present setting, says that a
set E ⊆ [0, 1)

n
has Lebesgue measure 0 if and only if there is a martingale d

that succeeds at every point x ∈ E. It follows easily by the countable additivity
and translation invariance of Lebesgue measure that a set E ⊆ Rn has Lebesgue
measure 0 if and only if there is a martingale d that succeeds at every point
x ∈ E#, where

E# = [0, 1)n ∩
⋃

t∈Zn

(E + t) . (2)

Let
J =

{
(r,u) ∈ N× Zn

∣∣ u ∈ {0, ..., 2r − 1}n
}

.

Then a martingale d : Q → [0,∞) is computable if there is a computable function

d̂ : N× J → Q ∩ [0,∞) such that, for all (s, r,u) ∈ N× J ,∣∣∣d̂ (s, r,u)− d (Qr (u))
∣∣∣ ≤ 2−s . (3)

A set E ⊆ Rn is defined to have computable measure 0 if there is a computable
martingale d that succeeds at every point x ∈ E#, where E# is defined as in
(2). A point x ∈ Rn is computably random if it is not an element of any set of
computable measure 0, i.e., if there is no computable martingale that succeeds
at x. Computable randomness was introduced by Schnorr [26, 27]. It is well
known [9, 23] that every random point in Rn (i.e., every Martin-Löf random
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point in Rn) is computably random and that the converse does not hold. In
particular, then, almost every point in Rn is computably random.

Resource-bounded measure, a complexity-theoretic generalization of Lebesgue
measure that induces measure on complexity classes, has been used to define
complexity-theoretic notions of randomness [20]. Adapting these notions to Eu-
clidean space, a martingale d : Q → [0,∞) is p-computable (respectively, ee-

computable) if there is a function d̂ : N× J → Q ∩ [0,∞) that satisfies 3 and is

computable in (s+ r)O(1) time (respectively, in 22
O(s+r)

time). A point x ∈ Rn is
p-random (or polynomial time random, or feasibly random) if no p-computable
martingale succeeds at x [20]. A point x ∈ Rn is ee-random (or double expo-
nential time random) if no ee-computable martingale succeeds at x [15]. It is
routine to show that every computably random point is ee-random, that every
ee-random point is p-random, and that the converses of these statements are
false.

3 Betting on Open Sets

In this section we describe a class of martingales that are used in the proof of
the main theorem in Section 4. These martingales are also likely to be useful in
future investigations.

For any set G ⊆ [0, 1)
n
with m (G) > 0, define a martingale dG : Q → [0,∞)

recursively as follows.

(i) dG (Q0 (0)) = 1.
(ii) For all r ≥ 0, u ∈ {0, ..., 2r − 1}n, and a ∈ {0, 1}n,

dG (Qr+1 (2u+ a)) =

{
0 if dG (Qr (u)) = 0

2ndG (Qr (u))
m(G∩Qr+1(2u+a))

m(G∩Qr(u))
otherwise .

That is, for each cube Q ∈ Qr, the values of the martingale on the immediate
subcubes of Q are proportional to the measures of the subcubes’ intersections
with G.

Theorem 1. For every nonempty set G that is open as a subset of the subspace

[0, 1)
n
of Rn and every x ∈ G, d

(r)
G (x) = 1/m (G) for all sufficiently large r.

When G is open, we call dG the open set martingale for G.

4 Betting on a Besicovitch Set

This section reviews Falconer’s construction of the Besicovitch set B mentioned
in the introduction and proves that the set B in fact has computable measure 0.
Hence B contains a line in every direction in R2, and each of these lines misses
every computably random point in R2.
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For each m, b ∈ R, let Lm,b ⊆ R2 be the line with slope m and y-intercept b.
Falconer defined the line set operator L : P

(
R2
)
→ P

(
R2
)
by

L (F ) =
⋃

{Lm,b | (m, b) ∈ F}

for all F ⊆ R2. We call L (F ) the line set of F . It is easy to verify that the
operator L is monotone and maps compact sets to closed sets.

We are interested in the line set of a particular self-similar fractal F , which
we now define. Consider the alphabet Σ = {0, 1, 2, 3}. For each i ∈ Σ define the
contraction Si : R2 → R2 by

Si (x, y) =
1

4
((x, y) + (i, ai)) ,

where a0 = 2, a1 = 0, a2 = 3, and a3 = 1. For each w ∈ Σ∗ define the set
F (w) ⊆ R2 by the recursion

F (λ) = [0, 1]2

F (iw) = Si (F (w)) ,

for all i ∈ Σ and w ∈ Σ∗. For each k ∈ N let

Fk =
⋃{

F (w) | w ∈ Σk
}

.

The sets F0 and F1, along with their line sets, are depicted in Figure 1. We
are interested in the set

F =

∞⋂
k=0

Fk .

This set F is an uncountable, totally disconnected set, informal called a “frac-
tal dust.” More formally it is the attractor of the iterated function system
(S0, S1, S2, S3), i.e., it is a self-similar fractal.

Let RefY : R2 → R2 and Rotθ : R2 → R2 denote reflection across the y-axis
and rotation about the origin by the angle θ, respectively. The set

B = L (F ) ∪ Rotπ
2
(L (F )) ∪ RefY

(
L (F ) ∪Rotπ

2
(L (F ))

)
(4)

is the Besicovitch set that we use for our main theorem.

Observation 2. The set B contains a line in every direction in R2.

Using the duality principle and some nontrivial fractal geometry, Falconer
also proved the following.

Lemma 3. ( [10, 11]) The set B has Lebesgue measure 0.

It is not obvious whether or how the proof of Lemma 3 can be effectivized.
Nevertheless we prove the following.
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Fig. 1. F0 and F1, along with their line sets. F0 and L (F0) are shaded light gray; F1

and L (F1) are dark gray.

Theorem 4. (main theorem, in R2) The set B has computable measure 0. Hence
there is, in every direction in R2, a line that misses every computably random
point.

In remarks on an early draft of this paper, Turetsky and an anonymous re-
viewer pointed out an alternative proof of Theorem 4. The key fact, proved by
Wang [9, 30], is that every computably random point x is Kurtz random (also
called weakly random [18]), meaning that x is not an element of any computably
closed (i.e., Π0

1) set of measure 0. Furthermore, the above-mentioned fact that
the operator L maps compact sets to closed sets can be extended to prove that
L maps bounded Π0

1 sets to Π0
1 sets. Finally, it is routine to verify that the frac-

tal dust F is a bounded Π0
1 set. These things and Lemma 3 imply that L(F )

contains no computably random point, whence Theorem 4 holds by Observation
2. This elegant proof is simpler than our martingale construction, even when
Wang’s proof is included. However, we believe that the direct martingale con-
struction may help illuminate the path to results on time-bounded randomness,
so we retain the martingale proof in this paper.

5 Betting in Doubly Exponential Time

In light of Theorem 4 it is natural to ask whether there is, in every direction
in R2, a line that misses not only every computably random point, but every
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feasibly random point. We do not know the answer to this question at the time
of this writing, but we prove a weaker result of this type in this section.

As noted in the introduction, Besicovitch constructed aKakeya set, a Lebesgue
measure 0 plane set containing a unit line segment in every direction, in 1919.
Our objective here is to specify a Kakeya set K and prove that it has ee-measure
0 (a condition defined in Section 2). Our specification and proof take advantage of
Besicovitch’s original work, together with subsequent refinements by Perron [24],
Schoenberg [28], and Falconer [11].

We first describe Perron trees, the building blocks of our set K. Let τ =
:(U, V,W ) be a triangle oh height h with its base UV on the x-axis. We re-
gard this triangle as including its interior. Note that τ contains a line segment
of length h in every direction between the directions of UW and V W . Given a
positive integer k, cut τ into 2k nonoverlapping triangles as indicated in Figure
2(a). (Throughout this discussion, sets in R2 are nonoverlapping if their interiors
are disjoint.) Besicovitch showed that these 2k smaller triangles can be slid hori-
zontally along the x-axis in such a way that their union, due to high overlap, has
very small area. Perron simplified Besicovitch’s overlap scheme to that depicted
in Figure 2(b). Note that, notwithstanding its small area, the set in Figure 2(b)
still contains a line segment in every direction between the directions of UW and
V W . Schoenberg coined the term Perron trees for sets of the type depicted in
Figure 2(b) and gave a simpler, recursive “sprouting construction” of the Perron
tree Pk(τ) as a union of 2k+1−1 nonoverlapping triangles as in Figure 2(c). This
is useful for our purpose here because it simplifies the algorithm for betting on
Perron trees.

(a) (b) (c)

Fig. 2. (a) a triangle cut into eight pieces; (b) a Perron tree constructed by sliding those
pieces together; (c) the same Perron tree via Schoenberg’s sprouting construction

It is also possible to cut τ into smaller triangles τ1, ..., τm in the manner of Figure
2(a), then divide each τi further to construct the Perron trees Pk(τ1), ..., Pk(τm).
Since the area of a Perron tree Pk(T ) is proportional to the area of T , the area
of the union

⋃
i Pk(τi) is equal to the area of Pk(τ). Furthermore, for a triangle

T with base length b, the distance from point in Pk(T ) to T is less than b, so the
initial subdivision of τ into triangles with smaller bases makes the construction
more local. This enables us to construct a nested sequence of open sets Gk, where
each Gk contains a union of many Perron trees, such that for every k ∈ N,
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(a) Gk contains a unit segment in every direction θ ∈ [π/4, 3π/4].
(b) The area of Gk is at most 2−k.
(c) Gk+1 ⊆ Gk.

(d) Gk is a union of 22
O(k)

fully specified nonoverlapping triangles.

Let
F =

⋂
k∈N

Gk

and
K0 =

⋃
c∈N

cF ,

where cF =
{
cx
∣∣ x ∈ F

}
. Then

K = K0 ∪ Rotπ/4(K0)

is the Kakeya set that we use for the following.

Theorem 5. The set K has ee-measure 0. Hence there exist, in every direction
in R2, arbitrarily long line segments that miss every ee-random point.

6 Higher Dimensions

For every n ∈ N, the set B × Rn contains a line in every direction in Rn+2,
and Fubini’s theorem implies that this set has Lebesgue measure 0 [12]. In this
section we show that B × Rn also has computable measure 0.

For any set E ⊆ Rn and y ∈ Rm, for 1 ≤ m < n, define

Ey =
{
(x1, ..., xn−m) ∈ Rn−m | (x1, ..., xn−m, y1, ..., ym) ∈ E

}
.

The following computable Fubini theorem may be known, but we do not know
a reference at the time of this writing.

Theorem 6. Let E ∈ Rn. If there is a computable martingale d on [0, 1)n−m

such that the set

NE (d) =
{
y ∈ [0, 1)

m | ∃ x ∈ E#
y such that d does not succeed at x

}
has computable measure 0, then E has computable measure 0.

Corollary 7. For every computable measure 0 set E and n ∈ N, the set E×Rn

has computable measure 0.

Theorem 8. (main theorem, in Rn) For every n ≥ 2 there is, in every direction
in Rn, a line that misses every computably random point.

It is routine to prove double exponential time versions of Theorem 6 and
Corollary 7, and hence to extend Theorem 5 to Rn in a similar fashion.
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7 Open Problems

As noted in the introduction, we conjecture that there is a line in every direction
missing every feasibly random point in Euclidean space. Proving or disproving
this conjecture may require a significant advance beyond current understanding
of the algorithmic geometric measure theory of Besicovitch and Kakeya sets. In
the meantime, more modest goals may be achieved. Can Theorem 5 be improved
to singly exponential time, or to lines instead of segments?

Besicovitch’s duality idea for constructing the set B came soon after, and was
perhaps prompted by, the Mathematical Association of America’s production of
a film in which he explained his 1919 solution of the Kakeya needle problem.
(The article [4] is based on this film.) Does a copy of this film still exist?

Acknowledgment. We thank Dan Turetsky and an anonymous reviewer for
pointing out the alternate proof of Theorem 4 and for a useful correction.
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Natural Descriptions and Anthropic Bias:

Extant Problems In Solomonoff Induction

Simon McGregor

University of Sussex

Abstract. According to some advocates, algorithmic information the-
ory (a branch of theoretical computer science) promises to underwrite
an ultimate formal theory of comprehensible patterns. The arguments
have an intuitive appeal when expressed in terms of well-known com-
puter languages, and can both inspire and explain practical results in
machine learning. The theory of Solomonoff induction, which combines
algorithmic information theory and Bayesian inference, has been sug-
gested as a solution to the philosophical problem of induction and an
idealisation of the scientific method; an extension of it forms part of a
proposed mathematical theory of intelligence.

Unfortunately, the philosophical import of algorithmic information
theory is undermined by its dependence on an arbitrary choice of lan-
guage (reference machine). While the choice of reference machine is ir-
relevant in the infinite limit, I observe that considered over finite sets
there are infinitely many reference machines which give arbitrary eval-
uations of simplicity. I also explain why, regardless of how much data
has been observed, infinitely many reference machines will always give
every conceivable “best guess” answer to finite questions in Solomonoff
induction.

Finally, I argue that algorithmic information theory is philosophically
incomplete because it pretends to a “God’s-eye view” and ignores rel-
evant information in the structure of the observer. This issue has been
raised before, but given relatively little focus. The question of anthropic
bias - how to take the existence of the reasoner into account when rea-
soning - is still a subject of major disagreement in Bayesian inference,
and is likely to be so in algorithmic information theory as well.

Keywords: algorithmic information, Solomonoff induction, anthropic
bias, anthropic principle, natural Turing machines, Kolmogorov com-
plexity.

1 Introduction

In some sense, algorithmic information theory - the study of descriptions which
are computer-interpretable - attempts to formalise a theory of everything we
can possibly talk about. Such an ambitious remit means that, if well-founded, it
has wide-reaching ramifications. An obvious example of such ramifications is the
framework of Solomonoff induction [14], which has attracted recent discussion
regarding its philosophical implications [18,23,24].
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One of the outstanding problems in the theory is the identification of formally
“natural” Turing machines [11], which applies to other theoretical applications
of algorithmic information theory [6,15,5]. This paper argues that, contra claims
in [18], the relevance of Solomonoff induction is severely limited without some
theory of a “natural” descriptive language. In particular, all finite “best” predic-
tions made by Solomonoff induction are arbitrarily dependent on the choice of
reference machine, with infinitely many machines giving every possible answer.
This applies at every scale, including the “inconceivably large” scale. Moreover,
there are infinitely many machines which give meaningless answers for algorith-
mic entropy when applied to every element of a set of arbitrary finite size.

A further foundational question is raised regarding Solomonoff induction, from
a radically situated/embodied perspective on intelligence: philosophically speak-
ing, we do not have a “God’s-eye view” but rather a particular subjective one.
Solomonoff induction asks what rules produced the observed data; we should
also ask what rules produced the process of observation itself, since data implies
an observer. In other words, algorithmic induction needs to address anthropic
considerations [1]. (The anthropic principle in cosmology is the observation that
the fact of our own existence constrains the possible form of the Universe.)

I conclude that a well-known foundational problem for Solomonoff induction
is more serious than has been previously argued, and that it is philosophically
incomplete due to the omission of anthropic considerations even if the language
dependence problem can be solved. However, these problems are not necessarily
insuperable within the formal domain; Solomonoff induction remains a suitable
framework for discussing the mathematical structure of rationality.

2 Weaknesses of Algorithmic Entropy

Kolmogorov-Chaitin complexity, also known as algorithmic entropy, essentially
quantifies the degree of randomness of a string X by the length L of the shortest
computer program which outputs X .

Randomness is intuitively taken to be the opposite of pattern or structure,
so algorithmic entropy can also be used to measure the degree of structure in a
string, and the shortest program then provides something like a semantic model
of what the structure is. This intuition provides a very powerful and general
approach to conceptualising structure.

From a purely theoretical standpoint, there are at least three well-known ways
in which KC complexity falls short of a principled optimal method for measuring
randomness in empirically observed structures.

1. It is non-computable (although it is “lower semi-computable” - approximable
from below)

2. It is dependent on the choice of “reference machine” - effectively, the language
programs are written in - although only up to an additive constant.

3. If the object under study is not intrinsically a binary string, it must be
encoded as one. The choice of encoding will also affect the KC complexity
attributed to the object.



Natural Descriptions and Anthropic Bias 295

There is also a fourth problem, which is mentioned in [19] but not explored
further:

4. It does not address anthropic considerations, i.e. the question of what infor-
mation the observer’s existence and relationship to the data provides. Intu-
itively, since it does not take relevant information into account, it cannot be
optimal.

This paper focuses on problems arising from the second and fourth issues:
language dependence and anthropic bias1.

It is worth commenting that all invariance results which depend on an infinite
limit (such as the asymptotic equivalence of reference machines for KC complex-
ity, or the washing out of priors in Bayesian inference) cannot be used to justify
arbitrary parameter decisions when applied to problems involving finite sets of
strings.

The language dependence of algorithmic entropy arises because there is cur-
rently no formulation of a “natural” or canonical reference machine. Appeals to
machine minimality or simplicity are circular; in this way, the lack of a foun-
dation resembles the “symbol grounding problem” in artificial intelligence. One
way to resolve the symbol grounding problem in AI is via a situated/embodied
approach [3,8], in which the intelligent agent is assumed to be part of (and in
interactive contact with) the world it reasons about. I discuss the implications
of this insight for Solomonoff induction, where it translates into a variant of the
anthropic principle [4]. In particular, like [19], I propose that Solomonoff induc-
tion should assume that a single computational process is responsible for the
observer, the data, and the interaction between the two which constitutes the
observation.

Note: this paper provides an intuitive treatment of the concept of KC complex-
ity, and blurs a few technical distinctions (for instance, the difference between
Turing machines, prefix Turing machines and monotone Turing machines). A
comprehensive formal treatment is given in [14].

2.1 Kolmogorov’s Invariance Theorem

The theoretical class of reference machines considered for the purposes of KC
complexity are those machines which are universal. If a machine P is universal,
this effectively means that P can be programmed to run any modern computer
language (say, Java) and that a simulation of P can be written in any standard
computer language (given infinite memory).

Discussions of algorithmic complexity typically invoke the invariance theorem,
which states that the Kolmogorov-Chaitin complexity of a string X evaluated
under reference machines P and Q differ by no more than a constant CPQ which
depends on P and Q but not on X . However, this constant may be arbitrarily
large: hence, larger than the largest P -complexity of any string in a finite set.

1 The non-computability issue is well-known and will not be discussed here. The paper
will also omit a discussion of problems associated with the third issue (encoding),
although they clearly relate to both language dependence and anthropic bias.
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2.2 Lookup Machines

If we consider a finite set of strings S, it is even worse than that: given a machine
P , we can construct a machine Q such that the complexity KQ(s) of every string
in S (according to Q) is effectively unrelated to its complexity under P . We can
do this by constructing a pathological Turing-complete machine I will call a
“lookup machine”. A lookup machine contains an arbitrarily large (but finite)
lookup table, and runs as follows:

– If its input is prefixed with a zero, it looks up the remaining input in the
lookup table.
• If an entry is found, it outputs that entry and terminates.
• Otherwise, it outputs the empty string and terminates.

– If its input is prefixed with n ones, where n is the longest complexity we
want to assign to any string in S, it runs the remaining input on P .

– Otherwise (i.e. its input is prefixed with at least one, but less than n, ones)
it outputs the empty string and terminates.

Clearly, subject to the constraint that we can only assign a complexity of k
to at most 2k−1 strings, we are free to assign arbitrary Q-complexities to each
member of S.

This machine Q has a compiler under P , since it can be specified using stan-
dard computational operations, and has a compiler for P (the input consisting
of n ones), so it is computationally equivalent in power to P . Hence, according
to the most abstract current notion of algorithmic entropy, Q is every bit as
sensible a choice of reference machine as any other. Moreover, it is trivial to
construct infinitely many of these machines since n is arbitrary.

Intuitively, the problem is that for any finite string or set of strings, imposing
the constraint that the strings must have been generated by a computable process
gives us nothing at all, since all finite structures can be thus generated.

3 Solomonoff Induction

The framework of Solomonoff induction, perhaps best formally described in [14]
and given differing recent interpretative accounts in [18,23,24], addresses a very
general problem: upon observing a series of things, what should we expect to
happen next?

The first step, in line with algorithmic information theory more generally, is
to encode the observations as a binary string. The problem then becomes, after
observing the first n digits of a binary string, what will the next digits be?

According to Solomonoff induction, we should assume that the string was
generated by a computer program, determine which of all possible infinitely
many computer programs would have produced the digits we have observed so
far (there will still be infinitely many such programs), consider the next dig-
its they all produce, and take a sort of vote amongst these possibilities giving
exponentially more weight to the shorter programs’ output.
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The “method” of Solomonoff induction corresponds to Bayesian inference
(typically claimed to be the optimal reasoning process under uncertainty [18,12])
based on a so-called Universal Prior. It has several attractive formal proper-
ties: for instance, it “majorises” all computable priors ([14]) and minimises both
worst-case error and worst-case retractions in formal learning theory ([13]).

In the next section, we will discuss the implications of language dependence
on Solomonoff induction.

3.1 Reasoning on Finite Data

In both algorithmic information theory and Bayesian inference, there are for-
mal results corresponding to the intuition that ideal observers can begin with
differences of opinion which will disappear with enough data.

In algorithmic information theory, KC complexity is invariant to the choice of
reference machine (providing the reference machines are computationally equiva-
lent) up to an additive constant. For sufficiently long (finite) strings, this constant
C becomes an insignificant proportion of the string’s overall complexity.

In Bayesian inference, two different priors (assuming that the KL divergence
in each direction is finite) will converge on the same posterior given enough
relevant data.

These elegant results unfortunately have a gaping hole when applied in prac-
tice. There is no guarantee that differences of opinion will even be reduced after
observing a finite amount of data. (See [12], Chapter 5, for an example where
Bayesian posteriors diverge after a finite amount of data.) The implications for
Solomonoff induction are serious.

In [18], the authors claim that

“It is worth noting that this problem of arbitrary predictions for short
sequences x is largely mitigated if we use the method of prefixing x with
prior knowledge y. The more prior knowledge y that is encoded, the
more effective this method becomes. Taken to the extreme we could let
y represent all prior (scientific) knowledge, which is possibly all relevant
knowledge. This means that for any x the string yx will be long and
therefore prediction will be mostly unaffected by the choice of universal
reference machine.”

This quote is reproduced in [23] but is unfortunately misleading. The choice
of reference machine entirely determines the next prediction, regardless of the
length of any finite data string.

Let’s consider two different reference machines. The first, which we will call
Jekyll, is some monotone machine based on the elegant combinator language
described in [14]. The second, Hyde, is a monstrous lookup machine which assigns
an arbitrary complexity to every data string we could possibly hope to observe
in our physical Universe.

What happens when we apply Solomonoff induction using Jekyll and Hyde to
perform inference based on a large (but finite) body of scientific observations?
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Well, leaving formal problems of computability aside (the Universal Prior is
uncomputable), it seems at least plausible following the arguments in [18] that,
given a large but not physically impossible amount of data, inference based
on Jekyll would make predictions which accord reasonably well with current
scientific theories - and the shortest program on Jekyll to produce the data
would in fact resemble the theories (or a better, more unified/accurate theory).
By contrast, inference based on Hyde would make predictions which resemble
neither scientific theory nor common sense. What’s more, we can plausibly expect
our species to be extinct before it ever gathers enough data to overcome Hyde’s
pathology.

This thought experiment raises a tantalising question. Given appropriate ini-
tial assumptions (i.e. a “sensible” reference machine), it looks like Solomonoff
induction attacks the thorny philosophical problem of induction in an elegant
and precise way. Indeed, computable approximations to Kolmogorov complexity
(using “reasonable” models) have already been shown to yield practically useful
results [7,20]. But given inappropriate initial assumptions, algorithmic entropy
falls flat on its face - and our theory gives us no way yet to distinguish between
appropriate and inappropriate assumptions.

Arbitrary Best Prediction Theorem. Let’s say that a reference machine
U “predicts y given x” if Solomonoff induction (under U) on a string x yields
another string y as the maximum posterior estimate of the next k characters
(where k is the length of y). Then, regardless of observed data x, each possible
(finite) string y is predicted by infinitely many reference machines.

This is easy to prove, since given x and y we can construct infinitely many
machines which produce a string prefixed with xy when run on any program of
sufficiently short length. Under Solomonoff induction, the short programs’ output
will dominate the shape of the posterior, resulting in the desired maximum
posterior prediction.

4 “Minimal” Reference Machines

A fairly intuitive approach to determining a choice of individual reference ma-
chine is to suppose that we should prefer reference machines which are “simpler”
than others. For instance, researchers have tried to identify minimal Turing ma-
chines, minimal combinator machines, minimal Turing-equivalent cellular au-
tomata, and so on.

But in exactly what formal sense are these machines minimal? It seems that
they are minimal in the language which humans commonly use to describe those
machines. This may be a particular formulation of CAs (or Turing machines), or
it may even be something as fundamental as ZF set theory. But that language
itself is computationally arbitrary. Just as there are infinitely many computation-
ally equivalent reference machines, there are infinitely many symbolic languages
which are equivalent in their power to describe reference machines. Why use ZF
set theory? Why not Von Neumann set theory? Or some equivalent axiomatic
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system which assigns totally different complexities to reference machines, which
looks hideously complex from the viewpoint of a ZF set theory (and vice versa)?

Looking for the least complex reference machine is not the answer: it sim-
ply shifts the problem from finding a non-arbitrary machine, to finding a non-
arbitrary descriptive foundational language for mathematics. The problem of
finding a non-arbitrary base structure among infinitely many ones of identical
power still remains.

5 Anthropic Bias

It is tempting to suppose that languages such as Java are more “minimal” than
pathological lookup machines because they are simpler to implement mechani-
cally; that is to say, to formalise the principle of Occam’s razor for our physical
universe, we should use reference machines which are easier to realise physically.
Indeed, while I was able to describe how in principle to construct the monstrous
Hyde machine, I would be unable to give a complete description of it (because
it is based on a random lookup table larger than the Universe); this contrasts
starkly with the relatively agreeable Jekyll machine.

Unfortunately, this intuition does not help on its own to resolve the philosoph-
ical problem. If algorithmic information theory offers a solution to the philosoph-
ical conundrum of scientific induction, the solution should extend “all the way
down”. In particular, the inductive empirical reasoning we use to judge which
reference machines will prove easier to construct (or operate) in the real world
will ultimately need to be justified by reference to Occam’s razor. Again, the
problem generates an infinite regress.

One possible solution would be to introduce what [1] has called an anthropic
bias. Solomonoff induction implies a so-called “God’s-eye view”, where the rea-
soner pretends to have no subjective perspective or relationship with the data. In
practice, of course, the only way we can observe any data at all is by interacting
with an external world, and in order for those observations to be well-structured
we will presumably need to assume that we ourselves, and our interactions with
the external world, are also structured. The correct application of anthropic
considerations in Bayesian reasoning is disputed, although it is relevant to such
questions as “How likely are we to be the last humans on Earth?” [4]. (A detailed
discussion of the problems involved is given in [1].)

In intuitive terms, we can interpret the formal framework of Solomonoff in-
duction as based on the assumption that our observable data is generated by a
computational process. Considerations from both rational materialist and phe-
nomenological perspectives would suggest an additional, reflexive, assumption:
not only is the data generated by a computational process, but the observer is
also also computationally generated - and a common underlying process pro-
duces the data, the observer and their interaction. Effectively, if there are laws
of physics, then they describe us as well as the data.

This intuition echoes a perspective on (artificial and natural) intelligence
which stresses the importance of situated and embodied cognition [3]: the ob-
servation that cognition occurs in agents which are part of - and affect - the
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very world they reason about. It should be mentioned that [10] considers the
interactive aspect of situated/embodied cognition, although it does not consider
the anthropic question.

[19] does raise the application of the anthropic principle to algorithmic induc-
tion, where he calculates that the probability of finding yourself in a particular
conceivable Universe x, given the additional information that you exist, is equal
to the a priori probability of x multiplied by a normalising constant (providing
that Universe x implies your existence). His treatment of anthropic consider-
ations dismisses it by concluding that “the probability of finding yourself in
universe x [given the fact of your own existence] is essentially determined by
P (x), the prior probability of x”.

However, this statement is true only for Universes which imply our existence!
For Universes which do not, the posterior probability is zero. This raises the
serious problem of specifically how to formalise our existence in a way which
allows us to say whether or not a particular Universe would contain us or not.

The argument does not apply if human cognition cannot be represented com-
putationally. Some researchers (e.g. [17,2,22]) have claimed to prove that human
cognition is non-computable, but computability probably remains the consensus
in the Artificial Intelligence community. At the very least, it seems reasonable
for rational materialists to make the assumption that when we observe data,
we ourselves are products of the same sort of process which ultimately gener-
ates the data, whether or not that process is computable. Hence, an objection
to anthropic Solomonoff induction on the grounds of human non-computability
should arguably also be grounds for rejecting Solomonoff induction in toto, and
the theoretical use of Kolmogorov complexity more generally by analogy.

6 Reasons for Hope

It may be possible to find a formally justified “natural” base structure. Reference
machines do have individual properties which do not “wash out” in the infinite
limit, and hence distinguish them from one another in a non-arbitrary way. Two
examples are time complexity (as used in [21]) and the typical behaviours of
random programs (as considered, unsuccessfully, in [16]).

These properties might suffice to describe a single unique “natural” machine,
or more likely a measure of reasonableness which describes a unique “natural”
distribution over machines. An alternative approach would be to identify some
way of asking the relevant question which is genuinely invariant to the choice of
reference machine.

The formalised mathematical treatment of our subjective selfhood is a partic-
ularly interesting problem, and will likely require insights from cognitive science
and philosophy as well as physics, mathematics and computer science. Some
viewpoints within a non-algorithmic context are provided by e.g. [25] and [9],
who consider formalised versions of embodied inference.

While the task is daunting, it seems that it could in principle be possible.
An adequate account should also provide insights into the encoding problem:
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how to translate between the phenomenological and digital realms. If we are
particularly fortunate, perhaps the anthropic principle might in the end provide
a justification for using reference machines which strike us as more intuitively
reasonable, although there is (at present) no obvious formal reason why that
should be.

7 Conclusion

Algorithmic information theory describes the structure of binary strings in terms
of a computer-interpretable descriptive language. With a few assumptions, this
formalism provides an exceptionally powerful abstract way to talk about simplic-
ity, information, and systematicity: concepts which underlie some of our most
abstract notions in philosophy and cognitive science. The theory comes supplied
with mathematically proven results and demonstrable practical applications.

The problem is that any real-world application or interpretation of the theory
relies utterly on the choice of an arbitrary descriptive language, and the most
obvious intuitive justifications for the decision (simplicity, practical utility) turn
out to be circular. I have sketched a proof of finite language dependence in
the Solomonoff induction case, which should hold straightforwardly for other
applications of KC complexity.

As well as the need for a “natural” descriptive language, I have argued that we
need to close the gap between subject and object by considering an anthropic
principle: if there is to be an “algorithmic theory of everything”, it needs to
account for the process of embodied observation, including the observer as well
as the data.

These arguments should not be seen as suggesting that algorithmic informa-
tion theory has nothing to contribute to cognitive science or philosophy; on the
contrary, the precision of its formalism allows difficult questions to be highlighted
more clearly.

Acknowledgments. Many thanks to Nathaniel Virgo, Daniel Polani, Lionel
Barnett, and Chris Thornton for helpful discussions on earlier drafts of this
paper.

References

1. Bostrom, N.: Anthropic bias: Observation selection effects in science and philoso-
phy. Psychology Press (2002)

2. Bringsjord, S., Zenzen, M.J.: Superminds: People Harness Hypercomputation, and
More. Kluwer Academic Publishers, Norwell (2003)

3. Brooks, R.A.: Cambrian intelligence: the early history of the new AI. The MIT
Press (1999)

4. Carter, B., McCrea, W.H.: The Anthropic Principle and its Implications for Biolog-
ical Evolution [and Discussion]. Philosophical Transactions of the Royal Society of
London. Series A, Mathematical and Physical Sciences 310(1512), 347–363 (1983),
http://dx.doi.org/10.1098/rsta.1983.0096

http://dx.doi.org/10.1098/rsta.1983.0096


302 S. McGregor
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Abstract. Champarnaud and Ziadi, and Khorsi et al. show how to
compute the equation automaton of word regular expression E via the
k-C-Continuations. Kuske and Meinecke extend the computation of the
equation automaton to a regular tree expression E over a ranked alpha-
bet Σ and produce a O(R · |E |2) time and space complexity algorithm,
where R is the maximal rank of a symbol occurring in Σ and |E | is the
size of E. In this paper, we give a full description of the algorithm based
on the acyclic minimization of Revuz. Our algorithm, which is performed
in an O(|Q| · |E |) time and space complexity, where |Q| is the number of
states of the produced automaton, is more efficient than the one obtained
by Kuske and Meinecke.

1 Introduction

Regular expressions, which are finite representatives of potentially infinite lan-
guages, are widely used in various application areas such as XML Schema Lan-
guages [10], logic and verification, etc. The concept of word regular expressions
has been extended to tree regular expressions. Similarly to word expressions, one
can convert them into finite recognizers, the tree automata.

The study of the different ways of conversion of regular expressions into au-
tomata and vice versa is a very active field. There exists a lot of techniques
to transform regular expressions (resp. regular tree expressions) into finite au-
tomata [2,6,7,14] (resp. into finite tree automata [8,9]). As far as tree automata
are concerned, computation algorithms are extensions of word cases. In [9], the
computation of the position tree automaton from a regular tree expression has
been achieved by extending the classical notions of Glushkov functions defined
in [6], leading to the computation of an automaton which number of states is
linear w.r.t. the number of occurrences of symbols but which number of transi-
tions can be exponential. In the same paper, it is proved that this automaton
can be reduced into a quadratic size recognizer.

On the other side, Kuske and Meinecke have extended the notion of word
partial derivatives [1] into tree partial derivatives. They also present how to
compute them extending from words to trees [8] the k-C-Continuation algorithm
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by Champarnaud and Ziadi [3]. They obtain an algorithm with O(R · |E | · |E |)
space and time complexity where R is the maximal rank of a symbol occurring
in the finite ranked alphabet Σ and |E | is the size of the regular expression.

In this paper, we show how to extend a notion of k-C-Continuation in order
to compute from a regular tree expression its equation tree automaton with an
O(|E |+ |Q| · |E |) time and space complexity where |Q| is the number of its states.
This constitutes an improvement in comparison with Kuske and Meinecke algo-
rithm [8]. The paper is organized as follows: Section 2 outlines finite tree automata
over ranked trees, regular tree expressions, and linearized regular tree expressions
which allows the set of positions to be defined. Next, in Section 3 the notions of
derivation and partial derivative of regular expression and set of regular expres-
sions are introduced. Thus the definitions of equation tree automaton and k-C-
Continuation tree automaton associatedwith the regular expressionE is obtained.
Afterwards, in Section 4 we present our algorithm which builds the equation tree
automaton with an O(|E |+ |Q| · |E |) time and space complexity.

2 Preliminaries

Let (Σ, ar) be a ranked alphabet, where Σ is a finite set and ar represents the rank
of Σ which is a mapping from Σ into N. The set of symbols of rank n is denoted
by Σn. The elements of rank 0 are called constants. A tree t over Σ is inductively
defined as follows: t = a, t = f(t1, . . . , tk) where a is any symbol in Σ0, k is any
integer satisfying k ≥ 1, f is any symbol in Σk and t1, . . . , tk are any k trees over
Σ. We denote by TΣ the set of trees over Σ. A tree language is a subset of TΣ. Let
Σ≥1 = Σ\Σ0 denote the set of non-constant symbols of the ranked alphabet Σ. A
Finite Tree Automaton (FTA) [5,8] A is a tuple (Q,Σ,QT , Δ) where Q is a finite
set of states, QT ⊂ Q is the set of final states and Δ ⊂

⋃
n≥0(Q×Σn×Qn) is the

set of transition rules. This set is equivalent to the function Δ from Qn×Σn → 2Q

defined by (q, f, q1, . . . , qn) ∈ Δ ⇔ q ∈ Δ(q1, . . . , qn, f). The domain of this
function can be extended to (2Q)n × Σn → 2Q as follows: Δ(Q1, . . . , Qn, f) =⋃

(q1,...,qn)∈Q1×···×Qn
Δ(q1, . . . , qn, f). Finally, we denote by Δ∗ the function from

TΣ → 2Q defined for any tree in TΣ as follows:

Δ∗(t) =
{

Δ(a) if t = a, a ∈ Σ0

Δ(f,Δ∗(t1), . . . , Δ∗(tn)) if t = f(t1, . . . , tn), f ∈ Σn, t1, . . . , tn ∈ TΣ

A tree is accepted by A if and only if Δ∗(t) ∩QT �= ∅. The language recognized
by L(A) is the set of trees accepted by A i.e. L(A) = {t ∈ TΣ | Δ∗(t)∩QT �= ∅}.
A state q ∈ Q is coaccessible if q ∈ QT or if ∃Q′ = {q1, . . . , qn} ⊂ Q, f ∈ Σn,
q′ a coaccessible state in Q such that q ∈ Q′ and q′ ∈ Δ(f, q1, . . . , qn). The
coaccessible part of the automaton A is the tree automatonA′ = (Q′, Σ,Δ′, QT

′)
where Q′ = {q ∈ Q | q is coaccessible} and Δ′ = {(q, f, q1, . . . , qn) ∈ Δ |
{q, q1, . . . , qn} ⊂ Q′}. It is easy to show that L(A) = L(A′).

Let ∼ be an equivalence relation over Q. We denote by [q] the equivalence
class of any state q in Q. The quotient of A w.r.t. ∼ is the tree automaton
A/∼ = (Q/∼, Σ,QT /∼, Δ/∼) where: Q/∼ = {[q] | q ∈ Q}, QT /∼ = {[q] | q ∈
QT }, Δ/∼ = {([q], f, [q1], . . . , [qn]) | (q, f, q1, . . . , qn) ∈ Δ}.
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For any integer n ≥ 0, for any n languages L1, . . . , Ln ⊂ TΣ, and for any
symbol f ∈ Σn, f(L1, . . . , Ln) is the tree language {f(t1, . . . , tn) | ti ∈ Li}. The
tree substitution of a constant c in Σ by a language L ⊂ TΣ in a tree t ∈ TΣ ,
denoted by t{c ← L}, is the language inductively defined by L if t = c; {d} if
t = d where d ∈ Σ0 \ {c}; f(t1{c ← L}, . . . , tn{c ← L}) if t = f(t1, . . . , tn) with
f ∈ Σn and t1, . . . , tn any n trees over Σ. Let c be a symbol in Σ0. The c-product
L1 ·cL2 of two languages L1, L2 ⊂ TΣ is defined by L1 ·cL2 =

⋃
t∈L1

{t{c ← L2}}.
The iterated c-product is inductively defined for L ⊂ TΣ by: L0c = {c} and
L(n+1)c = Lnc ∪ L ·c Lnc . The c-closure of L is defined by L∗c =

⋃
n≥0 Lnc .

A regular expression over a ranked alphabet Σ is inductively defined by E ∈
Σ0, E = f(E1, · · · ,En), E = (E1 +E2), E = (E1 ·c E2), E = (E1

∗c), where
c ∈ Σ0, n ∈ N, f ∈ Σn and E1,E2, . . . ,En are any n regular expressions over
Σ. Parenthesis can be omitted when there is no ambiguity. We write E1 = E2 if
E1 and E2 graphically coincide. We denote by RegExp (Σ) the set of all regular
expressions over Σ. Every regular expression E can be seen as a tree over the
ranked alphabet Σ ∪ {+, ·c, ∗c} with c ∈ Σ0 where + and ·c can be seen as a
symbol of rank 2 and ∗c has rank 1. This tree is the syntax-tree TE of E. The
alphabetical width ||E || of E is the number of occurrences of symbols of Σ in E.
The size |E | of E is the size of its syntax tree TE. The language �E� denoted by
E is inductively defined as �c� = {c}, �f(E1,E2, · · · ,En)� = f(�E1�, . . . , �En�),
�E1 +E2� = �E1�∪ �E2�, �E1 ·c E2� = �E1� ·c �E2�, �E1

∗c� = �E1�∗c where n ∈ N,
E1,E2, . . . ,En are any n regular expressions, f ∈ Σn and c ∈ Σ0. It is well known
that a tree language is accepted by some tree automaton if and only if it can be
denoted by a regular expression [5,8]. A regular expression E defined over Σ is
linear if and only if every symbol of Σ≥1 appears at most once in E. Note that
any constant symbol may occur more than once. Let E be a regular expression

over Σ. The linearized regular expression E
E
in E of a regular expression E is

obtained from E by marking differently all symbols of a rank greater than or
equal to 1 (symbols of Σ≥1). The set of marked symbols with symbols of Σ0 is
the ranked alphabet containing symbols called positions. We denote this set by

PosE (E). When there is no ambiguity we denote by F the subexpression F
E
with

F is a subexpression of E. The mapping h is defined from PosE (E) to Σ with
h(PosE (E)m) ⊂ Σm for every m ∈ N. It associates with a marked symbol fj ∈
PosE (E)≥1 the symbol f ∈ Σ≥1 and for a symbol c ∈ Σ0 the symbol h(c) = c.
We can extend the mapping h naturally to RegExp (PosE (E)) → RegExp (Σ)
by h(a) = a, h(E1 +E2) = h(E1)+h(E2), h(E1 ·c E2) = h(E1) ·c h(E2), h(E∗c

1 ) =
h(E1)

∗c , h(fj(E1, . . . ,En)) = f(h(E1), . . . , h(En)), with n ∈ N, a ∈ Σ0, f ∈ Σn,
fj ∈ PosE (E)n such that h(fj) = f and E1, . . . ,En any regular expressions over
PosE (E).

3 Tree Automata Computations

In this section, we recall how to compute from a regular expression E a tree
automaton that accepts �E�. We first recall the computation of the equation
automaton AE of E, then we define the k-c-continuation automaton CE .
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3.1 The Equation Tree Automaton

In [8], Kuske and Meinecke extend the notion of word partial derivatives [1]
to tree partial derivatives in order to compute from a regular expression E a
tree automaton recognizing �E�. Due to the notion of ranked alphabet, partial
derivatives are no longer sets of expressions, but sets of tuples of expressions.

Let N = (E1, . . . ,En) be a tuple of regular expressions, F be some regular
expression and c ∈ Σ0. Then N ·c F is the tuple (E1 ·c F, . . . ,En ·c F). For S a
set of tuples of regular expressions, S ·c F is the set S ·c F = {N ·c F | N ∈ S}.
Finally, SET(N ) = {E1, · · · ,Em} and SET(S) =

⋃
N∈S SET(N ).

In the following of this paper, E and F are two regular expressions over a
ranked alphabet Σ, and f and g are symbols in Σ≥1.

The set f−1(E) of tuples of regular expressions is defined [8] as follows:

f−1(g(E1, · · · ,En)) =

{
{(E1, · · · ,En)} if f = g
∅ otherwise

f−1(F+G) = f−1(F) ∪ f−1(G)

f−1(F ·cG) =

{
f−1(F) ·c G if c /∈ �F�
f−1(F) ·c G ∪ f−1(G) otherwise

f−1(F∗c) = f−1(F) ·c F∗c

The function f−1 is extended to any set Σ of regular expressions by f−1(S) =⋃
E∈S f−1(E). The partial derivative of E w.r.t. a word w ∈ Σ∗

≥1, denoted by
∂w(E), is the set of regular expressions inductively defined by:

∂w(E) =

{
{E} if w = ε
SET(f−1(∂u(E))) if w = uf, f ∈ Σ≥1, u ∈ Σ∗

≥1

The partial derivation is extended to any subset U of Σ∗
≥1 as by ∂U (E) =⋃

w∈U ∂w(E). Note that ∂uf (E) = ∂f (∂u(E)) =
⋃

F∈∂u(E) ∂f (F).

Definition 1. Let E be a regular expression over a ranked alphabet Σ. The
Equation Automaton of E is the tree automaton AE = (Q,Σ,QT , Δ) defined by
Q = ∂Σ∗

≥1
(E), QT = {E}, and

Δ =

{
{(F, f,G1, . . . ,Gm) | F ∈ Q, f ∈ Σm,m ≥ 1, (G1, . . . ,Gm) ∈ f−1(F)}

∪ {(F, c) | c ∈ (�F� ∩Σ0)}

Theorem 1 ([8]). L(AE) = �E�.

3.2 The C-Continuation Tree Automaton

In [8], Kuske and Meinecke show how to efficiently compute the equation tree
automaton of a regular expression via an extension of Champarnaud and Ziadi’s
k-C-Continuation [3,4,7]. In this section, we show how to inductively compute
them. The main difference with [8] is that the k-c-continuations are here com-
puted using alternative formulae, and not using the partial derivation. As a
consequence, any symbol that appears in the expression E admits a non-empty
k-c-continuation (e.g. in [8], there is no continuation for g in E = a ·b g(c)).
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Definition 2. Let E be linear. Let k and m be two integers such that 1 ≤ k ≤ m.
Let f be in (ΣE ∩ Σm). The k-C-continuation Cfk(E) of f in E is the regular
expression defined by:

Cfk(g(E1, · · · ,Em)) =

{
Ek if f = g
Cfk(Ej) if f ∈ ΣEj

Cfk(F+G) =

{
Cfk(F) if f ∈ ΣF

Cfk(G) if f ∈ ΣG

Cfk(F ·cG) =

{
Cfk(F) ·c G if f ∈ ΣF

Cfk(G) otherwise

Cfk(F∗c) = Cfk(F) ·c F∗c

By convention, we set Cε1(E) = E.

Let us first show the relation between partial derivation and k-c-continuation.

Lemma 1. Let E be linear, n, m and k be three integers such that n,m ≥ 1,
1 ≤ k ≤ m, f ∈ Σn and g ∈ Σm ∪ {ε}. If f−1(Cgk (E)) �= ∅ then f−1(Cgk (E)) =
{(Cf1(E), . . . , Cfn(E))}.

Proposition 1. Let E be linear and f ∈ Σn with n ≥ 1. Let u be a word in
Σ≥1

∗. If f−1(∂u(E)) �= ∅ then f−1(∂u(E)) = {(Cf1(E), . . . , Cfn(E))}.

Definition 3. The automaton CE = (QC ,PosE (E), {Cε1(E)}, ΔC) is defined by

– QC = {Cfk
j
(E) | fj ∈ PosE (E)m, 1 ≤ k ≤ m} ∪ {Cε1(E)},

– ΔC =

{
{(Cx(E), gi,Cgi) | gi ∈ PosE (E)m,m ≥ 1,Cgi ∈ gi

−1(Cx(E))}
∪{(Cx(E), c) |, c ∈ �Cx(E)� ∩Σ0}

where for any symbol gi in PosE (E)m, Cgi = (Cg1
i
(E), . . . , Cgm

i
(E)).

The following lemma illustrates the link between CE and AE.

Lemma 2. The coaccessible part of CE is equal to AE.

Corollary 1. The automaton CE accepts �E�.
The C-Continuation tree automaton CE associated with E is obtained by re-

placing each transition (Cx(E), gi, Cg1
i
(E), . . . , Cgm

i
(E)) of the tree automaton

CE by (Cx(E), h(gi), Cg1
i
(E), . . . , Cgm

i
(E)).

Corollary 2. h(L(CE)) = L(CE) = �E�.
In what follows, for any two trees s and t, we denote by s 
 t the relation

”s is a subtree of t”. Let k be an integer. We denote by root(s) the root of any
tree s and by k-child(t), for a tree t = f(t1, . . . , tn), the kth child of f in t that
is root of tk if it exists.
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Let 1 ≤ k ≤ m be two integers and fj be a symbol in PosE (E)m. The sets
First(E) is the subset of PosE (E) defined by First(E) = {root(t) ∈ PosE (E) | t ∈
�E�}. The set Follow(E, fj, k) is the subset of PosE (E) defined by Follow(E, fj , k)
= {gi ∈ PosE (E) | ∃t ∈ �E�, ∃s 
 t, root(s) = fj, k-child(s) = gi}.

Proposition 2 ([9]). The computation of all the sets (Follow(E, fj, k)) for 1 ≤
k ≤ m and f ∈ PosE (E)m can be done in an O(|E |) time and space complexity.

Proposition 3. Let 1 ≤ k ≤ m and fj be a position in PosE (E)m. If Follow(E,
fj, k) �= ∅ then Follow(E, fj , k) = First(Cfk

j
(E)).

Proposition 4. Let 1 ≤ k ≤ m be two integers, fj be a symbol in PosE (E)m
and gi be a symbol in PosE (E). Then g−1

i (Cfk
j
(E)) �= ∅ ⇔ gi ∈ First(Cfk

j
(E)).

Lemma 3. Let 1 ≤ k ≤ m be two integers and fj be a position in PosE (E)m.
If Follow(E, fj , k) = ∅ then Cfk

j
(E) is not a coaccessible state in CE.

3.3 From k-C-Continuation Automaton to Equation Automaton

The equation automaton is a quotient of the C-Continuation one w.r.t. the equiv-
alence relation denoted by ∼e over the set of states of CE defined for any two
states q1 = Cfk

j
(E) and q2 = Cgp

i
(E) by q1 ∼e q2 ⇔ h(q1) = h(q2).

Proposition 5. The coaccessible part of the finite tree automaton CE	∼e is
isomorphic to the equation tree automaton AE.

4 Construction of the Equation Tree Automaton AE

In [8], the computation of the k-C-Continuations requires a preprocessing step
which is the identification of subexpression of E in O(|E |2) time and space
complexity. We propose an algorithm for the computation of the set of states
with an O(|E |) time and space complexity.

4.1 Computation of the Set of States QC	∼e

The main idea is to efficiently compute the quotient CE	∼e by converting the
syntax tree into a finite acyclic deterministic word automaton.

Let TE be the syntax tree associated with E. The set of nodes of TE is written
as Nodes(E). For a node ν in Nodes(E), sym(ν), father(ν), son(ν), right(ν) and
left(ν) denote respectively the symbol, the father, the son, the right son and
the left son of the node ν if they exist. We denote by Eν the subexpression
rooted at ν; In this case we write νE to denote the node associated to Eν . Let
γ : Nodes(E) ∪ {⊥} → Nodes(E) ∪ {⊥} be the function defined by:

γ(ν) =

⎧⎨⎩
father(ν) if sym(father(ν)) =∗c and ν �= νE
right(father(ν)) if sym(father(ν)) = ·c
⊥ otherwise
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where ⊥ is an artificial node such that γ(⊥) = ⊥. The ZPC-Structure is the
syntax tree equipped with γ(ν) links. We extend the relation 
 to the set of
nodes of TE: For two nodes μ and ν we write ν 
 μ ⇔ TEν 
 TEμ . We define the
set Γν(E) = {μ ∈ Nodes(E) | ν 
 μ ∧ γ(μ) �= ⊥} which is totally ordered by 
.

Proposition 6. Let E be linear, 1 ≤ k ≤ n be two integers and f be in ΣE∩Σn.
Then Cfk(E) = ((((Eν0 ·op(ν1) Eγ(ν1)) ·op(ν2)Eγ(ν2)) · · · ·op(νm)Eγ(νm)) where νf is
the node of TE labelled by f , ν0 is the k-child(νf ), Γνf (E) = {ν1, . . . , νm} and
for 1 ≤ i ≤ m, op(νi) = c such that sym(father(νi)) ∈ {·c, ∗c}.
Corollary 3. Let E be linear, f ∈ (ΣE)m and k ≤ m. Then |Cfk

j
(E)| ≤ |E |2.

Example 1. Let Σ be the ranked alphabet such that Σ0 = {a, b}, Σ1 = {h}
and Σ2 = {f}. Let E = (f(a, a) + f(a, a))∗a ·a h(b). Then E = (f1(a, a) +
f2(a, a))∗a ·a h3(b). The ZPC-Structure associated with E is represented in Fig-
ure 1 restricted to some γ links. As stated in Proposition 6, Cf1

1
(E) = ((a ·a

(f1(a, a) + f2(a, a))∗a) ·a h3(b)) = ((Eν0 ·a Eγν1
) ·a Eγν2

).

In order to identify the equivalent k-
C-Continuations, we can sort them in
lexicographic order. This can be done in
O(|E |3) time and space complexity using
Paige and Tarjan’s Algorithm [12]. This
is due to the fact that the size of k-
C-Continuations is in O(|E |2) (by Corol-
lary 3). This complexity has been improved
by using k-Pseudo-Continuations instead of
k-C-Continuations [3,7].

·a

∗a

+

f1

a a

f2

a a

h3

b
νf1

ν0

ν1

ν2 ν3

Fig. 1. ZPC-Structure of E

A k-Pseudo-Continuation lfk
j
(E) of fj in E is obtained from the k-C-Conti-

nuation Cfk
j
(E) by replacing some subexpression F of E by a symbol ψ(h(F))

such that for two subexpressions F and G of E: ψ(F) = ψ(G) ⇔ F = G.

Definition 4. Let H be a regular expression over Σ and ψ be a bijection that
associates to each subexpression of E a symbol in an alphabet Ψ . We define the
word ψ′(H) over the alphabet Ψ ∪ {·a | a ∈ Σ0} inductively as follows:

ψ′(H) =

⎧⎨⎩
ψ′(F) ·c ψ(G) if H = F ·cG and G a subexpression of E
ψ(H) if H �= F ·cG and H a subexpression of E
ε otherwise.

The function ψ′ is said to be an (E, Ψ)-encoding.

Definition 5. Let n and k be two integers such that 1 ≤ k ≤ n, fj be a sym-
bol in PosE (E) and ψ′ an (E, Ψ)-encoding for some alphabet Ψ . The k-Pseudo-
Continuation of fj in E, denoted by lfk

j
(E), is the word over Ψ ∪ {·a | a ∈ Σ0}

defined by lfk
j
(E) = ψ′(h(Cfk

j
(E))).
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In the following, we consider that the pseudo-continuations of E are defined
over Ψ a finite subset of N, bounded by the number of subexpressions of E.

Proposition 7. The two following propositions hold:

1. |lfk
j
(E)| is at most linear w.r.t. |E |,

2.
∑

fj∈PosE (E)n,1≤k≤n |ψ′(Ek-child(νfj ))| is at most linear w.r.t. |E |.

Proposition 8. Let fj ∈ PosE (E)n, gi ∈ PosE (E)m, k ≤ n and p ≤ m be two
integers. Then h(Cfk

j
(E)) = h(Cgp

i
(E)) ⇔ lfk

j
(E) = lgp

i
(E).

FromProposition 8we candeduce that the k-C-Continuations identification can
be achieved by considering the k-Pseudo-Continuations. In the following we show
that this identification step (computation of∼e) can be done without the compu-
tation of the k-Pseudo-Continuations and that it amounts to the minimization of
a word acyclic deterministic automaton. Before seeing how the identification of k-
Pseudo-Continuations lfk

j
(E) is performed, we prove that the computation of the

function ψ can be done in a linear time in the size of E.
Let us consider the syntax tree TE associated with E. This syntax tree contains

all the subexpressions of E. Each node ν in TE corresponds to the subexpression
Eν of E. The equivalence relation ∼ over the nodes of the tree TE is defined by
ν1 ∼ ν2 ⇔ Eν1 = Eν2 . We show that the computation of the equivalence rela-
tion ∼ amounts to the minimization of the word acyclic deterministic automaton
AT

E
= (Q,ΣA, {νE}, {νT}, δ), where νE is the node associated to the root of E,

Q = Nodes(E) ∪ {νT } ∪ {⊥} with νT ,⊥ /∈ Nodes(E), ΣA = Σ0 ∪ {g+, d+} ∪
{∗a, g·a , d·a | a ∈ Σ0}∪{f1, . . . , fn | f ∈ Σn, n ≥ 1}, and δ is defined by δ(ν, ∗a) =
son(ν) if sym(ν) = ∗a, δ(ν, gsym(ν)) = left(ν) and δ(ν, dsym(ν)) = right(ν) if

sym(ν) ∈ {+, ·a, a ∈ Σ0}, δ(ν, sym(ν)) = νT if sym(ν) ∈ Σ0, delta(ν, fk) =
k-child(ν) if sym(ν) = f ∈ Σ≥1, and δ(ν, x) = ⊥ in all otherwise.

·a

∗a

+

f1

a a

f2

a a b

h3

νT

g·a

d·a∗a

h1

g+ d+

f1 f2 f1 f2

a a a a
b

Fig. 2. The automaton AT
E

·a

∗a

+

f1

a a

f2

a a b

h3

1 2

3 6

4

5

7

Fig. 3. The Equivalence Classes
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Lemma 4. E = F ⇔ L(ATE ) = L(ATF ).

According to Lemma 4, ν1 ∼ ν2 ⇔ L(ATEν1
) = L(ATEν2

), that is the equiva-

lence relation ∼ coincides with Myhill-Nerode equivalence [11] over the states of
the automaton AT

E
, that can be computed in O(|E |) time and space complexity

using Revuz Algorithm [13].

Lemma 5. The computation of ψ(F) for all subexpression F of E can be done
in O(|E |) time and space complexity.

Example 2. Let us consider the regular expression E = (f(a, a) + f(a, a))∗a ·a
h(b) of the Example 1. Applying Myhill-Nerode equivalence [11] to the states
of the automaton AT

E
(Figure 2) results in 7 equivalence classes labeled by

Ψ = {1, 2, . . . , 7}. For example ψ(f(a, a)) = 3 and ψ(E) = 7 (Figure 3). Finally,
lf1

1
(E) = 1 ·a 6 ·a 5.

Recall that the k-Pseudo-Continuation identification can be achieved in O(|E |2)
[4,8] using Paige and Tarjan’s sorting algorithm [12]. In what follows we show
that this step amounts to the minimization of the acyclic deterministic word
automaton BT

E
= (QB, ΣB, {νT }, {νE}, δB) defined with νT /∈ Nodes(E) and

F = {fk
j | 1 ≤ k ≤ m, fj ∈ PosE (E)m} by QB = (Nodes(E) \Σ0) ∪ F ∪ {νT ,⊥},

ΣB = {ψ(ν) | ν ∈ Nodes(E)∩QB}∪F∪ {·a | a ∈ Σ0}∪ {ε}, and δB is defined as
follows: δ(νT , f i

j) = f i
j for all f i

j ∈ F, δ(f i
j , ψ

′(h(Eνk))) = fj if νk is the kth child
of fj δ(ν, ·aψ(Eγ(ν))) = father(ν) if sym(father(ν)) in{·a, ∗a} and γ(ν) �= ⊥,
δ(ν, ε) = father(ν) and if γ(ν) = ⊥ and δ(ν, x) = ⊥ in all otherwise.

νT

f2
2

f2

f1
2

+

f1

f2
1f1

1

∗a

·a

h1
3

h3

f2
2

f1
2

f2
1

f1
1

h1
3

2
1111

ε ε

·a5

·a6

ε

Fig. 4. The automaton BT
E
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Proposition 9. L(BTE
) = {fk

j · lfk
j
(E) | fj ∈ PosE (E)m, k ≤ m}

Let fj and gi be two positions in PosE (E). As a direct consequence of Propo-
sition 9, Cfk

j
(E) ∼e Cgp

i
(E) if and only if the states fk

j and gpi of BTE
are

equivalent. We eliminate the ε-transitions from the automaton BT
E
. Since it has

no ε-transitions cycles, this elimination can be performed in a linear time in the
size of E. Hence, we obtain a more compacted but equivalent structure, which
we denote by ε-free(BT

E
).

νT

f2
2f1

2

+

f2
1f1

1

∗a

·a

h1
3

f2
2

f1
2

f2
1

f1
1

h1
3

2

1
11

1

·a5

·a6

Fig. 5. The automaton ε-free(BT
E
)

νT

{f1
1 , f

2
1 , f

1
2 , f

2
2 }

+

∗a

·a

{h1
3}

f1
1 , f

2
1 , f

1
2 , f

2
2

h1
3

1

·a5

·a6

2

Fig. 6. The Minimal Automaton of
ε-free(BT

E
)

The computation of the equivalence relation ∼e can be performed by the
computation of Myhill-Nerode relation [11] on the states of the automaton
ε-free(BT

E
). This automaton is deterministic and acyclic.

Theorem 2. The relation ∼e can be computed in O(|E |) time complexity.

Example 3. Let us consider the regular expression E = (f(a, a)+f(a, a))∗a ·ah(b)
of Example 1. The automaton BT

E
is represented by Figure 4. The automaton

ε-free(BT
E
) is represented in Figure 5. Applying Myhill-Nerode equivalence to

the automaton ε-free(BT
E
) results in the automaton in Figure 6. We deduce from

this automaton that Cf1
1
(E) ∼e Cf2

1
(E) ∼e Cf1

2
(E) ∼e Cf2

2
(E). Consequently the

set of states of CE	∼e is {[Cε1(E)], [Cf1
1
(E)], [Ch1

3
(E)]}.
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4.2 Computation of the Set of Transition Rules

Using Proposition 3 and Proposition4, we can show that the computation of the
set of transitions of the equation tree automaton is performed by computing
the function Follow. The computation of a transition rule using Proposition 3
requires a linear time, according to Proposition 2. Then for all transition rules
we get an O(|Q	∼e | × |E |) time and space complexity where Q is the set of
k−C-Continuations of E. The computation of the set of states QC	∼e make
possible the creation of non-coaccessible states. Removing these states requires
an O(|QC	∼e | · |E |) time complexity.

Theorem 3. The equation tree automaton AE of E can be computed in O(|Q| ·
|E |) time and space complexity with Q the set of states of AE .
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Abstract. Symmetry breaking involves coloring the elements of a struc-
ture so that the only automorphism which respects the coloring is the
identity. We investigate how much information we would need to be able
to compute a 2-coloring of a computable finite-branching tree under the
predecessor function which eliminates all automorphisms except the triv-
ial one; we also generalize to n-colorings for fixed n and for variable n.

1 Introduction

Symmetry has always been a crucial concept in mathematics. We think of sym-
metry as a geometric property, but in fact, symmetries appear in many other
branches of math as well. The symmetries of a mathematical structure are pre-
cisely its automorphisms – the bijections from the structure onto itself which
preserve the essential properties of the structure. Some structures have many
symmetries, and others have only one (the identity, or trivial automorphism).

Symmetry breaking involves coloring the elements of a structure in such a
way that the only automorphism which respects the coloring is the trivial one;
“breaking” symmetries can be thought of as “killing off” automorphisms.

Definition 11. An n-coloring of a structure is a function from the domain of
the structure into a set of size n. It is said to distinguish the structure if there
are no nontrivial automorphisms of the structure which respect the equivalence
relation defined by the coloring. If a distinguishing n-coloring exists, then the
structure is said to be n-distinguishable.

Definition 12. The distinguishing number of a structure is the smallest n ∈ ω
such that the structure has a distinguishing n-coloring. If it exists, then the
structure is finitely distinguishable.

� � � � � � � � � �� � � � � � �� � � � � � �� � � � � � �· · · · · ·
As an example, consider a graph that looks like the integers, as shown here.

As a graph, it has infinitely many automorphisms. But there is a way to color
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the elements of this graph with just two colors so that the only automorphism
which respects the coloring is the trivial one. A certain three elements are given
the “solid” color, as in the figure here, while all the rest are given the “striped”
color, and the only symmetry of this graph which respects this coloring is the
identity. So we would say that this graph has distinguishing number 2.

Symmetry breaking has been studied extensively by combinatorists, with very
recent results detailed in [1], [5], and [6]. In fact, the work found in the next
section on symmetry breaking from a computability-theoretic perspective was
inspired by a result from one of these articles:

Theorem 13 ([1], Theorem 3.1). The countable randomgraphhas distinguish-
ing number 2.

This is extremely surprising. The random graph has continuum-many auto-
morphisms, and is ultrahomogeneous: every finite partial automorphism extends
to an automorphism of the entire graph. (This says that, in a certain sense, its
automorphisms are dense, within the finite partial maps respecting its edge rela-
tion.) Moreover, while the result of Theorem 13 was not at all intended to be an
effectiveness result, the construction of the distinguishing coloring of the count-
able random graph in [1] is indeed effective in the edge relation of the graph. In
other words, a computable copy of the random graph has a computable distin-
guishing 2-coloring.

Knowing that this holds for the random graph inspired us to investigate the
same question for other structures: what kinds of computable structures have
computable distinguishing n-colorings? It was this question which led to our
study of effective symmetry breaking in computable finite-branching predeces-
sor trees, which form a natural first step in the subject, mainly because the
automorphisms of such structures are readily understood.

Definition 14. A tree is a partial order ≺ on a set T of nodes, with a least
element r (the root) under ≺, such that for every x ∈ T , the set {y ∈ T : y ≺ x}
is well-ordered by ≺. If every chain under ≺ has order type ≤ ω (that is, if the
tree has height ≤ ω), then each x ∈ T has an immediate predecessor under
≺. A predecessor tree is a tree of height ≤ ω in a language with equality and
one unary function P , the predecessor function, for which P (r) = r and P (x)
is the immediate predecessor of x whenever x �= r. If T has domain ω and P is
computable, we call T a computable predecessor tree; such T correspond precisely
to computable subtrees of the tree ω<ω of finite strings from ω. (The underlying
partial order on such a T is computable from P , although not definable by
finitary formulas using P .) A predecessor tree is finite-branching if, for every y,
there are only finitely many x ∈ T with P (x) = y.

Trees which are computable as partial orders (but for which the predecessor
function is not necessarily computable) are considered in a different context in
[3,4], which may provide useful background for readers interested in investigating
these questions. In such a tree, it is not generally possible to compute the level of
a node, and this makes it substantially more difficult to determine which nodes
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lie in the same orbit under automorphisms of the tree. It would be natural to
attempt to extend the results of this article to computable trees under ≺. Some
previous effectiveness results about predecessor trees appear in [7], while for
more general effectiveness results about symmetries as automorphisms, we refer
the reader to [2].

2 The Effectiveness Results

The most natural question to address first is whether a computable finite-
branching predecessor tree with distinguishing number 2 must have a computable
distinguishing 2-coloring.

Theorem 21. There is a computable finite-branching predecessor tree which is
distinguished by a 2-coloring but not by any computable 2-coloring.

Proof. We will build our tree T in such a way that no (partial) computable
function ϕe can be a distinguishing 2-coloring of the tree. We start by describing
the basic module – the strategy which will guarantee that for some fixed e, ϕe

is not a distinguishing 2-coloring of the tree. We build a finite tree Te beginning
with a root, five immediate successors of the root, and one immediate successor
each for four of those five immediate successors of the root, as shown here.
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We wait for ϕe to converge on each of these ten inputs. If ϕe doesn’t converge
on all the inputs or converges outside the set {0, 1}, then we do nothing further,
because ϕe is not a 2-coloring of Te. If ϕe converges on all ten nodes to values
in {0, 1} in such a way that there is already a nontrivial automorphism of Te
which preserves the coloring, then we do nothing further, because ϕe is not a
distinguishing coloring of Te. So, without loss of generality, suppose ϕe converges
on all ten nodes to values in {0, 1} and colors them as shown.
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We do not want ϕe to be a distinguishing coloring of Te, so we respond by
adding three more nodes to Te, as seen below. (For convenience, nodes are now
identified as in ω<ω.)
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We have now made it impossible for ϕe to be a distinguishing 2-coloring of Te.
ϕe must color the new node (4, 0) at level 2, and whichever color it chooses, there
will be a nontrivial automorphism of Te which respects that coloring. However,
there does exist another 2-coloring fe which distinguishes Te: change (4) to a
striped node, while keeping the other colors and coloring the remaining three
nodes with either color. Under this coloring the tree is rigid.

We put these basic modules together to build one big tree T as follows. Start
with a spine: a single path d0 < d1 < d2 < · · · of nodes, among which d0 will be
the root of T . Above each d2e+1, in addition to d2e+2, we place a node re. Then
we build a copy of the tree Te with re as its root. Thus no ϕe is a distinguishing
2-coloring of T , but T is distinguishable by combining the 2-colorings fe for
each Te into a single f and coloring every node on the spine striped. The spine
is fixed by every automorphism of T , as is each re, and this (noncomputable) f
then ensures that no automorphism except the identity can respect f . ��

In the tree constructed in Theorem 21, the branching function is not com-
putable: it was not decidable which of the (4, 0) nodes (in all the different finite
subtrees Te) have successors and which do not. So one naturally asks whether
a computable finite-branching tree with distinguishing number 2 and with com-
putable branching function would necessarily have a computable distinguishing
2-coloring. However, the answer is still no: below, in Theorem 23, we construct
such a tree with no computable distinguishing 2-coloring.

We start by describing the balanced 2-coloring of the complete binary tree
2<ω. Two nodes in this tree are called siblings if they are of the form σ 0̂ and
σ 1̂, that is, if they have the same immediate predecessor σ. Thus every node
except the root has exactly one sibling. A 2-coloring is balanced if it colors
each node differently from its sibling: for instance, every node σ 0̂ is solid and
every node σ 1̂ is striped. This example is isomorphic to every other balanced
2-coloring of 2<ω, except for the color of the root. We will therefore speak of the
balanced 2-coloring with striped root or the balanced 2-coloring with solid root.
It is clear, by induction on the lengths of nodes, that each balanced 2-coloring
distinguishes 2<ω, i.e., no automorphism of 2<ω except the identity respects this
coloring. Likewise, we speak of balanced 2-colorings of finite binary trees 2n.

However, it is also possible for an unbalanced 2-coloring to distinguish 2<ω. As
an example, color the nodes so that every node 1n is striped, and also every node
1n0 is striped, with all other nodes colored according to the balanced coloring
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with striped root. The two siblings 0 and 1 at level 1 are both striped, but the
two successors of 0 are two different colors, while those of 1 are both striped.
Therefore no automorphism respecting the coloring can interchange 0 with 1,
and one then uses this same argument to go upwards through all levels of the
tree and see that each level is fixed pointwise by every automorphism respecting
the coloring.

There are in fact many of these unbalanced colorings. However, once an im-
balance has been introduced, it perpetuates itself.

Lemma 1. In a distinguishing 2-coloring of 2<ω, if some siblings σˆ0 and σˆ1
share a color, then either some two siblings extending σˆ0 share a color as well,
or else some two siblings extending σˆ1 share a color.

Proof. If not, then the coloring would restrict to the balanced coloring on the
tree above σ 0̂, and also on the tree above σ 1̂, with the same colored root in
both. Therefore, there would be an automorphism interchanging σ 0̂ with σ 1̂
and respecting the coloring. ��

Corollary 22. For every finite binary tree 2<n, no unbalanced 2-coloring is
distinguishing.

Proof. The reasoning is the same as in the lemma: any imbalance forces there
to be another imbalance above itself. However, now this yields a pair of siblings
with the same color at the very top level of the tree, and the automorphism
which interchanges this pair and fixes all other nodes respects the unbalanced
coloring. ��

�

� � �a = (0) b = (1) c = (2)

� � �� � �

� � �� � �� � �� � �

...
...

...
...

...
...

...
...

...
...

...
...

������

������
�

��
�

��
�

��
	
		

	
		

	
		



















�
��

�
��

�
��



















�
��

�
��

�
��

B3

With these unbalanced colorings, we see that the tree B3 in the figure above is
2-distinguishable:

B3 =
{
σ ∈ ω<ω : σ(0) < 3 & σ(n) < 2 for 0 < |σ| ≤ n

}
.

Indeed, B3 has a computable distinguishing 2-coloring: just give the balanced
coloring with solid root on the binary tree above a, the balanced coloring with
striped root on the binary tree above b, and any unbalanced coloring (say with
striped root) on the binary tree above c. We also have a distinguishing 2-coloring
of each tree B3,n:

B3,n = B3 − {σ ∈ B3 : σ(0) �= 0 & |σ| ≥ n} .
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This B3,n is the tree gotten by chopping off (at level n) two of the three binary
trees in B3. To get a distinguishing 2-coloring of B3,n, however, one is forced by
the corollary above to use balanced colorings, with roots of different colors, on
each of the finite trees above b and c. The binary tree above a is still complete,
however: one can color it using the balanced 2-coloring with either color for the
root, or using any unbalanced distinguishing 2-coloring.

Theorem 23. There is a computable finite-branching predecessor tree with com-
putable branching function which is distinguished by a 2-coloring but not by any
computable 2-coloring.

Proof. With the above observations, we can produce a tree Te with distinguishing
number 2 for which a given partial computable function ϕe is not a distinguishing
2-coloring. Moreover, Te will have computable branching (uniformly in e). This
will form the basic module of the construction below. To build Te, start with
three distinct immediate successors a, b, c of the root node r, and begin building
a copy of 2<ω above each, exactly as in the tree B3. When we add level s to
these binary trees, we check to see whether ϕe,s has converged yet on all three
nodes at level 1. If it never does so, or if it gives values /∈ {0, 1} for any of them,
then we simply keep building a copy of B3. However, if it does output values
in {0, 1} for all three, then we change our strategy. Without loss of generality,
say that ϕe(b) = ϕe(c). Once we see this, we end the construction of the binary
trees above b and c: they are complete up to level s, but contain no nodes at all
above level s. (Above a, we continue to build the complete binary tree, although
in fact putting a single node at level n + 1 above a would suffice.)

The point is that, having committed to the same color for both b and c, ϕe is
now trapped into giving a non-distinguishing 2-coloring of Te. By the Corollary,
the only way to give a distinguishing 2-coloring above b is to give the balanced
2-coloring, up to level n; and the same above c. However, then there will be an
automorphism of Te interchanging b with c and respecting this coloring, so ϕe

failed to distinguish Te by its coloring.
On the other hand, Te is 2-distinguishable, exactly as above: just color b and

c different colors, and then use the balanced coloring above each of them, while
coloring the complete binary tree above a with any distinguishing 2-coloring
of 2<ω. (Clearly no automorphism of this Te can avoid fixing a, so the choice
between balanced and unbalanced above a is irrelevant.)

Finally, we wish to combine these basic modules to build a single computable
tree T , with computable finite branching, which has distinguishing number 2
but has no computable distinguishing 2-coloring. This is straightforward. Start
with a spine d0 < d1 < d2 < · · ·, among which d0 will be the root of T . Above
each d2e+1, in addition to d2e+2, we place a node re. Then we build a copy of
the tree Te with re as its root, diagonalizing against the possible coloring ϕe

exactly as above in Theorem 21, using the three successors ae, be, and ce of re.
No ϕe can be a distinguishing 2-coloring of the entire tree T , because, assuming
ϕe is total, there will be some nontrivial automorphism of Te which respects the
coloring ϕe, and this automorphism extends to an automorphism of all of T just
by fixing the rest of T pointwise. ��
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The branching function of a computable finite-branching predecessor tree is
always 0′-computable. However, it turns out that even with a 0′-oracle, we could
not necessarily compute a distinguishing 2-coloring of such a tree with distin-
guishing number 2.

Theorem 24. There is a computable finite-branching predecessor tree which is
distinguished by a 2-coloring but not by any 0′-computable 2-coloring.

Proof. This proof uses a simple modification to the trees Te used to build T in
Theorem 23. Now that the branching is allowed to be noncomputable, we may
temporarily stop building the tree Te at levels > n above b and c (when ϕe has
given the same color to b and c), and then resume building the complete binary
tree above b and c when/if ϕe “changes its mind” about its coloring of b and c.
This makes the branching (above these nodes at level n) noncomputable, since
we do not know whether we will ever add nodes at level n+1. However, it enables
us to satisfy the following requirement.

Re : lim
t

ϕe(x, t) is not a distinguishing 2-coloring of Te.

These requirements together will show that T has no 0′-computable distinguish-
ing 2-coloring, where T is built from the trees Te exactly as before.

The alteration to the construction of Te is simple. As before, wait for ϕe,s(a, 0),
ϕe,s(b, 0), and ϕe,s(c, 0) to halt with values in {0, 1}. Pick two of them which have
the same value, and stop building the binary trees above those two nodes (while
continuing to build a binary tree above the third node). Meanwhile, wait for
ϕe,s(a, 1), ϕe,s(b, 1), and ϕe,s(c, 1) to halt with values in {0, 1}. When and if this
happens, these values supersede those from before: for example, if previously we
had halted construction above b and c (as in the original description of Te), but
now ϕe(a, 1) = ϕe(b, 1) = 0 �= ϕe(c, 1), then we build up the trees above b and c
until all three have the same height, then continue building the tree above c but
stop building the ones above a and b. On the other hand, if ϕe,s(a, 1) = ϕe(a, 0),
ϕe,s(b, 1) = ϕe(b, 0), and ϕe,s(c, 1) = ϕe(c, 0), then ϕe has not changed its mind,
and we do not resume construction above the two nodes above which it was
stopped. We then continue on to consider ϕe(a, 2), etc., using the same program
relative to the values ϕe(a, 1), etc., and so on for all t.

If limt ϕe(x, t) exists for all three values x ∈ {a, b, c}, then we wind up in
the same situation as in the previous proof, showing that this limit cannot be a
distinguishing 2-coloring of Te, so that Re holds. On the other hand, if the limit
fails to exist (but ϕe is total with range ⊆ {0, 1}), then we simply built B3 above
re, and B3 is indeed 2-distinguishable (although not by limt ϕe(x, t)). Finally, if
ϕe is not total or assumes values > 1, then Re will hold, and the Te we build is
either a copy of B3 or a copy of some B3,n, both of which are 2-distinguishable.
(Technically, even if range(ϕe) contains some values > 1, the limit could still
have values 0 and 1 only. However, if this holds, then some other ϕe′ would have
the same limit and would have range ⊆ {0, 1}, so that Re′ would have taken
care of showing that limt ϕe was not a distinguishing 2-coloring.) ��
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So how much information would we need to compute a distinguishing 2-
coloring of a computable finite-branching predecessor tree with distinguishing
number 2? We answer this below in Theorem 25, but we begin by defining an
extendible node of a tree to be a node which lies on an infinite path.

Lemma 2. If all nodes of a computable predecessor tree T are extendible, then
T is 2-distinguishable.

Proof. This is true even if the tree is infinite-branching, so we prove it for this
more general case. Suppose we have a computable predecessor tree with every
node extendible. Label the nodes at level 1 of the tree x1, x2, . . . in order of
their enumeration into the tree. Color x1 striped. Color x2 solid, and color every
node at level 2 above x2 striped. Color x3 solid, color every node at level 2
above x3 solid, and color every node at level 3 above x3 striped, and so on for
x4, x5, . . .. This procedure distinguishes each node at level 1 from every other
node at level 1.

Fix an n > 0, and consider the immediate (level-2) successors y1, y2, . . . of xn.
These may have already been colored by the previous instructions; in fact, their
successors up to level n will already be colored. Color the level-(n+1) successors
of y1 striped, the level-(n+1) successors of y2 solid and its level-(n+2) successors
striped, then the same above y3 with solid-solid-striped, and so on. When we
do this for every n, each node at level 2 is distinguished from all its siblings at
level 2.

We continue in this vein to distinguish each node at level k from every other
node at level k, for every k.

Here is the algorithm for determining the color of an arbitrary node on such
a tree if we’ve used the above coloring:

Choose a node on the tree. Call it n. Call the root r.
(�) Use the predecessor function to determine the level of n above r. Call

this level l.
Label the immediate successors of r with x1, x2, . . ..
If n sits above xl, then n is red.
Else, if n sits above xi for some i > l, then n is blue.
Else, n sits above xi for some i < l. Let this xi be the new r, and go back

to (�). ��

Theorem 25. If a computable finite-branching predecessor tree has distinguish-
ing number 2, then it has a 0′′-computable distinguishing 2-coloring.

Proof. Because the tree is finite-branching, with a 0′′-oracle we can determine,
for each immediate successor y of a given node x, whether y is extendible or not:
König’s Lemma states that a non-extendible node must have only finitely many
nodes extending it. Above the extendible ones we use the process illustrated
above in Lemma 2. For each extendible x, consider the (finite) subtree containing
x, the non-extendible immediate successors of x and all of their successors. There
must be a way to distinguish this subtree with a 2-coloring, since the tree has a
distinguishing 2-coloring. Each non-extendible node has only finitely many nodes
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above it. With the 0′′-oracle we can find them all, and we can try out all the
possible colorings until we find one which admits no non-trivial automorphism.
Having done all of this, we know that every automorphism of the tree which
respects our coloring and which fixes x must also fix each immediate successor
y (and all the nodes above each non-extendible y). By induction on levels, this
means that an automorphism which respects the coloring must fix each single
node, i.e. must be the identity. ��

Thus the existence of a distinguishing 2-coloring is equivalent to the existence
of such a coloring computable in 0′′. This significantly reduces the complexity
of the property (for computable finite-branching trees T under predecessor) of
being 2-distinguishable. On its face, that property was Σ1

2 : it said that there
exists a function (the coloring) such that every automorphism of T either fixes
all nodes or disrespects the coloring. Of course, this complexity can quickly
be reduced, since the complexity of an orbit in a finite-branching computable
predecessor tree is at most Π0

2 . Nevertheless, 2-distinguishability still could have
been Σ1

1 -hard for these trees, up until we established Theorem 25, which showed
that we need only quantify over 0′′-computable functions, not over all functions,
to define 2-distinguishability.

We now investigate how much further we can lower the complexity of the
property of 2-distinguishability, and whether the same complexity level holds
for n-distinguishability. Theorem 26 answers these questions. Subsequently we
will consider distinguishability by finite colorings, i.e., colorings with finitely
many colors, but with no fixed bound on the number of colors.

Theorem 26. For each fixed n, the property of having a distinguishing n-coloring
is Π0

2 -complete within the class of finite-branching predecessor trees.

Proof. We will show that having a distinguishing 2-coloring is Π0
2 -complete, and

we will explain how the argument extends to an n-coloring for fixed n.
A finite-branching predecessor tree has no distinguishing 2-coloring if and

only if

∃σ1, . . . , σk

[
σ1, . . . , σk are not extendible & have a common predecessor τ &

the tree {τ} ∪
⋃k

i=1 {δ : δ ⊇ σi} has no distinguishing 2-coloring

]
.

Non-extendibility is a Σ0
2 property, and the other two conjuncts inside the brack-

ets are each computable. So, not having a distinguishing 2-coloring is Σ0
2 . Thus,

having a distinguishing 2-coloring is Π0
2 . Notice that if “2-coloring” in the above

argument were replaced with “n-coloring,” the result would still hold; so, for
fixed n, having a distinguishing n-coloring is Π0

2 .
To show completeness, we start by building a copy of the tree B3 as follows.

Begin with the root and the three nodes at level 1. Then, whenever a new element
is enumerated into the e-th c.e. set We, we add the whole next level of B3 to our
tree. If We turns out to be finite, our copy of B3 will only have finitely many
levels, and thus will not be 2-distinguishable. If We turns out to be infinite, then
our B3 will likewise be infinite, and thus 2-distinguishable. So the tree has a
distinguishing 2-coloring just if We is infinite.
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If we define Bn+1 to be the tree whose root has exactly (n + 1) immediate
successors and every other node has exactly n immediate successors, then if we
replace B3 with Bn+1 in the immediately preceding paragraph, we show that
having a distinguishing n-coloring for some fixed n is Π0

2 -complete as well. ��

It remains to consider “having a distinguishing n-coloring for some (arbitrary)
n.” This is the property of being finitely distinguishable. Expressing this property
takes an extra ∃ quantifier, so it is plausible that having a finite distinguishing
coloring is Σ0

3 -complete.

Theorem 27. The property of having a distinguishing finite coloring is Σ0
3 -

complete within the class of finite-branching predecessor trees.

Proof. Define S∞ to be the following tree: There is an infinite “spine,” and the
node αn on the spine at level n has exactly n additional immediate successors,
all of which are terminal. We will show, using the tree S∞, that being finitely
distinguishable is Σ0

3 -complete by giving a 1-reduction from the set of indices
for finitely distinguishable trees to the set Cof.

We start by building the tree S∞. Let Ak be the subtree consisting of αk

and all its non-extendible immediate successors. We wait for elements to be
enumerated into We. At stage s, suppose m ∈ We,s−We,s−1. Then we make Am

rigid by adding paths of distinct finite lengths above the immediate successors
of αm.

We claim that the resulting tree is finitely distinguishable if and only if We

is cofinite. Suppose We is finite and nonempty. (If We is empty, then the tree
is rigid, i.e., 1-distinguishable.) Then every tree Ak with k > max(We) is rigid.
Thus the whole tree is max(We)-distinguishable. Now suppose We is infinite.
Then, given any n, there is Ak with k > n for which Ak is k-distinguishable but
not n-distinguishable. Thus, for each n, the whole tree is not n-distinguishable.
So the tree has a finite distinguishing coloring just if We is cofinite. ��
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Abstract. We study, in the context of reverse mathematics, the strength
of Ramseyan factorization theorem (RFs

k), a Ramsey-type theorem used
in automata theory. We prove that RFs

k is equivalent to RT2
2 for all

s, k ≥ 2, k ∈ ω over RCA0. We also consider a weak version of Ramseyan
factorization theorem and prove that it is in between ADS and CAC.

1 Introduction

In the current study of reverse mathematics, deciding the strength of Ram-
sey’s theorem for pairs (RT2

2) is one of the most important topics (see e.g.,
Cholak/Jockusch/Slaman[1] and Hirschfeldt[5], and for the study of reverse
mathematics, Simpson[9] is the standard reference). In this paper, we study,
in the context of reverse mathematics, the strength of a Ramsey-type theorem
which is called Ramseyan factorization theorem. Ramseyan factorization theo-
rem is used in the theory of automata (see, for example, [8]). We show that some
kinds of Ramseyan factorization theorem are equivalent to RT2

2. We also study
a weak version of Ramseyan factorization theorem. We discuss it in section 3,
and show that a weak version is in between ADS and CAC. Note that ADS
and CAC are just separated by Lerman/Solomon/Towsner[7]. Thus, it must be
strictly stronger than ADS or strictly weaker than CAC. We also consider other
variations of Ramseyan factorization theorem in section 5.

Notations and Definitions

Let A be a set. Then A<N (resp. AN) denotes the set of all finite (resp. infinite)
sequences of elements from A. If u, v ∈ A<N, ui denotes the i-th element of u,
u�v (and uv for short) denotes the concatenation of u and v, and |u| denotes
the length of u. The Ramseyan factorization theorem is the following statement.

Definition 1 (Ramseyan factorization theorem). For any A ⊆ N and finite
B ⊆ N, the following statement (RFA

B) holds:

� The third author is partially supported by JSPS Grant-in-Aid for Research Activity
Start-up grant number 25887026.

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 324–332, 2014.
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For any u ∈ AN and f : A<N → B, there exists v ∈ (A<N)
N

such that
u = v�0 v�1 · · · and for any j ≥ i > 0 and j′ ≥ i′ > 0, f(v�i v�i+1 · · ·� vj) =
f(v�i′ v�i′+1 · · ·� vj′).

If u, f and v satisfy the above condition, we call v a Ramseyan factorization for
u and f . In this paper, we aim to study RFN

k and RFs
k for s, k ∈ N.

2 Ramseyan Factorization Theorem and Ramsey’s
Theorem for Pairs

In this section, we see the relation between Ramsey’s theorem (RTn
k ) and Ram-

seyan factorization theorem (RFs
k).

Proposition 2 (RCA0). For any k ∈ N, RFN
k ⇒ · · · ⇒ RF2

k ⇒ RF1
k.

Proof. Trivial from the definition.

Theorem 3 (RCA0). For any k ∈ N, RT2
k implies RFN

k .

Proof. Let u ∈ NN and f : N<N → k. Define P : [N]2 → k as follows:

P (i, j) = f(uiui+1 . . . uj−1).

Let X be an infinite homogeneous set for P . Define l ∈ NN by setting li to be the

i-th smallest element in X and define v ∈ (N<N)
N
by setting v0 = u0 . . . ul0−1

and vi = uli−1 . . . uli−1 for all i ≥ 1. Then clearly v is a Ramseyan factorization
for u and f .

Theorem 4 (RCA0). For any k ∈ N, RF2
k implies RT2

k.

Proof. Let P : [N]2 → k. We will find an infinite homogeneous set for P . Define
u ∈ 2N and f : 2<N → k as follows:

u = 1010010001 . . .10n−110n10n+11 . . .

f(σ)=

{
P (m,n + 2) if σ = 0k10m1τ10n10l for some k, l,m, n ≥ 0 and τ ∈ 2<N,

0 otherwise.

Let v be a Ramseyan factorization for u and f . By combining vi’s if necessary,
we may assume that each vi contains at least four 1’s, i.e., vi is of the form
0k10m1τ10n10l. Let H = {m ∈ N | 1 ≤ ∃i ≤ m vi = 0k10m1τ10n10l}. We can
easily check that this H is an infinite homogeneous set for P .

From the above proposition and theorems, we can show that RFs
k is equivalent

to RT2
2 for all s, k ≥ 2, k ∈ ω.
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Corollary 5. The following are equivalent over RCA0.

1. RT2
2.

2. RFN
k (k ≥ 2, k ∈ ω).

3. RF2
k (k ≥ 2, k ∈ ω).

Proof. This is clear from the previous theorems and the fact that RCA0 proves
RT2

k ⇒ RT2
k+1 for all k ≥ 2.

Corollary 6. The following are equivalent over RCA0.

1. RT2
<∞.

2. ∀kRFN
k .

3. ∀kRF2
k.

Next, we consider the remaining case, i.e. the strength of RF1
k. In order to

study RF1
k, we consider the following version of Ramsey’s theorem.

Definition 7. For a given function f : [N]n → N, RTf
k is the following state-

ment:

For any P : N → k, there exists an infinite set H ⊆ N such that for any
u, v ∈ [H ]n, P (f(u)) = P (f(v)).

If f is a bijection, we can prove the following.

Proposition 8 (RCA0). For any n ∈ N and any bijection f : [N]n → N, RTf
k is

equivalent to RTn
k .

The full version of RFf
k , i.e. ∀f : [N]n → N RFf

k , is still equivalent to RTn
k .

Proposition 9 (RCA0). RT
n
k is equivalent to ∀f : [N]n → N RTf

k .

Proof. From left to right is trivial, because P ◦ f is a function from [N]n to k
when P : N → k. From right to left is proved from the above proposition.

If f is not a bijection, RTf
k may not be equivalent to RTn

k . In case f is the

subtraction Subt(a, b) = b− a, RTf
k is equivalent to RF1

k. (The function Subt is
considered as a function of [N]2.)

Proposition 10 (RCA0). For any k ∈ N, RF1
k is equivalent to RTSubt

k .

Proof. We first prove RF1
k ⇒ RTSubt

k . Assume RF1
k and let P : N → k. Define

f : 1<N → k by f(0n) = P (n) and let v be a Ramseyan factorization for 0N

and f . Let X = {
∑

j≤i |vj | | i ∈ N}. Then X is an infinite homogeneous set for
P ◦ Subt.

Next, we prove RTSubt
k ⇒ RF1

k. Assume RTSubt
k and let f : 1<N → k. Define

P : N → k by P (n) = f(0n). Then there exists an infinite homogeneous set

H := {l0 < l1 < · · · } ⊆ N for P . Define v ∈ (1<N)
N
by v0 = 0l0 and vi = 0li−li−1

for all i ≥ 1. Then v is a Ramseyan factorization for 0N and f .
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From the above, we can show that ∀kRF1
k is strong enough to prove the bounding

principle for Σ0
2 formulas.

Corollary 11 (RCA0). ∀kRF1
k implies BΣ0

2 .

Proof. Because of the above and the equivalence of BΣ0
2 and RT1

<∞, it’s enough

to prove RTSubt
k ⇒ RT1

k for all k ∈ N. Assume RTSubt
k and let P : N → k. Then

there exists an infinite set H ⊆ N such that for any u, v ∈ [H ]2, P (u1 − u0) =
P (v1−v0). Then X = {h−minH | h ∈ H \{minH}} is an infinite homogeneous
set for P .

Question 12. Is RF1
k equivalent to RT2

2 or RT1
k?

3 Weak Factorization

In this section, we consider a weaker version of Ramseyan factorization theorem.
For applications in automata theory, the following weaker version of Ramseyan
factorization theorem is usually good enough.

Definition 13. For given sets A,B ⊆ N, weak Ramseyan factorization theorem
for A and B (WRFA

B) is the following statement:

For any u ∈ AN and f : A<N → B, there exists v ∈ (N<N)
N

such that
u = v�0 v�1 . . . and for any i, j > 0, f(vi) = f(vj).

Here, such v is said to be a weak Ramseyan factorization for u and f .

Similarly, we consider a weaker version of Ramsey’s theorem as follows.

Definition 14. Pseudo Ramsey’s Theorem psRT n
k is the following statement:

For any coloring P : [N]n → k, there exists an infinite set H = {a0 < a1 <
. . . } such that for any i, j ∈ N, P (ai, . . . , ai+n−1) = P (aj , . . . , aj+n−1).

Such H is called pseudo homogeneous set for P . 1

Remark 15. In general, a subset of a weak homogeneous set might not be weak
homogeneous again.

Question 16. Does WRTn
k imply WRTn

k+1 over RCA0?

Proposition 17 (RCA0). For any m ∈ N, WRFN
m ⇔ WRT2

m. In particular,
WRFN

2 is equivalent to WRT2
2.

Proof. We first show for a given m ∈ N that WRFN
m ⇒ WRT2

m. Fix u = 〈i |
i ∈ N〉 ∈ NN. For a given coloring P : [N]2 → m, define f : N<N → m by
f(σ) = P (a, a + k) if σ = 〈a + i | i < k〉 for some a, k ∈ N, k ≥ 1, and f(σ) = 0
otherwise. Now, let v be a weak Ramseyan factorization for u and f . Then, one

1 In Friedman/Pelupessy[4], this set is called adjacent homogeneous.
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can easily check that the set H = {
∑

j≤i |vj | | i ∈ N} is a weak homogeneous
set for P .

Next, we show m ∈ N, WRT2
m ⇒ WRFN

m. Let u ∈ NN, and let f : N<N → m.
Then, define a coloring P : [N]2 → m by P (a, b) = f(〈ui | a ≤ i < b〉). Let
H = {a0 < a1 < . . . } be an infinite weak homogeneous set for P . Define
v0 = 〈ui | 0 ≤ j < a0〉 and vi+1 = 〈uj | ai ≤ j < ai+1〉. Then, v is a weak
Ramseyan factorization for u and f .

Question 18. Is WRF2
2 equivalent to WRT2

2 over RCA0?

Proposition 19 (RCA0). For any k ∈ N, WRF2
k+5 implies WRT2

k.

Proof. Let wi = 10i ∈ 2<N, and let u = w�
0 w�

1 . . . . For a given coloring P :
[N]2 → k, we define a function f : 2<N → k + 5 as follows:

f(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (m,n+ 2) if σ = 0i�w�
m . . .� w�

n 10j for some i, j ≥ 0 and 1 ≤ m ≤ n,

k if σ = 0i10j for some i, j ≥ 0 such that i and j are both even,

k + 1 if σ = 0i10j for some i, j ≥ 0 such that i is odd and j is even,

k + 2 if σ = 0i10j for some i, j ≥ 0 such that i is even and j is odd,

k + 3 if σ = 0i10j for some i, j ≥ 0 such that i and j are both odd,

k + 4 otherwise.

Take a weak Ramseyan factorization v for u and f , and let f(vi) = d for all i ≥ 1.
If vi contains at least one ‘1’, then f(vi) �= k+4. Thus, d �= k+4. If k ≤ d < k+4,
then each vi contains only one ‘1’. However, one can easily check that this is im-
possible. Therefore, for any i ≥ 1, f(vi) = d for some d < k. This means that H =
{m ∈ N | vl = 0i

�
w�

m · · ·� w�
n 10j for some i, j ≥ 0, 1 ≤ m ≤ n, and l ≥ 1} is a

weak homogeneous set for P .

Question 20. Is it possible to reduce the number of colorings in the above proof?

One of reviewers told us that if we change the color “k + 4” to “0”, the above
proof still works without changing the weak Ramseyan factorization v. Therefore,
thank to him or her, we can prove the following.

Proposition 21 (RCA0). For any k ∈ N, WRF2
k+4 implies WRT2

k.

4 The Strength of WRFN
k , or Equivalently WRT2

k

Our main goal in this section is to prove that WRFN
2 , or equivalently WRT2

2, is
in between CAC and ADS. In order to show it, we use the facts that ADS is
equivalent to trRT2

2, transitive Ramsey’s theorem for pairs, and CAC is equiv-
alent to strRT2

2, semi-transitive Ramsey’s theorem for pairs, which were both
proved in Hirschfeldt/Shore[6].
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Definition 22 (Transitive and semi-transitive colorings [6])

1. A k-coloring P : [N]2 → k is said to be transitive if P (a, b) = P (b, c) = i ⇒
P (a, c) = i.

2. A k-coloring P : [N]2 → k is said to be semi-transitive if P (a, b) = P (b, c) =
i > 0 ⇒ P (a, c) = i.

Now, we consider the following variations of Ramsey’s theorem for pairs.

Definition 23. 1. Transitive Ramsey’s theorem trRT2
k: Any transitive

k-coloring P : [N]2 → k has an infinite homogeneous set.
2. Semi-transitive Ramsey’s theorem strRT2

k: Any semi-transitive k-coloring
P : [N]2 → k has an infinite homogeneous set.

3. Semi-weak Ramsey’s theorem sWRT2
k: Any k-coloring P : [N]2 → k has an

infinite homogeneous set H such that P ([H ]2) = {0} or an infinite weak
homogeneous set H ′ = {h0 < h1 < . . . } such that P (hi, hi+1) > 0.

Clearly, sWRT2
k is a stronger version of WRT2

k. First, we show the lower bound
for WRT2

2.

Theorem 24 (RCA0). For any m ∈ N, WRT2
m implies trRT2

m.

Proof. If P is a transitive coloring, a weak homogeneous set for P is actually a
homogeneous set for P .

Next, we consider the upper bound for WRT2
2

Lemma 25 (RCA0). For any m ∈ N, sWRT2
m implies strRT2

m.

Proof. If P is a semi-transitive coloring, a weak homogeneous set H for P with
P ([H ]2) �= {0} is actually a homogeneous set for P .

The converse is true for the case m = 2.

Lemma 26 (RCA0). strRT
2
2 implies sWRT2

2.

Proof. Let P : [N]2 → 2. We want to find a homogeneous set for 0, or a weak
homogeneous set for 1. Define P̄ : [N]2 → 2 as follows: P̄ (a, b) = 1 if there
exists a sequence a = a0 < · · · < al = b such that P (ai, ai+1) = 1 for any
i < l, and P̄ (a, b) = 0 otherwise. Then, P̄ is a semi-transitive coloring. Thus,
by strRT2

2, take an infinite homogeneous set H for P̄ . If P̄ ([H ]2) = {0}, then
we have P ([H ]2) = {0} and we have done. If P̄ ([H ]2) = {1}, then for any
a, b ∈ H , we can (effectively) find a sequence a = a0 < · · · < al = b such that
P (ai, ai+1) = 1 for every i < l. Thus, we can construct a set H ′ ⊇ H which is a
weak homogeneous set for P with the value 1.

Question 27. Over RCA0, does strRT2
<∞ imply sWRT2

<∞ or WRT2
<∞?

Although WRT2
k might not prove WRT2

k+1, we can show the following.

Lemma 28 (RCA0). For any m ≥ 2, sWRT2
m implies sWRT2

m+1.



330 S. Murakami, T. Yamazaki, and K. Yokoyama

Proof. Let P : [N]2 → m + 1. Define P̄ : [N]2 → m by P̄ (a, b) = 0 if P (a, b) ∈
{0, 1} and P̄ (a, b) = P (a, b)− 1 if P (a, b) ≥ 2. If P̄ has a weak homogeneous set
with the value d ≥ 1, then it is a weak homogeneous set for P . Otherwise, P̄ has
a homogeneous set H with the value 0. Then, P � [H ]2 is a 2-coloring, thus we
can apply sWRT2

2 again, and we have done. 2

Combining the above, we have the following.

Theorem 29. The following are equivalent over RCA0.

1. sWRT2
2.

2. strRT2
2.

3. sWRT2
k for any k ∈ ω, k ≥ 2.

4. strRT2
k for any k ∈ ω, k ≥ 2.

Thus, within RCA0, WRT2
2 is provable from any one of the above.

Corollary 30 (RCA0). WRT2
2 is stronger than ADS and weaker than CAC.

Proof. By Hirschfeldt/Shore[6], ADS is equivalent to trRT2
2 and CAC is equiv-

alent to strRT2
2.

Question 31. Is WRT2
2 equivalent to ADS or CAC over RCA0?

Corollary 32 (RCA0). SRT
2
2 does not imply WRT2

2.

Proof. By Chong/Slaman/Yang[2], SRT2
2 does not imply COH. On the other

hand, by Hirschfeldt/Shore[6], ADS implies COH, and thus WRT2
2 implies COH.

Corollary 33 (RCA0). WRT2
2 does not imply DNR.

Proof. By Hirschfeldt/Shore[6], CAC does not imply DNR, thus WRT2
2 does

not, either.

Question 34. Does P2
2 or RWKL0′ imply WRT2

2? (See, e.g., Flood[3] for the

definitions of these statements. Note that RWKL0′ is introduced as RKL(1) in
[3].)

5 Other Topics

In this section, we focus on some other versions of Ramseyan factorization the-
orem.

2 Note that this argument still works for any n-tuples.
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5.1 Stable Versions

We can consider stable versions of RF or WRF. For given u ∈ N<N and f :
N<N → k, f is said to be stable on u if for any m ∈ N, there exists n > m such
that for any l > n, f(〈ui | m ≤ i < n〉) = f(〈ui | m ≤ i < l〉). Then, SRFA

k and
SWRFA

k are the following statements:

Definition 35. 1. SRFA
k : For any u ∈ AN and f : A<N → k such that f is

stable on u, there exists a Ramseyan factorization for u and f .
2. SWRFA

k : For any u ∈ A<N and f : A<N → k such that f is stable on u,
there exists a weak Ramseyan factorization for u and f .

As in Theorems 3 and 4, we can show the following.

Theorem 36. Within RCA0, the following are equivalent for any m ∈ N.

1. SRT2
m.

2. SRFN
m.

3. SRF2
m.

Theorem 37. Within RCA0, the following are equivalent for any m ∈ N.

1. SWRT2
m: Any stable coloring P : [N]2 → m has an infinite weak homoge-

neous set.
2. SWRFN

m.

5.2 Tree Versions

In this subsection, we consider a slightly stronger version of RF2
m. For given

two trees T, S ⊆ 2<N, a tree embedding is an injective function π : S → T
such that for any σ, τ ∈ S, π(σ) ∩ π(τ) = π(σ ∩ τ). For a given tree embedding
π : S → T , and for any σ, τ ∈ S such that σ � τ , the edge between π(σ) and
π(τ), denoted by Eπ(σ, τ), is the sequence ρ ∈ 2<N such that π(σ)�ρ = π(τ).
Then, we consider the following tree version of Ramseyan factorization theorem.

Definition 38. Ramseyan factorization theorem for trees TRF2
k is the following

statement:

For any infinite tree T ⊆ 2<N and a coloring f : 2<N → k, there exists an
infinite tree S ⊆ 2<N and a tree embedding π : S → T such that for any
σ � τ ∈ S and σ′ � τ ′ ∈ S, f(Eπ(σ, τ)) = f(Eπ(σ

′, τ ′)).

Proposition 39 (RCA0). TRF
2
k implies RF2

k for all k ∈ N. In particular, TRF2
2

implies RF2
2 (and, equivalently, RT2

2).

Proof. Assume TRF2
k and let u ∈ 2N and f : 2<N → k. Define a tree T ⊆ 2<N by

T = {u0u1 . . . ui−1 | i ∈ N}. By TRF2
k, there exist S = {s0 < s1 < · · · } ⊆ 2<N

and an embedding π : S → T such that for all σ � τ ∈ S and σ′ � τ ′ ∈ S,

f(Eπ(σ, τ)) = f(Eπ(σ
′, τ ′)). Define v ∈ (2<N)

N
by setting v0 = π(s0) and vi =

Eπ(si−1, si) for all i ≥ 1. Then, v is a Ramseyan factorization for u and f .
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We can also show that TRF2
2 is weaker than WKL0 +RT2

2.

Proposition 40. WKL0 +RT2
2 implies TRF2

2.

Proof. Let T ⊆ 2<N be an infinite tree and f : 2<N → 2. By WKL0, there is an
infinite path u ∈ 2N through T . By RF2

2, which is equivalent to RT2
2, there is a

Ramseyan factorization v ∈ (2<N)
N
for u and f . Define S ⊆ 2<N and π : S → T

by S = {0i | i ∈ N} and π(0i) = v�0 v�1 · · ·� vi for all i ∈ N. Then S and π
satisfy the condition.

Therefore, TRF2
2 is in between WKL0 +RT2

2 and RT2
2.

Question 41. Does TRF2
2 imply WKL0 over RCA0?

Remark 42. TRF2
2 may be equivalent to the following stronger version of RT2

2:

RT2+
2 : If P be a class of colorings P : [FP ]

2 → 2 where FP = {0, 1, . . . , l}
for some l ∈ N, then there exists an infinite set H ⊆ N such that there exist
infinitely many P ∈ P such that P is constant on [H ∩ FP ]

2.

We think that the equivalence should hold, but we do not know either TRF2
2 ⇒

RT2+
2 or RT2+

2 ⇒ TRF2
2. This kind of strengthened Ramsey’s theorem is studied

in [10].
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Abstract. Satisfiability problems play a central role in computer science and
engineering as a general framework for studying the complexity of various prob-
lems. Schaefer proved in 1978 that truth satisfaction of propositional formulas
given a language of relations is either NP-complete or tractable. We classify the
corresponding satisfying assignment construction problems in the framework of
Reverse Mathematics and show that the principles are either provable over RCA0

or equivalent to WKL0. We formulate also a Ramseyan version of the problems
and state a different dichotomy theorem. However, the different classes arising
from this classification are not known to be distinct.

1 Introduction

A common way to solve a constrained problem in industry consists of reducing it to
a satisfaction problem over propositional logic and using a SAT solver. The generality
of the framework and its multiple applications make it a natural subject of interest for
the scientific community and constraint satisfaction problems remains an active field of
research.

In 1978, Schaefer [9] gave a great insight in the understanding of the complexity of
satisfiability problems by studying a parameterized class of problems and showing they
admit a dichotomy between NP-completeness and tractability. Many other dichotomy
theorems have been proven since, about refinements to AC0 reductions [1], variants
about counting, optimization, 3-valued domains and many others [4,7,3]. The existence
of dichotomies for n-valued domains with n> 3 remains open.

Reverse Mathematics is a vast program of classification of the strength of mathe-
matical theorems by emphasizing on their computational content. This study has led to
the main observation that many theorems are computationally equivalent to one of four
axioms. On particular axiom is Weak König’s lemma (WKL0) which allows formaliza-
tion of many compactness arguments and the solution of many satisfiability problems.
We believe that studying constraint satisfaction problems within this framework can
lead to insights in both fields: in Reverse Mathematics, we can exploit the generality
of constraint satisfaction problems to compare existing principles by reducing them to
satisfaction problems. In CSP, Reverse Mathematics can yield a better understanding of
the computational strength of satisfiability problems for particular classes of formulas.
In particular we answer to the question of Marek & Remmel [8] whether there exists
dichotomy theorems for infinite recursive versions of constraint satisfaction problems.
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Definition 1. As set of Boolean formulas C is satisfiable if every conjunction of a finite
set of formulas in C is satisfiable. SAT is the statement “for every satisfiable set C
of Boolean formulas over an infinite set of variables V there is an infinite assignment
ν : V → {T,F} satisfying C .” The pair (V,C) forms an instance of SAT.

The weak system on which relations are based is calledRCA0, standing for Recursive
Comprehension Axiom. It consists of basic Peano axioms together with a comprehen-
sion scheme restricted to Δ0

1 formulas and an the induction restricted to Σ0
1 formulas.

Theorem 2 (Simpson [10]). RCA0 �WKL0↔ SAT

RWKL, a weakening of WKL0, has been recently introduced by Flood in [5]. Given
an infinite binary tree, the principle does not assert the existence of a path, but rather
of an infinite subset of a path in the tree. Initially called RKL, it has been renamed to
RWKL in [2] to give a consistent R prefix to Ramseyan principles. This principle has
been shown to be strictly weaker than SRT2

2 and WKL0 by Flood, and stricly stronger
than DNR by Bienvenu & al. in [2]. By analogy with RWKL, we formulate Ramsey-
type versions of satisfiability problems.

Definition 3. Let C be a set of Boolean formulas over an infinite set of variables V . A
set H is homogeneous for C if there is a c ∈ {T,F} such that every conjunction of a finite
set of formulas in C is satisfiable by a truth assignment ν such that (∀a ∈ H)(ν(a) = c).

Definition 4. LRSAT is the statement “ Let C be a satisfiable set of Boolean formulas
over an infinite set of variables V For every infinite set L ⊆ V there exists an infinite
set H ⊆ L homogeneous for C .” The corresponding instance of LRSAT is the tuple
(V,C , L). RSAT is obtained by restricting LRSAT to L = V . Then an instance of RSAT
is an ordered pair (V,C).

The equivalence between WKL0 and SAT over RCA0 extends to their Ramseyan
version. The proof is relatively easy and directly adaptable from proof of Theorem 2.

Theorem 5 (Bienvenu & al. [2]). RCA0 � RWKL↔ RSAT↔ LRSAT

1.1 Definitions and Notations

Some classes of Boolean formulas – bijunctive, affine, horn, ... – have been extensively
studied in Complexity Theory, leading to the well-known dichotomy theorem due to
Schaefer. We give a precise definition of those classes in order to state our dichotomy
theorems.

Definition 6. A literal is either a Boolean variable (positive literal), or its negation
(negative literal). A clause is a disjunction of literals. A clause is horn if it has at most
one positive literal, co-horn if it has at most one negative literal and bijunctive if it has
at most 2 literals. If we number Boolean variables, we can associate to each Boolean
formulaϕ with Boolean variables x1, . . . , xn a relation [ϕ] ⊆ {F,T}n such that a ∈ [ϕ]
iff ϕ(a). If S is a set of relations, an S-formula over a set of variables V is a formula of
the form R(y1, . . . , yn) for some R ∈ S and y1, . . . , yn ∈ V .
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Example 7. Let S = {→}. (x → y) is an S-formula but (x → ¬y) is not. Neither is
(x → y) ∧ (y → z). The formula (x → y) is equivalent to the horn clause (¬x ∨ y)
where the literals are ¬x and y .

Definition 8. A formula ϕ is i-valid for i = 0,1 if ϕ(i, . . . , i) is true. It is horn (resp.
co-horn, bijunctive) if it is a conjunction of horn (resp. co-horn, bijunctive) clauses. A
formula is affine if it is a conjunction of formulas of the form x1 ⊕ . . . ⊕ xn = i for
i ∈ {0,1} where ⊕ is the exclusive or.

A relation R ⊆ {0,1}n is bijunctive (resp. horn, co-horn, affine, i-valid) if there is
bijunctive (resp. horn, co-horn, affine, i-valid) formula ϕ such that R = [ϕ]. A relation
R is i-default for i = 0,1 if for every finite set I ⊆ �, if r ∈ R with r (k) = i for every
k ∈ I then s , defined by s(k) = 1 − i for every k ∈ I and s(k) = i otherwise, is also
in R. In particular every i-default relation is i-valid, as witnessed by taking I = �. We
denote by ISAT(S) the class of satisfiable conjunctions of S-formulas.

1.2 Dichotomies

Theorem 9 (Schaefer’s dichotomy [9]). Let S be a finite set of Boolean relations.
If S satisfies one of the conditions (a) − ( f ) below, then ISAT(S) is polynomial-time
decidable. Otherwise, ISAT(S) is log-complete in NP.

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) Every relation in S is horn

(d) Every relation in S is co-horn
(e) Every relation in S is affine.
(f) Every relation in S is bijunctive.

In the remainder of this paper, S will be a – possibly infinite – class of Boolean
relations. Note that there is no effectiveness requirement on S.

Definition 10. SAT(S) is the following statement: for every set C of S-formulas over
an infinite set of variables V such that every finite set C0 ⊆ C is satisfiable there is an
infinite assignment ν : V → {T,F} satisfying C .

We will prove the following dichotomy theorem based on Schaefer’s theorem.

Theorem 11. If S satisfies one of the conditions (a)− (d) below, then SAT(S) is prov-
able over RCA0. Otherwise SAT(S) is equivalent to WKL0 over RCA0.

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) If R ∈ S is not 0-default then R = [x].
(d) If R ∈ S is not 1-default then R = [¬x].
SAT(S) principles are not fully satisfactory as these are not robust notions: if we

define SAT(S) in terms of satisfiable sets of conjunctions of S-formulas, this yields a
different dichotomy theorems. In particular, RCA0 � SAT([x], [¬y]) whereas RCA0 �
SAT([x ∧ ¬y]) ↔ WKL0. Ramseyan versions of satisfaction problems have better
properties.
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Definition 12. RSAT(S) is the following statement: for every satisfiable set C of S-
formulas over an infinite set of variables V , there is an infinite set H ⊆ V homogeneous
for C .

Usual reductions between satisfiability problems involve fresh variable introduc-
tions. This is why it is natural to define a localized version of those principles, i.e.
where the homogeneous set has to lie within a pre-specified set.

Definition 13. LRSAT(S) is the following statement: for every satisfiable set C of S-
formulas over an infinite set of variables V and every infinite set X ⊆ V , there is an
infinite set H ⊆ X homogeneous for C .

In particular, we define LRSAT(0-valid) (resp. LRSAT(1-valid), LRSAT(Horn),
LRSAT(CoHorn), LRSAT(Bijunctive) or LRSAT(Affine)) to denote LRSAT(S) where
S is the set of all 0-valid (resp. 1-valid, horn, co-horn, bijunctive or affine) relations. We
will prove the following dichotomy theorem.

Theorem 14. Either RCA0 � LRSAT(S) or LRSAT(S) is equivalent to one of the
following principles over RCA0:

1. LRSAT
2. LRSAT([x �= y])

3. LRSAT(Affine)
4. LRSAT(Bijunctive)

As we will see in Theorem 37, each of those principles are equivalent to their non
localized version. As well, LRSAT([x �= y]) coincides with an already existing prin-
ciple about bipartite graphs called RCOLOR2 and LRSAT is equivalent to RWKL
over RCA0. Hence LRSAT(S) is either provable over RCA0, or equivalent to one of
RCOLOR2, RSAT(Affine), RSAT(Bijunctive) and RWKL over RCA0.

2 Schaefer’s Dichotomy Theorem

Definition 15. Let S be a class of Boolean relations and V be a set of variables. Let
ϕ be an S-formula over V . We denote by Var(ϕ) the set variables occurring in ϕ. An
assignment for ϕ is a function ν : Var(ϕ) → {T,F}. An assignment can be naturally
extended to a function over formulas by the natural interpretation rules for logical
connectives. Then an assignment ν satisfies ϕ if ν(ϕ) = T. The set of assignments of
ϕ is written Assign(ϕ). Variable substitution is defined in the usual way and is written
ϕ[y/x], meaning that all occurrences of x in ϕ are replaced by y . We will also write
ϕ[y/X ] where X is a set of variables to denote substitution of all occurrences of a
variable of X in ϕ by y . A constant is either 0 or 1.

Definition 16. Let S be a class of relations over Booleans. The class of existentially
quantified S-formulas with constants – i.e. of the form (∃x )ϕ[x , y ,T,F] with ϕ ∈ S
– is denoted by Gen(S). We also define Rep(S) = {[R] : R ∈ Gen(S)}, ie. the relations
represented by existentially quantified S-formula with constants. By abuse of notation,
we may use Rep(R) when R is a relation to denote Rep({R}). We can also define similar
relations without constants, denoted by GenNC and RepNC .
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Lemma 17 (Schaefer in [9, 4.3]). At least one of the following holds:

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) [x] and [¬x] are contained in RepNC (S).
(d) [x �= y] ∈ RepNC (S).

One easily sees that if every relation in S is 0-valid (resp. 1-valid) then RCA0 �
SAT(S) as the assignment always equal to F (resp. T) is a valid assignment and is
computable. We will now see that problems parameterized by relations either 0-default
or [x] (resp. 1-default or [¬x]) are also solvable.

Lemma 18. If the only relation in S which is not 0-default is [x] or the only relation
which is not 1-default is [¬x] then RCA0 � SAT(S).

The strategy for solving such an instance (V,C) of SAT(S) consists in defining an
assignment which given a variable x will give it the default value F unless it finds the
clause (x ∨ x) ∈ C .

Lemma 19. If [x �= y] ∈ RepNC(S) then RCA0 �WKL0↔ SAT(S).

Lemma 19 holds because SAT([x �= y]) can be seen as a reformulation of COLOR2
which is equivalent to WKL0 over RCA0 [6].

Theorem 11 is proven by a case analysis using Lemma 17, by noticing that when
we are not in cases already handled by Lemma 18 and Lemma 19, we can find n-ary
formulas encoding [x] and [¬x] with n ≥ 2. Thus diagonalizing against some values
becomes a Σ0

1 event.

3 Ramsey-Type Schaefer’s Dichotomy Theorem

Proof of Theorem 14 can be split into four steps, each of them being dichotomies
themselves. The first one, Theorem 22, states the existence of a gap between prov-
ability in RCA0 and implying RCOLOR2 over RCA0. Then we focus successively on
two classes of boolean formulas: bijunctive formulas (Theorem 29) and affine formu-
las (Theorem 33) whose corresponding principles happen to be either a consequence
of RCOLOR2 or equivalent to the full class of bijunctive (resp. affine) formulas. Re-
maining cases are handled by Theorem 34. We first state a trivial relation between a
satisfaction principle and its Ramseyan version.

Lemma 20. RCA0 � SAT(S)→ LRSAT(S)

Lemma 21. Let T be a c.e. set of Boolean relations such that [x �= y] ∈ RepNC(T ). If
S ⊆ RepNC (T ∪ {[x], [¬x]}) then RCA0 � LRSAT(T )→ LRSAT(S).

3.1 From Provability to LRSAT([x �= y])

Our first dichotomy for Ramseyan principles is between RCA0 and LRSAT([x �= y]).
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Theorem 22. If S satisfies one of the conditions (a)-(d) below thenRCA0 � LRSAT(S).
Otherwise RCA0 � LRSAT(S)→ LRSAT([x �= y]).

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.

(c) Every relation in S is horn.
(d) Every relation in S is co-horn.

Lemma 23 (Schaefer in [9, 3.2.1]). If S contains some relation which is not horn and
some relation which is not co-horn, then [x �= y] ∈ Rep(S).
Lemma 24. At least one of the following holds:

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) Every relation in S is horn.

(d) Every relation in S is co-horn.
(e) [x �= y] ∈ RepNC (S).

Proof. Assume none of cases (a), (b) and (e) holds. Then by Lemma 17, [x] and [¬x]
are contained in RepNC(S), hence RepNC(S) = Rep(S). So by Lemma 23, either every
relation in S is horn, or every relation in S is co-horn. ��

It is easy to see that LRSAT(0-valid) and LRSAT(1-valid) both hold over RCA0.
We will now prove that so do LRSAT(Horn) and LRSAT(CoHorn), but first we must
introduce the powerful tool of closure under functions.

Definition 25. We say that a relation R ⊆ {0,1}n is closed or invariant under an m-ary
function f and that f is a polymorphism of R if for every m-tuple 〈v1, . . . , vm〉 of vectors
of R, f (v1, . . . , vm) ∈ R where f is the coordinate-wise application of the function f .

We denote the set of all polymorphisms of R by Pol (R), and for a set Γ of Boolean
relations we define Pol (Γ ) = { f : f ∈ Pol (R) for every R ∈ Γ }. Similarly for a set B of
Boolean functions, Inv (B) = {R : B ⊆ Pol (R)} is the set of invariants of B. For any set
S of Boolean relations, Pol (R) is in Post’s lattice.

Definition 26. The conjunction function conj : {0,1}2 → {0,1} is defined by
conj(a, b) = a∧ b, the disjunction function disj : {0,1}2→ {0,1} by disj(a, b) = a∨ b,
the affine function aff : {0,1}3→ {0,1} by aff(a, b, c) = a⊕ b⊕ c = 1 and the majority
function maj : {0,1}3→ {0,1} by maj(a, b, c) = (a ∧ b)∨ (a ∧ c)∨ (b ∧ c).

The following theorem due to Schaefer characterizes relations in terms of closure
under some functions. The proof involves finite objects and hence can be easily proven
to hold over RCA0.

Theorem 27 (Schaefer [9]). A relation is

1. horn iff it is closed under conjunction function
2. co-horn iff it is closed under disjunction function
3. affine iff it is closed under affine function
4. bijunctive iff it is closed under majority function

In other words, using Post’s lattice, a relation R is horn iff E2 ⊆ Pol (R), co-horn iff
V2 ⊆ Pol (R), affine iff L2 ⊆ Pol (R) and bijunctive iff D2 ⊆ Pol (R).

Theorem 27 is powerful because it does not only imply the closure of valid assign-
ments under some functions. As we will see in Theorem 37, this can be interpreted
as “the localized version of the principles parametrized by one of classes 1-4 is not
stronger than their corresponding non-localized versions”. The closure of valid assign-
ments under some functions enables us to prove Theorem 28 below.
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Theorem 28. If every relation in S is horn (resp. co-horn) then RSAT � LRSAT(S).
Proof. We will prove it over RCA0 for the horn case. The proof for co-horn relations
is similar. Let (V,C , L) be an instance of LRSAT(Horn) and F ⊆ L be the collection of
variables x ∈ L such that there is a finite Cf in ⊆ C for which every valid assignment ν
for Cf in satisfies ν(x) = T.

Case 1: F is infinite. Because F is Σ0
1, we can take a infinite Δ0

1 subset of F as
homogeneous set for C with color T.

Case 2: F is finite. We take H = L� F as infinite set homogeneous for C with color
F. If H is not homogeneous for C , then there exists a finite Cf in ⊆ C witnessing it. Let
Hf in = Var(Cf in)∩H . For every valid assignment ν for Cf in, there is an x ∈ Hf in such
that ν(x) = T. By definition of H , for each x ∈ H there is a valid assignment νx such
that νx (x) = F. By Theorem 27, the class valid assignments of a finite horn formula is
closed under conjunction. So ν =

∧
x∈Hf in

νx is a valid assignment for Cf in such that

ν(x) = F for each x ∈ Hf in. Contradiction. ��
Proof (of Theorem 22). If every relation in S is 0-valid (resp. 1-valid) then LRSAT(S)
holds obviously over RCA0. If every relation in S is horn (resp. co-horn) then by The-
orem 28, LRSAT(S) holds also over RCA0. By Lemma 24, it remains the case where
[x �= y] ∈ RepNC (S). By Lemma 21, RCA0 � LRSAT(S)→ LRSAT([x �= y]). ��

3.2 Bijunctive Satisfiability

Our second dichotomy theorem concerns bijunctive relations. Either the related prin-
ciple is a consequence of LRSAT([x �= y]) over RCA0, or it has full strength of
LRSAT(Bijunctive). In the remaining of this subsection, we will assume that S con-
tains only bijunctive relations and [x �= y] ∈ RepNC(S). In other words we suppose that
D2 ⊆ Pol (S) ⊆ D.

Theorem 29. If S contains only affine relations then RCA0 � LRSAT([x �= y]) →
LRSAT(S). Otherwise RCA0 � LRSAT(S)↔ LRSAT(Bijunctive).

Definition 30. For any set S of relations, the co-clone of S is the closure of S by exis-
tential quantification, equality and conjunction. We denote it by 〈S〉.

Remark that in general, RepNC (S) may be different from 〈S〉 if [x = y] �∈ RepNC (S).
However in our case, we assume that [x �= y] ∈ RepNC (S), hence [x = y] ∈ RepNC(S)
and RepNC (S) = 〈S〉. The following property will happen to be very useful for proving
that a relation R ∈ RepNC (S).

Lemma 31 (Folklore). Inv (Pol (S)) = 〈S〉
Lemma 32. One of the following holds:

(a) RepNC (S) contains all bijunctive relations.
(b) S ⊆ RepNC ({[x], [x �= y]}).
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Proof. By hypothesis, D2 ⊆ Pol (S) ⊆ D. Either D1 ⊆ Pol (S) – meaning that every
relation in S is affine – in which case S ⊆ Inv (D1) = RepNC ({[x], [x �= y]}). Or
Pol (S) = D2. Then RepNC(S) = 〈S〉 = Inv (Pol (S)) = Inv (D2) which is the set of
all bijunctive relations. ��
Proof (of Theorem 29). By Lemma 32, either RepNC (S) contains all bijunctive relations
or S ⊆ RepNC({[x], [x �= y]}). In the latter case, by Lemma 21 LRSAT([x �= y])
implies LRSAT(S) over RCA0. In the former case, there exists a finite basis S0 ⊆ S such
that RepNC(S0) contains all bijunctive relations. In particular S0 is a c.e. set, so RCA0 �
LRSAT(S0) → LRSAT(Bijunctive). Any instance of LRSAT(S0) being an instance
of LRSAT(S), RCA0 � LRSAT(S) → LRSAT(Bijunctive). The reverse implication
follows directly from the assumption that every relation in S is bijunctive. So RCA0 �
LRSAT(S)↔ LRSAT(Bijunctive). ��

3.3 Affine Satisfiability

We now suppose that L2 ⊂ Pol (S) � D, i.e. S contains only affine relations, [x �= y] ∈
RepNC(S) and S contains a relation which is not bijunctive.

Theorem 33. RCA0 � LRSAT(S)↔ LRSAT(Affine)

Proof. By assumption, every relation in S is affine. Hence RCA0 � LRSAT(Affine)→
LRSAT(S). As L2 ⊆ Pol (S) � D, Pol (S) is either L3 or L2. In particular, Pol(S ∪
{[x], [¬x]}) = L2. Considering the corresponding invariants, Inv (L2) ⊆ Inv(Pol(S ∪
{[x], [¬x]})) = 〈S ∪ {[x], [¬x]}〉 = RepNC(S ∪ {[x], [¬x]}). Inv (L2) being the set of
affine relations, by Lemma 21, RCA0 � LRSAT(S)→ LRSAT(Affine). ��

3.4 Remaining Cases

Based on Post’s lattice, the only remaining cases are Pol (S) = N2 or Pol (S) = I2.

Theorem 34. If Pol (S) ⊆ N2 then RCA0 � LRSAT(S)↔ LRSAT.

Proof. The direction RCA0 � LRSAT→ LRSAT(S) is obvious. We will prove the con-
verse. Because Pol (S) ⊆ N2, Pol (S ∪ {[x]}) = I2. RepNC(S ∪ {[x]}) = 〈S ∪ {[x]}〉 =
Inv (Pol (S ∪ {[x]})) ⊇ Inv (I2). But Inv (I2) is the set of all Boolean relations. As
Inv (I2) has a finite basis, there exists a finite S0 ⊆ S such that RepNC (S0 ∪ {[x]})
contains all Boolean relations. By Lemma 21, RCA0 � LRSAT(S0)→ LRSAT. Hence
RCA0 � LRSAT(S)↔ LRSAT. ��
Proof (of Theorem 14). By case analysis over Pol (S). If I1, I0, V2 and E2 are included
in Pol (S) then by Theorem 22, RCA0 � LRSAT(S). If D1 ⊆ Pol (S) ⊆ D then RCA0 �
LRSAT(S)↔ LRSAT([x �= y]) by Theorem 29. By the same theorem, if Pol (S) =
D2 then RCA0 � LRSAT(S) ↔ LRSAT(Bijunctive). If L2 ⊆ Pol (S) ⊆ L3 then by
Theorem 33, RCA0 � LRSAT(S)↔ LRSAT(Affine). Otherwise, I2 ⊆ Pol (S) ⊆ N2 in
which case RCA0 � LRSAT(S)↔ LRSAT. ��
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In fact, LRSAT([x �= y]) coincides with an already existing principle about bipartite
graphs. For k ∈ �, we say that a graph G = (V, E) is k-colorable if there is a function
f :V → k such that (∀(x , y) ∈ E)( f (x) �= f (y)), and we say that a graph is finitely
k-colorable if every finite induced subgraph is k-colorable.

Definition 35. Let G = (V, E) be a graph. A set H ⊆ V is homogeneous for G if every
finite V0 ⊆ V induces a subgraph that is k-colorable by a coloring that colors every
v ∈ V0 ∩ H color 0. LRCOLORk is the following statement: for every infinite, finitely
k-colorable graph G = (V, E) and every infinite L ⊆ V there is an infinite H ⊆ L that
is homogeneous for G. RCOLORk is the restriction of LRCOLORk with L = V . An
instance of LRCOLORk is a pair (G, L). For RCOLORk , it is simply the graph G.

Theorem 36. RCA0 � RCOLOR2↔ LRSAT([x �= y])

4 The Strength of Satisfiability

Localized principles are relatively easy to manipulate as they can express relations de-
fined using existential quantifier by restricting the localized set L to the variables not
captured by any quantifier. However we will see that when the set of relations has some
good closure properties, the unlocalized version of the principle is as expressive as its
localized one.

Theorem 37. Let S be a c.e. co-clone. RCA0 � RSAT(S)↔ LRSAT(S)

Noticing that affine (resp. bijunctive) relations form a co-clone, we immediately de-
duce the following corollary.

Corollary 38. RSAT(Affine) and RSAT(Bijunctive) are equivalent to their local ver-
sion over RCA0.

A useful principle below WKL0 for studying the strength of a statement is the notion
of diagonally non-computable function.

Definition 39. A total function f is diagonally non-computable if (∀e) f (e) �= Φe(e).
DNR is the corresponding principle, i.e. for every X , there exists a function d.n.c. rela-
tive to X .

DNR is known to coincide with the restriction of RWKL to trees of positive measure
([5,2]). On the other side, there exists an ω-model of DNR which is not a model of
RCOLOR2 ([2]). We will now prove that we can compute a diagonally non-computable
function from any infinite set homogeneous for a particular set of affine formulas. As
RSAT implies LRSAT(Affine) over RCA0, it gives another proof of RCA0 � RWKL→
DNR.

Theorem 40. There exists a computable set C of affines formulas over a computable
set V of variables such that every infinite set homogeneous for C computes a diagonally
non-computable function.

Corollary 41. RCA0 � RSAT(Affine)→DNR.



342 L. Patey

5 Conclusions

Satisfaction principles happen to collapse in the case of a full assignment existence
statement. The definition is not robust and the conditions of the corresponding di-
chotomy theorem evolve if we make the slight modification of allowing conjunctions in
our definition of formulas.

However, the proposed Ramseyan version leads to a much more robust dichotomy
theorem with four main subsystems. The conditions of “tractability” – here provabil-
ity over RCA0 – differ from those of Schaefer dichotomy theorem but the considered
classes of relations remain the same. We obtain the surprising result that infinite ver-
sions of Horn and co-Horn satisfaction problems are provable over RCA0 and strictly
weaker than bijunctive and affine corresponding principles, whereas the complexity
classification of [1] has shown that Horn satisfiability was P-complete under AC0 re-
duction, hence at least as strong as Bijunctive satisfiability which is NL-complete.

Question 42. Does RCOLOR2 imply DNR over RCA0 ? Does it imply RWKL ?
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Abstract. References to Thue’s 1914 paper on string transformation
systems are based mainly on a small section of that work defining Thue
systems. A closer study of the remaining parts of that paper highlight a
number of important themes in the history of computing: the transition
from algebra to formal language theory, the analysis of the “computa-
tional power” (in a pre-1936 sense) of rules, and the development of
algorithms to generate rule-sets.

Of the many current models of computation, one of the oldest is the Thue sys-
tem, first specified by Axel Thue 100 years ago [1]. A Thue system is typically
presentated as a sequence of string-pairs over some fixed alphabet:

A1, A2, A3, . . ., An

B1, B2, B3, . . ., Bn,

Any other two strings P and Q over the same alphabet are said to be similar
if it is possible to transform P into Q by replacing a substring matching some
Ai with the corresponding string Bi (or vice versa, replacing some Bi with Ai).
Two strings are said to be equivalent if we can form a finite sequence of strings,
each similar to the former, taking us from P into Q.

Emil Post showed how this could be recast as a special form of one of his
canonical systems and then to the decision problem for Turing machines [2]. At
the time, it was important as one of the first undecidable problems outside of
the original set from 1936, and Thue systems, with their close resemblance to
unrestricted grammars, have since been established as one of the classical models
of computation [3,4].

However, only the first two pages of Thue’s paper are directly relevant to
Post’s proof, and the remainder of the paper seems to have been rarely explored.
In what follows we review some of the remaining contributions of the paper, and
to advocate its relevance for the history of computing.

Background to Thue’s 1914 Paper

Axel Thue (1863-1922) was a Norwegian mathematician who published a range
of papers, 35 of which are collected in his Selected Mathematical Papers [5].
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Most of these relate to algebra and Diophantine approximations (he also worked
in geometry and mechanics), and a recent conference was dedicated to his con-
tributions in this area1. However, Axel Thue also published four papers directly
relating to the theory of words and languages.

Two of these, published in 1906 and 1912, dealt with patterns in infinite strings
[6,7] (Berstel provides a translation and discussion [8]). They are known for being
an early contribution to the field of combinatorics (though not the earliest [9])
and, in particular, for the Thue-Morse sequence. This sequence can be specified
by giving a morphism μ defining a mapping over strings (applied like the rules of
an L-system) μ(a) = ab, μ(b) = ba. Thus, for example, starting with the string
a we can produce the strings: a, ab, abba, abbabaab, abbabaabbaababba, . . .

These strings have some interesting properties: in particular they are all
overlap-free. Two strings have an overlap if they are of the form CU and UD,
with the common substring U forming the overlap. A special case is where a
string overlaps with itself, and a string is overlap-free if it does not contain any
substring that overlaps with itself. Thue proves that the morphism μ preserves
this property: it will always map overlap-free words to overlap-free words.

Thue’s other two “language theory” papers from 1910 and 1914 discuss the
more general problem of transformations [10,1]. Thue’s 1910 paper deals with
transformations between trees, and is thus a more direct predecessor of his 1914
paper. It been discussed by Steinby and Thomas [11].

The Importance of Critical Pairs

The 1914 paper, whose title translates roughly as Problems concerning the trans-
formation of symbol sequences according to given rules specifically articulates the
central problem in algorithmic terms:

Problem I: For any arbitrary given sequences A and B, to find a method,
where one can always calculate in a predictable number of operations,
whether or not two arbitrary given symbol sequences are equivalent in re-
spect of the sequences A and B.

Thue observes that this task of solving this problem is “extensive and of the
utmost difficulty” and notes that he must settle for dealing with some special
cases of the problem. Having posed the general problem in §II of his paper,
Thue then presents an early example of a proof of (what we would now call)
termination and local confluence for the special case where the rules are non-
overlapping and non-increasing in size.

When reducing some string P , we must find some occurrence of Ai and replace
it with Bi. A difficulty arises if there is an overlap: some substring CUD in P ,
such that Ai matches both CU and UD, and thus choosing one option will
eliminate our ability to later choose the other. In the modern setting of term
rewriting, CU and UD are known as a critical pair, and the problem has been
well-studied in the literature [12], starting at least from Newman [13].

1 Thue 150, held in Bordeaux, France from Sept 30 - Oct 4, 2013.
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Thus, having studied overlap-free strings in his previous papers, Thue’s focus
in 1914 is the converse, and the overlap situation of strings CU and UD is the
focus of study for most of the paper.

Completion in the Context of a Monoid Presentation

Thue deals with the special case where a language is defined by specifying some
identity string, R. This is not the usual case in language theory but is not
an unusual approach when presenting an algebraic group. In Thue’s case he is
presenting a monoid : a set with an associative binary operator and an identity
element (but no inverse function).

So, given a monoid, represented by specifying the identity string, the word
problem here simply involves transforming some string P to some string Q by
repeated insertions and deletions of R. Thue calls this relation “equivalence with
respect to R”, writes it as P = Q, and formulates:

Problem II: Given an arbitrary sequence R, to find a method where one
can always decide in a finite number of investigations whether or not two
arbitrary given sequences are equivalent with respect to R.

As before, a difficulty arises when two overlapping instances of R occur as sub-
strings of P . If we represent these as CU and UD as above, then we have R ≡
CU ≡ UD. But in this case C = CR ≡ C(UD) ≡ (CU)D ≡ RD = D. This tells
us thatC = D (moduloR). The importance of this equation is that if we choose to
delete either CU and UD from the string containing CUD we are left with either
C or D, but adding the equation C = D restores the confluence of our derivation.

Moreover, since both C and D are constructed from R by removing the com-
mon substring U they have the same length and contain the same symbols. In
this case, as Thue notes, it is relatively easy to derive an algorithm for solving
the word problem, and Thue describes one in §V of his paper.

Given this solution for the special case of Problem I, Thue now can outline
his completion algorithm to solve Problem II:

1. Start with the given identity word R.
2. Form equations C = D based on the remainder from the overlaps within R.

For all these equations C and D will have the same length, and this will be
less than the length of R.

3. Form a new set of identity strings R′, R′′, . . . by applying the equivalences
from step 2 in R. These new identity strings will all have the same length as
the original R.

4. Iterate steps 2 and 3 until we reach the fixed point. We know the process ter-
minates, since each new identity string we create can only be a permutation
of the original identity string (and there are only finitely many of these).

Thue’s algorithm lacks typical features of modern completion algorithms such
as the Knuth-Bendix algorithm: in particular there is no need for a complex
unification process when we are dealing with concrete strings. However, it cer-
tainly contains many of the “basic features” of the algorithm as described by
Buchberger [12], and could be considered as an embryonic version of it.
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An Early Computational Flavour

Throughout Thue’s paper he distinguishes between the case where two strings are
equal (modulo some R), and when two strings are provably equal with respect
to some given set of rules. He also investigates special cases where these two
relations coincide, and where he can formulate (what we would now call) an
algorithm to solve the word problem.

Thue’s perspective is vital from a computational point of view and is neatly
summarised by Matiyasevich and Sénizergues [14]:

“put[ting] more attention to the process of transformation of words
rather than to its result [...] is typical to computer science but has no
counterpart in, say, algebra”

Thue was writing as a mathematician, and well before the identification of
computer science as a discipline, but in his 1914 paper we can recognise much of
the computational DNA that would allow algebra to evolve into language theory.
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Abstract. Expansion of space, rather than the progress of time, drives
many developmental processes in plants. Metric-driven grammars pro-
vide a formal method for specifying and simulating such processes. We
illustrate their operation using cell division patterns, phyllotactic pat-
terns, and several aspects of leaf development.

Keywords: natural computing, computational modeling of plant devel-
opment, growth and form, L-system, cell complex.

Mathematical studies relating the growth and form of organisms were pioneered
at the beginning of the XX century by d’Arcy Wentworth Thompson [24]. Among
other concepts, he proposed a “theory of transformations” to describe how the
forms of related species can be continuously mapped into each other. He also
suggested that similar mappings could be used to describe gradual changes of
form due to growth. These ideas have been followed and elaborated over time,
leading to the characterization of growth in terms of growth tensor fields [7],
which are widely used today [3]. Continuous transformations do not capture,
however, the emergence and differentiation of new components of organisms,
such as cells and organs. A mathematical description of this aspect of develop-
ment was pioneered by Aristid Lindenmayer, who in 1968 introduced L-systems
as a formalism for modeling the development of structures composed of a chang-
ing number of discrete components. L-systems were initially defined in terms
of cellular automata [8], but soon afterwards were re-defined more elegantly in
terms of formal grammars [9]. In this form they are known and used today. A
distinctive feature of L-systems is their parallel operation, which lets us view
derivation steps as advancing time by some interval. Correspondingly, consecu-
tive words generated by an L-system can represent a sequence of developmental
stages of an organism.

According to their original definition, L-systems describe developing struc-
tures at the level of topology, i.e., the adjacency relations between the structure
components. L-systems are particularly well suited to model linear (filamentous)
and branching structures, although extensions to discretized surfaces (maps)
and volumes have also been considered [11,12]. Geometric representations, when
needed, are introduced by the draftsperson illustrating the models, or calculated
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algorithmically as a graphical interpretation of the generated structures [17].
This focus on topology has two implications. First, time is the only independent
variable that can drive simulations. Second, geometric factors, such as size and
shape, have no direct impact on the progress of the simulations (this limitation
was partially addressed in extensions of L-systems aimed at the animation of
plant development in continuous time [14] and the simulation of interaction be-
tween plants and their environment [13,15]). In many developmental processes,
however, geometry plays a fundamental morphogenetic role [18]. For example,
according to the Errera rule [1,6], the shortest wall passing through the centroid
of the cell determines the most likely orientation of cell division in the absence
of specific polarizing factors. Furthermore, the expansion of space may have a
more direct impact on the progress of morphogenesis than the progress of time.
For instance, according to the conceptual model of phyllotaxis by Snow and
Snow [23] and its numerous computational implementations (e.g. [4,21,22]), new
primordia (precursors of organs such as leaves and flowers) emerge in the growing
plant apices when and where there is enough space for them. The plastochron,
or the time interval between the appearance of consecutive primordia [5], is not
an independent variable, but a result of the changing spatial relations in the
plant.

Often it is not known whether an observed morphogenetic process is best
described as being driven by the progress of time, the expansion of space, or
some combination of both factors. Construction of models exploring alternative
hypotheses is then an important part of discovery. To provide a methodology
and a formal basis for this exploration, we employ metric-driven grammars as a
complement of time-driven L-systems.

A metric-driven grammar operates on a cell complex. A justification for the
use of cell complexes as models of biological structures, and examples of L-
systems operating on 1-dimensional cell complexes, are presented in [16]. A met-
ric of the cell complex specifies the distances between different elements of the
structure. These distances change over time as a result of growth. Functions of
distances measured within cells and/or their neighborhood control the applica-
tion of productions, which locally modify the topology of the complex.

An example of the operation of a metric-driven grammar is shown in Fig-
ure 1. The production replaces a line segment that exceeds a predefined thresh-
old length with a simple branching structure (compare the first and the second
row in Figure 1). The structures are embedded in surfaces with different growth
distributions. In the case of uniform growth (left column), all segments reach the
threshold length and produce the successor structure simultaneously. The deriva-
tion sequence is then indistinguishable from that generated by an L-system: pro-
ductions are applied in parallel. In contrast, in the case of non-uniform growth
(middle and right columns), faster growing segments reach the threshold length
before those in the slower growing parts. Productions are applied asynchronously,
yielding patterns that depend on the distribution of growth.

A fertile area in which metric-driven grammars provide useful insights is
leaf development. There, growing distances appear to trigger the emergence of
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Fig. 1. Selected developmental stages of three branching structures simulated using the
same metric-driven grammar. The grammar operates in a space that expands uniformly
(left column), grows faster at the bottom than at the top (middle column) and grows
faster at the top than at the bottom (right column). Arrows indicate positions of the
branching points resulting from the first production application.

serrations [2], lobes [16], leaflets, veins [20], and trichomes. Model exploration
suggests that the observed diversity of leaf forms and patterns may result from
the variation of a small number of metric-related parameters of development.
Further examples of patterning that is likely metric-driven include the initia-
tion of flowers in compound inflorescences and the arrangement of organs within
individual flowers.

From a biological perspective, an important question is how distances are
measured. The measurement of small distances (on the order of millimeters and
less) can be accomplished by diffusion and decay: the concentration of a diffus-
ing substance decreases away from the source, and crosses a threshold value at
some distance from it (c.f. [10]). Nevertheless, a different mechanism, based on
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the active transport of the plant hormone auxin and a feedback between this
transport and the distribution of transporters, appears to underlie numerous
morphogenetic processes in plants [18], including the measurement of distances
in phyllotactic patterning [19,21] and leaf development [2,16]. Whether this is a
fluke of evolution, the adaptation of a process that evolved in other contexts, or
a manifestation of some selective advantage of the transport-based mechanism
is currently not known.

In the analyses carried out so far, distances were assumed to be measured
instantaneously; in other words, they reflect the actual metric at a given time. It
is possible, however, that biochemical mechanisms propagate information about
distances at rates commensurate with the rates of growth. Simulations show that
such “relativistic” phenomena can qualitatively change the generated patterns.
An analysis of the impact of the limited speed of information propagation on
morphogenesis is a fascinating topic of current research.
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Abstract. We extend the Luzin hierarchy of qcb0-spaces introduced in
[ScS13] to all countable ordinals, obtaining in this way the hyperprojec-
tive hierarchy of qcb0-spaces. We generalize all main results of [ScS13] to
this larger hierarchy. In particular, we extend the Kleene-Kreisel contin-
uous functionals of finite types to the continuous functionals of countable
types and relate them to the new hierarchy. We show that the category of
hyperprojective qcb0-spaces has much better closure properties than the
category of projective qcb0-space. As a result, there are natural examples
of spaces that are hyperprojective but not projective.
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1 Introduction

A basic notion of Computable Analysis [We00] is the notion of an admissible
representation of a topological space X . This is a partial continuous surjection
δ from the Baire space N onto X satisfying a certain universality property (see
Subsection 2.3 for some more details). Such a representation of X usually induces
a reasonable computability theory on X , and the class of admissibly represented
spaces is wide enough to include most spaces of interest for Analysis or Numerical
Mathematics. As shown by the first author [Sch03], this class coincides with the
class of the so-called qcb0-spaces, i.e. T0-spaces which are quotients of countably
based spaces, and it forms a cartesian closed category (with the continuous
functions as morphisms). Thus, among qcb0-spaces one meets many important
function spaces including the continuous functionals of finite types [Kl59, Kr59]
interesting for several branches of logic and computability theory.

Along with the mentioned nice properties of qcb0-spaces, this class seems to
be too broad to admit a deep understanding. Hence, it makes sense to search for
natural subclasses of this class which still include “practically” important spaces
but are (hopefully) easier to study. Interesting examples of such subclasses are
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obtained if we consider, for each level Γ of the classical Borel or Luzin (projective)
hierarchies of Descriptive Set Theory [Ke95], the class of spaces which have an
admissible representation of the complexity Γ (below we make this precise). A
study of the resulting Borel and Luzin hierarchies of qcb0-spaces was undertaken
in [ScS13]. In particular, it was shown that the Luzin hierarchy of qcb0-spaces is
closely related to the Kleene-Kreisel continuous functionals of finite types, and
that the category of projective qcb0-spaces is cartesian closed.

However, the class of projective qcb0-spaces is in a sense too restricted. In
particular, it is not closed under some natural constructions (e.g., countable
products and countable coproducts) and does not contain some spaces of interest
for Computable Analysis.

In this paper we extend the Luzin hierarchy of qcb0-spaces to all countable
ordinals, obtaining in this way the hyperprojective hierarchy of qcb0-spaces. We
generalize all main results of [ScS13] concerning the Luzin hierarchy to this larger
hierarchy. In particular, we extend the Kleene-Kreisel continuous functionals of
finite types to the continuous functionals of countable types and relate them to
the new hierarchy. We show that the category of hyperprojective qcb0-spaces
has much better closure properties than the category of projective qcb0-space.
As a result, there are natural examples of spaces that are hyperprojective but
not projective.

After recalling some notions and known facts in the next section, we summa-
rize some basic facts on the hyperprojective hierarchy of sets in Section 3. In
Section 4 we study the hyperprojective hierarchy of qcb0-spaces, in particular we
show that the category of hyperprojective qcb0-spaces is closed under countable
limits and countable colimits. In Section 5 we introduce the continuous func-
tionals of countable types and relate them to the hyperprojective hierarchy of
qcb0-spaces. In Section 6 we establish some properties of categories of hyper-
projective qcb0-spaces. Because of space limitations, we omit the proofs in this
conference paper.

2 Notation and Preliminaries

2.1 Notation

We freely use the standard set-theoretic notation like dom(f), rng(f), graph(f)
for the domain, range and graph of a function f , respectively, X × Y for the
Cartesian product, X⊕Y for the disjoint union of sets X and Y , Y X for the set
of functions f : X → Y (but in the case when X,Y are qcb0-spaces we use the
same notation to denote the set of continuous functions from X to Y ), and P (X)
for the set of all subsets of X . For A ⊆ X , A denotes the complement X \A of
A in X . We identify the set of natural numbers with the first infinite ordinal ω.
The first uncountable ordinal is denoted by ω1. The notation f : X → Y means
that f is a (total) function from a set X to a set Y .
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2.2 Topological Spaces

We assume the reader to be familiar with the basic notions of topology. The
collection of all open subsets of a topological space X (i.e. the topology of X)
is denoted by τX ; for the underlying set of X we will write X in abuse of
notation. We will usually abbreviate “topological space” to “space”. Remember
that a space is zero-dimensional, if it has a basis of clopen sets. A basis for the
topology on X is a set B of open subsets of X such that for every x ∈ X and
open U containing x, there is B ∈ B satisfying x ∈ B ⊆ U . A space is countably
based, if it has a countable basis. By a cb0-space we mean a countably based
T0-space. The class of cb0-spaces is denoted by CB0. We write X ∼= Y , if X and
Y are homeomorphic.

A space Y is called a (continuous) retract of a space X if there are continuous
functions s : Y → X and r : X → Y such that composition rs coincides with
the identity function idY on Y . Such a pair of functions (s, r) is called a section-
retraction pair. Note that the section s is a homeomorphism between Y and the
subspace s(Y ) = {x ∈ X | sr(x) = x} of X , and s−1 = r|s(Y ).

Let ω be the space of non-negative integers with the discrete topology. Of
course, the spaces ω × ω = ω2, and ω ⊕ ω are homeomorphic to ω, the first
homeomorphism is realized by the Cantor pairing function 〈·, ·〉.

Let N = ωω be the set of all infinite sequences of natural numbers (i.e., of
all functions ξ : ω → ω). Let ω∗ be the set of finite sequences of elements of ω,
including the empty sequence. For σ ∈ ω∗ and ξ ∈ N , we write σ * ξ to denote
that σ is an initial segment of the sequence ξ. By σξ = σ · ξ we denote the
concatenation of σ and ξ, and by σ · N the set of all extensions of σ in N . For
x ∈ N , we can write x = x(0)x(1) . . . where x(i) ∈ ω for each i < ω. For x ∈ N
and n < ω, let x<n = x(0) . . . x(n − 1) denote the initial segment of x of length
n.

By endowing N with the product of the discrete topologies on ω, we obtain
the so-called Baire space. The product topology coincides with the topology
generated by the collection of sets of the form σ · N for σ ∈ ω∗. The Baire
space is of primary importance for DST and CA. The importance stems from
the fact that many countable objects are coded straightforwardly by elements of
N , and it has very specific topological properties. In particular, it is a perfect
zero-dimensional space, and the spaces N 2, Nω, ω×N = N ⊕N ⊕ . . . (endowed
with the product topology) are all homeomorphic to N . Let (x, y) #→ 〈x, y〉 be
a homeomorphism between N 2 and N . Let (x0, x1, . . . ) #→ 〈x0, x1, . . . 〉 be the
homeomorphism between Nω and N defined by 〈x0, x1, . . .〉〈m,n〉 = xm(n).

The space Pω is formed by the set of subsets of ω equipped with the Scott
topology, the basic open sets of which are the sets {A ⊆ ω | F ⊆ A}, where F
ranges over the finite subsets of ω. It has the following well-known universality
property:

Proposition 1. A topological space X embeds into Pω iff X is a cb0-space.

Remember that a space X is Polish, if it is countably based and metrizable
with a metric d such that (X, d) is a complete metric space. Important examples
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of Polish spaces are ω, N , the space of reals R and its Cartesian powers Rn (n <
ω), the closed unit interval [0, 1], the Hilbert cube [0, 1]ω and the Hilbert space
Rω. Simple examples of non-Polish space are the Sierpinski space S = {⊥,�},
where the set {�} is open but not closed, and the space of rationals.

2.3 Admissible Representations and qcb0-spaces

A representation of a space X is a surjection of a subspace of the Baire space
N onto X . A representation δ of X is admissible, if it is continuous and any
continuous function ν : Z → X from a subspace Z of N to X is continuously
reducible to δ, i.e. ν = δg for some continuous function g : Z → N . A topological
space is admissibly representable if it has an admissible representation.

The notion of admissibility was introduced in [KW85] for representations of
countably based spaces (in a different but equivalent formulation) and was ex-
tensively studied by many authors. In [Sch02, Sch03] the notion was extended
to non-countably based spaces and a nice characterization of the admissibly
represented spaces was achieved. Namely, the admissibly represented sequential
topological spaces coincide with the qcb0-spaces. Spaces which arise as topolog-
ical quotients of countably based spaces are called qcb-spaces, and qcb-spaces
that have the T0-property are called qcb0-spaces.

The category QCB of qcb-spaces as objects and continuous functions as mor-
phisms is known to be cartesian closed (cf. [ELS04, Sch03]). The same is true
for its full subcategory QCB0 of qcb0-spaces. The exponential Y X to qcb-spaces
X,Y has the set of continuous functions from X to Y as the underlying set,
and its topology is the sequentialization of the compact-open topology on Y X .
By the sequentialization of a topology τ we mean the family of all sequentially
open sets pertaining to this topology. (Remember that sequentially open sets are
defined to be the complements of the sets that are closed under forming limits
of converging sequences.) The sequentialization of τ is finer than or equal to τ .
The topology of the QCB-product to X and Y , which we denote by X×Y , is the
sequentialization of the well-known Tychonoff topology on the cartesian product
of the underlying sets of X and Y . So products and exponentials in QCB and
in QCB0 are formed in the same way as in its supercategory Seq of sequential
topological spaces. The category QCB0 is closed under many other constructions.
We will discuss them in Section 4.

Given admissible representations δi for QCB0-spaces Xi, there are canonical
admissible representations for the binary product X1×X2, the countable product∏

i Xi and the function space XX1
2 (see [Sch03, We00]). We denote them by

[δ1×δ2], [δ0, δ1, . . . ] and [δ1 → δ2], respectively. The function space representation
is constructed using the following well-known fact (see e.g. [Sch03]).

Proposition 2. There is a partial continuous function u :⊆ N 2 → N such that
dom(u) ∈ Π0

2(N 2), for any partial continuous function g on N there is some
p ∈ N such that up := λx.u(p, x) is an extension of g, and for any partial
continuous function G :⊆ N ×N → N there is a total continuous function g on
N such that u(g(p), q) = F (p, q) for all (p, q) ∈ dom(G).
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3 Hyperprojective Hierarchy of Sets

Here we recall some facts on hierarchies in arbitrary spaces, with the emphasis
on the hyperprojective hierarchy in the Baire space. Additional information on
the hyperprojective hierarchy may be found in [Ke83].

A pointclass on X is simply a collection Γ(X) of subsets of X . A family of
pointclasses [Se13] is a family Γ = {Γ(X)} indexed by arbitrary topological
spaces X such that each Γ(X) is a pointclass on X and Γ is closed under contin-
uous preimages, i.e. f−1(A) ∈ Γ(X) for every A ∈ Γ(Y ) and every continuous
function f : X → Y . A basic example of a family of pointclasses is given by the
family O = {τX} of the topologies of all the spaces X .

We will use some operations on families of pointclasses. First, the usual set-
theoretic operations will be applied to the families of pointclasses pointwise: for
example, the union

⋃
i Γi of the families of pointclasses Γ0,Γ1, . . . is defined by

(
⋃

i Γi)(X) =
⋃

i Γi(X).
Second, a large class of such operations is induced by the set-theoretic oper-

ations of L.V. Kantorovich and E.M. Livenson (see e.g. [Se13] for the general
definition). Among them are the operation Γ #→ Γσ, where Γ(X)σ is the set of
all countable unions of sets in Γ(X), the operation Γ #→ Γδ, where Γ(X)δ is the
set of all countable intersections of sets in Γ(X), the operation Γ #→ Γc, where
Γ(X)c is the set of all complements of sets in Γ(X), the operation Γ #→ Γd,
where Γ(X)d is the set of all differences of sets in Γ(X), the operation Γ #→ Γ∃
defined by Γ∃(X) := {∃N (A) | A ∈ Γ(N ×X)}, where ∃N (A) := {x ∈ X | ∃p ∈
N .(p, x) ∈ A} is the projection of A ⊆ N × X along the axis N , and finally
the operation Γ #→ Γ∀ defined by Γ∀(X) := {∀N (A) | A ∈ Γ(N × X)}, where
∀N (A) := {x ∈ X | ∀p ∈ N .(p, x) ∈ A}.

The operations on families of pointclasses enable to provide short uniform
descriptions of the classical hierarchies in arbitrary spaces. E.g., the Borel hi-
erarchy is the family of pointclasses {Σ0

α}α<ω1 defined by induction on α as
follows [Se06, Br13]: Σ0

0(X) := {∅}, Σ0
1 := O, Σ0

2 := (Σ0
1)dσ, and Σ0

α(X) :=
(
⋃

β<α Σ0
β(X))cσ for α > 2. The sequence {Σ0

α(X)}α<ω1 is called the Borel hi-

erarchy in X . We also let Π0
β(X) := (Σ0

β(X))c and Δ0
α(X) := Σ0

α(X)∩Π0
α(X).

The classes Σ0
α(X),Π0

α(X),Δ0
α(X) are called the levels of the Borel hierarchy

in X .
For this paper, the hyperprojective hierarchy is of main interest.

Definition 1. The hyperprojective hierarchy is the family {Σ1
α}α<ω1 of point-

classes defined by induction on α as follows: Σ1
0 = Σ0

2, Σ
1
α+1 = (Σ1

α)c∃, Σ
1
λ =

(Σ1
<λ)δ∃, where α, λ < ω1, λ is a limit ordinal, and Σ1

<λ(X) :=
⋃

α<λ Σ
1
α(X).

In this way, we obtain for any topological space X the ω1-sequence {Σ1
α(X)},

which is called here the hyperprojective hierarchy in X . The pointclasses Σ1
α(X),

Π1
α(X) := (Σ1

α(X))c and Δ1
α(X) := Σ1

α(X)∩Π1
α(X) are called levels of the hy-

perprojective hierarchy in X . The finite non-zero levels of the hyperprojective
hierarchy coincide with the corresponding levels of the Luzin’s projective hierar-
chy [Br13, ScS13]. The class of hyperprojective sets in X is defined as the union
of all levels of the hyperprojective hierarchy in X .
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Note that if X is Polish then, as it is well known, we can take Σ1
0 = Σ0

1

in the definition of the hyperprojective hierarchy and obtain the same non-
zero levels as above. In this case our “hyperprojective hierarchy” is an initial
segment of the hyperprojective hierarchy from [Ke83]. For non-Polish spaces our
definition guarantees the “right” inclusions of the levels, as the first item of
the next assertion states. The assertion collects also some other properties of
the hyperprojective hierarchy which are proved just in the same way as for the
classical projective hierarchy [Ke95].

Proposition 3. (1) For any α < β < ω1, Σ
1
α ∪Π1

α ⊆ Δ1
β.

(2) For any limit countable ordinal λ, Σ1
<λ = Π1

<λ.
(3) For any non-zero α < ω1, Σ

1
α = (Σ1

α)σ = (Σ1
α)δ = (Σ1

α)∃. In particular, the
class Σ1

α(N ) is closed under countable unions, countable intersections, con-
tinuous images, and continuous preimages of functions with a Π0

2-domain.
(4) For any non-zero α < ω1, Π

1
α = (Π1

α)σ = (Π1
α)δ = (Π1

α)∀. In particular, the
class Π1

α(N ) is closed under countable unions and countable intersections,
and continuous preimages of functions with a Π0

2-domain.
(5) For any uncountable Polish space (and also for any uncountable quasi-Polish

space [Br13]) X, the hyperprojective hierarchy in X does not collapse, i.e.
Σ1

α(X) �⊆ Π1
α(X) for each α < ω1.

4 Hyperprojective Hierarchy of qcb0-spaces

Here we discuss the hyperprojective hierarchy of qcb0-spaces. In particular we
extend all results from [ScS13] concerning the Luzin’s projective hierarchy of
qcb0-spaces.

For any representation δ of a space X , let EQ(δ) := {(p, q) ∈ N 2 | p, q ∈
dom(δ) ∧ δ(p) = δ(q)}. Let Γ be a family of pointclasses. A topological space X
is called Γ-representable, if X has an admissible representation δ with EQ(δ) ∈
Γ(N 2). The class of all Γ-representable spaces is denoted QCB0(Γ). This no-
tion from [ScS13] enables to transfer hierarchies of sets to the corresponding
hierarchies of qcb0-spaces. In particular, we arrive at the following definition.

Definition 2. The sequence {QCB0(Σ
1
α)}α<ω1 is called the hyperprojective hi-

erarchy of qcb0-spaces. By levels of this hierarchy we mean the classes QCB0(Σ
1
α)

as well as the classes QCB0(Π
1
α) and QCB0(Δ

1
α).

The next assertion summarizes extensions of the corresponding results from
[ScS13] about the Luzin hierarchy. They are proved just in the same way as in
[ScS13].

Proposition 4. (1) Let Γ ∈ {Σ1
α,Π1

α | 0 ≤ α < ω1} and let X be a Hausdorff
space. Then X is Γ-representable, if X has an admissible representation δ
with dom(δ) ∈ Γ(N ).

(2) Let Γ ∈ {Σ1
α,Π1

α | 0 ≤ α < ω1}. Then any continuous retract of a Γ-
representable space is a Γ-representable space.
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(3) The hyperprojective hierarchy of qcb0-spaces does not collapse, more pre-
cisely, QCB0(Σ

1
α) �⊆ QCB0(Π

1
α) for each α < ω1.

(4) For any Γ ∈ {Σ1
α,Π1

α | 1 ≤ α < ω1}, we have QCB0(Γ) ∩ CB0 = CB0(Γ),
where CB0(Γ) is the class of spaces homeomorphic to a Γ-subspace of Pω.

Now we establish some closure properties of the hyperprojective hierarchy
of qcb0-spaces. We begin with exponentiation in QCB0. The next proposition
extends and improves Theorem 7.1 in [ScS13]:

Proposition 5. Let 1 ≤ α < ω1, X ∈ QCB0(Σ
1
α) and Y ∈ QCB0(Π

1
α). Then

Y X ∈ QCB0(Π
1
α).

The next proposition provides some complexity bounds on products and co-
products formed in QCB0.

Proposition 6. (1) Any non-zero level of the hyperprojective hierarchy of qcb0-
spaces is closed under countable QCB0-products and coproducts.

(2) Let λ be a countable limit ordinal. Let {Xk}k<ω be a sequence of qcb0-spaces
such that Xk ∈ QCB0(Σ

1
<λ) for all k. Then the QCB0-product

∏
k<ω Xk is

in QCB0((Σ
1
<λ)δ) and the co-product

⊕
k<ω Xk is in QCB0((Σ

1
<λ)σ).

For equalizers we have the following result.

Proposition 7. Let α be a non-zero countable ordinal. Then QCB0(Σ
1
α) and

QCB0(Π
1
α) are closed under forming equalizers.

Now we turn our attention to co-equalizers. Co-equalizers in QCB0 are con-
structed by first forming a co-equalizer in the category QCB and then, if the
resulting space is non-T0, identifying points with the same neighbourhoods. Non-
T0 qcb-spaces do not have an admissible representation, but some of them have a
quotient representation. This motivates the following definition generalizing the
one from above. For a given family Γ of pointclasses, we say that a topological
space X is Γ-quotient-representable, if X has a quotient representation δ such
that EQ(δ) ∈ Γ(N 2). We denote the class of Γ-quotient-representable spaces by
QTE(Γ) and the class of Γ-quotient-representable T0-spaces by QTE0(Γ). Since
any admissible representation of a sequential space is a quotient representation,
we have QCB0(Γ) ⊆ QTE0(Γ).

We study the (non-uniform) descriptive complexity of the Kolmogorov opera-
tor T0. It maps any T0-space to itself and sends a non-T0-space X to the quotient
space induced by the equivalence relation ≡X given by the specification order of
X , i.e., x ≡X x′ iff x and x′ have the same open neighbourhoods.

Proposition 8. Let α be a non-zero countable ordinal. Then X ∈ QTE(Σ1
α) im-

plies T0(X) ∈ QCB0(Σ
1
α+2). Moreover, QCB0(Σ

1
α) ⊆ QTE0(Σ

1
α) ⊆ QCB0(Σ

1
α+2).

Now we can formulate our result about forming co-equalizers.

Proposition 9. Let λ be a countable limit ordinal. Then QCB0(Σ
1
<λ) is closed

under forming co-equalizers in QCB0.

We do not know whether QCB0(Σ
1
α) is closed under forming co-equalizers in

QCB0.
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5 Continuous Functionals of Countable Types

Here we extend all results in [ScS13] about the continuous functionals of finite
types to the continuous functionals of countable types defined as follows:

Definition 3. Using the function space construction of QCB0, we define the
sequence of qcb0-spaces {N〈α〉}α<ω1 by induction on countable ordinals α as
follows:

N〈0〉 := ω, N〈α + 1〉 := ωN〈α〉 and N〈λ〉 :=
∏
α<λ

N〈α〉 ,

where ω denotes the space of natural numbers endowed with the discrete topol-
ogy, α, λ < ω1 and λ is a limit ordinal. We call N〈α〉 the space of continuous
functionals of type α over ω.

Obviously, for k < ω the space N〈k〉 coincides with the space of Kleene-
Kreisel continuous functionals of type k extensively studied in the literature
[No80, No81, No99], and N〈1〉 coincides with the Baire space N . For any finite
k ≥ 2, the sequential topology on N〈k〉 is strictly finer than the corresponding
compact-open topology [Hy79]. Furthermore it is neither zero-dimensional nor
regular [Sch09].

Any of the introduced spaces has a natural canonical admissible representation
δα : Dα → N〈α〉 induced by the standard constructions mentioned in Section 2.3,
starting with the admissible representation δ0 : N → ω defined by δ0(p) = p(0).

The next proposition collects some basic properties of the continuous func-
tionals of countable types. It follows from the fact that QCB0 is cartesian closed
and closed under countable limits and countable colimits.

Proposition 10. (1) For all α < ω1, the space N〈α〉 is homeomorphic to N〈α〉×
N〈α〉.

(2) For all α < β < ω1, the spaces N〈α〉, ω×N〈β〉 and N ×N〈β〉 are continuous
retracts of N〈β〉.

(3) For all 1 ≤ α < ω1, the space (N〈α〉)ω is a continuous retract of N〈α〉.

The next result is an extension of Theorem 7.6 in [ScS13]. It can be proved
in a similar way as in [ScS13] by using Proposition 10.

Theorem 1. Let α be a non-zero countable ordinal and B a non-empty subset
of N . Then B ∈ Σ1

α(N ) iff there is a continuous function f : N〈α〉 → N with
rng(f) = B.

Finally, we relate the continuous functionals of countable types to the hy-
perprojective hierarchy of qcb0-spaces (extending Theorem 7.7 of [ScS13]). The
next result provides the exact estimation of the spaces of continuous functionals
of countable types in the hyperprojective hierarchy of qcb0-spaces. On the other
hand, the result provides “natural” witnesses for the non-collapse property of
this hierarchy.

Theorem 2. For any 0 < α < ω1, N〈α+1〉 ∈ QCB0(Π
1
α) \QCB0(Σ

1
α). For any

countable limit ordinal λ, N〈λ〉 ∈ QCB0((Π
1
<λ)δ) \ QCB0((Σ

1
<λ)σ).
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6 Categories of Hyperprojective qcb0-spaces

We call any space in
⋃

α<ω1
QCB0(Σ

1
α) a hyperprojective qcb0-space. We denote

the full subcategory of the category QCB0 consisting of all hyperprojective qcb0-
spaces by QCB0(HP). By Section 4, it has excellent closure properties.

Theorem 3. The category QCB0(HP) of hyperprojective qcb0-spaces is carte-
sian closed, countably complete and countably co-complete. Countable limits,
countable colimits and function spaces are formed as in QCB0.

The next result provides a characterization of QCB0(HP) that avoids ex-
plicit mention of the hyperprojective hierarchy. We thank Matthew de Brecht
for pointing out this fact to us.

Theorem 4. Let C be a subcategory of QCB0 which contains the Sierpinski
space as an object, is closed under homeomorphism, and is closed under QCB0-
exponentials, countable QCB0-limits and countable QCB0-colimits. Then C con-
tains QCB0(HP).

Regarding cartesian closed subcategories of QCB0 that contain the discrete
space of natural numbers, we have the following minimality result for QCB0(HP),
showing that any level of the hierarchy is needed.

Proposition 11. There is no full cartesian closed subcategory C of QCB0 such
that C inherits countable products from QCB0, contains the discrete space ω of
natural numbers and is contained itself in QCB0(Σ

1
α) for some α < ω1.

7 Conclusion

We have defined the category QCB0(HP) of hyperprojective qcb0-spaces and
shown that it has excellent closure properties. The latter exhibit QCB0(HP)
as a nice category in which to study many spaces of interest for Computable
Analysis.
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[ScS13] Schröder, M., Selivanov, V.: Some Hierarchies of qcb0-Spaces. Mathematical
Structures in Computer Science, arXiv:1304.1647 (to appear)

[Se06] Selivanov, V.L.: Towards a descriptive set theory for domain-like structures.
Theoretical Computer Science 365, 258–282 (2006)

[Se13] Selivanov, V.L.: Total representations. Logical Methods in Computer Sci-
ence 9(2), 1–30 (2013), doi:10.2168/LMCS-9(2:5)2013

[We00] Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)



Online Bin Packing:

Old Algorithms and New Results
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Abstract. In the bin packing problem we are given an instance consist-
ing of a sequence of items with sizes between 0 and 1. The objective is to
pack these items into the smallest possible number of bins of unit size.
FirstFit and BestFit algorithms are simple online algorithms intro-
duced in early seventies, when it was also shown that their asymptotic
approximation ratio is equal to 1.7. We present a simple proof of this
bound and survey recent developments that lead to the proof that also
the absolute approximation ratio of these algorithms is exactly 1.7. More
precisely, if the optimum needs Opt bins, the algorithms use at most
�1.7 · OPT� bins and for each value of Opt, there are instances that
actually need so many bins. We also discuss bounded-space bin pack-
ing, where the online algorithm is allowed to keep only a fixed number
of bins open for future items. In this model, a variant of BestFit also
has asymptotic approximation ratio 1.7, although it is possible that the
bound is significantly smaller if also the offline solution is required to
satisfy the bounded-space restriction.

1 Introduction

Johnson’s thesis [13] on bin packing together with Graham’s work on schedul-
ing [11,12] belong to the early influential works that started and formed the
whole area of approximation algorithms. The proof that the asymptotic approx-
imation ratio of FirstFit and BestFit bin packing is 1.7 given by Ullman [20]
and subsequent works by Garey et al. and Johnson et al. [10,15] were among
these first results on approximation algorithms.

We survey this area with emphasis on the new results, approaches and open
problems.

1.1 The Algorithms

Bin packing is a classical combinatorial optimization problem in which we are
given an instance consisting of a sequence of items with rational sizes between 0
and 1, and the goal is to pack these items into the smallest possible number of
bins of unit size. Since bin packing is NP-hard, one particularly active branch of

A. Beckmann, E. Csuhaj-Varjú, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 362–372, 2014.
c© Springer International Publishing Switzerland 2014
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research has concentrated on approximation algorithms that find near-optimal
packings.

The main topic of this survey are BestFit, FirstFit and related algorithms.
BestFit algorithm packs each item into the most full bin where it fits, possibly
opening a new bin if the item does not fit into any currently open bin. FirstFit
algorithm packs each item into the first bin where it fits, again opening a new
bin only if the item does not fit into any currently open bin.

Both BestFit and FirstFit as well as any algorithm that we will consider
belong to a wide class of algorithms called AnyFit algorithms. An algorithm is
called an AnyFit algorithm if it opens a new bin only if the item being packed
does not fit into any previously open bin. Otherwise the item is allowed to be
packed into any bin where it fits.

A relevant subclass are AlmostAnyFit algorithms (AAF algorithms for
short). An algorithm is an AAF algorithm if it is an AnyFit algorithm and
additionally, if an item fits into more than one of the open bins, it is not packed
into the smallest open bin (breaking ties arbitrarily).

The worst-case performance of an approximation algorithm A is measured by
comparing it against the optimal packing. Let Opt denote the number of bins
used in an optimal packing for instance I, and let A denote the number of bins
used by algorithm A for the same instance. The algorithm A is an absolute
R-approximation algorithm if for every instance I

A ≤ R ·Opt,

and it is an asymptotic R-approximation algorithm if for every instance I

A ≤ R ·Opt+ f(Opt),

where f(n) ∈ o(n); typically, and in all cases relevant for us, f(n) is a global
constant.

As far as the worst-case ratios are concerned, FirstFit can be considered as
a special case of BestFit or any other AnyFit algorithm: The items in any in-
stance can be reordered so that they arrive in the order of bins in the FirstFit

packing. This changes neither FirstFit, nor the optimal packing. Thus it is
sufficient to analyze FirstFit on such instances. On the other hand, on them
any AnyFit algorithm behaves exactly as FirstFit, as there is always a single
bin where the new item fits. Thus any lower bound for FirstFit applies imme-
diately to an arbitrary AnyFit algorithms and any upper bound for FirstFit
is equivalent to a bound for this very restricted subset of instances and BestFit

or another AnyFit algorithm.
Both FirstFit and BestFit are online algorithms. An online bin packing

algorithm places each item without knowledge of the future items, that is based
only on the size of this item and the already packed items, and cannot change
the packing of the items in the future.

In the context of online algorithms, a very interesting concept is that of
bounded-space algorithms. We distinguish the bins to be either open or closed
and items are allowed to be packed only into open bins. When a new bin is
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started, we set the status of the bin to be open. At some point, the algorithm
may decide to close some bin(s). This means that no future items can be packed
there; once a bin is closed, it cannot be reopened. A bin packing algorithm is
a k-bounded-space algorithm, if the number of open bins is at most k at all
times. That is, if there are k open bins and an item is packed into a new bin,
one of the open bins needs to be closed.

The natural bounded-space variant of BestFit is BBFk, which packs an item
into the most full open bin where it fits. If the item does not fit into any of them,
a new bin is opened; if already k bins are open, the most full bin is closed. Note
that BBFk is not an AnyFit algorithm. It may happen that an item fits in one
of the already closed bins but not into any open one.

1.2 The Old Results

The upper bound on BestFit (and FirstFit) was first shown by Ullman in
1971 [20]; he proved that for any instance, BF,FF ≤ 1.7 ·Opt+ 3, where BF,
FF and Opt denote the number of bins used by BestFit, FirstFit and the
optimum, respectively. Still in seventies, the additive term was improved first
in [10] to 2 and then in [9] to BF ≤ 71.7 ·Opt8; due to integrality of BF and
Opt this is equivalent to BF ≤ 1.7 ·Opt+ 0.9. These bounds actually hold for
any AAF algorithms, see [13,14].

For the lower bound, the early works give examples both for the asymptotic
and absolute ratios. The example for the asymptotic bound gives FF = 17k
whenever Opt = 10k+1, thus it shows that the asymptotic upper bound of 1.7
is tight, see [20,10,15]. For the absolute ratio, an example is given with FF = 17
and Opt = 10, i.e., an instance with approximation ratio exactly 1.7 [10,15],
but no such example was known for large Opt. (Also an example with FF = 34
and Opt = 20 is claimed and it can be constructed in a similar manner, but it
seems that this example has never been published.)

Johnson [13,15] has also analyzed the Best Fit Decreasing and First Fit De-
creasing algorithms, which behave like BestFit and FirstFit but receive the
items on the input sorted from the largest one to the smallest, and proved that
the asymptotic approximation ratio is equal to 11/9. Johnson’s bound had an
additive constant of 4; this was improved several times.

Turning to the bounded-space algorithms, a central result of Lee and Lee [16]
designs k-bounded-space online bin packing algorithms whose asymptotic ratios
come arbitrarily close to the magic harmonic number h∞ ≈ 1.69103, as the space
bound k tends to infinity. They also show that every bounded-space online bin
packing algorithm A satisfies R∞(A) ≥ h∞

Csirik and Johnson [5] show that the k-space-bounded Best Fit algorithm
BBFk has the asymptotic worst case ratio 1.7 for any k ≥ 2. (The case of k = 1
is trivial, 2-approximation is possible and no better algorithm exists.) Among
all 2-space-bounded online algorithms in the bin packing literature, this online
algorithm is the champion with respect to worst-case ratios.

We have mentioned only directly relevant work. Of course, there is much more
work on bin packing, in particular there exist asymptotic approximation schemes
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for this problem, as well as many other algorithms. We refer to the surveys [3,4]
or to the recent excellent book [21].

1.3 The New Results

The absolute approximation ratio of FirstFit and BestFit was proven to
be at most 1.75 by Simchi-Levy [19]. This started a renewed interest in these
algorithm and their absolute ratio and the closely related question of decreasing
the additive constant in the approximation ratio. A natural approach to improve
absolute upper bounds is to study fixed small values of Opt and to exclude the
possibility of a higher absolute ratio for them. Indeed, solving a few such cases
necessarily improves upper bounds on the absolute ratio—but cannot give a
tight result. Of course, this is still far from trivial: Even for a fixed Opt, each
such problem seems to lead to a new and more extensive case analysis.

Such analysis lead to a sequence of improvements for FirstFit: Xia and
Tan [22] showed that FF ≤ 1.7 · Opt + 0.7 and that the absolute ratio of
FirstFit is at most 12/7 ≈ 1.7143; the second bound was given independently
by Boyar et al. [1] and later improved to 101/59 ≈ 1.7119 by Németh [17].

In [7,8], Dósa and the author have shown that FF,BF ≤ 1.7·Opt and that this
bound is the best possible for every single value ofOpt. Thus we have a complete
understanding of the worst-case behavior of these algorithm. In particular, we
know that the asymptotic and absolute bounds coincide and no additive term is
needed. These results are based on new insights that also make possible a simple
proof and a slight generalization and strengthening of the asymptotic bound for
AAF algorithms.

Turning to other online algorithms, these new techniques can be also applied
to BBFk and simplify the proof that BBFk is asymptotic 1.7-approximation,
even though BBFk is not AnyFit algorithm [18].

It is easy to observe that no online algorithm has an absolute ratio less than
5/3 ≈ 1.666. Recently, again using the new techniques, we (G. Dósa, R. van
Stee and the author) have been able to find a matching algorithm (article in
preparation).

For First Fit Decreasing, it was shown that the additive constant is exactly
2/3 [6]. That is, 11

9 Opt + 2
3 bins are sufficient for First Fit Decreasing, but

this number of bins is actually also necessary for some instances for infinitely
many values of Opt. Thus for First Fit Decreasing, the asymptotic and absolute
approximation ratios are not equal. In fact, the results of [6] give the exact
value of the worst case for every value of Opt. In light of this result, it is
rather surprising that for BestFit and FirstFit the asymptotic and absolute
approximation ratios are equal and no additive term is needed.

1.4 This Survey

We focus on the results connected to the recent optimal analysis of FirstFit
and BestFit. We start in Section 2 by sketching the lower bound, as it gives a
good intuition for the choices made in the remaining parts of the paper.
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In the Section 3 we give a simple proof of the asymptotic upper bound of 1.7
for AAF algorithms, in fact, even for a slightly more generalized class of RAAF

algorithms (Relaxed AAF algorithms). This proof uses the same insights as the
optimal analysis of FirstFit and BestFit, namely a combination of weight
functions and amortized analysis. In addition, to demonstrate that the equality
of the absolute and asymptotic bounds for FirstFit and BestFit is by far not
automatic, we show a RAAF packing with an absolute ratio strictly larger than
1.7.

Finally, in Section 4 we discuss a new measure for bounded space algorithm
introduced in [2].

2 The Lower Bound

Suppose for a moment that the algorithm is not allowed to pack a bin with
item sizes summing to exactly 1, while the optimum can. This model gives an
unfair advantage to the optimum, but we hope that lower bound examples in this
model can be later modified by changing the item sizes by very small amount
to provide a correct lower bound. This is a bold assumption that is not quite
true, however, this simplified model provides a very good high-level intuition in
a number of different bin packing scenarios.

In the simplified model, the lower bound instance for Opt = 10m is this:
Start by Opt items of size 1/6, continue by Opt items of size 1/3, and conclude
by Opt items of size 1/2. The optimum uses Opt = 10m bins by packing three
items of different sizes 1/6 + 1/3 + 1/2 = 1 in each bin. FirstFit uses 2m bins
with 5 items of size 1/6, 5m bins with 2 items of size 1/3 and 10m bins with a
single item of size 1/2. Total of 17m bins, giving a lower bound of 1.7.

To modify the instance to be valid in the real model, we modify the item sizes.
First, for all items 1/2 the size is changed into 1/2+ ε for a tiny ε > 0. The sizes
of items 1/3 is changed into carefully chosen 1/3+δi and 1/3−δi, for δi tiny and
exponentially decreasing to 0. This guarantees that the previous packing works if
we arrange the sequence so that FirstFit packs 1/3+δi and 1/3−δi−1 together.
Now, to allow the optimal packing, the remaining items have size 1/6 + δi − ε
and 1/6− δi− ε. We need to order them so that the FirstFit packing works as
we wish. Here we come to a point where the simplified model fails. We modify
the FirstFit packing so that the first bin contains 6 items instead of 5 and the
last bin of the first phase contains 4 items instead of 5. Of course, this needs to
be carefully checked, but the main idea why the construction works is that the
exponential decrease of δi guarantees that only the item with the largest δi in a
bin is relevant for its final size. Also, we need a proof for other residue classes
of Opt, but the case of Opt = 10m is tightest and easily modified to other
Opt = 10m+ i. We obtain

Theorem 2.1. For all values of Opt, there exists an instance I with such that
FF = �1.7 ·Opt�.

Since FirstFit is equivalent to an arbitrary AnyFit algorithm on a subset
of instances, the lower bound holds for a general AnyFit algorithm.
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3 The Simplified and Generalized Asymptotic Upper
Bound

We now present the simple proof of the asymptotic ratio 1.7. This proof holds
for a wide class of any-fit-type algorithms: Call an AnyFit algorithm a RAAF

algorithm, if it uses the bin with level at most 1/2 only when the item does not
fit into any previous bin. (It is easy to verify that there is always at most one
such bin, see Lemma 3.1(i).) The RAAF condition say that the AAF condition
holds whenever the smallest bin has level at most 1/2; thus any AAF algorithm
is a RAAF algorithm.

The asymptotic bound forAAF algorithms was proved in [13,14]. Theorem 3.3
improves the additive term and generalizes the bound to the slightly less restric-
tive RAAF condition (although it seems that the original proof also uses only
the RAAF condition).

Let us fix an instance I with items a1, . . . , an and denote the number of bins
in the BestFit and optimal solutions by BF and Opt, respectively. We will
often identify an item and its size. For a set of items A, let s(A) =

∑
a∈A a, i.e.,

the total size of items in A and also for a set of bins A, let s(A) =
∑

A∈A s(A).
Furthermore, let S = s(I) be the total size of all items of I. Obviously S ≤ Opt.

We classify the items by their sizes: items a ≤ 1/6 are small, items a ∈
(1/6, 1/2] are medium, and items a > 1/2 are huge.

The bins in the BF packing are ordered by the time they are opened (i.e.,
when the first item is packed into them). Expressions like “before”, “after”, “first
bin”, “last bin” refer to this ordering. At any time during the packing, the level
of a bin is the total size of items currently packed in it, while by size of a bin
we always mean its final level.

Lemma 3.1. At any moment, in any RAAF packing the following holds:
(i) The sum of levels of any two bins is greater than 1. In particular, there is

at most one bin with level at most 1/2.
(ii) Any item a packed into a bin with level at most 1/2 (i.e., a new bin or the

single bin with level at most 1/2 guaranteed by (i)) does not fit into any
bin open at the time of its arrival, except for the bin where the item a is
packed.

(iii) If there are two bins B,B′ with level at most 2/3, in this order, then either
B′ contains a single item or the first item in B′ is huge.

Proof. (i): The first item in any bin does not fit in any open bin by the definition
of RAAF (in fact, the AnyFit condition is sufficient here), thus the sum of the
levels of the two bins is greater than 1 already at the time when the second bin
is opened.

(ii): If a is packed into a new bin, this follows by the RAAF (or AnyFit)
condition again. Otherwise Let x ≤ 1/2 be the level of the bin where a is packed,
just before a is packed there. By (i), there is at most one bin with level at most
1/2, thus at the time of packing of a all the other bins have level strictly greater
than x. By the definition of RAAF, a does not fit into any of these bins.
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(iii): If B′ contains two items and the first one is not huge, then by (ii) the
first two items in B′ do not fit into B. Thus they are larger than 1/3 and the
level of B′ is greater than 2/3. ��

The short proof of the asymptotic ratio 1.7 for RAAF algorithms uses the
same weight function as the traditional analysis of BestFit and FirstFit. (In
some variants the weight of an item is capped to be at most 1, which makes
almost no difference in the analysis.)

The weight function assigns a weight to each item, depending on its size.
Intuitively, the weight measures how much space is needed to pack each item. For
small items, it should be proportional to its size, but large items may generate
empty space in some of the bins and their weight is accordingly larger. The
overall idea is to show that the weight of each optimal bin is at most 1.7 while the
average weight of each algorithm’s bin is at least 1. Looking at the lower bound
example with this outline in mind, it is easy to see that we should set w(0) = 0,
w(1/6) = 0.2, w(1/3) = 0.5, and w(1/2 + ε) ≥ 1. The weight function we define
below fits these values by a piecewise linear function, with a discontinuity at
1/2.

To use amortization, we split the weight of each item a into two parts, namely
its bonus w(a) and its scaled size w(a), defined as

w(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if a ≤ 1

6 ,
3
5 (a −

1
6 ) if a ∈

(
1
6 , 1

3

)
,

0.1 if a ∈
[
1
3 ,

1
2

]
,

0.4 if a > 1
2 .

For every item a we define w(a) = 6
5a and its weight is w(a) = w(a) +w(a). For

a set of items B, w(B) =
∑

a∈B w(a) denotes the total weight, similarly for w
and w.

It is easy to observe that the weight of any bin B, i.e., of any set with s(B) ≤ 1,
is at most 1.7: The scaled size of B is at most 1.2, so we only need to check that
w(B) ≤ 0.5. If B contains no huge item, there are at most 5 items with non-zero
w(a) and w(a) ≤ 0.1 for each of them. Otherwise the huge item has bonus 0.4;
there are at most two other medium items with non-zero bonus and it is easy to
check that their total bonus is at most 0.1. This implies that the weight of the
whole instance is at most 1.7 ·Opt.

The key part is to show that, on average, the weight of each BF-bin is at
least 1. Lemma 3.2 together with Lemma 3.1 implies that for almost all bins
with two or more items, its scaled size plus the bonus of the following such bin
is at least 1.

Lemma 3.2. Let B be a bin such that s(B) ≥ 2/3 and let c, c′ be two items that
do not fit into B, i.e., c, c′ > 1− s(B). Then w(B) + w(c) + w(c′) ≥ 1.

Proof. If s(B) ≥ 5/6, then w(B) ≥ 1 and we are done. Otherwise let x = 5/6−
s(B). We have 0 < x ≤ 1/6 and thus c, c′ > 1/6 + x implies w(c), w(c′) > 3

5x.
We get w(B) + w(c) + w(c′) > 6

5 (
5
6 − x) + 3

5x + 3
5x = 1. ��
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Any RAAF-bin (i.e., a bin of the RAAF algorithm) D with a huge item has
w(D) ≥ 0.4 and 6

5s(D) > 0.6, thus w(D) > 1.
For the amortization, consider all RAAF-bins B with two or more items, size

s(B) ≥ 2/3, and no huge item. For any such bin except for the last one choose
C as the next bin with the same properties. Since C has no huge item, its first
two items c, c′ have level at most 1/2 and by Lemma 3.1(ii) they do not fit into
B. Lemma 3.2 implies w(B) + w(C) ≥ w(B) + w(c) + w(c′) ≥ 1.

Summing all these inequalities (note that each bin is used at most once as
B and at most once as C) and w(D) > 1 for the bins with huge items we
get w(I) ≥ BF − 3. The additive constant 3 comes from the fact that we are
missing an inequality for at most three BF-bins: the last one from the amorti-
zation sequence, possibly one bin B with two or more items and s(B) < 2/3 (cf.
Lemma 3.1(iii)) and possibly one bin B with a single item and s(B) < 1/2 (cf.
Lemma 3.1(i)). Combining this with the previous bound on the total weight, we
obtain RAAF− 3 ≤ w(I) ≤ 1.7 ·Opt, where RAAFdenotes the number of bins
of the RAAF algorithm, and the asymptotic bound follows.

This simple proof of the asymptotic ratio can be tightened so that the additive
constant is smaller. We save one of the three bins by noticing that we do not
need to do amortization for bins that are after the bin of size smaller than 2/3.
The remaining two bins have total size larger than 1, which brings the additive
constant further down to 0.7.

Theorem 3.3. For any RAAF algorithm and any instance of bin packing we
have GAAF ≤ �1.7 ·Opt+ 0.7�.

Proof. Any RAAF-bin D with a huge item has w(D) ≥ 0.4 and 6
5s(D) > 0.6,

thus w(D) > 1. Similarly, any RAAF-bin with two items larger than 1/3 has
w(D) ≥ 0.2 and 6

5s(D) > 0.8, thus w(D) > 1.
For the amortization, consider all the RAAF-bins B, with (i) two or more

items, (ii) no huge item, and (iii) no pair of items both larger than 1/3. For
any such bin except for the last one choose C as the next bin with the same
properties. Since C has no huge item, its first two items c, c′ have level at most
1/2 and by the RAAF condition they do not fit into B. Since C has no pair
of items larger than 1/3, we have c ≤ 1/3 or c′ ≤ 1/3 and thus s(B) ≥ 2/3.
Lemma 3.2 now implies w(B) + w(C) ≥ w(B) + w(c) + w(c′) ≥ 1.

Let C be the last bin used in the amortization, if it exists, and D be the single
bin with s(D) ≤ 1/2, if it exists.

If C and D both exist, we have s(C) + s(D) > 1 by Lemma 3.1(i) and thus
w(C) + w(D) > 1.2. Summing this, all the amortization inequalities (note that
each bin is used at most once as B or C and at most once as C) and w(D) > 1 for
the bins with huge items or two items larger than 1/3 we get w(I) > RAAF−0.8.
Combining this with the previous bound w(I) ≤ 1.7 ·Opt on the total weight,
we obtain RAAF < w(I) + 0.8 ≤ 1.7 ·Opt+ 0.8 and the theorem follows from
the integrality of RAAF and Opt.

If C exists but D does not, we have s(C) > 1/2 and thus w(C) > 0.6. Summing
this and again both all the amortization inequalities and w(D) > 1 for the bins
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with huge items or two items larger than 1/3 we get w(I) ≥ A − 0.4 and the
theorem follows again.

If C does not exist but D does, let C be an arbitrary bin other than D (if none
exists, RAAF = 1 = Opt and the theorem is trivial). We have s(C)+ s(D) > 1
and thus w(C)+w(D) > 1.2. Summing this and w(D) > 1 for all the remaining
bins, we get w(I) > RAAF− 0.8 and the theorem follows as above.

Finally, if neither C nor D exists, we have w(D) > 1 for all the RAAF-bins,
thus w(I) > A and the theorem follows as well. ��

Next we give an example showing that RAAF algorithms do not have an
absolute approximation ratio 1.7. In particular, we give an instance with Opt =
7 and RAAF packing with 12 bins.

We first describe the RAAF packing; the input sequence contains items in the
order of the bins, i.e., it starts by all the items from the first bin, then continues
by items from the second bin, etc. The first bin contains 6 items of size 0.12,
total of 0.72. The next three bins contain each 2 items of size 0.34; note that
these do not fit into any previous bin. The fifth bin has items 0.52 and 0.01; the
item 0.01 fits into the previous bins, but it is packed at a level larger than 0.5, so
this satisfies the RAAF condition. The sixth bin contains a single item of size
0.48 and the remaining six bins contain each an item of size 0.53; again, these
items do not fit into any previous bin.

Opt contains a bin with two items of sizes 0.52 and 0.48. The remaining 6 bins
contain each three items of sizes 0.53, 0.34, and 0.12, total of 0.99; in addition
one of them contains also the item 0.01. This packs all the items in the 7 bins
and completes the example.

Thus removing the additive constant completely is impossible for RAAF al-
gorithms, and thus it needs to use additional properties of the algorithm. We
are able to do this for FirstFit and BestFit, using additional ideas [7,8]. It
remains an interesting open problem whether this is possible for all AAF algo-
rithms.

4 Bounded Space Algorithms

The lower bound constructions in [16] is a variant of the FirstFit lower bound
which we have presented above. In its first approximation, giving a lower bound
of 5/3 ≈ 1.666, we give the algorithm the same number of items of sizes 1/7 +
ε, 1/3 + ε, and 1/2 + ε. The optimal packing uses almost full bins with one
item of each size. The full construction repeatedly prepends this sequence by
another group of same-size items, the size is set to 1/t + ε for the smallest
integer so that this item fits into the optimal bin (for a tiny ε > 0). On any such
sequence, any k-bounded-space algorithm uses bins grouping items of the same
size, with a constant number of exceptions. This shows that every bounded-space
algorithm has asymptotic worst case ratio at least h∞ ≈ 1.69103; the number
h∞ is defined from the sequence of reciprocals 1/2, 1/3, 1/7, 1/43, . . ., which we
described above.
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The optimal packing above can be achieved only by an algorithm which keeps
many bins open even if the whole sequence is known in advance. Or, from another
viewpoint, we are allowed the optimal algorithm to reorder sequence. It is natural
to ask how much inefficiency is caused by not knowing the future, i.e., by the fact
that the algorithm is online. For this purpose, we restrict the offline algorithms
so that they can also have only k bins open. For a given instance I, let Optk =
Optk(I) be the smallest possible number of bins used in a packing produced
by a k-bounded-space bin packing algorithm that know the whole instance I
before it starts serving it. We say that the algorithm A it is an asymptotic
R-approximation algorithm w.r.t. the k-bounded-space optimum if for
every instance I

A ≤ R ·Optk + f(Optk),

where f(n) ∈ o(n); again, typically f(n) is a global constant. The smallest such
R is called the k-bounded-space ratio of algorithm A in [2], where it was
introduced.

On the lower-bound instances described above, BBFk is an asymptotic 1-
approximation w.r.t. the k-bounded-space optimum, so there is no inefficiency
caused by the online environment. It is not hard to construct instances showing
that the 2-bounded-space ratio of BBF2 is at least 1.5, see [2]. However, the
best upper bound on the 2-bounded-space ratio of BBF2 or any other bounded-
space algorithm is 1.7 and closing this gap is an interesting question. Levin and
Epstein (private communication) have shown that the 2-bounded-space ratio of
any online algorithm is at least 1.5, which leaves open the possibility that BBF2

is the best possible algorithm. The case of k > 2 is widely open.
One of the difficulties of studying the k-bounded-space ratio is that it seems

non-trivial to understand Optk. Unlike Opt, for which we have an asymptotic
approximation scheme, Optk is hard to approximate. In [2], it is shown that the
2-bounded-space ratio of any polynomial algorithm is at least 5/4. There exists a
(3/2+ ε)-approximation algorithm for Optk, based on a partial enumeration of
the solutions [2]. We are missing a deeper insight in the structure of the solutions
and also nothing is known for k > 3.
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Abstract. The Church-Turing thesis is widely stated in terms of three
equivalent models of computation (Turing machines, the lambda cal-
culus, and rewrite systems), and it says that the intuitive notion of a
computable function is what is defined by any one of these models. De-
spite this well-established equivalence, the philosophical literature con-
centrates almost exclusively on the Turing machine model. We argue that
this has been to the detriment of the philosophy of computation, and
specifically that it ignores two issues: firstly, equivalence in the Church-
Turing sense is extensional equivalence, whereas many of the delicate
issues in the philosophy of mind, and in theoretical computer science,
are to do with fine-grained intensional equivalence of algorithms. Sec-
ondly, real computers are not in any meaningful sense Turing machines:
they are nondeterministic, their memory may fail to be in a determinate
state due to cache coherence issues, and the boundaries between inside
and outside are ill-defined and permeable. We explore the philosophical
significance of these issues and give some examples.

1 The Church-Turing Thesis

We start with a cognitive scientist’s description of what has become known as
the Church-Turing thesis:

The same work that provided demonstrations of some in-principle limi-
tations of formalisation provided demonstrations of formalisation’s uni-
versality as well. Thus Alan Turing, Emil Post, and Alonzo Church in-
dependently developed distinct formalisms that are powerful enough to
formally (that is, “mechanistically”) generate all sequences of expressions
capable of interpretation as proofs, and hence, can generate all provable
theorems of logic. In Turing’s work this took the form of showing that
there exists a universal mechanism . . . that can simulate any mechanism
describable in its formalism. [1, p. 50]

This description is in terms of procedures that generate sequences of proofs.
A large number of other treatments – for example [2] – talk about functions
from the integers to the integers (the two versions can easily be shown to be
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equivalent). We will, in what follows, use functions from the integers to the
integers.

In those terms, the Church-Turing thesis describes the set of functions, from
the integers to the integers, which are capable of being computed by some al-
gorithm in any of the equivalent computational formalisms (Turing’s machines,
the lambda calculus as used by Church, or rewrite systems as used by Post).
If we have an algorithm in any of these three formalisms, then we can easily
translate it into an equivalent algorithm in the other formalisms. There is noth-
ing special about this particular list of formalisms: most books on computability
will probably define other variants (register machines, machines with numerous
tapes, and so on) purely in order to make the proofs easier.

Note that this set is specified extensionally. Functions here are regarded ex-
tensionally, as sets of ordered pairs. The definition talks about algorithms, but
it quantifies over all (suitable) algorithms, so there is no bias in favour of one
algorithm or the other: similarly, it quantifies over all models of computation,
since the definition is perfectly egalitarian as far as algorithms and models of
computation go.

Since the three computational formalisms are provably equivalent, the defi-
nition is also perfectly egalitarian as far as computational formalisms are con-
cerned. It is worth noting that equivalences like these are quite common in
mathematics.1 In such a situation, the various definitions could well each be-
long to a different area of mathematics, which means that mathematicians can,
and do, prove theorems using whatever definition, and hence whatever technical
means, are the most convenient or the most illuminating.

1.1 Philosophers and The Church-Turing Thesis

Under these circumstances, it is a little surprising to see that a great deal of
the philosophical literature which quotes the Church-Turing thesis is devoted
exclusively to the Turing model. Pylyshyn [1], for example, mentions Post twice
(but in a historical survey), Church three times (twice in the same historical
survey, once for his undecidability theorem). However, Turing is discussed seven
times (many of these discussions being several pages in length), and the Turing
machine eleven times. There is a discrepancy here, and this discrepancy is quite
typical of the philosophical literature.

Why is this bad? If we neglect the egalitarian nature of the definition, we
may well end up attributing merely accidental properties of Turing machine
computation to the abstract concept of computable function. This is an easy
mistake to make, since philosophers naturally want to have more intensional
information than merely the concept of a computable function will give them.

1 Here is an example (the technical details are not important, but the fact of equiv-
alent definitions is). Riemann surfaces can be defined in algebraic geometry as
one-dimensional algebraic curves, in complex analytic geometry as one-dimensional
complex manifolds, in complex analysis as the graphs of many-valued complex ana-
lytic functions, and so on; see Donaldson [3].
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But it is, I would argue, fallacious. I will give two examples of such reasoning, one
by Searle and one by Fodor, and then I will go on to talk about real computers
and about intensionality.

2 Searle

Searle, writing about machines and simulation, says

There is no question that an artificially made machine could, in principle,
think. Just as we can build an artificial heart, so there is no reason
why we cannot build an artificial brain. The point, however, is that
any such artificial machine would have to be able to duplicate, and not
merely simulate, the causal powers of the original biological machine.
An artificial heart does not merely simulate pumping, it actually pumps.
And an artificial brain would have to do something more than simulate
consciousness, it would have to be able to produce consciousness. [4,
p. 56]

And, at numerous places in his oeuvre, Searle emphasises that “formal sym-
bol manipulation” is not sufficient for understanding (see [5–7] for summaries).
“Formal symbol manipulation” is usually described, by Searle, in terms of zeroes
and ones.

Now zeroes and ones are the way that Turing machines typically encode num-
bers. But Church’s formalism uses the lambda calculus, and encodes numbers
using an iterative formalism known as the Church numerals. Whereas it seems
quite easy to argue that Turing machines simulate counting, rather than actu-
ally counting, I shall argue that a machine doing symbol manipulation using the
lambda calculus actually counts.

2.1 The Church Numerals

The lambda calculus is based on the idea of function application: in the untyped
lambda calculus, there is only one sort of object, and these objects can equally
well be functions and the arguments of functions. We call these objects terms.

Suppose we have a term f : we can apply it to an argument a simply by
juxtaposition, fa. Conversely, if we have an expression Φ(x) involving the free
variable x, then the lambda-abstraction λx.Φ(x) is the lambda-term which, when
applied to a, yields Φ(a): i.e.

(λx.Φ(x)) a = Φ(a) (1)

Consider now the expression ap = λf.λx.fx; for any g and a,

ap ga = (λf.λx.fx)ga

= (λx.gx)a by(1)

= ga by(1)
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so ap simply applies terms to each other. Now consider cmp = λf.λg.λx.f(gx);
a similar computation shows that cmphk, when applied to a, yields h(ka), that
is, cmp does function composition. So, given a natural number n, we can define
by induction a λ-term Φn:

Φn =

⎧⎪⎨⎪⎩
λfλx.x n = 0

λfλx.fx n = 1

λfλx. cmp(Φn−1f)fx n > 1

Φn is an expression which, when applied to the two arguments g and a, yields
n︷ ︸︸ ︷

g(· · · (g a) · · · ): the term Φng is the nth iteration of g,

n︷ ︸︸ ︷
cmp g(cmp g(· · · )).

Thus, the terms Φn have a double life. Concretely, when applied to a term f ,
they yield the nth iteration of f : but abstractly, before it is applied to anything,
Φn represents the operation of n-fold iteration. These terms Φn can thus be used
to represent the natural numbers: the usual arithmetic operations can be defined
on them purely by the operations of the lambda calculus [8].

I claim the following:

1. Application of symbolic expressions by a machine actually is application.
That is, the machine transforms an argument by applying a function to
it, and the steps in the computation are (apart from being represented in
electronic form rather than on paper, and with rather different symbols) the
same as a human calculator would use.

2. The application of a church numeral to a pair of arguments actually involves
iteration, rather than simulating iteration: this is because, when we unwind
the application in the way we have shown above, we actually do apply the
first argument n times to the second one. So, iteration is iteration whether
it happens inside or outside of the computer.

Suppose, as a working hypothesis, that a grasp of numbers could be based on
the concept of iteration of an operation – let us say, a mental operation – there
is no reason why a computer, using the Church numerals, would not have the
same access to numbers as we do when we calculate with them. So the computer
here would be actually calculating rather than simulating a calculation.

One would be foolish here to argue that a computer which used the Church
numerals actually understood numbers thereby. But, I claim, these considera-
tions show that Searle’s argument that computers simulate, rather than per-
form, breaks down if we think of numbers as being defined by iteration and if
the computer uses the Church numerals for calculation.

2.2 Intensionality

What this argument shows is that there are important differences between com-
putations: some computations actually implement numbers as iterators and some
do not. Different devices can both implement the Church-Turing definition of
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computation, and one of them may implement numbers as iterators and one of
them may not. This is not paradoxical: it simply shows that property of imple-
menting numbers as iterators is an intensional property of computations.

3 Fodor

Fodor, in [9], distinguishes between “local” and “global” properties of mental
representations; local properties are “constituted solely by what parts a repre-
sentation has and how those parts are arranged” [9, p. 20]. Syntactic properties
are local properties of representations, as is logical form [9, pp. 20f]. Mental pro-
cesses are computational, and, more than that, syntactically computational: “a
mental process, qua computation, is a formal operation on syntactically struc-
tured representations” [9, p. 11]. And thus “[m]ental properties are ipso facto
insensitive to context dependent properties of mental representations” [9, p. 25]
Fodor calls such properties intrinsic [9, p. 26].

This line of argument seems to lead to problems, however. There seem to
be context dependent properties of mental representations which play a role in
mental processes: Fodor gives the example of simplicity [9, p. 25ff] (deciding
between rival explanations is a mental process, people, when doing so, quite
often decide to go for the simplest explanation of a phenomenon, but simplicity
is, as examples show, a context dependent property).

So, Fodor then weakens the requirement for mental processes to be sensitive
only to intrinsic semantic properties, and considers, instead, what he calls the
Minimal Computational Theory of Mind: “[t]he role of a mental representation
in cognitive processes supervenes on some syntactic facts or other” [9, p. 29].
But now there are further problems, because some syntactic facts are relational
(i.e. they have to do with the relation of a particular syntactic item to other
items): and “these [relational] facts are not ipso facto accessible to computations
for with the representation provides a domain” [9, p. 30].

Now in the language of local and global, the problem seems to be this. If
we look at the local domain suitable for computations with a particular mental
representation, then that local domain is very small: it is the representation and
its parts. Fodor allows us to go beyond that small domain, but that leads to
a drastic expansion of the domain: it will consist of the relations between the
given mental representation and all other mental representations. It is, as Fodor
says, “global”. So what Fodor needs is a notion of computation which has a
wider notion of locality than simply a single expression. We have, then, to show
how to define a domain intermediate between local and global: large enough for
the computations one needs, but small enough to be still computable. We have
suggested a logical approach in [10], but we are here investigating models of
computation, so we will consider it from that direction.

3.1 Locality in Models of Computation

Fodor talks of mental representations in terms of whole and parts. It is not clear
how to derive this merely from the idea of a Turing machine: generally, the items
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in the cells of a Turing machine tape are bits, and there is no reason why the
bits corresponding to a particular syntactic item should even be contiguous, so
we get no help there. We might think of allowing larger items in a cell, but
cells have to be of bounded size, whereas syntactic structures can be arbitrarily
large. We can represent structured items in computer memory, but it usually
depends on storing, instead of a constituent, the address of the constituent in
memory: memory addresses used in this way are known as pointers [11, ch. 3].
We need pointers, because we cannot generally preserve contiguity in memory
(for example, we may want to replace a constituent by a constituent of a larger
size, without recopying all of the structured item in question). Memory is, in any
case, one-dimensional, whereas many structured objects are higher dimensional,
so there is not much hope of reconstructing structured objects from contiguity
relations in memory.

But there is a model of computation which treats structured items perspicu-
ously, namely the Church model based on the λ-calculus. One might think that
this model is of theoretical interest only, but, in fact, there is a very elegant
abstract machine for evaluating lambda expressions: Landin’s SECD machine
[12–15]. It is not only of theoretical interest: it has influenced the implementa-
tion and design of very many functional programming languages.

The SECD machine is a machine with four registers, S, E, C, and D, each of
which contains pointers, i.e. memory addresses: these addresses are generally the
heads of lists. These lists are initially empty, and change during evaluation of
the expression. E (the environment) contains bindings of variables to values: this
will change as new variables are defined or as variables go out of scope. C (the
code) is a list of expressions to be evaluated: it contains λ-expressions in reverse
Polish notation, so that the application FG becomes the list (G :: F :: app). If
we want to evaluate this, then first G, then F , have to be evaluated, and then
the value of F applied to the value of G. The values have to be saved, of course:
we use the list S, or the stack. F and G may be complex terms: if so, then, in
order to evaluate them, we have to perform subsidiary computations, and these
computations may change the state of the machine. So, when we start such a
subsidiary calculation, we save the state of the machine in the list D, so that we
can later restore it.

What is important here is not the details, but two important facts. Firstly,
the four lists contain all the information necessary in order to evaluate the λ-
expression that we started with; everything that ends up in one of the lists ends
up there because there was a good reason to put it there. So they are not simply
random collections of values, but rather lists of relevant values. Secondly, the
general state of the computation is not the evaluation of a single expression,
but the evaluation of that expression given the contents of the lists: that is,
the evaluation of an expression in a given context. And if we want to know
what evaluation of λ-expressions amounts to, we want to know not just how the
evaluation starts – when we have only an expression – but how it goes on, when
we have the lists populated with items which will be necessary in the course
of the calculation. So the idea of context can be regarded as a less problematic
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version of the idea of locality, which, as we have seen, depended on contiguity in
an unsustainable way.

3.2 Expressions in Context

This idea – of evaluating an expression in context – gives us the wider notion of
locality which Fodor needs. It is also tremendously pervasive: almost all modern
programming languages have such a concept. It is what makes them easy to use,
and which, in particular, makes it possible to write programs that can be read
and understood by humans as well as by computers.

When we read a novel, we have to remember, at any point, the back story:
who the characters are and how they came to be in the situations that they are
in. Without that back story the descriptions of the actions being performed at
a particular moment would be incomprehensible. Similarly, when we evaluate
something in a program, there is a back story: this story tells us how we came to
be evaluating this expression – and, in particular, it tells us what the variables
stand for – and it also tells us what happens to the results of the evaluation
(whether they come from some subsidiary computation, for example), and thus
it tells us what we are to do when we finish the computation. In other words,
it tells us what is called the context of the calculation. And, as well as helping
to design programming languages, the idea of a context shows us how we might
arrive at a notion of locality which is subtle enough to be used in the philosophy
of mind.

The phenomenologists tell us that, when we are directly aware of some salient
item, we also implicitly know a great deal of other things which put our awareness
of the salient item into context. Thinking that all you need to know about
computation is to know about Turing machines is to forget about the context
in which any computation is performed. It was the great achievement of the
modern theorists of programming languages that, starting from the bare idea of
calculation given by a Turing machine, they systematically constructed such a
context, such a back story, which would render our computations comprehensible
to us [16].

4 Real Computers

We have seen, then, that there is a great deal of the formal and intellectual
content of the idea of computation is not contained in the idea of a Turing
machine. There is still, however, the temptation to think that, in any event,
Turing machines might constitute a foundation for computing: that, if we took
the hardware of a real computer, such as the laptop which I am typing this on,
it could be formally described as a Turing machine, and that any computation
written in a programming language on it, contexts and all, could be thought of
as running on the Turing machine using particular disciplines about where the
contexts lay on the tape and how they were handled.

Unfortunately, this is not true. Here are just two of the problems (there are
more). Firstly, modern computers are in practice quite badly nondeterministic.
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Hard drives, for example, respond to a request for data after an unpredictable
interval. Part of the delay is due to the time the head takes to move to the
required position, and this time, as well as depending on how far the head has
to move, is affected by air turbulence inside the disk enclosure: this means that
hard disks can be used as a source of cryptographic randomness [17]. This effect
may seem very small, but one should notice that the CPU of a modern computer
works on a timescale of nanoseconds, whereas hard disk seek times are about
a millisecond or longer: this is about a million times longer than durations of
events in the CPU. Consequently, even small variations in hard disk seek times
can potentially affect the CPU.

“Potentially” is very often “really”. Modern computers are multithreaded:
they run many computations at once, and these computations compete with
each other for resources (disk access, CPU time, input and output). So if one
process is delayed by even a small amount of time, the competitive environment
in which it is running may amplify that small time into a humanly noticeable
time. Consequently, we have nondeterminism. We similarly get nondeterminism
because computers are generally connected to the internet, and the internet has
chaotic behaviour: so any process which reads from or writes to the internet can
be delayed by arbitrary and unpredictable amounts. This internet access might
not be anything visible: it might be, for example, checking for email, or setting
the computer clock from a timeserver.

The second problem is this. As we have seen, modern computers are gen-
uinely concurrent, and they consist several independent processors which can be
regarded as computers in their own right. These processors all have access to
the same memory, and, even worse, they access it through a cache. Under these
circumstances different processors may simultaneously update their cached ver-
sions of the same data item in different ways: we need to be able to deal with
this possibility.

The problem is called cache coherence, and is to do with what you get when
you read some replica of a data item (you would like to get the most recently writ-
ten version of it, whatever processor wrote it, but this is impossible in general)
[18, p. 466]. Similar properties (for example, that each processor sees updates to
memory (by any of the processors) in the same order) are similarly impossible
to achieve in general.

What turns out to be achievable, and which still allows comprehensible pro-
grams to be written, is what is called eventual consistency : that is,

An update executes at some replica, without synchronisation; later, it is
sent to the other replicas. All updates eventually take effect at all replicas,
asynchronously and possibly in different orders. Concurrent updates may
conflict; conflict arbitration may require a consensus and a roll-back [19].

In the multicore context, this would mean that processors write values to their
caches. These values eventually propagate to RAM and to other caches, but not
immediately. If two processors update the same item at their replicas in inconsis-
tent ways, then they may have to retrace their steps (what is called a rollback).
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Here we have left the world of Turing machines: in a Turing machine, there
is a single tape, cells on the tape are instantly and deterministically written to
whenever the machine says so, and they are instantly and deterministically read
from whenever the machine says so. A Turing machine has no need of rollback,
and no mechanism for rollback. We have a machine – i.e. a CPU – connected to
a memory, i.e. RAM: but there the similarity to a Turing machine ends.

5 The Intensional Disciplines

We have seen, then, that modern computers differ from Turing machines in ways
which are invisible extensionally (up to Turing equivalence, modern computers
can still perform all and only the computations that Turing machines can), but
which differ intensionally, in ways which make a great difference to, for example,
how you program them.

It is, then, not surprising that there is a substantial amount of theory about
what these intensional differences are, and about how they affect the ways that
one can program such machines. This theory uses what we might call the in-
tensional disciplines : game theory [20], dependent type theory, category theory
[21]. It is, although technical, very illuminating.

It is also generally unknown to philosophers. Searle, for example, writes

there is little theoretical agreement among practitioners on such abso-
lutely fundamental questions as, What exactly is a digital computer?
What exactly is a symbol? What exactly is an algorithm? What exactly
is a computational process? Under what physical conditions exactly are
two systems implementing the same program? [22, Ch. 9 §III]

These are, strikingly, many of the questions which have proved to be important
in modern theoretical computer science. That is not surprising: they are good
questions, Searle has very good instincts, and he knows a good question when
he sees one. But in order to answer these questions, it is necessary to gain some
acquaintance with the intensional world and with the methods that one needs
in order to work in it.

Most of these problems are, it must be admitted, quite hard. Abramsky [23]
admits that we do not know “what are the fundamental structures of concur-
rency”. To that extent, Searle is right that many of these fundamental questions
remain unanswered, but it is not through want of trying, and it is not that a
great deal of progress has nevertheless been made.
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Abstract. Bioinformatics specifies a wide field of applications with gen-
erally long runtimes or huge amounts of data to be processed – or even
both. Typically, large computing clusters or special computing platforms
are harnessed to solve problems in this field in reasonable time. One such
platform is represented by the FPGA-based high-performance computer
RIVYERA, which was intentionally developed for problems in cryptanal-
ysis. On the basis of three easy examples taken from our current research
field, we show how RIVYERA can be applied to different kinds of prob-
lems regarding bioinformatics. RIVYERA is able to significantly speed
up the process of exact sequence alignment using the Smith-Waterman [1]
algorithm, querying protein sequence databases using BLASTp [2], and
running genome-wide association studies (GWAS) using iLOCi [3] or
similar methods based on contingency tables. Likewise, energy savings
with RIVYERA are in the same order as runtime reductions compared
to standard PCs or computing clusters.

1 Introduction

Applications and algorithms in bioinformatics have to deal with the ever-growing
amount of biological data stored in large sequence databases. NCBI’s Genbank
database [4] or the UniprotKB/TrEMBL database [5] are prominent examples
for an exponentially growing amount of data. Likewise, runtimes of algorithms
with quadratic or higher complexity easily become unreasonable if applied on
large datasets with standard hardware. To keep up with this rising demand on
computational power in bioinformatics, the focus is set to parallel processing.
Commonly, these problems are addressed by standard computing clusters. How-
ever, a linear increment in computing nodes may only provide a linear speedup
for processing time, but costs for acquisition, energy, and maintenance grow
linearly as well.

These problems can be addressed by moving away from standard architec-
tures, e.g. with graphics processing units (GPUs). Unfortunately, GPUs, as
CPUs, have to provide on-die resources for a large fixed instruction set con-
suming energy even if not required. Hence, no significant energy reductions are
expected. In contrast, FPGAs are configurable to exactly meet the requirements
of the application. Thus, no resources are spent for obsolete instructions and,
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therefore, energy is only consumed on the chip for application essential pro-
cessing. Fully utilizing all available FPGA resources results in very compact
processing units with a fine-grained on-chip parallelism significantly reducing
energy requirements and processing time. With a massively parallel utilization
of FPGAs, the performance of a whole computing cluster can be fit in a single
computer system, maintaining flexibility due to reconfigurability. The RIVYERA
architecture [6] is an example for such a system, providing the resources of e.g.
128 Xilinx Spartan6-LX150 FPGAs.

In three examples, we present how this architecture can improve major prob-
lems in bioinformatics. Optimal sequence alignment using the Smith-Waterman
algorithm [1], protein database searches with BLASTp [2,7], and iLOCi, an ap-
plication for detecting epistatis in genome-wide association studies (GWAS).

2 The RIVYERA Architecture

In 2008 the computing platform RIVYERA [8], originally developed for crypt-
analysis, was introduced for problems related to bioinformatics. Two specific
models of RIVYERA were developed, the RIVYERA S3-5000 and the successor
RIVYERA S6-LX150 [6]. This paper focuses on the newer model RIVYERA S6-
LX150 equipped with 128 FPGAs of type Xilinx Spartan6-LX150.

The basic structure of the RIVYERA architecture consists of two elements,
the FPGA computer and a server grade mainboard with standard PC compo-
nents. The FPGA computer consists of up to 16 FPGA modules with 8 FPGAs
each. Each FPGA is connected to a local memory of 256MB DDR3-RAM. Up-
grades may allow up to 16 FPGAs on each module or larger memory.

The configuration of the mainboard is variable as well. Here, the RIVYERA S6-
LX150 is equipped with two Intel Xeon E5-2620 CPUs (6 cores @ 2GHz each)
with 128GB of RAM running a Linux OS.

The bus system implemented on the RIVYERA FPGA computer is organized
as a systolic chain, i.e. each FPGA on an FPGA module is directly connected to
its neighbors forming a ring. A communication controller in this ring, provides
the interconnection of each module to its neighboring modules. The uplink to
the mainboard, further referred to as host, is realized via the communication
controller of the first FPGA module. A picture of RIVYERA S6-LX150 is shown
in Fig. 1.

3 Exact Sequence Alignment with Smith-Waterman

3.1 Smith-Waterman Algorithm

The Smith-Waterman algorithm [1] calculates and evaluates biological sequence
alignments of two sequences. Alignments are required for instance to measure
similarity of DNA sequences or to find similar occurrences of a short sequence
in a longer one. Hence, for convenience, one sequence is referred to as query q
and the other as subject or database s.
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Fig. 1. The RIVYERA S6-LX150 system

The score of alignments is calculated by a simple scoring function, generally
counting a positive score for matching characters and a negative score for mis-
matches. Additionally, alignments may contain insertions or deletions (shortly
referred to as gaps) which are counted negative as well, but different for a gap
opening and extension (affine gap penalty). Smith-Waterman alignments are
locally optimal, i.e. there is no alignment of the two input sequences or of any
of its subsequences that results in a higher score. Here, we focus on nucleotide
(DNA) sequence alignment.

In the first step an alignment matrix Hn×m is calculated (n and m denote the
lengths of the query and subject sequence respectively, g the gap penalty, S the
scoring function, qi and si the query and subject symbol at position i):

Hi,j = max

⎧⎪⎪⎨⎪⎪⎩
Hi−1,j−1 + S(qi, sj) match/mismatch
Hi−1,j + g insertion opening/extension
Hi,j−1 + g deletion opening/extension
0 do not allow negative values

(1)

Afterwards, in order to generate the final alignment, a backtracking step is
performed. In brief, the backtracking starts at matrix cell Hi,j with the highest
value and follows the path through the alignment matrix that reflects the chain
of matrix cells whose values were taken for the maximum calculation in (1). For
each chosen direction (up, left, or up-left) the corresponding character or gap is
inserted into the final alignment. The backtracking stops if a cell with Hx,y = 0
is encountered.

3.2 Implementation of Smith-Waterman

Time and memory complexity for the calculation of the alignment matrix are
clearly of O(n × m). For fine-grained parallel processing, if m processing ele-
ments are utilized concurrently, the runtime complexity can be reduced to O(n),
i.e. linear to the length of the database sequence. Additionally, memory com-
plexity is reduced to O(1) for each processing element since it is not necessary
to store the alignment matrix due to the common usage of the algorithm to
perform a huge number of alignments on a large dataset just to calculate the
alignment score. For the candidates requiring the particular alignment (usually
those with the best scores), the process is repeated on a small section of the
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Fig. 2. Smith-Waterman chain structure and example for the calculation of an align-
ment matrix on an FPGA

original database sequence corresponding to the location where the main pro-
cess has calculated the maximum score, now including storage of the alignment
matrix and backtracking.

Hence, the FPGA implementation is realized by the following parallelization
scheme. For every nucleotide in the query sequence a processing element SWcell
is implemented on the FPGA. It calculates the values in the row of the alignment
matrix corresponding to its assigned character, i.e. a direct implementation of
(1), whereby i, the index of the row, is fixed for each cell. Each cell requires
access to three neighboring values from the alignment matrix to calculate a new
cell value. Therefore, all processing elements are connected in a chain such that
each element has access to the cell value of its predecessor. Now, the database
sequence can be streamed character by character with every clock cycle through
the chain of processing elements. The three required values are accessed in the
following way. Hi−1,j (up) is the cell value from the previous clock cycle in the
previous row (and therefore previous neighbor). Hi,j−1 (left) is the cell value from
the previous clock cycle in the same row (and therefore the same cell). Hi−1,j−1

(up-left) is the cell value from two previous clock cycles in the previous row
(previous neighbor again). The processing is now accomplished in anti-diagonals
of the alignment matrix. Figure 2 shows a calculation step of the alignment
matrix and a part of the chain structure.

3.3 Performance Evaluation

We have tested the Smith-Waterman implementation with a query length of
m = 100 and variable database size. This results in five chains on one FPGA of
RIVYERA S6-LX150, i.e. 1,024 queries may be processed concurrently on the
whole RIVYERA. A test set of 1 million Illumina 100bp paired reads (plus re-
verse complements) aligned against the human genome (hg19, ∼ 3Mbp) requires
only about 29h. This leads to a speed of 6, 020 GCUPS (billion cell updates per
second) which outperforms standard PC architectures by far. Compared to a
commercial software solution for PCs and clusters provided by CLCbio [9], this
is a speedup of up to 134 compared to two Xeon CPUs with four cores, or 463
compared to a dual-core standard PC (see Table 1).
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Table 1. Smith-Waterman performance for DNA sequence alignment. 1 million 100 bp
reads (plus reverse complements) are aligned against the human genome.

Architecture
Energy

Time
Speed

(W) ( kWh) (GCUPS)

RIVYERA S6-LX150 780 22.6 29 h 01m 6,020

CLCbio 2x Xeon X3210 @ 2.13GHz (2x4 cores) 210 408.3 ∼ 162 d 45

CLCbio Core2Duo @ 2.17GHz (2 cores) 100 673.1 ∼ 560 d 13

4 Sequence Database Searches with BLASTp

4.1 BLAST Algorithm

To find sequence similarities in biological databases, a sequence alignment of the
query sequence to all stored database sequences has to be performed. Unfortu-
nately, optimal solutions as the Smith-Waterman algorithm (see Sect. 3) are un-
feasible for this task. Thus, the Basic Local Alignment Search Tool (BLAST) [7,2]
has been developed to perform a heuristic search with significantly reduced run-
time.

BLAST is organized in several steps. In the first step, the query sequence is
preprocessed to identify its neighborhood, i.e. a list of k-mers which exceed a
certain threshold score when directly compared to k-mers of the query sequence.
For the comparison a scoring matrix such as BLOSUM62 is taken. For BLASTp
the value for k is fixed to k = 3.

In the second step, hits are located by searching for exact matches of words
from the neighborhood in the database sequences. The hits are tested pairwise
if both hits of a pair hold the same distance to each other in the query sequence
and in the subject sequence. The pair is then referred to as two-hit. The equation
k ≤ q1 − q0 = s1 − s0 < A shows the condition for a two-hit whereby s0 and
s1 state the location of two hits in the subject and q0 and q1 their locations
in the query, respectively. Overlapping hits and long distances are omitted by
parameters k and A.

Each two-hit is further examined by an ungapped extension process. Both
hits of a hit pair are extended by calculating a similarity score and then taking
residue by residue to enlarge the aligned part. The extension is performed in
both directions (backwards first) and stops if the score declines a certain cut-off
distance below the so far calculated maximum (X-drop mechanism). The result,
further referred to as high-scoring pair (HSP), is the pair of the two positions
where the score is maximal. Figure 3 shows an example.

In the last step of the BLAST algorithm, the gapped extension, HSPs are sim-
ply analyzed with a modified version of the Needleman-Wunsch algorithm [10],
which is very similar to the Smith-Waterman algorithm (see Sect. 3).
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D C A A H P E V C T S A Q E D R A N V Q
M C A L H P E V C T S I Q E D P A N V T

Fig. 3. Example for the ungapped extension of a two-hit in the NCBI BLAST imple-
mentation. The solid rectangles mark the hit pair, the dashed an extension.

Fig. 4. Structure of two BLASTp hardware pipelines sharing one GappedExtender
component

4.2 Application Structure and Implementation of BLASTp

The existing approach for protein database searches (BLASTp) implemented
on RIVYERA S3-5000 [11] is based on the ideas of single FPGA solutions
[12,13,14], modified and adapted to work with multiple FPGAs. Now, this ap-
proach has been adapted for the RIVYERA S6-LX150 architecture. Figure 4
shows an overview of the implementation.

The first of the previously described steps, generating the neighborhood, is
performed as a preprocessing step on the host system. The others are imple-
mented on each FPGA as a long pipeline consisting of four main components.
The first component, the HitFinder, searches for occurences of k-mers of the
subject sequence in the neighborhood, which is a simple look-up in a hashtable,
organized in two separate tables. Afterwards, all possible pairs of hits are filtered
with the two-hit condition by the TwoHitFinder component. This can be done
in linear runtime with respect to the number of hits, basically by using a storage
array for hit positions of a size corresponding to the query length.

The UngappedExtender analyzes all two-hits stored in a FIFO buffer. It ex-
tends a two-hit by a pair of residues in each clock cycle, calculating the new score
and comparing it with the so far calculated maximum. If the X-drop condition
holds, the extension stops and the maximum positions are buffered as HSP if
the score exceeds a predefined threshold.

The GappedExtender component is applied as an effective prefilter before a
HSP is reported to the host system for postprocessing. It performs a modified
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Needleman-Wunsch alignment with a banded matrix and the HSP at its center.
The width of the matrix band is set to ω = 64 and corresponds to the num-
ber of generated processing elements (NWcells, similar to SWcells in Sect. 3).
The process uses the X-drop mechanism again to reduce runtime. All HSPs
passing the gapped extension filter are buffered in the attached DRAM before
the host system calculates the exact alignment including backtracking. Since
the GappedExtender is utilized very infrequently but requires a lot of FPGA
resources, each two processing pipelines share one GappedExtender component.

4.3 Performance Evaluation

In RIVYERA S6-LX150 two BLASTp pipelines are implemented on each FPGA.
Hence, 256 queries are processed concurrently on a fully equipped system with
128 FPGAs. For evaluation, we have compared to a PC system equipped with
an Intel Core i7-950 CPU (4 cores / 8 threads @ 3.07GHz) and 12GB RAM
running NCBI BLASTp v2.2.25+ [15] on 8 threads. Three different query sets
with proteoms of human, mouse and rat have been tested, each set reduced to
exactly 10,000 queries. As reference, we have taken the first part of the NCBI
RefSeq BLAST database, release 50, containing 2, 996, 372 sequences (≈ 1 billion
residues) [4].

The runtimes for the three datasets as well as the energy consumption are
listed in Table 2. It shows that RIVYERA outperforms the PC system by a
factor of about 19. The power consumption of RIVYERA is measured with
780W while for the PC system only the TDP with 130W is considered without
peripherals etc. This alone results in energy savings of about 70%.

5 Genome-Wide Association Studies with iLOCi

5.1 iLOCi Algorithm

For detecting epistasis, i.e. gene-gene interactions, in genome-wide association
studies (GWAS) the powerful method iLOCi [3] outperforms other available
tools, such as MDR [16] or BOOST [17], in terms of accuracy and speed. iLOCi
computes a simple statistical test for every possible pair of SNPs, i.e. n(n− 1)/2

Table 2. BLASTp runtimes (in seconds) and energy consumption of three query sets
and part one of the NCBI RefSeq database. The Xeon reference system runs NCBI
BLASTp v. 2.2.25+.

Query set
RIVYERA S6-LX150 Intel Core i7-950

(780W) (8 threads, 130W) Speedup
#queries time energy time energy

Human 10,000 55m 40 s 723.7 Wh 17 h 02m 25 s 2,215.2 Wh 18.4

Mouse 10,000 53m 33 s 696.2 Wh 15 h 43m 55 s 2,045.2 Wh 17.6

Rat 10,000 55m 47 s 725.2 Wh 17 h 33m 03 s 2,281.6 Wh 18.9
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Fig. 5. Overview of the FPGA implementation of iLOCi

tests for n SNPs. This process consists of two simple steps. First, two contin-
gency tables are created containing the counts of all combinations of genotypes
for case and control samples respectively. There are three possible genotypes:
homozygous wild, heterozygous and homozygous variant types. This results in
nine possible combinations for a SNP pair for each type of samples, i.e. either
case or control.

The second step is the calculation of a statistical test value pdiff based on
the previously created contingency tables. Let ncase

ij denote the genotype counts
for the combination i and j of the current SNP pair in all case samples (i, j ∈
{0, 1, 2}). pcaseij then denotes the relative probability respective to ncase

ij . The

same applies for nctrl
ij and pctrlij analogue to the control samples.

pdiff = |pctrl − pcase| (2)

pcase =
pcase00 − pcase02 − pcase20 + pcase22√
(pcase0• + pcase2• ) (pcase•0 + pcase•2 )

(3)

=
ncase
00 − ncase

02 − ncase
20 + ncase

22√(∑
ncase
0j +

∑
ncase
2j

)
(
∑

ncase
i0 +

∑
ncase
i2 )

(4)

iLOCi saves the n best results (e.g. n = 1000) and presents the corresponding
SNP pairs in a sorted list.

5.2 Implementation of iLOCi

The goal for the implementation of iLOCi is to concurrently calculate as many
statistical tests as possible. At first, the host distributes the genotype data of all
SNPs to the available FPGAs, ordered by cases and controls. The creation of the
contingency tables on the FPGA is organized in a systolic chain of processing
elements (PEs), each capable of storing the genotype data for one SNP and
the necessary counters for one contingency table. The genotype data is loaded
from the FPGA attached DRAM and streamed genotype by genotype through
the chain of PEs, whereby each PE stores data for another SNP in its local
RAM. This way n PEs are able to create n contingency tables in parallel. For
RIVYERA S6-LX150 100 PEs fit on each FPGA.

Since the input data is ordered by cases and controls, the calculation of (2) is
divided into two subsequent calculations of (4). At first, pcase is calculated from
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all PEs and stored in a FIFO. pctrl is calculated afterwards. The calculation of
pdiff directly follows. The unit calculating (4) is required only once for all PEs.
It is organized in a large pipeline to ensure a new result in every clock cycle.
This way, the FPGA resources are optimally utilized.

Each FPGA stores its own n best results such that in a short postprocessing
phase the host system can generate a list of the total n best results. A schematic
of the implementation structure is shown in Fig. 5.

5.3 Performance Evaluation

According to the authors of iLOCi, the analysis of a WTCCC dataset [18] with
about 500,000 SNPs and 5,000 samples takes about 19 hours on a MacPro work-
station with two Intel Xeon quad-core CPUs [3]. For a sample dataset of the
same size, the RIVYERA S6-LX150 system takes only 4 minutes which leads to
a speedup of more than 285. We also tested iLOCi on a system with a GeForce
GTX480 GPU and the example test set provided by the software package. Due
to a surprisingly poor performance, we extrapolated the runtime to match the
WTCCC dataset. All runtimes including energy consumption are listed in Ta-
ble 3.

Table 3. iLOCi performance for analysis of a dataset with 500,000 SNPs and 5,000
samples. GPU results are interpolated.

Architecture Energy Time
Speed

(M tests/s)

RIVYERA S6-LX150 780W 0.05 kWh 4m 520.833

2x Intel Xeon quad-core ∼260W 4.94 kWh 19h 1.827

nVidia GeForce GTX480 ∼250W 42.00 kWh ∼ 7d ∼0.200

6 Summary

Three examples of different areas in bioinformatics show the capabilities of high-
performance FPGA technology. The RIVYERA S6-LX150 system with 128 Xil-
inx Spartan6-LX150 FPGAs outperforms standard computer architectures by far
in terms of runtime and energy consumption. The speedup for Smith-Waterman
alignments is more than 134 compared to a commercial solution on a dual quad-
core CPU, BLASTp is outperformed on a quad-core system by a factor of 19,
and the speed for GWAS with iLOCi is increased even 285-fold compared to two
quad-core CPUs. With this increment of speed, problems with intractable sizes
of data become feasible again on one single system.

When compared to CPU cluster systems of a size large enough to handle
the problems in the same time as RIVYERA, energy concsumption becomes
important. Due to the optimal utilization of electrical power in FPGAs, energy
savings are in the same range as the speedup, i.e. about 70% for BLASTp and
between 95% and 99% for Smith-Waterman and iLOCi.
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Abstract. P systems are a computational model inspired by the func-
tioning of the cell and based upon the notion of cellular membrane. We
show how different features of P systems with active membranes, a vari-
ant of the basic model where membranes can be multiplied by division,
can be used to approach various problems in computation theory.

1 Introduction

Membrane systems (also known as P systems) have been introduced in [11] as
a parallel, nondeterministic, synchronous and distributed model of computa-
tion inspired by the structure and functioning of living cells. The basic model
consists of a hierarchical structure composed by several membranes, embedded
into a main membrane called the skin. Membranes defines regions that contain
multisets of objects (represented by symbols of an alphabet) and evolution rules.

Using these rules, the objects may evolve and/or move from a region to a
neighboring one. Usually, the rules are applied in a maximally parallel and non-
deterministic way: all objects which can evolve in a computation step must
evolve; if different sets of rules can be applied in a computation step (in a max-
imal parallel way), then one of them is nondeterministically chosen.

A computation starts from an initial configuration of the system and termi-
nates when no evolution rule can be applied. The result of a computation is the
multiset of objects contained into an output membrane, or emitted from the skin
of the system. For a systematic introduction to P systems we refer the reader to
[13], [14], whereas some recent information can be found in [25].

The variant of P systems with active membranes has been introduced in [12]
to consider the possibility to communicate objects according to electrical charges
associated with the membranes, and the possibility to increase the number of
membranes by division of existing ones. Such features can be used in many
different ways: as an example, one can construct an exponential workspace in
linear time to attack computationally hard problems.

In this paper we survey some results concerning P systems with active mem-
branes, to show how different membrane features can be exploited in different
ways to approach various classical problems in the theory of computation.
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2 Definitions

In this section we recall the basic definition of P systems with active membranes.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a
tuple Π = (Γ,Λ, μ, w1, . . . , wd, R), where:

– Γ is an alphabet, a finite non-empty set of symbols, usually called objects;
– Λ is a finite set of labels for the membranes;
– μ is a membrane structure (i.e., a rooted unordered tree) consisting of d

membranes enumerated by 1, . . . , d; each membrane is labeled by an element
of Λ, not necessarily in a one-to-one way, and possesses an electrical charge
(or polarization), that can be neutral (0), positive (+) or negative (−).

– w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of μ;

– R is a finite set of rules.

The rules are of the following kinds:

– Object evolution rules, of the form [a → w]αh
They can be applied if the membrane h has charge α and contains an occur-
rence of the object a; the object a is rewritten into the multiset w.

– Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and if the
external region contains an occurrence of the object a; the object a is sent
into h becoming b and, simultaneously, the charge of h is changed to β.

– Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of a; the object a is sent out from h to the outside
region becoming b. Simultaneously, the charge of h is changed to β.

– Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

– Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labeled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charge β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

– Nonelementary division rules, of the form[
[ ]+h1

· · · [ ]+hk
[ ]−hk+1

· · · [ ]−hn

]α
h
→
[
[ ]δh1

· · · [ ]δhk

]β
h

[
[ ]εhk+1

· · · [ ]εhn

]γ
h

They can be applied to a membrane labeled by h, having charge α, con-
taining the positively charged membranes h1, . . . , hk, the negatively charged
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membranes hk+1, . . . , hn, and possibly some neutral membranes. The mem-
brane h is divided into two copies having charge β and γ, respectively; the
positively charged membranes h1, . . . , hk are placed inside the former mem-
brane, their charge set to δ, while the negative ones are placed inside the
latter membrane, their charges set to ε. Neutral membranes inside h are
duplicated and placed inside both copies.

Each instantaneous configuration of a P system with active membranes is
described by the current membrane structure, including the electrical charges,
together with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane any number of evo-
lution rules can be applied simultaneously).

– The application of rules is maximally parallel : each object appearing on
the left-hand side of evolution, communication, dissolution or elementary
division rules must be subject to exactly one of them (unless the current
charge of the membrane prohibits it). The same reasoning applies to each
membrane that can be involved to communication, dissolution, elementary
or nonelementary division rules. In other words, all possible rules that can
be applied must be applied at each computation step; the only objects and
membranes that do not evolve are those associated with no rule, or only to
rules that are not applicable due to the electrical charges.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step (e.g. consider two
rules a → b and a → c in a region h; if an object a is present in that region,
then it can nondeterministically produce either b or c, by using respectively
the first or the second rule).

– While all the chosen rules are considered to be applied simultaneously during
each computation step, they are logically applied in a bottom-up fashion:
first, all evolution rules are applied to the elementary membranes, then all
communication, dissolution and division rules; then the application proceeds
towards the root of the membrane structure. In other words, each membrane
evolves only after its internal configuration has been updated.

– The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
by Ci via a single computation step, and no rules can be applied anymore in Ck.
The result of a halting computation is the multiset of objects emitted from the
skin during the whole computation. A non-halting computation C = (Ci : i ∈ N)
consists of infinitely many configurations, again starting from the initial one and
generated by successive computation steps, where the applicable rules are never
exhausted. A non–halting computation produces no output.
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P systems can also be used as recognizers (see, e.g. [3]) by employing two
distinguished objects yes and no; exactly one of these must be sent out from the
outermost membrane during each computation, in order to signal acceptance or
rejection respectively; we also assume that all computations are halting. If all
computations starting from the same initial configuration are accepting, or all are
rejecting, the P system is said to be confluent. If this is not necessarily the case,
then we have a non–confluent P system, and the overall result is established as for
nondeterministic Turing machines: it is acceptance iff an accepting computation
exists. All P systems considered in this paper are confluent.

In order to solve decision problems (i.e., decide languages), we use families
of recognizer P systems Π = {Πx : x ∈ Σ�}. Each input x is associated with
a P system Πx that decides the membership of x in the language L ⊆ Σ� by
accepting or rejecting. The mapping x #→ Πx must be efficiently computable for
each input length [10].

Definition 2. A family of P systems Π = {Πx : x ∈ Σ�} is said to be
(polynomial-time) uniform if the mapping x #→ Πx can be computed by two
deterministic polynomial-time Turing machines F (for “family”) and E (for “en-
coding”) as follows:

– The machine F , taking as input the length n of x in unary notation, con-
structs a P system Πn, which is common for all inputs of length n, with a
distinguished input membrane.

– The machine E, on input x, outputs a multiset wx (an encoding of x).
– Finally, Πx is simply Πn with wx added to the multiset placed inside its

input membrane.

Definition 3. If the mapping x #→ Πx is computed by a single polynomial-
time Turing machine, the family Π is said to be semi-uniform. In this case,
inputs of the same size may be associated with P systems having possibly different
membrane structures and rules.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced to mimic a (hypothetical) realistic process of construction
of the P system, where membranes and objects are placed in a constant amount
during each construction step, and require actual physical space proportional to
their number. Moreover, notice that uniformity condition can also be restricted
to be computed in classes below P, such as log–space Turing machines. We refer
the reader to [10] for further details on the encoding of P systems.

Finally, we describe how time and space complexity for families of recognizer
P systems are measured.

Definition 4. A uniform or semi–uniform family of P systems Π = {Πx : x ∈
Σ�} is said to decide the language L ⊆ Σ� (in symbols L(Π) = L) in time
f : N → N iff, for each x ∈ Σ�,
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– the system Πx accepts if x ∈ L, and rejects if x /∈ L;
– each computation of Πx halts within f(|x|) computation steps.

Definition 5. Let C be a configuration of a P system Π. The size |C| of C
is defined as the sum of the number of membranes in the current membrane
structure and the total number of objects they contain. If C = (C0, . . . , Ck) is a
halting computation of Π, then the space required by C is defined as

|C| = max{|C0|, . . . , |Ck|}

or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.

Non-halting computations might require an infinite amount of space (in symbols
|C| = ∞). The space required by Π itself is then

|Π | = sup{|C| : C is a computation of Π}.

Notice that |Π | = ∞ occurs if either Π has a non-halting computation requiring
infinite space, or Π has an infinite set of halting computations, such that for
each bound b ∈ N there exists a computation requiring space larger than b.

3 Basic Results for P Systems

First investigations of P systems concentrated on their computational power,
comparing them with other classic computation models like automata and Turing
machines. Let us denote by NOPk(δ) (resp. NOPk(nδ)) the family of natural
numbers generated by P systems having k membranes and using (resp. not using)
the dissolving membrane action. The following results are known ([13]):

Theorem 1. NOP∗(nδ) = NOP1(nδ) = NCF
NCF = NOP∗(nδ) ⊂ (NE0L ⊆)NOP2(δ)
NOP∗(δ)(⊆ ET 0L) ⊂ NCS

The theorem shows that by using a single membrane we can only generate
the length sets of context–free languages, and the power cannot be extended
by using more membranes. However, the membrane dissolving action used in a
system with at least two membranes improves the computational power, even if
universality cannot be obtained in this way.

If we consider the variant (called Rewriting P systems) where objects are
structured in strings, then this fact is even more evident. Let us denote by RPk

the family of languages generated by Rewriting P systems using k membranes
and context–free rewriting rules. The following theorem from [13] shows that
using a single membrane only context–free languages can be obtained, but a
structure with four membranes allow to obtain a strictly more powerful class.
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Theorem 2. RP1(CF ) = CF ⊂ RP4(CF )

Thus, it is evident from these results that the power of such systems can
be improved (as expected) by exploiting membranes to define regions to keep
separated specific subsets of rules and objects.

By making use of generic communication rules allowed by electrical charges,
standard normal forms can be defined as showed in [23]:

Theorem 3. Each language generated by a (rewriting) P system which make
use of electrical charges to communicate objects, can be generated by a system of
the same type with exactly three rules in each region.

If we allow to set priority relations among rules to define the order in which
they should be applied in case of a conflict, then the following result holds:

Theorem 4. Each recursively enumerable language can be generated by a (rewrit-
ing) P system having exactly two different rules in each region.

4 Using Membrane Division to Attack Computationally
Hard Problems

As mentioned above, P systems with active membrane allow to create new mem-
branes during the computation by division of existing membranes. In this way
we can obtain a trade off between time and space resources that allows to solve
NP–complete (or even harder) problems in polynomial time and exponential
space (see, e.g., [12], [6], [7], [22], [24]).

Theorem 5. The SAT problem can be solved in linear time (with respect to the
number of variables and the number of clauses) by a confluent P-system with
active membranes using elementary membrane division only.

Proof. (sketch) Consider a boolean expression Φ in conjunctive normal form,
with m clauses and n variables. We can build a P-system Π = (Γ,Λ, μ, w1, w2, R)
having initial objects a1, a2, . . . , an in region 2 and such that R is defined to
contain a polynomial number of rules (with respect to the size of the input
formula) that operate as it follow.

By using the variables ai and elementary membrane division rules, in O(n)
steps we generate 2n copies of membrane 2, containing all possible truth assign-
ments of the n variables of Φ.

Then, in O(m) steps we verify if there is at least one membrane containing a
truth assignment that satisfies all the m clauses of Φ. In this case, an object yes
is sent out from the skin membrane; otherwise, an object no is sent out. ��

Let us denote by PMCNAM, PMCEAM, and PMCAM the class of prob-
lems solved by P systems with active membranes without membrane division,
with division for elementary membranes only, and for both elementary and non–
elementary membranes, respectively. An immediate consequence of the previous
theorem is the following:
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Theorem 6. NP ⊆ PMCEAM

From this result and from the closure properties for PMCEAM it also follows:

Theorem 7. coNP ⊆ PMCEAM

In [16] a stronger result was proved: the complexity class PP (Probabilistic
Polynomial time: the class of decision problems solvable by a probabilistic Turing
machine in polynomial time, with an error probability of less than 1/2 for all
instances) is also included in PMCEAM. The result is obtained by solving the
PP–complete problem SQRT–3SAT (given a Boolean formula of n variables in
3CNF, do at least

√
(2n) among the 2n possible truth assignments satisfy it?).

Of course, if we also allow the use of division for non-elementary membranes,
harder problems can be solved. In particular, in [2], [21] and [19] it has been
proved the following:

Theorem 8. PSPACE ⊆ PMCAM ⊆ EXPTIME

One could conjecture that computationally hard problems could also be solved
by means of P systems without the use of membrane division: in fact, by applying
in a maximally parallel way the rewriting rules one can obtain an exponential
number of objects in polynomial time. Nonetheless, if the considered P system is
confluent, then all objects of the same type must be used in the same way inside
a region. If we do not allow membrane division, then the languages accepted
in polynomial time by (confluent) membrane systems can also be accepted by
a deterministic Turing machine in polynomial time, as showed in [22]. In [5] a
characterization of P was given in terms of P systems with active membranes,
without membrane division:

Theorem 9. P = PMCNAM

Another important (and somehow surprising) characterization of P was given
in [4], where it was shown that membrane division alone does not suffice to speed-
up computations. Let us denote by PMCAM(nδ, nPol) the class of languages
recognized in polynomial time by P–systems with active membranes, without
dissolving membrane action nor polarization on membranes. Then:

Theorem 10. P = PMCAM(nδ, nPol)

5 Space Complexity of P–Systems and Polarization of
Membranes

In order to clarify relations between the amount of time and space needed to
solve various classes of problems, in [15] a definition of space complexity for P
systems has been introduced. In [17] and [18] it has been shown, respectively,
that the PSPACE–complete problem Quantified–3SAT can be solved by P–
systems with active membranes using a polynomial amount of space, and that
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such P systems can be simulated by Turing machines with only a polynomial
increase in space requirements, thus giving a precise characterization of the class
PSPACE in terms of space complexity classes for membrane systems. A similar
result to characterize the complexity class EXPSPACE can be obtained by
considering exponential space P systems, as showed in [1].

The opposite direction was also considered by investigating classes of problems
solved by P systems which make use of logarithmic space. We recall here one
result obtained in this framework, as it clearly shows how the same membrane
feature can be used in different ways.

In order to consider sublinear space, we first need to define a meaningful notion
of sublinear space for P systems, inspired by sublinear space definition for Turing
machines: we consider two distinct alphabets, an INPUT alphabet and a WORK
alphabet, in the definition of a P systems. The input objects cannot be rewritten
and do not contribute to the size of the configuration of a P system. The size of
a configuration is defined as the sum of the number of membranes in the current
membrane structure and the total number of working objects they contain. The
space complexity of a P system is defined, as in section 2, as the maximum size
among all configurations. Moreover, we need to define a uniformity condition for
the families of P systems that is weaker than the usual P uniformity, to avoid the
possibility to solve a problem directly by using the Turing machine that build
the P systems we use to compute. We consider DLOGTIME-uniformity, defined
on the basis of DLOGTIME Turing machines [9]. We refer the reader to [20] for
formal definitions.

The efficient simulation of logarithmic space Turing machines (or other equiv-
alent models) by employing standard techniques used in the papers previously
cited seems not to work because of two main problems: we either need to use
a polynomial number of working objects (thus violating the logarithmic space
condition) or to use a polynomial number of rewriting rules (thus violating the
uniformity condition). Nonetheless, it has been showed in [20] that such a simula-
tion can be efficiently done by using membrane polarization both to communicate
objects through membranes as well as to store some information:

Theorem 11. Each log–space deterministic Turing machine M can be simu-
lated by a DLOGTIME-uniform family Π of confluent recognizer P systems
with active membranes in logarithmic space.

Proof. (sketch) Consider a Turing machine M working in a logarithmic space.
The P system Πn that simulates M on input of length n is composed of:

– A skin membrane containing a state object object qi,w to indicate that M is
currently in state q and its tape heads are on the i-th and w-th symbols of
the input and work tape, respectively.

– O(log(n)) nested membranes (INPUT tape membranes) containing, in the
innermost one, the input symbols of M , and O(log(n)) membranes to store
the work tape of M (WORK tape membranes).

– Two sets of membranes, which size depends on the dimensions of the input
and the working alphabets of M (SYMBOL membranes).
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To simulate a computation step of M , the state object enters the INPUT
membranes, storing the bits corresponding to the actual position of the IN-
PUT head of M in the polarizations of the INPUT membranes. Only one object
(corresponding to the INPUT symbol actually read) can travel to the outer-
most membrane. Then, the state object identifies the symbol actually under
the WORK head (using WORK tape membranes) and proceed to simulate the
transition of M using the SYMBOLS membranes.

Each P system Πx (simulating each M(x) such that |x| = n) only requires
O(log |x|) membranes and objects besides the input objects and the family Π is
DLOGTIME-uniform. The time required by the simulation is O

(
n · t(n)

)
, where

t(n) is the maximum number of steps performed by M on inputs of length n. ��

An immediate corollary of Theorem 11 is that the class L (the class of prob-
lems solved by log–space Turing machines) is contained in the class of problems
solved by DLOGTIME-uniform, log–space P systems with active membranes.

6 Conclusions

We survey some results concerning P systems with active membranes, to show
that the various features associated to membranes can be exploited in different
ways to approach various classical problems in the theory of computation.

Of course, further and more powerful features can be considered. As an exam-
ple, we recall here the so–called UREM P–systems ([8]), where rules are assigned
to membranes (not to the regions as usually done in membrane computing) and
the concept of polarization is extended so that every membrane carries an integer
value representing an energy value that can be changed during a computation.
Turing–completeness without the use of other features can be obtained in this
way, as well as a definition of quantum-like membrane systems.
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Short Lists with Short Programs

in Short Time – A Short Proof
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Abstract. Bauwens, Mahklin, Vereshchagin and Zimand [1] and
Teutsch [6] have shown that given a string x it is possible to construct
in polynomial time a list containing a short description of it. We sim-
plify their technique and present a shorter proof of this result, which also
achieves better values for the main parameters.

1 Introduction

Given that the Kolmogorov complexity is not computable, it is natural to ask
if given a string x it is possible to construct a short list containing a minimal
(+ small overhead) description of x. Bauwens, Mahklin, Vereshchagin and Zi-
mand [1] and Teutsch [6] show that, surprisingly, the answer is YES. Even more,
in fact the short list can be computed in polynomial time. More precisely, [1]
showed that one can effectively compute lists of quadratic size guaranteed to
contain a description of x whose size is additively O(1) from a minimal one (it is
also shown that it is impossible to have such lists shorter than quadratic), and
that one can compute in polynomial-time lists guaranteed to contain a descrip-
tion that is additively O(log n) from minimal. Finally, [6] improved the latter
result by reducing O(log n) to O(1).

Theorem 1 ([6]). For every standard machine U there is a constant c and a
polynomial-time algorithm f such that for every x, f(x) outputs a list of programs
that contains a c-short program for x.

Let us explain the formal terms. Given a Turing machine U , a c-short program for
x is a string p such that U(p) = x and the length of p is bounded by c+ (length of
a shortest program for x). A machine U is optimal if C U (x) ≤ CV (x)+O(1) for
all machines V and all strings x (where CU (CV ) is the Kolmogorov complexity
induced by U (respectively, by V ) and the constant O(1) may depend on V ).
An optimal machine U is standard if for every machine V there is an efficient
translator from any machine V to U , i.e., a polynomial-time computable function
t such that for all p, y, U(t(p)) = V (p) and |t(p)| = |p|+ O(1).

Both [1] and [6] prove their results regarding polynomial-time computable
lists as corollaries of somewhat more general theorems. We present in this note
a direct proof of Theorem 1, which is simpler and shorter than the one in [6].
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We emphasize that there is no technical innovation in the proof that we present
below. We use the same general approach and the same ingredients as in [1] and
[6], but, because we go straight to the target, we can take some shortcuts that
render the proof simpler. The proof given here also produces a smaller size of
the list and a smaller value for the constant in the theorem.

Proof overview. Essentially we want to compress a string x in polynomial time
to a (close to) minimal posible succinct description p, such that decompression
(i.e., reconstructing back x from p) is computable (not necessarily in poynomial
time). This is of course impossible in absolute terms, but here we compress in
a weaker sense, because we obtain from x not a single compressed string, but
a list guaranteed to contain a (close to) optimally succinct description of x. It
is natural to think to use seeded extractors, because an extractor’s output is
close to being optimally compressed in the Shannon entropy sense. The prob-
lem is that we need an extractor with logarithmic seed (because we want a
list of polynomial size) and no entropy loss (because we want to decompress).
Unfortunately, such extractors have not yet been shown to exist. The key obser-
vation from [1], also used in [6], is that in fact a disperser is good enough, and
then one can use the disperser from [5], which has the needed parameters. Now,
why are dispersers sufficient? The answer, inspired by [4], stems from the idea
from [1] to use for this kind of compression graphs that allow on-line match-
ing. These are unbalanced bipartite graphs, which, in their simplest form, have

LEFT = {0, 1}n,RIGHT = {0, 1}k+small overhead, and left degree = poly(n),
and which permit on-line matching up to size K = 2k. This means that any set
A of K left nodes, each one requesting to be matched to some adjacent right
node, can be satisfied in the on-line manner(i.e., the requests arrive one by one
and each request is satisfied before seeing the next one; in our proof we will
allow a small number of requests to be discarded, but this should also happen
before the next request arrives). The correspondence to our problem is roughly
that strings in LEFT are the strings that we want to compress, and the strings
in RIGHT are their compressed forms. We need on-line matching because we
are going to enumerate left strings as they are produced by the universal ma-
chine and each time a string is enumerated we want to find it a match, i.e.,
to compress it. In order for a graph to allow matching, it needs to have good
expansion properties. It turns out that it is enough if left subsets of a given
size K/O(1) expand to size K, and a disperser has this property. When we de-
compress, given the right node (the compressed string), we run the matching
algorithm and see which left node has been matched to it. For this the decom-
pressor needs to have n to be able to construct the graph, and this produces
the O(log n) overhead. Thus this approach is good enough to obtain the result
with O(log n)-short programs from [1]. To reduce O(log n) to O(1), we need the
new ideas from [6]. The point is that this time we want LEFT to have strings
not of a single length n, but of all lengths n ≥ k (because we can no longer
afford to give n to the decompressor). In fact, it is not hard to see, that it is
enough to restrict to lengths k ≤ n ≤ 2k. This time we need expansion for
all sets of size ≤ K (not just equal to a fixed K/O(1), because we need each
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subset (of the match-requesting set A) of strings of a given length to expand.
For this, the unbalanced lossless expander from [3] is good, except for one prob-
lem: The size of RIGHT in this expander is poly(K) and not the desired O(K).
This problem is fixed by compressing using again the disperser from [5] to a set
of size K ·poly(k), and, finally, using a simple trick, to size O(K), which implies
the O(1) overhead we aim for.

2 Combinatorial Tools

We use bipartite graphs G = (L,R,E ⊆ L × R). We denote LEFT(G) = L,
RIGHT(G) = R. For integers n,m, k, d we denote N = 2n,M = 2m,K =
2k, D = 2d. We denote [n] = {1, 2, . . . , n}. A bipartite graph G is explicit if there
exists a polynomial-time algorithm that given x ∈ LEFT(G) and i, outputs the
i-th neighbor of x (in case i exceeds the number of neighbors, it will output a
special symbol).

The main tools are the following expander and disperser graphs.

Definition 1. A bipartite graph G is a (K,K ′)-expander if every subset of left
nodes having size K, has at least K ′ right neighbors.

Theorem 2 (Guruswami, Umans, Vadhan [3]). For every constant α > 0,
every n, every k ≤ n, and ε > 0, there exists an explicit (K ′, (1−ε)DK ′) expander
for every K ′ ≤ K, in which every left node has degree D = O((nk/ε)1+1/α),
L = [N ], R = [M ], M ≤ D2 · K1+α.

Definition 2. A bipartite graph G = (L,R,E) is a (K, δ)-disperser, if every
subset B ⊆ L with |B| ≥ K has at least (1− δ)|R| distinct neighbors.

Theorem 3 (Ta-Shma, Umans, Zuckerman [5]). For every K,n and con-
stant δ, there exists explicit (K, δ)-dispersers G = (L = {0, 1}n, R = {0, 1}m, E ⊆
L×R) in which every node in L has degree D = n2O((log logn)2) and |R| = αKD

n3 ,
for some constant α.1

3 The Proof

The key combinatorial object that we use is provided in the following lemma.

Lemma 1. For every constant c and every sufficiently large k, there exists an
explicit bipartite graph Hk with the following properties:

1. LEFT(Hk) = {0, 1}k ∪ {0, 1}k+1 ∪ . . . ∪ {0, 1}2k, RIGHT(Hk) = {0, 1}k+1,
2. Each left node x has degree poly(|x|),
3. Hk is a (K/c2,K)-expander.

We defer the proof of this lemma for later.

1 [5] only indicates that D = poly(n). The value D = n2O((log log n)2) is obtained by
reworking the proof in Lemma 6.4 [5] using the extractor with constant entropy loss
from Theorem 4.21 in [3].
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We show how the lemma implies Theorem 1. We start with the following
lemma about on-line matching (recall that this means that one receives a se-
quence of requests to match left nodes with one of their adjacent right nodes
and each request must be satisfied, or discarded, before seeing the next one).

Lemma 2. If K on-line matching requests are made in a (K/c2,K)-expander
all but less than K/c2 can be satisfied.

Proof. Suppose there are K requests for matching left nodes and we attempt to
satisfy them in the obvious greedy manner. Suppose that K/c2 requests cannot
be satisfied (because all their neighbors have been used to match previous re-
quests). The K/c2 left nodes that are not satisfied have K right neighbors and
all of them have satisfied matching requests. This would imply that all the K
requests have been satisfied, contradiction.

Proof of Theorem 1

We define the following machine V (“the decompressor”) that reconstructs x
from p. Essentially, the machine V on an input p is looking for a string x that
is matched to p during an on-line matching process (this is handled in case (3)
below). But first we handle two easy special situations: case (1) when x does
not have a description that is shorter than its length, and case (2) when x has
a description that is shorter than log(|x|).

Description of V :

(1) On inputs of the form 00p, V outputs p.

(2) On inputs of the form 01p, V simulates U(p) and if U(p) = x and |x| > 2|p|,
outputs x.

(3) On inputs of the form 1p, V works as follows:
Let k = |p|− 1. Enumerate the elements of the set {x | ∃q of length k, U(q) =

x}. When an element x is enumerated and |x| is between k and 2k, pass x to the
online matching algorithm for the graph Hk given by Lemma 1. If x is matched
to p, then V (p) outputs x and halts; otherwise the enumeration continues.

Observe that during computations of the form (3), at most K matching re-
quests are made and therefore, by the property of Hk, there are fewer than K/c2

rejections. It follows that if v is a rejected node then CU (v) ≤ k−2 log c+log c+
2 log log c + O(1) < k, for c a large enough constant. Indeed a rejected string
can be described by its index in the set of rejected strings written on exactly
k − 2 log c bits, and c (which is needed in order to reconstruct k and next enu-
merate the set of rejected strings). The additional 2 log log c term is required for
concatenating the index and c. It follows that if x is a string such that CU (x) = k
and k ∈ {log |x|, . . . , |x|}, then there exists p of length k+1 such that V (1p) = x.
Moreover, p is one of the right neighbors of x in Hk.

Now, for each x, let list(x) be the list containing the following strings: 00x,
all strings of length < log |x| prefixed with 01, and all the neighbors of x in
Hk prefixed with a 1, for k = |x|, |x| − 1, . . . , log(|x|). Note that for every x,
list(x) can be computed in polynomial time, and there exists v ∈ list(x), |v| ≤
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CU (x) + O(1) such that CV (v) = x. Finally, using the ”translator” t from V
programs to U programs, take f(x) = {t(v) | v ∈ list(x)}. Since t is computable
in polynomial time, U(t(v)) = V (v) and |t(v)| = |v|+ O(1), we are done. ��

It remains to prove Lemma 1.We use two types of graphs given in the following
two lemmas.

Lemma 3. For every n, and k ≤ n, there exists an explicit bipartite graph
GUVn,k with each left node having degree D = λ(nk)2 (for some fixed constant
λ), LEFT(GUVn,k) = {0, 1}n, RIGHT(GUVn,k) = [M] with M ≤ D2K2 , which
is a (K ′, (1/2)DK ′)-expander for every K ′ ≤ K.

Proof. This is the Guruswami, Umans, Vadhan expander with parameters α =
1, ε = 1/2.

Lemma 4. For every k, there exists a bipartite graph Fk with each left node
having degree D = O(k3), LEFT(Fk) = {0, 1}8k, RIGHT(Fk) = {0, 1}k+1, which
is a (K,K)-expander.

Proof. Consider the Ta-Shma, Umans, Zuckerman (K, 1/2)-disperser G, with

LEFT(G) = {0, 1}8k, RIGHT(G) = {0, 1}m , left degree D = O(k2O((log log k)2))
and |RIGHT(G)| = αKD

(8k)3 .

To increase the size of the right set to be at least 2K, we make RIGHT consist

of 27 (8k)
3

αD 8 copies of RIGHT(G) connected to LEFT(G) in the same way as the
original nodes. Thus each right node is labelled by a string of length ≥ k+1 and
the left degree is O(k3).

By merging the nodes whose labels have the same prefix of length k + 1,
we obtain the graph Fk, which as desired has RIGHT(Fk) = {0, 1}k+1 and is a
(K, 1/2)-disperser (because the merge operation can only improve the dispersion
property).

Thus, every left subset of size K has at least (1/2) · 2K right neighbors, i.e.,
Fk is a (K,K)-expander.

We are now prepared to prove Lemma 1.

Proof of Lemma 1

Let us fix c and a sufficiently large k.
We first construct the graph Gk as the union GUVk,k ∪ GUVk+1,k ∪ . . . ∪

GUV2k,k.
Note that LEFT(Gk) consists of all strings having length between k and 2k.

For RIGHT(Gk), we shift the numerical labels of the right nodes in each set
in the obvious way before taking the union, so that the sets that we union are
pairwise disjoint. We have

|RIGHT(Gk)| ≤
2k∑
n=k

λ2(nk)4K2 = λ2k4K2
2k∑
n=k

n4 ≤ λ2k4 ·K7 < K8,

for k sufficiently large. By padding each right node in Gk with 100 . . .0, we label
each right node by a string of length 8k.
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Note that, provided k is sufficiently large, Gk is a (K/c2,K)-expander. Indeed
take B ⊆ LEFT(Gk), |B| ≤ K/c2. B has strings of different lengths. If we
partition B into subsets of strings corresponding to the different lengths, each
subset with strings of length say n expands according to GUVn,k by a factor of
(1/2)λ(nk)2 ≥ c2 (if k is large enough). Since different subsets of the partition
map into disjoint right subsets, the above assertion follows.

The degree of every left node x in Gk is bounded by poly(|x|) because the
edges originating in x are those from the graph GUV|x|,k. So Gk is almost what
we need except that the right nodes have length 8k instead of k +1. We fix this
issue by compressing strings of length 8k to length k+1 using the graph Fk from
Lemma 4.

More precisely, we build the graph Hk by taking the product of the above
graph Gk with the graph Fk. Thus LEFT(Hk) = LEFT(Gk), RIGHT(Hk) =
RIGHT(Fk) and (x, y) is an edge in Hk if there exists z ∈ RIGHT(Gk) ⊆
LEFT(Fk) such that (x, z) is an edge in Gk and (z, y) is an edge in Fk.

As desired, LEFT(Hk) consists of all strings x having length between k and
2k, RIGHT(Hk) = {0, 1}k+1, the degree of every left node x is bounded by
poly(|x|)poly(k) = poly(|x|) and Hk is a (K/c2,K)-expander, because each left
subset of size K/c2 expands to size at least K in Gk and then it keeps its size
at least K when passing through Fk. ��

Note. The above construction yields in Theorem 1 a list of size O(n8). If in
Lemma 3 we take a small α (instead of α = 1), we obtain list size n6+δ, for arbi-
trarily small positive constant δ. Bauwens and Zimand [2] have recently found a
randomized algorithm that with high probability constructs in polynomial time
a list of size n guaranteed to contain a c-short programs for c = O(log n).

Acknowledgements. We are grateful to Alexander Shen for his comments and
for signalling an error in an earlier version. We thank Jason Teutsch for useful
conversations that lead to a more precise estimation of the list size in Theorem 1.
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