
Indexing Uncertain Data for Supporting Range Queries�

Rui Zhu, Bin Wang, and Guoren Wang

College of Information Science and Engineering, Northeastern University, China
neuruizhu@gmail.com, {binwang,wanggr}@ise.neu.edu.cn

Abstract. Probabilistic range query is a typical and a fundamental problem in
probabilistic DBMS. Although the existing solutions provide a good performance,
there are some shortages that are needed to be overcomed. In this paper, we firstly
propose a novel structure called MRST to approximately capture the probabil-
ity density function of uncertain object. Through considering the gradient of the
probability density function, MRST could provide uncertain object with strong
pruning power and consume fewer space cost. Based on characters of MRST,
we also design an efficient algorithm to access MRST. We propose a novel index
named R-MRST to efficiently support range query on multidimensional uncertain
data. Its has a strong pruning power. At the same time, it has a lower cost both
in space and dynamic update. Theoretical analysis and extensive experimental
results demonstrate the effectiveness of the proposed algorithms.

1 Introduction

Recently, many emerging applications over uncertain data are attracting a wide atten-
tion of researchers [3]. The causes of the uncertainty are greatly different in various
applications. For example, in a habitat monitoring system, due to the impreciseness of
sensing devices [5], the data obtained are often noisy. As another example, in moving
objects tracking [6], the location information of objects collected by a GPS system may
not be exact due to the delay on data updating. Among a large number of queries, range
query is the most fundamental and important operation in managing uncertain data [1].

A probabilistic range query is to find out the objects that appear in the query region
with the probability at least θ(the probabilistic threshold of the query). Since such a
computation involves the expensive and complex integral [4] [2], the filter-refinement
is preferable. In the filtering phase, the probabilistic objects, which must(or not) be
the query results, are quickly filtered without proceeding the complex integral. For the
objects that cannot be filtered, in the refinement phase, the integral has to be done to
verify the answers. Thus, the key of optimizing a prob-range query is to provide, as
tight as possible, a bound for flittering with a small cost.

Several indexes have been proposed to answer the queries on uncertain data. The
key idea is pre-computing the summary [8] of each object’s PDF (short for probabil-
ity density function), augmenting existing index techniques to organize summary, and
� The work is partially supported by the National Basic Research Program of China (973 Pro-

gram) (No. 2012CB316201,2011CB302200-G), the National Natural Science Foundation of
China (Nos. 61322208, 61272178, 61129002), the Doctoral Fund of Ministry of Education of
China (No. 20110042110028), and National High Technology Research and Development 863
Program of China (GrantNo.2012AA011004).

F. Li et al. (Eds.): WAIM 2014, LNCS 8485, pp. 72–83, 2014.
c© Springer International Publishing Switzerland 2014

Indexing Uncertain Data for Supporting Range Queries 73

then using the summary for filtering.[8]. One of the most popular index named U-tree
employs the PCR(short for probabilistically constrained region) technique to summary
the PDF of the uncertain object. However, PCR could not provide the uncertain object
with a strong pruning/validating power, and the dynamic update cost of U-Tree is high
(detailed in Section2).

Another two popular indexes UI-tree [7] and UD-tree [8] employ the partition tech-
nique to summary the PDF of uncertain object. Using the partition technique, the sum-
mary of an object could provide it with a stronger pruning/validating ability than the
PCR-based [4] summary. However, it still has room for improving. The partition does
not fully consider the gradient of PDF. And they both consume too much space cost
(e.g., given a 62K data, the index size is 20M).

Contributions: In this paper we study the problem of answering prob-range queries
on uncertain data. The contributions are as follows:

Firstly, we propose a novel summary called MRST(multi-resolution summary tree)
to approximately capture the PDF of uncertain object. The MRST fully considers the
gradient of PDF and more effectively captures an object’s PDF. It has a more powerful
filtering ability and consumes lower space cost. We propose a novel algorithm to access
the MRST. Through using the key idea of greedy algorithm, this algorithm could reduce
the computational cost as much as possible.

Secondly, we propose a new index called R-MRST to organize the summary of ob-
jects. R-MRST augments the R-tree technique. The filtering ability of R-MRST’s node
is as strong as that of U-Tree, but it has the lower cost both in space and dynamic update.

The rest of this paper is organized as follows: Section 2 gives related work and the
problem definition. Section 3 proposes the MRST. Section 4 proposes R-MRST that is
used to effectively indexing uncertain data. Section 5 evaluates the proposed methods
with extensive experiments. Section 6 is the conclusion and the future work.

2 Related Work and Problem Definition

In Section 2.1, we review the existing indexing approaches. In Section 2.2 we formally
define the problem of probabilistic range query on uncertain data. Table 1 summaries
the mathematical notations used in the paper.

2.1 Related Work

In recent years, many effective indexes have been proposed to answer prob-range query
on the uncertain data. The PCR-based index named U-Tree (and U-catalog-Tree) is
proposed by Tao et al [4]. The problem of U-Tree is that the filter ability of PCR is not
strong, and the dynamic update cost is high. Given a set of objects O, U-Tree constructs
a group of PCRs for every object, and employs the R-tree technique for organizing
them. For simplicity, we introduce U-Tree in the 2-dimension space. As is depicted in
Fig 1(a), given an object o and a probability threshold θ(0 < θ < 0.5)(eg.0.2), o.PCR(θ)
is constructed as follows: 2 lines in each dimension are computed. In the horizontal di-
mension, o has the probability θ to occur on the left(right) side of line l1(l2). In the
vertical dimension, l3(l4) is computed in the similar way with l1(l2). o.PCR(0.2) is the

74 R. Zhu, B. Wang, and G. Wang

Table 1. The Summary of Notations

Notation definition
o probabilistic object

o.pdf(x) probability density function of o
or probability region of o
qr the search region of the query
qp the probability threshold of the query
θ probability threshold

o(i) the subregion i of o
PBD(o, i) probability bound difference of o(i)
app(o, i) the likelihood of o falling in o(i)

app(o, q) the likelihood of o falling in qr
app(q, i) the likelihood of o falling in qr ∩ o(i)

lb(o, i)(ub(o, i)) the maximal(minimal) probability density in o(i)

S(o, i) the area of o(i)
ZS(o, i) the blank(and zero-pdf) area of o(i).MBR

o(i).MBR the MBR bounding o(i)

S(q, i) the area of qr ∩ o(i).MBR

rectangle bound by these four lines. Given a prob-query q with qp ≤ θ(qp denotes the
threshold of q), o.PCR(0.2) is used for pruning/validating if qp ≥ θ. As is depicted
in Fig 1(a), q1, q2, q3 and q4, we assume that their query threshold are all 0.2. Given
q1, o could be pruned because o.PCR(0.2) does not intersect with qr(short for the
query region). On the other hand, given q2, o could be validated because qr completely
contains the part of the left, upper, down border of o.MBR and l3. However, the prun-
ing/validating ability of PCR is not powerful if qr overlaps with an objects but can not
contain d-1 dimension planes of an object in a d-dimension space. For example, o obeys
uniform distribution. Obviously, o is the query result of q3. o is not the query result of
q4. However, they can not prune(or validate) o because no filter pruning can be used to
prune/validate them. As another problem, the dynamic update cost of U-tree is high. In
Fig 1(b), because every object uses a group of PCR to summary its PDF, the node of
U-tree also has to use a group of MBRs for bounding these PCRs. Obviously, the cost
of maintaining these boundaries is much higher than that of R-Tree once the dynamic
update happens.

Zhang et al proposed UI-Tree(and UD-tree) for indexing uncertain objects [7]. The
filtering ability of them are stronger than that of U-Tree. However, the space cost of
them are all high. To construct the summary of each object’s PDF, the key idea of UI-
Tree is partitioning the uncertain region of every object, pre-computing the appearance
probability of the partitioned sub-region, and using R-tree technique to organize these
sub-regions. Given a prob-range query, UI-tree retrieves the sub-regions that overlap
with the query region, finds the corresponding objects, and then computes the lower and
upper bounds of app(o, q)(short for the appearance probability that o lies in the query
region). Specifically, given an object, if a subregion o(i) is contained in qr, app(o, i)
(short for the appearance probability that o lies in o(i)) contributes to both lower and
upper bound of app(o, q). Similarly, if a subregion o(j) overlaps with qr, app(o, j)

Indexing Uncertain Data for Supporting Range Queries 75

l3 l4

q1

l1

l2

q2

q3

q4

o.mbr

e.mbr(0.5)

e.mbr()

e.mbr

o

(a) (b)

Fig. 1. Answering Prob-range Queries Using U-tree

contributes to the upper bound of app(o, q). Then o may be validated (pruned) based
on the lower (upper) bound of app(o, q). Although UI-Tree has the stronger pruning
ability than U-Tree, its space cost is too high. In the other hand, the partition do not
reflect the PDF’s gradient, and the filtering algorithm does not consider the intersection
area between the query region and the subregions.

2.2 Problem Definition

Given a multidimensional probabilistic object o in the d-dimension space, it is described
either continuously or discretely. In the continuous case, an object has two attributes:
or and o.pdf(x). The or is a d-dimension uncertainty region, where o may appear at
any locations with certain probabilities. The o.pdf(x) is the probability of o appearing
at location x. In the discrete case, o is represented by a set of sampled points x1, x2,. .
.,xm, and o occurs at location xi with probability xi.p. Given a query region qr, we use
app(o,q) to represent the likelihood of o falling in the query region qr. app(o,q) is also
calculated by two cases. In the continuous case:

app(o, q) =

∫
or∩qro.pdf(x)dx (1)

where or ∩ qr denotes the intersection of or and qr, and o is a result if papp(o,q)≥θ
(query probability threshold). In the discrete case:

app(o, q) =

n2∑
i=1

o.pdf(xi)/

n1∑
i=1

o.pdf(xi) (2)

where n1 is amount of the sampled points in or, and n2 is the amount of the sampled
points falling into or ∩ qr.

Definition 1. (Probabilistic Range Query). Given a set of probabilistic objects O and
a range query q, the probabilistic range query retrieves all probabilistic objects o ∈ O
with app(o, q) ≥ θ, where θ is the probabilistic threshold and 0≤ θ ≤1.

76 R. Zhu, B. Wang, and G. Wang

3 Effectively Summarizing Uncertain Data

In this section, we propose a novel summary called MRST(multi-resolution summary
tree) to capture the PDF of uncertain data. It provides uncertain data with strong prun-
ing/valiating ability through considering the gradient of PDF. At the same time, MRST
consumes less space cost than the state of art approaches. In the following part, we dis-
cuss how to construct and access MRST respectively. In the last part of this section, we
employ the bit-vector technique to both reduce the space cost and computational cost.

3.1 A Tight Probabilistic Bound For Filtering

In this section, we introduce how to provide the object with a tight bound. It is the guide
of the summary construction.

We firstly discuss how to provide each sub-region o(i) with a tight bound. Given
an object o, a sub-region o(i) and a query q, if qr overlaps with o(i).MBR, Equa-
tion 3 and Equation 4 show the probabilistic lower-bound and upper-bound of o lying
in or ∩ qr respectively. Obviously, by fully considering the intersection area between
o(i).MBR and qr, even if our partition is as the same as that of UD-Tree and UI-Tree,
the probabilistic bound proposed in this paper is tighter.

lbapp(q, i) = lb(o, i)× (max(0, S(q, i)− ZS(o, i))) (3)

ubapp(q, i) = min(ub(o, i)× S(q, i), app(o, i)) (4)

where app(o, i) represents the likelihood of o falling in o(i). The lb(o, i)(ub(o, i))
denotes the maximal(minimal) probability density in o(i). ZS(o, i) represents the blank
(and zero-pdf) area of o(i). lbapp(o, i) (ubapp(o, i)) denotes the lower-bound (or upper-
bound) of the probability o lying in qr ∩ o(i).

Property 1. Given an object o and a query q, when qr overlaps with o’s subregion⋃i=n1

i=1 o(i), the lbapp(o, q) =
∑i=n1

i=1 lbapp(q, i) and ubapp(o, q) is
∑i=n1

i=1 ubapp(q, i).

lbapp(o, q)(ubapp(o, q)) denotes the lower-bound(upper-bound) of the probability o
lying in qr. For each object o, ubapp(o, q)-lbapp(o, q) is to evaluate whether the bound
is tight enough. According to Equation 3, Equation 4 and Property 1, the following
conditions should be satisfied for the tighter bound: (i) ub(q, i) − lb(q, i) should be
relatively small; (ii) the amount of subregions should be relatively small.

3.2 Effective Summary Construction Using Multi-Resolution Technique

In this section, we employ the multi-resolution technique to construct the summary
(called MRST). The MRST could provide the uncertain object with a more effective
partition and a tighter probabilistic bound. Now, we formally define the PBD(short for
probability bound difference) which is used as the criterion of construction.

Definition 2. (PBD). Given a sub-region o(i) of an object o, PBD(o, i) = (ub(o, i) −
lb(o, i))×S(o, i).

Indexing Uncertain Data for Supporting Range Queries 77

Given an object o, its corresponding MRST is constructed in the following two steps:
they are spilt and shrink. The split is to partition the subregions where the probability
density changes dramatically. The procedure is that we recursively partition the object
region or until the PBD of each sub-region is less than λ. And then, we use a quad-tree
to temporarily organize this split result. After spilt, the probability density in each sub-
region o(i) changes smoothly, and ub(o, i)− lb(o, i) may be small enough. Obviously,
the bound provided by MRST is tighter. For example, in Fig 2(a), the shadow region is
the object region or bounded by a MBR, and the blank region may be seem as the sub-
region of or with a zero-pdf. Fig 2(g) is designed to show the PBD of each subregion.
According to Fig 2(g), because the PBD(o,A) and PBD(o, C) are less than λ(=0.1
in this section), we stop splitting them. Because PBD(o,B) and PBD(o,D) are more
than λ, we subdivide them into four parts respectively. The Fig 2(b) is the result of spilt,
and Fig 2(c) shows the corresponding quad-tree.

After the spilt, the shrink is done to merge the subregions where the probability den-
sity of them are roughly the same. Given two subregions o(i), o(j) of o, they are merged
if PBD(o,i+ j)≤ λ. We access the quad-tree in the post-order. We firstly merge the leaf
nodes within the same subtree. Then, we merge the leaf nodes among different subtrees.
Specifically, in each subtree, the leaf node with the minimal app(i,o) is selected as the
candidate node(eg,. d1, b1, A and C). Given two candidate node u and v from differ-
ent nodes, if PBD(o,u + v)≤ λ, they are merged. According to Fig 2(g), b1, because
PBD(o,b1+b2+b4) ≤ λ,b1, b2 and b4 can be merged. The Fig 2(d) shows the result of
merging the nodes from the same subtree, where b1 and C are merged. The Fig 2(f) is
the finally MRST .

After constructing the MRST of an object, an interesting result is that if the proba-
bility density of a sub-region is dramatically changing, it has a fine partition; otherwise,
it has a coarse partition. By this property, it guarantees that the MRST could more
effectively reflect the gradients of the PDF, and the amount of subregions is relatively
small(shown in experiment). In addition, because the PBD(o, i) of each subregion o(i)
is also relatively small, MRST could provide the object with a tight bound. We could
build a cost model to find the optimal λ that need to consider both the filtering ability
and I/O cost. A similar method was proposed in [8]. Due to the limitation of space, we
do not discuss it.

3.3 Accessing the Summary of Uncertain Data

In this section, we propose Algorithm 1 to efficiently access the summary of uncertain
data. Algorithm 1 employs the key idea of greedy algorithm. The Algorithm 1 uses a
field called d(q, i) to determine the accessing order of the nodes in MRST so as to early
terminating the accessing of MRST as much as possible.

d(i, q) = min(u(i, o)× S(q, i), app(o, i))− lb(i, o)× (max(0, S(q, i)− ZS(o, i)))
(5)

Given a query q, an object o and a subregion o(i), if q.r overlaps with o.MBR,
we access the MRST of o to check whether o is a result of q. The d(q, i) is com-
puted through Equation 5. Obviously, the larger the d(q, i) is, the greater it contributes

78 R. Zhu, B. Wang, and G. Wang

Fig. 2. Constructing MRST

to ubapp(o)-lbapp(o), and the corresponding o(i) should be prior accessed. Compared
with the traditional accessing method such as preorder traversal and inorder traversal,
introducing this field to control the nodes accessing order is more efficiently to compute
the bound.

As shown in Algorithm 1, we firstly access the root of MRST, compute lbapp(o)
and ubapp(o) according to Equation 3 and Equation 4. If o can not be pruned(or vali-
dated), we initialize the array L(line 2-6). After initializing L, the following things are
repeatedly done to compute the probabilistic bound. Firstly, we find the node e whose
corresponding d(i, q) is maximal in L. Secondly, based on e, we tighten the bound: (i)
eliminate the contribution of ei to ubapp(o) and lbapp(o) (line 8 to 10); (ii) access every
children of ei to compute the new bound according to by Equation 3 and Equation 4,and
property 1. Thirdly, if o is not still filtered, we update L: we insert the children eij of
ei into L, when eij satisfies the conditions that (i) eij also has children; (ii) the corre-
sponding subregion of eij overlaps with qr.

After accessing the MRST of an object, o is validated if the lower-bound of app(o, q)
is more than qp. Also, o is pruned if the upper-bound of app(o, q) is less than qp. If o
can not be pruned/validated, we have to use the integral to check whether o is the result.

3.4 Efficient Summary Storage

Now, we discuss how to efficiently store the MRST. The MRST stores three types of
information to capture the PDF of a given object. Given an object o and a subregion
o(i), they are the probabilistic information (eg,.app(o, i), lb(o, i) and ub(o, i)), location
information, blank area information, and the hierarchical relationship between parent
and its children. Because too many information has to be stored, we employ the bit
vector to compress MRST as much as possible.

Firstly, we use a m-bits vector to represent the probabilistic information, and its
domain is 2m. As the tradeoff between the degree of accuracy and the space, given an
object o and a sub-region o(i), we use 6 bits to express app(o, i), where the domain is
0 to 63. app(o, i) = 0.2, it is expressed by �0.2 × 63� =12(001100). We use 4bit to

Indexing Uncertain Data for Supporting Range Queries 79

express lb(o, i)(also ub(o, i)), where the domain is 0 to 15. Secondly, we use a n-bits
bit vector to express o(i)’s location information.

Specifically, given an object o, we use a MBR to bound it. Next, we could use a “vir-
tual grid” with a 2n×2n resolution to partition the MBR. Lastly, the “virtual coordinate”
expressed by bit vector is used to express o(i) ’s location information. For example, us-
ing a 7-bits vector, the resolution of the grid is 128× 128. The left-bottom(right-upper)
coordinates are described by the cell Id. As shown in Fig 2, the “virtual coordinate” of
node d1 is expressed by (64,111) and (80,127). The area information depends on the
resolution of the “virtual grid”.

Algorithm 1. Accessing MRST

Input: MRST, o, probabilistic range query, q, Node e
1 ; Output: lower-bound, lb; upper-bound, ub
2 ; ubapp(o) ← min(1, ub(o)× S(o));
3 lbapp(o) ← max(0, S(o)− ZS(o))× lb(o);
4 if ubapp(o) < pq ∨ lbapp(o) ≥ pq then
5 return;

6 Insert(L,o, d(q,o),ubapp(o), lbapp(o));
7 while Empty(L)�= true do
8 Node e=PopFront(L);
9 ubapp(o) ← ubapp(o)−e.ubapp(o,i);

10 lbapp(o) ← lbapp(o)−e.lbapp(o,i);
11 for i from 0 to e.Len do
12 ubapp(o) ← ubapp(o) +min(1, ub(o, i)× S(o, q));
13 lbapp(o) ← lbapp(o) +max(0, S(o, 1)− ZS(o, i))× lb(o, i);

14 if ubapp(o) < pq ∨ lbapp(o) ≥ pq then
15 return;

16 else
17 for i from 0 to R.Len do
18 if qr ∩ o(i).r �= ∅ ∧ qr ∩ o(i) �= o(i).r then
19 Insert(L,R(i,o), d(q,i),ubapp(o,i), lbapp(o,i));

20 return ;

For example, as shown in Fig 2, base on the “virtual grid”, because the area of d1 is
32 × 32=1024 and half on d1 is blank, the blank area of d1 is 512(10000000). Finally,
we use a static array to organize the nodes in MRST. We use k-bits vector to express
“offset+len” so as to describe the hierarchical relationship between the parent and its
children. As shown in Fig 2, D is a interval node that has two children d1 and d3, where
the offset is 3(11),and len=2(10).

Another advantage of data compression is that we could use the bit-operations to do
the above operations shown in algorithm 1. Due to the limitation of space, we do not
discuss how to store the node in MRST, and how to access MRST using bit-operations.

80 R. Zhu, B. Wang, and G. Wang

4 Indexing uncertain data

In this section, we propose an index called R-MRST to organize the MRST of uncertain
data. Its pruning ability is roughly the same with the other indexes such as U-Tree, but
cost of dynamic update and space are much lower than them.

As is discussed in Section 2.1, it is unworthy to store too much probabilistic infor-
mation in each node(leaf or interval). For example, given a leaf node based on U-Tree,
although using a group of MBRs to bound its children’s PCR could obtain a tighter
boundary, as shown in Fig 1(b), the shrunken degree of the boundary is relatively small,
and it causes both a high space cost and high dynamic update cost. The other indexes
such as UI-Tree and UD-Tree also have the similar problem.

Fig. 3. The Framework of R-MRST

Based on the above analysis, we propose the R-MRST. As shown in Fig 3, it is the
framework of R-MRST. It is similar with R-Tree. Due to the limitation space, we mainly
discuss how to maintain the probabilistic information in each node of R-MRST, and
how to use it for pruning according to Property 2.

Property 2. Given a prob-range query q and a node e of R-MRST, the intersection area
between e.MBR and qr is S. If S × ub(e) < qp, e can be pruned.

For each node e in R-MRST, we maintain the maximal probability density called
ub(e) among all the objects in the subtree of e. Given a query q, if qr overlaps with
the MBR of e, we employ Property 2 for pruning. Although the pruning method seems
simple, as shown in Fig 1, it also could prune the node whose MBR’s margin overlaps
with the query region. Thus, it is suitable for processing range query over uncertain
data, and both the space cost and update cost are low.

Query on R-MRST: Given a prob-range query q, the search starts from the root of
R-MRST, and eliminates its entries according to Property 2. For each remaining entry,
we retrieve its child node, and perform the above process recursively until a leaf node
is reached. For an object o encountered, we attempt to filter it through accessing its
MRST. For the object o which can not be filtered, in the refinement phase, we use the
integral to check whether o is the result of q.

Dynamic Update Algorithm: Compared with R-tree, the update method of our in-
dex is roughly the same. The difference is the maintenance of ub(e). Specifically, given
a leaf node e, when a newly arrived object o inserts into e, the following cases cause
the updating of ub(e). (i) ub(o) ≥ ub(e); (ii) the number of objects in e exceeds to the
bucket size, and causes e spilt. In the first case, we set ub(e)=ub(o). In the second case,

Indexing Uncertain Data for Supporting Range Queries 81

if e is split into e1 and e2, we compute ub(e1) and ub(e2). When a object o leaves e,
the following cases cause the ub(e) updating. (i) ub(o) is maximal probability density
among all the object in e, in this case, we select the new ub(e) from e. (ii) if two node
e1 and e2 are merged into e, the ub(e) is max(ub(e1), ub(e2)). After updating ub(e),
we access the parent e

′
of e to check whether the ub(e

′
) need to be updated. If so, we

update ub(e
′
) and continuous access the upper-level node until no interval node should

be updated.

5 Experimental Evaluation

This section experimentally evaluates the efficiency of the proposed techniques. The R-
MRST will be compared with U-Tree (a classic technique) and UD-Tree, where U-Tree
is a classic index and UD-Tree is the most advanced index technology presently.

Two real spatial data sets LB and CA are employed to represent the center of prob-
abilistic regions, which has been used as the test data set such as [8] [4]. They con-
tain 53k and 62k two-dimension points representing locations in Long Beach and Los
Angeles respectively. In addition, three synthetic data sets containing 128k/256k/512k
two-dimension points are employed. In our experiments, the region of probabilistic data
is a rectangular with side-length varying from 100 to 500 and the default value of the
side-length is 200. In this paper, we call the half of side-length as radius. Because it is
unfair to select uniform distribution as the o.pdf(x), we use two other common distribu-
tions: poisson distribution and normal distribution. In the default case, all dimensions
are normalized to domain [0,10000] and LB with constrained normal distribution is
employed as the default data set. A workload contains 100 queries in our experiment.
The region of the queries are a rectangular with rq varying from 500 to 1500. In our
experiments, we randomly choose the probabilistic threshold θ∈(0,1] for each query.
R-MRST was implemented in C++. Experiments are run on a PC with i3-core and 4
GB memory.

5.1 Index Construction

Firstly, we compare the index size among R-MRST, U-Tree and UD-Tree. Secondly,
we compare the constructing time among these three indexes. Thirdly, we compare the
space cost of summary based on these three indexes. The experiment is employed in
different data sets. One of them is based on the CA. Another one is a synthetic data
set with 200k 2-dimension data. Since UD-Tree can not work when the PDF is in the
continual case, we use the sampled points to simulate the PDF of an object.

The Fig. 4(a) to Fig. 4(b) uses the synthetic data set. In the Fig. 4(a), the storage cost
of R-MRST is less than that of both U-Tree and UD-Tree. Fig. 4(b) shows the space
cost of MRST. As we see, ours performs best of all.

5.2 Query Performance

In this section, we evaluate the query performance. In the first group of experiments, we
evaluate the performance of the R-MRST, UD-Tree [8] and U-Tree against different rq .

82 R. Zhu, B. Wang, and G. Wang

0

20

40

60

80

64 128 256 512

In
de

x
Si

ze
 (

M
)

the number of object(K)

R-MRST
U-Tree

UD-Tree

(a) Index Size

0

20

40

60

64 128 256 512

In
de

x
Si

ze
 (

M
)

the number of object(K)

R-MRST
U-Tree

UD-Tree

(b) Summary Size

Fig. 4. Index size Based on Dif-
ferent Data Sets

0

0.2

0.4

0.6

0.8

600 800 1000 1200 1500

R
es

po
ns

e
T

im
e

(S
)

Query Radius

R-MRST
U-Tree

UD-Tree

(a) Candidate Size

0.5

1

1.5

2

2.5

3

3.5

600 800 1000 1200 1500

R
es

po
ns

e
T

im
e

(S
)

Query Radius(M)

R-MRST
U-Tree

UD-Tree

(b) CPU Time

Fig. 5. Cost vs.diff Ru

1

1.5

2

2.5

3

0.2 0.4 0.6 0.9

Pr
ob

ab
ili

ty
 T

hr
es

ho
ld

Candidate Size(K)

R-MRST
U-Tree

UD-Tree

(a) Candidate Size

1
2
3
4
5
6
7
8
9

0.2 0.4 0.6 0.8 0.9

R
es

po
ns

e
T

im
e

(S
)

Candidate Size(K)

R-MRST
U-Tree

UD-Tree

(b) CPU Time

Fig. 6. Cost vs. diff θ

The parameters of the experiments are same as the previous one. Firstly, we evaluate
the ability of pruning/validating. In the Fig. 5(a), the candidate size of UD-Tree and
R-MRST are roughly the same which both perform better than U-Tree. Secondly, we
evaluate the response time. In the Fig. 5(b), R-MRST performs best of all.

In the second group of experiments, we evaluate the performance of the R-MRST,
UD-Tree and U-Tree against different threshold θ. The θ varies from 0.1 to 0.9, and the
other parameters are default. The experiment content are the same as the first group.
The Fig. 6(a)-Fig. 6(a) are the results of the experiments. In the Fig. 6(a), R-MRST
performs best of all.

The third group of experiments evaluate the filtering ability and the computational
cost of the node in R-MRST. All of parameters are default. Firstly, we count the number
of the entry nodes needed to be accessed. In Fig. 7(a), the filtered ability of R-MRST
and U-Tree are are roughly the same. Secondly, we record the response time. In the
Fig. 7(a), the computational cost of them are roughly the same.

In the forth group of experiments, we study the probability filtering ability of MRST.
We count the amount of probabilistic data that should be checked and then calculate
the recall ratio(rr) and the response time. The result are reported in the Fig. 8(a)-
Fig. 8(a). As expected, MRST has a stronger filtering ability. In the Fig. 8(a), although
the computational cost based on MRST is higher than of PCR, the difference of their
response time can be accepted.

In the last experiments, we compare the performance of R-MRST, UD-Tree, and U-
Tree by different data sets. Five data sets (LB,CA and three synthesize) are employed.
The number of data points of each data set is 53k, 62k, 128k, 256k and 512k. We use
default parameters in these experiments. As expected, R-MRST performs best of all.

Indexing Uncertain Data for Supporting Range Queries 83

1
2
3
4
5
6
7
8
9

10

600 800 1000 1200 1500

C
an

di
da

te
 S

iz
e(

K
)

Query Radius(M)

R-MRST
UD-Tree

(a) Candidate Size

2

3

4

5

6

7

0.2 0.4 0.6 0.8 0.9

C
an

di
da

te
 S

iz
e(

K
)

Probability Threshold

R-MRST
UD-Tree

(b) CPU Time

Fig. 7. S-node vs. U-Tree

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

600 800 1000 1200 1500

C
an

di
da

te
 S

iz
e(

K
)

Query Radius(M)

MRST
PCR

(a) Candidate Size

0.5

1

1.5

2

2.5

3

3.5

600 800 1000 1200 1500

C
an

di
da

te
 S

iz
e(

K
)

Query Radius(M)

MRST
PCR

(b) CPU Time

Fig. 8. PCR vs.MRST

 0

 2

 4

 6

 8

 10

 12

53 62 128 256

C
PU

 T
im

e(
m

s)

Data Size(K)

MRST
UD-tree
U-Tree

(a) Candidate Size

 0

 1

 2

 3

 4

 5

 6

53 62 128 256

C
PU

 T
im

e(
m

s)

Data Size(K)

MRST
UD-tree
U-Tree

(b) CPU Time

Fig. 9. Cost vs. diff dataset

6 Conclusions

In this paper, we studied the problem of range query on probabilistic data. Through
deep analysis, we proposed an effective indexing technique named R-MRST to man-
age uncertain data. R-MRST could provided a very tight bound for pruning/validating
the objects that overlap(or non-overlap) with the query region in a lower cost. Our ex-
periments convincingly demonstrated the efficiency of our indexing techniques. In the
future, we will further study other indexes which are suitable for high-dimensional un-
certain data and support probabilistic data update frequently.

References

1. Agarwal, P.K., Cheng, S.W., Tao, Y., Yi, K.: Indexing uncertain data. In: PODS, pp. 137–146
(2009)

2. Kalashnikov, D.V., Ma, Y., Mehrotra, S., Hariharan, R.: Index for fast retrieval of uncertain
spatial point data. In: GIS, pp. 195–202 (2006)

3. Lian, X., Chen, L.: Set similarity join on probabilistic data. PVLDB 3(1), 650–659 (2010)
4. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional

uncertain data with arbitrary probability density functions. In: VLDB, pp. 922–933 (2005)
5. Tran, T.T.L., Sutton, C.A., Cocci, R., Nie, Y., Diao, Y., Shenoy, P.J.: Probabilistic inference

over rfid streams in mobile environments. In: ICDE, pp. 1096–1107 (2009)
6. Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively indexing uncertain mov-

ing objects for predictive queries. In: PVLDB, vol. 2(1), pp. 1198–1209 (2009)
7. Zhang, Y., Lin, X., Zhang, W., Wang, J., Lin, Q.: Effectively indexing the uncertain space.

IEEE Trans. Knowl. Data Eng. 22(9), 1247–1261 (2010)
8. Zhang, Y., Zhang, W., Lin, Q., Lin, X.: Effectively indexing the multi-dimensional uncertain

objects for range searching. In: EDBT, pp. 504–515 (2012)

	Indexing Uncertain Data for Supporting Range Queries
	1 Introduction
	2 Related Work and Problem Definition
	2.1 RelatedWork
	2.2 Problem Definition

	3 Effectively Summarizing Uncertain Data
	3.1 A Tight Probabilistic Bound For Filtering
	3.2 Effective Summary Construction Using Multi-Resolution Technique
	3.3 Accessing the Summary of Uncertain Data
	3.4 Efficient Summary Storage

	4 Indexing uncertain data
	5 Experimental Evaluation
	5.1 Index Construction
	5.2 Query Performance

	6 Conclusions
	References

