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Abstract. A normal Helly circular-arc graph is the intersection graph of
arcs on a circle of which no three or less arcs cover the whole circle. Lin et
al. [Discrete Appl. Math. 2013] presented the first recognition algorithm
for this graph class by characterizing circular-arc graphs that are not
in it. They posed as an open problem to design a direct recognition
algorithm, which is resolved by the current paper. When the input is not
a normal Helly circular-arc graph, our algorithm finds in linear time a
minimal forbidden induced subgraph. Grippo and Safe [arXiv:1402.2641]
recently reported the forbidden induced subgraphs characterization of
normal Helly circular-arc graphs. The correctness proof of our algorithm
provides, as a byproduct, an alternative proof to this characterization.

1 Introduction

This paper will be only concerned with simple undirected graphs. A graph is a
circular-arc graph if its vertices can be assigned to arcs on a circle such that two
vertices are adjacent iff their corresponding arcs intersect. Such a set of arcs is
called a circular-arc model of this graph. If some point on the circle is not in any
arc in the model, then the graph is an interval graph, and it can be represented by
a set of intervals on the real line, which is called an interval model. Circular-arc
graphs and interval graphs are two of the most famous intersection graph classes,
and both have been studied intensively for decades. However, in contrast to the
nice result of Lekkerkerker and Boland [5], characterizing circular-arc graphs by
forbidden induced subgraphs remains a notorious open problem in this area.

The complication of circular-arc graphs should be attributed to two special
intersection patterns of circular-arc models that are not possible in interval mod-
els. The first is two arcs intersecting in both ends, and a circular-arc model is
called normal if no such pair exists. The second is a set of arcs intersecting pair-
wise but containing no common point, and a circular-arc model is called Helly
if no such set exists. Normal and Helly circular-arc models are precisely those
with no set of three or less arcs covering the whole circle [10,6]. A graph that
admits such a model is called a normal Helly circular-arc graph.

One fundamental problem on a graph class is its recognition, i.e., to efficiently
decide whether a given graph belongs to this class or not. For intersection graph
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Fig. 1. Chordal minimal forbidden induced graphs
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Fig. 2. Non-chordal and finite minimal forbidden induced graphs

classes, all recognition algorithms known to the author provide an intersection
model when the membership is asserted. Most of them, on the other hand, simply
return “NO” otherwise, while one might also want some verifiable certificate for
some reason [9]. A recognition algorithm is certifying if it provides both positive
and negative certificates. A minimal forbidden (induced) subgraph is arguably
the simplest and most preferable among all forms of negative certificates [3].

For example, a graph is an interval graph iff it contains neither hole nor
any graph in Fig. 1 [5]. Recall that a graph is chordal if it contains no holes.
Kratsch et al. [4] reported a certifying recognition algorithm for interval graphs,
which in linear time returns either an interval model of an interval graph or a
forbidden induced subgraph for a non-interval graph. Although the forbidden
induced subgraph returned by [4] is unnecessarily minimal, a minimal one can
be easily retrieved from it (see [7] for another approach). Likewise, a minimal
forbidden induced subgraph of chordal graphs, i.e., a hole, can be detected from
a non-chordal graph in linear time [11]. However, although a circular-arc model
of a circular-arc graph can be produced in linear time [8], it remains a challenging
open problem to find a negative certificate for a non-circular-arc graph.

Indeed, all efforts attempting to characterize circular-arc graphs by forbidden
induced subgraphs have been of no avail. For normal Helly circular-arc graphs,
partial results were reported by [6], who listed all Helly circular-arc graphs that
are not normal Helly circular-arc graphs. Very recently, Grippo and Safe com-
pleted this task by proving the following result. A wheel (resp., C∗ ) comprises
a hole and another vertex completely adjacent (resp., nonadjacent) to it.

Theorem 1 ([2]). A graph is a normal Helly circular-arc graph iff it contains
no C∗, wheel, or any graph depicted in Figs. 1 and 2.

It is easy to use definition to verify that a normal Helly circular-arc graph is
chordal iff it is an interval graph. An interval model is always a normal and
Helly circular-arc model, but an interval graph might have circular-arc model
that is neither normal nor Helly, e.g., K4. On the other hand,
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Theorem 2 ([10,6]). If a normal Helly circular-arc graph G is not chordal,
then every circular-arc model of G is normal and Helly.

These observations inspire us to recognize normal Helly circular-arc graphs as
follows. If the input graph is chordal, it suffices to check whether it is an interval
graph. Otherwise, we try to build a circular-arc model of it, and if success, verify
whether the model is normal and Helly. Lin et al. [6] showed that this approach
can be implemented in linear time. Moreover, if there exists a set of at most
three arcs covering the circle, then their algorithm returns it as a certificate.

This algorithm, albeit conceptually simple, suffers from twofold weakness.
First, it needs to call some recognition algorithm for circular-arc graphs, while
all known algorithms are extremely complicated. Second, it is very unlikely to
deliver a negative certificate in general. Therefore, Lin et al. [6] posed as an
open problem to design a direct recognition algorithm for normal Helly circular-
arc graphs, which would be desirable for both efficiency and the detection of
negative certificates. The main result of this paper is the following algorithm—
n := |V (G)| and m := |E(G)| are used throughout:

Theorem 3. There is an O(n + m)-time algorithm that given a graph G, ei-
ther constructs a normal and Helly circular-arc model of G, or finds a minimal
forbidden induced subgraph of G.

We remark that the proof of Thm. 3 will not rely on Thm. 1. Indeed, since our
algorithm always finds a subgraph specified in Thm. 1 when the graph is not a
normal Helly circular-arc graph, the correctness proof of our algorithm provides
another proof of Thm. 1.

Let us briefly discuss the basic idea behind our disposal of a non-chordal
graph G. If G is a normal Helly circular-arc graph, then for any vertex v of
G, both N [v] and its complement induce nonempty interval subgraphs. The
main technical difficulty is how to combine interval models for them to make
a circular-arc model of G. For this purpose we build an auxiliary graph �(G)
by taking two identical copies of N [v] and appending them to the two ends of
G−N [v] respectively. The shape of symbol � is a good hint for understanding
the structure of the auxiliary graph. We show that �(G) is an interval graph and
more importantly, a circular-arc model of G can be produced from an interval
model of �(G). On the other hand, if G is not a normal Helly circular-arc
graph, then �(G) cannot be an interval graph. In this case we use the following
procedure to obtain a minimal forbidden induced subgraph of G.

Theorem 4. Given a minimal non-interval induced subgraph of �(G), we can
in O(n+m) time find a minimal forbidden induced subgraph of G.

The crucial idea behind our certifying algorithm is a novel correlation between
normal Helly circular-arc graphs and interval graphs, which can be efficiently
used for algorithmic purpose. This was originally proposed in the detection of
small forbidden induced subgraph of interval graphs [1], i.e., the opposite direc-
tion of the current paper. In particular, in [1] we have used a similar definition
of the auxiliary graph and pertinent observations. However, the main structural
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analyses, i.e., the detection of forbidden induced subgraphs, divert completely.
For example, the most common forbidden induced subgraphs in [1] are 4- and
5-holes, which, however, are allowed in normal Helly circular-arc graphs. Their
existence makes the interaction between N [v] and G−N [v] far more subtle, and
thus the detection of minimal forbidden induced subgraphs in the current paper
is significantly more complicated than that of [1].

2 The Recognition Algorithm

All graphs are stored as adjacency lists. We use the customary notation v ∈ G
to mean v ∈ V (G), and u ∼ v to mean uv ∈ E(G). Exclusively concerned with
induced subgraphs, we use F to denote both a subgraph and its vertex set.

Consider a circular-arc model A. If every point of the circle is contained in
some arc in A, then we can find an inclusive-wise minimal set X of arcs that
cover the entire circle. If A is normal and Helly, then X consists of at least
four arcs and thus corresponds to a hole. Therefore, a normal Helly circular-arc
graph G is chordal iff it is an interval graph, for which it suffices to call the
algorithms of [4,7]. We are hence focused on graphs that are not chordal. We
call the algorithm of Tarjan and Yannakakis [11] to detect a hole H .

Proposition 1. Let H be a hole of a circular-arc graph G. In any circular-arc
model of G, the union of arcs for H covers the whole circle, i.e., N [H ] = V (G).

Indices of vertices in H should be understood as modulo |H |, e.g., h0 = h|H|.
By Prop. 1, every vertex should have neighbors in H . We use NH [v] as a short-
hand for N [v]∩H , regardless of whether v ∈ H or not. We start from character-
izing NH [v] for every vertex v: we specify some forbidden structures not allowed
to appear in a normal Helly circular-arc graph, and more importantly, we show
how to find a minimal forbidden induced subgraph if one of these structures
exists. The fact that they are forbidden can be easily derived from the definition
and Prop. 1. Due to the lack of space, their proofs, mainly on the detection of
minimal forbidden induced subgraphs, are deferred to the full version.

Lemma 1. For every vertex v, we can in O(d(v)) time find either a proper
sub-path of H induced by NH [v], or a minimal forbidden induced subgraph.

We designate the ordering h0, h1, h2, · · · of traversing H as clockwise, and the
other counterclockwise. In other words, edges h0h1 and h0h−1 are clockwise and
counterclockwise, respectively, from h0. Now let P be the path induced by NH [v].
We can assign a direction to P in accordance to the direction of H , and then we
have clockwise and counterclockwise ends of P . For technical reasons, we assign
canonical indices to the ends of the path P as follows.

Definition 1. For each vertex v ∈ G, we denote by first(v) and last(v) the
indices of the counterclockwise and clockwise, respectively, ends of the path in-
duced by NH [v] in H satisfying

– −|H | < first(v) ≤ 0 ≤ last(v) < |H | if h0 ∈ NH [v]; or
– 0 < first(v) ≤ last(v) < |H |, otherwise.
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It is possible that last(v) = first(v), when |NH [v]| = 1. In general, last(v)−
first(v) = |NH [v]| − 1, and v = hi or v ∼ hi for each i with first(v) ≤ i ≤
last(v). The indices first(v) and last(v) can be easily retrieved from Lem. 1,
with which we can check the adjacency between v and any vertex hi ∈ H in
constant time. Now consider the neighbors of more than one vertices in H .

Lemma 2. Given a pair of adjacent vertices u, v s.t. NH [u] and NH [v] are dis-
joint, then in O(n+m) time we can find a minimal forbidden induced subgraph.

Lemma 3. Given a set U of two or three pairwise adjacent vertices such that
1)

⋃
u∈U NH [u] = H; and 2) for every u ∈ U , each end of NH [u] is adjacent to at

least two vertices in U , then we can in O(n+m) time find a minimal forbidden
induced subgraph.

Let T := N [h0] and T := V (G) \ T . As we have alluded to earlier, we want
to duplicate T and append them to different sides of T . Each edge between
v ∈ T and u ∈ T will be carried by only one copy of T , and this is determined
by its direction specified as follows. We may assume that none of the Lems. 1,
2, and 3 applies to v or/and u, as otherwise we can terminate the algorithm
by returning the forbidden induced subgraph found by them. As a result, u is
adjacent to either {hfirst(v), · · · , h−1} or {h1, · · · , hlast(v)} but not both. The
edge uv is said to be clockwise from T if u ∼ hi for 1 ≤ i ≤ last(v), and
counterclockwise otherwise. Let Ec(resp., Ecc) denote the set of edges clockwise
(resp., counterclockwise) from T , and let Tc (resp., Tcc) denote the subsets of
vertices of T that are incident to edges in Ec (resp., Ecc). Note that {Ecc, Ec}
partitions edges between T and T , but a vertex in T might belong to both Tcc

and Tc, or neither of them. We have now all the details for the definition and
construction of the auxiliary graph �(G), which can be done in linear time.

Definition 2. The vertex set of �(G) consists of T ∪L∪R∪{w}, where L and
R are distinct copies of T , i.e., for each v ∈ T , there are a vertex vl in L and
another vertex vr in R, and w is a new vertex distinct from V (G). For each edge
uv ∈ E(G), we add to the edge set of �(G)

– an edge uv if neither u nor v is in T ;
– two edges ulvl and urvr if both u and v are in T ; or
– an edge uvl or uvr if uv ∈ Ec or uv ∈ Ecc respectively (v ∈ T and u ∈ T ).

Finally, we add an edge wvl for every v ∈ Tcc.

Lemma 4. The numbers of vertices and edges of �(G) are upper bounded by 2n
and 2m respectively. Moreover, an adjacency list representation of �(G) can be
constructed in O(n+m) time.

In an interval model, each vertex v corresponds to a closed interval Iv =
[lp(v), rp(v)]. Here lp(v) and rp(v) are the left and right endpoints of Iv re-
spectively, and lp(v) < rp(v). We use unit-length circles for circular-arc models,
where every point has a positive value in (0, 1]. Each vertex v corresponds to
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a closed arc Av = [ccp(v), cp(v)]. Here ccp(v) and cp(v) are counterclockwise
and clockwise endpoints of Av respectively; 0 < ccp(v), cp(v) ≤ 1 and they are
assumed to be distinct. It is worth noting that possibly cp(v) < ccp(v); such an
arc necessarily contains the point 1.

Lemma 5. If G is a normal Helly circular-arc graph, then �(G) is an interval
graph.

hl
0

hl
−1 hl

1vl1

vl2
w hr

0

hr
−1 hr

1vr1

vr2

0 a 1 1 + a

L R

Fig. 3. Illustration for Lem. 5

As shown in Fig. 3, it is intuitive to transform a normal Helly circular-arc model
of G to an interval model of �(G). Note that for any vertex v ∈ T , an induced
(vl, vr)-path corresponds to a cycle whose arcs cover the entire circle. The main
thrust of our algorithm will be a process that does the reversed direction, which
is nevertheless far more involved.

Theorem 5. If �(G) is an interval graph, then we can in O(n+m) time build
a circular-arc model of G.

Proof. We can in O(n+m) time build an interval model I for �(G). By construc-
tion, (whl−1h

l
0h

l
1h2 · · · h−2h

r−1h
r
0h

r
1) is an induced path of �(G); without loss of

generality, assume it goes “from left to right” in I. We may assume rp(w) = 0
and maxu∈T rp(u) = 1, while no other interval in I has 0 or 1 as an endpoint.

Let a = rp(hl
0). We use I to construct a set of arcs for V (G) as follows. For each

u ∈ T , let Au := [lp(u), rp(u)], which is a subset of (a, 1]. For each v ∈ T , let

Av :=

{
[lp(vr), rp(vl)] if v ∈ Tcc,

[lp(vl), rp(vl)] otherwise.

It remains to verify that the arcs obtained as such represent G, i.e., a pair
of vertices u, v of G is adjacent iff Au and Av intersect. This holds trivially
when u, v �∈ T ; hence we may assume without loss of generality that v ∈ T . By
construction, a < lp(u) < rp(u) ≤ 1 for every u ∈ T . Note that vl ∼ w and
vr ∼ T for every v ∈ Tcc, which implies that lp(vl) < 0 iff lp(vr) < 1 iff v ∈ Tcc.

Assume first that u is also in T , then u ∼ v in G if and only if ul ∼ vl in
�(G). They are adjacent when both u, v ∈ Tcc, and since lp(vl), lp(ul) < 0,
both Au and Av contains the point 1 and thus intersect. If neither u nor v is in
Tcc, then lp(vl), lp(ul) > 0, and u ∼ v if and only if Au = [lp(ul), rp(ul)] and
Av = [lp(vl), rp(vl)] intersect. Otherwise, assume, without loss of generality,
that lp(vl) < 0 < lp(ul), then u ∼ v in G if and only if 0 < lp(ul) < rp(vl),
which implies Au and Av intersect (as both contain [lp(ul), rp(vl)]).
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Assume now that u is not in T , and then u ∼ v in G if and only if either u ∼ vl

or u ∼ vr in �(G). In the case u ∼ vl, we have lp(vl) ≤ a < lp(u) ≤ rp(vl);
since both Au and Av contain [lp(u), rp(vl)], which is nonempty, they intersect.
In the case u ∼ vr, we have lp(vr) < rp(u) ≤ 1; since both Au and Av contain
[lp(vr), rp(u)], they intersect. Otherwise, u �∼ v in G and lp(vl) < rp(vl) <
lp(u) < rp(u) < lp(vr) < rp(vr), then Au and Av are disjoint. �	
We are now ready to present the recognition algorithm in Fig. 4, and prove
Thm. 3. Recall that Lin et al. [6] have given a linear-time algorithm for verifying
whether a circular-arc model is normal and Helly.

Algorithm nhcag(G)
Input: a graph G.
Output: a normal Helly circular-arc model, or a forbidden induced subgraph.

1 test the chordality of G and find a hole H if not;
if G is chordal then verify whether G is an interval graph or not;

2 construct the auxiliary grpah �(G);
3 if �(G) is not an interval graph then

call Thm. 4 to find a forbidden induced subgraph;
4 call 5 to build a circular-arc A model of G;
5 verify whether A is normal and Helly.

Fig. 4. The recognition algorithm for normal Helly circular-arc graphs

Proof (Thm. 3). Step 1 is clear. Steps 2-4 follow from Lem. 4, Thm. 4, and
Lem. 5, respectively. If model A built in step 4 is not normal and Helly, then we
can in linear time find a set of two or three arcs whose union covers the circle.
Their corresponding vertices satisfy Lem. 3, and this concludes the proof. �	
It is worth noting that if we are after a recognition algorithm (with positive
certificate only), then we can simply return “NO” if the hypothesis of step 3 is
true (justified by Lem. 5) and the algorithm is already complete.

3 Proof of Theorem 4

Recall that Thm. 4 is only called in step 3 of algorithm nhcag; the graph is
then not choral and we have a hole H . In principle, we can pick any vertex as
h0. But for the convenience of presentation, we require it satisfies some addi-
tional conditions. If some vertex v is adjacent to four or more vertices in H , i.e.,
last(v) − first(v) > 2, then v �∈ H . We can thus use (hfirst(v)vhlast(v)) as a
short cut for the sub-path induced by NH [v], thereby yielding a strictly shorter
hole. This condition, that h0 cannot be bypassed as such, is formally stated as:

Lemma 6. We can in O(n +m) time find either a minimal forbidden induced
subgraph, or a hole H such that {h−1, h0, h1} ⊆ NH [v] for some v if and only if
NH [v] = {h−1, h0, h1}.
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This linear-time procedure can be called before step 2 of algorithm nhcag, and it
does not impact the asymptotic time complexity of the algorithm, which remains
linear. Henceforth we may assume that H satisfies the condition of Lem. 6.
During the construction of �(G), we have checked NH [v] for every vertex v, and
Lem. 1 was called if it applies. Thus, for the proof of Thm. 4 in this section, we
may assume that NH [v] always induces a proper sub-path of H .

Each vertex x of �(G) different from w is uniquely defined by a vertex of
G, which is denoted by φ(x). We say that x is derived from φ(x). For example,
φ(vl) = φ(vr) = v for v ∈ T . By abuse of notation, we will use the same letter
for a vertex u ∈ T of G and the unique vertex of �(G) derived from u, i.e.,
φ(u) = u for u ∈ T ; its meaning is always clear from the context. We can mark
φ(x) for each vertex of �(G) during its construction. For a set U of vertices not
containing w, we define φ(U) := {φ(v) : v ∈ U}; possibly |φ(U)| �= |U |.

By construction, if a pair of vertices x and y (different from w) is adjacent
in �(G), then φ(x) and φ(y) must be adjacent in G as well. The converse is
unnecessarily true, e.g., u �∼ vr for any vertex v ∈ Tc and edge uv ∈ Ec, and
ul �∼ vr and ur �∼ vl for any pair of adjacent vertices u, v ∈ T . We say that a
pair of vertices x, y of �(G) is a bad pair if φ(x) ∼ φ(y) in G but x �∼ y in �(G).
By definition, w does not participate in any bad pair, and at least one vertex of
a bad pair is in L ∪ R. Note that any induced path of length d between a bad
pair x, y with x = vl or vr can be extended to a (vl, vr)-path with length d+1.

Figure 3 shows that if G is a normal Helly circular-arc graph, then for any
v ∈ T , the distance between vl and vr is at least 4. We now see what happens
when this necessary condition is not satisfied by �(G). By definition of �(G),
there is no edge between L and R; for any v ∈ T , there is no vertex adjacent to
both vl and vr. In other words, for every v ∈ T , the distance between vl and vr

is at least 3. The following observation can be derived from Lems. 1 and 2.

Lemma 7. Given a (vl, vr)-path P of length 3 for some v ∈ T , we can in
O(n+m) time find a minimal forbidden induced subgraph of G.

Proof. Let P = (vlxyvr). Note that P must be a shortest (vl, vr)-path, and
w �∈ P . The inner vertices x and y cannot be both in L ∪ R; without loss
of generality, let x ∈ T . Assume first that y ∈ T as well, i.e., vx ∈ Ec and
vy ∈ Ecc. By definition, v ∈ Tc ∩ Tcc, and then v is adjacent to both h−1 and
h1. If follows from Lem. 6 that NH [v] = {h−1, h0, h1}, and then x ∼ h1 and
y ∼ h−1. If x ∼ h−1, i.e., last(x) = |H | − 1, then we call Lem. 2 with v and x.
If last(x) < first(y), then we call Lem. 1 with x and y. In the remaining case,
first(y) ≤ last(x) < |H | − 1, and (vxhlast(x) · · ·h−1v) is a hole of G; this hole
is completely adjacent to y, and thus we find a wheel.

Now assume that, without loss of generality, y = ur ∈ R. If last(v) ≥
first(y), then we call Lem. 2 with v and y. Otherwise, (vhlast(v) · · ·hfirst(y)uv)
is a hole of G; this hole is completely adjacent to x, and thus we find a wheel. �	
If G is a normal Helly circular-arc graph, then in a circular-arc model of G, all
arcs for Tcc and Tc contain ccp(h0) and cp(h0) respectively. Thus, both Tcc and
Tc induce cliques. This observation is complemented by
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Lemma 8. Given a pair of nonadjacent vertices u, x ∈ Tcc (or Tc), we can in
O(n+m) time find a minimal forbidden induced subgraph of G.

Proof. By definition, we can find uv, xy ∈ Ecc. We have three (possibly inter-
secting) chordless paths h0h1h2, h0uv, and h0xy. If both u and x are adjacent
to h1, then we return (uh−1xh1u)+h0 as a wheel. Hence we may assume x �∼ h1.

If u ∼ h1, then by Lem. 6, NH [u] = {h−1, h0, h1}. We consider the subgraph
induced by the set of distinct vertices {h0, h1, h2, u, v, x}. If v is adjacent to h0

or h1, then we can call Lem. 3 with u, v. By assumption, h0, h1, and u make a
triangle; x is adjacent to neither u nor h1; and h2 is adjacent to neither h0 nor
u. Thus, only uncertain adjacencies in this subgraph are between v, x, and h2.
The subgraph is hence isomorphic to (1) FIS-1 if there are two edges among v, x,
and h2; (2) C6 if v, x, and h2 are pairwise adjacent; or (3) net if v, x, and h2 are
pairwise nonadjacent. In the remaining cases there is precisely one edge among
v, x, and h2. We can return a C∗, e.g., (vxh0uv)+h2 when the edge is vx.

Assume now that u, x, and h1 are pairwise nonadjacent. We consider the
subgraph induced by {h0, h1, h2, u, v, x, y}, where the only uncertain relations
are between v, y, and h2. The subgraph is thus isomorphic to (1) K2,3 if all of
them are identical; or (2) twin-C5 if two of them are identical, and adjacent to
the other. If two of them are identical, and nonadjacent to the other, then the
subgraph contains a C∗, e.g., (vuh0xv)+h2 when v = y. In the remaining cases,
all of v, y, and h2 are distinct, and then the subgraph (1) is isomorphic to long
claw if they are pairwise nonadjacent; (2) contains net {h1, h2, u, v, x, y} if they
are pairwise adjacent; or (3) is isomorphic to FIS-2 if there are two edges among
them. If there is one edge among them, then the subgraph contains a C∗, e.g.,
(vuh0xyv)+h2 when the edge is vy.

A symmetrical argument applies to Tc. the runtime is clearly O(n+m). �	
It can be checked in linear time whether Tcc and Tc induce cliques. When it is
not, a pair of nonadjacent vertices can be found in the same time. By Lem. 8, we
may assume hereafter that Tcc and Tc induce cliques. Recall that N(w) ⊆ Tcc;
as a result, w is simplicial and participates in no holes.

Proposition 2. Given a (hl
0, hr

0)-path nonadjacent to hi for some 1 < i <
|H | − 1, we can in O(n+m) time find a minimal forbidden induced subgraph.

We are now ready to prove Thm. 4, which is separated into three statements,
the first of which considers the case when �(G) is not chordal.

Lemma 9. Given a hole C of �(G), we can in O(n +m) time find a minimal
forbidden induced subgraph of G.

Proof. Let us first take care of some trivial cases. If C is contained in L or R or
T , then by construction, φ(C) is a hole of G. This hole is either nonadjacent or
completely adjacent to h0 in G, whereupon we can return φ(C) + h0 as a C∗ or
wheel respectively. Since L and R are nonadjacent, it must be one of the cases
above if C is disjoint from T . Henceforth we may assume that C intersects T
and, without loss of generality, L; it might intersect R as well, but this fact is
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irrelevant in the following argument. Then we can find an edge x1x2 of C such
that x1 ∈ L and x2 ∈ T , i.e., x1x2 ∈ Ec.

Let a := last(φ(x1)). Assume first that x2 = ha; then we must have a > 1.
Let x3 and x4 be the next two vertices of C. Note that x3 �∈ L, i.e., x3 �∼ hl

0;
otherwise x1 ∼ x3, which is impossible. If x3 ∼ ha−2 (or hl

a−2 when a = 3), then
φ({x1, x2, x3})∪{ha−2} induces a hole of G, and we can return it and ha−1 as a
wheel. Note that x4 �∼ ha as they are non-consecutive vertices of the hole C. We
now argue that last(φ(x4)) < a. Suppose for contradiction, first(φ(x4)) > a.
We can extend the (x3, x1)-path P in C that avoids x2 to a (h

l
0, h

r
0)-path avoiding

the neighborhood of ha, which allows us to call Prop. 2. We can call Lem. 2 with
x3 and x4 if first(φ(x3)) = a. In the remaining case, first(φ(x3)) = a − 1.
Let x be the first vertex in P that is adjacent to ha−2 (or hl

a−2 if a ≤ 3); its
existence is clear as x1 satisfies this condition. Then φ({x3, . . . , x, ha−2, x1, x2})
induces a hole of G, and we can return it and ha−1 as a wheel.

Assume now that ha is not in C. Denote by P the (x2, x1)-path obtained from
C by deleting the edge x1x2. Let x be the first neighbor of ha+1 in P , and let
y be either the first neighbor of ha−1 in the (x, x1)-path or the other neighbor
of x1 in C. It is easy to verify that φ({x1, · · · , x, · · · y, x2}) induces a hole of G,
which is completely adjacent to ha, i.e., we have a wheel. �	
In the rest �(G) will be chordal, and thus we have a chordal non-interval sub-
graph F of �(G). This subgraph is isomorphic to some graph in Fig. 1, on which
we use the following notation. It is immediate from Fig. 1 that each of them
contains precisely three simplicial vertices (squared vertices), which are called
terminals, and others (round vertices) are non-terminal vertices. In a long claw
or †, for each i = 1, 2, 3, terminal ti has a unique neighbor, denoted by ui.

Proposition 3. Given a subgraph F of �(G) in Fig. 1, we can in O(n + m)
time find either all bad pairs in F or a forbidden induced subgraph of G.

Lemma 10. Given a subgraph F of �(G) in Fig. 1 that does not contain w, we
can in O(n +m) time find a minimal forbidden induced subgraph of G.

Proof. We first call Prop. 3 to find all bad pairs in F . If F has no bad pair,
then we return the subgraph of G induced by φ(F ), which is isomorphic to F .
Let x, y be a bad pair with the minimum distance in F ; we may assume that it
is 3 or 4, as otherwise we can call Lem. 7. Noting that the distance between a
pair of non-terminal vertices is at most 2, we may assume that without loss of
generality, x is a terminal of F . We break the argument based on the type of F .

Long claw. We may assume that x = t1 and y ∈ {u2, t2}; other situations are
symmetrical. Let P be the unique (x, y)-path in F . If φ(t3) is nonadjacent to
φ(P ), then we return φ(P )+φ(t3) as a C∗; we are thus focused on the adjacency
between φ(t3) and φ(P ) . If y = t2, then by the selection of x, y (they have
the minimum distance among all bad pairs), φ(t3) can be only adjacent to φ(t1)
and/or φ(t2). We return either φ(F ) as an FIS-2 , or φ({t1, t2, t3, u1, u2, u3}) as
a net. In the remaining cases, y = u2, and φ(t3) can only be adjacent to φ(u1),
φ(u2), and/or φ(t1). We point out that possibly φ(t2) = φ(t1), which is irrelevant
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as φ(t2) will not be used below. If φ(t3) is adjacent to both φ(u1) and φ(u2) in G,
then we get a K2,3 . Note that this is the only case when φ(t1) = φ(t3). If φ(t3) is
adjacent to both φ(t1) and φ(u2) in G, then we get an FIS-1. If φ(t3) is adjacent
to only φ(u2) or only φ(t1) in G, then we get a domino or twin-C5 , respectively.
The situation that φ(t3) is adjacent to φ(u1) but not φ(u2) is similar as above.

†. Consider first that x = t1 and y = t3, and let P = (t1u1u3t3). If φ(t2) is
nonadjacent to the hole induced by φ(P ), then we return φ(P ) and φ(t2) as a C

∗.
If φ(t2) is adjacent to φ(t3) or φ(u1), then we get a domino. If φ(t2) is adjacent
to φ(t1), then we get a twin-C5. If φ(t2) is adjacent to φ(t1) and precisely one of
{φ(t3), φ(u1)}, then we get an FIS-1. If φ(t2) is adjacent to both φ(t3) and φ(u1),
then we get a K2,3; here the adjacency between φ(t2) and φ(t1) is immaterial. A
symmetric argument applies when {t2, t3} is a bad pair. In the remaining case,
neither φ(t1) nor φ(t2) is adjacent to φ(t3). Therefore, a bad pair must be in the
path F −N [t3], which is nonadjacent to φ(t3), then we get a C∗.

The whipping top and ‡ are straightforward and omitted. �	
Lemma 11. Given a subgraph F of �(G) in Fig. 1 that contains w, we can in
O(n+m) time find a minimal forbidden induced subgraph of G.

\\ Note that 0 ≤ last(φ(x1)), last(φ(x2)) ≤ 1.
1 if last(φ(x1)) = 1 and y1 ∼ h2 then

call Lem. 2 with (y1φ(x1)h1h2y1) and {φ(x2), y2};
1 if last(φ(x1)) = 0 and y1 ∼ h1 then

call Lem. 2 with (y1φ(x1)h0h1y1) and {φ(x2), y2};
1 if y2 ∼ hlast(φ(x2))+1 then symmetric as above;
2 if last(φ(x1)) = last(φ(x2)) then

return {y1, φ(x1), y2, φ(x2), hlast(φ(x2)), hlast(φ(x2))+1} as a †;
\\ assume from now that last(φ(x1)) = 1 and last(φ(x2)) = 0.

3 if φ(x2) ∼ h2 then return (φ(x2)h0h1h2φ(x2))+y1 as a C∗;
4 if y2 �∼ h−1 then return {y1, h−1, φ(x1), y2, φ(x2), h0, h1} as a ‡;
4 if y2 ∼ h−1 then return {y1, h−1, y2, φ(x2), h0, h1} as a †.

Fig. 5. Procedure for Lem. 11

Proof. Since w is simplicial, it has at most 2 neighbors in F . If w has a unique
neighbor in F , then we can use a similar argument as Lem. 10. Now let x1, x2

be the two neighbors of w in F . If there exists some vertex u ∈ T adjacent to
both φ(x1) and φ(x2) in G, which can be found in linear time, then we can use
it replace w. Hence we assume there exists no such vertex. By assumption, we
can find two distinct vertices y1, y2 ∈ T such that φ(x1)y1, φ(x2)y2 ∈ Ecc; note
that φ(x1) �∼ y2 and φ(x2) �∼ y1 in G. As a result, y1 and y2 are nonadjacent;
otherwise, {y1, y2} and the counterparts of {x1, x2} in R induce a hole of �(G),
which is impossible. We then apply the procedure described in Fig. 5.
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We now verify the correctness of the procedure. Since each step—either di-
rectly or by calling a previously verified lemma—returns a minimal forbidden
induced subgraph of G, all conditions of previous steps are assumed to not hold
in a later step. By Lem. 6, last(φ(x1)) and last(φ(x2)) are either 0 or 1. Step 1
considers the case where y1 ∼ hlast(φ(x1))+1. By Lem. 3, y1 �∼ hlast(φ(x1)). Thus,
(y1φ(x1)h1h2y1) or (y1φ(x1)h0h1y1) is a hole of G, depending on last(φ(x1)) is
0 or 1. In the case (y1φ(x1)h1h2y1), only φ(x1) and h1 can be adjacent to φ(x2);
they are nonadjacent to y2. Likewise, in the case (y1φ(x1)h0h1y1), vertices φ(x1)
and h0 are adjacent to φ(x2) but not y2, while h1 can be adjacent to only one
of φ(x2) and y2. Thus, we can call Lem. 2. A symmetric argument applies when
y2 ∼ hlast(φ(x2))+1. Now that the conditions of step 1 do not hold true, step 2
is clear from assumption. Henceforth we may assume without loss of generality
that last(φ(x1)) = 1 and last(φ(x2)) = 0. Consequently, last(y1) = |H | − 1
(Lem. 2). Because we assume that the condition of step 1 does not hold, y1 �∼ h2;
this justifies step 3. Step 4 is clear as y1 is always adjacent to h−1. �	
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