
On the max min vertex cover Problem�

Nicolas Boria1, Federico Della Croce2,3, and Vangelis Th. Paschos4,5

1 Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
nicolas.boria@supsi.ch

2 D.A.I., Politecnico di Torino, Italy
federico.dellacroce@polito.it

3 CNR, IEIIT, Torino, Italy
4 PSL Research University, Université Paris-Dauphine, LAMSADE CNRS UMR 7243

paschos@lamsade.dauphine.fr
5 Institut Universitaire de France

Abstract. We address themaxmin vertex cover problem, which is the
maximization version of the well studied min independent dominating
set problem, known to be NP-hard and highly inapproximable in poly-
nomial time. We present tight approximation results for this problem on
general graphs, namely a polynomial approximation algorithm which
guarantees an n−1/2 approximation ratio, while showing that unless P =
NP, the problem is inapproximable within ratio nε−(1/2) for any strictly
positive ε. We also analyze the problem on various restricted classes of
graph, on which we show polynomiality or constant-approximability of the
problem. Finally, we show that the problem is fixed-parameter tractable
with respect to the size of an optimal solution, to treewidth and to the size
of a maximum matching.

1 Introduction

In the min independent dominating set problem, also called min max inde-
pendent set, given a graph G(V,E), we are asked to determine a minimum size
vertex-subset that is simultaneously independent and dominating. This problem,
although polynomially solvable in strongly chordal graphs [20], has been proved
to be inapproximable within n1−ε, for any ε > 0, not only in general graphs [1]
but also in restricted graph classes as, for instance, the circle graphs [2]. Also,
and probably due to this fact, exact solution of min independent dominating
set in general or in restricted classes of graphs by moderately exponential al-
gorithms has received a growing attention in the past years [3–5]. This problem
has also been tackled using exponential approximation techniques [5]. Finally, it
is shown to be very hard from a parameterized complexity point of view since it
is W[2]-hard [6].
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Surprisingly, to the best of our knowledge, the natural symmetric problem, the
max min vertex cover problem, where the goal is to compute a minimal (for
exclusion) vertex cover of maximum size, has not been addressed yet. Knowing
the direct applications of min independent dominating set in terms of ad-hoc
wireless networks, it seems natural to study the symmetric version, where instead
of minimizing the number of servers, one wishes to maximize the number of
clients. This problem obviously has the same characteristics as its minimization
counterpart in terms of NP-hardness and exact computation, but might have
different behaviours in terms of approximability and parameterized complexity
(as in the case of the pair max independent set - min vertex cover).

We show in this paper that, while also highly inapproximable, max min ver-
tex cover is better approximable than its mate, since it can be approximately
solved in polynomial time within ratio n−1/2, where n is the size of the input
graph. This result is matched by an inapproximability bound of nε−(1/2) that
can be extended also to an O(1/Δ) inapproximability bound, where Δ is the
maximum degree of the input graph. We also match it to an O(3/2Δ) approxi-
mation ratio achieved by a natural greedy algorithm. We also prove that, unlike
min independent dominating set, max min vertex cover is in FPT, the
class of fixed-parameter tractable problems not only with respect to the standard
parameter, i.e., the value of the optimum, but also with respect to the cardinality
of a maximum matching (that is smaller than the value of the optimum). Let
us note that both min weighted dominating set and max weighted inde-
pendent set are polynomially solvable in graphs with bounded treewidth [7–9]
(and, actually, fixed parameter tractable with respect to the treewidth of the in-
put graph [10]). With similar dynamic programming techniques, it can be shown
that also both weighted max min vertex cover and weighted min inde-
pendent dominating set are fixed parameter tractable with respect to the
treewidth. Since the techniques used for obtaining this result are quite similar
to those in [10], the proof of the result is omitted.

2 Approximation of max min vertex cover in General
Graphs

We give in this section inapproximability upper bounds matched by lower bounds
achieved in polynomial time for max min vertex cover. We first study ratios
functions of n and then functions of Δ.

Proposition 1. For any positive constant ε, max min vertex cover is inap-
proximable within ratio O(nε−(1/2)) unless P = NP.

Proof. First, recall that max independent set has been proved to be inap-
proximable within ratio nε−1 for a given ε ∈ (0, 1) [12] unless P = NP.

Consider an unweighted instance of max independent set given by a
graph G(V,E). Out of this instance of max independent set, we build an
instance H(V ∪ S,E′) of max min vertex cover in the following way: for
each vertex v of V one adds n+ 1 vertices connected only to v in H , while the
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inner edges of the set V are left unchanged. In other words, graph H is obtained
by adding an independent set S, of order n2 + n to the initial graph G, and
connecting n+ 1 vertices of the independent set to each vertex v.

Note that the graph H can be built in polynomial time, and has precisely n2+
2n vertices. Denote by opt(G) an optimal independent set in G, and by opt(H)
an optimal vertex cover in H .

Figure 1 provides an example of the construction where opt(G) is the set of
circled vertices, and opt(H) the set of black vertices.

H

G

Fig. 1. An example of the reduction in Proposition 1
.

Consider a vertex cover SOL(H) that has cardinality sol(H) in H . First, notice
that H admits a maximal matching of n edges, that consists of taking, for each
vertex of V , one edge linking this vertex to one of its neighbors in S. Hence, any
vertex cover in H takes at least n vertices, i.e., sol(H) � n.

Notice also that, for any vertex v of V that does not belong to SOL(H),
then SOL(H) must take all its neighbors in S, that is n + 1 vertices. Moreover
the set V \ SOL(H) of vertices of V that do not belong to SOL(H) defines an
independent set in G with n−|sol(H)∩V | vertices. In other words, one can assert
that any solution SOL(H) of cardinality sol(H) in H can be easily transformed
into an independent set SOL(G) in G of cardinality:

sol(G) � sol(H)− n

n
(1)

Conversely, the existence of a maximal independent set of size h in G induces the
existence of a minimal vertex cover of size nh+n in H . It suffices to consider the
following vertex cover: all vertices of V that do not belong in the independent
set (n − h vertices), and all vertices of S linked to a vertex of the independent
set (h(n + 1) vertices). Therefore, it holds that a minimal vertex cover of size
n · opt(G) + n exists in H . In other words, opt(H) � n · opt(G) + n.

Now, for some constant positive ρ < 1, suppose that there exists a polynomial
time algorithm A for max min vertex cover that guarantees an approxima-
tion ratio n−ρ, and suppose that a solution SOL(H) has been computed by this
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algorithm on graph H . Reminding that graph H has O(n2) vertices, the ap-
proximation ratio guaranteed by A on H turns to be n−2ρ. Then, it holds that:

sol(H) � n−2ρ · opt(H) (2)

By combining (1) and (2), one can assert that SOL(H) can easily be transformed
into an independent set SOL(G) in G of value:

sol(G) � n−2ρ · opt(H)− n

n
� n−2ρ−1 · opt(H)− 1

� n−2ρ · opt(G) + n−2ρ − 1 � n−2ρ · opt(G)

where the last inequality holds for n big enough.
Hence, the existence of an n−ρ-approximation algorithm A for max min ver-

tex cover induces the existence of an n−2ρ-approximation algorithm for max
independent set, that would consist of:

– building the instance H of max min vertex cover out of the instance G
of max independent set;

– running the algorithm A on the instance H that outputs a solution SOL(H);
– returning the solution V \ SOL(H) for the initial problem.

Since, for any constant 0 < ε � 1, the existence of an n1−ε-approximation
algorithm for max weighted independent set induces P = NP [12], an n−ρ-
approximation algorithm for max min vertex cover can exist only subject to
the condition that n−2ρ � n1−ε for any 0 < ε � 1. This leads to ρ � ε − 1/2,
which concludes the proof.

Observe now that the order of graph H in the gap-reduction of Proposition 1
is O(n2), while the maximum degree of H is O(n). Then, the following inap-
proximability bound also can be immediately derived.

Corollary 1. max min vertex cover is inapproximable in polynomial time
within ratios O(Δε−1), for any ε > 0.

Let us now recall the following very classical and obvious observation that will
be used later.

Remark 1. Denoting by M a maximum matching of a graph G, any vertex cover
(a fortiori a minimal one) of G uses at least |M | vertices (since, at least one
distinct vertex is needed per one edge of M).

Lemma 1. Consider a graph G(V,E) and an independent set S of G. Denote
by Γ (S) the set of neighbors of S, and V ′ = V \ (S ∪ Γ (S)). Finally, denote by
SOL(G′) a minimal vertex cover on the induced subgraph G[V ′] and by sol(G′)
its cardinality. It holds that Γ (S) ∪ SOL(G′) is a feasible solution for max min
vertex cover.

Proof. First, let us prove that Γ (S) ∪ sol (V ′) is a vertex cover: all edges of
S × Γ (S) and Γ (S) × V ′ are covered by vertices of Γ (S), and all edges inside
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the induced subgraph G[V ′] are covered by SOL(G′). By hypothesis, S×S = ∅,
so that Γ (S) ∪ SOL(G′) is, indeed, a vertex cover.

Then, let us establish the minimality of such a vertex cover: on the one hand,
no vertex of Γ (S) can be removed, as they all cover an edge linked to a vertex
of S (and no vertex of S is in the vertex cover), and on the other hand, SOL(G′)
is a minimal vertex cover on a subgraph of G, so that none of its vertices can be
removed without uncovering an edge.

Proposition 2. max min vertex cover is approximable within ratio n−1/2

in polynomial time.

Proof. Consider a graph G(V,E), with |V | = n. Let Γ (x) be the set of neighbors
of a given vertex x and, given V ′ ⊆ V , let G[V ′] be the subgraph of G induced
by the set of vertices V ′. Consider the following approximation algorithm for
max min vertex cover:

– compute a maximum matching M ;
– among the matched vertices, let x be the one with the maximal number of

exposed neighbors;
– compute a minimal vertex cover on G[V ′] with a greedy algorithm, where

V ′ = V \ ({x} ∪ Γ (x)), and denote it by SOL(G′);
– output SOL(G) = Γ (x) ∪ SOL(G′).

First, by Lemma 1, we can assert that the solution returned by our approxima-
tion algorithm is feasible. Then notice that the algorithm runs in polynomial
time, all steps of the algorithm are so: step 1 can be performed in O(n2.376) time
by the algorithm presented in [13], identifying vertex x is done in O(n), and
building a minimal vertex cover is done in O(n2) (starting from the whole set of
vertices, the greedy algorithm deletes them one by one as long as the solution
remains a vertex cover, when no vertex can be deleted, the remaining set is a
minimal vertex cover). Finally, without loss of generality, let us suppose that the
graph has no isolated vertices, since such vertices obviously make the problem
easier to approximate.

Let us now analyze the approximation guarantee of this algorithm. Given the
maximum matching M computed at the first step of the algorithm, denote by P
the set of unmatched vertices of V with respect to M (i.e., the set of vertices
of V that are not endpoints of M), which obviously forms an independent set.
Finally, set p = |P | and m = |M |. Our analysis is based upon the following
maximality argument that will be used also in Proposition 3.

Notice that each edge (vi, vj) of M is linked to a set of vertices Pij ⊆ P ,
so that Pij ⊂ Γ (vi), or Pij ⊂ Γ (vj). Indeed, suppose vi has some neighbor vk
in P not linked to vj , and vj some neighbor vl in P not linked to vi. Then, by
deleting (vi, vj) from M and adding (vi, vk) and (vj , vl) to it, one could produce
a matching with m + 1 edges, so that M would not be a maximum matching.
In other words, there exists a covering of P by m sets Pij , each of them been
included in the neighborhood of a single matched vertex. For the algorithm, this
implies that the vertex x picked at step 2 has at least p/m neighbors in P .
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The algorithm includes the whole neighborhood of this vertex x, which might
also include some matched vertices. Suppose that Γ (x) contains exactly h
matched vertices. Then it holds that:

|Γ (x)| � h+
p

m
= h+

n− 2m

m
(3)

We now bound the value of SOL(G′). Among the edges of the matching M , at
least m− h still exist in the subgraph G[V ′]. Indeed, this subgraph is obtained
by deleting from G the vertex x together with all its neighbors, and all edges
incident to these vertices. It is clear that, by deleting h vertices from M , only h
edges are deleted from it. Thus, G[V ′] contains a matching with m−h edges, so
that any vertex cover in G[V ′] has at least m − h vertices. A fortiori, this also
holds for the vertex cover computed at step 3 of the algorithm; so:

sol (G′) | � m− h (4)

Combining (3) and (4), we finally get the following bound on the value of the
solution computed by the algorithm: sol(G) � m+ n

m − 2 � √
n, where the last

inequality results from a simple case analysis on the value of m with respect
to

√
n: if m � √

n, then the first term of the sum is at least
√
n and the second

at least 2 (as m � n/2). In the opposite case (m <
√
n), the second term of the

sum is at least
√
n, where m � 2 (if m = 1, the graph is a star, and the problem

is polynomial).
Considering that opt(G) � n, the algorithm clearly guarantees an n−1/2 ap-

proximation ratio, and the proof is concluded.

The following proposition, provides a lower bound, function of the maximum
degree of the input graph, for the approximation ratio of max min vertex
cover.

Proposition 3. max min vertex cover is polynomially approximable within
ratio 3/2Δ, where Δ is the maximum degree of the input graph. Furthermore, in
bounded-degree graphs, regular graphs and graphs admitting a perfect matching
max min vertex cover is in APX.

Proof. Denote by di the degree of a vertex vi ∈ V , by d the average degree of G
and, as previously, by M a maximum matching of G, by m the cardinality of M
and by p the cardinality of the set P = V \ V (M) of the exposed vertices of V
with respect to M .

The maximality argument stated in the proof of Proposition 2, has the fol-
lowing consequence for sets M and P :

for an edge (vi, vj) ∈ M , if one, say vi, of its endpoints has more than one
exposed neighbor, then vj has no exposed neighbour at all; in the opposite
case, an augmenting path would occur; in other words, in the case that a
matching edge (vi, vj) is incident to some edge (v, u) with either vi = v,
or vj = v, and u ∈ P , it holds that |(Γ (vi) ∪ Γ (vj)) ∩ P | � 1.
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Suppose that there exist a set M ′ of m′ edges of M , whose one endpoint is
adjacent to some exposed vertex of G with respect to M . Obviously, p � m′ ·Δ.
Since n = 2m+ p, we get, using the quoted consequence above, n = 2m+ p �
2(m−m′) + (Δ+ 1)m′ = 2m+ (Δ− 1)m′ � (Δ+ 1)m; hence:

m � n

Δ+ 1
(5)

By the seminal Turán’s Theorem, every maximal (for inclusion) independent set
of G has size at least n/(d+ 1); consequently:

opt(G) � dn

d+ 1
(6)

Combining (5) and (6) and taking into account Remark 1, the following holds
for the approximation of every minimal vertex cover:

sol(G)

opt(G)
� d+ 1

d(Δ+ 1)
	 d+ 1

dΔ
(7)

for arbitrarily large values of Δ. Also the following fact holds for any vertex
cover of a graph G(V,E) of order n.

Any vertex cover (a fortiori a minimal one) C guarantees approximation
ratio at least (d+ 1)/2Δ for max min vertex cover.

In fact, since C covers E, it holds that
∑

vi∈C di � |E|. Also,
∑

vi∈C di � Δ|C|
and |E| = nd/2. Putting all this together, we get:

sol(G) = |C| � nd

2Δ
(8)

Combining (8) and (6), we derive:

sol(G)

opt(G)
� d+ 1

2Δ
(9)

Ratio in (9) is increasing with d, while in (7) is decreasing with d. Equality holds
for d = 2, which derives ratio 3/2Δ.

3 Parameterized Analysis

We prove in this section that, continuing the asymmetry between min inde-
pendent dominating set and max min vertex cover, the later is fixed
parameter tractable when parameterized by the standard parameter, i.e., the
cardinality opt of a maximum minimal vertex cover.

Proposition 4. max min vertex cover can be solved in O∗(4opt/3).
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Proof. Let, as previously, Γ (vi) be the neighborhood of vertex vi. First, notice
that if all vertices have degree � 2, then the problem becomes straightforwardly
polynomially solvable by dynamic programming. Then, we assume that there
exists a vertex vj such that dj � 3. Notice also that for each vertex vi at least
one vertex among the set Γ (vi)∪ {vi} cannot be part of the vertex cover or else
that vertex cover would not be minimal. For this, just observe that if Γ (vi)∪{vi}
is included in the solution, vi can be removed, since its incident edges are covered
by the vertices of Γ (vi). We consider a branch and reduce approach where in
each branch a vertex is excluded from the vertex cover and its neighbors are
then necessarily included. We point out that such branch guarantees that all
vertex covers generated will be minimal. We branch on vertex vj according to
the following exhaustive cases.
Case 1. dj � 3 and all vi ∈ Γ (vj) have degree di � dj . We generate |Γ (vj)|+ 1
branches as follows: in one branch, vertex vj is excluded from the vertex cover
and correspondingly all its neighbors are included; in all other branches one
of the vertices vi ∈ Γ (vj) is excluded while all vk ∈ Γ (vi) are included. This
corresponds to |dj + 1| branches where in each branch at least |dj | vertices are
included in the vertex cover. The worst-case occurs for |dj | = 3, where we have
four branches each including 3 vertices in the vertex set. Correspondingly, the
complexity is O∗(4opt/3) = O∗(1.5874opt).
Case 2. dj � 3 and there exists vi ∈ Γ (vj) with di = 2. Three subcases occur
with respect to the degree of the other neighbor vk of vi.

Subcase 2 (a). If dk � 3, then either vi or vj or vk are excluded from the vertex
cover and correspondingly their neighbors are included in the vertex cover. Then,
the recursion is at least T (opt) � T (opt− 2) + 2T (opt− 3) and the worst-case
complexity is O∗(1.5214opt).

Subcase 2 (b). If dk = 2, vj may or may not be adiacent to vk. If vj and vk
are adjacent, then a branch on vj can be performed: either vj is excluded from
the vertex cover and correspondingly its neighbors (at least three) are included
in the vertex cover, or vj is included in the vertex cover and arbitrarily vi (vk) is
excluded from the vertex cover and vk (vi) is included in the vertex cover. Then,
the recursion is at least T (opt) � T (opt − 2) + T (opt − 3) and the worst-case
complexity is O∗(1.3248opt). Alternatively, vj and vk are non adjacent and vk is
adjacent to another vertex vl. Then, either vi is excluded from the vertex cover
(and its two neighbors are included), or vk is excluded from the vertex cover
(and again its two neighbors are included), or both vi and vk are included in
the vertex cover and correspondingly vj and vl are excluded from the vertex
cover. In this last case, the other neighbors of vj and vl (that may possibly
coincide) must be included in the vertex cover and globally at least four vertices
must be included in the vertex cover. Correspondingly, the recursion is at least
T (opt) � 2T (opt−2)+T (opt−4) and the worst-case complexity is O∗(1.5538opt)
(notice that this last branch does not even occur if vj and vl are adjacent).

Subcase 2 (c). If dk = 1, then vi and vj cannot be both included in the
vertex cover as such solution is not better than the one with vj and vk included
in the vertex cover and vi excluded from the vertex cover. Then either vi is
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excluded from the vertex and two vertices (vi andvj) are included in the vertex
cover, or vj is excluded from the vertex cover and all its neighbors (at least
three vertices) are included in the vertex cover. Correspondingly, the recursion
is at least T (opt) � T (opt − 2) + T (opt − 3) and the worst-case complexity is
O∗(1.3248opt).
Case 3. dj � 3 and there exists vi ∈ Γ (vj) with di = 1. We generate 2 branches
where either vi is excluded from the vertex cover and vj is included, or vj is
excluded from the vertex and all its neighbors are included. Correspondingly,
the recursion is at least T (opt) � T (opt − 1) + T (opt − 3) and the worst-case
complexity is O∗(1.4656opt).

Overall, the worst-case is attained in case 1 with complexity O∗(4opt/3) =
O∗(1.5874opt).

In what follows, we further strengthen the result of Proposition 4, showing that
max min vertex cover is FPT even when parameterized by the cardinality
of a maximum matching M of the input graph (recall that m � opt(G)).

Proposition 5. max min vertex cover can be solved in O∗(3m) where m is
the cardinality of a maximum matching of the input graph.

Proof. Consider a general graph G(V,E), and a maximum matching M ⊆ E
on G. All exposed vertices obviously form an independent set, that we denote
by S. We also denote, as previously, by V (M) the set of matched vertices.

We show that any feasible solution SOL(G) for max min vertex cover can
be unequivocally characterized by its subset of matched vertices. Consider any
subset SOL(G) ∩ V (M) of V (M) known to be the subset of a unknown feasible
solution SOL(G). There actually exists a single solution SOL(G) which admits
SOL(G) ∩ V (M) as subset of matched vertices. Indeed denote by Ŝ the subset
of S containing all exposed vertices incident to a matched vertex that does not
belong in SOL(G) ∩ V (M). Then, the whole set Ŝ must be part of SOL(G) in
order to make it feasible. Conversely, all exposed vertices that do not belong to Ŝ
cannot belong to SOL(G), because they would make the solution non minimal:
by definition, all of their neighbors already belong in the vertex cover.

Therefore, by identifying the subset OPT ∩ V (M), where OPT denotes a
maximum minimal vertex cover, one would be able to reconstruct the whole
solution OPT by simply adding to OPT∩V (M) all exposed vertices incident to
a matched vertex not in the vertex cover.

Finally, notice that for each edge of the matching M , any vertex cover (a
fortiori the optimal one) must take at least one endpoint of this edge. So, for
each edge, any solution can take one endpoint, or the other, or both endpoints,
that is three possibilities. Hence, there are at most 3m vertex covers in the
subgraph induced by the matched vertices.

Consider the following algorithm:

– compute a maximum matching M ;
– build all 3m possible vertex-covers Vi ⊆ V (M) among the matched vertices;
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– complete each of these vertex-covers by adding all vertices of S incident to
a vertex not in the vertex cover;

– output the maximal feasible solution.

It is clear that through the exhaustive search performed at step 2 of the algo-
rithm, the subset OPT ∩ V (M) will be found, and when completed by exposed
vertices at step 3, the optimal solution will be produced. Hence, an optimal
solution can be computed in O∗(3m), and the proof is concluded.

Taking into account that m � τ , the cardinality of a minimum vertex cover
of the input graph, the following corollary immediately holds.

Corollary 2. max min vertex cover parameterized by τ is FPT.

Let us now quickly point out how combination of Propositions 4 and 5 allows
us to handle interesting trade-offs between parameterization and approximation.
Indeed, we shall show that approximation ratios for max min vertex cover,
unachievable in polynomial time (unless an unlikely complexity condition holds),
can be achieved in parameterized time. This issue has been already studied
in [14–18], etc., for several problems, as min vertex cover, Steiner tree,
min edge dominating set, several restricted versions of min hitting set,
etc.

Revisit Proposition 5 and remark that if m < (log 1.5874/ log 3)opt(G) ≈
0.42opt(G), then the parameterized algorithm of Proposition 5 runs faster than
that of Proposition 4 while, if m � 0.42opt(G), any minimal vertex cover (a
fortiori the one of Proposition 3) achieves ratio greater than, or equal to, 0.42,
ratio “forbidden” in polynomial time. For instance, we can guarantee ratio 0.1 in
parameterized time less than O∗(1162opt), much smaller than O∗(1.5874opt), or
even, approximation ratio 0,4 in time less than O∗(1.552opt) that always remains
less than O∗(1.5874opt).

We conclude the section by showing that the same kind of trade-off can me
made combining Proposition 4 and Proposition 1 [5] in order to get approxima-
tion results unachievable in polynomial time through exponential algorithms run-
ning faster than the currently best known exact algorithms. Recall that Propo-
sition 1 in [5] claims that for any positive ε � 5, min max independent set is
(1 + ε)-approximable in time O∗(1.3351(1−(ε/168))n).

If opt(G) < 0.626(1 − (ε/168))n, then the algorithm of Proposition 4 com-
putes a maximum minimal vertex cover of G in time smaller than O∗(1.3351n),
which is the best worst-case complexity known for min max independent set
and, consequently, for max min vertex cover. Suppose now that opt(G) �
0.626(1− (ε/168))n. In this case the (1 + ε)-approximation algorithm of Propo-
sition 1 in [5] (indeed this algorithm can be seen as a kind of moderately ex-
ponential approximation schema) can be transformed a moderately exponential
approximation schema for max min vertex cover.

Denote by opt′(G) the size of a minimum dominating set in G and use the
algorithm of Proposition 1 [5] in order to get an (1+ε)-approximate independent
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dominating set S. Obviously, the set C = V \ S is a minimal vertex cover of G.
The approximation ratio of C is:

|C|
opt(G)

=
n− |S|

n− opt′(G)
� n− (1 + ε)opt′(G)

n− opt′(G)
(10)

The last expression in (10) decreases with opt′(G); since opt(G) � 0.626(1 −
(ε/168))n, opt′(G) � (0.374 + (0.626ε/168))n and setting it in the last term
of (10) we get after some easy but tedious algebra that |C|/opt(G) � 1 + ε′ for
some ε′ that only depends on ε.

Let us finally note, that the same reasoning can be applied even with respect
to future improved exact algorithms (just do the same analysis simply parame-
terizing the bases of the exponentials, i.e., using, for instance γn and δopt instead
of 1.3351n and 1.5874opt).
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