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LIRMM, Université Montpellier 2, France

Abstract. Given a simple undirected graph G = (V,E) and an integer
k < |V |, the Sparsest k-Subgraph problem asks for a set of k vertices
which induces the minimum number of edges. As a generalization of the
classical independent set problem, Sparsest k-Subgraph is NP-hard
and even not approximable unless P = NP in general graphs. Thus, we
investigate Sparsest k-Subgraph in graph classes where independent
set is polynomial-time solvable, such as subclasses of perfect graphs.
Our two main results are the NP-hardness of Sparsest k-Subgraph
on chordal graphs, and a greedy 2-approximation algorithm. Finally, we
also show how to derive a PTAS for Sparsest k-Subgraph on proper
interval graphs.

1 Introduction

1.1 Related Problems

Given a simple undirected graph G = (V,E) and an integer k < |V |, the Spars-
est k-Subgraph problem asks for a set of k vertices which induces1 the min-
imum number of edges. It appears that this problem falls into the family of
cardinality constrained optimization problems, introduced by [7], and is more
precisely a generalization of the so-called independent set problem. This ob-
servation immediately implies that Sparsest k-Subgraph isNP-hard and even
not approximable in general graphs unless P = NP , as the optimal value is 0
whenever there is an independent set of size k. Thus, we only consider Sparsest
k-Subgraph in graph classes where independent set is polynomial-time solv-
able. Let us first present some related problems, and then discuss their relation
to Sparsest k-Subgraph. Actually, the following three problems can all be
considered as cardinality constrained versions of other well-known combinato-
rial optimization problems, namely vertex cover and max clique, both very
close to independent set.

In the maximum Quasi-Independent Set (QIS) problem [4] (also called
k-edge-in in [10]), we are given a graph G and an integer C, and we ask for a
set of vertices S of maximum size inducing at most C edges.
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1 An edge {u, v} ∈ E is said to be induced (resp. covered) by a set S if u ∈ S and
(resp. or) v ∈ S.
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In the minimum Partial Vertex Cover (PVC) problem [11], we are given
a graph G and an integer C, and we ask for a set of vertices S of minimum size
which covers1 at least C edges.

Finally, we can mention the corresponding maximization problem of Spars-
est k-Subgraph, namely Densest k-Subgraph, which consists in finding a
subset S of exactly k vertices inducing the maximum number of edges.

The decision versions of QIS, PV C, and Sparsest k-Subgraph are polyno-
mially equivalent. Indeed,QIS could be considered as a dual version of Sparsest
k-Subgraph where the budget (the number of edges in the solution of Sparsest
k-Subgraph) is fixed. PV C and Sparsest k-Subgraph are also polynomially
equivalent as for any S, the number of edges induced by S plus the number of
edges covered by V \S equals |E|. Then, exact results for Densest k-Subgraph
on a graph class implies the same result for Sparsest k-Subgraph on the corre-
sponding complementary class, and conversely. Unlike exact results, approxima-
tion algorithms do not transfer directly between any of these problems.

Considering these remarks and previous studies on these problems, Figure 1
presents known results and open problems about Sparsest k-Subgraph (SkS),
Densest k-Subgraph (DkS) and PVC in restricted graph classes. In each cell,
the first line generally describes the general complexity (NP -hard versus Poly-
nomial), whereas other lines present some results concerning approximation or
parameterized complexity. We recall that proper interval graphs ⊂ inter-
val graphs ⊂ chordal graphs ⊂ perfect graphs, as well as split graphs
⊂ chordal graphs and bipartite graphs, cographs ⊂ perfect graphs.

Graphs classes DkS SkS PV C

general NP-h NP-h, not approx. NP-h, W [1]-h [11]
(c.f. max clique) (c.f. indep. set) 2-approx.[6]

n
1
4
+ε-approx. [3] exact O∗(1, 4C) [13]

chordal NP-h [8] NP-h [this paper] NP-h (c.f. SkS)
3-approx [14] 2-approx [this paper]

interval OPEN, PTAS [15] OPEN OPEN

proper interval OPEN OPEN OPEN
PTAS [this paper]

bipartite NP-h [8] NP-h (c.f. PVC) NP-h [12]

line OPEN P (c.f. PVC) P [1]

planar OPEN NP-h (c.f. indep. set) NP-h (c.f. SkS)

cographs, split, P [8] P [5] P (c.f. SkS)
bounded treewidth

max. degree 2 P [8] P [5] P (c.f. SkS)

max. degree 3 NP-h [8] NP-h NP-h
(c.f. indep. set) (c.f. SkS)

Fig. 1. Main results for DkS, SkS and PVC in some restricted graph classes
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1.2 Contributions and Organization of the Paper

According to Figure 1, Densest k-Subgraph was already known to be NP-
hard on chordal graphs. However, as the complement of a chordal graph (and
in particular the graph used in the reduction of [8]) is a perfect graph and
not necessarily a chordal graph, this result only provides the NP-hardness of
Sparsest k-Subgraph on perfect graphs.

Thus, ourmotivation is to study Sparsest k-Subgraph on a classical subclass
of perfect graphs. Themain results of the paper are theNP-hardness of Sparsest
k-Subgraph in chordal graphs (Section 3), and a tight 2-approximationgreedy al-
gorithm (Section 2). Finally, we show in Section 4 how the arguments of [15] (which
provides a PTAS forDkS in interval graphs) can be adapted toSkS in proper inter-
val graphs. Notice that ourNP-hardness result implies theNP-hardness of PVC
in chordal graphs, which supplements the recent NP-hardness of [2,12] for PVC
in bipartite graphs. Due to space constraints, the proof of Lemma 6 for the NP -
hardness in chordal graphs as well as the PTAS in proper interval graphs were
omitted. They can be found in the long version of this paper available in [17].

1.3 Notations and Definitions

All graphs studied in this paper are simple and without loop. For the remaining,
G = (V,E) will denote the input graph of the problem, and we define as usual
n = |V |, m = |E|.

Chordal graphs are graphs with no induced cycle of length four or more.
They may also be defined equivalently in terms of simplicial elimination order
[9]. A vertex v ∈ V is called simplicial if its neighbourhood N(v) is a clique.
A simplicial elimination order of G is an ordering v1, ..., vn of V such that for
all i ∈ {1, ..., n}, vi is simplicial in G[vi, ..., vn]. It is known that a graph G
is chordal if and only if it admits a simplicial elimination order. In addition,
such an ordering can be found in polynomial time for a chordal graph. Hence,
we will suppose in the following that V = {v1, ..., vn} is sorted according to a
simplicial elimination order of G. Similarly, for a subset of vertices S ⊆ V , we
will denote by min(S) (resp max(S)) the first (resp. last) vertex of S in the
simplicial elimination order chosen for the graph. Finally, since we have a total
ordering on the vertices, we will use the notations x < y and x > y for two
vertices x, y ∈ V .

Given two sets S1, S2 ⊆ V , we denote by cost(S1) the number of edges in the
graph induced by vertices of S1, and cost(S1, S2) = |{{v, v′} ∈ E, v ∈ S1, v

′ ∈
S2}|. Given a set S ⊆ V and x ∈ V , we denote by d(x, S) the degree of x in S.

Finally, we refer the reader to the classical literature for definitions of approx-
imation algorithms.

2 2-Approximation in Chordal Graphs

2.1 Idea of the Algorithm

We now present a tight 2-approximation algorithm for chordal graphs. First, no-
tice that any approximation algorithm for Sparsest k-Subgraph must output
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a maximum independent set of size k if such a set exists, as in this case the
optimal value is 0. Hence, a natural idea for computing a solution to Sparsest
k-Subgraph is to choose first a maximum independent set S (this can be done
in polynomial time in chordal graphs). If k vertices or more were picked, then
the algorithm stops. Otherwise, several ideas may come up.

A first idea would be to remove this independent set from the graph, and it-
eratively pick another one, until we get k vertices. This approach is the same as
the 3-approximation of [14] for Densest k-Subgraph in chordal graphs (com-
puting maximum cliques instead of maximum independent sets). Unfortunately,
as shown in Figure 2, this algorithm has an unbounded approximation ratio for
Sparsest k-Subgraph even in interval graphs (a subclass of chordal graphs).
It still provides a 2-approximation in proper interval graphs [16].

Thus, after picking the first maximum independent set, our idea is to assign
weights on remaining vertices according to the size of their neighbourhood in
the constructed solution. At each step, the algorithm just picks an independent
set (called a layer) among the vertices of minimum weight, and then updates
the weights of remaining vertices. The algorithm is more formally defined in the
next subsection. In the next paragraph, we describe the key idea of the analysis.

x1 x2 xt−1 xt

y1 y2

z1

Fig. 2. In this case picking successive independent sets gives an unbounded ratio: for
k = t + 2 the algorithm will take intervals {x1, ..., xt, y1, y2} of cost t whereas the
solution {x1, ..., xt, y2, z1} is of cost 4

y2n2x n1 y1

Fig. 3. Idea of the restructuration of a solution S∗. Circles denote vertices of S∗, and
crosses denote vertex of L (chosen by the algorithm). When replacing y1 by n1 and y2
by n2, the degree of x can only increase by one. Indeed, x cannot be connected to n1

and n2, as L is an independent set.

The idea of the proof of the 2-approximation ratio is to restructure an optimal
solution S∗ until we get S (the output of the algorithm), while bounding the
cost variation during the restructurations. Let us show what makes this restruc-
turation work for the first layer. Let L be the independent set chosen by the
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algorithm at the first step. Roughly speaking, for each nj ∈ L which is not in
S∗, we restructure S∗ by removing yj , the ”first” neighbour of nj which is after
nj and in S∗, and adding nj instead. As depicted in Figure 3, we see that the
degree of a vertex x ∈ S∗ (x /∈ L) will increase by at most 1. Concerning future
layers, the analysis will become more complex, as we will have to take weights
into account.

2.2 Algorithm and Analysis

Presentation of the Algorithm. As described previously, Algorithm 1 picks
successively an independent set among the vertices of lower weights. It also
updates the weights according to the picked vertices. For technical reasons, the
weights are not exactly equal to their degree in the constructed solution. Indeed,
when restructuring an optimal solution to match Li we will see that the degree
of almost all ”surviving” vertices in the optimal solution increases by at most
1 (this is why we add a ”bonus” of −1 in the updated weight Line 13), and
even sometimes cannot increase (this is why there is no ”bonus” Line 11). This
modification will allow us to show that at the end of the algorithm, the value W
returned by the algorithm is a lower bound of the optimal value (Lemma 3). We
will then show that the real value of the returned solution cost(S) is less than
two times W (Lemma 4), and thus is a 2-approximation.

Algorithm 1. A 2-approximation for Sparsest k-Subgraph in chordal graphs

1: S ← ∅, W ← 0, i ← 0, w0(x) = 0 ∀x ∈ V
2: while |S| ≤ k do
3: Li ← a maximum independent set of the graph induced by {x ∈ V \(L0 ∪ ... ∪

Li−1) : wi(x) = i}
4: S ← S ∪ Li // or the (k − |S ∪ Li|) leftmost vertices of Li if |S ∪ Li| > k
5: W ← W + i|Li| // we update the cost computed by the algorithm
6: for x ∈ V do
7: if x ∈ (L0 ∪ ... ∪ Li) then
8: wi+1(x) = wi(x)
9: else
10: if d(x,Li) = 0 OR (d(x,Li) = 1 AND wi(x) = i) then
11: wi+1(x) = wi(x) + d(x,Li)
12: else
13: wi+1(x) = wi(x) + d(x,Li)− 1
14: i ← i+ 1
15: t ← i− 1 // Lt is the last ”layer” of the algorithm
16: return (S,W )

Remark 1. The maximum independent set of line 3 is greedily constructed as
follows: pick the first vertex of the simplicial elimination order in the independent
set, delete its neighbourhood, and repeat the operation until the graph becomes
empty.
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Even if we sometimes add −1 when updating the weights, we can observe that
for a fixed x ∈ V , its successive weights can be lower bounded as follows:

Lemma 1. For all i ∈ {0, ..., t}, ∀x ∈ V \ (L0 ∪ · · · ∪ Li), wi+1(x) ≥ i+ 1.

Proof. Let i and x be as in the statement. Suppose by induction that wi(x) ≥ i
(notice that w0(x) = 0). If wi(x) ≥ i + 1 then the results follows. Otherwise
wi(x) = i, and by construction of the algorithm (Line 11), if d(x, Li) ≥ 1,
then wi+1(x) ≥ i + 1. Finally, if d(x, Li) = 0, then x must belong to Li which
contradicts the definition of x. �	

Restructuration of Solutions. Let S∗ be an optimal solution for the Spars-
est k-Subgraph problem in chordal graphs. We will now show that we can
modify this solution in order to obtain the output of the algorithm, while bound-
ing the cost variation.

Let us define by induction a sequence (S∗
i )i=−1,0,...,t with S∗

−1 = S∗ and
S∗
t = S (the solution returned by the algorithm), such that S∗

i ⊆ V and |S∗
i | = k

for all i = −1...t. We also assure that (L0∪ ...∪Li) ⊆ S∗
i for all i = 0...t. To that

end, given i ∈ {0, ..., t}, we show how to restructure the set S∗
i−1 into a new set

S∗
i . Let us first introduce some notations.
We partition the set Li (defined in the algorithm) into two sets of vertices,

whether they belong to S∗
i−1 or not: Li = Mi ∪ Ni, with Mi = Li ∩ S∗

i−1 (and
thus Ni = Li \ S∗

i−1).
The restructuration consists in adding all vertices of Ni to S∗

i−1, and removing
a carefully chosen (see Definition 1) subset Di ⊆ S∗

i−1\(L0∪ ...∪Li) (with |Di| =
|Ni|). Then, we will define S∗

i = (S∗
i−1\Di) ∪Ni, Ri = S∗

i−1\(Di ∪ L0 ∪ ... ∪ Li)
and Ti = Mi ∪Di. Figure 4 summarizes the situation.

To bound the cost variation, we show in Lemma 2 that the degree of ”surviv-
ing” vertices (i.e. vertices in Ri) increases by at most one. The next definition
shows how to choose properly the set Di.

Definition 1. Let i ∈ {0, . . . , t}, and let us suppose we are given a set S∗
i−1 ⊇

L0 ∪ ...∪Li−1. Let Ni = {n1, ..., npi} and suppose that n1 < ... < npi defines an
ordering of Ni according to the simplicial elimination order of the graph. For all
j = 1, ..., pi successively, we pick a vertex yj ∈ S∗

i−1\(L0 ∪ ... ∪ Li) as follows:

yj =

{
min(Qj) if Qj �= ∅

max(S∗
i−1\(L0 ∪ ... ∪ Li ∪ {y1, ..., yj−1})) if Qj = ∅ (1)

with Qj = {y ∈ S∗
i−1\(L0 ∪ ... ∪ Li ∪ {y1, ..., yj−1}) such that nj < y, and

{nj, y} ∈ E} (see Figure 4). Finally, we define Di = {yj : 1 ≤ j ≤ pi}.
It is easily seen that |Di| = |Ni| since all yj are distinct. Now that Di is defined,
recall that we have Ti = Mi ∪Di, and the ”surviving vertices” Ri = Ri−1 \ Ti.
Let us now upper bound the degree of vertices of Ri.
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Ri

Di

MiNi

Li−1

L0

S
∗

i−1

Li

Ti
nj−1 nj nj+1

Qj−1 Qj Qj+1 = ∅

yj−1 yj yj+1

Fig. 4. On the left: description of set S∗
i−1. We obtain S∗

i from S∗
i−1 by removing Di

and adding Ni. Notice that Ri−1 = Ri ∪ Ti, and Ri ∩ Ti = ∅. On the right: example of
sets Qj , together with yj . Circles represent vertices of the considered optimal solution,
and crosses represent vertices chosen by the algorithm that are not in the optimal
solution. Edges between vertices of the optimal solution have not been drawn for sake
of simplicity.

Lemma 2. Let Ri = Ai ∪Bi, with Ai = {x ∈ Ri : d(x, Li) = 0 or (d(x, Li) = 1
and wi(x) = i)} and Bi = Ri\Ai. We have:

– if x ∈ Ai, d(x, Li) ≤ d(x, Ti)
– if x ∈ Bi, d(x, Li) ≤ d(x, Ti) + 1

This immediately implies that for all x ∈ Ri we have wi+1(x) ≤ d(x, Ti)+wi(x).

Proof. Let us show that if x ∈ Ai, then d(x,Ni) ≤ d(x,Di), and if x ∈ Bi, then
d(x,Ni) ≤ d(x,Di) + 1. Since Li = Mi ∪ Ni and Ti = Mi ∪ Di (these unions
being disjoint), the desired inequalities follow immediatly.

– if x ∈ Ai, then either d(x, Li) = 0, which obviously implies the result, or
d(x, Li) = 1 and wi(x) = i. We thus only consider the second case. Here
again if d(x,Ni) = 0 then the result is straightforward, so let us suppose
d(x,Ni) = 1, i.e. suppose that there exists a vertex of Ni, say nj0 , such that
x and nj0 are adjacent. Two cases are possible:
• First case: x < nj0 . Recall that nj0 is the only neighbour of x in Li.
Hence, x is not adjacent to all vertices of Li that are before nj0 in the
simplicial elimination order. In addition, recall that wi(x) = i. Thus, this
case cannot happen since by definition of the algorithm, x would have
been chosen in Li instead of nj0 .

• Second case: nj0 < x. It is clear that in this case Qj0 �= ∅ (as at least
x ∈ Qj0). As by definition x /∈ Di, we have yj0 < x. By definition of
perfect elimination order, since {nj0 , yj0} ∈ E and {nj0 , x} ∈ E, we
must have {x, yj0} ∈ E. Hence d(x,Di) = 1 and the result follows.
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– if x ∈ Bi, then let N−
i = {y ∈ Ni : y < x} and N+

i = Ni \ N−
i . For

all nj ∈ N−
i such that {nj , x} ∈ E, then as previously Qj �= ∅ and by

the definition of chordal graphs we have {yj, x} ∈ E with yj ∈ Di. Thus,
d(x,N−

i ) ≤ d(x,Di). Finally we claim that d(x,N+
i ) ≤ 1. Indeed, suppose

that there exists nj1 , nj2 ∈ N+
i such that {x, nj1}, {x, nj2} ∈ E. By definition

of perfect elimination order we must have {nj1 , nj2} ∈ E which contradicts
the definition of Li which is an independent set. This proves that d(x,Ni) ≤
d(x,Di) + 1 �	

Let us now define the appropriate ζ function that computes the cost of an inter-
mediate solution S∗

i . For all i ∈ {0, ..., t}, let

ζ(S∗
i ) = cost(Ri) +

∑
x∈Ri

wi+1(x) +
∑

x∈L0∪···∪Li

wi+1(x)

Notice that ζ(S∗−1) = cost(S∗) and ζ(S∗
t ) =

∑
x∈S wt(x) = W .

Lemma 3. For all i ∈ {0, ..., t}, Di is such that ζ(S∗
i ) ≤ ζ(S∗

i−1).

Proof. By definition, we have:

ζ(S∗
i ) = cost(Ri) +

∑
x∈Ri

wi+1(x) +
∑

x∈L0∪···∪Li
wi+1(x)

= cost(Ri) +
∑

x∈Ri
wi+1(x) + i|Li|+

∑
x∈L0∪···∪Li−1

wi+1(x)

≤ cost(Ri) +
∑

x∈Ri
(wi(x) + d(x, Ti)) + i|Li|+

∑
x∈L0∪···∪Li−1

wi(x) by Lemma 2

In addition, since Ri−1 = Ri ∪ Ti and |Ti| = |Li|, we have:

ζ(S∗
i−1) = cost(Ri−1) +

∑
x∈Ri−1

wi(x) +
∑

x∈L0∪···∪Li−1
wi(x)

= cost(Ri) + cost(Ri, Ti) +
∑

x∈Ri
wi(x) +

∑
x∈Ti

wi(x) +
∑

x∈L0∪···∪Li−1
wi(x)

≥ cost(Ri) + cost(Ri, Ti) +
∑

x∈Ri
wi(x) + i|Li|+

∑
x∈L0∪···∪Li−1

wi(x)

which matches the upper bound for ζ(S∗
i ). �	

The previous lemma implies that W = ζ(S∗
t ) ≤ ζ(S∗

−1) = cost(S∗). Thus, to
prove that Algorithm 1 is a 2-approximation we only need the following lemma.

Lemma 4. cost(S) ≤ 2W .

Proof. Roughly speaking, when creating a layer Li and updating the cost W ,
the algorithm adds i|Li|, i.e. for all x ∈ Li the algorithm only adds i instead of
d(x, L0∪· · ·∪Li−1). Thus, we will now prove for any x ∈ Li, d(x, L0∪· · ·∪Li−1) ≤
2i.

Let x in Li. For any l, 0 ≤ l ≤ i, let xl = wl(x) be the weight of x before
creating layer Ll. Thus, the successive weights of x is a sequence (x0, . . . , xi)
where x0 = 0 and xi = i. Notice that after x is added in Li its weight will not
be changed.

Let us show by induction that for any l, d(x, L0 ∪ · · · ∪ Ll−1) ≤ xl + l. Let
us suppose that the previous statement is true for l and prove it for l + 1.
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Let z = d(x, Ll). We have d(x, L0∪· · ·∪Ll) = d(x, L0∪· · ·∪Ll−1)+z ≤ xl+l+z.
As xl+1 ≥ xl + z − 1, we get the desired inequality.

Thus, for any x ∈ Li we get d(x, L0 ∪ · · · ∪ Li−1) ≤ xi + i = 2i, and thus
cost(S) =

∑t
i=1

∑
x∈Li

d(x, L0 ∪ · · · ∪ Li−1) ≤ 2
∑t

i=1 i|Li| = 2W . �	
Theorem 1. There is a tight polynomial 2-approximation algorithm for SkS in
chordal graphs.

For the tightness result, consider the instance with n = 5, k = 4, and edges
{x1, x2}, {x2, x3} and {x4, x5} (notice that (x1, x2, x3, x4, x5) is a simplicial
elimination order). The algorithm will first pick x1, x3 and x4. Then, we have
w1(x2) = w1(x5) = 1 and the algorithm takes x2 instead of x5.

3 NP-Hardness in Chordal Graphs

Main Arguments. The following NP-hardness proof is a reduction from the
k-clique problem in general graphs. Roughly speaking, given an input instance
G = (V,E) together with k ∈ N, we construct the split graph of adjacencies
of G, i.e. we build a clique on a set A representing the vertices of G, and an
independent set F representing the edges of G, connecting A and F with respect
to the adjacencies of the graph. Then, we replace each vertex of the independent
set (corresponding to an edge e ∈ E) by a gadget Fe represented in Figure 5.
Any solution will have to take the same number of vertices among each gadget.
The key idea is that there is two ways to take these vertices in a gadget Fe. The
first way (choosing Xe and Ze) encodes that the edge e belongs to the k-clique.
It is cheaper than the second way, but is adjacent to the clique A. The second
way (choosing Xe and Ye) encodes that edge e does not belong to the k-clique.
It induces more edges, but is not adjacent to the clique A. Thus, as depicted in
Figure 5, a k-clique is encoded by not picking the corresponding vertices in A,
obtaining

(
k
2

)
gadgets of the first type, and m − (

k
2

)
of the second type. In this

way, there is no edge in the solution between any gadget and the clique A. For
technical reasons, each vertex of A is duplicated n times.

Gadget. Let us define the gadget F mentioned above. F is composed of three
sets X,Y and Z of T vertices each (we will set the value of T later). We define
X = {x1, ..., xT }, Y = {y1, ..., yT } and Z = {z1, ..., zT }. The set X induces an
independent set, while Z induces a clique, and there is a clique of size (T −1) on
vertices {y2, ..., yT }. For all i ∈ {1, ..., T }, xi is adjacent to yi, and yi is adjacent
to all vertices of Z. Such a construction is depicted at the left of Figure 5.

In the following we will force the solution to take 2T vertices among each
gadget. It is easy to see that the sparsest 2T -subgraph of F is composed of the
sets X and Z, which induces

(
T
2

)
edges. In contrast, notice that choosing X and

Y induces (
(
T
2

)
+ 1) edges.

Theorem 2. Sparsest k-Subgraph remains NP-hard in chordal graphs.



82 R. Watrigant, M. Bougeret, and R. Giroudeau

Xe1

Ye1

Ze1

gadget Fe1 for e1 = {u, v} ∈ E

T

n

n A

Xe1

Ye1

Ze1

Xem

Yem

Zem

k n− k

(
k

2

)
gadgets m−

(
k

2

)
gadgets

TFe1 Fem

n

n

Au Av

Fig. 5. Schema of the reduction, with an example of a gadget Fe1 on the left and its
relations to A. Grey rectangles represent vertices of the solution.

Proof. We reduce from the classical k-clique problem in general graphs. Let
G = (V,E) and k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T =
n(n− k). In the following we will define G′ = (V ′, E′) together with k′, C′ ∈ N

such that G′ is a chordal graphs which can be constructed in polynomial time,
and such that G contains a clique of size k if and only if one can find k′ vertices
in G′ which induce C′ edges or less.

The Construction. V ′ is composed of two parts A and F :

– We first define a clique of size n2 over A = {aji : i, j ∈ {1, ..., n}}. For each
u ∈ V , the ”column” Au = {aju : j ∈ {1, ..., n}} represents the vertex u in G.

– For all e ∈ E, we construct a gadget Fe composed of Xe, Ye and Ze as defined
previously. Let Xe = {xe

1, ..., x
e
T }, Ye = {ye1, ..., yeT } and Ze = {ze1, ..., zeT }.

Moreover, for all e = {vp, vq} ∈ E, all vertices of Ze are connected to Ap

and Aq.

– We define k′ = m2T + T and C′ = m
(
T
2

)
+
(
T
2

)
+ (m− (

k
2

)
).

It is clear that the construction can be carried out in polynomial time. Let
us briefly sketch that G′ is a chordal graph: for each gadget, Xe, Ye, Ze is a
simplicial elimination order. Then, the remaining vertices form a clique.

Now we prove that G contains a clique of size k if and only if G′ contains k′

vertices inducing at most C′ edges.

Lemma 5. G contains a k-clique ⇒ G′ contains k′ vertices inducing at most
C′ edges.
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Proof. Let us suppose that K ⊆ V is a clique of size k in G. W.l.o.g. we suppose
K = {v1, ..., vk}. Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K}
and E1 = {{vp, vq} ∈ E such that vp /∈ K or vq /∈ K}. We construct K ′ ⊆ V ′ as
follows:

– For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add aji to K ′.
– For all e ∈ E, we add all vertices of Xe to K ′.
– For all e ∈ E0, we add all vertices of Ze to K ′.
– For all e ∈ E1, we add all vertices of Ye to K ′.

One can verify that K ′ is a set of k′ = 2mT + T vertices inducing exactly
C′ =

(
T
2

)
+ m

(
T
2

)
+ (m − (

k
2

)
) edges. Indeed, we picked T = n(n − k) vertices

from A which is a clique and thus induce
(
T
2

)
edges. Then, for all e ∈ E, we

picked 2T vertices, which induce
(
T
2

)
edges if e ∈ E0, and (

(
T
2

)
+ 1) edges if

e ∈ E1. Since |E0| =
(
k
2

)
(and thus |E1| = m− (

k
2

)
), we have the desired number

of edges.

Lemma 6. G′ contains k′ vertices inducing at most C′ edges ⇒ G contains a
k-clique. �	

4 Approximation in Proper Interval Graphs

Let us now discuss the status of Sparsest k-Subgraph and Densest k-
Subgraph on interval graphs. First, notice that the complexity status (NP-
hardness versus P) of Sparsest k-Subgraph remains unknown in interval and
proper interval graphs. We also recall that this question is a longstanding open
problem for DkS, as well as its complexity in planar graphs. Indeed, the former
paper [8] proves the NP-hardness of DkS in comparability, chordal graphs, and
states the open question of its complexity in planar and (proper) interval graphs.
Since then, and despite a lot of effort, no major improvement has been done
so far.

As interval graphs are exactly the intersection of chordal graphs and
co-comparability graphs, finding out the complexity status of Sparsest k-
Subgraph in interval graphs would determine the complexity of Densest k-
Subgraph in a subclass of comparability graphs, improving the results of [8].
Finally, as in [15] where the author design a PTAS for Densest k-Subgraph
on interval graph (despite the unknown complexity status), we are able to show
the following theorem.

Theorem 3. There is a PTAS for SkS in proper intervals running in nO( 1
ε ).

This result uses the same kind of arguments as in [15]: restructuring an optimal
solution in each ”block” of consecutive intervals, and using dynamic programing
on these restructured blocks.
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