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Abstract. In the field of data mining, classification is an important
aspect which has been studied widely. However, most of the existing
studies assumed the data for classification is complete, while in practice,
a lot of data with missing values exists. When dealing with these data,
deleting the incomplete instances will result in a reduction of available
information and filling in missing values may introduce skew and errors.
To avoid the above problems, it is of great importance to study how to
classify directly with incomplete data. In the paper, an information the-
ory based classification algorithm, ITCI, is proposed. ITCI calculates the
initial uncertainty of each class and attributes’ contribution to decrease
class uncertainty in the training stage and then, in the testing stage,
an instance is assigned to the class whose uncertainty is minimum after
all of the attributes are taken into consideration. Extended experiments
proved the effectiveness and feasibility of the proposed method.
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1 Introduction

Classification algorithms, as an important aspect of data mining, has been widely
studied and applied to many fields. However, previous studies often assumed the
available data is complete, thus did not take the missing values into account,
but in real life, however, incomplete data is ubiquitous[1], for example, in an
industrial test, part of the data may be lost because of mechanical or electronic
failure; in medical field, doctors may not get all the required data due to lack of
equipment or patients’ physical condition; in a social survey, some respondents
may refuse to provide part of information; for the lack of permission, database
query can not get all the data needed etc. Thus, it is of great theoretical and
practical importance to study how to classify directly with incomplete data.

The missing(incomplete) data mechanism can be divided into the follow-
ing three groups[2]: missing completely at random(MCAR), missing at ran-
dom(MAR), not missing at random(NMAR). MCAR occurs when the missing
of a variable is independent of itself and any other external influences; the miss-
ingness of MAR is independent of the missing variables but traceable from other
variables; NMAR happens when patterns of missingness is non-random and de-
pends on the missing variables, which is the most common situation in real life.
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Currently, the methods to deal with incomplete data in classification falls
mainly into three aspects. (1) Deleting the incomplete instances[3], this method
is simple, but it will lose the useful information contained in incomplete data.
(2) Using statistical and machine learning methods to fill in values most likely
to be[4][5][6], such as filling manually, filling with mean or median, regression
filling, KNN filling, filling based on neural networks etc. In general, filling man-
ually will brings small bias, but it is not feasible given a large dataset with
many missing values; filling by mean or median does not fully reflect the data
variability and ignores the association between attributes; regression filling as-
sumes a regression relationship exists among complete items and missing items,
which is often incorrect in practice; KNN filling needs to define a reasonable
similarity measure and has a relatively high computational complexity; filling
based on neural networks requires designing appropriate network architecture
for specific missing modes and it is too complex and cumbersome to apply. (3)
Training and classifying with incomplete data directly, such as those methods
based on EM[7], decision tree[8], fuzzy C-means[9], support vector machines[10],
Bayesian networks[11] and the nearest neighbor[12]. Those EM-based methods
require that the probability density function and missing attributes must be
given, besides, they are often complex to train and converge slowly; the ID3-
based approach treats the missing values as a special one different from known
ones, which does not fit the real world well and it is difficult to get optimum
due to the lack of a global search; fuzzy C-means and support vector machine
based methods need assumptions of missing data’s distribution, which is often
not available in practice, thus the application is limited; Bayesian networks based
methods require domain knowledge and dependencies among variables must be
known, otherwise, complex network structure will be produced, what’s more, the
network nodes will increase exponentially with the growth of variables, which
will result in high maintenance cost; as for nearest neighbor based method, when
data’s dimension is high, the sample space will still appears to be sparse even the
dataset is large and applying the method directly will result in poor performance.

Among the methods to classify directly with incomplete data, [13] found that
Naive Bayes methods are most insensitive to missingness, but they rely on apri-
ori probability density to make classification inferences, which results in a low
accurate. [14] proposed a method named RBC, which estimates incomplete data
by intervals. In this method, missingness mechanism is not required to meet
MAR assumption because all possibilities of the incomplete values are consid-
ered. Though it has better classification accuracy, the calculation is relatively
complicated. [15] proposed the NCC2 method, which has higher classification
accuracy, but it requires the missingness mechanism is declared and assumes
each attribute contributes to classification independently, however, when the as-
sumption is not met, classification accuracy decreases sharply. Other studies for
classification with incomplete data include rough set based methods[16][17], such
methods don’t require any assumptions of missingness mechanism, but they are
inefficient and have poor scalability.
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In this paper, an information theory based classification algorithm, ITCI,
is proposed for incomplete nominal data. The basic idea of the algorithm is
as follows. At first, an initial uncertainty is calculated for each class, then an
instance’s attributes are inspected one by one to reduce class uncertainty. When
all attributes are used, the instance is assigned to the class whose uncertainty
is minimum. During the training stage, ITCI estimates the initial uncertainty
with the help of the incomplete records, meanwhile, it calculates attributes’
attribution to decrease uncertainty and for missing attributes it gets expected
contribution. In the classification stage, expected contribution is used to estimate
the decrease of uncertainty for missing attributes. With these measures, ITCI
need not to estimate missing values explicitly, at the same time, it makes full
use of the information contained in incomplete instances. Extended experiments
show that the accuracy and stability of the proposed method are significantly
higher than RBC and NCC2, and the time complexity is comparable low.

The rest of the paper is organized as follows: Section 2 gives the related
concepts of information theory, their properties and application in classification.
Section 3 gives an information theory based classification algorithm, ITC, for
complete data. Section 4 extends the methods presented in section 3 to get an
algorithm, ITCI, for incomplete data. Section 5 presents the results and analysis
of experiments; Section 6 is the conclusion.

2 Basic Concepts and Problem Definition

2.1 Basic Concepts of Information Theory

Definition 1. (self-information) The self-information of a random event is de-
fined as the negative logarithm of the event’s probability, namely, if the probability
of event xi is p (xi), then its self-information is defined as:

I (xi) = −logp (xi) (1)

Definition 2. (conditional self-information) For any events xi and yj in a join
set XY , the conditional self-information of xi given yj is defined as:

I (xi|yj) = −logp (xi|yj) (2)

Definition 3. (mutual information) For setsX and Y of discrete random events,
the information xi acquired given yj is called mutual information, which is defined
as:

I (xi; yj) = log
p (xi|yj)
p (xi)

(3)

We can get from formula (3) that I (xi; yj) = log 1
p(xi)

− 1
p(xi|yj)

, and then get

I (xi; yj) = I (xi)− I (xi|yj) (4)

Formula(4) implies that mutual information equals the result of subtracting
conditional self-information from self-information, or in another way, mutual
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information is a measurement of decreased uncertainty, namely, mutual infor-
mation equals the result of prior uncertainty log 1

p(xi)
subtracting remaining un-

certainty log 1
p(xi|yj)

. Mutual information has the following properties:

(1) Reciprocity:
I (xi; yj) = I (yj ;xi) (5)

(2) When event xi and event yj are mutual independent, the mutual informa-
tion is zero, namely, I (xi; yj) = 0.

(3) Mutual information may be positive or negative. When the value is posi-
tive, it means the appearance of event yj will certainly contribute to the appear-
ance of event xi, on the contrary, it is disadvantageous.

(4) The mutual information between two events may not exceed the self-
information of either one.

I (xi; yj) ≤ I (xi) (6)

I (xi; yj) ≤ I (yj) (7)

Definition 4. (conditional mutual information) The conditional mutual infor-
mation of xi and yj given zk in join set XYZ is defined as:

I (xi; yj|zk) = log
p (xi|yjzk)
p (xi|zk) (8)

The mutual information of xi and yjzk is defined as:

I (xi; yjzk) = log
p (xi|yjzk)

p (xi)
(9)

I (xi; yjzk) = I (xi; yj) + I (xi; zk|yj) (10)

Formula(10) implies that given the appearance of a pair of events yjzk, the
information xi will get is I (xi; yjzk), which equals the information xi get from
the appearance of yj , add the information xi get from zk when yj is known.

The above four definitions are based on single event, similarly, they can be
extended to event sets. We leave them out due to the limitation of the space.

2.2 Use Information Theory to Solve Classification Problems

In classification problems, an instance’s feature can be represented by a n-
dimensional vector x = {x1, x2, x3, . . . , xn}. The classification task is to assign
a label in label set C = {C1, C2, . . . , CK} to each instance. Usually, the task in-
cludes two stages: classifier’s training and testing. Considering the testing stage,
for an instance x, we may assign any of the K labels to it and have some degree
of uncertainty at the same time. The self-information of classes, I(ck), can be
used to measure these initial uncertainty. Then attributes are taken into consid-
eration one by one, meanwhile, the uncertainty of the classes will change with
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the adding of attributes. When all attributes are considered, we can get the fi-
nal uncertainty of each class, namely I (ck|x1x2, . . . , xn), then the instance x is
assigned to the class whose uncertainty is minimum. As for the training stage,
we estimate self-information and conditional mutual information with the help
of training instances and they will be used as arguments of the final classifier.

3 ITC: Information Theory Based Classification for
Complete Data

Assume the input space X ⊆ Rn is a n-dimensional vector set and the output
space is class label set Y = {c1, c2, . . . , cK}. For each instance, classification
algorithms take x ∈ X as input and get y ∈ Y as output. The training set is
T = {(x(1), y(1)

)
,
(
x(2), y(2)

)
, . . . ,

(
x(N), y(N)

)}, which has N instances. Let X
be a random vector defined in input space X , Y be a random variable defined in
output space Y. ITC builds a classifier by learning the self-information I (ck) of
each class and the mutual information I (ck;x) (k = 1, 2, . . . ,K) between class
ck and feature vector x.

Considering the estimation of I(ck), we need to get the probability P (ck) of
class ck , which can be estimated by the following formula:

P (Y = ck) =
1

N

N∑

i=1

I
(
y(i) = ck

)
(11)

For I(ck;x), when x’s dimension is 1, we can get the value following formula(3)

and P (Y = ck|X = x) =
∑N

i=1 I
(
y(i) = ck, x

(i) = x
)
/
∑N

i=1 I
(
x(i) = x

)
is the

probability estimation. But when the dimension continues to grow, the number of
parameters will increase exponentially, which means it is not feasible to estimate
all of them efficiently. Let the number of different values for attribute xi is pi,
i = 1, 2, . . . , n, the number of possible values of Y is K, then the total count
of arguments is K

∏n
i=1 pi. Therefore, we take some approximation measures to

simplify the estimation described above.
Denote the mutual information between ck and feature vector x as I (ck;x) :

I (ck;x) = log
p (ck|x1, x2, . . . , xn)

p (ck)

= log[
p(ck|x1, x2, . . . , xn)

p(ck|x1, x2, . . . , xn−1)
× p(ck|x1, x2, . . . , xn−1)

p(ck)
]

= I(ck;xn|x1, x2, . . . , xn−1) + I(ck;x1, x2, . . . , xn−1)

(12)

Formula(12) implies that when the feature vector x is known, the decreased
uncertainty I(ck;x) equals the sum of I(ck;x1, x2, . . . , xn−1), which measures
the decreased uncertainty get from the former n − 1 dimensions, and the con-
ditional mutual information I(ck;xn|x1, x2, . . . , xn−1), which measures the de-
creased uncertainty get from xn when the former n − 1 dimensions are given.
Using formula(12) recursively, we can get:
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I(ck;x) = I(ck;x1) +

n∑

i=2

I (ck;xi|x1, x2, . . . , xi−1) (13)

From the definition formula I (ck;xi|x1, x2, . . . , xi−1) = log p(ck|x1,x2,...,xi)
p(ck|x1,x2,...,xi−1)

,

we can see the arguments also increased exponentially, here, we simplify it as
follows:

I (ck;xi|x1, x2, . . . , xi−1) ≈ I (ck;xi|xi−1) (14)

Formula (14) implies that when the former i−1 dimensions are given, the de-
creased uncertainty we get from xi is approximated by the decreased uncertainty
we get from xi when xi−1 is given.

Theoretically, if the mutual information is estimated according to formula(13),
the results will be sole no matter in which order the attributes are considered,
however, they will differ from each other if estimated following formula(14). In
fact, because of I (ck;xi|x1, x2, . . . , xi−1) ≤ I (ck;xi|xi−1), we should find an
optimal order to make the expectation of I(ck;x) minimum, which will enable
the bias as low as possible. Let |x1|, |x2|,. . . ,|xn| be the number of different
values of x1, x2, . . . , xn, among which we denote the maximum one as xmax, so
the complexity of enumeration and estimation is O(Kn!x2

maxn) and it will be
O(NKn!x2

maxn) if we estimate the expectation of I(ck;x) additionally. When
the feature vector’s dimension is high, it is not hard to see that the calculation
is costly, or even impossible, thus we proposed a heuristic attribute order.

Definition 5. (expected mutual information) The expected mutual information
between xi (whose value can take any one of xi1, xi2, . . . , xip) and class ck is
defined as:

E (ck;xi) =

p∑

r=1

p (xi = xir |ck) I (ck;xi = xir) (15)

Definition 6. (χ2 of attribute pair ) Assume xi and xj can take any value from
xi1, xi2, . . . , xip , xj1, xj2, . . . , xjq respectively and let nrs denote the number of
instances in class ck that satisfies xi = xir,xj = xjs(r=1,2,. . . , p, s=1,2,. . . , q),
then we define the χ2 value of attribute pair xi and xj as:

χ2 =

p∑

r=1

q∑

s=1

(nrs −Nprs)
2

Nprs
(16)

In the formula above, prs denotes the expected joint probability of xir and
xjs when they independent of each other, which can be estimated by prs =
1
N2

∑p
k=1 nks

∑q
k=1 nrk.

For a set of attributes, A = {x1, x2, . . . , xn} , we give a heuristic algorithm to
find the optimal order S for class ck as follows:

ATT ORDER select the attribute with maximum mutual information as the
first one for it can decrease the uncertainty largely. In the following process, it
selects the attribute which has the largest χ2 value with the last selected one, in
that this can make I(ck;xi|xi−1) closer to I(ck;xi|x1, x2, . . . , xi−1) than other
choices, so the total approximation error is small.
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Algorithm 1. ATT ORDER

Intput: A = {x1, x2, . . . , xn} is the attribute set to be ordered
Output: optimal attribute order S
1. Calculate the expected mutual information of ck and xi(i = 1, 2, . . . , n), which is

denoted as E(ck;xi), then, choose the attribute xj with the maximum value and
add it to S, set the last selected attribute xlast as xj .

2. For k = 2 to n−1, calculate the χ2 value between xlast and each of the left attribute
in A, choose the attribute xj with maximum value and add it to S, set xlast as xj .

3. Add the only attribute left in A to S.

On the basic of ATT ORDER, we can get an optimal attribute order from
the training data. Here, an algorithm named ITC is given for complete data as
follows. The algorithm is made up of two parts, ITC LEARN, which is used for
learning model arguments, and ITC TEST, which is used for applying the learnt
model to classify instances with unknown labels.

Algorithm 2. ITC LEARN

Intput: training data set T = (x(1), y(1)), . . . , (x(N), y(N))
Output: arguments I (ck) , I (ck;x1) , I (ck;xi|xi−1) (k = 1, 2, . . . ,K, i = 2, 3, . . . , n)

1. Determine the optimal attribute order S = x1, x2, . . . , xn by calling ATT ORDER;

2. Calculate I(ck) using formula(1);
3. Calculate I(ck; x1) using formula(3);
4. Calculate I(ck; xi|xi−1) using formula(8);
5. Return all the calculated arguments.

4 ITCI: Information Theory Based Classification
Algorithm for Incomplete Data

For incomplete data, we assume the missing mechanism to be MAR. The missing
items can be any of the attributes of X or class label Y . In the same way, one
or more attributes can be missing from feature vector X in the testing set.

We can get the algorithm, ITCI, based on ITC proposed in section 3. The main
improvements include two parts: the estimation of statistic used to calculate
model arguments; the estimation of decreased uncertainty of missing attribute.
Once the estimations are acquired, ITCI can be trained and tested in the same
way as ITC.
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Algorithm 3. ITC TEST

Intput: the feature vector x to be classified
Output: the predicted class label c of instance x
1. Calculate the initial uncertainty I(c1), I(c2), . . . , I(cK) if x is classified to

c1, c2, . . . , cK without considering any attribute;
2. For each class, calculate I(ck;x1), I(ck;xi|xi−1)(i = 2, 3, . . . , n) according to the

optimal attribute order S = x1, x2, . . . , xn;
3. Calculate the ultimate uncertainty by using formula: I(ck|x) = I(ck) - I(ck;x) for

each class. I(ck;x) can be estimated by I(ck;x) = I(ck; x1) +
∑n

i=2 I(ck;xi|xi−1);
4. Return the class whose I(ck|x) is minimum.

4.1 Estimations of Statistic

It can be seen from formulas (1)(3)and(8) that the key point of estimating model
arguments, which include I(ck), I(ck;xi), I(ck;xj |xi), is the estimation of fre-
quencies if we use frequency to approximate probability. The main estimation
includes f(ck), f(ckxir), f(ckxirxjs), f(xir), f(xirxjs), we denote the estimated
values as g(ck), g(ckxir), g(ckxirxjs), g(xir), g(xirxjs) respectively.

Let the non-empty values of xi to be xi1, xi2,. . . ,xip and the empty value to
be xip+1, then denote the number of instances with value xi1, xi2,. . . ,xip, xip+1

on xi as f(xi1), f(xi2),. . . , f(xip), f(xip+1). Due to the existence of missing
values, we intend to replace the first p frequency with g(xi1), g(xi2),. . . ,g(xip),
the estimation formula is as follows:

g(xir) = f(xir) + f(xip+1)× f(xir)/

p∑

u=1

f(xiu) (17)

Let the non-empty values of xj to be xj1, xj2,. . . , xjq and the empty value to
be xjq+1. Denote the frequency of instances whose value is xir on attribute xi

and is xjs on xj as f(xirxjs)(r = 1,2,. . . , p, s=1,2,. . . , q). Then the estimation
formula to assign in proportion is:

g(xirxjs) = f(xirxjs) + f(xirxjs)× f(xirxjq+1)/

q∑

v=1

f(xirxjv)+

f(xirxjs)× f(xip+1xjs)/

p∑

u=1

f(xiuxjs)+

f(xirxjs)× f(xip+1xjq+1)/

p∑

u=1

q∑

v=1

f(xiuxjv)

(18)

As for f(ck), f(ckxir), f(ckxirxjs), we estimate as follows. Assume G to be the
set consist of T ’s instances whose class label is not missing and Tc1,Tc2,. . . ,TcK

to be the sets get from partitioning G by class label. All the instances whose
class label is missing are assigned to TcK+1. Denote the number of instances in
Tci as |Tci|(i = 1,2,. . . , K, K+1). Then the frequency estimation of ck is:
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g(ck) = |Tck|+ |TcK+1| × |Tck|/
K∑

i=1

|Tci| (19)

The estimation of f(ckxir) is related to Tck and TcK+1. We treat all of the
instances’ class label of TcK+1 as ck and assign a weight as follows:

wk = |Tck|/
K∑

i=1

|Tci| (20)

The frequency estimation gck(ckxir) of Tck can be estimated following formula
(17), and the frequency of TcK+1 can be estimated as follows:

gcK+1(cK+1xir) = fcK+1(xir) + fck(xir)× fcK+1(xip+1)/

p∑

u=1

fck(xiu) (21)

The subscripts ck, cK+1 indicate that the frequency is estimated based on the
dataset Tck, TcK+1. Formula (21) implies that we get the frequency of instances
whose class label is missing based on the proportion of complete instances. Com-
bining(20)(21), we can get the final estimation of g(ckxir) like:

g(ckxir) = gck(ckxir) + wk · gcK+1(cK+1xir) (22)

In the same way, the estimation of f(ckxirxjs) also contains two parts, we
can get gck(ckxirxjs) following formula(18) from dataset Tck and get the weight
wk following formula(20), and then get the estimation gcK+1(cK+1xirxjs) from
dataset TcK+1 in a similar way as formula(18), but the weight is acquired from
complete instances. Finally, g(cK+1xirxjs) can be estimated like:

g(ckxirxjs) = gck(ckxirxjs) + wk · gcK+1(cK+1xirxjs) (23)

4.2 The Arguments Estimation for Missing Attributes

Due to the existence of missing attribute, the arguments we need to estimate also
include I(ck;xip+1), I(ck;xjq+1|xir), I(ck;xjs|xip+1), I(ck;xjq+1|xip+1). Here,
we use the expected mutual information of all known attribute pairs as the
estimations.

I(ck;xip+1) =

p∑

u=1

p(xiu|ck)I(ck;xiu) (24)

I(ck;xjq+1|xir) =

q∑

v=1

p(xjv |ckxir) (25)

I(ck;xjs|xip+1) =

p∑

u=1

p(xiu|ckxjs)I(ck;xjs|xiu) (26)

I(ck;xjq+1|xip+1) =

q∑

u=1

p∑

v=1

p(xiuxjv |ck)I(ck;xjv|xiu) (27)
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I(ck;xir), I(ck;xjs|xir) can be acquired based on the estimations given in
section 4.1 and formula(1)(3)(8). The conditional probabilities p(xir|ck) can be
estimated by the frequency of the instances whose value is xir on attribute xi in
class ck. Other conditional probabilities can be estimated in a same way.

5 Experiment and Analysis

In order to evaluate the effectiveness of the algorithm, we did experiments on
12 datasets.The datasets are downloaded from the UC Irvine Machine Learn-
ing Repository and their basic information is given in table 1. Notice that all
datasets are with missing values, among them, those whose names ended with 5
are acquired by randomly deleting 5% attributes from complete instances, oth-
ers are incomplete initially. For continuous attributes, we discrete them in the
preprocessing stage. All algorithms are implemented with java and run on a PC
with 2.2GHZ cpu, 2GB memory and the operating system is Windows XP.

Table 1. The experimental datasets with missing values

dataset instance number class number attribute number

breast cancer 286 2 9

credit 690 2 15

cylinder 512 2 39

colic 368 2 22

mushroom 5 8124 2 22

wbdc 5 569 2 30

vote 435 2 16

crx 5 690 2 15

car 5 1728 4 6

nursery 5 12960 5 8

balance 5 625 3 4

vehicle 5 846 4 18

Table 2 shows the accuracy and standard deviation of the classifiers. In our
experiments, the proposed algorithm ITCI and two classical classification algo-
rithms dealing with incomplete data named RBC, NCC2 are compared. All the
results are got from 10 times 10 fold cross-validation.

(1) We can see that the only dataset on which the accuracy of ITCI is lower
than RBC is balance 5 and the difference is 2.90%. While on other 11 datasets,
the accuracy is significantly higher, especially on vehicle 5 which exceeded more
than 13.09%. Comparing ITCI and NCC2, we find that ITCI is lower on datasets
credit and balance 5, while outstands significantly on the left 10. Especially on
vehicle 5, it increased by 10.03%. For dataset balance 5, careful analysis found
that the number of the three classes take proportions of 46.08%, 7.84%, 46.08%
respectively. As the proportion of class 2 is too small, the initial uncertainty is
relatively high, what’s more, the number of attributes is too small to decrease
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uncertainty during the classification process, so instances of class 2 are easily mis-
classified and then the final accuracy is affected. In fact, attributes of balance 5
are numerical and the class label is determined by the difference of the product
of the first two attributes and the product of the last two attributes.While in
ITCI, we assumed the attribute is nominal, so it is this inconsistency led to a
low classification accuracy.

(2) By comparing the standard deviation of ITCI, RBC and NCC2,we find
that ITCI is much better except on datasets nursery 5 and balance 5. By An-
alyzing dataset nursery 5, we find it also has the problem of imbalance classes,
which leads to a large deviation of the initial uncertainty, thus the standard
deviation is relatively high. But on the left 10 datasets, the standard deviation
is small than or equal to the latter two.

Table 2. The comparison of classification accuracy and standard deviation

dataset RBC NCC2 ITCI

breast cancer 72.70 ± 7.39 73.72 ± 7.71 78.12 ± 6.24

credit 86.49 ± 3.74 87.09 ± 3.80 86.57 ± 2.56

cylinder 76.09 ± 5.68 75.37 ± 10.28 81.49 ± 7.57

colic 79.59 ± 5.87 80.32 ± 5.69 83.25 ± 3.07

mushroom 5 95.65 ± 0.71 99.18 ± 0.32 99.65 ± 0.13

wbdc 5 95.38 ± 2.71 96.09 ± 2.50 96.41 ± 1.29

vote 90.16 ± 4.23 90.33 ± 4.14 94.42 ± 1.68

crx 5 85.22 ± 4.25 86.09 ± 4.23 86.68 ± 2.01

car 5 83.87 ± 2.04 85.38 ± 2.05 90.36 ± 1.63

nursery 5 87.75 ± 0.86 87.85 ± 0.85 88.59 ± 2.98

balance 5 89.62 ± 1.87 92.82 ± 2.56 86.72 ± 3.91

vehicle 5 62.83 ± 4.45 65.89 ± 4.57 75.92 ± 4.49

(3) By comparing the total time consumption(Details are not presented due to
space limitation), we find NCC2 has the highest efficiency, RBC has the middle
and ITCI has the lowest. But we also notice the total running time of ITCI for 10
times 10 fold cross-validation is 19.547s on nursery 5 which has 12960 instances.
On average, an experiment takes only 0.195s, which implies the efficiency is
still relatively high. In fact, ITCI can get all the arguments needed by scanning
datasets only once, that means the complexity is not high at all.

Combining the above three comparison, we can draw the conclusion that the
proposed algorithm, ITCI, is more accurate and stable than RBC and NCC2.
Although the efficiency of ITCI is lower than the latter two, the running time
and complexity is still relatively low, so it is useful in practice.

6 Conclusion

In the paper, an information theory based classification algorithm for incomplete
data, ITCI, was proposed. ITCI treats classification as a process of decreasing
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uncertainty, it calculates classes’ initial uncertainty at first, then attributes are
inspected one by one to decrease the uncertainty, and then an instance is assigned
to the class whose uncertainty is minimum. In the training stage, ITCI weights
frequencies by proportion, which makes full use of the information contained in
incomplete instances. What’s more, ITCI estimates the decreased uncertainty
of missing attributes by expected mutual information. Experiments show that
ITCI is more accurate and stable than existing ones and the time complexity is
low, thus it is considered to be simple and practical. Our future work is to study
classification with incomplete data for continuous attributes.
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