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Abstract. Finding trust inference paths for unfamiliar users in online
social networks is a fundamental work of trust evaluation. Most existing
trust inference path search approaches apply classical brute-force graph
search algorithms, which leads to high computation costs. To solve this
issue, we propose a trust inference path search approach combining com-
munity detection and ant colony optimization. First, the singular value
decomposition signs method is utilized to process the trust relationship
matrix in order to discovery the trust communities. Then, by taking the
communities as different colonies, we use the ant colony optimization to
find the optimal trust inference path along which the witness has the
maximum deduced referral belief. The released pheromones in previous
trust inference path searches help subsequent searches to reuse previous
experience and save path search costs. Comparative experiments show
that the proposed trust inference path search approach outperforms the
existing ones on path search efficiency and trust inference accuracy.

Keywords: Trust inference path search, community detection, ant
colony optimization, social network analysis.

1 Introduction

Popularized Online Social Network (OSN) applications, especially the Social
Network Sites (SNSs), provide people with great convenience for information
sharing, collaborating and interacting. Trust in online social networks plays an
important role for users to make trusted decisions when facing unfamiliar co-
partners or environments. For example, the “Web of Trust” in Epinions.com
builds a community of trusted members for users and makes personalized rec-
ommendations. It is beneficial for the buyers to evaluate the trustworthiness
of the unfamiliar recommenders, sellers or service providers before making pur-
chase decisions. Given a pair of users who have no interaction experience, trust
transitivity based trust inference can deduce the trust opinion between them by
applying trust discounting and consensus operations to the trust propagation
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paths [7]. In the large-scale OSN, there are a great number of such paths and
how to efficiently find appropriate trust inference paths emerges as a question.

Most existing trust inference path search approaches ignore the structure
characteristics of the trust network, which makes the path search blind and cost
expensive. Ant Colony Optimization (ACO)[1], inspired by the pheromone trail
laying and following behavior of some ant species, is a metaheuristic for solv-
ing hard combinatorial optimization problems. Similar to the ants that find the
shortest paths connecting to the food, users in the ONS also want to find the
most reliable trust inference path connecting to the target participants. However,
the users flock with shared interests, preferences or opinions etc. and they com-
pose the different communities. The structure of social networks attracts much
attention and the research of community detection in social networks derives [3].
The ideal communities in trust networks should be like this: the members in the
same community trust each other and the distrust relationships do not appear in
one community. We try to detect the communities in the trust network by trust
and distrust relationships and cluster users as different colonies for ant colony
optimization. Since users in one community have similar trusting and distrusting
preferences, the clustering can help the path search have a clear sense of direction
and tend to find trustworthy recommenders. Moreover, existing trust inference
path search approaches do not accumulate and reuse search experience, so they
cannot reduce the path search costs even for repeated path search requests. It
also inspires us to utilize the ACO to solve this issue.

The main contribution of this paper includes a trust community detection
method and an ACO based Trust Inference Path Search algorithm (ACO-TIPS).
The proposed trust community detection method utilizes Singular Value Decom-
position (SVD) signs method [2] to process the trust relationship matrix to detect
communities in the trust network and label them as colonies. For a given pair of
source and target users, the ACO utilizes the pheromones of colonies close to the
source user as experience information and the distances between the candidates
and the target user in the singular vector space as heuristic information to find
the optimal or near-optimal trust inference path solutions.

2 Related Work

Classical brute-force graph search based approaches are the mainstream in the
field of the trust inference path search. Jøsang et al. [7] used the Depth First
Search algorithm to find all the possible paths connecting the source and target
participants in the trust network. Similarly, Hang et al. [5] proposed CertProp
with three search strategies (shortest, fixed, selection) to find the paths for trust
evaluation. The trust inference requires to find the best path connecting to each
witness. Although the search algorithm is not detailed, the Depth First Search
algorithm is obviously preferred to find all the possible paths. TidalTrust [4]
utilizes a modified Breadth First Search to first find the trust inference path
with the minimum depth and continue to find any other paths at the minimum
depth. The trust inference paths with the maximum strength will be used in the
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calculation for inferring trust. In [13], the Breadth First Search algorithm is also
used to find the trust propagation paths within the minimum depth for further
trust evaluations. Ma et al. [11] proposed a bidirectional path search approach
based on Dijkstra’s algorithm to find the trust inference path with the minimum
deduced uncertainty.

There are also stochastic trust inference path search approaches. TrustWalker
[6] performs random walks on the trust network to solve the recommendation
issues for cold start users. Repeated random walks take into account both the
trust values of the neighbors and the similarities between the target item and the
items rated by the neighbors. Thus, it makes a good combination of trust based
and collaborative filtering based recommendation. Liu et al. [10] modeled the
optimal social trust path selection as the classical Multi-Constrained Optimal
Path (MCOP) selection problem and proposed the Heuristic Social Context-
Aware trust Network discovery algorithm (H-SCAN) based on the K-Best-First
Search. This method shows better performance than Time-To-Live Breadth First
Search, Random Walk Search and High Degree Search.

The brute-force search based approaches are computation costly and the path
search experience cannot be accumulated and reused for all the methods men-
tioned above. So, given a pair of source and target participants, repeated requests
for the trust path between them will lead to repeated path searches at the same or
similar computation cost, unless the previous search results are saved. Obviously,
it is infeasible to save such paths for the dynamic large-scale trust networks.

3 Proposed Trust Inference Path Search Approach

3.1 Trust Communities Detection

The trust network can be formally described by a directed graph G =< V,E >,
where V represents the set of participants and E represents the set of trust
relationships. Binary trust relationships (i.e. trust and distrust relationships) are
considered in this paper. So, ∀ev1→v2 ∈ E, ∃|sev1→v2

∈ {1,−1} and v1, v2 ∈ V .
Here sev1→v2

is the sign of the trust relationship, sev1→v2
= 1 means v1 trusts

v2, sev1→v2
= −1 means v1 distrusts v2.

The trust relationship matrix noted by T|V |×|V | = (tij) is a |V | × |V | sparse
matrix, where tij = sevi→vj

and 1 ≤ i, j ≤ |V |. This matrix is different with the

adjacent matrix because it contains the −1 elements. So it not only describes
how participants connect with others but also shows their opinions on trust
worthiness. By decomposing this matrix with truncated SVD, we can cluster
the participants by how they trust and distrust others and/or how they are
trusted and distrusted by others with less dimensions. The decomposed trust
relationship matrix with rank k can be represented by:

T ′
|V |×|V | = U|V |×kSk×kV

T
|V |×k (1)

Here T ′ is the best possible rank k approximation to T and k < rank(T ). The
value of k can be chosen by plotting the descending ordered singular values
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of T and finding the turning point of the line. Thus, the entries of S are the
k dominant singular values and the rows of U and V can be regarded as the
coordinates of the participants in the k dimensional spaces.

The SVD signs [2] is a clustering method which makes the singular value
deposition of the adjacent matrix of the undirected graph and uses the sign
patterns of the singular vectors to cluster the entries. In this paper, we apply
this method to process the trust relationship matrix T so as to detect trust
communities in the trust network. Since the matrix T is asymmetric, clustering
methods by rows of U or V have different meanings. If the rows of U that have
the same sign patterns on the k dimensions are classified into one cluster, this
may lead to up to 2k clusters. It clusters the participants by how they trust and
distrust others. Similarly, the sign patterns of the rows of V are also applicable
and this clusters the participants by how they are trusted and distrusted by
others.

For examples shown in Fig.1, trust and distrust relationships are distinguished
as solid and dotted arrows. The left example shows that A and B both trust
V1, V3, Vn and distrust V2, Vn−1, and they are probably classified into the same
cluster by using rows of U . In the example on the right side of Fig.1, A and B are
both trusted by V1, V3, Vn and distrusted by V2, Vn−1. Thus, they are probably
classified into the same cluster by using rows of V . For simplicity, we only use
the sign patterns of the rows of U and ignore the rows of V . Given a pair of
participants who have the similar trusted and distrusted participants, they may
be classified into the same cluster, or to say, colony.

A

B

V1

V2

V3

Vn-1

Vn

A

B

V1

V2

V3

Vn-1

Vn

Fig. 1. The meanings of clusterings by rows of U or V

The instance in Fig.2 illustrates that, by building the trust relationship ma-
trix and set k = 2, the ten vertices in the trust network are classified into three
clusters according to the sign patterns ((−,+), (+,−) and (−,−)) of the rows
of U10×2 (on the right side of Fig.2). In this clustering result, the trust rela-
tionships lie between vertices in the same cluster and the distrust relationships
lie between vertices in different clusters, which satisfies the expectation of ideal
trust community. Thus, the SVD sign based trust community detection method
is feasible.
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Fig. 2. SVD sign based trust community detection

3.2 ACO with Multiple Colonies

Following the subjective logic proposed by Jøsang et al. [8], we infer the trust
relationship of a pair of unfamiliar participants by applying the trust inference
path (e.g. v1 → v2 → . . . → vn) with trust discounting operators ω1:...:n−1

n =
ω1
2 ⊗ ω2

3 ⊗ . . .⊗ ωn−1
n , where ω is the subjective opinion and ⊗ denotes the trust

discounting operator. The Uncertainty Favoring Discounting operator (noted as
⊗1) and Opposite Belief Favoring Discounting (noted as ⊗2) operator are also
introduced in [8]. Here, only the last hop of the path is on functional trust and
the former ones are on referral trust. Modified ACO is utilized in this paper to
find appropriate trust inference paths.

Transition possibilities of ants. With each participant labeled by a unique
colony identifier, we can obtain the coordinates of the colony centers in the
k dimensional singular vector space. Given a pair of source and target par-
ticipants vS and vT , the corresponding colony labels label(vS) and label(vT )
(belong to {labeli|1 ≤ i ≤ |{labeli}|}), and the coordinates of the colony cen-
ters center(labeli). For each round of ACO, numbers of ants perform random
walks from the source vertex. Each ant chooses its next hop by computing the
transition possibilities for the successors of the current vertex. Without loss of
generality, given the current vertex vA and its successors suc(vA), the transition
possibility for the successor vB (vB ∈ suc(vA)) can be obtained by the following
equation

pvA→vB =
ταvA→vB · ηβvA→vB∑

vi∈suc(vA)

ταvA→vi · ηβvA→vi

(2)

where τvA→vB is the total amount of pheromone on evA→vB and ηvA→vB is
the value of heuristic information. Parameters α and β determine the relative
influence of the pheromone trails and the heuristic information. Since we consider
multiple colonies, the pheromones of similar colonies are also utilized.

τvA→vB =
∑

1≤i≤|{labeli}|
ψ(vA→vB ,labeli) · wlabeli (3)
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Here ψ(vA→vB ,labeli) is the amount of pheromone on evA→vB for labeli and
wlabeli is the weight of the pheromone for labeli. This pheromone weight is related
to the distances between the source participant and each colony center in the k
dimensional space.

wlabeli =
1/||pos(vS)− center(labeli)||∑

1≤j≤|{labelj}|
1/||pos(vS)− center(labelj)|| (4)

where pos(vS) are the coordinates of vS . Moreover, the value of heuristic informa-
tion is also estimated by the distance between the coordinates of the successors
and the target participant.

ηvA→vB = 1/||pos(vB)− pos(vT )|| (5)

After the computation of transition possibilities for the successors, a random
hop can be determined and the current vertex is updated. If the current vertex
is the target participant, the ant stops and the path is recorded for further path
selection.

Selection of the optimal trust inference path. At the end of each round, all
the found paths are compared by computing the deduced referral trust about the
last recommender (i.e. the witness) as the quality of the path. Given a connecting
path pathi denoted as [v(i,1), v(i,2), . . . , v(i,ni)], where ni is the number of vertices
along pathi, v(i,1) = vS , v(i,ni) = vT and 1 ≤ i ≤ |{pathi}| , the inferred vS ’s

opinion about the witness v(i,ni−1) on referral trust would be ω
(i,1):...:(i,ni−2)
(i,ni−1) .

The first element in the round bracket denotes the index of the path and the
second element denotes the index of the vertex along this path.

For each round of the ACO search, the optimal trust inference path among all
the connecting paths found in this round is the path pathk with the maximum

indirect referral belief b
(k,1):...:(k,nk−2)
(k,nk−1) . The optimization problem can be formally

described as to find pathk that

b
(k,1):...:(k,nk−2)
(k,nk−1) = max

pathi

{b(i,1):...:(i,ni−2)
(i,ni−1) } (6)

where 1 ≤ k ≤ |{pathi}| and b
(i,1):...:(i,ni−2)
(i,ni−1) can be obtained by ω

(i,1):...:(i,ni−2)
(i,ni−1) =

ω
(i,1)
(i,2) ⊗ ω

(i,2)
(i,3)⊗. . .⊗ω

(i,ni−2)
(i,ni−1) with all hops on referral trust.

After the determination of the optimal trust inference path, we update the
pheromones for colony label(vS) along this path by the following equation and
ignore the rest found paths.

ψ(vA→vB ,labelvS) = ρ · ψ(vA→vB ,labelvS) +
e

1− b
(k,1):...:(k,nk−2)
(k,nk−1)

(7)

where evA→vB is an arbitrary edge of pathk, ρ is the evaporation rate of
pheromones and e is the reinforcement factor to enhance the pheromones of
the best path since the start of the algorithm.
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3.3 ACO Based Trust Inference Path Search Algorithm

The overall trust inference path search algorithm first clusters the users by the
trust community detection method. Then, by taking the clustered users as dif-
ferent colonies, multiple rounds of ACO are performed to find the optimal or
near-optimal trust inference path. The ACO-TIPS algorithm can improve the
performance of each round of search gradually by utilizing, releasing and updat-
ing pheromones. In order to simplify the trust inference path search problem,
only one optimal trust propagation path is found for each search without con-
sidering the fusions of multiple paths. The detailed algorithm is described in the
Algorithm 1.

Algorithm 1 ACO based Trust inference path search algorithm

Require: Trust network G = (V,E), source and target participants vS , vT .
Ensure: path = [vS , . . . , vT ] {if the path does not exist, it returns null}.
1. Get the trust relationship matrix T|V |×|V | and its singular values.
2. Determine k, make the truncated SVD of T|V |×|V | and cluster the participants by

the SVD sign method.
3. while search round round ≤ the maximum roundmax do
4. Set the current vertex vc(anti) to vS for each anti.
5. while current path depth depth ≤ 7 do
6. for anti ∈ {anti|anti.state == active} do
7. if vc(anti) has no successors then
8. anti.state ← inactive
9. end if

10. Compute the transitive possibilities pvc(anti)→vs(anti) by Eq.(2) where
vs(anti) belongs to the successors of vc(anti).

11. Scale the possibilities of the edges without pheromones by the exploring
factor θ and the ones with pheromones by 1− θ.

12. Choose one successor vs(anti) randomly and replace the current vertex
vc(anti) ← vs(anti).

13. if vc(anti) == vT then
14. anti.state ← inactive, and anti.found ← success
15. end if
16. end for
17. depth ← depth+ 1
18. end while
19. Assemble the paths {pathi} passed by anti where anti.found == success and

determine the optimal pathk by Eq.(6).

20. if b
(k,1):...:(k,nk−2)
(k,nk−1) > bbest(vS , vT ) then

21. bbest(vS , vT ) ← b
(k,1):...:(k,nk−2)
(k,nk−1) , and e ← estrength

22. end if
23. Update ψ(vA→vB ,labelvS) by Eq.(7) where evA→vB belongs to the edges of pathk.

24. round = round+ 1
25. end while
26. return pathk
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In this algorithm, we address the exploit-vs-explore dilemma by introducing
an exploring factor θ (0 < θ < 1). When computing the the transitive possibil-
ities, the edges without pheromones share the possibility that equals to θ and
the ones with pheromones share the possibility that equals to 1− θ. This mech-
anism is disabled when all the edges from the current vertex do or do not have
pheromones. It protects the algorithm from the premature convergence at the
initial rounds of searches and makes the subsequent searches able to find bet-
ter paths. Moreover, the found path with the maximum deduced referral belief
since the start of algorithm is rewarded by a strengthened reinforcement factor
estrength. This can help the pheromones of the global best found path avoid to
be submerged. Generally, the number of ants starts with a great number and
then decreases gradually. After several rounds of trust inference path searches, it
can find the trust inference path with high quality by one round of search with
a small number of ants.

If we denote the number of ants as m and the maximum path depth as d (in
this paper d = 7), in the worst case, the times of vertex scan would be m · (d−1)
in one round and the time complexity for one round of search is O(m).

4 Experiments and Analysis

In this section, experiments are carried out on the Epinions data set to compare
the performance of the proposed ACO-TIPS approach with the representative
TidalTrust[4], CertProp(Sel.)[5] and H-SCAN[10] approaches on the path search
efficiency and the applicability to the trust inference.

4.1 Data Set Description

Epinions is a consumer reviews web site that helps people make informed buying
decisions by valuable consumer insight and personalized recommendations. The
extended Epinions data set released by [12] is available at trustlet.org which
describes the trust and distrust relationships among users and their ratings on
other user’s articles. The sampling method based on random walk introduced in
[9] is utilized to scale down the original data set and the data set for experiments
contains 33036 users who issued 84141 trust and distrust statements.

4.2 Methodology and Metrics

First, the subjective opinion between arbitrary pair of users should be obtained.
Given a pair of users (vA and vB), we count the number of the source user’s rat-
ings on target user’s articles as the number of observations (noted as nrating ≥ 0)
and get the mean rating (noted as mrating ∈ [1, 5]). Then, ωA

B = (bAB, d
A
B, u

A
B, a

A
B)

can be obtained by:
⎧
⎪⎪⎨

⎪⎪⎩

bAB = (mrating − 1) · (1− uA
B)/4

dAB = (5−mrating) · (1 − uA
B)/4

uA
B = 2/(2 + nrating)

aAB = 0.5

(8)
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Before the trust inference path search, the users are clustered by the trust
community detection method with the left singular vector. The trust relation-
ship matrix is reordered so that the rows corresponding to the users within the
same cluster are together and the same reordering is also applied to the columns.
The reordered trust relationship matrix is plotted in Fig.3. The blue dots rep-
resent trust relationships and the red ones represent distrust relationships. The
transverse lines are the borders of clusters. In this figure, we can find that there
are clusters where the users mainly trust each other in the same cluster and
overall distrust the users in some other clusters.

0 0.5 1 1.5 2 2.5 3

x 10
4
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x 10
4

Fig. 3. Reordered trust relationship matrix after clustering

In order to validate the performance of ACO-TIPS in terms of trust inference
path search efficiency and trust inference accuracy, we use a standard Leave-one-
out evaluation technique with 500 randomly chosen sample user pairs. Before the
trust inference path search starts, the original trust statement is masked. All the
comparative path search approaches are performed to find the trust inference
path connecting the source user and the target user. When the path searches
terminate, the number of the found paths and the scanned vertices per path
are recorded as the metrics for the trust inference path search efficiency. The
approach with higher path discovery rate and lower scanned vertices per path
shows better path search performance. Then, the trust inference is performed by
applying the found trust inference paths with trust discount operators ⊗1 and
⊗2 respectively. The deduced subjective opinion is compared with the original
subjective opinion obtained by the ground truth in terms of P-error and B-error
introduced in [5] as the metrics for trust inference accuracy. The lower errors in
trust inference reflect better applicability of the path to trust inference.

In order to give a computation bound in the experiments, the maximum num-
ber of scanned vertices is set to 5000 and the maximum depth of path is set to
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7 according to the small world theory. For TidalTrust, CertProp(Sel.) and H-
SCAN, repeated searches for the same user pair yield the same or similar results
and costs, and thus they are performed only once. The proposed ACO-TIPS is
performed in 40 rounds with decreased number of ants. We choose the mean
performance of the last 5 rounds to make comparisons.

4.3 Results and Analysis

Experiment results of the ACO-TIPS are illustrated in Fig.4a and Fig.4b. As we
decrease the number of ants for each round, the number of scanned vertices per
path also decreases. However, the path discovery rate (the number of searches
that find at least one path divided by the number of samples), the P-errors and
B-errors for ⊗1 and ⊗2 are all floating at a stable level.

The mean performance of the last 5 rounds of ACO-TIPS are compared with
the performance of TidalTrust, CertProp(Sel.) and H-SCAN in Table.1. On trust
inference path search, ACO-TIPS reaches the highest discovery rate 63.56%
(9.59% higher than TidalTrust’s 58%) and the lowest mean scanned vertices per
path is 735.538 (38.9% less than TidalTrust’s 1204). It means that ACO-TIPS
can find the trust inference paths for the most number of samples with the lowest
mean search cost. On trust inference, the P-errors and B-errors of ACO-TIPS
for ⊗1 and ⊗2 are the lowest ones among those of the four trust inference path
search approaches (P-error1, B-error1, P-error2 and B-error2 of ACO-TIPS are
27.25%, 21.61%, 15.55% and 21.88% lower than those of TidalTrust respectively).
This implies that the trust inference with the path found by ACO-TIPS reaches
higher trust inference accuracy.
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(a) Path search costs for ACO-TIPS
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Fig. 4. Experimental results of ACO-TIPS

Thanks to the pheromones released by the previous rounds of searches in
ACO-TIPS, the subsequent rounds of searches can easily discover the trust in-
ference paths with much less costs than previous ones. It implies that ACO-TIPS
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Table 1. Performance comparisons of TidalTrust, CertProp(Sel.), H-SCAN and ACO-
TIPS

Term TidalTrust CertProp(Sel.) H-SCAN ACO-TIPS

Discovery Rate 0.58 0.452 0.478 0.6356
Scanned vertices per path 1204 4963.02 793.2 735.54

P-error1 0.1868 0.3323 0.2109 0.1359
B-error1 0.3225 0.5696 0.3799 0.2528
P-error2 0.1936 0.3784 0.2392 0.1635
B-error2 0.3209 0.567 0.3785 0.2507

can accumulate and reuse former path search experience to speed up the path
search. In ACO-TIPS, only the optimal path of each round is qualified to add
pheromones. Furthermore, the optimal path since the start of the algorithm even
gets additional pheromones. Therefore, ACO-TIPS tends to find better and bet-
ter trust inference path after rounds of searches and make the trust inference
more and more accurate until it finds the optimal path.

5 Conclusions and Future Work

In this paper, we propose a trust inference path search approach combining the
trust community detection and the ACO with multiple colonies. The SVD sign
clustering method is applied to detect trust communities according to how users
trust and distrust others. Then, the trust communities are regarded as colonies
in the ACO. By selecting the found path with the maximum deduced referral
belief, the ACO-TIPS can accumulate and reuse path search experience to find
the optimal or near-optimal trust inference path efficiently. This optimal path
can connect the source user to the target user with the most trustworthy witness,
which leads to accurate trust inference results.

Since the trust network in the experiments is static, the so-called “exploit”
or “explore” period is transient. In fact, the evaporation of the pheromones and
stochastic routing can make the ACO-TIPS applicable to the dynamic trust
network, which needs to be further validated with suitable experiment environ-
ments. Also, the idea of accumulating and reusing experience in trust inference
path search can be applied to the trust inference based recommendations for
better accuracy and lower costs.
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