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Abstract. The performances of two types of pure random walk (PRW)
algorithms for a model of constraint satisfaction problems with growing
domains (called Model RB) are investigated. Threshold phenomenons
appear for both algorithms. In particular, when the constraint density r
is smaller than a threshold value rd, PRW algorithms can solve instances
of Model RB efficiently, but when r is bigger than the rd, they fail. Using
a physical method, we find out the threshold values for both algorithms.
When the number of variables N is large, the threshold values tend to
zero, so generally speaking PRW does not work on Model RB.
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1 Introduction

Constraint satisfaction problems (CSPs) arise in a large spectrum of scientific
disciplines, such as computer science, information theory, and statistical physics
[19, 17, 14]. A typical CSP instance involves a set of variables and a collection
of constraints. Variables take values in a finite domain. Constraints contain a
few variables and forbid some of their joint values. A solution is an assignment
satisfying all the constraints simultaneously. Given a CSP instance, two funda-
mental scientific questions are to decide the existence of solutions and to find
out a solution if it exists. Examples of CSPs are Boolean formula satisfiability
(SAT), graph coloring, variants of SAT such as XORSAT, error correction codes,
etc.

Random models of CSPs play a significant role in computer science. As in-
stance generators, they provide instances for benchmarking algorithms, help
to inform the design of algorithms and heuristics, and provide insight into
problem hardness. Classical random CSP models were proposed and denoted
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by A, B, C and D respectively [20, 12], and many alternatives also appeared
[1, 27, 25, 11, 9, 10].

Model RB is a typical CSP model with growing domains. It was proposed by
Xu and Li [27] to overcome the trivial insolubility of the classical model B, and
was proved to have exact satisfiability phase transitions. The instances generated
in the phase transition region of Model RB are hard to solve [28, 29] and have
been widely used in various kinds of algorithm competitions. Model RB develops
a new way to study CSPs, especially CSPs with large domains, thus has gotten
considerable attention [14, 32, 15, 31, 18, 3, 13, 26, 16].

Algorithm analysis is a notoriously difficult task. The current rigorous results
mostly deal with algorithms that are extremely simple, such as backtrack-free
algorithms, which assign variables one by one without backtracking [5, 4]. Pure
Random Walk (PRW) algorithm is a process that consists of a succession of
random moves. It is relatively simple and has been intensively studied on the
k-SAT problem [2, 21, 22, 6–8, 23, 24]. On k-SAT, A frequently studied PRW
algorithm (Algorithm 2 in the following) is called Walksat. Another reason for
PRW algorithm being studied is that random walk is a part of many local search
algorithms [19].

In this paper, we study two types of PRW algorithms on Model RB. By ex-
perimental methods, threshold phenomenons on performance of these two PRW
algorithms are found, just like that of Walksat on k-SAT. Moreover, by a physical
method we locate the thresholds for both algorithms, which are 1−p

p
1

k lnN , with
N being the total number of variables, k the number of variables per constraints,
p the portion of forbidden joint values per constraints.

This paper is organized as follows. We first give the definition of Model RB and
its main properties in Section 2. In Section 3, we show the threshold behaviors of
PRW algorithms by experiments, and also show the different performances before
and after the thresholds. In Section 4, we use a physical method to calculate
the thresholds for both algorithms. We finally give some concluding remarks in
Section 5.

2 Model RB

Both classical and revised models of CSPs can be found in [14]. Here we give the
definition of Model RB. Let k ≥ 2 be an integer. Let r > 0, α > 0, 0 < p < 1 be
real numbers. Let N be the number of variables and V = {σ1, σ2, · · · , σN} the
set of variables. Each variable takes values from a domain D = {1, 2, · · · , Nα}.
Each constraint involves k variables and an associated incompatible-set, which
is a subset of the Cartesian product Dk. Elements in incompatible-set are called
incompatible (forbidden) joint values. Model RB(N, k, r, α, p) is a probability
space defined by the folowing steps to generate its instances.

1. We select with repetition rN lnN constraints independently at random. Each
constraint is formed by selecting without repetition k out of N variables
independently at random.
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2. For each constraint, we form an incompatible-set by selecting without repe-
tition pNαk elements from Dk independently at random.

A solution is an assignment which satisfies all the constraints. That is to say,
the joint values in a solution dose not belong to any incompatible-sets of the
constraints. The set of all solutions, denoted by S, is a subset of DN . Let X
be the number of solutions, X = |S|. It is easy to see that in model RB, the
expectation of X is

E(X) = NαN (1− p)rN lnN .

Let
rcr = − α

ln(1− p)
.

If α > 1
k and 0 < p < 1 are two constants, and k and p satisfy the inequality

k ≥ 1
1−p , then

lim
n→∞Pr(X > 0) =

{
1, r < rcr,
0, r > rcr.

Thus, Model RB has exact satisfiability phase transitions, see [27, 31].

3 Performance of Pure Random Walk on Model RB

In this section, we study the performance of PRW algorithms on Model RB. By
experiments, we find that PRW algorithms exhibit threshold phenomenons, and
have different performances before and after the thresholds.

3.1 Pure Random Walk Algorithms

We concentrate on two types of PRW algorithms, called Algorithm 1 and Al-
gorithm 2 respectively. In Algorithm 1, we randomly reassign a variable from
conflict set. In algorithm 2, we randomly select an unsat-constraint (unsatisfied
constraint), then randomly select one of its variable to reassign it.

Algorithm 1

1. Pick up a random assignment. Set up a maximum number of steps.
2. Let conflict set be the set of all variables that appear in a constraint that is

unsatisfied under the current assignment.
(a) If the conflict set is empty, terminate the algorithm, output the current

assignment.
(b) Otherwise, randomly select a variable in the conflict set, reassign it a

value.
3. Repeat step 2, until the maximum number of steps, then output fail.
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Algorithm 2

1. Pick up a random assignment. Set up a maximum number of steps.

(a) If current assignment satisfies all constraints, terminate the algorithm,
output the current assignment.

(b) Otherwise, randomly select an unsat-constraint, and randomly select a
variable in the constraint, reassign it a value.

2. Repeat step 2, until time of repeating has gotten to the maximum step
number, output fail.

3.2 Threshold Behavior

Both Algorithm 1 and Algorithm 2 exhibit threshold phenomenons, as shown in
Figure 1. The probability of getting a solution drops from 1 to 0 dramatically.
Every point in Figure 1 is averaged over 10 runs, and the maximum number of
steps is 2000.

The same threshold phenomenon has been found for Walksat on k-SAT prob-
lem [7], with a conjectured threshold value α = 2k/k.

Fig. 1. Probability of getting a solution by PRW algorithms on model RB
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3.3 Before Threshold

When r < rd (rd is the threshold value) and r is very small, algorithms can
find a solution in a short time. If at each step, the number of unsat-constraints
decreases by O(1), then the solving time will be O(N lnN). Figure 2 shows the
average number of running steps, each point is averaged over 100 runs. Figure
3 shows the average number of running steps divided by N lnN . So when r is
very small, the solving time is in an order of O(N lnN).

Fig. 2. Average number of running steps

3.4 After Threshold, Algorithm 2

When r > rd, variables will be reassign values again and again, the number of
unsat-constraints will fluctuate around some plateau value for a long time, see
Figure 4. (Experiments on Algorithm 1 are similar.) The number of unsatisfied
clauses exhibit a distribution, see Figure 5. This is the same as Walksat on
k-SAT.

Two simple but not rigorous interpretations are as follows. First, the chosen
constraint is optimized to be satisfied, but when variables contained in the con-
straint are reassigned values again for other chosen constraints, the optimization
was destroyed. Second, the value of the reassigned variable is optimized, but
when variables connected to the reassigned variable are reassigned values, the
optimization was destroyed. So when r is big, for example r > rd, optimization
(or effect of each reassignment) cannot be retained, and algorithms fail.
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Fig. 3. Average number of running steps divided by Nlog(N)

4 Analysis Based on an Approximation

The main method used in this section is from theoretical physics, which has
been used on k-SAT and other problems by Semerjian et al [21, 22, 6]. It is not
a rigorous method, since an approximation is utilized, but remarkable results
have been gotten on k-SAT problem and XORSAT problem with this method.
For more background and correctness of this method, we refer to [21].

Approximation. At each step, before a reassignment, we treat the situation at
that time as a typical situation, featured by the number of its unsat-constraints.
A typical situation featured by M0 means that, M = rN lnN constraints are
randomly selected (as step 1 of Model RB definition), then M0 unsat-constraints
are randomly chosen from the M constraints. Then the solving process becomes
a Markov chain using number of unsat-constraints as its state space, and the
transition probability from M0 to M ′

0 is the probability that the typical situation
featured by M0 have M ′

0 unsat-constraints after a step (a reassignment).
First, we should give the transition probability fromM0 toM

′
0. We will choose a

variable to reassign from typical situation featured byM0. Let p(Z1) be the prob-
ability that a variable with Z1 unsat-constraints will be chosen, which depends
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Fig. 4. Number of unsat-constraints, Algorithm 2

Fig. 5. Histogram of the number of unsat-constraints, where data at the first 500 step
were omitted



A Study of Pure Random Walk on CSPs with Growing Domains 283

on algorithms. The probability that Z2 of Z1 unsat-constraints become satisfied
after reassignment is (

Z1

Z2

)
(1− p)

Z2 (p)
Z1−Z2 � p(Z2),

Z2 obeys the binomial distribution. When M0 > 0, the probability that Z3 con-
straints become unsatisfied from satisfied is(

M −M0

Z3

)(
pk

N

)Z3
(
1− pk

N

)M−M0−Z3

� p(Z3), (1)

because each of M −M0 feasible satisfied constraints connects to the reassign-
ment variable with probability k

N , and each connecting constraint becomes un-
satisfied with probability p. When M0 = 0, Z3 = 0 with probability 1.

Then the transition probability from M0 to M ′
0 is

AM ′
0,M0

=

M0∑
Z1=0

Z1∑
Z2=0

M−M0∑
Zs=0

p(Z1)p(Z2)p(Z3)1M ′
0−M0+Z2−Z3

where

1X =

{
1, if X = 0,
0, otherwise.

The initial distribution, i.e. the probability that at time 0 the typical situation
is featured by M0, is

Pr[M0, 0] =

(
M

M0

)
pM0(1− p)M−M0 . (2)

Iteratively, the probability that at time T + 1 the typical situation is featured
by M ′

0 is

Pr[M ′
0, T + 1] =

M∑
M0=0

AM ′
0M0

Pr[M0, T ].

Criterion. If Pr[0, T ] is 0 (almost) in a long time, it is in the phase after the
threshold; if Pr[0, T ] becomes positive from 0 in polynomial time, it is in the
phase before the threshold. Denote the average fraction of unsat-constraints at
time T = tM by ϕ(t),

ϕ(t) =
1

M

M∑
M0=0

M0Pr[M0, T = tM ].

In the beginning, Pr[0, T ] = 0, but if ϕ(t) become 0 in polynomial time, then
Pr[0, T ] will become positive from 0; if ϕ(t) is always positive, then the number
of unsat-constraints will fluctuate around some plateau value, Pr[0, T ] will al-
ways be 0. So the criterion is whether ϕ(t) becomes 0 in polynomial time when
Pr[0, T ] = 0.
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4.1 Analysis on Algorithm 1

When N is large, we might as well say dϕ
dt = (ϕ(t+ 1

M )− ϕ(t))/(1/M), then

dϕ

dt
=

M∑
M ′

0=0

M ′
0

(
M∑

M0=0

AM ′
0M0

Pr[M0, T ]

)
−

M∑
M0=0

M0Pr[M0, T ]

=

M∑
M0=0

Pr[M0, T ]

⎛
⎝ M∑

M ′
0=0

AM ′
0M0

(M ′
0 −M0)

⎞
⎠

=
M∑

M0=0

Pr[M0, T ] (E(Z3)− E(Z2)), (3)

where E(Z3) is the average number of constraints becoming unsatisfied from
satisfied, referring to (1),

E(Z3) =
k

N
(M −M0)p; (4)

E(Z2) is the average number of constraints becoming satisfied from unsatisfied,

E(Z2) = E(Z1)(1− p). (5)

According to Algorithm 1, we randomly select a variable to reassign from the
conflict set. When M0 > 0,

E(Z1) =
M0k

N
β, (6)

where β = E( 1
X ); X is the fraction of not empty variables (connecting to at least

an unsat-constraint), when we throw M0 unsat-constraints to N variable. E(Z1)
is at least 1 and

E(Z1) → 1, as M0/M → 0. (7)

When Pr[0, T ] = 0, from (3)(4)(5)(6), we have

dϕ

dt
=

krN lnN

N
(1 − ϕ)p−

M∑
M0=1

Pr[M0, T ]
k

N
M0β(1 − p)

= −(1− p) + kr lnN(1− ϕ)p−
M∑

M0=1

Pr[M0, T ](
k

N
M0β − 1)(1− p). (8)

Let

rd =
1− p

p

1

k lnN
.

For r < c · rd, where c < 1 is a constant, from (8) we have

dϕ

dt
< −(1− c)(1− p).
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From (2), we have ϕ(t = 0) = p. So when r < c · rd, ϕ becomes 0 before
t = p

(1−c)(1−p) . For r > c · rd, where c > 1 is a constant, when ϕ is near 0, by (7)

we can see the last term of (8) is near 0, so dϕ
dt > 0, ϕ is always positive.

Thus, the threshold value of Algorithm 1 is rd = 1−p
p

1
k lnN .

4.2 Analysis on Algorithm 2

For Algorithm 2, when M0 > 0, the probability that a variable with Z1 unsat-
constraints was chosen is

p(Z1) =

(
M0 − 1

Z1 − 1

)(
k

N

)Z1−1 (
1− k

N

)M0−Z1

because we randomly select an unsat-constraint, then each of other M0 − 1
unsat-constraints connects to the variable with probability k

N . Therefore

E(Z1) = 1 + (M0 − 1)k/N. (9)

Similarly, for Algorithm 2, when Pr[0, T ] = 0, from (3)(4)(5)(9) we know

dϕ

dt
=

M∑
M0=1

Pr[M0, T ]

(
k

N
(M −M0)p− (1− p)(1 + (M0 − 1)

k

N
)

)

= −(1− p) + kr lnNp+
k

N
(1 − p)− kϕrlnN.

Sloving this first-order linear differential equation with the initial condition
ϕ(t = 0) = p, we get

ϕ(t) = p+
1− p− k(1− p)/N

rk lnN
(e−rk lnNt − 1).

Sloving equation limt→∞ ϕ(t) = 0 of variable r, we have

r = (1− k

N
)
1− p

p

1

k lnN
� r′d.

For r < cr′d, where c < 1 is a constant, limt→∞ ϕ(t) < 0. Function ϕ(t)
decreases and becomes 0 before t = p

(1−c)(1−p)(1−k/N) . For r > cr′d, where c > 1

is a constant, limt→∞ ϕ(t) > 0.
Thus, the threshold value on Algorithm 2 is

r′d ≈ rd =
1− p

p

1

k lnN
.

4.3 A Note

The estimates of threshold values from numerical simulations are always larger
than the calculated one. Taking RB(k = 2, N = 350, p = 0.2, α = 0.5) as an
example, the calculated value is rd = r′d = 0.34, but the simulated value is 0.43
for Algorithm 1, and 0.51 for Algorithm 2. However, the simulated values always
fall into the region (rd, 2rd), so the theoretically calculated values rd and r′d
reveal the positions of the real threshold values successfully.
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5 Conclusion

We have studied performances of pure random walk (PRW) algorithms on a
model of random constraint satisfaction problem with growing domains called
Model RB. The same threshold behaviors of PRW are shown on Model RB, just
like that of Walksat on k-SAT.

From our results, we find that PRW algorithms are more suitable for k-SAT
than for Model RB. Taking 3-SAT as an example, Walksat can solve 3-SAT
until clause density 2.7, which is not small relative to its satisfiability threshold
value of 4.26. But for Model RB, PRW can work until 1−p

p
1

k lnN , which is very

small (tending to 0) relative to its satisfiability threshold value of − α
ln(1−p) (a

constant). This may be due to the fact that the instances of Model RB have
large domain size, and a large domain size leads to more constraints and more
unsat-constraints, while PRW algorithms can not deal with instances with many
unsat-constrains.

In another recent paper, we found out that a backtrack-free algorithm can
solve Model RB until a positive constant proportion of − α

ln(1−p) [30], while it

can barely solve k-SAT. Therefore, CSPs with large domain size (such as Model
RB) and CSPs with small domain size (such as k-SAT) may have different prop-
erties, and different strategies (such as PRW and backtrack-free search) may
have different effects on them.

References

1. Achlioptas, D., Kirousis, L., Kranakis, E., Krizanc, D., Molloy, M., Stamatiou, Y.:
Random constraint satisfaction: a more accurate picture. In: Smolka, G. (ed.) CP
1997. LNCS, vol. 1330, pp. 107–120. Springer, Heidelberg (1997)

2. Alekhnovich, M., Ben-Sasson, E.: Linear Upper Bounds for Random Walk on Small
Density Random 3-cnfs. SIAM J. Comput. 36(5), 1248–1263 (2006)
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