
Load-Balanced Breadth-First Search on GPUs

Zhe Zhu, Jianjun Li, and Guohui Li

School of Computer Science & Technology,
Huazhong University of Science & Technology, China

luokezhu@gmail.com, Jianjunli,Guohuili@hust.edu.cn

Abstract. Breadth-first search (BFS) is widely used in web link and
social network analysis as well as other fields. The Graphics Processing
Unit (GPU) has been demonstrated to have great potential in accelerat-
ing graph algorithms through parallel processing. However, BFS is diffi-
cult to parallelize efficiently due to the irregular workload distribution,
leading to load imbalance between threads. Previous work has proposed
several strategies to alleviate the load imbalance but none of them solves
this issue in general.

This paper presents a new GPU BFS algorithm that focuses on full
load balance. Each BFS iteration is decoupled into two phases: work
redistribution and neighbor gathering. Work redistribution phase reor-
ganizes the irregular workloads in order for the neighbor gathering phase
to visit the vertices in a load-balanced way. The evaluation results show
that the proposed approach achieves speedups of up to 39x and 1.42x
over CPU sequential implementation and state-of-the-art GPU imple-
mentation respectively.

Keywords: Breadth-first search, GPU, load balance, graph algorithms,
parallel algorithms

1 Introduction

Graph algorithms are becoming increasingly important, with applications rang-
ing fromweb link analysis to computer-aided design tomachine learning. Breadth-
first search (BFS) is an important low-level operation that serves as a fundamental
building block for more complicated graph algorithms. Thus efficient paralleliza-
tion of BFS has gained much attention.

Unfortunately, exploiting the nested parallelism in BFS is challenging. As-
signing the workloads to each thread evenly is non-trivial because the work
distribution patterns are determined by the structure of the input graph.

Modern GPUs have become popular general computing devices due to their
high memory and computational throughput, low costs and power efficiency.
However, accelerating BFS on GPUs requires much more attention. The wide
SIMD architecture of GPUs is particularly sensitive to load imbalance [3]. Inad-
equate handling of this issue can lead to a significant performance hit.

Prior work has proposed several parallelization approaches [7,8,10,11]. They
mainly rely on overlapped execution of massive amount of threads, local reorga-

F. Li et al. (Eds.): WAIM 2014, LNCS 8485, pp. 435–447, 2014.
c© Springer International Publishing Switzerland 2014



436 Z. Zhu, J. Li, and G. Li

nization of workloads and work stealing to limit load imbalance to some extent.
However, none of them eliminates this issue in general.

In this paper, we present a load-balanced GPU BFS algorithm, which decou-
ples each BFS iteration into two phases: work redistribution and neighbor gath-
ering. Work redistribution phase serves as a preprocessing operation, employing
a parallel expansion to reorganize the nested and irregular workloads of a BFS
iteration. Neighbor gathering phase then subsequently assigns the workloads to
threads uniformly and visits each neighbor in a load-balanced way.

Specifically, we make the following contributions:

• We propose a load-balanced GPU BFS algorithm. To the best of our knowl-
edge, ours is the first BFS implementation on GPUs that achieves fully
load-balanced neighbor gathering.

• We analyze the coupling possibilities between different phases of the algo-
rithm for optimal performance. Coupling separate procedures into one kernel
reduces I/O overhead but may amplify load imbalance. We show that a hy-
brid coupling strategy has the best performance.

• Our approach delivers great performance on a wide diversity of real-world
graphs, achieving speedups of up to 39x and 1.42x over CPU sequential
implementation and state-of-the-art GPU implementation, respectively.

2 Background and Motivation

In this section, we first introduce some unique properties of GPU architecture.
Then we review existing BFS algorithms on GPUs and motivate our approach.

2.1 Modern GPU Architecture

In order to deliver high computational throughput, modern GPUs adopt a wide
SIMD architecture[3], meaning threads within a warp execute the same instruc-
tions synchronously. Control flow divergence among these threads will result in
serialization of different execution paths. Warps are grouped into cooperative
thread arrays (or CTAs). Threads within a CTA can communicate through a lo-
cal shared memory, and GPU hardware treats the CTA as the unit of scheduling.
A program running on the GPU is called a kernel.

This hierarchical model introduces several types of workload imbalance. The
SIMD execution within a warp will cause thread load imbalance and under-
utilization if control flow diverges. Within a CTA, the warp with the highest
workload will cause other completed warps to sit idle and prevent the comple-
tion of the CTA, which in turn will prevent other CTAs in the wait queue from
being scheduled. Likewise, few CTAs taking too much time to complete can ex-
tend the completion time of the kernel. Figure 1 illustrates these three types of
workload imbalance.



Load-Balanced Breadth-First Search on GPUs 437

warp
CTA

threads warps

kernel

CTAs

time

time time

Fig. 1. (Left to right) thread imbalance, warp imbalance and CTA imbalance

Algorithm 1. Linear-work parallel BFS

Input: v0 , input queue inQ and output queue outQ
Output: Array dist[0...n − 1] holding the distance from s to each vertex

1 initialize all elements in dist[0...n − 1] to ∞ and empty inQ
2 dist[v0] ← 0, iteration ← 0
3 inQ.Enqueue(v0)
4 while inQ not empty do
5 empty outQ
6 foreach v ∈ inQ in parallel do
7 foreach neighbor of v in parallel do
8 if StatusLookup(neighbor) = valid ∩ dist[neighbor] = ∞ then
9 dist[neighbor] ← iteration+ 1

10 outQ.Enqueue(neighbor)

11 iteration++
12 switch inQ and outQ

2.2 Existing BFS Algorithms on GPUs

Given a source vertex v0, the BFS process traverses the vertices in breath-first
order and label each vertex with its distance from v0. Other variants of BFS
may record other attributes such as the parent of each vertex.

Earlier GPU BFS research mainly focuses on work-inefficient parallelization
[7,8] which has quadratic work complexity (O(n2 + m) or O(mn), n and m
represent the vertex and edge numbers, respectively). Luo et al. [10] present the
first linear work BFS (O(m+ n)) and achieve much better performance. In this
paper, we will focus on work-efficient algorithms.

The skeleton of the linear-work BFS algorithm on the GPU is similar to the
standard serial BFS on the CPU [9], which is listed as Algorithm 1. On each
iteration, vertices are taken out of the input queue, and their neighbors are
visited and inserted into the output queue for next iteration. However, there are
two main differences between CPU and GPU BFS algorithms, which are also
the main challenges of GPU BFS:

Parallel neighbor gathering. The neighbor gathering process read in all
the neighbors of the input vertices. Both the vertices in the input queue and



438 Z. Zhu, J. Li, and G. Li

all the neighbors of a vertex are independent of each other so there is sufficient
parallelism to exploit. However this nested and irregular loop structure makes the
parallelization difficult. A poor mapping strategy between threads and vertices
will suffer from severe workload imbalance.

Status lookup. When inspecting the neighbors, they need to be checked to
see if they have already been visited. This often results in many costly random
accesses to the dist array. An effective optimization is to add a status lookup
process and use a bitmap array to check the status, leading to reduced global
memory overhead and improved cache hit rate.

We will focus on the neighbor gathering process, as it is where load imbalance
happens and can easily become the bottleneck of the whole BFS algorithm.

The simplest strategy is to map each thread to a vertex in the input queue,
having each thread inspect the neighbors of the assigned vertex serially. Harish
et al. [7] and Luo et al. [10] use this strategy. It only exploits the parallelism
of the outer loop, and can lead to severe thread imbalance within a warp for
graphs having non-uniform degree distributions. Moreover, the arbitrary memory
accesses from each thread result in terrible coalescing too.

A better strategy is to map a whole warp or CTA to a vertex in the in-
put queue, which is adopted by Hong et al. [8] and Merrill et al. [11]. In this
way, the whole warp or CTA gather the adjacency list of the vertex in parallel.
This approach provides good thread balance for vertices having large numbers
of neighbors. However for vertices with the adjacency list sizes smaller than the
warp/CTA width, some threads in the warp/CTA will go unused, imposing un-
derutilization of the warp/CTA. Furthermore, there may exist warp imbalance
or CTA imbalance if the adjacency list sizes vary significantly.

Another scan-based strategy introduced by Merrill et al. [11] maps a CTA to a
certain number of vertices in the input queue. The CTA first constructs a shared
array of neighbor locations corresponding to the concatenation of the assigned
adjacency lists. Then the CTA reads in the locations from the shared array
and gather the neighbors iteratively. Compared to the CTA mapping approach,
this strategy solves the CTA underutilization problem at the cost of additional
concatenating operations, which is efficient for vertices having small sizes of
adjacency lists. Since each thread constructs its part of the shared array serially
and its workload is proportional to the size of the assigned adjacency list, large
adjacency lists can impose thread imbalance and inefficiency.

Each of the above mapping strategies is suitable for certain types of graphs.
Merrill et al. [11] therefore adopt a hybrid approach. For vertices having more
neighbors than the CTA width, CTA mapping is applied. For vertices having
the number of neighbors smaller than the CTA width but larger than the warp
width, warp mapping is applied. Finally, scan-based mapping is performed on
the remaining vertices. This hybrid approach limits thread imbalance and warp
imbalance, which is the current state of the art on GPU BFS.

Other works explore general graph algorithms on GPUs [12,16]. They focuses
on flexibility and clarity but lacks specific optimization. Their BFS implemen-
tations are inefficient.



Load-Balanced Breadth-First Search on GPUs 439

2.3 Motivation of This Work

All the existing parallelization strategies suffer from load imbalance issues. They
cannot achieve consistent performance over various graphs. The hybrid CTA+
warp+scan approach has been shown to perform efficiently. However, this solu-
tion is not good enough for the following reasons:

(1) It does not solve the load imbalance problem in general, but only limits
thread imbalance and warp imbalance to some extent. CTA imbalance is
not addressed. Instead, it relies on work stealing to alleviate CTA imbalance.

(2) The neighbor gathering and status lookup process must be put in separate
kernels for optimal performance because fusing these two processes would
amplify the CTA imbalance. This leads to additional global data movement.

(3) It is complicated and unintuitive. Work partitioning and neighbor gathering
logic are mixed up, resulting in an algorithm difficult to understand.

To address these problems, we present a load-balanced BFS algorithm. It is
decoupled into two phases: work redistribution and neighbor gathering. More-
over, in the absence of CTA imbalance we get to fuse neighbor gathering and
status lookup into one kernel and further improve performance.

3 Parallel Expansion

The nested and highly irregular parallelism shown in BFS, together with the
static thread creation mechanism of GPUs, make a balanced work partitioning
very difficult. The latest NVIDIA GPU architecture GK110 supports dynamic
parallelism [3] in order to ease this problem, which enables the GPU kernel to
launch other kernels itself. However, this does not solve this issue in general
because the number of newly allocated threads does not match the problem
size very well. Vertices with few neighbors would be provisioned entire CTAs,
leading to underutilization. To address this problem, we preprocess the input to
reorganize the workloads, eliminating the nested parallelism. In this section, we
introduce the expand operation which is the basis of the workload reorganization,
and the parallelization of expand.

3.1 The expand Operation

To get rid of the nested workload structure, we pack the neighbor gathering
work produced by each input vertex together into a single sequence, with each
element of the sequence representing the gathering address. In this way, threads
can be uniformly mapped to this sequence and do the neighbor gathering in a
load-balanced fashion.

In order to generate this sequence, we first define a basic operation. As il-
lustrated in Fig. 2, taking the degree of each vertex in the queue as input, this
operation outputs an array whose length is equal to the total number of neigh-
bors to be produced. Each element in the array represents the index of the vertex



440 Z. Zhu, J. Li, and G. Li

0

0 0 2 2 2 4 5 5 7

2 3 1 2 10 0

Fig. 2. The expand operation Fig. 3. Converting expand into merge op-
eration

in the queue that will produce it so in the subsequent gathering phase we can
find that vertex and its neighbors.

We will call this operation expand, which is a useful pattern in data-parallel
algorithms. Using expand, the nested loop structure is reorganized and flattened,
which is the key to achieving load balance. Obviously, serial implementation of
expand has O(m) time complexity, thus efficient parallelization of the expand
operation is the basis of high performance of the whole BFS algorithm.

3.2 Parallelization of expand

The expand operation can actually be converted to a merging of two sorted
arrays. As demonstrated in Fig. 3, we first run an exclusive scan [13] on the
inputs, obtaining the result array s and the sum total. We then construct an
array t of length total filled with [0...total− 1] and merge s and t. The difference
compared to a normalmerge is that we only output total elements, and the value
of each output element equals to the current index of array s. In practice, the
array t is not necessary because the indices and values are the same. Algorithm 2
shows the sequential implementation of the expand operation.

The parallelization of the merge operation has been studied for decades [15,6].
Basically, the input sequences are partitioned into non-overlapping segments, and
the independent pairs of segments are merged in parallel. Odeh et al. [14] present
a merge path algorithm that achieves a perfectly load-balanced partitioning. As
depicted in Fig. 4, the two input sequences are listed perpendicularly. The merge
process can be seen as the traversal of a path from the upper left corner to the
bottom right corner, and each step represents a comparison operation. This
path is partitioned by equispaced cross diagonals, and the intersection points
are computed using binary searches (search along the diagonal for the dividing
point between s > t and s ≤ t). In this way, each segment of the path contains
exactly the same number of merge steps (except the last segment, which we can
handle through padding), resulting in a load-balanced partitioning.

This partitioning scheme can be easily applied to GPUs. We first employ a
coarse-grained CTA-wide partitioning, assigning each CTA with the same num-



Load-Balanced Breadth-First Search on GPUs 441

Algorithm 2. Sequential expand

Input: Array in with each element representing the number of elements to be
produced, the length in count of array in

Output: Array out with each element representing the index of the input
element that produced it

Function: ExclusiveScan(input) returns the scan result array and the sum of
the input elements

1 (s, total) ← ExclusiveScan(in)
2 si ← 0, ti ← 0
3 while si < in count ∩ ti < total do
4 if ti < s[si] then
5 out[ti] ← si− 1
6 ti++

7 else si++;

8 if si = in count then
9 out[ti...total − 1] ← si− 1

Fig. 4. Merge path partitioning Fig. 5. Partitioning merge path vertically

ber TILE SIZE of elements to process, which is a tunable constant. This is
done by placing each cross diagonal at a distance of TILE SIZE steps. After
that, each CTA runs a similar fine-grained local partitioning to further assign
TILE SIZE/CTA SIZE input elements to each thread. When threads have
obtained their independent segments of the input elements, they can run the
sequential expand in parallel, leading to a high-performance parallel expansion.

4 Load-Balanced BFS

Having explained the parallel expansion in detail, we now use it as a work redis-
tribution scheme to construct the full algorithms for a BFS iteration. We also
explore the coupling possibilities of work redistribution and neighbor gathering.

To efficiently utilize the GPU memory model, we use the well-known com-
pressed sparse row (CSR) format to store the graph in GPU main memory,
which contains two arrays, namely column-indices C and row-offsets R.



442 Z. Zhu, J. Li, and G. Li

4.1 Perfect Balance + Global Data Movement

The most straightforward approach is to separate the work redistribution phase
and neighbor gathering phase into different kernels. In work reditribution phase,
we read in the vertices in the input queue and construct the array offsets
holding the starting index of each vertexs adjacency list. Then we compute the
adjacency list size neighbor num of each vertex, and run the parallel expansion
using neighbor num as input. With the expansion output vertex index we can
further compute the location of each neighbor to be gathered as:

gather location = neighbor index− scan results[vertex index]

+ offsets[vertex index].
(1)

These locations are then written to the output queue.
In neighbor gathering phase, the locations of all the neighbors are read back

in. We then gather the neighbors at these locations and perform status lookup.
Finally the valid vertices are output for distance update. As mentioned in Sect.
2.3, since the neighbor gathering is now fully load-balanced, the subsequent
status lookup no longer needs to be put in a separate kernel.

This process is listed as algorithm 3, which requires at least five kernel launches
(each code fragment marked by in parallel indicates a separate kernel). The work
redistribution and neighbor gathering are both load-balanced: each CTA always
processes TILE SIZE elements, making the algorithm insensitive to the differ-
ence in graph structure. But the net slowdown caused by writing and reading
the work redistribution results will limit the obtained overall performance.

4.2 Imbalanced Redistribution + Balanced Gathering

A natural optimization is to fuse work redistribution and neighbor gathering.
Unfortunately this will compromise the load balance property. Assume that the
input queue has input total vertices and they generate output total neighbors.
The redistribution phase will take input total + output total elements as input
but only output output total elements for the next phase, which makes the thread
mapping policy inconsistent across the two phases if we fuse them together. In
normal cases however, the performance gain through reduced I/O overhead can
often make up for the impact of the load imbalance.

When coupling the redistribution andgathering,wemay choose the threadmap-
ping policy so that it benefits either process. We first focus on balanced gather-
ing because it is the more time-consuming phase. Assuming each CTA processes
TILE SIZE elements, the algorithmwill assign output total/T ILE SIZECTAs
to perform the gathering.To achieve the coupling, the samenumber ofCTAs should
be assigned to the redistribution, and each CTA should output TILE SIZE ele-
ments at the end of the redistribution process which are then fed into the gathering
process on the fly.

We use a different redistribution approach to fulfill these requirements. In the
coarse-grained partitioning step, we partition the merge path vertically rather



Load-Balanced Breadth-First Search on GPUs 443

Algorithm 3. Perfectly load-balanced BFS iteration

Input: inQ, outQ, inQ length in total, column-indices array C and row-offsets
array R

Output: Array dist
Function: MergePathPartition(range,dist, k) partitions the merge path of
the input range diagonally at a distance of dist, and returns the kth
independent range.

1 foreach v ∈ inQ in parallel do
2 (start, end) ← (R[v], R[v + 1])
3 offsets[v index] ← start
4 neighbor num ← end− start
5 (inQ[v index], out total) ← ExclusiveScan(neighbor num)

6 cta num ← (in total + out total)/TILE SIZE
7 for thread id ∈ [0, cta num− 1] in parallel do
8 coarse range[thread id] ←

MergePathPartition(whole input, T ILE SIZE, thread id)

9 for thread id ∈ [0, cta num ∗ CTA SIZE − 1] in parallel do
10 fine range ← MergePathPartition(coarse range[cta id],

T ILE SIZE/CTA SIZE, thread id%CTA SIZE)
11 shared array indices ← Expand(fine range)
12 foreach v index ∈ indices do /* strided */

13 gather loc ← n index− inQ[v index] + offsets[v index]
14 outQ[n index] ← gather loc

15 foreach loc ∈ outQ in parallel do
16 neighbor ← C[loc]
17 if StatusLookup(neighbor) = valid then scatter neighbor to inQ

18 foreach neighbor ∈ inQ in parallel do
19 update dist array

than diagonally and at a distance of TILE SIZE as illustrated in Fig. 5. In this
way, it is guaranteed that each CTA produces TILE SIZE outputs. We then
do a fine-grained partitioning and expansion within each CTA.

This work redistribution process is relatively inefficient and imbalanced, be-
cause a CTA does not know the number of inputs it will process a priori. For-
tunately, since the gathering process is the more time-consuming phase and is
perfectly load-balanced, this approach can achieve better overall performance
from the reduced I/O overhead.

4.3 Balanced Redistribution + Imbalanced Gathering

Another coupling strategy is to focus on balanced work redistribution. In this
way, (input total + output total)/T ILE SIZE CTAs are assigned to run the
redistribution process as in the first approach, the outputs are then fed into the
gathering process immediately. Since each CTA will take TILE SIZE elements



444 Z. Zhu, J. Li, and G. Li

as input but produce less than TILE SIZE outputs, subsequent gathering can
suffer from CTA imbalance: each CTA will gather 0 to TILE SIZE neighbors.

When output total is much larger than input total, the gathering load imbal-
ance is negligible, and this approach can be more efficient than previous strategy
because of the balanced redistribution process. However, if they are close, the
imbalance problem can make the parallelism drop down by half, compromising
the overall performance significantly.

4.4 Hybrid

The hybrid strategy combines the advantages of the imbalanced redistribution
+ balanced gathering and balanced redistribution + imbalanced gathering ap-
proaches.We define expand factor as the ratio of output total versus input total.
If expand factor is larger than a threshold f0 for a given BFS iteration, we in-
voke the balanced redistribution + imbalanced gathering approach because the
gathering imbalance will be small enough to be safely ignored, achieving the
best performance. Otherwise we invoke the imbalanced redistribution + balanced
gathering approach to guarantee the efficiency of the gathering process, which
dominates the overall performance.

By selecting an appropriate f0, this strategy can ensure that the neighbor
gathering phase is always load-balanced while the efficiency of the work redis-
tribution phase is maximized.

5 Experimental Results

In this section, we evaluate the performance of the proposed BFS algorithms.
Our algorithms are implemented using CUDA 5.5 [3], and all experiments are
run on a host machine with 4GB memory, an Intel 3.4 GHz Core i7 2600k CPU
and an NVIDIA Geforce GTX 580 GPU. For each graph, the BFS performance
is measured by the average traversal throughput (edges per second) across 100
randomly-sourced traversals.

5.1 Strategy Evaluation

We first compare different coupling strategies of work redistribution and neighbor
gathering. We use Random and R-MAT graphs generated with GTgraph [5], and
adjust the average degree d to see its impact on each strategy. Fig. 6 and Fig. 7
plot the traversal throughput for each graph and strategy. All the graphs have
2 million vertices while d ranges from 2 to 64, and we choose the threshold f0
to be 10 for the hybrid strategy. As anticipated, the balanced redistribution +
imbalanced gathering strategy excels at traversing graphs with large d because
the expand factor tends to be large for the BFS iterations. On the contrary,
the imbalanced redistribution + balanced gathering strategy performs better on
graphs with small d. The hybrid approach outperforms or is as good as the
others in all the tests.



Load-Balanced Breadth-First Search on GPUs 445

3.5

4

4.5

Perfect balance +

2

2.5

3

3.5
9
ed

ge
s/
se
c

global data movement

Imbalanced
redistribution +
balanced gathering

0.5

1

1.510
9

Balanced
redistribution +
imbalanced gathering

Hybrid

0
2 4 8 16 32 64

average dgree

Fig. 6. Comparison of different strategies
on random graphs

4

4.5

5

Perfect balance +

2

2.5

3

3.5

9
ed

ge
s/
se
c

global data movement

Imbalanced
redistribution +
balanced gathering

0.5

1

1.5

2

10
9

Balanced
redistribution +
imbalanced gathering

Hybrid

0
2 4 8 16 32 64

average dgree

Fig. 7. Comparison of different strategies
on R-MAT graphs

5.2 Comparison with Other Algorithms

To compare with the CPU implementation, we implement our own efficient se-
quential BFS according to the standard algorithm in [9], which has optimal
single-threaded performance. For the GPU implementation, we compare our ap-
proach to that from Merrill et al. [11] which is the current state of the art and
achieves the highest published performance for GPU BFS. Note that we compile
and run Merrills source code on the same platform under the same configuration
so the results are comparable.

Our benchmark suite incorporates twelve graphs listed in Table 1. In addition
to random and rmat, the rest are from the Graph500 Competition [2], the 10th
DIMACS Implementation Challenge [1] and the University of Florida Sparse
Matrix Collection [4].

The results are presented in Table 1. As we can see, our hybrid approach
performs very well compared to the CPU sequential BFS. For the majority of
the graphs, our approach provides traversal speedups of an order of magnitude,
and at the extreme, we achieve a 39x speedup for the random graph. We do not
have an available parallel CPU BFS implementation, but we can simply assume
a perfect 8x speedup for our 4-core/8-thread CPU, and our GPU approach still
outperforms this theoretical performance upper bound for almost all the tests.

The state-of-the-art GPU implementation [11] employs a hybrid CTA+warp+
scan strategy to do neighbor gathering. Through full load balance, our approach
outperforms theirs for most of the tests, and we obtain up to 1.42x speedup.
The last few tests also reveal the limitation of our approach. The advantage of
load balance comes at the price of additional preprocessing of the input vertices.
When the search depth is small, the number of vertices examined each iteration
is large enough to fully utilize the high throughput of GPU hardware, making
the preprocessing overhead negligible. However, when the search depth gets high,
the overhead of the work redistribution process and additional kernel launches
starts to become significant. As a result, the performance gain through load-
balanced gathering is outweighed by the preprocessing penalty and we observe
a slowdown for germany.osm and hugebubbles-00020 datasets. In practice, we
can choose to apply direct gathering for graphs with large diameters.



446 Z. Zhu, J. Li, and G. Li

Table 1. Traversal rates (109edges/sec) for different algorithms running on different
graphs

Name Description Vertices
(106)

Edges
(106)

Avg.
Search
Depth

Our hybrid
algorithm
(f0 = 10)

Sequential
BFS
(speedup)

Merrill’s
algorithm
(speedup)

random Uniform random 2.0 128.0 6 3.9 0.10 (39x) 3.0 (1.31x)

rmat R-MAT (A=0.45,
B=0.15, C=0.15)

2.0 128.0 6 4.7 0.16 (29x) 3.4 (1.40x)

kron g500-
logn20

Graph500 R-MAT
(A=0.57, B=0.19,
C=0.19)

1.0 100.7 7 4.5 0.20 (22x) 3.3 (1.36x)

hollywood-
2009

Hollywood movie
actor network

1.1 113.9 10 4.1 0.18 (23x) 3.1 (1.32x)

flickr 2005 crawl of
flickr.com

0.8 9.8 12 3.6 0.18 (20x) 3.2 (1.13x)

eu-2005 small web crawl of
.eu domain

0.9 32.3 14 4.3 0.47 (9.1x) 3.7 (1.16x)

wikipedia-
20070206

Links between
Wikipedia pages

3.6 45.0 20 2.6 0.069 (38x) 1.8 (1.42x)

FullChip Circuit simulation 3.0 26.6 38 3.1 0.26 (12x) 2.4 (1.29x)

audikw1 Automotive finite
element analysis

0.9 76.7 62 3.3 0.65 (5.1x) 3.2 (1.03x)

wb-edu Links between
*.edu web pages

9.8 57.2 143 2.9 0.16 (18x) 2.7 (1.07x)

germany.osm Germany road
network

11.5 24.7 5345 0.32 0.034 (9.4x) 0.38 (0.84x)

hugebubbles-
00020

Adaptive numerical
simulation mesh

21.2 63.6 6200 0.37 0.031 (12x) 0.48 (0.77x)

6 Conclusion

Load balance is a key factor in designing efficient algorithms for GPUs. We
have demonstrated a GPU BFS algorithm that leverages the unique wide SIMD
GPU architecture and achieves fully load-balanced neighbor gathering. We have
showed that our approach achieves very high performance on a broad range of
graphs, and outperforms current state-of-the-art implementation.

In order to exploit the nested and irregular parallelism on a BFS iteration, we
have introduced a work redistribution process to flatten the nested workloads. It
utilizes a parallel expansion to compute the gathering location of each neighbor
so the neighbor gathering process can visit the neighbors in a load-balanced way.
We have also explored the coupling possibilities of different phases, and proposed
a hybrid approach that yields the best overall performance.

Acknowledgements. We thank all the anonymous reviewers for their valuable
comments. This work is substantially supported by National Natural Science
Foundation of China under Grants No.61300045, and China Postdoctoral Science
Foundation under Grant No.2013M531696.



Load-Balanced Breadth-First Search on GPUs 447

References

1. 10th dimacs implementation challenge, http://www.cc.gatech.edu/dimacs10/
index.shtml

2. The graph 500 list, http://www.graph500.org/
3. Nvidia cuda, http://www.nvidia.com/cuda/
4. University of florida sparse matrix collection, http://www.cise.ufl.edu/

research/sparse/matrices/

5. Bader, D.A., Madduri, K.: Gtgraph: A synthetic graph generator suite, Atlanta,
GA (February 2006)

6. Deo, N., Sarkar, D.: Parallel algorithms for merging and sorting. Information Sci-
ences 56(1), 151–161 (1991)

7. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using
CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007)

8. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating cuda graph al-
gorithms at maximum warp. In: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, pp. 267–276. ACM (2011)

9. Leiserson, C.E., Rivest, R.L., Stein, C., Cormen, T.H.: Introduction to algorithms.
The MIT Press (2009)

10. Luo, L., Wong, M., Hwu, W.M.: An effective gpu implementation of breadth-first
search. In: Proceedings of the 47th Design Automation Conference, pp. 52–55.
ACM (2010)

11. Merrill, D., Garland, M., Grimshaw, A.: Scalable gpu graph traversal. In: ACM
SIGPLAN Notices, vol. 17, pp. 117–128. ACM (2012)

12. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on gpus. In: 2013 IEEE 27th International Symposium onParallel &
Distributed Processing (IPDPS), pp. 463–474. IEEE (2013)

13. Nguyen, H.: Gpu gems 3. Addison-Wesley Professional (2007)
14. Odeh, S., Green, O., Mwassi, Z., Shmueli, O., Birk, Y.: Merge path-parallel merging

made simple. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), pp. 1611–1618. IEEE (2012)

15. Shiloach, Y., Vishkin, U.: Finding the maximum, merging, and sorting in a parallel
computation model. Journal of Algorithms 2(1), 88–102 (1981)

16. Zhong, J., He, B.: Medusa: Simplified graph processing on gpus. IEEE Transactions
on Parallel and Distributed Systems 99, 1 (2013) (PrePrints)

http://www.cc.gatech.edu/dimacs10/index.shtml
http://www.cc.gatech.edu/dimacs10/index.shtml
http://www.graph500.org/
http://www.nvidia.com/cuda/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

	Load-Balanced Breadth-First Search on GPUs
	1 Introduction
	2 Background and Motivation
	2.1 Modern GPU Architecture
	2.2 Existing BFS Algorithms on GPUs
	2.3 Motivation of This Work

	3 Parallel Expansion
	3.1 The expand Operation
	3.2 Parallelization of expand

	4 Load-Balanced BFS
	4.1 Perfect Balance + Global Data Movement
	4.2 Imbalanced Redistribution + Balanced Gathering
	4.3 Balanced Redistribution + Imbalanced Gathering
	4.4 Hybrid

	5 Experimental Results
	5.1 Strategy Evaluation
	5.2 Comparison with Other Algorithms

	6 Conclusion
	References




