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Abstract. Let G = (V, E) be a given (directed) graph in which every
edge is with a cost and a delay that are nonnegative. The k-disjoint re-
stricted shortest path (kRSP) problem is to compute k (edge) disjoint
minimum cost paths between two distinct vertices s, t ∈ V , such that
the total delay of these paths are bounded by a given delay constraint
D ∈ R

+
0 . This problem is known to be NP-hard, even when k = 1 [4]. Ap-

proximation algorithms with bifactor ratio (1+ 1
r
, r(1+ 2(log r+1)

r
)(1+ε))

and (1+ 1
r
, r(1+ 2(log r+1)

r
)) have been developed for its special case when

k = 2 respectively in [11] and [3]. For general k, an approximation algo-
rithm with ratio (1, O(lnn)) has been developed for a weaker version of
kRSP, the k bi-constraint path problem of computing k disjoint st-paths
to satisfy the given cost constraint and delay constraint simultaneously
[7].

In this paper, an approximation algorithm with bifactor ratio (2, 2)
is first given for the kRSP problem. Then it is improved such that for
any resulted solution, there exists a real number 0 ≤ α ≤ 2 that the
delay and the cost of the solution is bounded, respectively, by α times
and 2 − α times of that of an optimal solution. These two algorithms
are both based on rounding a basic optimal solution of a LP formula,
which is a relaxation of an integral linear programming (ILP) formula
for the kRSP problem. The key observation of the two ratio proofs is
to show that, the fractional edges of a basic solution to the LP formula
will compose a graph in which the degree of every vertex is exactly 2. To
the best of our knowledge, it is the first algorithm with a single factor
polylogarithmic ratio for the kRSP problem.

Keywords: LP rounding, flow theory, k-disjoint restricted shortest path
problem, bifactor approximation algorithm.

1 Introductions

This paper addresses on the k restricted shortest path problem, whose definition
is formally as in the following:
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Definition 1. (The k restricted shortest path problem, kRSP) Let G = (V, E)
be a (directed) graph with a pair of distinct vertices s, t ∈ V . Assume that c :
E → R

+
0 and d : E → R

+
0 are a cost function and a delay function on the edges

of E respectively. The k restricted shortest path problem is to compute k disjoint
st-paths P1, . . . , Pk, such that

∑

i=1,...,k

c(Pi) is minimized while
∑

i=1,...,k

d(Pi) ≤ D

holds for a given delay bound D ∈ R
+
0 .

The kRSP problem has broad applications in industry, e.g., end-to-end video
transmission with delay constraints, construction of minimum cost time-sensitive
survivable networks, design of minimum cost fault tolerance systems subjected
to given energy consumption constraint (or other additive constraints) and etc.
Before the technique paragraphs, we would like to give the statement of the
bifactor approximation algorithms for the kRSP problem first: An algorithm A
is a bifactor (α, β)-approximation for the kRSP problem iff for every instance
of kRSP, A computes k disjoint st-paths whose delay sum and cost sum are
bounded by αD and βc(OPT ) respectively, where OPT is an optimum solu-
tion to the kRSP problem and c(OPT ) =

∑
e∈OPT c(e). We shall use bifactor

(1, β)-approximation and β-approximation interchangeably in the text while no
confusion arises.

1.1 Related Work

The kRSP problem have been studied for some fixed positive integral k. When
k = 1, the problem becomes the restricted shortest path problem (RSP) of
finding a single shortest path that satisfies a given QoS constraint. The RSP
problem is known as one of Karp’s 21 NP-hard problems [4] and admits full
polynomial time approximation scheme (FPTAS) [9]. As a generalization of the
RSP problem, the single Multiple Constraint Path (MCP) problem of computing
a path subjected to multiple given QoS constraints is still attracting interest in
the research community. For MCP, the (1+ ε)-approximation developed by Xue
et al [16,10] is the best result in the current state of the art. When k = 2,
approximation algorithms with bifactor ratio (1+ 1

r , r(1+
2(log r+1)

r )(1+ ε)) and
(1+ 1

r , r(1 +
2(log r+1)

r )) have been developed respectively in [11] and [3]. To the
best of our knowledge, there exists no non-trivial approximation that strictly
obeys the delay constraint in the literature. However, for general k, the author,
together with Shen and Liao, have developed approximation algorithms with
bifactor ratio (1, O(lnn)) for a weaker version of the kRSP problem, namely the
k bi-constraint path problem, in which the goal is to compute k disjoint paths
satisfying a given cost constraint and a given delay constraint simultaneously
[7].

There are also some other interesting results that addressed on other spe-
cial cases of the kRSP problem. When all edges are with delay 0, this problem
becomes the min-sum problem of computing k disjoint paths with the total
cost minimized, which is known polynomial solvable [13,14]. The min-min and
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min-max problems are two problems which are close related to the min-sum
problem. The former problem is to find two paths with the length of the shorter
one minimized, while the latter is to make the length of the longer one minimized.
Our previous work, together with Xu et al’s and Bhatia et al’s [6,15,2], show that
the min-min problem is NP-complete and doesn’t admit K-approximation for
any K ≥ 1. Moreover, the edge-disjoint min-min problem remains NP-complete
and admits no polynomial time approximation scheme in planar digraphs [5].
The min-max problem is also NP -complete. But unlike the min-min problem,
it admits a best possible approximation ratio 2 in digraphs [8], which can be
achieved immediately by employing Suurballe and Tarjan’s algorithm for the
min-sum problem [13,14]. In addition, as a variant of the min-max problem, the
length bounded disjoint path problem of computing two disjoint paths whose
lengths are both bound a given constraint, is also known NP-complete [8].

1.2 Our Technique and Results

In this paper, we first give a LP formula for the kRSP problem. Then by rounding
the value of fractional edges of a solution to the LP formula, two approximation
algorithms are developed. The first algorithm uses traditional rounding method,
and computes solutions with a bifactor ratio of (2, 2). The second algorithm
improves the first rounding approach to an approximation with a pseudo ratio
of (α, 2 − α) for 0 ≤ α ≤ 2. That is, for any output solution of the improved
approximation algorithm, there always exists 0 ≤ α ≤ 2, such that the delay and
cost of the solution are bounded by α times and 2−α times of that of an optimal
solution respectively. By extending the technique in [7], the approximation ratio
can be further improved to (1, lnn). To the best of our knowledge, this is the first
approximation algorithm with a polylogarithmic ratio for the kRSP problem.
Note that the extension of the technique in [7] is non-trivial, since we do not
know the bound of the cost sum. Due to the length limitation, this paper will
omit the details of the extension.

Like other rounding algorithms, the tricky task is to show that the round-up
solutions are feasible for the kRSP problem, as the major results of this paper.
The basic idea is to show that the fractional edges of a basic solution to the
given LP formula will compose a graph, in which the degree of every vertex is
exactly 2. Based on this observation, we show that the round-up edges in the
first algorithm could collectively k-connect s and t. The correctness proof of
the second algorithm follows a similar line to the first one, but requires a more
sophisticated ratio proof because of its more complicated rounding method.

The following paragraphs are organized as follows: Section 2 gives the LP-
rounding algorithm and shows that the resulting solution is with a bifactor
ratio(2, 2); Section 3 gives the proof of the correctness of the algorithm; Sec-
tion 4 improves the ratio (2, 2) to a pseudo ratio (α, 2 − α) for 0 ≤ α ≤ 2 and
then to (1, lnn); Section 5 concludes this paper.
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Fig. 1. {xe = 1
2
|e ∈ E(G) \ {e(s, z), e(z, t)}} is a basic optimum solution to LP (1)

wrt the given graph G and k = 1. It is worth to note that this solution is not integral.
{xe = 1

3
|e ∈ E(G)} is an optimum solution to LP (1) over this instance, but not a

basic optimum solution.

2 An (2, 2)-Approximation Algorithm for the kRSP
Problem

The linear programming (LP) formula for the kRSP problem is formally as in
the following:

min
∑

c(e)xe (1)

subject to

∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe =

{
k for v = s

0 for v ∈ V \ {s, t} (2)

∑

e∈E

xed(e) ≤ D (3)

∀e ∈ E(G) : 0 ≤ xe ≤ 1 (4)

where δ+(v) and δ−(v) denotes the set of edges leaving and entering v in
G respectively. Before the technique paragraphs, we would like first do some
discussion on this LP formula. If xe ∈ {0, 1}, the above will be exactly the
integral linear programming (ILP) formula for the kRSP problem. Moreover,
with the relaxation over xe (i.e. xe is required to satisfy only Inequality (4)
instead of xe ∈ {0, 1}), a basic solution to the LP formula remains integral
(i.e. , xe remains integral for each e) for some special cases. When the delay
constraint (i.e. Inequality (3)) is removed, any basic optimum solution to LP
(1) would be exactly a set of st-paths with minimum cost. The reason is that,
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Algorithm 1. A LP-rounding algorithm for the k-RSP problem.
Input: Graph G, distinct vertices s and t, a delay bound D ∈ R

+
0 , a cost function c(e)

and a delay function d(e);
Output: k disjoint st-paths.

1. ESOL ← ∅;
2. Solve LP (1) and get a basic optimum solution χ by Karmarkar’s algorithm [12];
3. For each xe in χ do

(a) if xe = 1 then ESOL ← {e} ∪ESOL

(b) if 1
2
≤ xe < 1 then

i. Round the value of xe to 1;
ii. ESOL ← {e} ∪ESOL.

/* As shown later in Theorem 2, s is k-connected to t by edges of ESOL after the
execution of Step 2.*/

4. For each e in ESOL do
if s is k connected to t in ESOL \ e then
ESOL ← ESOL \ {e};

/* Remove redundant edges of ESOL, such that ESOL exactly compose k-disjoint
paths. */

5. Return ESOL as the k-disjoint paths.

in this case, LP (1) is totally unimodular [1,12], so any basic optimum solution
to LP (1) must be integral. But with the delay constraint, LP (1) is no longer
totally unimodular, and hence a basic optimum solution to LP (1) is no longer
integral even when k = 1 (as depicted in Figure 1). As the first main result of
this paper, we show that a basic optimum solution to LP (1) still acquires an
interesting property as stated below:

Lemma 2. The set of edges with xe ≥ 1
2 in a basic optimum solution to LP (1)

can collectively provide k-connectivity between s and t.

Since Lemma 2 is one of our major results and its proof is the most tricky part
of this paper, its proof is deferred to the next section. Based on this lemma, the
key idea of our algorithm is simply as below: compute a basic optimum solution
to LP (1), and round xe to 1 for every edge e with xe ≥ 1

2 in the solution. Then
the algorithm outputs a set of edges with xe = 1 as a solution to the kRSP
problem. The detailed algorithm is formally as in Algorithm 1.

Step 2 of Algorithm 1 takes O(n3.5 logT ) time to run Karmarkar’s algorithm
[12], where T is the maximum absolute value of the input numbers. Step 3 and
Step 4 take O(m) time to round the edges of ESOL and remove the redun-
dant edges of ESOL respectively. Hence, the time complexity of Algorithm 1 is
O(n3.5 logT ) in the worst case.

For the approximation ratio of Algorithm 1, obviously ESOL contains only
edges with xe ≥ 1

2 in the basic optimum solution χ, so we have

c(ESOL) =
∑

e∈E(G), xe≥ 1
2

c(e) ≤
∑

e∈E(G), xe≥ 1
2

2xec(e) ≤ 2
∑

e∈E(G)

xec(e). (5)
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Then because
∑

e∈E(G) xec(e) is the cost of an optimum solution to LP (1), it
is not larger than that of an optimum solution to the kRSP problem. This yields

∑

e∈E(G)

xec(e) ≤
∑

e∈OPT

c(e), (6)

where OPT is an optimum solution to the kRSP problem. Combining Inequal-
ity (5) and Inequality (6), we have c(ESOL) ≤ 2c(OPT ). Similarly, we have
d(ESOL) ≤ 2d(OPT ). Therefore, the time complexity and approximation ratio
of Algorithm 1 are as in the following theorem:

Theorem 3. Algorithm 1 outputs ESOL, a solution to the kRSP problem, in
O(n3.5 logT ) time. The cost and delay of ESOL are at most two times of that of
an optimum solution to the kRSP problem, where T is the maximum absolute
value of the input numbers.

3 Proof of Lemma 2

Before the technique paragraphs, we would like first to give some definitions. Let
χ be a basic optimum solution to LP (1), and Gχ be the graph composed by
the edges with xe > 0 in χ. We say e ∈ Gχ is a full edge if and only if xe = 1.
Let Z be the set of full edges of Gχ and Eres = Gχ \ Z be the set of edges with
0 < xe < 1 in the solution to LP (1). The notation Eresor ESOL also denotes
the graph composed by the edges of Eres or ESOL while no confusion arises.

To prove Lemma 2, the key idea is first to show that each vertex in graph
Eres is exactly incident with two edges of Eres (as Lemma 4). Based on this
property, we then show that the edges with 1 > xe ≥ 1

2 , together with the edges
with xe = 1, collectively k connect s and t. Therefore, we shall first focus on the
properties of only the edges in Eres, leaving the edges with xe = 0 and xe = 1
for a moment. To make the proof brief, we consider the following residual LP
formula instead of LP (1), which is LP (1) except that the edges with x0 = 0 or
x0 = 1 of Gχ are removed.

min
∑

e∈Eres

cexe (7)

subject to

∑

e∈δ+Eres
(v)

xe −
∑

e∈δ−Eres
(v)

xe −
∑

e∈δ+Z (v)

1 +
∑

e∈δ−Z (v)

1 =

{
k for v = s

0 for v ∈ Vres \ {s, t}
(8)

∑

e∈Eres

xed(e) ≤ kD −
∑

e∈Z

d(e) (9)

∀e ∈ Eres : 0 < xe < 1 (10)
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It is easy to see that {xe|e ∈ Eres} is a solution to the above LP formula. Let
χres be a basic solution to LP (7). Then χres is χ except that the xes of value
0 or 1 are removed. Let A be the whole constraint matrix of LP (7), AG(v) be
the row corresponding to v, and AG(D) be the row corresponding to the delay
constraint, i.e. Inequality (9). Assuming that Vres is the set of the vertices of
Eres, we denote the vector space spanned by the vectors AG(v), v ∈ Vres, by
Span(Vres), and the space spanned by vectors AG(D) together with AG(v) ,
v ∈ Vres, by Span(D ∪ Vres).

Lemma 4. Every vertex of Vres is incident to exactly two edges in graph Eres.

Proof. Firstly, we shall show that every vertex of v ∈ Vres is incident to at least
two edges in Eres. Clearly, v must be incident with at least one edge of Eres,
such that it can belong to Vres. Suppose only one edge of Eres joins v. Then on
one hand, because 0 < xe < 1 for every e ∈ Eres, the degree of v is not integral.
On the other hand, following the LP formula (7), every vertex of Vres, including
v ∈ Vres, must be with an integral degree in the basic optimum solution χres.
Hence a contradiction arises. Therefore, every vertex of Vres is incident to at
least 2 edges.

Secondly, we shall show that every vertex in Vres is incident to at most two
edges in Eres. Suppose there exists a vertex v0 ∈ Vres with a degree of at least 3,
i.e. |δ−(v0)|+ |δ+(v0)| ≥ 3. Then, on one hand, since every vertex of Vres must
be incident to at least 2 edges, we have:

|Eres| = 1

2

∑

v∈Vres

|δ−(v)|+ |δ+(v)| ≥ 1

2
(

∑

v∈Vres\{v0}
2 +

∑

v=v0

3) > |Vres|.

On the other hand, we can show that |Vres| ≥ |Eres| must hold and hence obtain
a contradiction. The proof is as below. Since χres is a basic optimum solution
and there are |Eres| edges with xe > 0 in χres, the dimension of Span(D∪Vres)
is |Eres|. Then, since

∑

e∈Eres

xed(e) = D − ∑
e∈Z d(e) may holds for Inequality

(9), the dimension of Span(Vres) is at least |Eres| − 1. Then, because the |Vres|
rows of the constraint matrix for Span(Vres) contains at most |Vres| − 1 linear
independent vector, |Vres|− 1 ≥ |Eres|− 1 holds, and hence |Vres| ≥ |Eres|. This
completes the proof.

Let Vfull be the set of vertices of V (Eres)∩V (Efull). Then, Vfull are with degree
2 or −2 in Eres. Following Lemma 4, the degree of v ∈ Vres \ Vfull is 0. So for
each v ∈ Vres \ Vfull, Eres contains exactly an edge entering and the other edge
leaving v. Therefore, Eres is actually a set of paths between the vertices of Vfull.
Further, we have the following lemma:

Lemma 5. The edges of Eres compose a set of paths Pres between the vertices of
Vfull. For every v ∈ Vfull, Pres contains exactly two paths leaving v or entering
v. Moreover, any two paths of Pres share no common edge.
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Proof. Following Lemma 4, for every v ∈ Vfull, Eres contains exactly two edges
which either enter or leave v, while for v ∈ Vres \ Vfull, Eres contains exactly
one edge entering v and one another edge leaving v. So following flow theory,
for each v ∈ Vfull, Eres contains exactly two paths either entering or leaving
v. In addition, Eres contains no cycles, since Eres is a subgraph of Gχ and Gχ

contains no cycles because Gχ is a minimum cost fractional flow from s to t.
Therefore, the edges of Eres compose exactly the paths of Pres.

It remains to show that the paths of Pres are edge-disjoint. Since every v ∈
Vres \Vfull is with degree 2, v can appear on only one path of Pres. That is, any
two distinct paths of Pres cannot go through a common vertex of Vres \ Vfull.
So the paths of Pres are internal vertex-disjoint, and hence edge-disjoint. This
completes the proof.

Now we are to show that the edges with xe ≥ 1
2 in Gχ could provide k connec-

tivity for s and t. Remind that the output of Algorithm 1, ESOL, is exactly the
set of edges with xe ≥ 1

2 in Gχ. That is, ESOL is equivalently the edges with
xe ≥ 1

2 in Eres together with the full edges of Z. Suppose Lemma 2 is not true,
then there must exist k − 1 edges, say e1, . . . , ek−1, which separate s and t in
ESOL. Then according to Lemma 6 as below, the flow between s and t wrt the
solution χ to LP (1) is at most of value k − 1. This contradicts with the fact
that the flow wrt χ is of value k, and completes the proof of Lemma 2.

Lemma 6. Assume e1, . . . , ek−1 separate s and t in ESOL, then the flow between
s and t of the solution to LP (1) is at most of a value k − 1.

Proof. Let Gs ⊃ {s} be the component of ESOL\{e1, . . . , ek−1} which contains s.
Then {e1, . . . , ek−1} would separate Gs and ESOL \GS in graph ESOL. W.l.o.g.,
assume e1, . . . , eh are with xe = 1, while eh+1, . . . , ek−1 are with 1

2 ≤ xe < 1. Let
p1h+1, . . . , p

1
k−1 be the paths between vertices of Vfull in Eres ⊆ Gχ. W.l.o.g.,

assume that ei ∈ p1i for each i. Following Lemma 5, there exists exactly one
another path, say p2j , which leaves the same vertex as p1j in Eres. Then the set
of p1js and p2js, i.e. the set of paths {pij |i ∈ {1, 2}, j ∈ {h+ 1, . . . , k − 1}}, can
only provide a flow of value at most k − 1 together with {e1, . . . , eh}.

It remains to show that there exists neither a full edge outside {e1, . . . , eh},
nor a path of Pres outside {pij |i ∈ {1, 2}, j ∈ {h+ 1, . . . , k}} that leaves Gs in
graph Gχ. Suppose otherwise, as the two cases analyzed below, such a full edge
or a path must belong to ESOL, and hence it would connect Gs and ESOL \
Gs in ESOL \ {e1, . . . , ek−1}. This contradicts with the assumption that edges
of{e1, . . . , ek} separate Gs and ESOL \Gs in ESOL, and completes the proof.

1. Suppose there exists a full edge e /∈ {e1, . . . , eh} in Gχ that leaves Gs. Since
e is a full edge, then xe = 1 and e ∈ ESOL holds. Hence, e1, . . . , ek can not
separate Gs and ESOL \Gs, because e connects them.

2. Suppose there exists a path p ∈ Pres \ {pij|i ∈ {1, 2}, j ∈ {h + 1, . . . , k}}
that leaves Gs at v. Following Lemma 5, there must be exactly one another
path p′ that leaves v in Gχ. Then either flow p or p′ is with value at least
1
2 . That is, the edges of either p or p′ would belong to ESOL and connect
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Gs and ESOL \ Gs. So removal of {e1, . . . , ek} can not disconnect Gs and
ESOL \Gs in ESOL.

4 An (α, 2 − α)-Approximation Algorithm for the kRSP
Problem

In Section 2, Algorithm 1 adds every edge with xe ≥ 1
2 to the solution. However,

not all the edges with xe ∈ [ 12 , 1) are good choices for constructing a solution to
the kRSP problem. This section will give an improved rounding algorithm which
selects the edges of the solution more carefully, such that the algorithm is with
a pseudo approximation ratio (α, 2 − α). Thus, for any output solution of the
algorithm, there always exists 0 ≤ α ≤ 2, such that the delay and cost of the
solution are bounded by α times and 2− α times of that of an optimal solution
respectively.

Assume that χ is a basic optimum solution to LP (1). The main idea of the
improved rounding algorithm is to select the edges with less cost and delay,
rather than to select the edges with 1

2 ≤ xe < 1. To do this, the algorithm
combines the cost and delay as one new cost and then selects a set of edges,
which are with the new cost sum minimized and provide k connectivity between
s and t together with the edges of xe = 1 in χ. Let c(χ) and d(χ) be the cost and
delay of the basic optimum solution to LP (1). The new mixed cost for every
edge is b(e) = c(e)

c(χ) +
d(e)
d(χ) .

According to Lemma 5, the edges of Eres compose exactly a set of internal
vertex disjoint paths, say Pres = {pij|i ∈ {1, 2}, j ∈ {1, . . . , h}}, where p1j
and p2j leaves a same vertex of Vfull. Then the task is now to choose h paths
{pijj | j ∈ {1, . . . , h}} from Pres to provide the k connectivity between s and t.
According to Lemma 5, we could divide Pres into two path sets P1, P2, such that
every two paths in Pi shares no common vertex. Then following the same line
of the proof of Lemma2, it can be shown that Z ∪E(Pi) provides k-connectivity
between s and t for either i = 1 or i = 2. Therefore, the main idea of our
algorithm is to divide Pres into two path sets P1, P2, and then select Pi with
smaller

∑
e∈E(Pi)

b(e) for i = 1, 2. Formally, the algorithm is as below:
It remains to show the approximation ratio of the algorithm, which is stated

as follows:

Theorem 7. There exists a real number 0 ≤ α ≤ 2, such that the delay and
cost of ESOL are bounded by α and 2− α times of that of the optimum solution
of the kRSP problem.

Proof. Clearly, b(ESOL) = b(Z) + βb(E(Pi)) + (1 − β)b(E(Pi)) holds. Then
because

∑
e∈E(Pi)

b(e) ≤ ∑
e∈E(P3−i)

b(e), we have

b(ESOL) ≤ b(Z)+β
∑

e∈E(Pi)

b(e)+(1−β)
∑

e∈E(P3−i)

b(e) ≤
∑

e∈Gχ

xeb(e) ≤ 2. (11)
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Algorithm 2. A LP-rounding algorithm for the k-RSP problem.
Input: Eres with new cost b(e), a basic optimum solution χ to LP (1);
Output: k disjoint st-paths.

1. ESOL ← Z; /*ESOL is initially the set of edges with xe = 1 in Gχ. */
2. Divide Pres into two path sets P1, P2, such that every two paths in Pi shares no

common vertex for i = 1, 2;
3. Select i, i ∈ {1, 2}, such that Pi is with smaller new cost sum, i.e.,

∑
e∈E(Pi)

b(e) ≤
∑

e∈E(P3−i)
b(e), i ∈ {1, 2};

4. Return ESOL ← E(Pi) ∪ESOL.

Assume that the delay-sum of ESOL is α times of D, where α is a real number
and 0 ≤ α ≤ 2. Then b(ESOL) =

∑
e∈ESOL

b(e) = α + c(ESOL)
c(χ) holds. From

Inequality (11), α + c(ESOL)
c(χ) ≤ 2 holds. That is, c(ESOL) ≤ (2 − α)c(χ) ≤

(2− α)C∗. This completes the proof.

By extending the technique of combining cycle cancelation and layer graph as
in [7], the approximation ratio can be improved to (1, lnn). However, we do not
know the value of c(OPT ), so we can only construct an auxiliary graph based on
the delay of edges instead of cost. The auxiliary graph constructed is no longer a
layer graph, but the costs of the edges therein are nonnegative. Therefore, we can
compute minimum delay-to-cost cycle in the residual graph of G by computing
shortest paths in the constructed auxiliary graph, and improve the output of
Algorithm 2 by using the cycle cancelation method against the minimum delay-
to-cost cycle repeatedly, until the solution satisfies the delay constraint strictly.
To the best of our knowledge, this is the first non-trivial approximation algorithm
with single factor polylogarithmic ratio for the kRSP problem.

5 Conclusion

This paper investigated approximation algorithms for the k-restricted shortest
paths (kRSP) problem. As the main contribution, this paper first developed
an improved approximation algorithm with bifactor ratio (2, 2) by rounding a
basic optimum solution to the proposed LP formula of the kRSP problem. The
algorithm was then improved by choosing the round-up edges more carefully,
such that for any output solution there exists 0 ≤ α ≤ 2 that the delay and the
cost of the solution are bounded, respectively, by α and 2−α times of that of the
optimum solution. This ratio can be further improved to (1, lnn) by extending
the technique of [7]. To the best of our knowledge, this is the first approximation
with single factor polylogarithm ratio for the kRSP problem.
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