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Abstract. The group service allowing users with common attributes to
make new connections and share information has been a crucial service
in social networks. In order to determine which group is more suitable to
join, a stranger outside of the groups needs to collect profile information
of group members. When a stranger applies to join one group, each group
member also wants to learn more about the stranger to decide whether to
agree to the application. In addition, users’ profiles may contain private
information and they don’t want to disclose them to strangers. In this
paper, by utilizing private set intersection (PSI) and a semi-trusted third
party, we propose a group matching scheme which helps users to make
better decisions without revealing personal information. We provide se-
curity proof and performance evaluation on our scheme, and show that
our system is efficient and practical to be used in mobile social networks.
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1 Introduction

Social networks are changing our lifestyle and becoming an inseparable part of
our daily lives. For example, Twitter [1] which is a well-known micro-blogging
site enables users to share real-time information. The group service has been
frequently used in social networks and allowed strangers with similar profiles to
construct new relationships and share information. Generally, groups are con-
sisted of users with common attributes, such as educational backgrounds and
illness symptoms. In many situations, a group is only described by its classifi-
cation, several keywords and a short introduction. These features may not be
enough for users to decide which group is the most appropriate to join, especially
when a few groups have similar keywords and introductions. In order to choose a
suitable group to join, a stranger outside of the groups needs to collect profile in-
formation about each group member. In addition, attributes of users sometimes
contain sensitive and private information, thus they don’t want to disclose their
profiles or exact matching results to untrusted users or any third party. Such a
problem is referred to as group matching by Wang et al. in [2]. However, there
are two main problems in existing works for group matching problem.
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The first one is that only the stranger obtains the matching results while each
group member learns nothing. In most practical applications, when a stranger
who is an outsider of an existing group applies to join it, he just needs to simply
send the reasons for application to the manager of this group. Since the reasons
submitted by stranger may be incomplete or fake, it is inconvenient for the
group manager to determine whether to agree to the application. In addition,
sometimes other group members don’t fully trust the group manager and they
want to make their own decisions. In order to enable all group members to
participate in the decision process and make a better decision jointly, each group
member needs to learn more information about stranger’s profile.

Another problem is that existing systems rely mostly on exponential opera-
tions and have high computation cost, so they are not lightweight and practical
enough to be used in mobile social networks. The proliferation of networked
portable devices such as smart phones and PADs, enables people to use social
networking services anytime and anywhere. However, networked portable devices
have limited computational abilities, and we have to consider computation cost
in mobile social networks.

Our Contribution. In this paper, we focus on the above problems and propose
a novel scheme to realize group matching by utilizing private set intersection
(PSI) [3] and a semi-trusted third party. Our contributions can be summarized
as follows:

– Our scheme helps both stranger and each group member to make better de-
cisions. We take advantage of two kinds of matching information learnt by
the stranger and each group member respectively: the intersection set be-
tween their attribute sets, and the size of their intersection set. By collecting
different kinds of matching information, the stranger can make a better de-
cision when choosing a suitable group to join and each group member can
decide whether to agree to the stranger’s application.

– We limit the risk of privacy exposure and only necessary information of each
user’s profile is exchanged. Our system protects each participator’s private
attributes and exact matching information between two entities. We provide
thorough security analysis that our proposed scheme is secure under honest-
but-curious (HBC) model and against several certain active attacks.

– We utilize a semi-trusted third party to improve the computation efficiency
and our proposed scheme relies mostly on modular multiplication. We pro-
vide performance evaluation on our scheme. By comparison with an existing
work, we show that ours is much more lightweight and efficient in computa-
tion to be used in mobile social networks.

Organization. The remainder of this paper is organized as follows. In Section
2, we discuss the related works. In Section 3, we present the system model
and design goals. Section 4 describes the details of our scheme. We give the
thorough security proof in Section 5 and analyze the efficiency of our scheme by
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comparison with an existing work in Section 6. Finally, we briefly conclude this
paper in Section 7.

2 Related Work

Existing works related to our proposed scheme are mainly in the area of private
set intersection (PSI) first introduced by Freedmanet al. in [3]. Freedman et al.
base their protocol on oblivious polynomial evaluation and the protocol is single-
output, i.e., during the process, only one party learns the set intersection while
the other one doesn’t obtain any results. There have been other single-output
PSI protocols. Based on oblivious polynomial evaluation, Dachman-Soled et al.
[4] present an efficient two-party protocol which is robust in the presence of
malicious adversaries. In [5], Hazay and Lindell claim a different protocol based
on oblivious pseudo random functions and the proposed protocol is improved in
complexity by Jarecki and Liu [6]. Cristofaro and Tsudik [7] propose protocols
for plain and authorized private set intersection (PSI and APSI) and they base
their protocols on blind RSA signatures. In [8], Agrawal et al. adopt another
approach based on commutative encryption to realize private set intersection,
which is extended by Vaidya et al. [9] to multiparty setting.

Above single-output protocols only allow one user to obtain the results, while
in most situations, both of the two parties are desirable to learn the intersection
of their attribute sets. Several mutual PSI protocols have been proposed. Kissner
and Song exploit the first mutual PSI protocol in [10]. The proposed protocol
builds upon oblivious polynomial evaluation and enables several set operations
such as union, intersection, and element reduction operations. Camenisch and
Zaverucha [11] have applied certified sets to private set intersection problem
and ensured that all inputs are valid and bound to each protocol participant by
utilizing a trusted third party. In [12], Kim et al. claim a more efficient mutual
PSI scheme which is the first system with linear computational complexity in
semi-honest model. Recent work in [13], Dong et al. present the first fair mutual
PSI protocol by utilizing an offline semi-trusted third party arbiter which can
resolve disputes blindly without obtaining any sensitive information from users.
However, these mutual protocols can’t be utilized in group matching problem
directly. Users from the same group are familiar, and a group member may
exchange the intersection between him and stranger with other group members
to learn more about the stranger’s private attributes. In addition, above protocols
reveal the exact matching information which is undesirable in our work.

Based on private set intersection (PSI), there have been several practical sys-
tems designed for special purposes in social networks. The E-SmallTalker scheme
[14] exploited by Yang et al. adopts iterative bloom filter (IBF) to denote at-
tribute sets and enables a user to match people in physical proximity. Lu et al.
[15] present a secure symptoms matching protocol by utilizing a trusted author-
ity. The FindU scheme [16] proposed by Li et al. allows a user to find the one
who best matches with him in mobile social networks. The proposed protocol is
based on the FNP scheme [3], but they utilize secret sharing to calculate poly-
nomial evaluation without using additive homomorphic encryption. Recently in
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[2], Wang et al. introduce Gmatch that allows a user to find the most appropri-
ate group to join without disclosing each user’s private information and exact
matching results. In the Gmatch system, only the stranger outside of the groups
obtains the matching results while each group member learns nothing and the
proposed scheme relies mostly on exponentiation operations.

3 Problem Definition

3.1 System Model

Our system is a mobile social network consisting of a stranger S, a group P
and a semi-trusted third party C, and each user processes a networked portable
device such as smart phones and PADs (as illustrated in Fig. 1). The stranger
S, who launches the matching procedure, is an outsider of group P and has n
attributes in his profile which is denoted as As = {as,1, . . . , as,n}. The group P
has d group members P1, . . . , Pd and Pi has m attributes in his profile which is
denoted as Ai = {ai,1, . . . , ai,m}. For simplicity, we assume each group member
has the same size of attribute set, i.e., |Ai| = m, 1 ≤ i ≤ d. All attributes of
every user’s profile need to be kept private, and they are stored in local portable
devices by each user. The semi-trusted third party C is a computation center
with high computational ability to help users complete the matching process,
but it doesn’t access and collect each user’s attributes.

 

  

 

 
Group P

 

 
 

 

 

Fig. 1. In order to make better decisions, both stranger and each group member need
to learn detail matching information between them

During the matching procedure, stranger S wants to collect the intersection
set between him and each group member in order to decide whether group P is
suitable and appropriate to join. When S applies to join P , each group member
in P wishes to learn the size of intersection set between him and stranger S
to determine whether to agree to S’s application. In this paper, we cite the
definition of matched attribute and matching degree used in [2]. If an attribute
in a group member’s attribute set is also in stranger S’s attribute set, it is called
a matched attribute. Otherwise, it is an unmatched attribute. The total number
of group members, who has the attribute equal to the attribute as,j in stranger
S’s profile, is described as the matching degree Dj of as,j . The matching result
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learnt by stranger S can be denoted by the matching degree between S and P ,
which is described as D(P) = {D1, . . . , Dn}.

3.2 Adversary Model

In this paper, we only consider attacks from insiders who are participators of
the matching process. We assume all participators including stranger S, group
members P1, . . . , Pd and the third party C are honest-but-curious (HBC). That
means all parties will honestly follow the scheme, but may try to obtain more in-
formation than allowed. We will prove our protocol’s security under HBC model.
We also consider several certain active attacks and analyze how the proposed
scheme is secure against them. In addition, we assume that users from the same
group are familiar and they may exchange information to learn more about
stranger’s private profile, while stranger S or any group member can’t collude
with the semi-trusted third party C.

3.3 Design Goals

Security Goals

Definition 1 (Security Goal 1 (SG-1)): When the scheme ends, stranger S only
learns the matching degreeD(P) = {D1, . . . , Dn} from group P without knowing
any unmatched attribute of group members and the exact matching information,
i.e., each result’s corresponding group member and whether two results are from
the same user.
Definition 2 (Security Goal 2 (SG-2)): If stranger S doesn’t apply to join the
group P , each group member in P will learn nothing about S’s attributes, in-
cluding the intersection set between them and the size of it. If S applies to join,
each group member will only learn the size of the intersection set between him
and S without knowing what the exact matching attributes are.
Definition 3 (Security Goal 3 (SG-3)): In any phase of our scheme, the semi-
trusted third party C can’t learn more than what can be derived from the values
sent to him, his outputs and their corresponding group members.

Usability and Efficiency. For group matching in mobile social networks, it is
better to require as few human interactions as possible. In this paper, stranger S
only needs to determine which group is the most suitable and whether to join it,
while group members in P need to decide whether to accede to S’s application.
In addition, networked portable devices have limited computational abilities,
and our scheme should be lightweight and efficient enough in computation to be
used in mobile social networks.

4 A Novel Privacy-Preserving Group Matching Scheme

In this section, we propose a novel scheme designed for group matching in social
networks. The proposed scheme is based on the FNP protocol [3] and we take
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advantage of a semi-trusted third party C to help compute the polynomial eval-
uations without using additive homomorphic encryption. Our scheme consists
of four phases: Setup, Computation, Matching and Application. The Application
phase is only executed when stranger S applies to join the group P . We assume
that each party has a public/private key pair for secure communication and the
encryption algorithms are denoted as Encc, Encs, Enc1, . . . , Encd. At first, all
attributes in each user’s profile are encoded in Zp. Details of each phase are
listed as follows.

Setup. Stranger S first constructs a n-degree polynomial f(x), whose n roots
are all in his set of attributes and all his attributes are f(x)’s roots:

f(x) = (x− as,1)(x − as,2) . . . (x− as,n) =

n∑

k=0

αkx
k. (1)

After generating the polynomial f(x), stranger S generates {ri,j}1≤j≤m and
{τi,k}1≤k≤n randomly from Zp for each group member Pi ∈ P . Then he sends
the encrypted values {Encc(τi,1ri,jα1), . . . , Encc(τi,nri,jαn)}1≤j≤m to the semi-
trusted third party C and {Enci(ri,jα0)}1≤j≤m, {Enci(τi,k)}1≤k≤n to group
member Pi.

 Group member   
 

 

Fig. 2. Stranger S and group member Pi send the parameters used to calculate the
matching results to third party C

Upon receiving the values {Enci(ri,jα0)}1≤j≤m, {Enci(τi,k)}1≤k≤n and de-
crypting them with the private key, group member Pi generates {r′i,j}1≤j≤m

randomly from Zp. Then Pi sends {Encc(
r′i,ja

1
i,j

τi,1
), . . . , Encc(

r′i,ja
n
i,j

τi,n
)}1≤j≤m and

Encs(ri,jr
′
i,jα0 + ai,j)1≤j≤m to the semi-trusted third party C (as illustrated in

Fig. 2).

Computation. After decrypting the received values with his own private key,

the third party C now learns {τi,1ri,jα1, . . . , τi,nri,jαn} and { r′ija
1
ij

τi,1
, . . . ,

r′ija
n
ij

τi,n
}

for each attribute ai,j in Pi’s profile. C first calculates the intermediate result

zi,j =

n∑

k=1

(τi,kri,jαk)(
r′i,ja

k
i,j

τi,k
)

=ri,jr
′
i,jf(ai,j)− ri,jr

′
i,jα0,

(2)



342 J. Chi et al.

and encrypts it with stranger S’s public key. Then C packages the encrypted
intermediate result Encs(zi,j) and its corresponding Encs(ri,jr

′
i,jα0 + ai,j), and

sends all the packages {Encs(zi,j), Encs(ri,jr
′
i,jα0 + ai,j)}1≤j≤m to stranger S

in random order.

Matching. Upon receiving the packages from the semi-trusted third party C,
stranger S decrypts each Encs(zi,j) and Encs(rijr

′
ijα0 + aij) with his private

key and computes

Fi,j = zi,j + ri,jr
′
i,jα0 + ai,j . (3)

Because the value f(ai,j) is randomized by random numbers ri,j and r′i,j gen-
erated by S and Pi respectively in Setup phase, stranger S will get an at-
tribute in his profile or a random number from the result Fi,j . If value Fi,j

is equal to one attribute as,k in S’s profile, ai,j represents a matched attribute
which equals as,k. Otherwise, ai,j is an unmatched attribute. Obviously, if ai,j
is a matched attribute, it is a root of polynomial f(x), i.e., f(ai,j) = 0. Then
Fi,j = ri,jr

′
i,jf(ai,j) + ai,j = ai,j .

Since stranger S and group member Pi jointly randomize the value α0 by
generating ri,j and r′i,j respectively, and the results are sent by third party C
in random order, S won’t learn Fi,j ’s corresponding group member and whether
two results are from the same user. We also utilize blinding factors {τi,k}1≤k≤n to
blind the parameters to compute functions {∑n

k=1(ri,jαk)(r
′
i,ja

k
i,j)}1≤j≤m. Thus

the semi-trusted third party C can calculate the correct intermediate results
without learning more than what can be derived from the values sent to him,
his outputs and their corresponding group members. In our scheme, the value
Encs(ri,jr

′
i,jα0 + ai,j) can’t be sent to stranger S by Pi directly, otherwise S

won’t know its corresponding intermediate result.
After computing all results {Fi,j}1≤i≤d,1≤j≤m and comparing them with his

own attributes, S learns each attribute as,k’s matching degree Dk and decides
whether to join group P . If stranger S determines to join it, the Application
phase will be executed. Otherwise, the matching procedure is done.

Application. Stranger S first generates {ωi,j}1≤j≤m randomly from Zp for
each group member Pi. Then he calculates {ri,jα0 − ωi,j}1≤j≤m and sends
{Encc(ri,jα0−ωi,j), Enci(ωi,j)}1≤j≤m to the semi-trusted third party C. Group
member Pi sends {Encc(r

′
i,j)}1≤j≤m to C.

Upon receiving these values and decrypting them, third party C computes

z′i,j =
zi,j
r′i,j

+ ri,jα0 − ωi,j

=ri,jf(ai,j)− ωi,j,

(4)

and encrypts it with group member Pi’s public key. Then C packages the interme-
diate result Enci(z

′
i,j) and its corresponding Enci(ωi,j), and sends the packages

{Enci(z
′
i,j), Enci(ωi,j)}1≤j≤m to each Pi ∈ P in random order (as illustrated in

Fig. 3).
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 Group member   
 

 
 

Fig. 3.When stranger S applies to join group P , the Application phase will be executed

Group member P (i) decrypts the received values with his private key and
verifies

F ′
i,j =z′i,j + ωi,j

?
= 0. (5)

Because the values f(ai,j) is randomized by random number ri,j generated by S
in Setup phase, P (i) will get zero or a random number from the result F ′

i,j . If the
equation is valid, then ai,j is a matched attribute. Otherwise it’s an unmatched
attribute. This is because if ai,j is a matched attribute, it is a root of polyno-
mial f(x), i.e., f(ai,j) = 0. Since stranger S has sent ri,jα0 to group member
P (i) in the first phase, S should utilize ωi,j to re-randomize it in Application
phase. Otherwise, P (i) will learn which attribute the intermediate result z′i,j
correspondences to.

After calculating all the results F ′
i,j and comparing them with zero, P (i) will

learn the size of the intersection set between him and stranger S. Then P (i) can
decide whether to agree to S’s application.

5 Security Analysis

5.1 Security Under the HBC Model

Theorem 1. Assuming the semi-trusted third party C sends all the packages
{Encs(zi,j), Encs(ri,jr

′
i,jα0 + ai,j)}1≤j≤m to stranger S in random order and

parameters {r′i,j}1≤j≤m are random, we can achieve SG-1.
proof: In our scheme, sending all the packages in random order by C will blind
from S the correspondence between Pi and the intermediate results zi,j . In addi-
tion, f(ai,j) and α0 are randomized by ri,jr

′
i,j , so Fi,j is an attribute in S’s profile

or a random number, and S can learn nothing from ri,jr
′
i,jα0. Thus stranger S

just learns whether Fi,j represents a matched attribute and what the matching
attribute is, but can’t learn its corresponding group member, any unmatched
attributes or whether two computing results are from the same group member.
Note that, to realize SG-1, {ri,j}1≤j≤m don’t have to be random.

Theorem 2. Assuming the semi-trusted third party C sends all the packages
{Enci(z

′
i,j), Enci(ωi,j)}1≤j≤m to group member Pi in random order and param-

eters {ri,j}1≤j≤m are random, we can achieve SG-2.
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proof: In our protocol, if stranger S doesn’t apply to join group P , group mem-
bers in P won’t receive any responses from the semi-trusted third party C and
they learn nothing about the matching results and S’s profile.

If S applies to join group P , since the packages {Enci(z
′
i,j), Enci(ωi,j)}1≤j≤m

are sent to Pi by C in random order, and ri,jα0 is re-randomized by ωi,j , Pi won’t
learn the corresponding attribute of the intermediate result z′i,j . In addition, ωi,j

can’t be equal to ri,jα0 directly for Pi knowing the relationship between ri,jα0

and its corresponding attribute. The value f(ai,j) is randomized by ri,j , so F ′
i,j

is zero or a random number and group member Pi just learns weather F ′
i,j

represents a matched attribute or not. Since ri,j is generated by stranger S for
each attribute in group members’ profiles, group members can learn nothing
more than the matching results by exchanging information with each other.
However, if the size of the intersection set between S and Pi equals to the size of
Pi’s own attribute set, i.e., |As

⋂Ai| = |Ai|, Pi will learn that all his attributes
are in stranger S’s profile. Note that, to realize SG-2, {r′i,j}1≤j≤m don’t have to
be random.

Theorem 3. Assuming parameters r{i,j}1≤j≤m, {τi,k}1≤k≤n, {ωi,j}1≤j≤m are
generated randomly, we can achieve SG-3.
proof: In any phase of our protocol, since the inputs received by the semi-trusted
third party C are randomized, and some parameters used to calculate matching
results are encrypted, C can learn nothing more than what can be derived from
the values sent to him, his outputs and their corresponding group members. In
the Application phase, even though C knows the values r′i,j , it doesn’t effect the
security of our scheme.

5.2 Security Against Active Attacks

If Stranger S sets all coefficients {ri,jαk}0≤k≤n of polynomial ri,jf(x) zero,
the random numbers r′i,j in function Fi,j = ri,jr

′
i,jf(ai,j) + ai,j won’t work

and then Fi,j is equal to the attribute ai,j . This kind of active attacks is re-
ferred to as zero polynomial attacks [3]. In our scheme, group member Pi sends
Encs(ri,jr

′
i,jα0 + ai,j) to stranger S, so merely setting ri,jα0 zero, S can also

realize zero polynomial attacks. To prevent this type of attacks, upon receiving

the values ri,jα0 from stranger S, Pi should first test ri,jα0
?
= 0.

In order to increase the possibility of joining group P , a malicious stranger S
can use a large attribute set or launches the procedure many times to find out
as many matched attributes in group members’ profiles as possible. The former
attack can be prevented by limiting the size of all users’ attribute sets, the same
approach as in [16]. The second attack can be prevented by auditing the times
that stranger S runs the matching scheme to compute the intersection set with
the same group in a short time by the semi-trusted third party C.
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6 Performance Evaluation

In this section, we evaluate the performance of our scheme and compare it against
the Gmatch scheme without batch verification [2]. We test the two schemes on
the same hardware and OS, and our experimental environment is a 3.4GHz
system with the OpenSSL library. We use RSA protocol to encrypt data to be
transmitted and the length of the private/public key is 1024bits. In addition, we
assume |p| = 160bits.
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In experiments, we change the size of stranger S’s profile n, the size of group
member Pi’s profile m and the number of group members d respectively and
measure the total run time at stranger S, group member Pi and the semi-trusted
third party C. Since the Gmatch scheme doesn’t include a third party, Fig. 4(c),
Fig. 5(c) and Fig. 6(c) only show our system’s run time on C. As shown in Fig.
4(a), Fig. 5(a) and Fig. 6(a), we can see that, our scheme is more efficient than
the Gmatch scheme on S’s client. Especially in Fig. 6(a), when only changing
the number of group members d, the total run time of S increases linearly with
d in our scheme, while the Gmatch scheme increases exponentially. From Fig.
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4(b), Fig. 5(b) and Fig. 6(b), the run time at each group member is only linearly
affected by n and m, while the Gmatch scheme is affected by n, m and d. This
is because we don’t use ring signature and additive homomorphic encryption in
our scheme. Fig. 4(c), Fig. 5(c) and Fig. 6(c) show that the semi-trusted third
party C’s run time increase linearly with n, m and d. Although the total run
time at C is much larger than that at stranger S and group member Pi, it is
acceptable for users.

The performance evaluation of the two schemes show that in all settings our
scheme is much more efficient and faster than the Gmatch scheme, and it is prac-
tical and lightweight enough in computation to be used on networked portable
devices. That is because our scheme take advantage of the semi-trusted third
party C to help calculate the polynomial and send the results to stranger S
instead of using additive homomorphic encryption and ring signature. Our sys-
tem relies mostly on modular multiplication while the Gmatch scheme included
many exponentiation operations and bilinear operations. Considering the semi-
trusted third party utilized in our system is easy to access and can be provided
by service providers, the assumption of the existing of a third party is realizable
in social networks.

7 Conclusion

In this paper, we propose a novel protocol to realize group matching by utilizing
private set intersection (PSI) and a semi-trusted third party. During our scheme,
by collecting different kinds of matching information, the stranger outside of the
groups can make a better decision when choosing the most suitable group to
join, and each group member can decide whether to agree to the stranger’s
application. We provide the thorough security analysis on our scheme and prove
its security under honest-but-curious (HBC) model and against several certain
active attacks. By comparison with an existing work, we show our system is
practical and efficient in computation to be used in social networks.
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