
Christos Kaklamanis
Kirk Pruhs (Eds.)

 123

LN
CS

 8
44

7

11th International Workshop, WAOA 2013
Sophia Antipolis, France, September 5–6, 2013
Revised Selected Papers

Approximation
and Online Algorithms

Lecture Notes in Computer Science 8447
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Christos Kaklamanis Kirk Pruhs (Eds.)

Approximation
and OnlineAlgorithms

11th International Workshop, WAOA 2013
Sophia Antipolis, France, September 5-6, 2013
Revised Selected Papers

13

Volume Editors

Christos Kaklamanis
University of Patras
Computer Technology Institute
and Press “Diophantus”
26504 Rio, Greece
E-mail: kakl@ceid.upatras.gr

Kirk Pruhs
University of Pittsburgh
210 South Bouquet Street
Pittsburgh, PA 15260, USA
E-mail: kirk@cs.pitt.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08000-0 e-ISBN 978-3-319-08001-7
DOI 10.1007/978-3-319-08001-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014940940

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 11th Workshop on Approximation and Online Algorithms (WAOA 2013)
focused on the design and analysis of algorithms for online and computationally
hard problems. Both kinds of problems have a large number of applications in a
wide variety of fields. WAOA 2013 took place in Sophia Antipolis, France, dur-
ing September 5–6, 2013. The workshop was part of the ALGO 2013 event that
also hosted ESA, WABI, IPEC, ALGOSENSORS, MASSIVE, and ATMOS. The
previous WAOA workshops were held in Budapest (2003), Rome (2004), Palma
de Mallorca (2005), Zurich (2006), Eilat (2007), Karlsruhe (2008), Copenhagen
(2009), Liverpool (2010), Saarbrücken (2011), and Leicester (2012). The pro-
ceedings of these previous WAOA workshops have appeared as LNCS volumes
2909, 3351, 3879, 4368, 4927, 5426, 5893, 6534, 7164, and 7846, respectively.

Topics of interest for WAOA 2013 were: algorithmic game theory, algorithmic
trading, coloring and partitioning, competitive analysis, computational advertis-
ing, computational finance, cuts and connectivity, geometric problems, graph
algorithms, inapproximability results, mechanism design, natural algorithms,
network design, packing and covering, paradigms for the design and analysis
of approximation and online algorithms, parameterized complexity, real-world
applications, and scheduling problems. In response to the call for papers, we
received 33 submissions. Each submission was reviewed by at least three refer-
ees. The submissions were mainly judged on originality, technical quality, and
relevance to the topics of the conference. Based on the reviews, the Program
Committee selected 14 papers. This volume contains final revised versions of
these papers.

We would also like to thank all the authors who submitted papers to WAOA
2013 as well as Ola Svensson, who gave an invited talk on “New Approaches
for Approximating TSP.” Furthermore, we are grateful to the local organizers of
ALGO 2013: Frédéric Cazals, Agnès Cortell, David Coudert, Olivier Devillers,
Joanna Moulierac, and Monique Teillaud (Chair).

March 2014 Christos Kaklamanis
Kirk Pruhs

Organization

Program Co-chairs

Christos Kaklamanis University of Patras and CTI, Greece
Kirk Pruhs University of Pittsburgh, USA

Program Committee

Vincenzo Bonifaci IASI-CNR, Italy
Niv Buchbinder Tel Aviv University, Israel
Matthias Englert University of Warwick, UK
Leah Epstein University of Haifa, Israel
Bruno Escoffier Université Paris Dauphine, France
Dimitris Fotakis National Technical University of Athens,

Greece
Fabrizio Grandoni University of Lugano, Switzerland
Anupam Gupta Carnegie Mellon University, USA
�Lukasz Jeż University of Wroc�law, Poland
Sungjin Im Duke University, USA
Christos Kaklamanis

(Co-chair) University of Patras and CTI, Greece
Bodo Manthey University of Twente, The Netherlands
Luca Moscardelli University of Chieti-Pescara, Italy
Benjamin Moseley Toyota Technological Institute at Chicago, USA
Viswanath Nagarajan IBM Research, USA
Debmalya Panigrahi Duke University, USA
Kirk Pruhs

(Co-chair) University of Pittsburgh, USA
Adi Rosen CNRS and Université Paris Diderot, France
Anastasios Sidiropoulos UIUC, USA
Rene Sitters Vrije Universiteit Amsterdam, The Netherlands
Kavitha Telikepalli Tata Institute of Fundamental Research, India
Kasturi Varadarajan University of Iowa, USA

Additional Reviewers

Marek Adamczyk
Haris Angelidakis
Marcin Bienkowski

Paul Bonsma
Denise Duma
Alina Ene

VIII Organization

Andreas Galanis
Laurent Gourves
Csanad Imreh
Nikos Karanikolas
Robert Kleinberg
Maria Kyropoulou
Asaf Levin
Nutan Limaye
George Mertzios

Jerome Monnot
Katarzyna Paluch
Dror Rawitz
Marc Renault
Bartosz Rybicki
Alejandro Salinger
Florian Sikora
Aravindan Vijayaraghavan

Table of Contents

Min-Sum 2-Paths Problems . 1
Trevor Fenner, Oded Lachish, and Alexandru Popa

Low Dimensional Embeddings of Doubling Metrics 12
Ofer Neiman

Degree-Constrained Graph Orientation: Maximum Satisfaction and
Minimum Violation . 24

Yuichi Asahiro, Jesper Jansson, Eiji Miyano, and Hirotaka Ono

On the max min vertex cover Problem . 37
Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos

On Fixed Cost k-Flow Problems . 49
MohammadTaghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, and
Zeev Nutov

Approximating the Quadratic Knapsack Problem on Special Graph
Classes . 61

Ulrich Pferschy and Joachim Schauer

Approximating the Sparsest k -Subgraph in Chordal Graphs 73
Rémi Watrigant, Marin Bougeret, and Rodolphe Giroudeau

Improved Approximation Algorithm for k-Level UFL with Penalties,
a Simplistic View on Randomizing the Scaling Parameter 85

Jaroslaw Byrka, Shanfei Li, and Bartosz Rybicki

Inapproximability Results for Graph Convexity Parameters 97
Erika M.M. Coelho, Mitre C. Dourado, and Rudini M. Sampaio

Continuum Armed Bandit Problem of Few Variables in High
Dimensions . 108

Hemant Tyagi and Bernd Gärtner

Approximability of Connected Factors . 120
Kamiel Cornelissen, Ruben Hoeksma, Bodo Manthey,
N.S. Narayanaswamy, and C.S. Rahul

Reordering Buffer Management with Advice . 132
Anna Adamaszek, Marc P. Renault, Adi Rosén, and Rob van Stee

X Table of Contents

Online Knapsack Revisited . 144
Marek Cygan and �Lukasz Jeż

Counting Approximately-Shortest Paths in Directed Acyclic Graphs 156
Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer

Author Index . 169

Min-Sum 2-Paths Problems

Trevor Fenner1, Oded Lachish1, and Alexandru Popa2

1 Birkbeck, University of London, London, UK
{trevor,oded}@dcs.bbk.ac.uk

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
popa@fi.muni.cz

Abstract. An orientation of an undirected graph G is a directed graph obtained
by replacing each edge {u, v} of G by exactly one of the arcs (u, v) or (v, u). In
the min-sum k-paths orientation problem, the input is an undirected graph G and
ordered pairs (si, ti), where i ∈ {1, 2, . . . , k}. The goal is to find an orientation
of G that minimizes the sum over every i ∈ {1, 2, . . . , k} of the distance from si
to ti.

In the min-sum k edge-disjoint paths problem the input is the same, however
the goal is to find for every i ∈ {1, 2, . . . , k} a path between si and ti so that
these paths are edge-disjoint and the sum of their lengths is minimum. Note that,
for every fixed k ≥ 2, the question of NP-hardness for the min-sum k-paths
orientation problem and the min-sum k edge-disjoint paths problem have been
open for more than two decades. We study the complexity of these problems
when k = 2.

We exhibit a PTAS for the min-sum 2-paths orientation problem. A by-product
of this PTAS is a reduction from the min-sum 2-paths orientation problem to the
min-sum 2 edge-disjoint paths problem. The implications of this reduction are:
(i) an NP-hardness proof for the min-sum 2-paths orientation problem yields an
NP-hardness proof for the min-sum 2 edge-disjoint paths problem, and (ii) any
approximation algorithm for the min-sum 2 edge-disjoint paths problem can be
used to construct an approximation algorithm for the min-sum 2-paths orientation
problem with the same approximation guarantee and only an additive polynomial
increase in the running time.

1 Introduction

In communications, Multihoming is the process of communicating through more than
one connection. The goal is to increase communication reliability. Now imagine that
each connection must be made between two distinct entities, for example, if a customer
has numerous internet providers, each with a distinct entry point that requires a connec-
tion to a distinct end-point, see [1,8]. This is the case we deal with here.

In order to optimize reliability when using multiple connections a natural goal is that
the channels are disjoint. We model the problem of determining whether such channels
exist with the k edge-disjoint paths problem, where the input is an instance consisting
of a graph and pairs of vertices {si, ti}, where i ∈ {1, 2, . . . , k}, and the goal is to find
k edge-disjoint paths between the k pairs {si, ti}. Robertson and Seymour proved in [7]
that, for fixed k, this problem is in P.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 1–11, 2014.
c© Springer International Publishing Switzerland 2014

2 T. Fenner, O. Lachish, A. Popa

However, just having k edge-disjoint paths is often not sufficient. A natural requisite
is that the paths found are optimized according to some condition. Such conditions
can be minimum maximal length or minimum sum of lengths. These conditions lead
to two optimization problems: the first is known as the min-max k edge-disjoint paths
problem; and the latter as the min-sum k edge-disjoint paths problem. In [6] Li et al.
show that the min-max k edge-disjoint paths problem is NP-hard, even when k = 2
and {s1, t1} = {s2, t2}. In contrast, the question of NP-hardness of the min-sum k
edge-disjoint paths problem for fixed k ≥ 2 has been open for more than twenty years.

An orientation of an undirected graph G is a directed graph obtained by replacing
each edge {u, v} of G by exactly one of the arcs (u, v) or (v, u). In the min-sum k-
paths orientation problem, the input instance is an undirected graph G and ordered
pairs (si, ti), where i ∈ {1, 2, . . . , k}. The goal is to find an orientation of G in which
the sum over all i ∈ {1, 2, . . . , k} of the distance from si to ti is minimized. The min-
sum k-paths orientation problem is a relaxation of the min-sum k edge-disjoint paths
problem in the following sense: if the requirement for a path between si and ti for
each i ∈ {1, 2, . . . , k} is replaced by the requirement for an unsplittable flow of size
1 from si to ti for each i ∈ {1, 2, . . . , k} and these flows may share edges if they are
in the same direction, then we get the min-sum k-paths orientation problem. We note
that the question of NP-hardness for the min-sum k-paths orientation problem, for fixed
k ≥ 2, has also been open for more than twenty years. In this paper we focus on the
min-sum 2-paths orientation problem and its relation with the min-sum 2 edge-disjoint
paths problem.

There have been a number of results for the min-sum k edge-disjoint paths problem.
Zhang and Zhao [10] have shown that in general graphs for general k the min-sum k
edge-disjoint paths problem is FPNP -complete. They gave a bicriteria approximation
algorithm for the problem. There have also been a number of results for the min-sum
2 edge-disjoint paths problem. Zhang and Zhao have shown that this problem has a
constant factor approximation. Kobayashi and Sommer [5] showed that the problem is
in P if G is planar and s1, t1, s2 and t2 are on at most two faces of the graph. Kammer
et al. [4] showed that it is in P if G is a chordal graph. For a comprehensive discussion
of results, see Kobayashi and Sommer [5].

Finally, the min-sum k-paths orientation problem has been studied by Hassin and
Megiddo [2]. There they showed that this problem is NP-hard for general k. They
also studied the min-max k paths-orientation problem. They proved that this problem
is NP-hard even for k = 2. In [3], Ito et al. also studied these two problems. They
showed that, for unrestricted k, the min-sum k-paths orientation problem does not have
a polynomial time algorithm with an approximation factor of 2 or less, unless P = NP.
They presented approximation algorithms for restricted variations of this problem, for
example, for certain classes of graphs, such as cacti.

In this paper, we exhibit a PTAS for the min-sum 2-paths orientation problem. A
by-product of this PTAS is a reduction from the min-sum 2-paths orientation problem
to the min-sum 2 edge-disjoint paths problem. The implications of this reduction are:
(i) that an NP-hardness proof for the min-sum 2-paths orientation problem yields an
NP-hardness proof for the min-sum 2 edge-disjoint paths problem, and (ii) that any
approximation algorithm for the min-sum 2 edge-disjoint paths problem can be used

Min-Sum 2-Paths Problems 3

to construct an approximation algorithm for the min-sum 2-paths orientation problem
with the same approximation guarantee and only an additive polynomial increase in
the running time. Our results suggest that if indeed the min-sum 2-paths orientation
problem is NP-hard, then proving this may be more difficult than it seems because
of the implication for the min-sum 2 edge-disjoint paths problem. The reduction also
implies, according to results by Kobayashi and Sommer [5] and Kammer et al. [4] for
the min-sum 2 edge-disjoint paths problem, that the orientation problem is in P if G is
chordal or if it is planar and s1, t1, s2 and t2 are on at most two faces of the graph.

One of the central ingredients we use is a structural lemma that states that for any
given input instance (G, s1, t1, s2, t2), if there exists an orientation in which the dis-
tances from s1 to t1 and from s2 to t2 are both finite there exists an optimal orientation
with two min-sum directed paths, one from s1 to t1 and the other from s2 to t2, such
that either (i) these directed paths are arc-disjoint, or (ii) the directed paths are not arc-
disjoint and their common edges form a directed-path. We obtain the reduction to the
min-sum 2 edge-disjoint paths problem by showing that if, on the same input instance,
we execute an algorithm for min-sum 2 edge-disjoint problem and an algorithm that
works if (ii) holds, then the best result is optimal. We obtain the PTAS in a similar
manner, by showing that a PTAS exists for instances on which (i) holds.

2 Preliminaries

We use [k] to denote the set {1, 2, . . . , k}. An undirected graph is an ordered pair G =
(V,E), where V is a set of vertices and E is a set of edges, each edge being a subset
of V of size two. A directed graph is an ordered pair G = (V,E), where V is a set of
vertices and E is a set of ordered pairs of vertices of V called arcs. We use the notation
V (G) for the set of vertices of G or G and E(G) for the set of edges of G, and E(G)
for the set of arcs of G. When clear from the context we use n instead of |V (G)|.

Definition 1. [Orientation] An orientation of an undirected graph G = (V,E) is a
directed graph H = (V,E) such that, for every {u, v} ∈ E, either (u, v) ∈ E or
(v, u) ∈ E, but not both. We use the notation HG to denote that H is an orientation
of G.

A path P or a dipath P in G or G, respectively, is a tuple (u1, u2, . . . , uk) ∈ V k

such that for every i ∈ [k − 1] we have that {ui, ui+1} ∈ E(G) or (ui, ui+1) ∈
E(G), respectively, and u1, u2, . . . , uk are all distinct. The path (u, . . . , v) in G is a
path between u and v. The dipath (u, . . . , v) in G is a dipath from u to v. We use
the notation Pu,v to indicate that the path is between u and v, and the notation P u,v to
indicate that the dipath is from u to v. A cycle in G is a tupleC = (u1, u2, . . . , uk, u1) ∈
V k+1 such that (u1, u2, . . . , uk) is a path and {uk, u1} ∈ E(G). Note that we often
consider a path to be a subgraph.

A path P ′ = (u1, . . . , u�) in a graph is a subpath of the path P = (v1, . . . , vk) if
there exists i ∈ [k− �+1] such that (u1, u2, . . . , u�) = (vi, vi+1, . . . , vi+�−1). A graph
(V ′, E′) is a subgraph of a graph (V,E) if V ′ ⊆ V and E′ ⊆ E.

The length of P or P , denoted by len(P) or len(P), respectively, is k − 1. The
distance between u and v in V (G), denoted by distG(u, v), is the length of a shortest

4 T. Fenner, O. Lachish, A. Popa

path between u and v if such a path exists, and distG(u, v) = ∞ otherwise. The dis-
tance between a pair of paths P and P ′ in G, denoted by distG(P, P

′), is the minimal
distance between a vertex in V (P) and a vertex in V (P ′).

The distance from u ∈ V (G) to v ∈ V (G) in a directed graph G, denoted by
distG(u, v), is the length of a shortest dipath from u to v if such a dipath exists, and
distG(u, v) =∞ otherwise. When the graph under consideration is clear from context,
we simply write dist(u, v).

Definition 2. [BG(v, x)] Let G be a graph, v ∈ V (G) and x > 0. Then BG(v, x) is
the subset of E(G) containing all the edges {u,w} ∈ E(G) such that distG(v, u) < x
and distG(v, w) < x.

Definition 3. [Instance] An instance is an ordered tuple (G, s1, t1, s2, t2) such that G
is an undirected graph and s1, t1, s2 and t2 are vertices in V (G).

Problem 1 (Min-Sum 2 Edge-Disjoint Paths). Given an instance (G, s1, t1, s2, t2), find
edge disjoint paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) + len(Ps2,t2) is minimum.

2.1 The Min-Sum 2 Paths Orientation Problem

Problem 2 (Min-Sum 2 Paths Orientation). Given an instance (G, s1, t1, s2, t2), find an
orientation HG of G that minimizes distHG

(s1, t1)+ distHG
(s2, t2). We call such an

orientation an optimal orientation.

Definition 4. [OPT] Let (G, s1, t1, s2, t2) be an instance. We define
OPT (G, s1, t1, s2, t2) = distHG

(s1, t1) + distHG
(s2, t2) for any optimal ori-

entation HG. We write OPT when the instance under consideration is clear from the
context.

We make the following definition in order to recast the problem in terms of undirected
graphs.

Definition 5. [Non-conflicting paths and optimal paths] Let G be an undirected
graph and x1, y1, x2, y2 ∈ V (G). Paths Px1,y1 and Px2,y2 in G are non-conflicting
if there exists an orientation HG in which P x1,y1 = Px1,y1 and P x2,y2 =
Px2,y2 and are optimal if they are non-conflicting and len(Px1,y1) + len(Px2,y2) =
OPT (G, x1, y1, x2, y2) for the instance (G, x1, y1, x2, y2).

Observe that for any optimal orientation HG for an instance (G, s1, t1, s2, t2) any two
shortest dipaths (s1, . . . , t1) and (s2, . . . , t2) in HG are an optimal pair of paths and in
particular a non-conflicting pair of paths. We note that checking whether two paths are
non-conflicting can easily be done in polynomial time. By the following observation,
we see that, in order to show that OPT (G, s1, t1, s2, t2) ≤ k, it is sufficient to find
non-conflicting paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) + len(Ps2,t2) ≤ k.

Observation 1. Let (G, s1, t1, s2, t2) be an instance. If Ps1,t1 and Ps2,t2 are non-
conflicting, then OPT (G, s1, t1, s2, t2) ≤ len(Ps1,t1) + len(Ps2,t2).

Min-Sum 2-Paths Problems 5

Without loss of generality, we always make the following assumption:

Assumption 2. For every given instance (G, s1, t1, s2, t2), we assume thatOPT <∞,
G is connected and that s1, t1, s2, t2 are distinct.

We may make this assumption since it is easy to decide whether OPT = ∞ and the
problem on an instance (G, s1, t1, s2, t2) such that s1, t1, s2 and t2 are not distinct can
be easily reduced to the problem on an instance (G′, s′1, t

′
1, s

′
2, t

′
2) where s′1, t

′
1, s

′
2 and

t′2 are distinct.

3 Algorithm Overview and Definitions

We start by giving an algorithm that finds an optimal pair of paths for a restricted set of
instances. Afterwards we explain how to obtain our claimed results by extending this
algorithm.

Let (G, s1, t1, s2, t2) be an instance that has an optimal pair of edge-disjoint paths
Ps1,t1 and Ps2,t2 such that dist(Ps1,t1 , Ps2,t2) > dist(s1, t1)/2. Consequently, any
shortest path between s1 and t1 does not intersect Ps2,t2 . For such an instance finding
an optimal pair of paths can be done as follows: (i) find a shortest path P ′

s1,t1 (ii) let
G′ be the graph resulting from removing the edges of P ′

s1,t1 from G, and (iii) find a
shortest path P ′

s2,t2 in G′. We refer to this as the simple algorithm.
Observe that G′ contains all the edges of Ps2,t2 , since P ′

s1,t1 and Ps2,t2 are edge dis-
joint. Hence, len(P ′

s2,t2) ≤ len(Ps2,t2). SinceP ′
s1,t1 is also a shortest path len(P ′

s1,t1) ≤
len(Ps1,t1). Consequently, P ′

s1,t1 and P ′
s2,t2 are an optimal pair of paths.

We have demonstrated that, if an instance has optimal pair that are sufficiently far
from each other, then the problem of finding an optimal pair of paths requires only
polynomial time. The distance between the paths of an optimal pair is crucial for our
results. Hence, we make the following definition.

Definition 6. [Δ(G, s1, t1, s2, t2) and δ(G, s1, t1, s2, t2)] Let (G, s1, t1, s2, t2) be an
instance. We define Δ(G, s1, t1, s2, t2) and δ(G, s1, t1, s2, t2) to be the maximum and
minimum, respectively, of distG(Ps1,t1 , Ps2,t2)/OPT over all optimal pairs of paths
Ps1,t1 and Ps2,t2 . We write just Δ and δ when the instance under consideration is clear
from the context.

Obviously, δ ≤ Δ. Note that if Δ(G, s1, t1, s2, t2) > 1/2, then we can use the simple
algorithm to find an optimal pair of paths. For our results we need something stronger.
We next describe an algorithm, similar in essence to the simple algorithm, which for
input ε > 0 and instance (G, s1, t1, s2, t2) finds an optimal pair of paths in time nO(1/ε)

if ε < Δ. Our final algorithm is a slight variation of this.
Let ε > 0 such that ε < Δ and suppose that Ps1,t1 and Ps2,t2 are an optimal pair

of paths Δ · OPT apart. Suppose also that we have a set of h = O(1/ε) vertices
u1, u2, . . . , uh ∈ V (Ps1,t1), where u1 = s1, uh = t1 and distPs1,t1

(ui, ui+1) <
ε·OPT for each i ∈ [h−1]. Now apply the following algorithm, which we call the basic

algorithm: (i) find a shortest pathP ′
s1,t1 in the graph

(
V (G),

⋃
i∈[h] BG(ui, ε · OPT)

)
,

(ii) find a shortest path P ′
s2,t2 in the graph

(
V (G), E(G) \ E(P ′

s1,t1)
)
. We show that

P ′
s1,t1 and P ′

s2,t2 are an optimal pair of paths.

6 T. Fenner, O. Lachish, A. Popa

First observe that all the edges of Ps1,t1 are contained in
⋃

i∈[h] BG(ui, ε · OPT)

and hence len(P ′
s1,t1) ≤ len(Ps1,t1). Since ε < Δ, by Definition 6, Ps2,t2 and

BG(ui, ε · OPT) are edge-disjoint for each i ∈ [h]. Thus, P ′
s1,t1 and Ps2,t2 are also

edge-disjoint. It follows, from the simple algorithm, that P ′
s1,t1 and P ′

s2,t2 are an opti-
mal pair of paths.

Therefore for the rest of this section we assume that ε ≥ Δ. In order to deal with
this case, we now prove a structural result that states that any non-trivial instance is of
at least one of the following two types.

Definition 7. [Disjoint Instance and Intersecting Instance] An instance
(G, s1, t1, s2, t2) is disjoint if it has an optimal pair of paths Ps1,t1 and Ps2,t2

that are edge-disjoint. An instance (G, s1, t1, s2, t2) is intersecting if it has an optimal
pair of paths Ps1,t1 and Ps2,t2 that are not edge-disjoint and whose common edges
form a subpath of both Ps1,t1 and Ps2,t2 .

The proof of the following lemma is left for the full version.

Lemma 1. Let (G, s1, t1, s2, t2) be an instance for which OPT < ∞, then
(G, s1, t1, s2, t2) is disjoint or intersecting (or both).

Suppose that Ps1,t1 and Ps2,t2 are an optimal pair of paths that either: (i) are edge-
disjoint and dist(Ps1,t1 , Ps2,t2) = Δ ·OPT , or (ii) all their common edges form a path
Pm0,m1 . In case (i) let m0 and m1 be such that dist(m0,m1) = δ · OPT where m0 is
on one of the paths Ps1,t1 and Ps2,t2 and m1 is on the other. We note that m0 = m1 if
δ = 0. Since there are less than n2 potential pairs, we can assume we have one since we
can try each pair in turn. The advantage of knowing such a pair {m0,m1} is that every
shortest path between m0 and m1 is edge disjoint from both Ps1,t1 and Ps2,t2 . We call
such a pair a pivot. More formally:

Definition 8. [Pivot] Let (G, s1, t1, s2, t2) be an instance. A pivot is a pair {m0,m1}
such that one of the following holds:

1. (G, s1, t1, s2, t2) is disjoint and distG(m0,m1) = δ · OPT for some optimal pair
of edge-disjoint paths Ps1,t1 and Ps2,t2 , where m0 is in one of these paths and m1

is in the other, or
2. (G, s1, t1, s2, t2) is intersecting with optimal paths whose common edges form a

path Pm0,m1 .

If Case 1 holds, then {m0,m1} is a disjoint-pivot, and if Case 2 holds, then {m0,m1}
is an intersecting-pivot. In both cases Pm0,m1 is necessarily a shortest path.

Let {m0,m1} be a pivot and Pm0,m1 be a shortest path. The naive way of proceeding is
to use a min-cost single source flow algorithm for a flow of size 4 as follows: (i) let G′

be obtained from G by adding a vertex a and four edges: two between a and m0 and two
between a and m1; (ii) solve the min-cost single source flow with a being the source,
s1, t1, s2 and t2 being the targets, and all edges of G′ having capacity and cost 1. This
will result in four min-sum edge-disjoint paths Px1,m0 , Px2,m0 , Px3,m1 , Px4,m1 , where
{x1, x2, x3, x4} = {s1, t1, s2, t2}. Now the natural conjecture is that a non-conflicting

Min-Sum 2-Paths Problems 7

m1 s1

m0 s2 t1

t2

Fig. 1. [Naive Attempt]

pair of paths as required can be found in the graph consisting of all vertices and edges
of these four paths and of Pm0,m1 . However, this idea does not work if the configuration
obtained is like that in Figure 1. Thus, a different strategy is required. The strategy we
use in Section 4 is to first find a min-sum edge-disjoint pair Ps1,mi , Pt2,m1−i , where
i ∈ {0, 1} and then a min-sum edge-disjoint pair Ps2,mj , Pt1,mj−i , where j ∈ {0, 1}.
We shall show that the graph consisting of the vertices and edges of these four paths
and of Pm0,m1 is sufficient for finding the required non-conflicting pair of paths.

In Section 5, we introduce the algorithm that works when ε < Δ and in Section 6
we prove the main results.

4 Algorithm 1

We introduce here the algorithm for the case that Δ is small (Δ ≤ ε) and hence δ is
even smaller.

Theorem 3. Let P ∗
s1,t1 and P ∗

s2,t2 be the paths returned by Algorithm 1 on in-
stance (G, s1, t1, s2, t2). Then P ∗

s1,t1 and P ∗
s2,t2 are non-conflicting and len(P ∗

s1,t1) +

Algorithm 1
Input: instance (G, s1, t1, s2, t2)

– Iterate over all pairs of vertices {m0,m1} ⊆ V
1. Pm0,m1 ←− an arbitrary shortest path between m0 and m1

2. G′ ←− (V (G), E(G) \ E(Pm0,m1))
3. In G′, find min-sum edge-disjoint paths P ′

s1,mi
and P ′

t2,m1−i
, where i ∈ {0, 1}

4. In G′, find min-sum edge-disjoint paths P ′
s2,mj

and P ′
t1,m1−j

, where j ∈ {0, 1}
5. Define Q to be the undirected graph such that

(a) V (Q) = V (P ′
s1,mi

)∪ V (P ′
t2,m1−i

)∪ V (P ′
s2,mj

)∪ V (P ′
t1,m1−j

)∪ V (Pm0,m1)
(b) E(Q) = E(P ′

s1,mi
)∪E(P ′

t2,m1−i
)∪E(P ′

s2,mj
)∪E(P ′

t1,m1−j
)∪E(Pm0,m1)

6. Using the method explained in Lemma 2, find non-conflicting paths Pm0,m1
s1,t1

and
Pm0,m1
s2,t2

in Q such that

len(Pm0,m1
s1,t1

) + len(Pm0,m1
s2,t2

) ≤
len(P ′

s1,mi
) + len(P ′

t2,m1−i
) + len(P ′

s2,mj
) + len(P ′

t1,m1−j
) + 2 · len(Pm0,m1)

Output: The paths Pm0,m1
s1,t1

and Pm0,m1
s2,t2

that minimize len(Pm0,m1
s1,t1

) + len(Pm0,m1
s2,t2

)

8 T. Fenner, O. Lachish, A. Popa

len(P ∗
s2,t2) ≤ (1 + 2δ) ·OPT . The running time of Algorithm 1 is bounded by a poly-

nomial function of n.

[Note that if the input instance is intersecting, then δ = 0 and hence Algorithm 1 returns
an optimal pair of paths.]

Proof. Finding the paths in Steps 3 and 4 can be done by reducing the problem to find-
ing edge-disjoint paths from a single vertex as follows. Add to the graph G′, computed
in Step 2, a vertex a and edges {a,m0} and {a,m1}. Then find a pair of min-sum edge-
disjoint paths each from a to s1 and t2 in Step 3 and s2 and t1 in Step 4. According to
Yang et al. [9] this requires a running time of O(n2). By Lemma 2 below, Step 6 re-
quires a running time that is polynomial in n. Since all other steps also require at most
a polynomial in n running time and there are fewer than n2 iteration of Steps 1 to 6, the
overall running time is polynomial in n.

Suppose that {m0,m1} is a pivot with associated optimal pair of paths Ps1,t1 and
Ps2,t2 and that Pm0,m1 is the shortest path found in Step 1. Let ξ = len(P ′

s1,mi
) +

len(P ′
t2,m1−i

) + len(P ′
s2,mj

) + len(P ′
t1,m1−j

) + 2 · len(P ′
m0,m1

).
As noted earlier, when {m0,m1} is a disjoint-pivot, then Pm0,m1 does not share any

edges with Ps1,t1 and Ps2,t2 . Consequently, the paths found Step 3 and 4 have overall
at most OPT edges. Hence, ξ ≤ OPT · (1 + 2δ). By Lemma 2, the paths Pm0,m1

s1,t1 and
Pm0,m1

s2,t2 found in Step 6 are non-conflicting and len(Pm0,m1

s1,t1) + len(Pm0,m1

s2,t2) ≤ ξ ≤
(1 + 2δ) · OPT .

If {m0,m1} is an intersecting-pivot, then by definition, all the edges that Pm0,m1

shares with Ps1,t1 or Ps2,t2 are edges common to both. Consequently, the paths found
in Step 3 and 4 have overall at most OPT − 2 · len(Pm0,m1) edges. Hence, ξ ≤ OPT .
In this case, by Lemma 2,the paths Pm0,m1

s1,t1 and Pm0,m1

s2,t2 found in Step 6 are non-
conflicting and len(Pm0,m1

s1,t1) + len(Pm0,m1

s2,t2) ≤ ξ. Consequently, since ξ ≤ OPT ,
these paths are an optimal pair of paths.

The proof of the following lemma is left for the journal version.

Lemma 2. Let (G, s1, t1, s2, t2) be the input to Algorithm 1. Assume that Q, P ′
t1,mi

,
P ′
t2,m1−i

, P ′
s2,mj

, P ′
t1,m1−j

and Pm0,m1 are as computed by Algorithm 1 in an it-
eration using {m0,m1}. Let ξ = len(P ′

s1,mi
) + len(P ′

t2,m1−i
) + len(P ′

s2,mj
) +

len(P ′
t1,m1−j

) + 2 · len(Pm0,m1). Then there exists a procedure that runs in time
polynomial in n that finds non-conflicting paths Pm0,m1

s1,t1 and Pm0,m1

s2,t2 in Q with
len(Pm0,m1

s1,t1) + len(Pm0,m1

s2,t2) ≤ ξ.

5 Algorithm 2

The input to Algorithm 2 consists of an instance (G, s1, t1, s2, t2), γ > 0 and d ∈ [n].
The additional parameter d is required for using this algorithm in both the additive and
multiplicative approximation modes. We prove here that, if γ ·OPT ≤ γd ≤ Δ ·OPT ,
then Algorithm 2 returns an optimal pair of paths in time (n/(γd))O(1/γ) · poly(n).

Algorithm 2 is a variation of the basic algorithm described in Section 3, which works
when the input instance has an optimal pair of paths that are far from each other. It is

Min-Sum 2-Paths Problems 9

used because it has a better running time when OPT is large, which is essential for the
additive approximation. We next explain how it differs from the basic algorithm.

Suppose that the input (G, s1, t1, s2, t2) satisfies γ ·OPT ≤ γd ≤ Δ ·OPT and that
Ps1,t1 andPs2,t2 are an optimal pair of paths that areΔ·OPT apart. Recall that the basic
algorithm, required finding specific vertices u1, u2, . . . , uh in Ps1,t1 . These vertices can
be found via exhaustive search over all relevant subsets of V (G). Algorithm 2 is almost
the same as the basic algorithm except that the vertices u1, u2, . . . , uh are selected from
a subset of V (G), which we call representatives, and this subset may be significantly
smaller than V (G). The relevant parameters for choosing this set are γ and d.

A set of representatives S has the property that every vertex in V (G) is very close to
a vertex in S. Consequently, the approach used in the basic algorithm will work when
we use representatives. We now formally define the set of representatives and prove that
such a set always exists. We then present the algorithm and prove its correctness.

Definition 9. [RepG(�)] Given G and � > 0, let RepG(�) be an arbitrary subset
of V (G) such that: (i) for every u ∈ V (G), there exists v ∈ RepG(�) such that
dist(u, v) < �; and (ii) |RepG(�)| ≤ 2n/�.

Lemma 3. For every connected graph G and � > 0, there exists a set RepG(�) satis-
fying Definition 9.

Proof. Initially set RepG(�) = {u}, where u is an arbitrary vertex from V (G). Af-
terwards add vertices to RepG(�) in the following manner. If there is a vertex in
V (G) \ RepG(�) whose distance from every other vertex in RepG(�) is greater than
�, then add it to RepG(�), otherwise stop. This process eventually ends since V (G) is
finite. Every vertex in V (G) has distance not exceeding � to some vertex in RepG(�)
because either it is in the set or it was not added. Thus, the minimum distance be-
tween any pair of distinct vertices in RepG(�) is �. Therefore, since G is connected,
if |RepG(�)| > 1, then for all v ∈ RepG(�) there are at least ��/2� distinct vertices
(including v itself) whose distance from v is less than their distance to any other vertex
in RepG(�). Consequently, |RepG(�)| ≤ 2n/�.

Algorithm 2
Input: an instance (G, s1, t1, s2, t2), γ > 0 and d ∈ [n]

1. P ∗
s1,t1 ←− ∅, P ∗

s2,t2 ←− ∅
2. Iterate over all S∗ ⊆ RepG(γd/4) such that |S∗| ≤ 	8/γ

(a) P ′
s1,t1 ←− an arbitrary shortest path in

(
V (G),

⋃
v∈S∗∪{s1,t1} BG(v, γd/2)

)
be-

tween s1 and t1, if one exists, and ∅ otherwise
(b) P ′

s2,t2 ←− an arbitrary shortest path in (V,E(G)\E(P ′
s1,t1)) path between s2 and t2,

if one exists, and ∅ otherwise
(c) If P ∗

s1,t1 and P ∗
s2,t2 are empty, then P ∗

s1,t1 ←− P ′
s1,t1 , P ∗

s2,t2 ←− P ′
s2,t2

(d) If P ′
s1,t1 and P ′

s2,t2 are both non-empty and len(P ′
s1,t1)+len(P ′

s2,t2) < len(P ∗
s1,t1)+

len(P ∗
s2,t2), then P ∗

s1,t1 ←− P ′
s1,t1 , P ∗

s2,t2 ←− P ′
s2,t2

Output: P ∗
s1,t1 , P

∗
s2,t2

10 T. Fenner, O. Lachish, A. Popa

Theorem 4. Let γ > 0 and d ∈ [n]. Assume that Algorithm 2 is executed with param-
eters (G, s1, t1, s2, t2), γ and d. If (G, s1, t1, s2, t2) is disjoint and γ · OPT ≤ γd ≤
Δ · OPT , then Algorithm 2 will return an optimal pair of paths. The running time of
Algorithm 2 is (n/(γd))O(1/γ) · poly(n).

Proof. The running time follows, since the iteration in Step 2 is executed O(n/(γd))
choose O(1/γ) times. The other steps in the algorithm only increase the running time
by a multiplicative factor that is polynomial in n.

Let Ps1,t1 , Ps2,t2 be an optimal pair such that dist(Ps1,t1 , Ps2,t2) ≥ Δ ·OPT ≥ γd.
Since |V (Ps1,t1)| ≤ OPT ≤ d, by Lemma 3, there exists U = RepPs1,t1

(γd/4),
where |U | ≤ �8/γ�. Consider RepG(γd/4) as selected in the execution of Algo-
rithm 2. For each u ∈ U , by Definition 9, we can choose qu ∈ RepG(γd/4) such
that distG(qu, u) < γd/4. Let Q = {qu | u ∈ U}, then clearly |Q| ≤ |U |. Step 2 of
Algorithm 2 checks every subset of RepG(γd/4) of size at most �8/γ�. Hence S∗ = Q
for some iteration of Step 2. Immediately after executing the iteration of Step 2 where
S∗ = Q, let P ′

s2,t2 and P ′
s1,t1 be the paths found in Steps 2a and 2b, respectively.

We observe that, by the definition of U , for every vertex v ∈ V (Ps1,t1) there exists
a vertex u ∈ U such that dist(v, u) ≤ γd/4. By the choice of Q, for every u ∈ U there
exists q ∈ Q such that dist(qu, u) ≤ γd/4. Consequently, by the triangle inequality,
for every vertex v ∈ V (Ps1,t1) there exists a vertex qu ∈ Q such that dist(v, qu) <
γd/2. Hence, since Q = S∗, E(Ps1,t1) ⊆

⋃
v∈S∗∪{s1,t1} BG(v, γd/2) and therefore

len(P ′
s1,t1) ≤ len(Ps1,t1).

We also observe that by triangle inequality, Ps2,t2 and
⋃

v∈S∗∪{s1,t1} BG(v, γd/2)

are edge-disjoint since γd ≤ Δ · OPT and dist(qu, Ps1,t1) ≤ γd/4, for every qu ∈
Q. Thus, P ′

s1,t1 and Ps2,t2 are edge-disjoint. It follows as in the proof for the basic
algorithm, in Section 3 following Definition 6, that P ′

s1,t1 and P ′
s2,t2 are an optimal pair

of paths.

6 Main Results

We start this section by proving the reduction from the min-sum 2-paths orientation
problem to the min-sum 2 edge-disjoint paths problem. Afterwards we prove the ad-
ditive approximation result and we conclude the section by proving the multiplicative
approximation result.

Theorem 5. If there exists an approximation algorithm for the min-sum 2 edge-disjoint
paths problem with time complexity T (n), then there exists an algorithm for the min-
sum 2-paths orientation problem with time complexity T (n) + poly(n) and the same
quality of approximation.

Proof. Given an instance (G, s1, t1, s2, t2), we solve the min-sum 2-paths orientation
problem as follows: (i) execute Algorithm 1 with input (G, s1, t1, s2, t2); (ii) execute
the approximation algorithm for the min-sum 2 edge-disjoint paths problem with input
(G, s1, t1, s2, t2); and then (iii) return an arbitrary best solution.

If the input instance is intersecting then, by Theorem 3, Algorithm 1 returns an opti-
mal pair of paths. If the input instance is not intersecting then, by Lemma 1, it is disjoint.

Min-Sum 2-Paths Problems 11

So G has an optimal pair of edge-disjoint paths. Thus, the approximation algorithm for
the min-sum 2 edge-disjoint paths returns the required pair of paths.

Theorem 6. There exists an algorithm that given an instance (G, s1, t1, s2, t2) and
α > 0, returns non-conflicting paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) +

len(Ps2,t2) ≤ OPT + 2αn, in time (1/α)Õ(1/α) · poly(n).
Proof. To obtain the required paths we perform the following steps: (i) execute
Algorithm 1 with input (G, s1, t1, s2, t2); (ii) execute Algorithm 2 with input
(G, s1, t1, s2, t2), α and n; and then (iii) return an arbitrary best solution.

The bound on the running time is immediate from Theorem 3 and Theorem 4. By
Theorem 3, Algorithm 1 returns a pair of non-conflicting paths P ∗

s1,t1 and P ∗
s2,t2 whose

sum of lengths does not exceed (1 + 2δ) · OPT . Note that if δ > 0, then OPT ≤ n.
Thus, if δ · OPT ≤ αn, then (1 + 2δ) · OPT ≤ OPT + 2αn and hence the theorem
holds when δ · OPT ≤ αn. Suppose that δ · OPT > αn and therefore, α · OPT ≤
αn ≤ δ ·OPT ≤ Δ·OPT and hence by Theorem 4, Algorithm 2 will return an optimal
pair of paths. Consequently, the theorem holds in general.

The proof of the following theorem is left for the full version.

Theorem 7. There exists an algorithm that, given an instance (G, s1, t1, s2, t2) and
γ > 0, returns non-conflicting paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) +
len(Ps2,t2) ≤ (1 + 2γ) ·OPT , in time (n/(γ · OPT))O(1/γ) · poly(n).

References

1. Han, J., Jahanian, F.: Impact of path diversity on multi-homed and overlay networks. In: DSN
2004, p. 29. IEEE Computer Society (2004)

2. Hassin, R., Megiddo, N.: On orientations and shortest paths. Linear Algebra Appl. 114–115,
589–602 (1989)

3. Ito, T., Miyamoto, Y., Ono, H., Tamaki, H., Uehara, R.: Route-enabling graph orienta-
tion problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 403–412. Springer, Heidelberg (2009)

4. Kammer, F., Tholey, T.: The k-disjoint paths problem on chordal graphs. In: Paul, C., Habib,
M. (eds.) WG 2009. LNCS, vol. 5911, pp. 190–201. Springer, Heidelberg (2010)

5. Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. In: Dong, Y., Du,
D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 293–302. Springer, Heidelberg
(2009)

6. Li, C., McCormick, T.S., Simich-Levi, D.: The complexity of finding two disjoint paths with
min-max objective function. Discrete Appl. Math. 26(1), 105–115 (1989)

7. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb.
Theory Ser. B 63(1), 65–110 (1995)

8. Vasudevan, V., Andersen, D.G., Zhang, H.: Understanding the AS-level path disjointness
provided by multi-homing. Technical Report CMU-CS-07-141. Carnegie Mellon University
(2007)

9. Yang, B., Zheng, S.Q.: Finding min-sum disjoint shortest paths from a single source to all
pairs of destinations. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959,
pp. 206–216. Springer, Heidelberg (2006)

10. Zhang, P., Zhao, W.: On the complexity and approximation of the min-sum and min-max
disjoint paths problems. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS,
vol. 4614, pp. 70–81. Springer, Heidelberg (2007)

Low Dimensional Embeddings of Doubling Metrics

Ofer Neiman

Department of Computer Science, Ben-Gurion University of the Negev, Israel
neimano@cs.bgu.ac.il

Abstract. We study several embeddings of doubling metrics into low dimen-
sional normed spaces, in particular into �2 and �∞. Doubling metrics are a robust
class of metric spaces that have low intrinsic dimension, and often occur in ap-
plications. Understanding the dimension required for a concise representation of
such metrics is a fundamental open problem in the area of metric embedding.
Here we show that the n-vertex Laakso graph can be embedded into constant
dimensional �2 with the best possible distortion, which has implications for pos-
sible approaches to the above problem.

Since arbitrary doubling metrics require high distortion for embedding into �2
and even into �1, we turn to the �∞ space that enables us to obtain arbitrarily small
distortion. We show embeddings of doubling metrics and their ”snowflakes” into
low dimensional �∞ space that simplify and extend previous results.

1 Introduction

In this paper we study embeddings of doubling metric spaces into low dimension
normed spaces. A metric space (X, d) has doubling constant λ if any ball can be cov-
ered by λ balls of half its radius. A family of metrics is called doubling if the doubling
constant of every member is bounded by some universal constant. The past decade
has seen a surge of interest in doubling metrics, mainly because numerous algorithmic
tasks are (approximately) tractable in such metrics, e.g. routing in networks [CGMZ05],
low stretch spanners [GR08], nearest neighbor search and approximate distance oracles
[HPM06,GK11], traveling salesperson problem [BGK12] and more.

Embedding into normed spaces is a very useful paradigm for representing and ana-
lyzing data. Since the cost of many data processing tasks depend exponentially on the
dimension (the ”curse of dimensionality”), it is often crucial to obtain a low dimension
in the host space. The doubling constant of the metric captures in some sense the intrin-
sic dimension of the metric, and the logarithm of the doubling constant is known as the
doubling dimension [GKL03]. Indeed, there are numerous results on low dimensional
embedding of doubling metrics, and in what follows we review some of them. Recall
that an embedding of a metric space (X, d) into �Dp is a map f : X → R

D, and the
distortion of f is defined as

max
x �=y∈X

{
‖f(x)− f(y)‖p

d(x, y)

}
· max
x �=y∈X

{
d(x, y)

‖f(x)− f(y)‖p

}
.

Several results only hold for a ”snowflake” version of the metric: The 1− α snowflake
of (X, d) is the metric (X, d1−α) with 0 < α < 1 (that is, every distance is raised to
power 1− α).

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 12–23, 2014.
c© Springer International Publishing Switzerland 2014

Low Dimensional Embeddings of Doubling Metrics 13

Euclidean Embeddings: Assouad [Ass83] showed that if (X, d) is λ-doubling then
(X, d1−α) can be embedded into constant dimensional Euclidean space with constant
distortion, where the constants depend only on λ and on α. He conjectured that such
a result is possible also when α = 0 (i.e. the original metric), but this was disproved
by Semmes [Sem96]. In the computer science community, [GKL03] gave a compre-
hensive study on embedding doubling metrics. Among other results, they showed that
n-point doubling metric spaces can be embedded with tight distortion O(

√
logn) into

Euclidean space (in contrast with arbitrary metrics that may require Ω(logn) distortion
[LLR95]). [KLMN05] showed an embedding with optimal dependence on the dou-
bling constant (the lower bound was given by [JLM09]). The ”price” paid for obtaining
optimal distortion is that the dimension of all these embeddings is at least Ω(log n).
Following the intuition that the doubling dimension should be related to the dimension
of the host space, [ABN08] showed that for any ε > 0, λ-doubling metrics can be
embedded into O((log λ)/ε) dimensional Euclidean space with distortion O(log1+ε n).
Both [ABN08,CGT10] exhibited a tradeoff between distortion and dimension: as the
dimension ranges from O(log logn) to O(log n), the distortion ranges from O(log n)
to O(

√
logn). However, the following is still open:

Question 1. Does every doubling metric on n points embeds into O(1) dimensional �2
space with distortion O(

√
logn)?

Here we (arguably) show some evidence for a positive answer to this question, by
providing an embedding of the metric induced by an n-vertex Laakso graph into con-
stant dimensional Euclidean space with distortion O(

√
logn). The Laakso graph Gk

is a series-parallel graph with 6k edges, Θ(6k) vertices, and its doubling constant is at
most 6 (see Section 3 for a definition of the Laakso graph), it was first introduced by
[Laa02]. This graph seems difficult for �2 embedding and low dimensional embeddings.
In particular, it is known that the metric induced by the n-vertex Laakso graph requires
nΩ(1/β2) dimensions for a β distortion embedding into �1 [LMN05] (following the re-
sults of [BC05,LN04]). Also, this metric requires distortion at least Ω(

√
logn) for any

embedding into �2 [GKL03]. So it seems surprising that allowing distortion O(
√
logn)

the embedding only requires 3 dimensions1.

Theorem 1. For any positive integer m, there exists an embedding of the metric in-
duced by Gm into 3 dimensional �2 space with distortion O(

√
m).

The proof of Theorem 1 appears in Section 3.

Embedding into �∞: The distortion of the above results is often undesirably high, in
particular for application areas, where it is useful to have arbitrarily low distortion. Ob-
taining low distortion was shown to be impossible for �2 by [Sem96,Laa02,GKL03],
and for �1 by [CK10,CKN09,LS11], where for the former the lower bound is a tight
Ω(
√
logn) and for the latter Ω(

√
logn/ log logn). Another natural candidate space is

the �∞ space. In [GKL03] it was shown that for any ε > 0, any doubling metric space
(X, d) on n points embeds into �

O(logn)
∞ with distortion 1 + ε. While the explicit proof

and the dependence on the parameters ε and λ was not specified there, the proof was

1 It is quite conceivable that 2 dimensions suffice, we used 3 to simplify the analysis.

14 O. Neiman

based on a variation of Bourgain’s embedding and an application of the Lovász Local
Lemma. In this paper we give a very simple proof of this result that does not require
the Local Lemma, and has the best possible dependence on ε and the doubling constant
λ, up to a constant in the exponent. Another advantage is that our construction only re-
quires building nets, which can be implemented efficiently in near linear time [HPM06].
The result is in fact a simple adaptation of the methods introduced by [HPM06].

Theorem 2. For any 0 < ε ≤ 1, any finite metric space (X, d) on n points with dou-
bling constant λ embeds into �D∞ with distortion 1+ ε where D = λlog(1/ε)+O(1) logn.

The proof of Theorem 2 appears in Section 4.

Snowflake embeddings: Following the result of Assouad, there were several extensions
for the snowflakes of doubling metrics. [GKL03] provided an improved dependence
of the distortion and the dimension on the doubling constant λ in Assouad’s result.
The dependence on α in the dimension was further improved in [ABN08], and finally
was completely removed in [NN12] (in the range 0 < α < 1/2). [HPM06], among
other algorithmic results on doubling metrics, showed an embedding of (X, d1/2) into
�∞ of dimension λO(log(1/ε)), which is then used for distance labeling. More recently,
[GK11] showed a dimension reduction result for a snowflake of Euclidean subsets that
are doubling, and [BRS11] obtained similar result. For the �∞ host, they showed a
1 + ε distortion embedding for a 1 − α snowflake with λO(log(1/ε)+log log λ)/(α(1 −
α)) dimensions. The proof of [GK11] ingeniously combined many ”hammers” such
as the Johnson-Lindenstrauss dimension reduction, padded decompositions, a Gaussian
transform and smoothing techniques. In this work we improve slightly the result of
[GK11] for embedding doubling snowflakes into �∞, and generalize the embedding
result of [HPM06] to arbitrary snowflaking parameter α. Perhaps more importantly, the
construction and analysis given here are arguably simpler that those of [GK11], and
admit an efficient implementation.

Theorem 3. For any 0 < ε ≤ 1/20, 0 < α < 1, and any finite metric space (X, d) on n
points with doubling constant λ, there exists an embedding of the snowflake (X, d1−α)
into �D∞ with distortion 1 + ε where D = λlog(1/ε)+O(1)/(α(1 − α)).

The proof of Theorem 3 appears in the full version.

Dimension Reduction for Doubling Subsets: Assouad’s result (embedding doubling
snowflakes into constant dimensional Euclidean space with constant distortion) cannot
be extended to arbitrary doubling metrics as mentioned above. One of the major open
problems in the area of metric embedding is whether his result can be extended to
doubling subsets of Euclidean space. That is,

Question 2. Does every doubling subset of �2 embeds into constant dimensional �2
space with constant distortion?

This question was raised by [LP01,GKL03], and also referred to in other works such
as [ABN08,CGT10,GK11,NN12]. A possible approach for finding a counterexample,
mentioned in [NN12], is to use the image under Euclidean embedding of a known ”dif-
ficult” doubling metric. If it can be shown that a certain n-point doubling metric has

Low Dimensional Embeddings of Doubling Metrics 15

the following properties: 1) It has an �2 embedding with distortion O(
√
log n) in which

its image is doubling, and 2) Any embedding of this metric into constant dimensional
�2 requires ω(

√
logn) distortion, then it would provide a negative answer to the above

question.
A natural candidate for such a doubling metric, used in [CK10,CKN09] to prove

non-embeddability in �1 of negative type metrics, is the Heisenberg group H equipped
with the Carnot-Carathéodory metric. It was shown in [NN12] that it satisfies the first
property. Another possible ”difficult” metric is the Laakso graph, however the result
stated in Theorem 1 rules out this example. In fact, a positive answer to Question 1
would rule out this approach entirely.

2 Preliminaries

Let (X, d) be a finite metric space, with |X | = n. We shall assume w.l.o.g that d(x, y) ≥
1 for all x, y ∈ X . The diameter of (X, d) is diam(X) = maxx,y∈X{d(x, y)}. A ball
around x ∈ X with radius r ≥ 0 is defined as B(x, r) = {z ∈ X | d(x, z) ≤ r}.
The doubling constant of (X, d) is the minimal integer λ such that for all x ∈ X
and r > 0, the ball B(x, 2r) can be covered by λ balls of radius r. The doubling
dimension of (X, d) is defined as dim(X) = log2 λ. A family of metric spaces is called
doubling if there is a constant K such that every metric in the family has doubling
constant at most K . An r-net of (X, d) is a set of points N ⊆ X satisfying: 1) For
all u, v ∈ N , d(u, v) > r, and 2)

⋃
u∈N B(u, r) = X . It is well known that a simple

greedy algorithm can provide an r-net.

3 Low Dimensional Embedding of the Laakso Graph

In this section we prove Theorem 1. For integer k ≥ 0 let Gk be the k-th level Laakso
graph, defined as follows: G0 consist of a single edge, Gk is defined by replacing every
edge of Gk−1 with the graph on six edges and six vertices depicted in Figure 1, such
that the vertices a, b correspond to the original endpoints of the edge. The edge lengths
in Gk are 4−k for all edges. For a pair of vertices that were edges in Gi, we abuse
notation and call them level i edges. A level i edge e is a child of a level i − 1 edge e′

if it is one of the six edges that replaced e′. This defines an (partial) inheritance relation
on the edges of different levels. Note that any edge at level k > i has a unique level i
ancestor.

We label the edges of Gk by a sequence l ∈ Lk, where L = {0, 1,−1, 2,−2, 3},
such that for 1 ≤ i ≤ k, li is the position of the level i ancestor of the edge, depicted in
Figure 1. The vertices created in level k are labeled by a string in Lk−1×{s, t, u, v}. In
particular, each edge of level k − 1 creates 4 new vertices, if the label of the edge was
l ∈ Lk−1, then the new vertices will be labeled by l ◦ s, l ◦ t, l ◦ u, and l ◦ v (where for
strings w,w′, w ◦ w′ denotes their concatenation).

We write ‖ · ‖ for the standard Euclidean norm.

16 O. Neiman

Fig. 1. Naming vertices and edges of Laakso graph

3.1 Construction of the Embedding

Consider the graph Gn, with shortest path metric d, and fix D = 1/
√
n. First define

an embedding g : V (Gn) → R by g(x) = d(x, a), where a is the left vertex of G0.
We define the embedding f : V (Gn) → R

2 recursively as follows. In the case k = 0
where a, b are the two endpoints of the single edge of level 0, define f(a) = (0, 0),
f(b) = (1, 0). Fix some integer 1 ≤ k ≤ n. Now, let {a, b} be any level k − 1 edge,
let s, t, u, v be the new four vertices created from it in level k. Inductively, f is already
defined on both a and b, so let z = f(b) − f(a). Finally let z̄ be one of the two unit
vectors orthogonal to z in R

2 (chosen arbitrarily). Define

f(s) = f(a) + z/4

f(t) = f(a) + 3z/4

f(u) = f(a) + z/2 +D4−k · z̄
f(v) = f(a) + z/2−D4−k · z̄ .

In some sense the embedding g is just a projection of the graph into the line, and
its sole purpose is to provide contribution for the edges. The difficulty in embedding

Low Dimensional Embeddings of Doubling Metrics 17

the Laakso graph comes from handling the diagonals (each diagonal is composed of
the two vertices whose labels are p ◦ u and p ◦ v for some k ≥ 0 and p ∈ Lk). The
map f provides sufficient contribution for the diagonals, the price is that we expand
slightly the four inner edges (e.g. {p ◦ s, p ◦ u}). Intuitively, since f provides only
1/
√
n fraction of the distance between the diagonals, and uses an orthogonal vector

to the parent edge’s vector, we get that the distance between the images of the edge’s
endpoints is increased only by a factor of 1/n. Thus even n levels of recursion will not
generate a large expansion.

3.2 Analysis of the Embedding

The first step is to bound the distortion of the edges (of all levels), which yields an upper
bound on the expansion of the embedding.

Claim. For any integer 0 ≤ k ≤ n and any level k edge {x, y} ∈ E(Gk),

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ 2d(x, y) .

Proof. We prove by induction on k that if {x, y} is level k edge, then

4−k ≤ ‖f(x)− f(y)‖ ≤
√
1 + kD2 · 4−k . (1)

The base case k = 0 is true by definition. For the inductive step, let {a, b} be a level
k−1 edge with d(a, b) = 4−(k−1), and let z = f(b)−f(a). By the induction hypothesis

4−(k−1) ≤ ‖z‖ ≤
√
1 + (k − 1)D2 · 4−(k−1) . (2)

Consider the six edges created from {a, b} in level k that are depicted in Figure 1. First
observe that for the edge {a, s}, by definition ‖f(s) − f(a)‖ = ‖z‖/4 so it satisfies
(1). The same holds for the edge {b, t}. Consider now the edge {s, u}, using that z, z̄
are orthogonal suggests the following bound,

‖f(u)− f(s)‖2 = ‖z/4 +D4−k · z̄‖2

= ‖z/4‖2 + ‖D4−k · z̄‖2

= ‖z‖2/16 + (D4−k)2

Using (2) it holds that ‖z‖ ≥ 4−(k−1) and thus ‖f(u) − f(s)‖ ≥ ‖z‖/4 ≥ 4−k. For
the upper bound, note that by (2)

‖f(u)− f(s)‖2 ≤ (1 + (k − 1)D2) · 4−2(k−1)/16 +D24−2k = (1 + kD2) · 4−2k .

The same calculation holds for the edges {s, v}, {u, t} and {v, t}. This concludes the
proof of (1). Using that k ≤ n, we see that

√
1 + kD2 ≤

√
1 + 1 < 2, proving the

claim.

Lemma 1. For any x, y ∈ V (Gn),

‖(f ⊕ g)(x)− (f ⊕ g)(y)‖ ≤ 3d(x, y) .

18 O. Neiman

Proof. Let x = u0, u1, . . . , ut = y be a shortest path in Gn connecting x to y. By the
triangle inequality and Claim 3.2,

‖f(x)− f(y)‖ ≤
t∑

i=1

‖f(ui)− f(ui−1)‖ ≤ 2

t∑
i=1

d(ui, ui−1) = 2d(x, y) . (3)

Using the triangle inequality it follows that

|g(x)− g(y)| = |d(x, a)− d(y, a)| ≤ d(x, y) .

The main effort will be showing that the contraction of f⊕g is bounded by O(1/D).
Observe that the vertices u, v of any basic structures in any level already suffer contrac-
tion of Θ(1/D). If we consider two vertices x, y of distance d(x, y) ≈ 4−j , then in
level j they have different ancestor edges, and at least intuitively they should get a con-
tribution of D · 4−j from the embedding of level j. However, in their final embedding,
x, y may ”get closer” to each other because we use few dimensions. We first focus on
the case where g(x) = g(y), and so the contribution must entirely come from the f em-
bedding. The following lemma shows there is indeed sufficient contribution from the
critical level, and the main issue is showing that this contribution does not completely
cancel out.

Lemma 2. Let x, y ∈ V (Gn) be such that g(x) = g(y), then

‖f(x)− f(y)‖ ≥ D · d(x, y)/32 .

Proof. First observe that since x, y have the same g value they must have been created
in the same level, and denote this level by m. Abusing notation, denote by x, y ∈
Lm−1×{s, t, u, v} the labels of the vertices. For any 1 ≤ i ≤ m let pi = x1 ◦· · ·◦xi−1

be the label of the level i − 1 ancestor edge of x. Observe that since g(x) = g(y) it
must be for every i ∈ [m − 1] that |xi| = |yi|. First consider the case that xi = yi for
all i ∈ [m], then in fact x, y are the u, v vertices created from the edge labeled pm, and
by definition of f , ‖f(x)− f(y)‖ = 2D · 4−m = D · d(x, y).

Now assume that there is an index i ∈ [m − 1] such that xi �= yi, and let j be the
minimal such index. We shall assume w.l.o.g that xj = 1, yj = −1 (the case xj = 2
and yj = −2 is symmetric). Let s′ = pj ◦s and t′ = pj ◦ t. Let k be the smallest integer
satisfying j < k < m and such that at least one of xk, yk is different from 0 (or different
from 3 if it was the case that xj = 2, yj = −2). If no such k exists put k = m. Assume
w.l.o.g that xk �= 0. Roughly speaking, j is the index of the scale in which x, y are
separated into different recursive components, however since in the scales i from j + 1
to k− 1, xi = yi = 0, both are still close to s′ and thus to each other. The final distance
between x, y is about 4−k. To see this, note that d(x, y) = d(x, s′) + d(y, s′), and thus
d(x, y) ≥ d(x, s′) ≥ 4−k. On the other hand, since for j < i < k, xi = yi = 0, then
d(x, s′) ≤ d(pk−1 ◦ s, s′) = 4−(k−1) and similarly for d(y, s′), so d(x, y) < 4−(k−2).
It remains to show that ‖f(x)− f(y)‖ ≥ D · 4−k/2.

Low Dimensional Embeddings of Doubling Metrics 19

Let � be the line passing through the endpoints of pj . We will prove that f(x) is at
least D · 4−k/2 away from any point on the line �. To this end, we prove by induction
on m that the Euclidean distance of f(x) from the line � is at least

D · (4−k −
m∑

i=k+1

4−i) , (4)

furthermore, f(x) is on the same side of � as f(u′) where u′ = pj ◦ u.
The base case is when m = k. As xj = 1, the end points of the level j ancestor of x

are s′ = pj ◦ s and u′ = pj ◦ u. By definition f(s′) lies right on the line � connecting
the images of the endpoints of pj , and u′ is at distance D · 4−j from � (since we use an
orthogonal vector to �). Let z′ = f(u′)−f(s′). By definition of f , for all i > j we have
that f(pi ◦s) = f(s′)+z′/4i−j , in particular f(pk−1 ◦s) = f(s′)+z′/4k−1−j , which
suggests that the distance of f(pk−1 ◦ s) from the line � is equal to D · 4−j/4k−1−j =
D/4k−1. As x is one of the four vertices created from the edge pk whose end points are
s′ and pk−1 ◦ s, it can be verified by the definition of the embedding f that its distance
to � is at least 1/4 of the distance of pk−1 ◦ s to �, that is at least D/4k, as required.

Next we prove the inductive step. Let q, r be the level m − 1 vertices which are the
end points of the edge labeled pm, and let �′ denote the line passing through f(q) and
f(r). By the induction hypothesis the distance of both f(q) and f(r) from � is at least
D · (4−k −

∑m−1
i=k+1 4

−i) and both are on the same side of �. This suggests that every

point on �′, in particular pm ◦ s and pm ◦ t, is at least D · (4−k −
∑m−1

i=k+1 4
−i) away

from �. It remains to argue about pm ◦ u and pm ◦ v, which by definition are embedded
by f at distance D/4m from �′, which means their distance to � can be closer than that
of f(q), f(r) by at most D/4m, which concludes the proof of (4).

Since
∑m

i=k+1 4
−i ≤ 4k/2 we have that f(x) is at least D · 4−k/2 away from �.

If j < k(y) < m is the minimal such that yk(y) �= 0 (and k(y) = m if there is no
such value), then a analogous argument will show that f(y) is at least D · 4−k(y)/2
away from � on the side of f(v′) where v′ = pj ◦ v. In particular, this suggests that
‖f(x)− f(y)‖ ≥ D · 4−k/2, as required.

It remains to bound the contraction for an arbitrary pair x, y.

Lemma 3. For any x, y ∈ V (Gn),

‖(f ⊕ g)(x) − (f ⊕ g)(y)‖ ≥ D · d(x, y)/128 . (5)

Proof. First consider the case that |g(x) − g(y)| ≥ D · d(x, y)/128, then clearly (5)
holds. Otherwise, |g(x)−g(y)| < D·d(x, y)/128, and w.l.o.g assume that g(x) < g(y).
In this case, let y′ ∈ Gn be any point on a shortest path connecting y to a such that
g(x) = g(y′). Then

d(y, y′) = g(y)− g(y′) = g(y)− g(x) ≤ D · d(x, y)/128, (6)

thus also
d(x, y′) ≥ d(x, y)− d(y, y′) ≥ 3d(x, y)/4 . (7)

20 O. Neiman

Using Lemma 2 on x, y′ it follows that,

‖f(x)− f(y)‖ ≥ ‖f(x)− f(y′)‖ − ‖f(y′)− f(y)‖
(3)
≥ D · d(x, y′)/32− 2d(y′, y)

(6)∧(7)
≥ 3D · d(x, y)/128−D · d(x, y)/64
= D · d(x, y)/128 .

The proof of Theorem 1 follows from Lemma 1 and Lemma 3

4 Embedding Doubling Metrics to Low Dimensional �∞

In this section we prove Theorem 2. Let us first remark that the dependence of the di-
mension D on the parameters is essentially tight (up to a constant in the exponent),
that is D ≥ λ + (1/ε)Ω(1) + Ω(log n): First, the logn term cannot be improved, be-
cause [GKL03] showed an Ω(

√
logn) lower bound on the distortion when embed-

ding doubling metrics into �2. Under the �2 norm our embedding has distortion at most
(1 + ε)

√
D, so when ε and λ are constants it must be that D = Ω(logn). Second, a

linear dependence on λ in the dimension is necessary, because for ε = 1, say, the di-
mension of a normed space in which any n-point metric embeds with distortion 2 must
be Ω(n) = Ω(λ) [Mat02]. In the full version we show that there must be a polynomial
dependence on 1/ε as well.

4.1 Construction

For simplicity of presentation we first handle the case in which the aspect ratio of the
metric is at most n, that is, diam(X) < n, the general case is deferred to the full
version. For each 0 ≤ i < logn take a ri-net Ni, where ri = ε · 2i−2. Fix some net
Ni, and for an integer k > 0 define a spread-partition Pi(k) as a partition of Ni into k
clusters Ni0, Ni1, . . . , Ni(k−1), such that each cluster is well spread. Formally, for all
0 ≤ j ≤ k − 1, if u, v ∈ Nij then

d(u, v) ≥ 5 · 2i . (8)

Note that Nij is not necessarily a net of Ni, as it may not satisfy the covering property
of nets.

Claim. Fix k = λ6+log(1/ε). For all 0 ≤ i < logn there exists a spread-partition Pi(k).

Proof. To construct Pi(k), first greedily choose a maximal Ni0 ⊆ Ni that satisfy (8).
For any 0 < j ≤ k − 1, after choosing Ni0, ..., Ni(j−1), greedily choose a maximal
Nij ⊆ Ni \ (Ni0 ∪ ... ∪ Ni(j−1)) that satisfy (8). We claim that after k iterations Ni

must be exhausted. Seeking contradiction, assume that u ∈ Ni was not covered by any
Nij , and consider B = B(u, 5 · 2i). By using the doubling property iteratively, the ball
B can be covered by λlog(5·2i/(ri/2)) balls of radius ri/2, each of these small balls can
contain at most one point from Ni. As λlog(5·2i/(ri/2)) < k, we conclude that for some
0 ≤ j ≤ k−1, Nij does not contain any point from B, but then by maximality it should
have contained u, a contradiction.

Low Dimensional Embeddings of Doubling Metrics 21

Next we define the embedding f : X → R
D with D = k log n, where k is defined

as in Claim 4.1. Let fij(x) = d(x,Nij), and

f(x) =

logn⊕
i=1

k−1⊕
j=0

fij(x) .

(We use the convention that if Nij = ∅ then d(x,Nij) = 0).

4.2 Proof

Fix some x, y ∈ X . By the triangle inequality we have that for any Nij , d(x,Nij) −
d(y,Nij) ≤ d(x, y), so that for any 1 ≤ i ≤ logn and 0 ≤ j ≤ k−1, fij(x)−fij(y) ≤
d(x, y). By symmetry of x, y this suggests that

|fij(x)− fij(y)| ≤ d(x, y) . (9)

Next we show that there are i, j such that fij(x) − fij(y) ≥ d(x, y)(1 − ε). Let
1 ≤ i ≤ logn be such that 2i−1 ≤ d(x, y) < 2i, and let 0 ≤ j ≤ k − 1 be such that
d(x,Nij) ≤ ri (such a j must exist because Ni is an ri-net). Denote by u ∈ Nij the
point satisfying d(x,Nij) = d(x, u).

We claim that d(y,Nij) = d(y, u). To see this, first observe that d(y, u) ≤ d(y, x)+
d(x, u) ≤ 2i+ ri < (5/4) · 2i. Consider any other v ∈ Nij , by the construction of Nij ,
d(v, u) ≥ 5·2i, so d(y, v) ≥ d(u, v)−d(y, u) > 5·2i−(5/4)·2i > (5/4)·2i > d(y, u).
Thus it follows that d(y,Nij) = d(y, u) ≥ d(y, x) − d(x, u) ≥ d(x, y) − ri. We
conclude that

fij(y)− fij(x) ≥ (d(x, y)− ri)− ri = d(x, y)− ε · 2i−1 ≥ d(x, y)(1 − ε) . (10)

The proof of Theorem 2 follows directly from (9) and (10).

Acknowledgements. The author is grateful to Moses Charikar, Michael Elkin and Lee-
Ad Gottlieb for fruitful discussions. This work is supported by ISF grant No. (523/12)
and by the European Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n◦303809.

References

ABN08. Abraham, I., Bartal, Y., Neiman, O.: Embedding metric spaces in their intrinsic di-
mension. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, Philadelphia, PA, USA, pp. 363–372. Society for Industrial
and Applied Mathematics (2008)

Ass83. Assouad, P.: Plongements lipschitziens dans R
n. Bull. Soc. Math. France 111(4),

429–448 (1983)
BC05. Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in l1. J.

ACM 52(5), 766–788 (2005)

22 O. Neiman

BGK12. Bartal, Y., Gottlieb, L.-A., Krauthgamer, R.: The traveling salesman problem: low-
dimensionality implies a polynomial time approximation scheme. In: Proceedings of
the 44th Symposium on Theory of Computing, STOC 2012, New York, NY, USA,
pp. 663–672. ACM (2012)

BRS11. Bartal, Y., Recht, B., Schulman, L.J.: Dimensionality reduction: beyond the johnson-
lindenstrauss bound. In: Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, pp. 868–887. SIAM (2011)

CGMZ05. Chan, T.-H.H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling
metrics. In: Proc. 16th Ann. ACM-SIAM Symposium on Discrete Algorithms, SODA
(2005)

CGT10. Chan, T.-H.H., Gupta, A., Talwar, K.: Ultra-low-dimensional embeddings for dou-
bling metrics. J. ACM 57(4) (2010)

CK10. Cheeger, J., Kleiner, B.: Differentiating maps into L1, and the geometry of BV func-
tions. Annals of Math 171(2), 1347–1385 (2010)

CKN09. Cheeger, J., Kleiner, B., Naor, A.: A (log n)Ω(1) integrality gap for the sparsest cut
sdp. In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, Washington, DC, USA, pp. 555–564. IEEE Com-
puter Society (2009)

GK11. Gottlieb, L.-A., Krauthgamer, R.: A nonlinear approach to dimension reduction. In:
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, pp. 888–899. SIAM (2011)

GKL03. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2003, Washington, DC, USA, pp. 534–543.
IEEE Computer Society (2003)

GR08. Gottlieb, L.-A., Roditty, L.: Improved algorithms for fully dynamic geometric span-
ners and geometric routing. In: Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, Philadelphia, PA, USA, pp. 591–
600. Society for Industrial and Applied Mathematics (2008)

HPM06. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and
their applications. SIAM Journal on Computing 35(5), 1148–1184 (2006)

JLM09. Jaffe, A., Lee, J.R., Moharrami, M.: On the optimality of gluing over scales. In:
Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS,
vol. 5687, pp. 190–201. Springer, Heidelberg (2009)

KLMN05. Krauthgamer, R., Lee, J.R., Mendel, M., Naor, A.: Measured descent: A new embed-
ding method for finite metrics. Geometric and Functional Analysis 15(4), 839–858
(2005)

Laa02. Laakso, T.J.: Plane with A∞-weighted metric not bi-Lipschitz embeddable to R
N .

Bull. London Math. Soc. 34(6), 667–676 (2002)
LLR95. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algo-

rithmic applications. Combinatorica 15(2), 215–245 (1995)
LMN05. Lee, J.R., Mendel, M., Naor, A.: Metric structures in l1: dimension, snowflakes, and

average distortion. Eur. J. Comb. 26(8), 1180–1190 (2005)
LN04. Lee, J.R., Naor, A.: Embedding the diamond graph in lp and dimension reduction in

l1, pp. 745–747 (2004)
LP01. Lang, U., Plaut, C.: Bilipschitz embeddings of metric spaces into space form. Ge-

ometriae Dedicata 87(1-3), 285–307 (2001)
LS11. Lee, J.R., Sidiropoulos, A.: Near-optimal distortion bounds for embedding doubling

spaces into l1. In: Proceedings of the 43rd annual ACM symposium on Theory of
computing, STOC 2011, New York, NY, USA, pp. 765–772. ACM (2011)

Low Dimensional Embeddings of Doubling Metrics 23

Mat02. Matoušek, J.: Lectures on discrete geometry. Springer, New York (2002)
NN12. Naor, A., Neiman, O.: Assouad’s theorem with dimension independent of the

snowflaking. Revista Matematica Iberoamericana 28(4), 1–21 (2012)
Sem96. Semmes, S.: On the nonexistence of bilipschitz parameterizations and geometric

problems about a∞ weights. Revista Matemática Iberoamericana 12, 337–410 (1996)

Degree-Constrained Graph Orientation:

Maximum Satisfaction and Minimum Violation�

Yuichi Asahiro1, Jesper Jansson2, Eiji Miyano3, and Hirotaka Ono4

1 Department of Information Science, Kyushu Sangyo University, Higashi-ku,
Fukuoka 813-8503, Japan

asahiro@is.kyusan-u.ac.jp
2 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,

Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
jj@kuicr.kyoto-u.ac.jp

3 Department of Systems Design and Informatics, Kyushu Institute of Technology,
Iizuka, Fukuoka 820-8502, Japan

miyano@ces.kyutech.ac.jp
4 Department of Economic Engineering, Kyushu University, Higashi-ku,

Fukuoka 812-8581, Japan
hirotaka@en.kyushu-u.ac.jp

Abstract. A degree-constrained graph orientation of an undirected
graph G is an assignment of a direction to each edge in G such that
the outdegree of every vertex in the resulting directed graph satisfies a
specified lower and/or upper bound. Such graph orientations have been
studied for a long time and various characterizations of their existence are
known. In this paper, we consider four related optimization problems in-
troduced in [4]: For any fixed non-negative integer W , the problems Max

W -Light, Min W -Light, Max W -Heavy, and Min W -Heavy take as
input an undirected graph G and ask for an orientation of G that max-
imizes or minimizes the number of vertices with outdegree at most W
or at least W . The problems’ computational complexities vary with W .
Here, we resolve several open questions related to their polynomial-time
approximability and present a number of positive and negative results.

1 Introduction

Let G = (V,E) be an undirected (multi-)graph. An orientation of G is a function
that maps each undirected edge {u, v} in E to one of the two possible directed
edges (u, v) and (v, u). For any orientation Λ of G, define Λ(E) =

⋃
e∈E{Λ(e)}

and let Λ(G) denote the directed graph (V, Λ(E)). For any vertex u ∈ V , the
outdegree of u under Λ is defined as d+Λ(u) = |{(u, v) : (u, v) ∈ Λ(E)}|, i.e., the
number of outgoing edges from u in Λ(G). For any non-negative integer W , a
vertex u ∈ V is called W -light in Λ(G) if d+Λ (u) ≤ W , and W -heavy in Λ(G) if

� Supported by KAKENHI Grant Numbers 21680001, 23500020, 25104521,
and 25330018 and The Hakubi Project at Kyoto University.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 24–36, 2014.
c© Springer International Publishing Switzerland 2014

Maximum Satisfaction and Minimum Violation 25

d+Λ(u) ≥W . For any U ⊆ V , if all the vertices in U areW -light (resp., W -heavy),
we say that U is W -light (resp., W -heavy).

The optimization problemsMax W -Light, Min W -Light, Max W -Heavy,
and Min W -Heavy, where W is any fixed non-negative integer, were introduced
in [4]. In each problem, the input is an undirected (multi-)graph G = (V,E) and
the objective is to output an orientation Λ of G such that:

• Max W -Light:
∣∣{u ∈ V : d+Λ (u) ≤W}

∣∣ is maximized
• Min W -Light:

∣∣{u ∈ V : d+Λ (u) ≤W}
∣∣ is minimized

• Max W -Heavy:
∣∣{u ∈ V : d+Λ (u) ≥W}

∣∣ is maximized
• Min W -Heavy:

∣∣{u ∈ V : d+Λ (u) ≥W}
∣∣ is minimized

We write n = |V | and m = |E| for the input graph G.
The degree of u in G is denoted by d(u). We define δ = min{d(u) | u ∈ V }

and Δ = max{d(u) | u ∈ V }. For any U ⊆ V , the subgraph induced by U is
denoted by G[U].

Observe that Max W -Light and Min (W + 1)-Heavy are supplementary
problems in the sense that an exact algorithm for one gives an exact algorithm for
the other but their polynomial-time approximability properties may differ. The
same observation holds for the pair Min W -Light and Max (W + 1)-Heavy.

The computational complexities of Max W -Light, Min W -Light, Max

W -Heavy, and Min W -Heavy were studied for different values of W in [4]. As
observed in [4], the special case of Max 0-Light is equivalent to the well-known
Maximum Independent Set problem (and the supplementary problem Min

1-Heavy is equivalent to Minimum Vertex Cover). Thus, allowing the value
of W to vary yields a natural generalization of Maximum Independent Set

and Minimum Vertex Cover. In many cases, however, the (in)tractability and
the (in)approximability remained unknown. In this paper, we establish several
new results on the polynomial-time approximability of these problems.

New Results: Below is a summary of previous results from [4] and the new
results presented in this paper (see Table 1 for a summary). Due to space limi-
tations, many technical details will be deferred to the full version of the paper.

– Max W -Light: It is known that Max 0-Light cannot be approximated
within a ratio of n1−ε for any positive constant ε in polynomial time unless
P = NP [4,31]. Theorem 6 of Sect. 4 proves that for every fixed W ≥ 1,
Max W -Light cannot be approximated within (n/W)1−ε in polynomial
time unless P = NP . On the positive side, Theorem 7 of Sect. 4 provides a
polynomial-time n/(2W + 1)-approximation algorithm for Max W -Light.

– Min W -Heavy: Min 1-Heavy cannot be approximated within 1.3606 in
polynomial time unless P = NP [4,9]. Theorem 5 of Sect. 4 extends this
inapproximability result to hold for Min W -Heavy for every fixed W ≥ 2.
We also show how to approximate Min W -Heavy within a ratio of log(Δ−
W + 1) in polynomial time for every fixed W ≥ 2 in Theorem 2 of Sect. 3.

26 Y. Asahiro et al.

Table 1. Summary of the results from [4] and the new results in this paper

W Max W -Light Min (W + 1)-Heavy

= 0 Identical to Identical to
Maximum Independent Set [4] Minimum Vertex Cover [4]

≥ 1 Solvable in O(n) time for trees [4] Solvable in O(n) time for trees [4]
(n/(2W + 1))-approx. (Theorem 7) log(Δ−W)-approx. (Theorem 2)
(n/W)1−ε-inapprox. (Theorem 6) 1.3606-inapprox. (Theorem 5)

W Min W -Light Max (W + 1)-Heavy

= 0 Solvable in O(m3/2) time [4] Solvable in O(m3/2) time [4]
≥ 0 Solvable in O(n) time for trees [4] Solvable in O(n) time for trees [4]

Solvable in O(n2) time Solvable in O(n2) time
for outerplanar graphs [4] for outerplanar graphs [4]

≥ 1 (W + 1)-approx. [4] O(n2)-time 2-approx.
log(W + 1)-approx. (Theorem 1) for planar graphs [4]

O(m)-time (W + 2)-approx. [4]
≥ 2 NP-hard for planar graphs [4] NP-hard for planar graphs [4]
large (log(W + 1)−O(log log(W + 1))) W 1−ε-inapprox. (Theorem 3)

-inapprox. (Theorem 4)

– Min W -Light: A polynomial-time (W + 1)-approximation algorithm was
given in [4]. Theorem 1 of Sect. 3 improves the approximation ratio to
log(W + 1) for any W ≥ 1. Moreover, Theorem 4 in Sect. 4 shows that
for sufficiently large W , Min W -Light is NP-hard to approximate within
log(W +1)−O(log log(W +1)), implying that our log(W +1)-approximation
is almost tight.

– Max W -Heavy: It was shown in [4] that Max 1-Heavy and Min 0-Light
are in P , but Max W -Heavy and Min (W − 1)-Light are NP-hard for
every fixed W ≥ 3. An open problem from [4] was to determine the com-
putational complexity of Max 2-Heavy and Min 1-Light. Now, consider
two special cases: (i) Δ ≤ 3 and (ii) δ ≥ 4. Corollary 3 of Sect. 5 and Propo-
sition 5 of Sect. 2 demonstrate that Max 2-Heavy and Min 1-Light can
be solved in polynomial time for (i) and (ii), respectively. Also, Theorem 3
in Sect. 4 proves that for sufficiently large W , Max W -Heavy is NP-hard
to approximate within W 1−ε for any ε > 0. The best previously known
polynomial-time approximation ratio was W + 1 [4].

Motivation: Graph orientations that optimize certain objective functions in-
volving the resulting directed graph or that satisfy some special property such as
acyclicity [26] or k-edge connectivity [8,21,24] have many applications to graph
theory, combinatorial optimization, scheduling (load balancing), resource alloca-
tion, and efficient data structures. For example, an orientation that minimizes
the maximum outdegree [2,7,10,29] can be used to support fast vertex adjacency

Maximum Satisfaction and Minimum Violation 27

queries in a sparse graph by storing each edge in exactly one of its two inci-
dent vertices’ adjacency lists while ensuring that all adjacency lists are short [7].
There are many optimization criteria for graph orientation other than these.
See [3] or chapter 61 in [27] for more details and additional references.

On the other hand, degree-constrained graph orientations [12,13,15,19] arise
when a lower degree bound W l(v) and an upper degree bound Wu(v) for each
vertex v in the graph are specified, and the outdegree of v in any valid graph
orientation is required to lie in the interval W l(v)..Wu(v). Obviously, a graph
does not always have such an orientation, and in this case, one might want to
compute an orientation that best fits the outdegree constraints according to some
well-defined criteria [3,4]. In case W l(v) = 0 and Wu(v) = W for every vertex v
in the input graph, where W is a non-negative integer, and the objective is to
maximize (resp., minimize) the number of vertices that satisfy (resp., violate)
the outdegree constraints, then we obtain Max W -Light (resp., Min (W +1)-
Heavy). Similarly, if W l(v) = W and Wu(v) = ∞ for every vertex v in the
input graph, then we obtain Max W -Heavy and Min (W − 1)-Light.

2 Preliminaries

For a graph G, we denote its vertex set and edge set by V (G) and E(G), re-
spectively. For any fixed integer W ≥ 0, an orientation of a graph is called a
W -orientation if and only if the maximum outdegree is at most W . If a W -
orientation exists, we say that the graph is W -orientable. For any S ⊆ V , we
write E(S) to denote the subset of edges whose both endpoints belong to S.
Also, for any two disjoint subsets S, T ⊆ V , we write E(S, T) to denote the sub-
set of all edges such that one endpoint belongs to S and the other T . The ratio
|E(S)|/|S| is called the density of S. The maximum density DG of a graph G is

defined by DG = maxS⊆V

⌈
|E(S)|
|S|

⌉
1. We denote a subgraph of G whose vertex

set and edge set are respectively V (G) \ S and E(V (G) \ S) by G \ S. Finally,
an orientation Λ of an undirected graph G is called an Eulerian orientation if
d+Λ(v) = d(v)− d+Λ(v), i.e., if the outdegree equals the indegree for every vertex.

It is known [12] that finding the maximum density of any graph is equivalent
to finding the smallest integer W such that the graph is W -orientable:

Proposition 1 ([12]). Any graph G is W -orientable if and only if DG′ ≤ W
for all induced subgraphs G′ in G.

The following immediate consequence plays an important role in the paper. Note
that the orientation referred to in Proposition 2 is an Eulerian orientation.

Proposition 2. The complete graph K2W+1 has an orientation in which the
indegree and outdegree of every vertex are equal to W .

1 The ceiling function gives the maximum degree of the vertices in the subgraph in-
duced by S, where the maximum degree is an integer here.

28 Y. Asahiro et al.

Proposition 3 (p. 91 of [27]). Given a graph G with all degrees even, an
Eulerian orientation of G can be found in O(m) time.

The following proposition extends the notion of density DG for our problems:

Proposition 4. Consider a graph G and an orientation Λ of G, and assume
that m′ edges in E(U, V (G) \U) for a subset U of vertices are oriented outward
from U to V (G) \ U in Λ. Then, the average outdegree of the vertices in U is
(|E(U)| + m′)/|U |. As a result, there exists a vertex v ∈ U such that d+Λ (v) ≥
�(|E(U)|+m′)/|U |�.
For restricted instances, Max (W +1)-Heavy and Min W -Light can be solved
in polynomial time. The fundamental idea of the algorithm is (i) first insert
matching edges between odd degree vertices, and then (ii) orient the edges along
with an Eulerian tour.

Proposition 5. If the minimum degree δ of the input graph G satisfies W +1 ≤
�δ/2�, an O(m)-time algorithm finds an optimal orientation for Max (W + 1)-
Heavy and Min W -Light, under which no vertex is W -light.

Let δ∗ = maxΛ minv d
+
Λ(v). Since the algorithm in Proposition 5 outputs an

orientation under which the minimum outdegree is at least �δ/2�, it always
holds that δ∗ ≥ �δ/2�. A known polynomial-time algorithm from [1] named
Exact-1-MaxMinO outputs an orientation under which the minimum outdegree
is δ∗, which gives the following corollary:

Corollary 1. The algorithm Exact-1-MaxMinO outputs an optimal orientation
for Max (W + 1)-Heavy and Min W -Light when W + 1 ≤ �δ/2�.
An analogous discussion gives the following proposition and corollary, utilizing
the polynomial-time algorithm Reverse from [5]:

Proposition 6. If Δ satisfies W ≥ �Δ/2�, then Min (W+1)-Heavy and Max

W -Light can be solved in O(m) time.

Corollary 2. The algorithm Reverse outputs an optimal orientation for Min

(W + 1)-Heavy and Max W -Light when W ≥ �Δ/2�.

3 Greedy Algorithms for Min W -Light and Min

(W + 1)-Heavy

In this section, for general W , we present greedy algorithms for Min W -Light

and for Min (W + 1)-Heavy, which use the same framework, but different
criterion functions are adopted.

Here we explain the main idea of the greedy algorithm for Min W -Light.
Our algorithm sequentially chooses vertices to be removed as violating vertices
(W -light vertices). We refer by S the temporary vertices to be removed in Min

W -Light, that is, S starts from ∅ and the size of S increases one-by-one by
a greedy manner until V (G) \ S becomes (W + 1)-heavy. The criterion of the

Maximum Satisfaction and Minimum Violation 29

greedy algorithm is defined by the following problem and its polynomial time
solvability:

Problem Attainment of (W +1)-Heavy Orientation (P1(G,W, S))

max
∑

v∈V \S
min{W + 1, d+Λ(v)}

subject to Λ ∈ A(G) ,

where A(G) is the set of all orientations on G.

Since P1(G,W, S) can be solved via the maximum flow problem, we obtain
the following lemma.

Lemma 1. Attainment of (W +1)-Heavy Orientation (P1(G,W, S)) can
be solved in O(m1.5 min{m0.5, logm logW}) time.

Proof. The problem P1(G,W, S) can be reduced to the following maximum flow
problem which can be solved in O(m1.5 min{m0.5, logm logW}) time [14,18,22]:
For graph G, we construct network N (G,W, S), where the set of vertices is
{s, t} ∪ E(G) ∪ V (G) and the set of arcs is {(s, e) | e ∈ E} ∪ {(e, u), (e, v) | e =
{u, v} ∈ E(G)} ∪ {(u, t) | u ∈ V (G)}. The capacities of the arcs are defined by

cap((s, e)) = 1 for e ∈ E(G),
cap((e, u)) = 1 for u ∈ e ∈ E(G), and

cap((u, t)) =

{
0

W + 1

for u ∈ S,
for u ∈ V (G) \ S .

We can see that the objective value of P1(G,W, S) corresponds to the flow value
of the network. In fact, flowwith size one from s to e(= {u, v}) goes through either
u or v (exactly one of u and v) by the flow integrality. This is interpreted as follows:
e = {u, v} is oriented as (u, v) if the flow via e goes through u, and (v, u) otherwise;
the value of flow via u is considered theminimum ofW+1 and the outdegree of u of
the corresponding orientation. Thus, the optimal value of P1(G,W, S) is obtained
by solving the maximum flow problem on N (G,W, S). ��

By the optimality of the maximum flow, there is a simple characterization of an
optimal orientation.

Lemma 2. Λ is an optimal orientation of P1(G,W, S) if and only if there is
not a directed path on Λ of G \ S from any (W + 2)-heavy vertex in V \ S or a
vertex in S to W -light vertex in V \ S.

As mentioned above, we design a greedy algorithm that uses the optimal value
of P1(G,W, S) as a criterion. Let g1(S) be the optimal value of P1(G,W, S) plus
|S|(W +1). It is easy to see that g1(S) = g1(V) if G \S is (W +1)-heavy. Thus,
by using this g1(S), Min W -Light can be formulated as minS⊆V {|S| | g1(S) =
g1(V)}. We can show the following lemma.

30 Y. Asahiro et al.

Lemma 3. g1(S) is a non-decreasing submodular function, that is, it satisfies
that (non-decreasingness) g1(S ∪ {i})− g1(S) ≥ 0 for any i ∈ V \ S, and (sub-
modularity) g1(S) + g1(T) ≥ g1(S ∩ T) + g1(S ∪ T) for any S, T ⊆ V .

Proof. For two disjoint subsets S, S′ ⊆ V of vertices, let us denote

α(S, S′) = min{
∑
v∈S′

min{W + 1, d+Λ(v)} | Λ ∈ OptO(P1(G,W, S))} ,

where OptO(P1(G,W, S)) is the set of all optimal orientations of P1(G,W, S).
To prove this lemma, we first show that

g1(S ∪ S′)− g1(S) = |S′|(W + 1)− α(S, S′) (1)

holds for any disjoint S, S′ ⊆ V . Let ΛS,S′ be an orientation that achieves
α(S, S′). We can see that ΛS,S′ is also an optimal orientation of P1(G,W, S∪S′).
In fact, by Lemma 2 and the optimality of ΛS,S′ for P1(G,W, S), there is
no directed path from (W + 2)-heavy vertex in V \ S or a vertex in S to
W -light vertex in ΛS,S′. Also, there exists no directed path from a vertex in
S′ to a W -light vertex in V \ (S ∪ S′), otherwise it contradicts that ΛS,S′

minimizes
∑

v∈S′ min{W + 1, d+Λ(v)}. These imply the optimality of ΛS,S′ for
P1(G,W, S ∪ S′). Thus, we have

g1(S) = |S|(W + 1) +
∑

v∈V \S
min{W + 1, d+ΛS,S′ (v)}

= (|S ∪ S′| − |S′|)(W + 1) +
∑

v∈V \(S∪S′)

min{W + 1, d+ΛS,S′ (v)}

+
∑
v∈S′

min{W + 1, d+ΛS,S′ (v)}

= g1(S ∪ S′)− |S′|(W + 1) +
∑
v∈S′

min{W + 1, d+ΛS,S′ (v)} ,

which is equivalent to (1). Note that the second equality in the above is based
on the fact that S and S′ are disjoint. By (1), g1(S ∪ {i})− g1(S) = (W + 1)−
α(S, {i}) ≥ 0 holds for any i ∈ V \S, which implies the non-decreasing property
of g1.

We are ready to prove the submodularity of g1. An equivalent condition of
the submodularity of g1 is that

g1(S ∪ {i})− g1(S) ≥ g1(S ∪ {i, j})− g1(S ∪ {j}) (2)

for any S ⊆ V and any i, j ∈ V \ S. By (1), we have

g1(S ∪ {i})− g1(S) = (W + 1)− α(S, {i}),
g1(S ∪ {j})− g1(S) = (W + 1)− α(S, {j}), and

g1(S ∪ {i, j})− g1(S) = 2(W + 1)− α(S, {i, j}) .

Here, it is easy to see that α(S, {i})+α(S, {j}) ≤ α(S, {i, j}) holds. This implies
(2), the submodularity of g1. ��

Maximum Satisfaction and Minimum Violation 31

It is known that optimization problems that form minS⊆V {|S| | g(S) = g(V)}
can be approximated within a log(maxi∈V {g({i})−g(∅)}) factor by the following
greedy algorithm, if g is a non-decreasing submodular function [30].

1. Set S = ∅.
2. Find an i∈V \ S that maximizes g(S ∪ {i})− g(S), and update S :=S ∪ {i}.
3. If g(S) = g(V), then output S and halt. Otherwise, goto 2.

In our case, g1 is a non-decreasing submodular function from Lemma 3, so
it can be approximated within a log(maxi∈V {g1({i})− g1({∅})}) ≤ log(W + 1)
factor by the greedy algorithm. In our case, this algorithm can be executed by n
iterations of Step 2. Step 2 is done in O(m1.5 min{m0.5, logm logW}) +O(mn)
time, where O(m1.5{m0.5, logm logW}) time is for computing the maximum
flow for g1(∅) based on Lemma 1, and O(mn) is n-times finding an augmenting
path to compute g1(S ∪ {i}) from g1(S). We obtain the following theorem:

Theorem 1. Min W -Light can be approximated within a factor of log(W +1)
in O((mn+m1.5 min{m0.5, logm logW})n) time.

As forMin (W+1)-Heavy, we can obtain the similar theorem as follows, though
we need to be a little more careful because we use the minimum cost flow for
the proof, and it is not as simple as the maximum flow.

Theorem 2. Min (W + 1)-Heavy can be approximated within a factor of
log(Δ−W) in polynomial time.

4 (In)approximability of the Problems

In this section, we give several results on the (in)approximability of the four prob-
lems, Max W -Heavy, Min W -Light, Min W -Heavy, and Max W -Light in
this order.

In [4], the NP-hardness of Max W -Heavy is shown for W ≥ 3, however, no
inapproximability results are known. The next theorem gives an inapproxima-
bility of Max W -Heavy for a sufficiently large W :

Theorem 3. For W = Ω(n1/3), Max W -Heavy cannot be approximated within
a factor of W 1−ε in polynomial time for any constant ε > 0 unless P = NP.

It should be noted that the proof of this theorem is based on the hardness of
Max Independent Set. An important condition here is W ≥ Δ of an instance
of Max Independent Set. Since Max Independent Set is NP-hard when
Δ ≥ 3, the proof implies that Max W -Heavy is NP-hard also when W ≥ 3,
i.e., we cannot show the hardness of Max W -Heavy for the case W = 2.

Next we give an inapproximability of Min W -Light here:

Theorem 4. Min 2-Light and Min 3-Light cannot be approximated within
a constant factor 100/99 and 53/52, respectively, in polynomial time unless
P = NP. Furthermore, for sufficiently large W , Min W -Light cannot be ap-
proximated within a factor of log(W + 1) − O(log logW) in polynomial time
unless P = NP.

32 Y. Asahiro et al.

Since Min 1-Heavy is equivalent to Min Vertex Cover [4], it can be approx-
imated within a ratio of 2− Θ(1/

√
logn) [16]. Also, in this paper, we designed

O(log(Δ−W))-approximation algorithm for Min W -Heavy in Theorem 2. On
the other hand, the following inapproximability of Min W -Heavy can be also
shown.

Theorem 5. For every fixed W ≥ 1, Min W -Heavy cannot be approximated
within a ratio of 1.3606 in polynomial time unless P = NP.
Proof. Since Min 1-Heavy is equivalent to Minimum Vertex Cover[4], Min

1-Heavy cannot be approximated within a ratio of 1.3606 in polynomial time un-
less P = NP [9]. The hardness of approximating Min W -Heavy for every fixed
W ≥ 2 is shown by a gap-reserving reduction from Minimum Vertex Cover.
Let G = (V (G), E(G)) be an input graph of Minimum Vertex Cover with
n vertices. Then, we construct a graph H = (V (H), E(H)) of Min W -Heavy

from G. Let OPT (G) and OPT ′(H) denote the values of optimal solutions for
G of Minimum Vertex Cover and for H of Min W -Heavy, respectively.
Let V (G) = {v1, v2, · · · , vn} of n vertices in G. The constructed graph H has
n subgraphs H1 through Hn. Each subgraph Hi consists of one vertex ui,0 and
a complete graph Ki

2W−1 of 2W − 1 vertices, ui,1 through ui,2W−1. The vertex
ui,0 is connected to W − 1 vertices ui,1 through ui,W−1. That is, the number of
edges in the subgraph Hi is (2W − 1)(2W − 2)/2 + (W − 1) = 2W (W − 1). If
{vi, vj} in G of Minimum Vertex Cover, then Hi and Hj are connected by
an edge {ui,0, uj,0}. This reduction can be done in polynomial time. In the fol-
lowing we show that this reduction can completely preserve the approximation
gap of α = 1.3606 in Minimum Vertex Cover, i.e., OPT (G) ≤ k if and only
if OPT ′(H) ≤ k holds.

The following simple observation plays a key role in this proof: Now suppose
that {vi, vj} ∈ E(G). Then, consider the subgraph G[V (Hi)∪V (Hj)] induced by
V (Hi) and V (Hj) connected by the edge {ui,0, uj,0}. One can see that G[V (Hi)∪
V (Hj)] contains |V (Hi)|+ |V (Hj)| = 4W vertices and |E(Hi)|+ |E(Hj)|+ 1 =
4W (W − 1) + 1 edges; the density of G[V (Hi) ∪ V (Hj)] is larger than W − 1.
This means that the maximum density is at least W so that at least one vertex
in G[V (Hi) ∪ V (Hj)] must be W -heavy.

(Only-if part) Consider a vertex cover S ⊆ V (G) with size at most k of G.
Then we can give the following orientation of H : For the internal edges ofKi

2W−1

in the ith subgraph Hi for every i = 1, 2, · · · , n, we give an arbitrary orientation
in which every vertex has outdegree W − 1 by Proposition 2. The number of
edges between ui,0 and the complete graph Ki

2W−1 in Hi is W −1, and those are
oriented from ui,0 to W − 1 vertices in Ki

2W−1. At this moment, the outdegree
of ui,0 is exactly W −1. For an edge {ui,0, uj,0} between Hi and Hj where vi ∈ S
and vj ∈ V \ S, we orient it from ui,0 to uj,0. If both vertices vi and vj are in
S, then the edge {ui,0, uj,0} is oriented arbitrarily. Since at least one vertex in
{ui,0, uj,0} between Hi and Hj is in S, the outdegree of a vertex in V (G) \ S is
W − 1. The number of W -heavy vertices is at most k.

(If part) Consider an orientation Λ such that the number of W -heavy vertices
in H is at most k. As observed above, at least one vertex in the subgraph induced

Maximum Satisfaction and Minimum Violation 33

by two subgraphs Hi and Hj corresponding to two vertices in an edge {vi, vj}
in G is W -heavy. If the W -heavy vertex is in Hi, then we select the vertex vi
into the subset S of vertices. Otherwise, the vertex vj is selected into S. Then,
at least one endpoint of every edge in E(G) must be in S. Thus, S is a vertex
cover of G and |S| ≤ k holds by the assumption. ��

Since Max 0-Light is equivalent to Max Independent Set [4], it cannot be
approximated within a factor of n1−ε [31] while it can be approximated within a
factor of n(log logn)2/(logn)3 [11]. In the following we give the inapproximability
and the approximability of Max W -Light for W ≥ 1:

Theorem 6. For every fixed W ≥ 1, Max W -Light cannot be approximated
within a factor of (n/W)1−ε in polynomial time unless P = NP.

The following algorithm runs in linear time. Although it is quite simple, its
approximation ratio is almost tight due to the inapproximability ratio of
Ω((n/W)1−ε) above.

1. Pick any min{2W + 1, n} vertices in the input G. Let the set of the chosen
vertices be U .

2. Apply the algorithm in Prop. 6 to G[U].
3. Orient the edges in E \ E(U) connecting to any vertex in U towards U .
4. Orient the remaining edges arbitrarily.

Theorem 7. There is a linear time n/(2W + 1)-approximation algorithm for
Max W -light.

5 Degree-Bounded Graphs

In this section, the obtained results for input graphs with bounded degrees are
briefly summarized.

First we can obtain a polynomial time 2-approximation algorithm by a slight
modification to the one in Prop. 5; the main idea of the modification is to choose
appropriate pairs of vertices having odd degrees, when inserting matching edges.
Recall that if Δ = 2W , then the problem Max W -Light can be solved in
polynomial time by Corollary 2.

Theorem 8. If Δ = 2W + 1, there is a polynomial time 2-approximation algo-
rithm for Max W -Light.

Next theorem shows the
⌊
Δ
2

⌋
-approximability for Max 2-Heavy. The algorithm

roughly works as follows: (i) first it obtains a line graph L(G) of the input graph
G, (ii) finds a maximum matching in L(G), then (iii) converts the obtained
matching to an orientation of G. Here an important property is that the size of
the maximum matching in L(G) guarantees the number of 2-heavy vertices in
the resulted directed graph.

34 Y. Asahiro et al.

Theorem 9. There is a polynomial time �Δ/2�-approximation algorithm for
Max 2-Heavy.

Based on this theorem, the following corollary holds, which shows one side of the
complexity of Max 2-Heavy and Min 1-Light; it is unknown whether Max

2-Heavy and Min 1-Light are NP-hard or not for general.

Corollary 3. Max 2-Heavy and Min 1-Light can be solved in polynomial
time when Δ ≤ 3.

6 Concluding Remarks

In this paper, we have derived several new results on the complexity of Max

W -Light, Min W -Light, Max W -Heavy, and Min W -Heavy. As for one
technical aspect, we remark that the proof of the submodularity in Sect. 3 might
be simplified using matroid theory. We would also like to note here that the 2-
approximation algorithm for Feedback Vertex Set [6] gives a fundamental
idea for a polynomial-time 2-approximation algorithm for Min 2-Heavy.

An interesting open question is whether Max 2-Heavy (or Min 1-Light)
is NP-hard for general graphs. Furthermore, there are still many gaps between
the known polynomial-time approximability and inapproximability bounds for
the problems; investigating stricter thresholds is a further research topic.

The problems were defined on unweighted graphs. A natural generalization
is to let the vertices be weighted and try to minimize (or maximize) the total
weights of heavy (or light) vertices. Under this generalization, designing algo-
rithms becomes harder in general, but some of the presented approximation
algorithms (e.g., the ones in Sect. 3) can easily be adjusted to the weighted ver-
sion with the same approximation guarantees. Alternatively, the problems can
be generalized by allowing the edges to be weighted, in which the outdegree of
a vertex is defined by the total weights of outgoing edges.

References

1. Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Graph orientation to maximize the
minimum weighted outdegree. International Journal of Foundations of Computer
Science 22(3), 583–601 (2011)

2. Asahiro, Y., Jansson, J., Miyano, E., Ono, H., Zenmyo, K.: Approximation algo-
rithms for the graph orientation minimizing the maximum weighted outdegree.
Journal of Combinatorial Optimization 22(1), 78–96 (2011)

3. Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Upper and lower degree bounded
graph orientation with minimum penalty. In: Proc. of CATS 2012. CRPIT Series,
vol. 128, pp. 139–146 (2012)

4. Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Graph orientations optimizing
the number of light or heavy vertices. In: Mahjoub, A.R., Markakis, V., Milis,
I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 332–343. Springer,
Heidelberg (2012)

Maximum Satisfaction and Minimum Violation 35

5. Asahiro, Y., Miyano, E., Ono, H., Zenmyo, K.: Graph orientation algorithms to
minimize the maximum outdegree. International Journal of Foundations of Com-
puter Science 18(2), 197–215 (2007)

6. Bafna, V., Berman, P., Fujito, T.: Constant ratio approximations of the weighted
feedback vertex set problem for undirected graphs. In: Staples, J., Katoh, N., Eades,
P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 142–151. Springer, Heidel-
berg (1995)

7. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-
paction of adjacency matrices. Theoretical Computer Science 86(2), 243–266 (1991)

8. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of
mixed multigraphs. Networks 15(4), 477–484 (1985)

9. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics 162(1), 439–485 (2005)

10. Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: A special case of scheduling
unrelated parallel machines. In: Proc. of SODA 2008, pp. 483–490 (2008), Journal
version: Graph balancing: A special case of scheduling unrelated parallel machines.
Algorithmica (June 2012) published online doi:10.1007/s00453-012-9668-9

11. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM Journal
on Discrete Mathematics 18(2), 219–225 (2004)

12. Frank, A., Gyárfás, A.: How to orient the edges of a graph? In: Combinatorics,
vol. I, pp. 353–364. North-Holland (1978)

13. Gabow, H.N.: Upper degree-constrained partial orientations. In: Proc. of SODA
2006, 554–563 (2006)

14. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. Journal of the
ACM 45(5), 783–797 (1998)

15. Hakimi, S.L.: On the degrees of the vertices of a directed graph. Journal of the
Franklin Institute 279(4), 290–308 (1965)

16. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Transactions on Algorithms 5(4), Article 41(2009)

17. Kowalik, �L.: Approximation scheme for lowest outdegree orientation and graph
density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006)

18. King, V., Rao, S., Tarjan, R.E.: A faster deterministic maximum flow algorithm.
J. Algorithms 23, 447–474 (1994)

19. Landau, H.G.: On dominance relations and the structure of animal societies:
III The condition for a score structure. Bulletin of Mathematical Biophysics 15(2),
143–148 (1953)

20. Lovász, L.: Graph minor theory. Bulletin of the American Mathematical Society 43,
75–86 (2005)

21. Nash-Williams, C., St, J.A.: On orientations, connectivity and odd-vertex-pairings
in finite graphs. Canadian Journal of Mathematics 12(4), 555–567 (1960)

22. Orlin, J.B.: Max flows in O(nm) time, or better. In: Proc. of STOC 2013, pp.
765–774 (2013)

23. Picard, J.-C., Queyranne, M.: A network flow solution to some nonlinear 0-1 pro-
gramming problems with application to graph theory. Networks 12, 141–159 (1982)

24. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic
control. The American Mathematical Monthly 46(5), 281–283 (1939)

25. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory Ser.B 92(2), 325–357 (2004)

26. Stanley, R.P.: Acyclic orientations of graphs. Discrete Mathematics 5(2), 171–178
(1973)

36 Y. Asahiro et al.

27. Schrijver, A.: Combinatorial Optimization. Springer (2003)
28. Vazirani, V.V.: Approximation Algorithms. Springer (2001)
29. Venkateswaran, V.: Minimizing maximum indegree. Discrete Applied Mathemat-

ics 143(1-3), 374–378 (2004)
30. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering

Problem. Combinatorica 2(4), 385–393 (1982)
31. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique

and Chromatic Number. Theory of Computing 3(1), 103–128 (2007)

On the max min vertex cover Problem�

Nicolas Boria1, Federico Della Croce2,3, and Vangelis Th. Paschos4,5

1 Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
nicolas.boria@supsi.ch

2 D.A.I., Politecnico di Torino, Italy
federico.dellacroce@polito.it

3 CNR, IEIIT, Torino, Italy
4 PSL Research University, Université Paris-Dauphine, LAMSADE CNRS UMR 7243

paschos@lamsade.dauphine.fr
5 Institut Universitaire de France

Abstract. We address themaxmin vertex cover problem, which is the
maximization version of the well studied min independent dominating
set problem, known to be NP-hard and highly inapproximable in poly-
nomial time. We present tight approximation results for this problem on
general graphs, namely a polynomial approximation algorithm which
guarantees an n−1/2 approximation ratio, while showing that unless P =
NP, the problem is inapproximable within ratio nε−(1/2) for any strictly
positive ε. We also analyze the problem on various restricted classes of
graph, on which we show polynomiality or constant-approximability of the
problem. Finally, we show that the problem is fixed-parameter tractable
with respect to the size of an optimal solution, to treewidth and to the size
of a maximum matching.

1 Introduction

In the min independent dominating set problem, also called min max inde-
pendent set, given a graph G(V,E), we are asked to determine a minimum size
vertex-subset that is simultaneously independent and dominating. This problem,
although polynomially solvable in strongly chordal graphs [20], has been proved
to be inapproximable within n1−ε, for any ε > 0, not only in general graphs [1]
but also in restricted graph classes as, for instance, the circle graphs [2]. Also,
and probably due to this fact, exact solution of min independent dominating
set in general or in restricted classes of graphs by moderately exponential al-
gorithms has received a growing attention in the past years [3–5]. This problem
has also been tackled using exponential approximation techniques [5]. Finally, it
is shown to be very hard from a parameterized complexity point of view since it
is W[2]-hard [6].

� Research supported by the French Agency for Research under the program TODO,
ANR-09-EMER-010, by a Lagrange fellowship of the Fondazione CRT, Torino, Italy,
and by the Swiss National Science Foundation project 200020_144491/1 “Approxi-
mation Algorithms for Machine Scheduling Through Theory and Experiments”.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 37–48, 2014.
c© Springer International Publishing Switzerland 2014

38 N. Boria, F.D. Croce, and V.Th. Paschos

Surprisingly, to the best of our knowledge, the natural symmetric problem, the
max min vertex cover problem, where the goal is to compute a minimal (for
exclusion) vertex cover of maximum size, has not been addressed yet. Knowing
the direct applications of min independent dominating set in terms of ad-hoc
wireless networks, it seems natural to study the symmetric version, where instead
of minimizing the number of servers, one wishes to maximize the number of
clients. This problem obviously has the same characteristics as its minimization
counterpart in terms of NP-hardness and exact computation, but might have
different behaviours in terms of approximability and parameterized complexity
(as in the case of the pair max independent set - min vertex cover).

We show in this paper that, while also highly inapproximable, max min ver-
tex cover is better approximable than its mate, since it can be approximately
solved in polynomial time within ratio n−1/2, where n is the size of the input
graph. This result is matched by an inapproximability bound of nε−(1/2) that
can be extended also to an O(1/Δ) inapproximability bound, where Δ is the
maximum degree of the input graph. We also match it to an O(3/2Δ) approxi-
mation ratio achieved by a natural greedy algorithm. We also prove that, unlike
min independent dominating set, max min vertex cover is in FPT, the
class of fixed-parameter tractable problems not only with respect to the standard
parameter, i.e., the value of the optimum, but also with respect to the cardinality
of a maximum matching (that is smaller than the value of the optimum). Let
us note that both min weighted dominating set and max weighted inde-
pendent set are polynomially solvable in graphs with bounded treewidth [7–9]
(and, actually, fixed parameter tractable with respect to the treewidth of the in-
put graph [10]). With similar dynamic programming techniques, it can be shown
that also both weighted max min vertex cover and weighted min inde-
pendent dominating set are fixed parameter tractable with respect to the
treewidth. Since the techniques used for obtaining this result are quite similar
to those in [10], the proof of the result is omitted.

2 Approximation of max min vertex cover in General
Graphs

We give in this section inapproximability upper bounds matched by lower bounds
achieved in polynomial time for max min vertex cover. We first study ratios
functions of n and then functions of Δ.

Proposition 1. For any positive constant ε, max min vertex cover is inap-
proximable within ratio O(nε−(1/2)) unless P = NP.

Proof. First, recall that max independent set has been proved to be inap-
proximable within ratio nε−1 for a given ε ∈ (0, 1) [12] unless P = NP.

Consider an unweighted instance of max independent set given by a
graph G(V,E). Out of this instance of max independent set, we build an
instance H(V ∪ S,E′) of max min vertex cover in the following way: for
each vertex v of V one adds n+ 1 vertices connected only to v in H , while the

On the max min vertex cover Problem 39

inner edges of the set V are left unchanged. In other words, graph H is obtained
by adding an independent set S, of order n2 + n to the initial graph G, and
connecting n+ 1 vertices of the independent set to each vertex v.

Note that the graph H can be built in polynomial time, and has precisely n2+
2n vertices. Denote by opt(G) an optimal independent set in G, and by opt(H)
an optimal vertex cover in H .

Figure 1 provides an example of the construction where opt(G) is the set of
circled vertices, and opt(H) the set of black vertices.

H

G

Fig. 1. An example of the reduction in Proposition 1
.

Consider a vertex cover SOL(H) that has cardinality sol(H) in H . First, notice
that H admits a maximal matching of n edges, that consists of taking, for each
vertex of V , one edge linking this vertex to one of its neighbors in S. Hence, any
vertex cover in H takes at least n vertices, i.e., sol(H) � n.

Notice also that, for any vertex v of V that does not belong to SOL(H),
then SOL(H) must take all its neighbors in S, that is n + 1 vertices. Moreover
the set V \ SOL(H) of vertices of V that do not belong to SOL(H) defines an
independent set in G with n−|sol(H)∩V | vertices. In other words, one can assert
that any solution SOL(H) of cardinality sol(H) in H can be easily transformed
into an independent set SOL(G) in G of cardinality:

sol(G) � sol(H)− n

n
(1)

Conversely, the existence of a maximal independent set of size h in G induces the
existence of a minimal vertex cover of size nh+n in H . It suffices to consider the
following vertex cover: all vertices of V that do not belong in the independent
set (n − h vertices), and all vertices of S linked to a vertex of the independent
set (h(n + 1) vertices). Therefore, it holds that a minimal vertex cover of size
n · opt(G) + n exists in H . In other words, opt(H) � n · opt(G) + n.

Now, for some constant positive ρ < 1, suppose that there exists a polynomial
time algorithm A for max min vertex cover that guarantees an approxima-
tion ratio n−ρ, and suppose that a solution SOL(H) has been computed by this

40 N. Boria, F.D. Croce, and V.Th. Paschos

algorithm on graph H . Reminding that graph H has O(n2) vertices, the ap-
proximation ratio guaranteed by A on H turns to be n−2ρ. Then, it holds that:

sol(H) � n−2ρ · opt(H) (2)

By combining (1) and (2), one can assert that SOL(H) can easily be transformed
into an independent set SOL(G) in G of value:

sol(G) � n−2ρ · opt(H)− n

n
� n−2ρ−1 · opt(H)− 1

� n−2ρ · opt(G) + n−2ρ − 1 � n−2ρ · opt(G)

where the last inequality holds for n big enough.
Hence, the existence of an n−ρ-approximation algorithm A for max min ver-

tex cover induces the existence of an n−2ρ-approximation algorithm for max
independent set, that would consist of:

– building the instance H of max min vertex cover out of the instance G
of max independent set;

– running the algorithm A on the instance H that outputs a solution SOL(H);
– returning the solution V \ SOL(H) for the initial problem.

Since, for any constant 0 < ε � 1, the existence of an n1−ε-approximation
algorithm for max weighted independent set induces P = NP [12], an n−ρ-
approximation algorithm for max min vertex cover can exist only subject to
the condition that n−2ρ � n1−ε for any 0 < ε � 1. This leads to ρ � ε − 1/2,
which concludes the proof.

Observe now that the order of graph H in the gap-reduction of Proposition 1
is O(n2), while the maximum degree of H is O(n). Then, the following inap-
proximability bound also can be immediately derived.

Corollary 1. max min vertex cover is inapproximable in polynomial time
within ratios O(Δε−1), for any ε > 0.

Let us now recall the following very classical and obvious observation that will
be used later.

Remark 1. Denoting by M a maximum matching of a graph G, any vertex cover
(a fortiori a minimal one) of G uses at least |M | vertices (since, at least one
distinct vertex is needed per one edge of M).

Lemma 1. Consider a graph G(V,E) and an independent set S of G. Denote
by Γ (S) the set of neighbors of S, and V ′ = V \ (S ∪ Γ (S)). Finally, denote by
SOL(G′) a minimal vertex cover on the induced subgraph G[V ′] and by sol(G′)
its cardinality. It holds that Γ (S) ∪ SOL(G′) is a feasible solution for max min
vertex cover.

Proof. First, let us prove that Γ (S) ∪ sol (V ′) is a vertex cover: all edges of
S × Γ (S) and Γ (S) × V ′ are covered by vertices of Γ (S), and all edges inside

On the max min vertex cover Problem 41

the induced subgraph G[V ′] are covered by SOL(G′). By hypothesis, S×S = ∅,
so that Γ (S) ∪ SOL(G′) is, indeed, a vertex cover.

Then, let us establish the minimality of such a vertex cover: on the one hand,
no vertex of Γ (S) can be removed, as they all cover an edge linked to a vertex
of S (and no vertex of S is in the vertex cover), and on the other hand, SOL(G′)
is a minimal vertex cover on a subgraph of G, so that none of its vertices can be
removed without uncovering an edge.

Proposition 2. max min vertex cover is approximable within ratio n−1/2

in polynomial time.

Proof. Consider a graph G(V,E), with |V | = n. Let Γ (x) be the set of neighbors
of a given vertex x and, given V ′ ⊆ V , let G[V ′] be the subgraph of G induced
by the set of vertices V ′. Consider the following approximation algorithm for
max min vertex cover:

– compute a maximum matching M ;
– among the matched vertices, let x be the one with the maximal number of

exposed neighbors;
– compute a minimal vertex cover on G[V ′] with a greedy algorithm, where

V ′ = V \ ({x} ∪ Γ (x)), and denote it by SOL(G′);
– output SOL(G) = Γ (x) ∪ SOL(G′).

First, by Lemma 1, we can assert that the solution returned by our approxima-
tion algorithm is feasible. Then notice that the algorithm runs in polynomial
time, all steps of the algorithm are so: step 1 can be performed in O(n2.376) time
by the algorithm presented in [13], identifying vertex x is done in O(n), and
building a minimal vertex cover is done in O(n2) (starting from the whole set of
vertices, the greedy algorithm deletes them one by one as long as the solution
remains a vertex cover, when no vertex can be deleted, the remaining set is a
minimal vertex cover). Finally, without loss of generality, let us suppose that the
graph has no isolated vertices, since such vertices obviously make the problem
easier to approximate.

Let us now analyze the approximation guarantee of this algorithm. Given the
maximum matching M computed at the first step of the algorithm, denote by P
the set of unmatched vertices of V with respect to M (i.e., the set of vertices
of V that are not endpoints of M), which obviously forms an independent set.
Finally, set p = |P | and m = |M |. Our analysis is based upon the following
maximality argument that will be used also in Proposition 3.

Notice that each edge (vi, vj) of M is linked to a set of vertices Pij ⊆ P ,
so that Pij ⊂ Γ (vi), or Pij ⊂ Γ (vj). Indeed, suppose vi has some neighbor vk
in P not linked to vj , and vj some neighbor vl in P not linked to vi. Then, by
deleting (vi, vj) from M and adding (vi, vk) and (vj , vl) to it, one could produce
a matching with m + 1 edges, so that M would not be a maximum matching.
In other words, there exists a covering of P by m sets Pij , each of them been
included in the neighborhood of a single matched vertex. For the algorithm, this
implies that the vertex x picked at step 2 has at least p/m neighbors in P .

42 N. Boria, F.D. Croce, and V.Th. Paschos

The algorithm includes the whole neighborhood of this vertex x, which might
also include some matched vertices. Suppose that Γ (x) contains exactly h
matched vertices. Then it holds that:

|Γ (x)| � h+
p

m
= h+

n− 2m

m
(3)

We now bound the value of SOL(G′). Among the edges of the matching M , at
least m− h still exist in the subgraph G[V ′]. Indeed, this subgraph is obtained
by deleting from G the vertex x together with all its neighbors, and all edges
incident to these vertices. It is clear that, by deleting h vertices from M , only h
edges are deleted from it. Thus, G[V ′] contains a matching with m−h edges, so
that any vertex cover in G[V ′] has at least m − h vertices. A fortiori, this also
holds for the vertex cover computed at step 3 of the algorithm; so:

sol (G′) | � m− h (4)

Combining (3) and (4), we finally get the following bound on the value of the
solution computed by the algorithm: sol(G) � m+ n

m − 2 � √
n, where the last

inequality results from a simple case analysis on the value of m with respect
to
√
n: if m � √

n, then the first term of the sum is at least
√
n and the second

at least 2 (as m � n/2). In the opposite case (m <
√
n), the second term of the

sum is at least
√
n, where m � 2 (if m = 1, the graph is a star, and the problem

is polynomial).
Considering that opt(G) � n, the algorithm clearly guarantees an n−1/2 ap-

proximation ratio, and the proof is concluded.

The following proposition, provides a lower bound, function of the maximum
degree of the input graph, for the approximation ratio of max min vertex
cover.

Proposition 3. max min vertex cover is polynomially approximable within
ratio 3/2Δ, where Δ is the maximum degree of the input graph. Furthermore, in
bounded-degree graphs, regular graphs and graphs admitting a perfect matching
max min vertex cover is in APX.

Proof. Denote by di the degree of a vertex vi ∈ V , by d the average degree of G
and, as previously, by M a maximum matching of G, by m the cardinality of M
and by p the cardinality of the set P = V \ V (M) of the exposed vertices of V
with respect to M .

The maximality argument stated in the proof of Proposition 2, has the fol-
lowing consequence for sets M and P :

for an edge (vi, vj) ∈M , if one, say vi, of its endpoints has more than one
exposed neighbor, then vj has no exposed neighbour at all; in the opposite
case, an augmenting path would occur; in other words, in the case that a
matching edge (vi, vj) is incident to some edge (v, u) with either vi = v,
or vj = v, and u ∈ P , it holds that |(Γ (vi) ∪ Γ (vj)) ∩ P | � 1.

On the max min vertex cover Problem 43

Suppose that there exist a set M ′ of m′ edges of M , whose one endpoint is
adjacent to some exposed vertex of G with respect to M . Obviously, p � m′ ·Δ.
Since n = 2m+ p, we get, using the quoted consequence above, n = 2m+ p �
2(m−m′) + (Δ+ 1)m′ = 2m+ (Δ− 1)m′ � (Δ+ 1)m; hence:

m � n

Δ+ 1
(5)

By the seminal Turán’s Theorem, every maximal (for inclusion) independent set
of G has size at least n/(d+ 1); consequently:

opt(G) � dn

d+ 1
(6)

Combining (5) and (6) and taking into account Remark 1, the following holds
for the approximation of every minimal vertex cover:

sol(G)

opt(G)
� d+ 1

d(Δ+ 1)
� d+ 1

dΔ
(7)

for arbitrarily large values of Δ. Also the following fact holds for any vertex
cover of a graph G(V,E) of order n.

Any vertex cover (a fortiori a minimal one) C guarantees approximation
ratio at least (d+ 1)/2Δ for max min vertex cover.

In fact, since C covers E, it holds that
∑

vi∈C di � |E|. Also,
∑

vi∈C di � Δ|C|
and |E| = nd/2. Putting all this together, we get:

sol(G) = |C| � nd

2Δ
(8)

Combining (8) and (6), we derive:

sol(G)

opt(G)
� d+ 1

2Δ
(9)

Ratio in (9) is increasing with d, while in (7) is decreasing with d. Equality holds
for d = 2, which derives ratio 3/2Δ.

3 Parameterized Analysis

We prove in this section that, continuing the asymmetry between min inde-
pendent dominating set and max min vertex cover, the later is fixed
parameter tractable when parameterized by the standard parameter, i.e., the
cardinality opt of a maximum minimal vertex cover.

Proposition 4. max min vertex cover can be solved in O∗(4opt/3).

44 N. Boria, F.D. Croce, and V.Th. Paschos

Proof. Let, as previously, Γ (vi) be the neighborhood of vertex vi. First, notice
that if all vertices have degree � 2, then the problem becomes straightforwardly
polynomially solvable by dynamic programming. Then, we assume that there
exists a vertex vj such that dj � 3. Notice also that for each vertex vi at least
one vertex among the set Γ (vi)∪ {vi} cannot be part of the vertex cover or else
that vertex cover would not be minimal. For this, just observe that if Γ (vi)∪{vi}
is included in the solution, vi can be removed, since its incident edges are covered
by the vertices of Γ (vi). We consider a branch and reduce approach where in
each branch a vertex is excluded from the vertex cover and its neighbors are
then necessarily included. We point out that such branch guarantees that all
vertex covers generated will be minimal. We branch on vertex vj according to
the following exhaustive cases.
Case 1. dj � 3 and all vi ∈ Γ (vj) have degree di � dj . We generate |Γ (vj)|+ 1
branches as follows: in one branch, vertex vj is excluded from the vertex cover
and correspondingly all its neighbors are included; in all other branches one
of the vertices vi ∈ Γ (vj) is excluded while all vk ∈ Γ (vi) are included. This
corresponds to |dj + 1| branches where in each branch at least |dj | vertices are
included in the vertex cover. The worst-case occurs for |dj | = 3, where we have
four branches each including 3 vertices in the vertex set. Correspondingly, the
complexity is O∗(4opt/3) = O∗(1.5874opt).
Case 2. dj � 3 and there exists vi ∈ Γ (vj) with di = 2. Three subcases occur
with respect to the degree of the other neighbor vk of vi.

Subcase 2 (a). If dk � 3, then either vi or vj or vk are excluded from the vertex
cover and correspondingly their neighbors are included in the vertex cover. Then,
the recursion is at least T (opt) � T (opt− 2) + 2T (opt− 3) and the worst-case
complexity is O∗(1.5214opt).

Subcase 2 (b). If dk = 2, vj may or may not be adiacent to vk. If vj and vk
are adjacent, then a branch on vj can be performed: either vj is excluded from
the vertex cover and correspondingly its neighbors (at least three) are included
in the vertex cover, or vj is included in the vertex cover and arbitrarily vi (vk) is
excluded from the vertex cover and vk (vi) is included in the vertex cover. Then,
the recursion is at least T (opt) � T (opt − 2) + T (opt − 3) and the worst-case
complexity is O∗(1.3248opt). Alternatively, vj and vk are non adjacent and vk is
adjacent to another vertex vl. Then, either vi is excluded from the vertex cover
(and its two neighbors are included), or vk is excluded from the vertex cover
(and again its two neighbors are included), or both vi and vk are included in
the vertex cover and correspondingly vj and vl are excluded from the vertex
cover. In this last case, the other neighbors of vj and vl (that may possibly
coincide) must be included in the vertex cover and globally at least four vertices
must be included in the vertex cover. Correspondingly, the recursion is at least
T (opt) � 2T (opt−2)+T (opt−4) and the worst-case complexity is O∗(1.5538opt)
(notice that this last branch does not even occur if vj and vl are adjacent).

Subcase 2 (c). If dk = 1, then vi and vj cannot be both included in the
vertex cover as such solution is not better than the one with vj and vk included
in the vertex cover and vi excluded from the vertex cover. Then either vi is

On the max min vertex cover Problem 45

excluded from the vertex and two vertices (vi andvj) are included in the vertex
cover, or vj is excluded from the vertex cover and all its neighbors (at least
three vertices) are included in the vertex cover. Correspondingly, the recursion
is at least T (opt) � T (opt − 2) + T (opt − 3) and the worst-case complexity is
O∗(1.3248opt).
Case 3. dj � 3 and there exists vi ∈ Γ (vj) with di = 1. We generate 2 branches
where either vi is excluded from the vertex cover and vj is included, or vj is
excluded from the vertex and all its neighbors are included. Correspondingly,
the recursion is at least T (opt) � T (opt − 1) + T (opt − 3) and the worst-case
complexity is O∗(1.4656opt).

Overall, the worst-case is attained in case 1 with complexity O∗(4opt/3) =
O∗(1.5874opt).

In what follows, we further strengthen the result of Proposition 4, showing that
max min vertex cover is FPT even when parameterized by the cardinality
of a maximum matching M of the input graph (recall that m � opt(G)).

Proposition 5. max min vertex cover can be solved in O∗(3m) where m is
the cardinality of a maximum matching of the input graph.

Proof. Consider a general graph G(V,E), and a maximum matching M ⊆ E
on G. All exposed vertices obviously form an independent set, that we denote
by S. We also denote, as previously, by V (M) the set of matched vertices.

We show that any feasible solution SOL(G) for max min vertex cover can
be unequivocally characterized by its subset of matched vertices. Consider any
subset SOL(G) ∩ V (M) of V (M) known to be the subset of a unknown feasible
solution SOL(G). There actually exists a single solution SOL(G) which admits
SOL(G) ∩ V (M) as subset of matched vertices. Indeed denote by Ŝ the subset
of S containing all exposed vertices incident to a matched vertex that does not
belong in SOL(G) ∩ V (M). Then, the whole set Ŝ must be part of SOL(G) in
order to make it feasible. Conversely, all exposed vertices that do not belong to Ŝ
cannot belong to SOL(G), because they would make the solution non minimal:
by definition, all of their neighbors already belong in the vertex cover.

Therefore, by identifying the subset OPT ∩ V (M), where OPT denotes a
maximum minimal vertex cover, one would be able to reconstruct the whole
solution OPT by simply adding to OPT∩V (M) all exposed vertices incident to
a matched vertex not in the vertex cover.

Finally, notice that for each edge of the matching M , any vertex cover (a
fortiori the optimal one) must take at least one endpoint of this edge. So, for
each edge, any solution can take one endpoint, or the other, or both endpoints,
that is three possibilities. Hence, there are at most 3m vertex covers in the
subgraph induced by the matched vertices.

Consider the following algorithm:

– compute a maximum matching M ;
– build all 3m possible vertex-covers Vi ⊆ V (M) among the matched vertices;

46 N. Boria, F.D. Croce, and V.Th. Paschos

– complete each of these vertex-covers by adding all vertices of S incident to
a vertex not in the vertex cover;

– output the maximal feasible solution.

It is clear that through the exhaustive search performed at step 2 of the algo-
rithm, the subset OPT ∩ V (M) will be found, and when completed by exposed
vertices at step 3, the optimal solution will be produced. Hence, an optimal
solution can be computed in O∗(3m), and the proof is concluded.

Taking into account that m � τ , the cardinality of a minimum vertex cover
of the input graph, the following corollary immediately holds.

Corollary 2. max min vertex cover parameterized by τ is FPT.

Let us now quickly point out how combination of Propositions 4 and 5 allows
us to handle interesting trade-offs between parameterization and approximation.
Indeed, we shall show that approximation ratios for max min vertex cover,
unachievable in polynomial time (unless an unlikely complexity condition holds),
can be achieved in parameterized time. This issue has been already studied
in [14–18], etc., for several problems, as min vertex cover, Steiner tree,
min edge dominating set, several restricted versions of min hitting set,
etc.

Revisit Proposition 5 and remark that if m < (log 1.5874/ log 3)opt(G) ≈
0.42opt(G), then the parameterized algorithm of Proposition 5 runs faster than
that of Proposition 4 while, if m � 0.42opt(G), any minimal vertex cover (a
fortiori the one of Proposition 3) achieves ratio greater than, or equal to, 0.42,
ratio “forbidden” in polynomial time. For instance, we can guarantee ratio 0.1 in
parameterized time less than O∗(1162opt), much smaller than O∗(1.5874opt), or
even, approximation ratio 0,4 in time less than O∗(1.552opt) that always remains
less than O∗(1.5874opt).

We conclude the section by showing that the same kind of trade-off can me
made combining Proposition 4 and Proposition 1 [5] in order to get approxima-
tion results unachievable in polynomial time through exponential algorithms run-
ning faster than the currently best known exact algorithms. Recall that Propo-
sition 1 in [5] claims that for any positive ε � 5, min max independent set is
(1 + ε)-approximable in time O∗(1.3351(1−(ε/168))n).

If opt(G) < 0.626(1 − (ε/168))n, then the algorithm of Proposition 4 com-
putes a maximum minimal vertex cover of G in time smaller than O∗(1.3351n),
which is the best worst-case complexity known for min max independent set
and, consequently, for max min vertex cover. Suppose now that opt(G) �
0.626(1− (ε/168))n. In this case the (1 + ε)-approximation algorithm of Propo-
sition 1 in [5] (indeed this algorithm can be seen as a kind of moderately ex-
ponential approximation schema) can be transformed a moderately exponential
approximation schema for max min vertex cover.

Denote by opt′(G) the size of a minimum dominating set in G and use the
algorithm of Proposition 1 [5] in order to get an (1+ε)-approximate independent

On the max min vertex cover Problem 47

dominating set S. Obviously, the set C = V \ S is a minimal vertex cover of G.
The approximation ratio of C is:

|C|
opt(G)

=
n− |S|

n− opt′(G)
� n− (1 + ε)opt′(G)

n− opt′(G)
(10)

The last expression in (10) decreases with opt′(G); since opt(G) � 0.626(1 −
(ε/168))n, opt′(G) � (0.374 + (0.626ε/168))n and setting it in the last term
of (10) we get after some easy but tedious algebra that |C|/opt(G) � 1 + ε′ for
some ε′ that only depends on ε.

Let us finally note, that the same reasoning can be applied even with respect
to future improved exact algorithms (just do the same analysis simply parame-
terizing the bases of the exponentials, i.e., using, for instance γn and δopt instead
of 1.3351n and 1.5874opt).

References

1. Halldórsson, M.M.: Approximating the minimum maximal independence number.
Inform. Process. Lett. 46, 169–172 (1993)

2. Damian-Iordache, M., Pemmaraju, S.V.: Hardness of approximating independent
domination in circle graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC
1999. LNCS, vol. 1741, pp. 56–69. Springer, Heidelberg (1999)

3. Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum
independent dominating set in graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS,
vol. 4271, pp. 78–89. Springer, Heidelberg (2006)

4. Gaspers, S., Kratsch, D., Liedloff, M.: Exponential time algorithms for the min-
imum dominating set problem on some graph classes. In: Arge, L., Freivalds, R.
(eds.) SWAT 2006. LNCS, vol. 4059, pp. 148–159. Springer, Heidelberg (2006)

5. Bourgeois, N., Della Croce, F., Escoffier, B., Paschos, V.T.: Fast algorithms for
min independent dominating set. Discrete Appl. Math. 161, 558–572 (2013)

6. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

7. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with
bounded decomposability, A survey. BIT Numerical Mathematics 25, 1–23 (1985)

8. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Appl. Math. 23, 11–24 (1989)

9. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:
Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer,
Heidelberg (1988)

10. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on
tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)

11. Boria, N., Della Croce, F., Paschos, V.: On the max min vertex cover problem.
Cahier du LAMSADE 343, LAMSADE (2013), http://www.lamsade.dauphine.fr

12. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems.
In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp.
40–51. Springer, Heidelberg (1993)

13. Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In: Proc.
FOCS 2004, pp. 248–255 (2004)

http://www.lamsade.dauphine.fr

48 N. Boria, F.D. Croce, and V.Th. Paschos

14. Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and
approximability results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006.
LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

15. Chen, Y.-J., Grohe, M., Grüber, M.: On parameterized approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

16. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

17. Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial
inapproximability and fixed parameter approximability of edge dominating set. In:
Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 25–36.
Springer, Heidelberg (2012)

18. Fellows, M.R., Kulik, A., Rosamond, F., Shachnai, H.: Parameterized approxima-
tion via fidelity preserving transformations. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 351–362.
Springer, Heidelberg (2012)

19. Farber, M.: Independent domination in chordal graphs. Oper. Res. Lett. 1,
134–138 (1982)

20. Farber, M.: Domination, independent domination, and duality in strongly chordal
graphs. Discrete Appl. Math. 7, 115–130 (1984)

21. Okamoto, Y., Uno, T., Uehara, R.: Linear-time counting algorithms for indepen-
dent sets in chordal graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787,
pp. 433–444. Springer, Heidelberg (2005)

On Fixed Cost k-Flow Problems�

MohammadTaghi Hajiaghayi1,, Rohit Khandekar2, Guy Kortsarz3, ,
and Zeev Nutov4

1 University of Maryland, College Park, MD
hajiagha@cs.umd.edu.

2 Knight Capital Group, Jersey City, NJ
rkhandekar@gmail.com

3 Rutgers University–Camden, NJ
guyk@camden.rutgers.edu

4 The Open University of Israel
nutov@openu.ac.il

Abstract. In the Fixed Cost k-Flow problem, we are given a graph
G = (V,E) with edge-capacities {ue | e ∈ E} and edge-costs {ce | e ∈ E},
source-sink pair s, t ∈ V , and an integer k. The goal is to find a minimum
cost subgraph H of G such that the minimum capacity of an st-cut in H
is at least k. We show that Group Steiner is a special case of Fixed
Cost k-Flow, thus obtaining the first polylogarithmic lower bound for
the problem; this also implies the first non constant lower bounds for the
Capacitated Steiner Network and Capacitated Multicommod-

ity Flow problems. We then consider two special cases of Fixed Cost

k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given
a bipartite graph G = (A ∪ B,E) and an integer k > 0. The goal is to
find a node subset S ⊆ A∪B of minimum size |S| such G has k pairwise
edge-disjoint paths between S ∩ A and S ∩ B. We give an O(

√
k log k)

approximation for this problem. We also show that we can compute a so-
lution of optimum size with Ω(k/polylog(n)) paths, where n = |A|+ |B|.
In the Generalized-P2P problem we are given an undirected graph
G = (V,E) with edge-costs and integer charges {bv : v ∈ V }. The goal
is to find a minimum-cost spanning subgraph H of G such that ev-
ery connected component of H has non-negative charge. This problem
originated in a practical project for shift design [10]. Besides that, it
generalizes many problems such as Steiner Forest, k-Steiner Tree,
and Point to Point Connection. We give a logarithmic approxima-
tion algorithm for this problem. Finally, we consider a related problem
called Connected Rent or Buy Multicommodity Flow and give a
log3+ε n approximation scheme for it using Group Steiner techniques.

� Part of this work was done at DIMACS. We thank DIMACS for their hospitality.
A preliminary version appeared in archive [13] in 2011.

�� Supported in part by NSF CAREER award 1053605, ONR YIP award
N000141110662, DARPA/AFRL award FA8650-11-1-7162, and University of Mary-
land Research and Scholarship Award (RASA). The author is also with AT&T
Labs– Research, Florham Park, NJ.

� � � Supported in part by NSF grant number 434923.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 49–60, 2014.
c© Springer International Publishing Switzerland 2014

50 M. Hajiaghayi et al.

1 Introduction

1.1 Problems Considered

Graphs in this paper are undirected, unless stated otherwise. For a graph H
with edge capacities ue (a default capacity of an edge is 1) let λH(A,B) denote
the max-flow/min-cut value between A and B in H . We study variants of the
following network design problems from [7].

Fixed Cost k-Flow

Instance: A graph G = (V,E) with edge-capacities {ue | e ∈ E} and edge-
costs {ce | e ∈ E}, source-sink pair s, t ∈ V , and an integer k.
Objective: Find a minimum cost subgraph H of G such that λH(s, t) ≥ k.

We study a particular case of Fixed Cost k-Flow on a bipartite graph G =
(A ∪ B,E), where all edges between s and A and between t and B exist and
have infinite capacity and cost 1, and all the other edges have cost 0 and ar-
bitrary capacity. A slightly simpler version was suggested to us by Deeparnab
Chakrabarty in a personal communication. Our version can be casted as follows.

Bipartite Fixed-Cost k-Flow

Instance: A bipartite graph G = (A ∪ B,E) with integral edge-capacities
{ue : e ∈ E}, and an integer k > 0.
Objective: Find a minimum size set S ⊆ A∪B such that λG(S∩A,S∩B) ≥ k.

The following special case of Fixed Cost k-Flow was shown in [7] to include
several well studied problems, such as Steiner Forest, k-Steiner Tree, and
Point to Point Connection.

Generalized Point to Point Connection (Generalized-P2P)
Instance: An undirected graph G = (V,E) with edge-costs {ce | e ∈ E},
a subpartition V +, V − of V , and integer charges {bv > 0 : v ∈ V +} and
{bv < 0 : v ∈ V −}.
Objective: Find a minimum-cost spanning subgraph H of G such that
b(H ′) :=

∑
v∈H′ bv ≥ 0 holds for every connected component H ′ of H .

To see that this problem is a special case of Fixed Cost k-Flow note that
it is equivalent to the following problem. We are given a graph G = (V,E),
and disjoint sets S ⊆ V of sources and T ⊆ V of sinks. Every source or sink
v ∈ S∪T is associated with a number bv and such that

∑
t∈T bt ≥

∑
s∈S bs. The

goal is to send bs flow units from every s ∈ S to the sinks, such that every sink
t will receive at most bt flow units. The main point is that all the graph edges
have infinite capacity. Thus the entire graph is (a possibly expensive) feasible
solution. Because the edges have infinite capacity, a solution H is feasible if and
only if

∑
t∈C∩T bt ≥

∑
s∈C∩S bs for every connected component C of H . This is

the same as the Point to Point Connection problem.
Fixed Cost k-Flow is a particular case of the following two problems. In these

problems we are given a graph G = (V,E) with edge-capacities {ue | e ∈ E}

On Fixed Cost k-Flow Problems 51

and edge-costs {ce | e ∈ E}, and requirements {rij | i, j ∈ V }. The goal is to
find a minimum cost subgraph H of G such that for every i, j ∈ V , rij units
of ij-flow can be sent in H . In Capacitated Multicommodity Flow the flows
should be sent simultaneously for all commodities, while in Capacitated Steiner

Network they are sent separately. In the case of one source and one sink both
problems reduce to the Fixed Cost k-Flow problem.

Our last problem is related to Capacitated Multicommodity Flow with
rooted requirements, and it is motivated by the following scenario. We are given
an undirected graph G = (V,E) with edge-capacities {ue | e ∈ E} and edge-
costs {ce | e ∈ E}, and flow demands {dv : v ∈ V } to a single sink t, where the
flows should be delivered simultaneously. We have two options with regards to
every edge e. First, we can rent h(e) ≤ ue capacity units of e, and pay ce per
unit. The cost incurred in this case is h(e) · ce. The second possibility is to buy e,
and then e can be assigned infinite capacity. Naturally, buying an edge is more
expensive than renting a capacity unit of that edge. The cost incurred in this
case is M · ce, where M is a large number called the cost inflation factor. (For
simplicity we choose a uniform cost inflation factor, but in general there may
be unrelated higher costs for buying then for renting, and our algorithms can
handle this more general case as well.) Namely, we should determine a set E′ of
bought edges, which are assigned infinite capacity, and bandwidths h(e) ≤ ue

for edges in E \ E′. The overall cost is M · c(E′) +
∑

e∈E\E′ h(e) · ce.
Over this scenario, we add a requirement that the the set E′ of bought edges

form a connected graph (i.e., a tree) G′ = (V ′, E′) that includes t. A similar
constraint appears in several other problems, such as Connected Dominating

Set, Connected Facility Location, and others.

Connected Rent or Buy Multicommodity Flow

Instance: A graph G = (V,E) with with edge-capacities {ue | e ∈ E} and
edge-costs {ce | e ∈ E}, a cost inflation number M > 0, a sink node t, and
demands {dv : v ∈ V }.
Objective: Find a connected subgraph G′ = (V ′, E′) of G containing t, and
bandwidths {h(e) ≤ ue : e ∈ E \ E′}, such that after the edges in E′ are
given infinite capacity, and each e ∈ E \ E′ is given capacity h(e), every
v ∈ V \ V ′ can deliver dv flow units to t, where the flows should be delivered
simultaneously. Minimize M · c(E′) +

∑
e∈E\E′ h(e)ce.

1.2 Previous Work and Our Results

Directed Fixed Cost k-Flow was shown to be Label-Cover hard by Even et
al. [7]. The same hardness result was rediscovered independently by Chakrabarty
et al. [4]. Carr et al. [3] observed that the natural cut-LP has an unbounded
integrality gap. They strengthened the cut-LP by adding so-called Knapsack-
Cover inequalities, and obtained constant ratio approximation algorithms for
some special graph topologies. However, in the general case, the integrality gap
of the cut-LP enhanced by Knapsack-Cover inequalities is Θ(n2). In [4] ratio
O(log n) is obtained for the case of uniform requirements rij = k for all i, j ∈ V .

52 M. Hajiaghayi et al.

In Capacitated Steiner Network with soft capacities every edge can be
selected in multiple copies. For this variant, [4] give an an Ω(log logn) hardness,
and an O(log k)-approximation algorithm, where k = |{ij : rij > 0}|.

In the Group Steiner problem we are given an undirected graph G = (V,E)
with edge-costs {ce | e ∈ E}, and a collection of groups g1, g2, . . . , gk ⊆ V .
The goal is to find a minimum cost subtree H of G that contains at least one
node from every group. In the Group Steiner on Trees problem, G is a tree
rooted at a node r, every group is a subset of the leaves (a leaf may belong
to many groups), and H should be a subtree of T rooted at r that contains
at least one leaf from every group. Garg, Konjevod, and Ravi [9] present an
O(logN · log k)-approximation algorithm for Group Steiner on Trees where
k is the number of groups, and N is the maximum size of a group. A com-
binatorial O(log2+ε n)-approximation algorithm for the problem is given in [6],
and a primal dual algorithm with a similar ratio is given in [16]. Halperin and
Krauthgamer [14] prove that unless NP ⊆ ZTIME

(
nlogc n

)
for some constant

c, for every constant ε > 0, Group Steiner on Trees admits no O(log2−ε n)
approximation.

In Sections 2 we give an approximation ratio preserving reduction from Group

Steiner on Trees to the Fixed Cost k-Flow problem, thus obtaining the follow-
ing result, that also implies the first non constant lower bound for Capacitated

Steiner Network and Capacitated Multicommodity Flow.

Theorem 1. Fixed Cost k-Flow admit no O
(
log2−ε n

)
approximation for any

constant ε > 0, unless NP ⊆ ZTIME
(
nlogc n

)
for some constant c. Consequently,

the same hardness result holds for both Capacitated Multicommodity Flow and
Capacitated Steiner Network.

Recently, two years after the archive version [13] of this paper appeared,
Chakrabarty, Krishnaswamy, Li, and Narayanan [5], improved our hardness re-
sult by showing that Fixed Cost k-Flow is Label-Cover hard. The methods
in [5] are closely related to the ideas in our hardness result, namely, avoiding
long paths in the solution.

Our results for Bipartite Fixed-Cost k-Flow andGeneralized-P2P are given
in the following two theorems, proved in Sections 3 and 4, respectively.

Theorem 2. Bipartite Fixed-Cost k-Flow admits an O(
√
k ln k)-approximati-

on algorithm. The problem also admits a bicriteria approximation algorithm that
finds S ⊆ A∪B with |S| ≤ |OPT | such that λG(S∩A,S∩B) = Ω(k/polylog(n)).

Theorem 3. Generalized-P2P with b(V) :=
∑

v∈V bv = 0 admits a 2-approxi-
mation algorithm. Furthermore, if b(V) is polynomially bounded in n = |V |, then
Generalized-P2P admits an exact algorithm on instances when the input graph
is a tree, and an approximation algorithm with ratio O(logmin{n′, 2+b(V)}) on
general graphs, where n′ = |V + ∪ V −|.

As was mentioned, Generalized-P2P generalizes the Steiner Forest, the k-

Steiner Tree, and the Point to Point Connection problems. Our algorithm
gives a single algorithm for all these problems, but with a logarithmic ratio.
It would be interesting to find a constant ratio approximation algorithm for

On Fixed Cost k-Flow Problems 53

Generalized-P2P, as it would give a unifying constant ratio algorithm for both
Steiner Forest and k-Steiner Tree.

We showed that theGroup Steiner on Trees is a special case of Fixed Cost k-

Flow. Conversely, we show that techniques applied previously to Group Steiner

[6,2], can be applied to the related Connected Rent or Buy Multicommodity

Flow problem. In the full version we prove the following theorem.

Theorem 4. Connected Rent or Buy Multicommodity Flow admits an
O(log3+ε n)-approximation scheme, assuming all instance numbers are polyno-
mial in n = |V |.

2 Hardness of Fixed Cost k-Flow (Theorem 1)

Given an instance (G = (V,E), {ce ≥ 0 | e ∈ E}, r, {S1, . . . , Sk}) of Group

Steiner on Trees, we construct an instance of Fixed Cost k-Flow as follows
(see Figure 1 for an illustration). For a positive integer k, let [k] = {1, . . . , k}.
Construct a graph G+ = (V+, E+) from G by adding some new nodes and
edges as follows. Let V+ = V ∪ {s} ∪ {gi | i ∈ [k]} and E+ = E ∪ F where
F = {{s, v} | v ∈ ∪i∈[k]Si} ∪ {{v, gi} | v ∈ Si, i ∈ [k]} ∪ {{gi, r} | i ∈ [k]}. Each
edge e ∈ E is assigned cost ce and capacity ue = ∞. Each edge e = {s, v} for
v ∈ ∪iSi is assigned cost ce = 0 and capacity ue = |{i | v ∈ Si, i ∈ [k]}|, i.e.,
the number of groups v belongs to. Each edge e = {v, gi} for v ∈ Si, i ∈ [k] is
assigned cost ce = 0 and capacity ue = 1. Each edge e = {gi, r} for i ∈ [k] is
assigned cost ce = 0 and capacity ue = |Si| − 1, i.e., one less than the number
of nodes in the group Si. Finally we set sink as t = r and demand as d =∑

i∈[k] |Si| =
∑

v∈V |{i | v ∈ Si, i ∈ [k]}|.

g2g1

t = r

s

G=(V,E)

(0,|S1|-1) (0,|S2|-1)

(ce,)

(0,1)

(0,1)

(0,1)

(0,2)

(cost, capacity)

Fig. 1. The instance of Fixed Cost

k-Flow created in the reduction from
Group Steiner on Trees. The labels
on the edges denote (cost, capacity).
Not all labels are shown in the figure.

Now we show the following one-to-one correspondence between the feasible so-
lutions of the original Group Steiner on Trees instance and that of the created
Fixed Cost k-Flow instance.

Lemma 1. There exists a solution for the Group Steiner on Trees instance
of cost at most C if, and only if, there exists a solution for Fixed Cost k-Flow

54 M. Hajiaghayi et al.

instance of cost at most C. Furthermore, the solution to Group Steiner on

Trees can be computed in polynomial time from that to the Fixed Cost k-Flow

instance, and vice versa.

Proof. Let subtree T = (VT , ET) be a solution of cost C to the Group Steiner

on Trees instance. Let H = ET ∪ F be a subgraph of G+. Since all edges in
F have cost 0, the cost of H is also C. We now argue that H forms a feasible
solution to the Fixed Cost k-Flow instance, i.e., a flow of d units can be routed
from s to t in H . We start by routing flow of u{s,v} = |{i | v ∈ Si, i ∈ [k]}| units
from s path from it to r in the tree T . This flow can be supported since received
flow to each gi for which v ∈ Si along the most |Si| − 1 units of flow from all
the nodes v ∈ Si. This is because at most |Si| − 1 nodes in Si do not belong to
T , which along edge {gi, r} of capacity |Si| − 1. Thus indeed H forms a feasible
solution to the Fixed Cost k-Flow instance.

Now let H be a solution of cost C to the Fixed cost flow instance. Since all
edges in F have zero cost, we can assume that F ⊆ H , without loss of generality.
It is enough to prove that i ∈ [k]. Suppose this is not true for some group Sj

for j ∈ [k]. We extract an s-t-cut in graph H with capacity strictly less than d
contradicting the existence of flow of value d from s to t in H . Let U ⊆ V denote
the set of nodes connected to some node in Sj in H ∩E and let U = {s, gj}∪U .
Note that s ∈ U while from our assumption t �∈ U . We now prove the following
claim.

Claim. The total capacity of edges in H that leave U is strictly less than d.

Proof. It is easy to note that all the edges in H that leave U are (1) {gj, r} with
capacity |Sj | − 1, (2) {v, gi} with capacity 1, for all i �= j and v ∈ Si ∩ U , and
(3) {s, v} with capacity |{i | v ∈ Si, i ∈ [k]}| for all v ∈ V \ U . Thus the total
capacity of these edges is

|Sj | − 1 +
∑
i�=j

∑
v∈Si∩U

1 +
∑

v∈V \U
|{i | v ∈ Si, i ∈ [k]}|

= |Sj | − 1 +
∑
v∈U

|{i | v ∈ Si, i ∈ [k], i �= j}|+
∑

v∈V \U
|{i | v ∈ Si, i ∈ [k]}|

= −1 +
∑
v∈U

|{i | v ∈ Si, i ∈ [k]}|+
∑

v∈V \U
|{i | v ∈ Si, i ∈ [k]}|

= −1 +
∑
v∈V

|{i | v ∈ Si, i ∈ [k]}| = d− 1.

This finishes the proof of the claim. ��

The above claim implies that H ∩ E indeed contains a path from some node
in Si to r for each i ∈ [k], establishing that it is a feasible solution to Group

Steiner on Trees. From the reduction, it is also clear that the solution to Group

Steiner on Trees can be computed in polynomial time from that to the Fixed

Cost k-Flow instance, and vice versa. This completes the proof of Lemma 1. ��

Theorem 1 now follows from Lemma 1 and the hardness result for Group

Steiner on Trees given in [14].

On Fixed Cost k-Flow Problems 55

3 Bipartite Fixed-Cost k-Flow (Theorem 2)

3.1 An O(
√
k log k) Approximation Algorithm

For S ⊆ A ∪B let f(S) = min{λG(S ∩A,S ∩B), k}, where we define f(∅) = 0.
Consider the following algorithm.

Algorithm Greedy

1. S ← ∅.
2. While f(S) < k do:

Add to S a node pair P = {a, b} such that f(S∪P)−f(S)
c(P) is maximum.

3. Return S.

For the analysis, consider a generic Covering Problem defined as follows. Let
f : 2U �→ Z and c : 2U �→ R

+ be two increasing set functions on a groundset
U given by an evaluation oracle, where c is also subadditive. The goal is to
find S ⊆ U with f(S) = f(U) such that c(S) is minimum. Let OPT be an
optimal solution. A ρ-greedy algorithm starts with S ← ∅ and while f(S) < f(U)
repeatedly adds to S a set P ⊆ U that satisfies the density condition

f(S ∪ P)− f(S)

c(P)
≥ 1

ρ
· f(U)− f(S)

c(OPT)
.

If at each iteration a set P as above is computed in polynomial time in |U |, then
the algorithm runs in time polynomial in |U | and ln(f(U)−f(∅)), and computes
a solution S such that c(S) ≤ ρ(ln(f(U)− f(∅)) + 1) · c(OPT).

Note that in the context of the Bipartite Fixed-Cost k-Flow problem with
U = A ∪ B, the functions f(S), c(S) satisfy the needed assumptions; both are
increasing, the function c is subadditive, and f(S) = f(U) if and only if S is a
feasible solution. Also note that f(U)− f(∅) = k.

We show that for Bipartite Fixed-Cost k-Flow there exists a pair P = {a, b}
that satisfies the density condition with ρ = |OPT | ≤ 2k. For simplicity of the
analysis, we consider uncapacitated multigraphs, by replacing every edge e of
capacity ue by ue parallel edges. Let S∗ = OPT \ S and let

P = {{a, b} : a ∈ S∗ ∩ A, b ∈ OPT } ∪ {{a, b} : a ∈ OPT ∩ A, b ∈ S∗ ∩B} .

We have∑
P∈P

c(P) = c(S∗ ∩B) · |OPT ∩ A|+ c((OPT \ S) ∩ A) · |(OPT ∩B|

≤ c(OPT) · |OPT ∩ A|+ c((OPT) · |(OPT ∩B| = c(OPT) · |OPT | .

By the Menger’s theorem, there exists a set of k edge-disjoint paths between
OPT ∩ A and OPT ∩ B, where each path is between some a ∈ OPT ∩ A and
b ∈ OPT ∩ B. For P ∈ P let f∗(P) be the number of paths between the two
nodes of P . At most f(S) paths may connect pairs not in P . This implies∑

P∈P
(f(S)− f(S ∪ P)) ≥

∑
P∈P

f∗(P) ≥ k − f(S) .

56 M. Hajiaghayi et al.

Thus by an averaging argument there exists P ∈ P such that

f(S ∪ P)− f(S)

c(P)
≥ 1

|OPT | ·
k − f(S)

c(OPT)
.

Consequently, the greedy algorithm above computes a solution S such that
c(S) ≤ |OPT |(ln k + 1)c(OPT).

By the same argument we have that if f(S) < k, there exists a pair P such
that f(S∪P)−f(S) ≥ 1. This implies that at the end of the algorithm |S| ≤ 2k.

In the case of unit costs, we have c(OPT) = |OPT | and c(S) = |S|. If

|OPT | ≥
√

2k/(lnk + 1) then |S| ≤ 2k ≤
√
2k(ln k + 1)|OPT |. If |OPT | ≤√

2k/(lnk + 1) then |S| ≤ |OPT |·(ln k+1)·|OPT | ≤
√

2k(ln k + 1)|OPT |. Thus
in the case of unit costs, the algorithm has approximation ratio

√
2k(ln k + 1).

3.2 A Bicriteria Approximation Algorithm

We reduce the problem to tree instances using the theorem of Harrelson, Hil-
drum, and Rao [15]. A tree decomposition T of V is a sequence Π0, . . . , Πd of
partitions of V , where Π0 = {V }, Πd = {{v} : v ∈ V } and each Πi is a re-
finement of Πi−1. Such tree decomposition can be represented by a rooted tree,
which we also denote by T . The root of T is {V }. The nodes in layer i are the
sets in Πi and the leaves correspond to the sets in Πd, i.e., the nodes in V .
The edges of the tree go between the consecutive layers and are given by set
inclusion. If G = (V,E) is a graph with edge capacities ue, then the weight of
an edge (S, T) of T is w(S, T) = u(δG(S)).

Now consider an instance of multi-commodity flow demands M = {dij ≥
0 | i, j ∈ V } between pairs of nodes. Let cG(M) (resp., cT (M)) denote the
minimum maximum edge-congestion under which M can be routed in G (resp.,
T). Harrelson et al. [15] proved the following theorem.

Theorem 5 (Harrelson et al. [15]). In time polynomial in n = |V |, one
can compute a tree decomposition T with depth d = O(log n) such that for any
multi-commodity flow instance M , we have

– cT (M) ≤ cG(M), and
– given a routing of M with maximum edge-congestion cT (M) in T , we can

compute in polynomial time, a routing of M with maximum edge-congestion
O(log2 n log logn) · cT (M) in G.

We use the above theorem to compute a tree decomposition T for the input
graphG = (A∪B,E). It is easy to see that the optimum solution of the Bipartite

Fixed-Cost k-Flow instance in G induces a solution A∗, B∗ in the tree T of the
same value and so that we can route at least k units of flow between A∗ and B∗

in T . We next give an exact algorithm to find sets A′ ⊆ A,B′ ⊆ B in T with
minimum |A′| + |B′| so that we can route k units of flow between them. The
optimum solution A′, B′ in T , in turn, induces a solution A′, B′ in G of value at
most that of the optimum such that we can route Ω(k/ log2 n log logn) flow.

The algorithm on tree instances uses dynamic programming. For each node
u ∈ T and values 0 ≤ F, F+, F− ≤ k, we use S+(u, F, F+) (resp., S−(u, F, F−))

On Fixed Cost k-Flow Problems 57

to denote the minimum of |A′| + |B′| such that there exist subsets A′ ⊆ A and
B′ ⊆ B in the subtree Tu of T hanging below u so that we can route a flow of
F units between A′ and B′ and send out (resp., bring in) a flow of F+ (resp.,
F−) units from nodes in A′ (resp., from u) to u (resp., to nodes in B′), using
only the edges in Tu. It is easy to compute S+ and S− values for leaf nodes
u ∈ T . Furthermore, given a non-leaf node v ∈ T and its children u1, . . . , up, it
is easy to compute S+ and S− values for v from the corresponding values for its
children. Finally, we read off the value of S+(r, k, 0) (or, equivalently S−(r, k, 0))
(where r is the root of T) to compute the optimum solution.

4 Generalized-P2P (Theorem 3)

4.1 An Exact Algorithm on Trees

Here we show how to solve Generalized-P2P optimally on instances when the
input graph is a tree T , using dynamic programming. Root T at some node s. By
adding zero-charge nodes and zero-cost edges to T if necessary, we can assume
that T is a binary tree. If a node v has one child, then we add an additional child
to v of charge 0, connected by an edge of cost 0. If v has at least 3 children, we
add a binary tree rooted at v whose leaves are the children of v. In this binary
tree, each leaf u is connected to to its parent by an edge of cost cuv; non-leaf
edges have cost 0 and non-leaf nodes distinct from v have charge 0. It is easy to
see that the problem essentially remains unchanged by this modification.

For v ∈ V let Tv denote the subtree of T that consist of v and its descendants.
For an integerB ∈ [b(V −), b(V +)] let T (v,B) be the minimum-cost of a subgraph
H of Tv satisfying the following:

– The connected component in H containing v has total charge B.
– Every other connected component in H has non-negative total charge.

If there is no subgraph H satisfying the above conditions, then T (v,B) = ∞.
The optimal solution value is min{T (s,B) | B ≥ 0}. The dynamic program
computes quantities T (v,B) for all v ∈ T and integer B ∈ [b(V −), b(V +)]. Since
each bu is polynomially bounded, the number of such quantities is polynomial.
We assume that the corresponding minimum-cost subgraph H is also stored in
the dynamic program table.

The quantities T (v,B) can be computed as follows. If v is a leaf, then com-
puting T (v,B) is trivial. For an internal node v, we compute T (v,B) as follows.
Let u1 and u2 be the two children of v. Depending on the set F ⊆ {vu1, vu2}
picked to the solution, we get four possibilities.

1. F = ∅. Then T (v,B) = min{T (u1, B1) + T (u2, B2) | B1, B2 ≥ 0} if B = bv,
and T (v,B) =∞ otherwise.

2. F = {vu1}. Then T (v,B) = min{cvu1 + T (u1, B1) + T (u2, B2) | B2 ≥ 0} if
B = bv +B1, and T (v,B) =∞ otherwise.

3. F = {vu2}. Then T (v,B) = min{cvu2 + T (u2, B2) + T (u1, B1) | B1 ≥ 0} if
B = bv +B2, and T (v,B) =∞ otherwise.

4. F = {vu1, vu2}. Then T (v,B) = min{cvu1 + T (u1, B1) + cvu2 + T (u2, B2)}
if B = bv +B1 +B2, and T (v,B) =∞ otherwise.

58 M. Hajiaghayi et al.

Among these possibilities, we pick the minimum-cost solution corresponding to
each value of the charge of the connected component containing v.

4.2 A 2-Approximation Algorithm for the Case b(V) = 0

Our 2-approximation algorithm generalizes the algorithm of [12] which is the case
bv ∈ {−1, 0, 1}. We say an edge e covers a set S if e has exactly one endnode in
S; we say that an edge-set/graph covers a set family F if for every S ∈ F there
is an edge in H covering S. Given a set-family F and an edge-set H the residual
set-family FH consists of the members of F not covered by H . Recall that a
set-family F is uncrossable if for any X,Y ∈ F at least one of the following
holds: X ∩ Y,X ∪ Y ∈ F or X \ Y, Y \X ∈ F . It is known and easy to see that
if F is uncrossable, so is FH , for any edge-set H .

Goemans et al. [11] give a primal-dual 2-approximation algorithm for the
problem of finding a minimum-cost edge-cover of an uncrossable set-family F .
A polynomial time implementation of this algorithm requires only that for any
edge-set H , the minimal members of the residual set-family FH can be com-
puted in polynomial time (but F itself may not be given explicitly). Now the
2-approximation algorithm follows from the following lemma.

Lemma 2. Given an instance of Generalized-P2P with b(V) = 0, let F =
{S ⊆ V | b(S) �= 0}. Then the following holds.

(i) An edge-set H ⊆ E is a feasible solution to Generalized-P2P if, and only
if, H covers F .

(ii) For any edge set H ⊆ E, S is an inclusion-minimal members of FH if, and
only if S is a connected component of the graph (V,H) and b(S) �= 0.

(iii) F is uncrossable.

Proof. Parts (i) and (ii) are straightforward, so we prove only part (iii). Let
X,Y ∈ F , so b(X), b(Y) �= ∅. We will show that if X ∩ Y /∈ F or if X ∪ Y /∈ F ,
then X \ Y, Y \ X ∈ F . Suppose that X ∩ Y /∈ F , so b(X ∩ Y) = 0. Then
b(X \ Y) = b(X) − b(X ∩ Y) = b(X) �= 0 and b(Y \X) = b(Y) − b(Y ∩ X) =
b(Y) �= 0; hence X \ Y, Y \X ∈ F . Suppose that X ∪ Y /∈ F , so b(X ∪ Y) = 0.
Then b(X\Y) = b(X∪Y)−b(Y) = −b(Y) �= 0 and b(Y \X) = b(X∪Y)−b(X) =
−b(X) �= 0; hence X \ Y, Y \X ∈ F . ��

4.3 An O(log |V + ∪ V −|)-Approximation Algorithm

We already proved that Generalized-P2P can be solved optimally on tree in-
stances. We next reduce the general problem to the case when the input graph
is a tree with a loss of O(log n′) factor in the approximation ratio, where n′ =
|V + ∪ V −|. This is achieved as follows. Consider the shortest-path metric on
V ′ = V + ∪ V − w.r.t. the edge-costs ce. We probabilistically embed this metric
into a tree metric T, c′ with O(log n′) distortion using the results of Bartal [1]
and Fakcharoenphol, Rao and Talwar [8]. There is a one-to-one correspondence
between V ′ and the set L of leaves of T . The resulting instance of Generalized-

P2P on T inherits the charges on the leaves of T from the original charges on

On Fixed Cost k-Flow Problems 59

nodes of V ′, while the charge of internal nodes of T is 0. We compute an optimal
solution to the obtained tree instance, and return the corresponding subgraph
H of G. Note that any feasible solution with cost C for the original instance in-
duces a solution with cost O(C log n′) for the new instance on tree T . Similarly
any feasible solution with cost C for the new instance induces a solution with
cost C for the original instance. Hence the approximation ratio is bounded by
the distortion of the reduction, which is O(log n′).

Now consider the augmentation version of the problem, when we are give an
edge subset E′ ⊆ E of cost 0. Then we can contract every connected component
F of (V,E′) into a single node vF with charge b(vF) = b(F). Thus the ap-
proximation ratio in this case is O(log n′), where n′ is the number of connected
components with non-zero charge in the graph (V,E′).

4.4 An O(log(2 + b(V)))-Approximation Algorithm

The main novelty in this result is that the ratio becomes smaller as b(V) becomes
smaller. In general, b(V) may be very small as compared to |V − ∪ V +|.

Lemma 3. There exists a polynomial time algorithm that given an instance of
Generalized-P2P computes an edge set E′ ⊆ E of cost ≤ 4τ∗, where τ∗ denotes
the optimal solution value, such that the number n′ of connected components with
non-zero charge in the graph (V,E′) is at most 4b(V).

Proof. Fix a parameter τ , which is an estimate for τ∗. Create an instance of
Generalized-P2P with total charge zero by adding a new node s with charge
−b(V) and connecting s to each node in V + by an edge of cost τ/b(V). Then
apply the 2-approximation algorithm for the case b(V) = 0. The new instance
admits a solution of cost at most τ∗ + b(V) · (τ/b(V)) = τ∗ + τ , by taking an
optimal solution to the original instance with edges that connect s to at most
b(V) nodes in V +. Thus the procedure returns an edge-set of cost at most 2(τ∗+
τ). Consequently, if τ ≥ τ∗ then the procedure returns an edge-set of cost at
most 4τ , and the number of edges incident to s is at most 4τ/(τ/b(V)) = 4b(V).
Using binary search, we find the minimum integer τ for which the procedure
returns an edge-set E′′ of cost 4τ . Then c(E′′) ≤ 4τ ≤ 4τ∗ and the number
of edges in E′′ incident to s is at most 4b(V). Let E′ be obtained from E′′ by
removing the edges incident to s. Then c(E′) ≤ c(E) ≤ 4τ∗, and the number n′

of connected components in (V,E′) with non-zero-charge is at most the degree
of s w.r.t. E′′, hence at most 4b(V), as claimed. ��

The entire algorithm has two steps. At step 1 we compute an edge set E′ as in
the above lemma. Step 2 applies the O(log n′))-approximation algorithm from
the previous section to compute an augmenting edge-set F ⊆ E \ E′ such that
E′ ∪ F is a feasible solution. The solution cost is bounded by c(E′) + c(F) =
O(τ∗) +O(log n′) · τ∗ = O(log(2 + b(V))) · τ∗.

60 M. Hajiaghayi et al.

References

1. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: STOC,
pp. 161–168 (1998)

2. Calinescu, G., Zelikovsky, A.: The polymatroid steiner problems. J. Comb. Op-
tim. 9(3), 281–294 (2005)

3. Carr, R., Fleischer, L., Leung, V., Phillips, C.: Strengthening integrality gaps for
capacitated network design and covering problems. In: SODA, pp. 106–115 (2000)

4. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of capac-
itated network design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS,
vol. 6655, pp. 78–91. Springer, Heidelberg (2011)

5. Chakrabarty, D., Krishnaswamy, R., Li, S., Narayanan, S.: Capacitated network
design on undirected graphs. In: Raghavendra, P., Raskhodnikova, S., Jansen,
K., Rolim, J.D.P. (eds.) APPROX/RANDOM 2013. LNCS, vol. 8096, pp. 71–80.
Springer, Heidelberg (2013)

6. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm for the
group Steiner problem. Discrete Appl. Math. 154(1), 15–34 (2006)

7. Even, G., Kortsarz, G., Slany, W.: On network design problems: fixed cost flows
and the covering steiner problem. ACM Trans. Algorithms 1, 74–101 (2005)

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. System Sci. 69(3), 485–497 (2004)

9. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

10. Gaspero, L.D., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The
minimum shift design problem. Annals OR 155(1), 79–105 (2007)

11. Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, E.,
Williamson, D.P.: Improved approximation algorithms for network design prob-
lems. In: SODA, pp. 223–232 (1994)

12. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

13. Hajiaghayi, M., Khandekar, R., Kortsarz, G., Nutov, Z.: Combinatorial algorithms
for capacitated network design. CoRR, abs/1108.1176 (2011)

14. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC,
pp. 585–594 (2003)

15. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to
minimize congestion. In: SPAA, pp. 34–43 (2003)

16. Zosin, L., Khuller, S.: On directed steiner trees. In: SODA, pp. 59–63 (2002)

Approximating the Quadratic Knapsack Problem
on Special Graph Classes�

Ulrich Pferschy and Joachim Schauer

University of Graz, Department of Statistics and Operations Research,
Universitaetsstr. 15, A-8010 Graz, Austria
{pferschy,joachim.schauer}@uni-graz.at

Abstract. We study the classical quadratic knapsack problem (QKP)
on special graph classes. In this case the quadratic terms of the objective
function are present only for certain pairs of knapsack items. These pairs
are represented by the edges of a graph G=(V,E) whose vertices represent
the knapsack items. We show that QKP permits an FPTAS on graphs
of bounded treewidth and a PTAS on planar graphs and more generally
on H-minor free graphs. The latter result is shown by adopting a tech-
nique of Demaine et al. (2005). We will also show strong NP-hardness of
QKP on graphs that are 3-book embeddable, a natural graph class that
is related to planar graphs. In addition we will argue that the problem
might have a bad approximability behaviour on all graph classes contain-
ing large cliques (under certain complexity assumption used for showing
hardness results for the densest k-subgraph problem).

Keywords: quadratic knapsack problem, densest k-subgraph, approxi-
mation algorithm, H-minor free.

1 Introduction

In the standard 0-1 knapsack problem (KP) we are given a set of n items each
with an integer profit pj and weight wj . We look for a subset of items with max-
imum profit whose total weight does not exceed a given capacity c. If some pairs
of items i, j are interdependent and generate a certain synergy, we gain an addi-
tional non-negative integer profit pij if both i and j are included in the solution
set. This defines the Quadratic Knapsack Problem (QKP), see e.g. Kellerer et al.
(2004, Sec.12) or Pisinger (2007).

To represent which items are in relation to each other, we introduce a graph
G = (V,E) with |V | = n and |E| = m. Every vertex v ∈ V corresponds uniquely
to an item and an edge (u, v) ∈ E indicates that the two corresponding items
yield an additional profit, if they are both included in the solution. We will use
vertex and item interchangeably. Using binary variables xj with xj = 1 iff item

� This research was funded by the Austrian Science Fund (FWF): P23829.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 61–72, 2014.
c© Springer International Publishing Switzerland 2014

62 U. Pferschy and J. Schauer

j is included in the solution, QKP can be defined as follows:

(QKP) max
n∑

i=1

pixi +
∑

(i,j)∈E

pijxixj (1)

s.t.
n∑

i=1

wixi ≤ c (2)

xi ∈ {0, 1}, i = 1, . . . , n (3)

QKP is a challenging strongly NP-hard problem. Indeed, the notoriously hard
maximum clique problem can be reduced to it: Given a graph G, we set wj = 1
and pj = 0 for all j and assign profits pij = 1 for all (i, j) ∈ E. Solving QKP
with c = k, it follows that G contains a clique of size k iff the optimal solution
of QKP is k(k−1)

2 . Going through all values of k identifies the maximum clique.
There is a wide range of literature presenting exact solution algorithms for

QKP. The currently best performing exact algorithm was given by Pisinger et al.
(2007). On the other hand, very little is know about the approximation of QKP.
It is an open question whether a constant approximation ratio for QKP is pos-
sible. Note that for the modified problem, where also negative profit values are
allowed, Rader Jr. and Woeginger (2002) showed that no constant approxima-
tion ratio can be achieved in polynomial time (under P�=NP).

A natural approach to fill this void is the consideration of QKP restricted
to graphs with special properties. So far, the only result in this direction is an
FPTAS for QKP on series parallel graphs based on dynamic programming given
by Rader Jr. and Woeginger (2002). On the other hand, they show that QKP
on so-called vertex series parallel graphs is strongly NP-hard and thus does not
permit an FPTAS (under P�=NP).

1.1 Connections to the Densest k-Subgraph Problem

It is common in the literature that optimization problems with bad approxima-
tion behaviour on general graphs are studied on certain restricted graph classes,
e.g. trees, graphs of bounded treewidth, planar graphs, chordal graphs and com-
parability graphs (amongst others). For QKP however this strategy might al-
ready fail on proper interval graphs and thus on chordal graphs as well as on
many other basic graph classes due to the following connection to the densest
k-subgraph problem.

The densest k-subgraph problem on a general graph G = (V,E) asks for an
induced subgraph G′ = (V ′, E′) of G, where |V ′| = k and |E′| is maximized.

From a hardness of approximation point of view DkS is a notorious prob-
lem. The best known hardness result under P �= NP is the strong NP-hardness
derived from the maximum clique problem (cf. Feige et al. (2001)). However
under stronger complexity assumptions several inapproximability results were
shown in the last years, mostly by using and developing fairly involved tech-
niques: Feige (2002) ruled out the existence of a PTAS based on an assumption

Approximating the Quadratic Knapsack Problem on Special Graph Classes 63

dealing with average-case hardness of random 3-SAT. Khot (2006) ruled out
the existence of a PTAS under the assumption that NP does not have ran-
domized subexponential time algorithms. Alon et al. (2011) showed that under
a hardness assumption on random k-AND formulas, there is no constant factor
approximation for DkS. They also pointed out that Raghavendra et al. (2010)
showed the same result under the Small Set Expansion Conjecture. Alon et al.
(2011) even proved superconstant hardness of approximation results for DkS
under an hardness assumptions dealing with the Hidden Clique problem.

From an approximation point of view any QKP instance on an n vertex graph
G can be modelled by the complete graph Kn. Make G complete by adding all
missing edges and assign a profit of 0 to them. Therefore any DkS instance I
can be transformed into a QKP instance J on Kn in the following way: for
each vertex in I introduce a vertex with weight 1 and profit 0 in J . For each
edge in I add the same edge to J with profit 1. Introduce all missing edges with
profit 0 in J in order to get a Kn and set the capacity c = k. Clearly this simple
transformation is approximation preserving. Therefore we can immediately state
the following result.

Theorem 1. QKP is at least as hard to approximate on any graph class con-
taining graphs with n vertices and cliques of size nε (for some constant ε) as the
densest k-subgraph problem on general graphs.

Hence finding a good approximation algorithm for QKP on one of following
very prominent and basic graph classes would break one of the cited hardness
assumption (depending on the quality of the approximation): proper interval
graphs and all superclasses such as chordal graphs; graphs of bounded clique-
width; comparability graphs.

1.2 Contributions of This Paper

We will make considerable progress in answering the question of approximability
for QKP. Our contribution is threefold:

1. An FPTAS for QKP on graphs of bounded treewidth (which includes the
class of series parallel graphs) is given in Section 2.

2. For graphs that do not include any fixed graph H as a minor, a PTAS is
derived in Section 3. This includes planar graphs and also gives a PTAS for
the densest k-subgraph problem on this class of graphs.

These two contributions are the first meaningful approximation results for
QKP on special graph classes since Rader Jr. and Woeginger (2002).

3. In Section 4 we show that QKP on 3-book embeddable graphs is strongly
NP-hard.

The result on 3-book embeddable graphs is important since this is the first hard-
ness result for QKP which has no connection to the maximum clique problem
or closely related variants.

64 U. Pferschy and J. Schauer

k-book embeddable graphs generalize the concept of planarity in a natural
way. Planar graphs are very interesting for DkS, since the complexity status of
DkS remains open on them (cf. Chen et al. (2011)) 1. Note that the standard re-
duction for showing NP-hardness of DkS, i.e. the reduction from the maximum
clique problem, does not work on planar graphs.

Overbay (2007) proved that the embedding of a complete graph on n ver-
tices needs a book with �n2 � pages. Therefore, a k-book embeddable graph with
constant k can have a maximum clique of size at most 2k and can be found by
enumeration. But this means that the reduction from maximum clique can not
work on k-book embeddable graphs with constant k.

The existence of an FPTAS for QKP on planar graphs and, more general, on
any H-minor-free graph remains open. However such an FPTAS would optimally
solve DkS on planar graphs and thus resolve this long standing open problem.

2 QKP on Graphs of Bounded Treewidth

In this section we discuss an FPTAS for graphs of bounded treewidth. It can
be shown that, given a tree-decomposition of constant treewidth k, QKP can
be solved by dynamic programming in O(nP 2) time, where P is an upper
bound on the optimal solution value. The details of this algorithm are related to
Pferschy and Schauer (2009, Sec. 2) and are omitted due to space restrictions.

Theorem 2. There is an Algorithm AlgQBT for QKP on graphs of treewidth
k which has a running time of O(2knP 2) and requires O(2knP) space given a
nice tree-decomposition with O(n) vertices and treewidth k. �

Next, we apply standard rounding arguments to this dynamic program-
ming algorithm to derive an FPTAS (cf. Kellerer et al. (2004, Sec. 2.6) or
Rader Jr. and Woeginger (2002)). The profits pj and pij are replaced by scaled
profits p̃j := �pj

K � and p̃ij := �pij

K �, for some K to be defined later. Then the
problem is solved to optimality by AlgQBT with the scaled profit values yielding
an optimal solution set X̃. Generally, this set will be different from the solution
set X∗ which optimizes the original instance with a solution value of z∗. The set
X̃ is taken as an approximate solution with solution value zA obtained for the
original profits. Clearly zA ≤ z∗. Then one gets the following chain of inequali-
ties, where E(X) ⊆ E denotes the edges induced by a vertex set X ⊆ V .

zA =
∑
j∈X̃

pj +
∑

(i,j)∈E(X̃)

pij ≥
∑
j∈X̃

K�pj
K
�+

∑
(i,j)∈E(X̃)

K�pij
K
�

≥
∑
j∈X∗

(pj −K) +
∑

(i,j)∈E(X∗)

(pij −K) = z∗ − (|X∗|+ |E(X∗)|)K

1 Keil and Brecht (1991) proved that DkS is NP-hard on planar graphs when the
selected k vertex subgraph has to be connected.

Approximating the Quadratic Knapsack Problem on Special Graph Classes 65

To bound the relative error of the approximation algorithm by a given value
ε we get the following inequality:

z∗ − zA

z∗
≤ (|X∗|+ |E(X∗)|)K

z∗
≤ (n+m)K

z∗
≤ ε

Define the largest coefficient of the objective function as pmax := max {max{pj |
j = 1, . . . , n}, max{pij | (i, j) ∈ E}}. Clearly, z∗ ≥ pmax, since each single item
and each pair of items (i, j) ∈ E is a feasible solution. Choosing K := ε pmax

n+m
trivially satisfies the required condition.

Furthermore, in the running time and space complexity of AlgQBT the trivial
upper bound P can be replaced for the scaled instance in the following way: the
optimal solution value z̃ of the scaled problem instance is bounded by

z̃ ≤ (n+m) p̃max ≤ (n+m)
pmax

K
=

(n+m)2

ε
. (4)

Therefore, in the running time bound for the FPTAS derived from algorithm
AlgQBT one can replace the factor P by (n+m)2

ε for the scaled instances.
The number of edges m can be bounded by the following well-known fact (see

e.g. Rose (1974)).

Proposition 1. For a graph G = (V,E) of treewidth at most k, the number of
edges can be bounded by |E| ≤ k |V | − 1

2 k(k + 1).

Thus, the upper bound on P given in (4) is in O((kn)
2

ε) and the complexity of
the FPTAS can be stated as follows.

Theorem 3. There is an FPTAS for QKP on graphs of treewidth k requiring
running time O(2kk4 n5

ε2) and O(2kk2 n3

ε) space.

3 PTAS for QKP on Certain Graph Classes

An important graph class for which QKP was not considered yet is the class
of planar graphs. It is well known that this class can be defined by forbid-
ding the K3,3 and the K5 as a minor. In this section we will show that planar
graphs admit a PTAS for QKP. More generally, by applying a structural result
of Demaine et al. (2005) we will show that a PTAS exists for QKP on all graph
classes defined by a fixed excluded minor H . By Lovász (2006) a graph H is a
minor of G if H can be obtained by successively applying the following three
operations on G: deleting isolated vertices, deleting edges and contracting edges.
Moreover a class of graphs C is called H-minor free if the graph H is not a minor
of any of the graphs of C. Demaine et al. (2005) showed the following decom-
position theorem, from which we can obtain a PTAS for QKP under the same
scenario.

Theorem 4. Demaine et al. (2005, Theorem 3.1) For a fixed graph H, there is
a constant cH such that, for any integer k ≥ 2 and for every H-minor-free graph

66 U. Pferschy and J. Schauer

G, the vertices of G can be partitioned into k sets such that any k− 1 of the sets
induce a graph of treewidth at most cHk. Furthermore, such a partition can be
found in polynomial time.

Theorem 5. There is a PTAS for QKP on H-minor-free graphs for any fixed
graph H.

Proof. We first compute in polynomial time a decomposition of V into k (which
will be determined later) disjoint subsets V1, . . . , Vk as given by Theorem 4. Each
vertex set Vj induces an edge set Ej . For each subset � ∈ {1, . . . , k} we define by
Ē� the set of edges between V� and V \ V�, i.e. the edges joining V� with other
subsets Vj , j �= �. Removing all edges in Ē� from the graph we obtain a graph
G′

� consisting of the graph induced by the k− 1 remaining sets of vertices of the
partition and a disconnected part induced by V�. According to Theorem 4 both
of these two parts have bounded treewidth and so has their union G′

�.
For the optimal variable values x∗

i the optimal solution value of QKP on G
can be written as

z∗ =
∑
i∈V

pix
∗
i +

k∑
�=1

∑
(i,j)∈E�

pijx
∗
i x

∗
j +

1

2

k∑
�=1

∑
(i,j)∈Ē�

pijx
∗
i x

∗
j , (5)

where the second term sums up all edges within one subset V� while the third
term sums over all edges between V� and all other subsets. Since G is an undi-
rected graph, every edge appears twice in the latter expression which necessitates
the factor 1

2 .
Choosing

�∗ := arg
k

min
�=1

⎧⎨
⎩

∑
(i,j)∈Ē�

pijx
∗
i x

∗
j

⎫⎬
⎭ (6)

we obtain the set V�∗ with the smallest profit contribution of edges between V�∗

and all other subsets. By the usual averaging argument we have

∑
(i,j)∈Ē�∗

pijx
∗
i x

∗
j ≤

1

k

k∑
�=1

∑
(i,j)∈Ē�

pijx
∗
i x

∗
j . (7)

Removing all edges in Ē�∗ we obtain a graph G′
�∗ of bounded treewidth (see

above). The optimal solution of QKP on this reduced graph G′
�∗ yields an optimal

solution value z�∗ which can be bounded by (7)

z�∗ ≥ z∗ −
∑

(i,j)∈Ē�∗

pijx
∗
i x

∗
j ≥ z∗ − 1

k

k∑
�=1

∑
(i,j)∈Ē�

pijx
∗
i x

∗
j .

(x∗
i still denotes the optimal solution on the full graph.) Bounding generously

with only the third term of (5) we get

z�∗ ≥ z∗ − 1

k
· 2 z∗ =

(
1− 2

k

)
z∗.

Approximating the Quadratic Knapsack Problem on Special Graph Classes 67

Since we cannot find the optimal solution of QKP on G′
�∗ in polynomial

time, we have to make use of the FPTAS from Theorem 3 to compute a δ-
approximation zA of z�∗ . This yields

zA ≥ (1 − δ)z�∗ ≥ (1− δ)(1 − 2

k
) z∗.

For δ := ε2 and k := � 2ε�+ 2 we get zA ≥ (1− ε)z∗ as required for a PTAS.
Of course, we cannot find �∗ without knowing the optimal solution. Instead,

we go through all k possible choices of �∗ and run the PTAS on each candidate
graph G′

� for � = 1, . . . , k. Taking the best of these k approximate solution values
guarantees a solution value at least as large as zA. �

Corollary 1. There is a PTAS for DkS on H-minor-free graphs for any fixed
graph H.

Planar graphs are a subclass of K3,3-minor free (resp. K5-minor free) graphs.
Thus, Theorem 4, Corollary 1 and therefore our PTAS apply to planar graphs
as well.

4 Hardness for 3-Book Embeddings

In this section, we show that QKP is strongly NP-hard on graphs that are
3-book embeddable. This result is interesting since a k-book embedding gen-
eralizes the concept of planar graphs (however not characterized by forbidden
minors). Furthermore the NP-hardness proofs for densest k subgraph and QKP
on special graph classes presented in the literature are based on the maxi-
mum clique problem or on closely related variants (cf. Rader Jr. and Woeginger
(2002), Corneil and Perl (1984)), whereas our reduction follows a completely
different approach.

A k-book consists of k half planes, called pages, whose common intersection
is a line, called the spine. A k-book embedding of a graph G = (V,E) is an
embedding of G into a k-book such that all vertices are arranged on the spine
and each edge e = (u, v) is embedded into a unique page where the intersection of
e with the spine consists only of u and v (cf. Chung et al. (1987)). Clearly every
graph has a |E|-book embedding. For planar graphs it was shown by Yannakakis
(1986) that a book of four pages is sufficient for an embedding.

In our hardness proof we will reduce a special variant of 3SAT to QKP on 3-
book embeddable graphs: Moore and Robson (2001) showed that Cubic Planar
Monotone 1-in-3 SAT (CPM-1-3-SAT) is strongly NP-hard. In this problem
n clauses and n variables are given, where each clause contains exactly three
variables and each variable occurs in exactly three clauses. Monotone means
that this problem does not contain negated literals. Moreover the graph GSAT

that represents each variable and clause by a unique vertex and introduces edges
between them whenever a variable appears in a clause is planar. A feasible
solution to CPM-1-3-SAT consists of exactly n

3 variables set TRUE such that
each clause contains exactly one variable set TRUE.

68 U. Pferschy and J. Schauer

�� �� �� �

xk

xf

cj

xl
�� �� �� �

x
1
k

x
1
f

c
1
jl

x
1
l � �

c
1
jf c

1
jk

�� �� ���

xk

xf

cj

xl
�� �� ���

x
1
k

x
1
f

c
1
jl

x
1
l� �

c
1
jf c

1
jk

�� �� ���

xk

xf

cj

xl
�� �� ���

x
1
k

x
1
f

c
1
jf

x
1
l� �

c
1
jk c

1
jl

�� �� ���

xk

xf

cj

xl
�� �� ���

x
1
k

x
1
f

c
1
jk

x
1
l� �

c
1
jl c

1
jf

Fig. 1. Handling of position patterns of variables and clauses on the spine

c
1
1k

x
2
1x̄

2
1c

2
11 c

2
12c

2
1kc

1
12c

1
11x̄

1
2x̄

1
1 x

1
2x

1
1

�� �� �� ��� �� �� � � ������� �� ����� ��� ��

x̄
2
2 x

2
2

�� ��

Fig. 2. Duplicating vertices from layer 1 to layer 2

Let I be an instance of CPM-1-3-SAT and GSAT its corresponding graph.
Kainen and Overbay (2003) showed that any planar graph with girth (shortest
cycle) > 3 is a subgraph of a planar Hamiltonian graph. Moreover it is well
known that a graph is 2-book embeddable if and only if it is the subgraph of a
planar Hamiltonian graph (cf. Bernhart and Kainen (1979)). Therefore GSAT ,
which is bipartite and thus has no cycle of length 3, has a 2-book embedding.

In the following proof we will transform this 2-book embedding of the CPM-
1-3-SAT instance I into a QKP instance J defined on a graph GJ that is 3-book
embeddable. Note that the transformation will not preserve planarity.

Let GSAT be represented by a 2-book embedding. We first represent the ver-
tices xi of GSAT by vertices x1

i and x̄1
i in GJ and the cj vertices of GSAT by

three vertices c1jk, where the index k denotes that variable xk occurs in clause
cj . We call them vertices of layer 1 and denote the layer by a superscript index.
Figure 4 describes how the vertices c1ik are arranged with respect to the four

Approximating the Quadratic Knapsack Problem on Special Graph Classes 69

possible position patterns of the variables xk, xf and xl and the clause cj on the
spine of GSAT .

Next we duplicate (in fact mirror) these vertices n+ 4 times. This is done by
introducing vertices x�

i , x̄�
i and c�jk, � = 2, . . . , n+5, on n+4 new layers. Further-

more, the following edges are introduced: (x�
i , x

�+1
i), (x̄�

i , x̄
�+1
i), and (c�jk, c

�+1
jk)

(cf. Figure 4, rectangular edges). Note that after this duplication procedure on
layers 1 and n + 5 two book pages remain unused, whereas on all other layers
only one book page remains unused. On one remaining book page of layer 1 we
connect all vertices x̄1

i with the corresponding vertex c1ji, whenever variable xi

occurs in clause cj (see Figure 4, curvy edges). On layer 5 + i we connect x5+i
i

to all x̄5+i
j with j �= i.

Table 1. The weights and profits of GJ , all k are from 1 to 5 + n

vertices / edges profits weights

xk
i n24 n24

x̄k
i n18 n18

ckji n12 n12

(xk
i , x

k+1
i) n21

(x̄k
i , x̄

k+1
i) n15

(ckij , c
k+1
ij) n9

(x5+i
i , x̄5+i

j), j = i n6

(x̄1
i , c

1
ji) n3

(x�
i , c

�
jf), (x�

i , c
�
jl), � = 2, . . . , 5 1

Next we represent the edges of page 1 of GSAT on one remaining page of layer
2 and 3 of GJ . The construction for the case that all edges incident to cj in
GSAT are embedded into one book page is shown in Figure 4, where again all
four possible position patterns of the variables xk, xf and xl and the clause cj on
the spine of GSAT are considered. The same construction works for page 2 and
layers 4 and 5. Note that the cases where the edges incident to a clause cj are
embedded into both pages of GSAT can be handled by a similar construction:
the only difference is that all missing edges on page 1 (resp. page 2) are ignored
when constructing GJ . All profits and weights for the vertices and edges of GJ

are listed in Table 1.
The proofs of the following Lemmata 1-5 are omitted.

70 U. Pferschy and J. Schauer

�� �� ���

xl

�� �� �� �

xk xf cj

�� �� �� �

x
2
k

x
2
f c

2
jlx

2
l

� �

c
2
jf c

2
jk

�� �� ���

xk xfcj xl

�� �� ���

x
2
k

x
2
fc

2
jl x

2
l

� �

c
2
jf c

2
jk

�� �� ���

xk xf cj xl

�� �� ���

x
2
k
x
2
f c

2
jf x

2
l

� �

c
2
jk c

2
jl

xk xfcj xl

�� �� ���

x
2
k

x
2
fc

2
jk x

2
l

� �

c
2
jl c

2
jf

Page 1 of GSAT

�� �� �� �

x
3
k

x
3
f c

3
jlx

3
l

� �

c
3
jf c

3
jk

Remaining page of layer 2 Remaining page of layer 3

�� �� ���

x
3
k

x
3
fc

3
jl x

3
l

� �

c
3
jf c

3
jk

�� �� ���

x
3
k
x
3
f c

3
jf x

3
l

� �

c
3
jk c

3
jl

�� �� ���

x
3
k

x
3
fc

3
jk x

3
l

� �

c
3
jl c

3
jf

Fig. 3. Representing adjacent vertices of GSAT

Lemma 1. Let G be a bipartite graph with vertex sets (A = {a1, . . . , an} ∪B =
{b1, . . . , bn}). For every ai there is an edge to all bj with j �= i. If a subgraph G′

induced by vertex sets A′ ⊆ A and B′ ⊆ B has |A′| · |B′| edges, then ai and bi
can not be contained in G′ simultaneously for any i.
Lemma 2. Let G be a graph that is composed by l disjoint paths of length k− 1
and i < l. Then any subgraph Ḡ on k · i vertices with the maximum number of
induced edges consists of i disjoint paths of length k − 1.

In the proof of Theorem 6 will show that an instance I of CPM-1-3-SAT has
a feasible truth assignment if and only if the corresponding QKP instance J
with graph GJ and has a solution set SJ fulfilling the following capacity bound
cJ with total profit value at least pJ :

cJ := (5 + n)

(
n

3
n24 +

2n

3
n18 + 2nn12

)

pJ := (5 + n)

(
n

3
n24 +

2n

3
n18 + 2nn12

)
+

(4 + n)

(
n

3
n21 ++

2n

3
n15 + 2nn9

)
+

n

3
· 2n
3
· n6 + 2nn3 + 2n

Note that the total number of vertices and edges in GJ is of order n2. Therefore,
any subset of vertices and edges with profits nk can never reach a total profit of
nk+3. This general property will be exploited throughout our construction.

The next lemma determines the number of vertices of every type included in
a feasible solution SJ . It also guarantees that each of the n+5 layers of GJ has
the same structure of included vertices.

Approximating the Quadratic Knapsack Problem on Special Graph Classes 71

Lemma 3. For any feasible solution SJ of a QKP instance J with profit greater
or equal to pJ and weight at most cJ the following structure holds for each layer
k = 1, . . . , n+ 5:
1. SJ includes exactly n

3 vertices xk
i from each layer k.

2. SJ includes exactly 2n
3 vertices x̄k

i from each layer k.
3. SJ includes exactly 2n vertices ckji from each layer k.

If SJ contains some vertex xk
i , x̄k

i or ckji of a layer k, then Sj contains x�
i , x̄�

i

or c�ji for all layers � = 1, . . . , n+ 5.

Lemma 4. For any feasible solution SJ of a QKP instance J with profit greater
or equal to pJ and weight at most cJ the following holds for each layer k =
1, . . . , 5 + n:

xk
i ∈ SJ ⇐⇒ x̄k

i �∈ SJ

Lemma 5. For any feasible solution SJ of a QKP instance J with profit greater
or equal to pJ and weight at most cJ the following holds for each layer k =
1, . . . , 5+n: For every vertex ckji in SJ also x̄k

i has to be in SJ , whenever variable
xi occurs in clause cj.

Theorem 6. QKP defined on 3-book embeddable graphs is strongly NP-hard.

Proof. Let I be an instance of CPM-1-3-SAT and J the corresponding QKP
instance as defined above. We will show that I has a feasible truth assignment
if and only if instance J has a feasible solution with objective value at least pJ
and weight at most cJ .

In Lemma 3 - 5 we identified the structure of a feasible QKP solution implied
by the profit and weight bounds. In the remainder of the proof we can concentrate
on edges with profit 1 and ignore all other edges.

” ⇐= ”: The profit bound pJ implies that any solution SJ to J contains 2n
edges of profit 1. By Lemma 3, we know that the same n

3 vertices xk
i (w.r.t. i)

are chosen from each layer k.
By the construction of GJ (cf. Figure 4) we know that for each i there are

exactly 6 neighbours ckjf connected to xk
i over all layers k (in fact these are all

found in layers 2, . . . , 5) with an edge of profit 1. Hence all these neighbours have
to be included in SJ to get a total profit of 2n.

We can construct a solution to I as follows: whenever x1
i is in SJ , we set xi

to TRUE. We get that I contains exactly n
3 variables set to TRUE and that I

is a feasible instance: assume that there is a clause cj that has more than one
variable set TRUE (denote them xi and xf). This means that for some layer
k ∈ {2, . . . , 5} also ckjf is in SJ , since xk

i is connected to ckjf . It follows from
Lemma 5 that now also x̄k

f is included in SJ , in contradiction to Lemma 4.
If there is a clause with no variable set TRUE we get by the pigeon-hole

principle that one clause must contain more than one variable set TRUE, again
leading to a contradiction.

” =⇒ ”: Let I be a feasible. If xi is TRUE, include xk
i in SJ for all layers k,

otherwise include x̄k
i and ckji in SJ . It is easy to check that SJ is a feasible QKP

solution fulfilling the weight and profit bounds cJ and pJ . �

72 U. Pferschy and J. Schauer

References

Alon, N., Arora, S., Manokaran, R., Moshkovitz, D., Weinstein, O.: Inapproximabilty
of Densest k-Subgraph from Average Case Hardness. Technical report (2011)

Bernhart, F., Kainen, P.C.: The book thickness of a graph. Journal of Combinatorial
Theory, Series B 27(3), 320–331 (1979)

Chen, D.Z., Fleischer, R., Li, J.: Densest k-subgraph approximation on intersec-
tion graphs. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol. 6534,
pp. 83–93. Springer, Heidelberg (2011)

Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A lay-
out problem with applications to vlsi design. SIAM Journal on Algebraic Discrete
Methods 8(1), 33–58 (1987)

Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Applied
Mathematics 9(1), 27–39 (1984)

Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor theory:
Decomposition, approximation, and coloring. In: 46th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2005, pp. 637–646 (2005)

Feige, U.: Relations between average case complexity and approximation complexity.
In: STOC, pp. 534–543. ACM (2002)

Feige, U., Peleg, D., Kortsarz, G.: The Dense k-Subgraph Problem. Algorithmica 29(3),
410–421 (2001)

Kainen, P.C., Overbay, S.: Book embeddings of graphs and a theorem of whitney.
Technical report (2003)

Keil, J.M., Brecht, T.B.: The complexity of clustering in planar graphs. J. Combina-
torial Mathematics and Combinatorial Computing 9, 155–159 (1991)

Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
Khot, S.: Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bipartite

Clique. SIAM J. Comput. 36(4), 1025–1071 (2006)
Lovász, L.: Graph minor theory. Bulletin of the American Mathematical Society 43(1),

75–86 (2006)
Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Dscrete & Computa-

tional Geometry 26(4), 573–590 (2001)
Overbay, S.: Graphs with small book thickness. Missouri Journal of Mathematical

Sciences 19(2), 121–130 (2007)
Pferschy, U., Schauer, J.: The Knapsack Problem with Conflict Graphs. Journal of

Graph Algorithms and Applications 13(2), 233–249 (2009)
Pisinger, D.: The quadratic knapsack problem - a survey. Discrete Applied Mathemat-

ics 155, 623–648 (2007)
Pisinger, D., Rasmussen, A.B., Sandvik, R.: Solution of large quadratic knapsack prob-

lems through aggressive reduction. INFORMS Journal on Computing 19, 280–290
(2007)

Rader Jr., D.J., Woeginger, G.J.: The quadratic 0-1 knapsack problem with series-
parallel support. Operations Research Letters 30, 159–166 (2002)

Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions Between Expansion Problems.
Electronic Colloquium on Computational Complexity (ECCC) 17, 172 (2010)

Rose, D.J.: On simple characterizations of k-trees. Discrete Mathematics 7, 317–322
(1974)

Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In: Proceed-
ings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC
1986, New York, NY, USA, pp. 104–108. ACM (1986)

Approximating the Sparsest k-Subgraph

in Chordal Graphs�

Rémi Watrigant, Marin Bougeret, and Rodolphe Giroudeau

LIRMM, Université Montpellier 2, France

Abstract. Given a simple undirected graph G = (V,E) and an integer
k < |V |, the Sparsest k-Subgraph problem asks for a set of k vertices
which induces the minimum number of edges. As a generalization of the
classical independent set problem, Sparsest k-Subgraph is NP-hard
and even not approximable unless P = NP in general graphs. Thus, we
investigate Sparsest k-Subgraph in graph classes where independent
set is polynomial-time solvable, such as subclasses of perfect graphs.
Our two main results are the NP-hardness of Sparsest k-Subgraph
on chordal graphs, and a greedy 2-approximation algorithm. Finally, we
also show how to derive a PTAS for Sparsest k-Subgraph on proper
interval graphs.

1 Introduction

1.1 Related Problems

Given a simple undirected graph G = (V,E) and an integer k < |V |, the Spars-
est k-Subgraph problem asks for a set of k vertices which induces1 the min-
imum number of edges. It appears that this problem falls into the family of
cardinality constrained optimization problems, introduced by [7], and is more
precisely a generalization of the so-called independent set problem. This ob-
servation immediately implies that Sparsest k-Subgraph isNP-hard and even
not approximable in general graphs unless P = NP , as the optimal value is 0
whenever there is an independent set of size k. Thus, we only consider Sparsest
k-Subgraph in graph classes where independent set is polynomial-time solv-
able. Let us first present some related problems, and then discuss their relation
to Sparsest k-Subgraph. Actually, the following three problems can all be
considered as cardinality constrained versions of other well-known combinato-
rial optimization problems, namely vertex cover and max clique, both very
close to independent set.

In the maximum Quasi-Independent Set (QIS) problem [4] (also called
k-edge-in in [10]), we are given a graph G and an integer C, and we ask for a
set of vertices S of maximum size inducing at most C edges.

� This work has been funded by grant ANR 2010 BLAN 021902.
1 An edge {u, v} ∈ E is said to be induced (resp. covered) by a set S if u ∈ S and
(resp. or) v ∈ S.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 73–84, 2014.
© Springer International Publishing Switzerland 2014

74 R. Watrigant, M. Bougeret, and R. Giroudeau

In the minimum Partial Vertex Cover (PVC) problem [11], we are given
a graph G and an integer C, and we ask for a set of vertices S of minimum size
which covers1 at least C edges.

Finally, we can mention the corresponding maximization problem of Spars-
est k-Subgraph, namely Densest k-Subgraph, which consists in finding a
subset S of exactly k vertices inducing the maximum number of edges.

The decision versions of QIS, PV C, and Sparsest k-Subgraph are polyno-
mially equivalent. Indeed,QIS could be considered as a dual version of Sparsest
k-Subgraph where the budget (the number of edges in the solution of Sparsest
k-Subgraph) is fixed. PV C and Sparsest k-Subgraph are also polynomially
equivalent as for any S, the number of edges induced by S plus the number of
edges covered by V \S equals |E|. Then, exact results for Densest k-Subgraph
on a graph class implies the same result for Sparsest k-Subgraph on the corre-
sponding complementary class, and conversely. Unlike exact results, approxima-
tion algorithms do not transfer directly between any of these problems.

Considering these remarks and previous studies on these problems, Figure 1
presents known results and open problems about Sparsest k-Subgraph (SkS),
Densest k-Subgraph (DkS) and PVC in restricted graph classes. In each cell,
the first line generally describes the general complexity (NP -hard versus Poly-
nomial), whereas other lines present some results concerning approximation or
parameterized complexity. We recall that proper interval graphs ⊂ inter-

val graphs ⊂ chordal graphs ⊂ perfect graphs, as well as split graphs

⊂ chordal graphs and bipartite graphs, cographs ⊂ perfect graphs.

Graphs classes DkS SkS PV C

general NP-h NP-h, not approx. NP-h, W [1]-h [11]
(c.f. max clique) (c.f. indep. set) 2-approx.[6]

n
1
4
+ε-approx. [3] exact O∗(1, 4C) [13]

chordal NP-h [8] NP-h [this paper] NP-h (c.f. SkS)
3-approx [14] 2-approx [this paper]

interval OPEN, PTAS [15] OPEN OPEN

proper interval OPEN OPEN OPEN
PTAS [this paper]

bipartite NP-h [8] NP-h (c.f. PVC) NP-h [12]

line OPEN P (c.f. PVC) P [1]

planar OPEN NP-h (c.f. indep. set) NP-h (c.f. SkS)

cographs, split, P [8] P [5] P (c.f. SkS)
bounded treewidth

max. degree 2 P [8] P [5] P (c.f. SkS)

max. degree 3 NP-h [8] NP-h NP-h
(c.f. indep. set) (c.f. SkS)

Fig. 1. Main results for DkS, SkS and PVC in some restricted graph classes

Approximating the Sparsest k-Subgraph in Chordal Graphs 75

1.2 Contributions and Organization of the Paper

According to Figure 1, Densest k-Subgraph was already known to be NP-
hard on chordal graphs. However, as the complement of a chordal graph (and
in particular the graph used in the reduction of [8]) is a perfect graph and
not necessarily a chordal graph, this result only provides the NP-hardness of
Sparsest k-Subgraph on perfect graphs.

Thus, ourmotivation is to study Sparsest k-Subgraph on a classical subclass
of perfect graphs. Themain results of the paper are theNP-hardness of Sparsest
k-Subgraph in chordal graphs (Section 3), and a tight 2-approximationgreedy al-
gorithm (Section 2). Finally, we show in Section 4 how the arguments of [15] (which
provides a PTAS forDkS in interval graphs) can be adapted toSkS in proper inter-
val graphs. Notice that ourNP-hardness result implies theNP-hardness of PVC

in chordal graphs, which supplements the recent NP-hardness of [2,12] for PVC

in bipartite graphs. Due to space constraints, the proof of Lemma 6 for the NP -
hardness in chordal graphs as well as the PTAS in proper interval graphs were
omitted. They can be found in the long version of this paper available in [17].

1.3 Notations and Definitions

All graphs studied in this paper are simple and without loop. For the remaining,
G = (V,E) will denote the input graph of the problem, and we define as usual
n = |V |, m = |E|.

Chordal graphs are graphs with no induced cycle of length four or more.
They may also be defined equivalently in terms of simplicial elimination order
[9]. A vertex v ∈ V is called simplicial if its neighbourhood N(v) is a clique.
A simplicial elimination order of G is an ordering v1, ..., vn of V such that for
all i ∈ {1, ..., n}, vi is simplicial in G[vi, ..., vn]. It is known that a graph G
is chordal if and only if it admits a simplicial elimination order. In addition,
such an ordering can be found in polynomial time for a chordal graph. Hence,
we will suppose in the following that V = {v1, ..., vn} is sorted according to a
simplicial elimination order of G. Similarly, for a subset of vertices S ⊆ V , we
will denote by min(S) (resp max(S)) the first (resp. last) vertex of S in the
simplicial elimination order chosen for the graph. Finally, since we have a total
ordering on the vertices, we will use the notations x < y and x > y for two
vertices x, y ∈ V .

Given two sets S1, S2 ⊆ V , we denote by cost(S1) the number of edges in the
graph induced by vertices of S1, and cost(S1, S2) = |{{v, v′} ∈ E, v ∈ S1, v

′ ∈
S2}|. Given a set S ⊆ V and x ∈ V , we denote by d(x, S) the degree of x in S.

Finally, we refer the reader to the classical literature for definitions of approx-
imation algorithms.

2 2-Approximation in Chordal Graphs

2.1 Idea of the Algorithm

We now present a tight 2-approximation algorithm for chordal graphs. First, no-
tice that any approximation algorithm for Sparsest k-Subgraph must output

76 R. Watrigant, M. Bougeret, and R. Giroudeau

a maximum independent set of size k if such a set exists, as in this case the
optimal value is 0. Hence, a natural idea for computing a solution to Sparsest

k-Subgraph is to choose first a maximum independent set S (this can be done
in polynomial time in chordal graphs). If k vertices or more were picked, then
the algorithm stops. Otherwise, several ideas may come up.

A first idea would be to remove this independent set from the graph, and it-
eratively pick another one, until we get k vertices. This approach is the same as
the 3-approximation of [14] for Densest k-Subgraph in chordal graphs (com-
puting maximum cliques instead of maximum independent sets). Unfortunately,
as shown in Figure 2, this algorithm has an unbounded approximation ratio for
Sparsest k-Subgraph even in interval graphs (a subclass of chordal graphs).
It still provides a 2-approximation in proper interval graphs [16].

Thus, after picking the first maximum independent set, our idea is to assign
weights on remaining vertices according to the size of their neighbourhood in
the constructed solution. At each step, the algorithm just picks an independent
set (called a layer) among the vertices of minimum weight, and then updates
the weights of remaining vertices. The algorithm is more formally defined in the
next subsection. In the next paragraph, we describe the key idea of the analysis.

x1 x2 xt−1 xt

y1 y2

z1

Fig. 2. In this case picking successive independent sets gives an unbounded ratio: for
k = t + 2 the algorithm will take intervals {x1, ..., xt, y1, y2} of cost t whereas the
solution {x1, ..., xt, y2, z1} is of cost 4

y2n2x n1 y1

Fig. 3. Idea of the restructuration of a solution S∗. Circles denote vertices of S∗, and
crosses denote vertex of L (chosen by the algorithm). When replacing y1 by n1 and y2
by n2, the degree of x can only increase by one. Indeed, x cannot be connected to n1

and n2, as L is an independent set.

The idea of the proof of the 2-approximation ratio is to restructure an optimal
solution S∗ until we get S (the output of the algorithm), while bounding the
cost variation during the restructurations. Let us show what makes this restruc-
turation work for the first layer. Let L be the independent set chosen by the

Approximating the Sparsest k-Subgraph in Chordal Graphs 77

algorithm at the first step. Roughly speaking, for each nj ∈ L which is not in
S∗, we restructure S∗ by removing yj , the ”first” neighbour of nj which is after
nj and in S∗, and adding nj instead. As depicted in Figure 3, we see that the
degree of a vertex x ∈ S∗ (x /∈ L) will increase by at most 1. Concerning future
layers, the analysis will become more complex, as we will have to take weights
into account.

2.2 Algorithm and Analysis

Presentation of the Algorithm. As described previously, Algorithm 1 picks
successively an independent set among the vertices of lower weights. It also
updates the weights according to the picked vertices. For technical reasons, the
weights are not exactly equal to their degree in the constructed solution. Indeed,
when restructuring an optimal solution to match Li we will see that the degree
of almost all ”surviving” vertices in the optimal solution increases by at most
1 (this is why we add a ”bonus” of −1 in the updated weight Line 13), and
even sometimes cannot increase (this is why there is no ”bonus” Line 11). This
modification will allow us to show that at the end of the algorithm, the value W
returned by the algorithm is a lower bound of the optimal value (Lemma 3). We
will then show that the real value of the returned solution cost(S) is less than
two times W (Lemma 4), and thus is a 2-approximation.

Algorithm 1. A 2-approximation for Sparsest k-Subgraph in chordal graphs

1: S ← ∅, W ← 0, i ← 0, w0(x) = 0 ∀x ∈ V
2: while |S| ≤ k do
3: Li ← a maximum independent set of the graph induced by {x ∈ V \(L0 ∪ ... ∪

Li−1) : wi(x) = i}
4: S ← S ∪ Li // or the (k − |S ∪ Li|) leftmost vertices of Li if |S ∪ Li| > k
5: W ← W + i|Li| // we update the cost computed by the algorithm
6: for x ∈ V do
7: if x ∈ (L0 ∪ ... ∪ Li) then
8: wi+1(x) = wi(x)
9: else
10: if d(x,Li) = 0 OR (d(x,Li) = 1 AND wi(x) = i) then
11: wi+1(x) = wi(x) + d(x,Li)
12: else
13: wi+1(x) = wi(x) + d(x,Li)− 1
14: i ← i+ 1
15: t ← i− 1 // Lt is the last ”layer” of the algorithm
16: return (S,W)

Remark 1. The maximum independent set of line 3 is greedily constructed as
follows: pick the first vertex of the simplicial elimination order in the independent
set, delete its neighbourhood, and repeat the operation until the graph becomes
empty.

78 R. Watrigant, M. Bougeret, and R. Giroudeau

Even if we sometimes add −1 when updating the weights, we can observe that
for a fixed x ∈ V , its successive weights can be lower bounded as follows:

Lemma 1. For all i ∈ {0, ..., t}, ∀x ∈ V \ (L0 ∪ · · · ∪ Li), wi+1(x) ≥ i+ 1.

Proof. Let i and x be as in the statement. Suppose by induction that wi(x) ≥ i
(notice that w0(x) = 0). If wi(x) ≥ i + 1 then the results follows. Otherwise
wi(x) = i, and by construction of the algorithm (Line 11), if d(x, Li) ≥ 1,
then wi+1(x) ≥ i + 1. Finally, if d(x, Li) = 0, then x must belong to Li which
contradicts the definition of x. ��

Restructuration of Solutions. Let S∗ be an optimal solution for the Spars-

est k-Subgraph problem in chordal graphs. We will now show that we can
modify this solution in order to obtain the output of the algorithm, while bound-
ing the cost variation.

Let us define by induction a sequence (S∗
i)i=−1,0,...,t with S∗

−1 = S∗ and
S∗
t = S (the solution returned by the algorithm), such that S∗

i ⊆ V and |S∗
i | = k

for all i = −1...t. We also assure that (L0∪ ...∪Li) ⊆ S∗
i for all i = 0...t. To that

end, given i ∈ {0, ..., t}, we show how to restructure the set S∗
i−1 into a new set

S∗
i . Let us first introduce some notations.
We partition the set Li (defined in the algorithm) into two sets of vertices,

whether they belong to S∗
i−1 or not: Li = Mi ∪ Ni, with Mi = Li ∩ S∗

i−1 (and
thus Ni = Li \ S∗

i−1).
The restructuration consists in adding all vertices of Ni to S∗

i−1, and removing
a carefully chosen (see Definition 1) subset Di ⊆ S∗

i−1\(L0∪ ...∪Li) (with |Di| =
|Ni|). Then, we will define S∗

i = (S∗
i−1\Di) ∪Ni, Ri = S∗

i−1\(Di ∪ L0 ∪ ... ∪ Li)
and Ti = Mi ∪Di. Figure 4 summarizes the situation.

To bound the cost variation, we show in Lemma 2 that the degree of ”surviv-
ing” vertices (i.e. vertices in Ri) increases by at most one. The next definition
shows how to choose properly the set Di.

Definition 1. Let i ∈ {0, . . . , t}, and let us suppose we are given a set S∗
i−1 ⊇

L0 ∪ ...∪Li−1. Let Ni = {n1, ..., npi} and suppose that n1 < ... < npi defines an
ordering of Ni according to the simplicial elimination order of the graph. For all
j = 1, ..., pi successively, we pick a vertex yj ∈ S∗

i−1\(L0 ∪ ... ∪ Li) as follows:

yj =

{
min(Qj) if Qj �= ∅

max(S∗
i−1\(L0 ∪ ... ∪ Li ∪ {y1, ..., yj−1})) if Qj = ∅ (1)

with Qj = {y ∈ S∗
i−1\(L0 ∪ ... ∪ Li ∪ {y1, ..., yj−1}) such that nj < y, and

{nj, y} ∈ E} (see Figure 4). Finally, we define Di = {yj : 1 ≤ j ≤ pi}.

It is easily seen that |Di| = |Ni| since all yj are distinct. Now that Di is defined,
recall that we have Ti = Mi ∪Di, and the ”surviving vertices” Ri = Ri−1 \ Ti.
Let us now upper bound the degree of vertices of Ri.

Approximating the Sparsest k-Subgraph in Chordal Graphs 79

Ri

Di

MiNi

Li−1

L0

S∗

i−1

Li

Ti
nj−1 nj nj+1

Qj−1 Qj Qj+1 = ∅

yj−1 yj yj+1

Fig. 4. On the left: description of set S∗
i−1. We obtain S∗

i from S∗
i−1 by removing Di

and adding Ni. Notice that Ri−1 = Ri ∪ Ti, and Ri ∩ Ti = ∅. On the right: example of
sets Qj , together with yj . Circles represent vertices of the considered optimal solution,
and crosses represent vertices chosen by the algorithm that are not in the optimal
solution. Edges between vertices of the optimal solution have not been drawn for sake
of simplicity.

Lemma 2. Let Ri = Ai ∪Bi, with Ai = {x ∈ Ri : d(x, Li) = 0 or (d(x, Li) = 1
and wi(x) = i)} and Bi = Ri\Ai. We have:

– if x ∈ Ai, d(x, Li) ≤ d(x, Ti)
– if x ∈ Bi, d(x, Li) ≤ d(x, Ti) + 1

This immediately implies that for all x ∈ Ri we have wi+1(x) ≤ d(x, Ti)+wi(x).

Proof. Let us show that if x ∈ Ai, then d(x,Ni) ≤ d(x,Di), and if x ∈ Bi, then
d(x,Ni) ≤ d(x,Di) + 1. Since Li = Mi ∪ Ni and Ti = Mi ∪ Di (these unions
being disjoint), the desired inequalities follow immediatly.

– if x ∈ Ai, then either d(x, Li) = 0, which obviously implies the result, or
d(x, Li) = 1 and wi(x) = i. We thus only consider the second case. Here
again if d(x,Ni) = 0 then the result is straightforward, so let us suppose
d(x,Ni) = 1, i.e. suppose that there exists a vertex of Ni, say nj0 , such that
x and nj0 are adjacent. Two cases are possible:
• First case: x < nj0 . Recall that nj0 is the only neighbour of x in Li.
Hence, x is not adjacent to all vertices of Li that are before nj0 in the
simplicial elimination order. In addition, recall that wi(x) = i. Thus, this
case cannot happen since by definition of the algorithm, x would have
been chosen in Li instead of nj0 .

• Second case: nj0 < x. It is clear that in this case Qj0 �= ∅ (as at least
x ∈ Qj0). As by definition x /∈ Di, we have yj0 < x. By definition of
perfect elimination order, since {nj0 , yj0} ∈ E and {nj0 , x} ∈ E, we
must have {x, yj0} ∈ E. Hence d(x,Di) = 1 and the result follows.

80 R. Watrigant, M. Bougeret, and R. Giroudeau

– if x ∈ Bi, then let N−
i = {y ∈ Ni : y < x} and N+

i = Ni \ N−
i . For

all nj ∈ N−
i such that {nj , x} ∈ E, then as previously Qj �= ∅ and by

the definition of chordal graphs we have {yj, x} ∈ E with yj ∈ Di. Thus,
d(x,N−

i) ≤ d(x,Di). Finally we claim that d(x,N+
i) ≤ 1. Indeed, suppose

that there exists nj1 , nj2 ∈ N+
i such that {x, nj1}, {x, nj2} ∈ E. By definition

of perfect elimination order we must have {nj1 , nj2} ∈ E which contradicts
the definition of Li which is an independent set. This proves that d(x,Ni) ≤
d(x,Di) + 1 ��

Let us now define the appropriate ζ function that computes the cost of an inter-
mediate solution S∗

i . For all i ∈ {0, ..., t}, let

ζ(S∗
i) = cost(Ri) +

∑
x∈Ri

wi+1(x) +
∑

x∈L0∪···∪Li

wi+1(x)

Notice that ζ(S∗
−1) = cost(S∗) and ζ(S∗

t) =
∑

x∈S wt(x) = W .

Lemma 3. For all i ∈ {0, ..., t}, Di is such that ζ(S∗
i) ≤ ζ(S∗

i−1).

Proof. By definition, we have:

ζ(S∗
i) = cost(Ri) +

∑
x∈Ri

wi+1(x) +
∑

x∈L0∪···∪Li
wi+1(x)

= cost(Ri) +
∑

x∈Ri
wi+1(x) + i|Li|+

∑
x∈L0∪···∪Li−1

wi+1(x)

≤ cost(Ri) +
∑

x∈Ri
(wi(x) + d(x, Ti)) + i|Li|+

∑
x∈L0∪···∪Li−1

wi(x) by Lemma 2

In addition, since Ri−1 = Ri ∪ Ti and |Ti| = |Li|, we have:

ζ(S∗
i−1) = cost(Ri−1) +

∑
x∈Ri−1

wi(x) +
∑

x∈L0∪···∪Li−1
wi(x)

= cost(Ri) + cost(Ri, Ti) +
∑

x∈Ri
wi(x) +

∑
x∈Ti

wi(x) +
∑

x∈L0∪···∪Li−1
wi(x)

≥ cost(Ri) + cost(Ri, Ti) +
∑

x∈Ri
wi(x) + i|Li|+

∑
x∈L0∪···∪Li−1

wi(x)

which matches the upper bound for ζ(S∗
i). ��

The previous lemma implies that W = ζ(S∗
t) ≤ ζ(S∗

−1) = cost(S∗). Thus, to
prove that Algorithm 1 is a 2-approximation we only need the following lemma.

Lemma 4. cost(S) ≤ 2W .

Proof. Roughly speaking, when creating a layer Li and updating the cost W ,
the algorithm adds i|Li|, i.e. for all x ∈ Li the algorithm only adds i instead of
d(x, L0∪· · ·∪Li−1). Thus, we will now prove for any x ∈ Li, d(x, L0∪· · ·∪Li−1) ≤
2i.

Let x in Li. For any l, 0 ≤ l ≤ i, let xl = wl(x) be the weight of x before
creating layer Ll. Thus, the successive weights of x is a sequence (x0, . . . , xi)
where x0 = 0 and xi = i. Notice that after x is added in Li its weight will not
be changed.

Let us show by induction that for any l, d(x, L0 ∪ · · · ∪ Ll−1) ≤ xl + l. Let
us suppose that the previous statement is true for l and prove it for l + 1.

Approximating the Sparsest k-Subgraph in Chordal Graphs 81

Let z = d(x, Ll). We have d(x, L0∪· · ·∪Ll) = d(x, L0∪· · ·∪Ll−1)+z ≤ xl+l+z.
As xl+1 ≥ xl + z − 1, we get the desired inequality.

Thus, for any x ∈ Li we get d(x, L0 ∪ · · · ∪ Li−1) ≤ xi + i = 2i, and thus
cost(S) =

∑t
i=1

∑
x∈Li

d(x, L0 ∪ · · · ∪ Li−1) ≤ 2
∑t

i=1 i|Li| = 2W . ��

Theorem 1. There is a tight polynomial 2-approximation algorithm for SkS in
chordal graphs.

For the tightness result, consider the instance with n = 5, k = 4, and edges
{x1, x2}, {x2, x3} and {x4, x5} (notice that (x1, x2, x3, x4, x5) is a simplicial
elimination order). The algorithm will first pick x1, x3 and x4. Then, we have
w1(x2) = w1(x5) = 1 and the algorithm takes x2 instead of x5.

3 NP-Hardness in Chordal Graphs

Main Arguments. The following NP-hardness proof is a reduction from the
k-clique problem in general graphs. Roughly speaking, given an input instance
G = (V,E) together with k ∈ N, we construct the split graph of adjacencies
of G, i.e. we build a clique on a set A representing the vertices of G, and an
independent set F representing the edges of G, connecting A and F with respect
to the adjacencies of the graph. Then, we replace each vertex of the independent
set (corresponding to an edge e ∈ E) by a gadget Fe represented in Figure 5.
Any solution will have to take the same number of vertices among each gadget.
The key idea is that there is two ways to take these vertices in a gadget Fe. The
first way (choosing Xe and Ze) encodes that the edge e belongs to the k-clique.
It is cheaper than the second way, but is adjacent to the clique A. The second
way (choosing Xe and Ye) encodes that edge e does not belong to the k-clique.
It induces more edges, but is not adjacent to the clique A. Thus, as depicted in
Figure 5, a k-clique is encoded by not picking the corresponding vertices in A,
obtaining

(
k
2

)
gadgets of the first type, and m −

(
k
2

)
of the second type. In this

way, there is no edge in the solution between any gadget and the clique A. For
technical reasons, each vertex of A is duplicated n times.

Gadget. Let us define the gadget F mentioned above. F is composed of three
sets X,Y and Z of T vertices each (we will set the value of T later). We define
X = {x1, ..., xT }, Y = {y1, ..., yT } and Z = {z1, ..., zT }. The set X induces an
independent set, while Z induces a clique, and there is a clique of size (T −1) on
vertices {y2, ..., yT }. For all i ∈ {1, ..., T }, xi is adjacent to yi, and yi is adjacent
to all vertices of Z. Such a construction is depicted at the left of Figure 5.

In the following we will force the solution to take 2T vertices among each
gadget. It is easy to see that the sparsest 2T -subgraph of F is composed of the
sets X and Z, which induces

(
T
2

)
edges. In contrast, notice that choosing X and

Y induces (
(
T
2

)
+ 1) edges.

Theorem 2. Sparsest k-Subgraph remains NP-hard in chordal graphs.

82 R. Watrigant, M. Bougeret, and R. Giroudeau

Xe1

Ye1

Ze1

gadget Fe1 for e1 = {u, v} ∈ E

T

n

n A

Xe1

Ye1

Ze1

Xem

Yem

Zem

k n− k

(
k

2

)
gadgets m−

(
k

2

)
gadgets

TFe1 Fem

n

n

Au Av

Fig. 5. Schema of the reduction, with an example of a gadget Fe1 on the left and its
relations to A. Grey rectangles represent vertices of the solution.

Proof. We reduce from the classical k-clique problem in general graphs. Let
G = (V,E) and k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T =
n(n− k). In the following we will define G′ = (V ′, E′) together with k′, C′ ∈ N

such that G′ is a chordal graphs which can be constructed in polynomial time,
and such that G contains a clique of size k if and only if one can find k′ vertices
in G′ which induce C′ edges or less.

The Construction. V ′ is composed of two parts A and F :

– We first define a clique of size n2 over A = {aji : i, j ∈ {1, ..., n}}. For each
u ∈ V , the ”column” Au = {aju : j ∈ {1, ..., n}} represents the vertex u in G.

– For all e ∈ E, we construct a gadget Fe composed of Xe, Ye and Ze as defined
previously. Let Xe = {xe

1, ..., x
e
T }, Ye = {ye1, ..., yeT } and Ze = {ze1, ..., zeT }.

Moreover, for all e = {vp, vq} ∈ E, all vertices of Ze are connected to Ap

and Aq.

– We define k′ = m2T + T and C′ = m
(
T
2

)
+
(
T
2

)
+ (m−

(
k
2

)
).

It is clear that the construction can be carried out in polynomial time. Let
us briefly sketch that G′ is a chordal graph: for each gadget, Xe, Ye, Ze is a
simplicial elimination order. Then, the remaining vertices form a clique.

Now we prove that G contains a clique of size k if and only if G′ contains k′

vertices inducing at most C′ edges.

Lemma 5. G contains a k-clique ⇒ G′ contains k′ vertices inducing at most
C′ edges.

Approximating the Sparsest k-Subgraph in Chordal Graphs 83

Proof. Let us suppose that K ⊆ V is a clique of size k in G. W.l.o.g. we suppose
K = {v1, ..., vk}. Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K}
and E1 = {{vp, vq} ∈ E such that vp /∈ K or vq /∈ K}. We construct K ′ ⊆ V ′ as
follows:

– For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add aji to K ′.
– For all e ∈ E, we add all vertices of Xe to K ′.
– For all e ∈ E0, we add all vertices of Ze to K ′.
– For all e ∈ E1, we add all vertices of Ye to K ′.

One can verify that K ′ is a set of k′ = 2mT + T vertices inducing exactly
C′ =

(
T
2

)
+ m

(
T
2

)
+ (m −

(
k
2

)
) edges. Indeed, we picked T = n(n − k) vertices

from A which is a clique and thus induce
(
T
2

)
edges. Then, for all e ∈ E, we

picked 2T vertices, which induce
(
T
2

)
edges if e ∈ E0, and (

(
T
2

)
+ 1) edges if

e ∈ E1. Since |E0| =
(
k
2

)
(and thus |E1| = m−

(
k
2

)
), we have the desired number

of edges.

Lemma 6. G′ contains k′ vertices inducing at most C′ edges ⇒ G contains a
k-clique. ��

4 Approximation in Proper Interval Graphs

Let us now discuss the status of Sparsest k-Subgraph and Densest k-
Subgraph on interval graphs. First, notice that the complexity status (NP-
hardness versus P) of Sparsest k-Subgraph remains unknown in interval and
proper interval graphs. We also recall that this question is a longstanding open
problem for DkS, as well as its complexity in planar graphs. Indeed, the former
paper [8] proves the NP-hardness of DkS in comparability, chordal graphs, and
states the open question of its complexity in planar and (proper) interval graphs.
Since then, and despite a lot of effort, no major improvement has been done
so far.

As interval graphs are exactly the intersection of chordal graphs and
co-comparability graphs, finding out the complexity status of Sparsest k-
Subgraph in interval graphs would determine the complexity of Densest k-
Subgraph in a subclass of comparability graphs, improving the results of [8].
Finally, as in [15] where the author design a PTAS for Densest k-Subgraph
on interval graph (despite the unknown complexity status), we are able to show
the following theorem.

Theorem 3. There is a PTAS for SkS in proper intervals running in nO(1
ε).

This result uses the same kind of arguments as in [15]: restructuring an optimal
solution in each ”block” of consecutive intervals, and using dynamic programing
on these restructured blocks.

84 R. Watrigant, M. Bougeret, and R. Giroudeau

References

1. Apollonio, N., Sebő, A.: Minconvex factors of prescribed size in graphs. SIAM
Journal of Discrete Mathematics 23(3), 1297–1310 (2009)

2. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite
graphs. Preprint (2013)

3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: An O(n1/4) approximation for densest k-subgraph. In: Proceed-
ings of the 42nd ACM symposium on Theory of Computing, pp. 201–210. ACM
(2010)

4. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V., Pottié, O.: The
max quasi-independent set problem. Journal of Combinatorial Optimization 23(1),
94–117 (2012)

5. Broersma, H., Golovach, P.A., Patel, V.: Tight complexity bounds for FPT sub-
graph problems parameterized by clique-width. In: Marx, D., Rossmanith, P. (eds.)
IPEC 2011. LNCS, vol. 7112, pp. 207–218. Springer, Heidelberg (2012)

6. Bshouty, N., Burroughs, L.: Massaging a linear programming solution to give a
2-approximation for a generalization of the vertex cover problem. In: Meinel, C.,
Morvan, M., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer,
Heidelberg (1998)

7. Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. Computer Journal 51(1), 102–121 (2008)

8. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete
Applied Mathematics 9(1), 27–39 (1984)

9. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pacific J.
Math. 15, 835–855 (1965)

10. Goldschmidt, O., Hochbaum, D.S.: k-edge subgraph problems. Discrete Applied
Mathematics 74(2), 159–169 (1997)

11. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover
variants. Theory of Computing Systems 41(3), 501–520 (2007)

12. Joret, G., Vetta, A.: Reducing the rank of a matroid. CoRR, abs/1211.4853 (2012)
13. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex

cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

14. Liazi, M., Milis, I., Zissimopoulos, V.: A constant approximation algorithm for
the densest k-subgraph problem on chordal graphs. Information Processing Let-
ters 108(1), 29–32 (2008)

15. Nonner, T.: PTAS for densest k-subgraph in interval graphs. In: Dehne, F., Ia-
cono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 631–641. Springer,
Heidelberg (2011)

16. Watrigant, R., Bougeret, M., Giroudeau, R.: The k-sparsest subgraph problem.
Technical Report RR-12019, LIRMM (2012)

17. Watrigant, R., Bougeret, M., Giroudeau, R.: Approximating the sparsest k-
subgraph in chordal graphs. Technical Report hal-00868188, LIRMM (2013)

Improved Approximation Algorithm for k-Level
UFL with Penalties, a Simplistic View
on Randomizing the Scaling Parameter

Jaroslaw Byrka1,,, Shanfei Li2,, and Bartosz Rybicki1,,

1 Institute of Computer Science, University of Wroclaw, Poland
2 Delft Institute of Applied Mathematics, TU Delft, The Netherlands

{jby,bry}@ii.uni.wroc.pl, shanfei.li@tudelft.nl

Abstract. The state of the art in approximation algorithms for facility
location problems are complicated combinations of various techniques.
In particular, the currently best 1.488-approximation algorithm for the
uncapacitated facility location (UFL) problem by Shi Li is presented as
a result of a non-trivial randomization of a certain scaling parameter
in the LP-rounding algorithm by Chudak and Shmoys combined with a
primal-dual algorithm of Jain et al. In this paper we first give a simple
interpretation of this randomization process in terms of solving an aux-
iliary (factor revealing) LP. Then, armed with this simple view point,
we exercise the randomization on a more complicated algorithm for the
k-level version of the problem with penalties in which the planner has
the option to pay a penalty instead of connecting chosen clients, which
results in an improved approximation algorithm.

1 Introduction

In the uncapacitated facility location (UFL) problem the goal is to open facilities
in a subset of given locations and connect each client to an open facility so as to
minimize the sum of opening costs and connection costs. In the penalty avoiding
(prize collecting) variant of the problem, a fixed penalty can be paid instead of
connecting a client.

In the k-level uncapacitated facility location problem with penalties (k-level
UFLWP), we are given a set C of clients and a set F =

⋃k
t=1 Flt of facilities

(locations to potentially open a facility) in a metric space. Facilities are of k
different types (levels), e.g., for k = 3 one may think of these facilities as shops,
warehouses and factories. Each set Flt contains all facilities on level t and the sets
Flt are pairwise disjoint. Each client j can either be connected to precisely one
facility at each of k levels (via a path), or be rejected in which case the penalty pj
must be paid (pj can be considered as the loss of profit). To be more precise, for a

� Corresponding authors.
�� Supported by FNP HOMING PLUS/2010-1/3 grant and MNiSW grant number

N N206 368839, 2010-2013.
� � � Supported by NCN 2012/07/N/ST6/03068 grant.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 85–96, 2014.
c© Springer International Publishing Switzerland 2014

86 J. Byrka, S. Li, and B. Rybicki

client j to be connected, it must be connected with a path (j, i1, i2, · · · , ik−1, ik),
where it is an open facility on level t. The cost of connecting points i, j ∈ C ∪F ,
is the distance between i and j, denoted by cij . The cost of opening facility i
is fi (fi ≥ 0). The goal is to minimize the sum of the total cost of opening
facilities (at all levels), the total connection cost and the total penalty cost. In
the uniform version of the problem all penalties are the same, i.e., for any two
clients j1, j2 ∈ C we have pj1 = pj2 .

1.1 Related Work

If pj , j ∈ C are big enough, k-level UFLWP is the k-level UFL problem, for
which Krishnaswamy and Sviridenko [14] showed 1.61-hardness of approximation
for general k and 1.539-hardness for k = 2. Actually, even for k = 1 Guha
and Khuller [12] showed that the approximation ratio is at least 1.463, unless
NP ⊆ DTIME(nlog logn). The current best known approximation ratio for this
simplest case k = 1 is 1.488 by Li [15].

For 2-level UFL problem Shmoys, Tardos, and Aardal [17] gave the first con-
stant factor approximation algorithm by extending the algorithm for 1-level
and obtaining an approximation ratio 3.16. Subsequently, Aardal, Chudak, and
Shmoys [1] used randomized rounding to get the first algorithm for general k,
which had approximation ratio of 3. Ageev, Ye and Zhang [2] gave a combinato-
rial 3.27-approximation algorithm for general k by reducing the k-level directly
into 1-level problem. By recursive reduction, i.e., reducing k-level to k− 1 level,
they obtained an improved 2.43-approximation for k = 2 and 2.85 for k = 3.
Later, this was improved by Zhang [21], who combined the maximization version
of 1-level UFL problem and dual-fitting to get a 1.77-approximation algorithm
for k = 2, and a 2.53-approximation for k = 3. Byrka and Aardal [4] improved
the ratio for k = 3 to 2.492. For k > 2 the ratio was recently improved by Byrka
and Rybicki [7] to 2.02 for k = 3, 2.14 for k = 4, and the ratio converges to 3
when k → +∞.

UFL with penalties was first introduced by Charikar et al. [8], who gave a 3-
approximation algorithm based on a primal-dual method. Later, Jain et al. [13] in-
dicated that their greedy algorithm for UFL could be adapted to UFLWP with the
approximation ratio 2. Xu and Xu [19,20] proposed a 2.736-approximation algo-
rithm based on LP-rounding and a combinatorial 1.853-approximation algorithm
by combining local search with primal-dual. Later, Geunes et al. [11] presented
an algorithmic framework which can extend any LP-based α-approximation al-
gorithm for UFL to get an (1− e−1/α)−1-approximation algorithm for UFL with
penalties. As a result, they gave a 2.056-approximation algorithm for this prob-
lem. Recently, Li et al. [16] extended the LP-rounding algorithm by Byrka and
Aardal [4] and the analysis by Li [15] to UFLWP to give the currently best 1.5148-
approximation algorithm.

For multi-level UFLWP, Asadi et al. [3] presented an LP-rounding based 4-
approximation algorithm by converting the LP-based algorithm for UFLWP by
Xu and Xu [19] to k-level. To the best of our knowledge, this is the only algorithm
for multi-level UFLWP in the literature.

Improved Approximation Algorithm for k-Level UFL with Penalties 87

1.2 Our Contribution

We first show that algorithms whose performance can be analysed with a linear
function of certain instance parameters, like the Chudak and Shmoys algorithm
[9] for UFL, can be easily combined and analysed with a natural factor reveal-
ing LP. This simplifies the argument of Shi Li [15] for his 1.488-approximation
algorithm for UFL since an explicit distribution for the parameters obtained by
a linear program is not necessary in our factor revealing LP.

With this tool one can easily randomize the scaling factor in LP-rounding
algorithms for various variants of the UFL problem. We demonstrate this by
randomizing the algorithm for k-level UFLWP. For k-level UFL we can get the
same approximation ratios as for k-level UFLWP by setting pj = +∞, j ∈ C.

Note that the previously best ratio is 4 for k-level UFLWP (k ≥ 2) [3] and
1.5148 for k = 1 [16]. The following table shows how much we improve the ap-
proximation ratios of our algorithm for k = 1, . . . , 10 by involving randomization
of the scaling factor. Irrespective of the way in which we choose γ, deterministi-
cally or randomly, approximation ratio converges to three.

Table 1. Comparison of ratios

k 1 2 3 4 5 6 7 8 9 10
no randomization of γ 1.58 1.85 2.02 2.14 2.24 2.31 2.37 2.42 2.46 2.50

with randomization of γ 1.52 1.79 1.97 2.09 2.19 2.27 2.33 2.39 2.43 2.47

2 Simple Version of Li’s Argument

Consider the following standard LP relaxation of UFL.

min
∑
i∈F

∑
j∈C

cijxij +
∑
i∈F

yifi (1)

∑
i∈F

xij = 1 ∀j∈C (2)

yi − xij ≥ 0 ∀i∈F,j∈C (3)
xij , yi ≥ 0 ∀i∈F,j∈C (4)

Chudak and Shmoys [9] gave a randomized rounding algorithm for UFL based
on this relaxation. Later Byrka and Aardal [4] considered a variant of this algo-
rithm where the facility opening variables were initially scaled up by a factor of
γ. They showed that for γ ≥ γ0 ≈ 1.67 the algorithm returns a solution with
cost at most γ times the fractional facility opening cost plus 1 + 2e−γ times the
fractional connection cost. This algorithm, when combined with the (1.11, 1.78)-
approximation algorithm of Jain, Mahdian and Saberi [13] (JMS algorithm for
short), is easily a 1.5-approximation algorithm for UFL. More recently, Li [15]

88 J. Byrka, S. Li, and B. Rybicki

showed that by randomly choosing the scaling parameter γ from an certain prob-
ability distribution one obtains an improved 1.488-approximation algorithm. A
natural question is what improvement this technique gives in the k-level variant.

In what follows we present our simple interpretation and sketch the analysis
of the randomization by Li. We argue that a certain factor revealing LP pro-
vides a valid upper bound on the obtained approximation ratio. The appropriate
probability distribution for the scaling parameter (engineered and discussed in
detail in [15]) may in fact be directly read from the dual of our LP. While we do
not claim to get any deeper understanding of the randomization process itself,
the simpler formalism we propose is important for us to apply randomization to
a more complicated algorithm for k-level UFL, which we describe next.

2.1 Notation

Let Fj denote the set of facilities which client j ∈ C is fractionally connected to,
i.e., facilities i with xij > 0 in the optimal LP solution. Since for uncapacitated
facility location problems one can split facilities before rounding, to simplify the
presentation, we will assume that Fj contains lots of facilities with very small
fractional opening yi. This will enable splitting Fj into subsets of desired total
fractional opening.

Definition 1 (definition 15 from [15]). Given an UFL instance and its op-
timal fractional solution (x∗, y∗), the characteristic function hj : [0, 1] �−→ R of
a client j ∈ C is the following. Let i1, i2, · · · , im denote the facilities in Fj, in a
non-decreasing order of distances to j. Then hj(p) = d(it, j), where t is the min-
imum number such that

∑t
s=1 y

∗
is
≥ p. Furthermore, define h(p) =

∑
j∈C hj(p)

as the characteristic function for the entire fractional solution.

Definition 2. Volume of set F ′ ⊆ F , denoted by vol(F ′) is the sum of facility
openings in that set, i.e., vol(F ′) =

∑
i∈F ′ y∗i .

For l = 1, 2 . . . , n define γl = 1 + 2 · n−l
n , which will form the support for the

probability distribution of the scaling parameter γ. Suppose that all facilities are
sorted in an order of non-decreasing distances from client j ∈ C. Scale up all y∗
variables by γl and divide the set of facilities Fj into two disjoint subsets: the
close facilities of client j, FCl

j , such that vol(FCl

j) = 1; and the distant facilities
FDl

j = Fj \ FCl

j . Note that vol(FDl

j) = γl − 1. Observe that 1
γk

< 1
γl
⇒ FCk

j ⊂
FCl
j ∧ FCl

j \ FCk
j �= ∅. We now split Fj into disjoint subsets F l

j . Define FC0

j = ∅
and F l

j = FCl

j \ F
Cl−1

j , where l = 1, 2 . . . , n. The average distance from j to

facilities in F l
j is cl(j) =

∫ 1/γl

1/γl−1
hj(p) dp for l > 1 and

∫ 1/γ1

0 hj(p) dp for l = 1.
Note that cl(j) ≤ cl+1(j) and Dl

max(j) ≤ cl+1(j), where Dl
max(j) = maxi∈F l

j
cij .

Since the studied algorithm with the scaling parameter γ = γk opens each
facility i with probability γk · y∗i , and there is no positive correlation between
facility opening in different locations, the probability that at least one facility is
open from the set F l

j is at least 1− e−γk·vol(F l
j).

Improved Approximation Algorithm for k-Level UFL with Penalties 89

Crucial to the analysis is the length of a connection via the cluster center j′

for client j when no facility in Fj is open. Consider the algorithm with a fixed
scaling factor γ = γk, an arbitrary client j and its cluster center j′. Li gave
the following upper bound on the expected distance from j to an open facility
around its cluster center j′.

Lemma 1 (Lemma 14 from [15]). If no facility in Fj is opened, the expected
distance to the open facility around j′ is at most γkDav(j) + (3 − γk)D

k
max(j),

where Dav(j) =
∑

i∈Fj
cijx

∗
ij .

Corollary 1. If γ = γk, then the expected connection cost of client j is at most

E[Cj] ≤
n∑

l=1

cl(j) · pl + (1 − e−γk) · (γkDav(j) + (3− γk)D
k
max(j))

where pl is the probability of the following event: no facility is opened in distance
at most Dl−1

max(j) and at least one facility is opened in F l
j .

2.2 Factor Revealing LP

Consider running once the JMS algorithm and the Chudak and Shmoys algo-
rithm multiple times, one for each choice of the value for the scaling parameter
γ = γl = 1 + 2 · n−l

n , l = 1, 2 . . . n. Observe that the following LP captures the
expected approximation factor of the best among the obtained solutions, where
pk1 = 1− e−

γk
γ1 and pkl = e

− γk
γl−1 − e

− γk
γl for all l > 1. Goal of the below LP is to

construct the worst case instance of distances cl.

max T (5)

γkf +

n∑
l=1

cl · pkl + (1 − e−γk)(γkc+ (3 − γk)cl+1) ≥ T ∀k<n (6)

1.11f + 1.78c ≥ T (7)

1

γ1
· c1 +

n∑
i=2

(
1

γi
− 1

γi−1
) · ci = c (8)

0 ≤ ci ≤ ci+1 ≤ 1 ∀i<n (9)
f + c = 1 (10)
f, c ≥ 0 (11)

The variables of this program encode certain measurements of the function
h(p) defined for an optimal fractional solution. Intuitively, these are average dis-
tances between a client and a group of facilities, summed up for all the clients.
The program models the freedom of the adversary in selecting cost profile h(p)
to maximize the cost of the best of the considered algorithms. Variables f and
c model the facility opening and client connection cost in the fractional solu-
tion. Inequality (6) correspond to LP-rounding algorithms with different choices

90 J. Byrka, S. Li, and B. Rybicki

of the scaling parameter γ. Note that Dav(j) = c and Dl
max ≤ cl+1(j) holds

for each client, that fact, with corollary (1), justifies inequality (6). Inequality
(7) corresponds to the JMS algorithm [13], and equality (8) encodes the total
connection cost .

Interestingly, the choice of the best algorithm here is not better in expectation
than a certain random choice between the algorithms. To see this, consider the
dual of the above LP. In the dual, the variables corresponding to the primal
constraints (6) and (7) simply encode the probabilities for choosing a particular
algorithm. Our computational experiments with the above LP confirmed the
correctness of the analysis of Li [15]. Additionally, from the primal program
with distances we obtained the worst case profile h(p) for the state of the art
collection of algorithms considered (see Fig. 1 and Fig. 2 respectively for a plot
of this tight profile and the distributions of the scaling factor for k-level UFL on
different number of levels).

3 Reduction from k-Level UFL with Uniform Penalties
to k-Level UFL

The difficulty of k-level UFLWP lies in the extra choice of each client, that is,
the penalty. We will explain how to overcome the penalties by converting the
instance of UFLWP to an appropriate instance of UFL. We first consider the
easy case of uniform penalties.

Lemma 2. Each instance of UFL with uniform penalties can be modified to an
appropriate UFL instance.

Proof. We can treat the penalty of client j ∈ C as a facility at distance pj to
client j with opening cost zero. The distance from client j to the penalty-facility
of client j′ is equal to cj,j′ + pj′ . Note that pj′ = pj . We can run any algorithm
for UFL on the modified instance as described above. If in the obtained solution
client j is connected with the penalty-facility of client j′, we can switch j to its
penalty-facility without increasing the cost of the solution. ��

Lemma 2 implies that for k-level uncapacitated facility location with uniform
penalties we have the following approximation ratios. Algorithms for k = 1 and
2 are described in [15] and [21], for k > 2 are described in this article.

k 1 2 3 4 5 6 7 8 9 10
ratio 1.488 1.77 1.97 2.09 2.19 2.27 2.33 2.39 2.43 2.47

Note that the reduction above does not work for the non-uniform case, because
then the distance from client j to the penalty-facility of client j′ could be smaller
than pj. Nevertheless we will show that LP-rounding algorithms in this paper
can be easily extended to the non-uniform penalty variant.

Improved Approximation Algorithm for k-Level UFL with Penalties 91

4 Extended LP Formulation

For non-uniform case, our algorithm is based on rounding a solution to the
extended LP-relaxation of the problem. This extended LP may either be seen as
the standard LP on a modified graph as described in [7], or originate from the
k-th level of the Sherali Adams hierarchy, or explicitly be written in terms of
paths on the original instance. Here we use the explicit construction. Note that
in the optimal solution to k-level UFLWP each facility is connected to at most
one facility on the higher level. We will impose this structure on the fractional
solution by creating multiple copies of the original facility, one for each path
across the higher levels of facilities.

To describe the linear program we have to give a few definitions. Let PC be the
set of paths which start in a client and end in a facility on level k. Let Pt be the
set of paths which start on level t and end on the highest level k, i.e., in a root of
some tree. By P we denote the set of all paths, i.e., P = PC∪

⋃k
t=1 Pt. The cost of

the path denoted by cp depends on the kind of path. If p = (j, i1, i2, · · · , ik) ∈ PC ,
then cp = ci1j + ci2i1 + · · ·+ cik,ik−1

. If p = (it, it+1, · · · , ik) ∈ Pt, then cp = fit .

min
∑
p∈P

xpcp +
∑
j∈C

gjpj (12)

∑
p∈PC :j∈p

xp + gj ≥ 1 ∀j∈C (13)

x(it+1,it+2,...ik) − x(it,it+1,...ik) ≥ 0 ∀p=(it,it+1,...ik)∈Pt,t<k (14)

xq −
∑

p=(j,...it,it+1...ik)∈PC

xp ≥ 0 ∀j∈C , ∀q=(it,it+1,...ik)∈P\PC
(15)

xp ≥ 0 ∀p∈P (16)
gj ≥ 0 ∀j∈C (17)

The natural interpretation of the above LP is as follows. Inequality (13) states
that each client is assigned to at least one path or is rejected. Inequality (14)
encodes that opening a lower level facility implies opening its unique higher level
facility. The most complicated inequality (15) for a client j ∈ C and a facility
it ∈ Flt , imposes that the opening of it must be at least the total usage of it by
the client j. Let (x∗, g∗) be an optimal solution to the above LP.

5 Algorithm for k-Level UFL with Penalties

The approximation algorithmA presented below is parameterized by γl.
1: formulate and solve the extended LP (12)-(17) to get an optimal solution

(x∗, g∗);
2: scale up facility opening and client rejecting variables by γl, then recompute

values of x∗
p for p ∈ PC to obtain a minimum cost solution (x̄, ḡ);

92 J. Byrka, S. Li, and B. Rybicki

3: divide clients into two groups Cγl
= {j ∈ C|γl · (1 − g∗j) ≥ 1} and C̄γl

=
C \ Cγl

;
4: cluster clients in Cγl

;
5: round facility opening (tree by tree);
6: connect each client j with a closest open connection path unless rejecting it

is a cheaper option.
Our final algorithm is as follows: run algorithm A(γl) for each l = 1, 2 . . . , n− 1
and select a solution with the smallest cost.

Clustering is based on rules described in [9] which is generalized in [7] for
k-level instances. Rounding on a tree was also used in [7]. Nevertheless, for com-
pleteness we give a brief description of step 4 and 5 in the following subsections.
From now on we are considering only scaled up instance (x̄, ḡ).

5.1 Close and Distant Facilities

For any client j ∈ Cγ , let P j be the set of top-level facilities fractionally serving
j in (x̄, ḡ). As discussed in Section 6.1, WLOG the fractional connectivity of
j to a set of facilities may be assumed to be the fractional opening of these
facilities. Sort facilities i1, i2, . . . im from P j by non-decreasing distance from
client j ∈ Cγ , and select the smallest subset of P j with volume one - this is the
set of close facilities P j

c , the rest of facilities from P j are distant facilities P j
d .

By DC
av(j), D

D
av(j) and Dav(j) we denote the average distances from j to close,

distant and all facilities in set P j respectively. Moreover by DC
max(j) we denote

the maximal distance from j to a close facility. Formal definitions are as follows:

DC
av(j) =

∑
p∈P j

c
cpx̄p∑

p∈P j
c
x̄p

=
∑
p∈P j

c

cpx̄p; DD
av(j) =

∑
p∈P j

d
cpx̄p∑

p∈P j
d
x̄p

=

∑
p∈P j

d
cpx̄p

γ(1− g∗j)− 1
.

Using the similar arguments as in [5] we can define ρj =
Dav(j)−DC

av(j)
Dav(j)

and
express DC

av(j) and DD
av(j) using ρj.

DC
av(j) = (1− ρj)Dav(j); DD

av(j) = (1 +
ρj

γ(1− g∗j)− 1
)Dav(j).

5.2 Clustering

Two clients j1, j2 ∈ Cγ are called neighbors if P j1
c ∩P j2

c �= ∅.
1: while there is an unclustered client in Cγ do
2: select unclustered client j ∈ Cγ that minimizes DC

av(j) +DC
max(j),

3: form a new cluster containing j and all its unclustered neighbors from Cγ ,
4: call j the center of the new cluster;
5: end while
The above clustering procedure (just like in [9]) partitions all clients into

groups called clusters. Such partition has two important properties. First: there
are no two neighbors from Cγ which are (both) centers of clusters. Second:
distance from any client in cluster to his cluster center is not too big.

Improved Approximation Algorithm for k-Level UFL with Penalties 93

5.3 Randomized Facility Opening

Consider an arbitrary cluster center j. Since LP solutions have a form of a forest,
we only need to focus on rounding single tree serving j. For clarity, within this
rounding procedure we will refer to facilities as vertices (of a tree), and use xv to
denote the fractional opening of vertex (facility) v and yv to denote the extent
in which the cluster center j uses v in (x̄, ḡ), i.e, yv =

∑
p∈P j :v∈p x̄p. Note that

xv ≥ yv for each v and xv ≤ xfather(v) if v is not the root of a tree.
The main idea is to open exactly one path for cluster center j but keep the

probability of opening of each vertex v equal to xv in the randomized proce-
dure. In [7] we gave a token-passing-based adaptation of the procedure by Garg
Konjevod and Ravi [10], that stores the output in x̂ and ŷ, and has exactly the
desired properties.

Lemma 3. E[x̂v] = xv and E[ŷv] = yv for all v ∈ V .

It is essential that the probability of opening at least one path in a set Bj ⊆
{p ∈ PC | j ∈ p} can be lower bounded by a certain function Fk(x), where x is
the total flow from client j to all paths in Bj and k is the number of levels in
the considered instance. It can be shown that F1(x) ≥ 1 − ex and the following
lemma (from [7]) hold. For more details see [7].

Lemma 4. Inequality Fk(x) ≥ 1− e(c−1)x implies Fk+1(x) ≥ 1− e(e
c−1−1)x.

6 Analysis

The high level idea is that we can consider the instance of k-level UFLWP as a
corresponding instance of k-level UFL by showing that the worst case approxi-
mation ratio is for clients in set Cγ and we can treat the penalty of client j ∈ Cγ

as a “penalty-facility" in our analysis. That is, we can overcome penalties by
solving an equivalent k-level UFL without penalties.

6.1 Complete Solution and “One-Level” Description

It is standard in uncapacitated location problems to split facilities to obtain a
so called complete solution, where no facility is used less than it is open by a
client (see [18] for details). For our algorithm, to keep the forest structure of the
fractional solution, we must slice the whole trees instead of splitting individual
facilities to obtain the following.

Lemma 5. Each solution of our linear program for k-level UFLWP can be trans-
formed to an equivalent complete solution.

The proof is standard (see [6]).
For the clarity of the following analysis we will use a “one-level" description

of the instance and fractional solution despite its k-level structure. Because the

94 J. Byrka, S. Li, and B. Rybicki

number of levels will have influence only on the probabilities of opening particular
paths in our algorithm.

Consider set Sj of paths which start in client j and end in the root of a
single tree T . Instead of thinking about all paths from set Sj separately we can
now treat them as one path pT whose fractional opening is xpT =

∑
p∈Sj

x̄p

and (expected) cost is cpT =

∑
p∈Sj

cpx̄p

xpT
. Observe that our distance function cpT

satisfy the triangle inequality. From now on we will think only about clients and
facilities (on level k) and (unique) paths between them. Accordingly, we will now
encode the fractional solution as (x̄, ȳ, ḡ), to denote the fractional connectivity,
opening and penalty components.

6.2 Penalty Discussion

Lemma 6. ∀γ>1,1≥g∗
j ≥0 DC

max(j) ≤ γ(1− g∗j)Dav(j) + (3− γ(1− g∗j))D
C
max(j).

Lemma 7. The worst case approximation ratio is for clients from set Cγ .

Proof of lemmas 6 and 7 in full version of the paper, see [6].

Lemma 8. For clients j ∈ Cγ we can treat its penalty as a facility.

Proof. If j is a cluster center, j will have at least one (real) facility open in its
set of close facilities. Thus, its connection and penalty cost are independent of
the value of g∗j . If j is not a cluster center and we pretend its penalty as a facility,
no other client j′ will consider to use this fake facility. Because j′ only looks at
facilities fractionally serving him, and the facilities which serve the center of the
cluster containing j′. ��

6.3 Approximation Ratio

A single algorithm A(γ) has expected facility opening cost E[F] ≤ γ ·F ∗ and ex-
pected connection and penalty cost E[C+P] ≤ max{3−2·Fk(γ),

2−Fk(γ)−Fk(1)

1− 1
γ

}·
(C∗ + P ∗) (see [6] for a detailed proof). To obtain an improved approximation
ratio we run algorithm A for several values of γ and select the cheapest solution.
The following LP gives an upper bound on the approximation ratio.

max T (18)

γif +

n∑
l=1

cl · pil + (1− e−γi)(γic+ (3− γi)ci+1) ≥ T ∀i<n (19)

1

γ1
· c1 +

n∑
i=2

(
1

γi
− 1

γi−1
) · ci = c (20)

0 ≤ ci ≤ ci+1 ≤ 1 ∀i<n (21)
f + c = 1 (22)
f, c ≥ 0 (23)

Improved Approximation Algorithm for k-Level UFL with Penalties 95

Since the number of levels has influence on connection probabilities, the values
of pil need to be defined more carefully than for UFL. In particular, for l = 1 we
now have pi1 = 1− Fk(

γi

γ1
) and pil = Fk(

γi

γl−1
)− Fk(

γi

γl
) for l > 1.

The Table 1 summarizes the obtained ratios for a single algorithm (run with
the best choice of γ for particular k) and for a group of algorithms.

Fig. 1. Worst case profiles of h(p) (i.e., distances to facilities) for k = 1, 2, 3, 4 obtained
from solution of the LP in section 6.3. X-axis is volume of a considered set and y-axis
represents distance to the farthest facility in that set. Values of function h(p) are in
one-to-one correspondence with values of ci in LP from section 6.3.

Fig. 2. Probabilities of using a particular γ in a randomized alg. (from the dual LP)
for k = 1, 2, 3, 4. Left figure: general view; Right figure: close-up on small probabilities.

References

1. Aardal, K., Chudak, F., Shmoys, D.: A 3-Approximation Algorithm for the k-
Level Uncapacitated Facility Location Problem. Inf. Process. Lett. 72(5-6), 161–167
(1999)

2. Ageev, A., Ye, Y., Zhang, J.: Improved Combinatorial Approximation Algorithms
for the k-Level Facility Location Problem. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 145–156.
Springer, Heidelberg (2003)

96 J. Byrka, S. Li, and B. Rybicki

3. Asadi, M., Niknafs, A., Ghodsi, M.: An Approximation Algorithm for the k-
level Uncapacitated Facility Location Problem with Penalties. In: Sarbazi-Azad,
H., Parhami, B., Miremadi, S.-G., Hessabi, S. (eds.) CSICC 2008. CCIS, vol. 6,
pp. 41–49. Springer, Heidelberg (2009)

4. Byrka, J., Aardal, K.: An Optimal Bifactor Approximation Algorithm for the Met-
ric Uncapacitated Facility Location Problem. SIAM J. Comput. 39(6), 2212–2231
(2010)

5. Byrka, J., Ghodsi, M., Srinivasan, A.: LP-rounding algorithms for facility-location
problems. CoRR abs/1007.3611 (2010)

6. Byrka, J., Li, S., Rybicki, B.: Improved approximation algorithm for k-level UFL
with penalties, a simplistic view on randomizing the scaling parameter (full version,
arxiv.org)

7. Byrka, J., Rybicki, B.: Improved LP-Rounding Approximation Algorithm for k-
level Uncapacitated Facility Location. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 157–169. Springer,
Heidelberg (2012)

8. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Algorithms for facility lo-
cation problems with outliers. In: SODA, pp. 642–651 (2001)

9. Chudak, F., Shmoys, D.: Improved Approximation Algorithms for the Uncapaci-
tated Facility Location Problem. SIAM J. Comput. 33(1), 1–25 (2003)

10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. In: SODA, pp. 253–259 (1998)

11. Geunes, J., Levi, R., Romeijn, H., Shmoys, D.: Approximation algorithms for
supply chain planning and logistics problems with market choice. Math. Pro-
gram. 130(1), 85–106 (2011)

12. Guha, S., Khuller, S.: Greedy Strikes Back: Improved Facility Location Algorithms.
J. Algorithms 31(1), 228–248 (1999)

13. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility loca-
tion algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6),
795–824 (2003)

14. Krishnaswamy, R., Sviridenko, M.: Inapproximability of the multi-level uncapaci-
tated facility location problem. In: SODA 2012, pp. 718–734 (2012)

15. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. Inf. Comput. 222, 45–58 (2013)

16. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility
location problems with linear/submodular penalty. In: Du, D.-Z., Zhang, G. (eds.)
COCOON 2013. LNCS, vol. 7936, pp. 292–303. Springer, Heidelberg (2013)

17. Shmoys, D., Tardos, E., Aardal, K.: Approximation algorithms for facility location
problems (extended abstract). In: STOC 1997, pp. 265–274 (1997)

18. Sviridenko, M.I.: An Improved Approximation Algorithm for the Metric Uncapac-
itated Facility Location Problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 240–257. Springer, Heidelberg (2002)

19. Xu, G., Xu, J.: An LP rounding algorithm for approximating uncapacitated facility
location problem with penalties. Inf. Process. Lett. 94(3), 119–123 (2005)

20. Xu, G., Xu, J.: An improved approximation algorithm for uncapacitated facility
location problem with penalties. J. Comb. Optim. 17(4), 424–436 (2009)

21. Zhang, J.: Approximating the two-level facility location problem via a quasi-greedy
approach. Math. Program. 108(1), 159–176 (2006)

Inapproximability Results for Graph

Convexity Parameters

Erika M.M. Coelho1, Mitre C. Dourado2, and Rudini M. Sampaio3

1 Universidade Federal de Goiás, Goiânia, Brazil
erikamorais@inf.ufg.br

2 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
mitre@dcc.ufrj.br

3 Universidade Federal do Ceará, Fortaleza, Brazil
rudini@ufc.br

Abstract. In this paper, we prove several inapproximability results on
the P3-convexity and the geodetic convexity on graphs. We prove that
determining the P3-hull number and the geodetic hull number are APX-
hard problems. We prove that the Carathéodory number, the Radon
number and the convexity number of both convexities are O(n1−ε)-
inapproximable in polynomial time for every ε > 0, unless P=NP. We
also prove that the interval numbers of both convexities are W [2]-hard
and O(log n)-inapproximable in polynomial time, unless P=NP. More-
over, these results hold for bipartite graphs in the P3-convexity.

Keywords: P3-convexity, geodetic convexity, APX-hardness, inappro-
ximability results, hull number, Carathéodory number, Radon number,
convexity number, interval number.

1 Introduction

Convexity spaces form a classical topic, studied in some different branches of
mathematics. The study of convexities applied to graphs has started later, about
50 years ago. Then the convexity parameters motivated the definition of some
graph parameters, whose study has been one of the central issues in graph con-
vexities. In particular, complexity aspects related to the computation of these
parameters has been the main goal of various recent papers.

Let G be a simple finite graph, with vertex set V (G), a graph convexity on
V (G) is a collection C of subsets of V (G) such that

– ∅, V (G) ∈ C and
– C is closed under intersections.

The subsets C ∈ C are called convex sets. The convex hull of a subset S ⊂
V (G) is the smallest set hullC(S) in C containing S. If hull(S) = V (G), we say
that S is a hull set.

Next, we describe some graph parameters related to a graph convexity. The
hull number hn(G) of G is the size of a minimum hull set. The convexity
number cx(G) is the size of the maximum convex set distinct from V (G).

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 97–107, 2014.
c© Springer International Publishing Switzerland 2014

98 E.M.M. Coelho, M.C. Dourado, and R.M. Sampaio

The Carathéodory number cth(G) is the smallest integer c such that for ev-
ery set S and every vertex u ∈ hull(S), there is a set F ⊆ S with |F | ≤ c and
u ∈ hull(F). A set S of vertices of G is a Carathéodory set of C if the set ∂hull(S)
defined as hull(S) \

⋃
u∈S hull(S \ {u}) is not empty. This notion allows an al-

ternative definition of the Carathéodory number of C as the largest cardinality
of a Carathéodory set of C.

The Radon number rd(G) is the minimum k such that every subset V ′ of
V (G) of size at least k has a Radon partition, which is a partition (V ′

1 , V
′
2) such

that hull(V ′
1) ∩ hull(V ′

2) �= ∅. Alternatively, rd(G) is the size of a maximum
anti-Radon set plus one, where a set is anti-Radon if it has no Radon partition.

Clearly, the computation of these parameters for a graph would depend on
the particular convexity being considered. Several well known graph convexities
C are defined using some set P of paths of the underlying graph G. In this case, a
subset S of vertices of G is convex, that is, belongs to C, if for every path P in P
whose endvertices belong to S also every vertex of P belongs to S. When P is the
set of all shortest paths in G, this leads to the geodetic convexity [7,15,16,22,24].
The monophonic convexity is defined by considering as P the set of all induced
paths of G [17,20,23]. The set of all paths of G leads to the all path convexity
[12]. If P is the set of all induced paths of length ≥ 3 leads to the m3 convexity
[13]. Similarly, if P is the set of all triangle paths in G, then C is the triangle
path convexity [11]. When P is the set of all paths of length two we have the P3

convexity. The P3 convexity was first considered for directed graphs [21,25]. For
undirected graphs, the P3 convexity was studied in [5,8,9].

The P3-interval of a set S ⊆ V (G) is S plus every vertex outside S belonging
to some path P between two pairs of vertices in S. The interval number in(G) of
a graph G is the minimum cardinality of a set S ⊆ V (G) such that I(S) = V (G).

Regarding the P3-convexity, it was proved that the following parameters are
NP-hard: hull number, Radon number, convexity number, interval number and
Carathéodory number [5,6,8,10]. Regarding the geodetic convexity, it was proved
that the same parameters are also NP-hard [1,14,15,18].

In this paper, we improve these results by proving the following for the P3-
convexity and the geodetic convexity:

– The hull number is APX-hard;
– The Carathéodory number, the Radon number and the convexity number

are O(n1−ε)-inapproximable in polynomial time for any ε > 0, unless P=NP;
– The interval number is O(log n)-inapproximable in polynomial time, unless

P=NP.

Moreover, these results hold for bipartite graphs in the P3-convexity.
In the following sections, we follow the terminology in [3] for the terms: AP-

reduction, L-reduction and performance ratio (which are also defined in the ap-
pendix). We also use the following notation: given an optimization problem P ,
let optP (I) denote the optimal solution value for some instance I of P and, for
a solution S of I, let valP (I, S) denote the associated value.

Finally, in this work we present only the sketch of the proofs due to limitation
of the number of pages.

Inapproximability Results for Graph Convexity Parameters 99

2 The P3-hull Number Is APX-hard

In this section, we prove the following theorem.

Theorem 1. The P3-hull number is APX-hard even on bipartite graphs.

Proof (Sketch of the proof). We obtain an L-reduction from Max-2-Sat-3, which
is MaxSat with the following restrictions: (a) every clause has at most 2 literals
and, (b) for every variable xi, there are at most three clauses containing either
xi or xi. It is known that Max-2-Sat-3 is APX-Complete [3].

Given a Max-2-Sat-3 instance with k variables and m clauses, we construct a
bipartite graph G with at most 22k + 8m vertices. Figure 1 shows an example
with three clauses C1 = (x1 ∨ x2), C2 = (x1 ∨ x2) and C3 = (x1 ∨ x2). The
variable gadgets (indicated by the dashed squares), the clause gadgets (indicated
by Ci) and their connections (indicated by the dashed edges) can be seen in this
example.

Every gadget of a variable xi has vertices yi, yi, zi, zi. If xi (resp. xi) is in only
one clause, introduce a new vertex on G and connect it to yi (resp. yi). Notice
that G has γ(ε) + 3m vertices of degree 1, where γ(ε) ≤ 7.

Observe that each dashed square represents a co-convex set (that is, all ver-
tices except the vertices inside the dashed square form a convex set). Conse-
quently, every hull set must contain at least one vertex of each variable gadget.

It is possible to prove that, for every hull set S′, we can obtain a good hull set
S with |S| ≤ |S′|, where a good hull set has exactly one vertex in each dashed
square (variable gadget) which is either zi or zi, and at most one vertex in each
clause gadget. By the definition, a good hull set has exactly γ(ε)+k+3m+X(S)
vertices, where X(S) is the number of vertices of S inside a clause gadget.

Given a good hull set S, we can obtain an assignment g(S) for the variables
(let xi be true, if S contains zi, and let xi be false, otherwise). It is possible to
prove that the assignment g(S) satisfies m−X(S) clauses.

By similar arguments, it is possible to prove that, for any assignment satisfying
� clauses, we can obtain a good hull set S with |S| = γ(ε) + k + 3m + (m − �)
vertices. If �opt is the optimum value, then it is known that �opt ≥ m/2. This will
imply that there exists a good hull set Sopt with |Sopt| ≤ 35�opt vertices, since
k ≤ 2m.

Moreover, |S|−|Sopt| = (γ(ε)+k+3m+X(S))−(γ(ε)+k+3m+(m−�opt)) =
�opt−(m−X(S)). Recall that g(Sopt) and g(S) satisfy �opt and m−X(S) clauses,
respectively. With this, we conclude that this reduction is an L-reduction with
α = 35 and β = 1.

Open Problem: Is the P3-hull number in APX? That is, there exists a
polynomial time r-approximation algorithm for some fixed r?

100 E.M.M. Coelho, M.C. Dourado, and R.M. Sampaio

C1C1

C1 C2 C3

x1

x1x1

x̄1

x̄1

x2

x2x2

x̄2

x̄2

y1

y1y1

ȳ1

ȳ1

y2

y2y2

ȳ2

ȳ2

z1 z̄1 z2 z̄2

Fig. 1. Reduction of MAX-2-SAT-3 to the P3-hull number

3 Inapproximability of the P3-Radon Number and the
P3-convexity Number

In this section, we prove the following theorem.

Theorem 2. The P3-convexity number and the P3-Radon number are O(n1−ε)-
inapproximable in polynomial time even on bipartite graphs, unless P=NP.

Proof (Sketch of the proof). We obtain an AP-reduction from the Set Packing
Problem. Given a family S = {S1, . . . , Sm} of finite sets, the objective is to
determine the size of a largest set packing of S, which is a family of mutually
disjoint sets of S. We will consider instances S such that opt(S) ≥ 3. Given
an instance of Set Packing, we construct a bipartite graph G. Figure 2 shows
an example of the construction, where S1 = {a, b, c}, S2 = {b, c, d, f, g}, S3 =
{d, e, f}, S4 = {c, e, f, g} and S5 = {g, h, i}.

Given a set packing of S, it is possible to prove that the vertices ofG associated
to the subsets in the packing and the auxiliary vertex W form a P3-convex set
in G (since the neighborhood of these vertices has no intersection). In Figure 2,
the P3-convex set is C = {S1, S3, S5,W}.

On the other way, given a P3-convex set C of G with at least 3 vertices, it is
possible to prove that all vertices of C \{W} are associated with subsets without
intersection between them, forming a set packing of S. Let g(S, C) be the sets
of S associated to the vertices in C \ {W}.

Inapproximability Results for Graph Convexity Parameters 101

Given an instance S of Set Packing, let G be the bipartite graph obtained
by the reduction above. Given a P3-convex set C, let S ′ = g(S, C). To simplify
the notation, let P1 and P2 be the Maximum Set Packing Problem and the
Maximum P3-convexity problem, respectively. Then, from the two paragraphs
above, optP1(S) = optP2(G)− 1 and valP1(S,S ′) = valP2(G,C) − 1.

With this, we can conclude that this is an AP-reduction with γ = 2.
It is possible to prove that, given an anti-Radon set R′ with at least 3 vertices,

we can obtain a P3-convex set R with |R| = |R′|. Then the result for the P3-
Radon number follows.

It is known that, unless P=NP, there can be no polynomial time algorithm
that approximates the maximum clique to within a factor better than O(n1−ε),
for any ε > 0 [27]. Since Set-Packing is as hard to approximate as the Maximum
Clique Problem [4], we are done.

W

S1 S2 S3 S4 S5

a b

c d
e

f g

h i

Fig. 2. Reduction of Set Packing to the P3-convexity number

4 Inapproximability of the P3-interval Number

In this section, we prove the following theorem.

Theorem 3. The P3-interval number is O(log n)-inapproximable in polynomial
time, even on bipartite graphs, unless P=NP.

Proof (Sketch of the proof). We obtain an AP-reduction from the Set Cover
Problem. Given a set U = {u1, . . . , un} and family S = {S1, . . . , Sm} of subsets
of U , the objective is to determine the size of a minimum set cover of U , which
is a subfamily of subsets in S whose union contains all elements in U . We will
consider instances S such that opt(S) ≥ 5. Given an instance S of Set Cover, we
construct a bipartite graph G with vertex set U ∪ S ∪ {x1, x2, x3, x4, y1, y2, y3},
where each xi and each yj is a new vertex. Figure 3 shows an example of the
reduction, where U = {a, b, c, d, e} and S = {S1, S,S3, S4}, where S1 = {a, b, c},
S2 = {a, b}, S3 = {c, d} and S4 = {c, d, e}.

102 E.M.M. Coelho, M.C. Dourado, and R.M. Sampaio

Given a set cover of U , it is possible to prove that the vertices of G associated
to the subsets in the cover and the auxiliary vertices x1, x2, x3, x4 form a P3-
interval set in G (since all vertices of S are adjacent to x3 and x4, and all vertices
of U are adjacent to x2 and to a vertex in the cover). In Figure 3, the P3-interval
set is C = {S1, S4, x1, x2, x3, x4}.

On the other way, given a P3-interval set C
′ of G with at least 5 vertices, it is

possible to prove that we can easily obtain a good P3-interval set C with |C| ≤
|C′|, which is a set C that contains {x1, x2, x3, x4} and C \ {x1, x2, x3, x4} ⊆ S.
Let g(S, C) be the sets of S associated to the vertices in C \ {x1, x2, x3, x4}.

Given an instance S of Set Cover, let G be the bipartite graph obtained
by the reduction above. Given a good P3-interval set C, let S ′ = g(S, C). To
simplify the notation, let P1 and P2 be the Minimum Set Cover Problem and
the Minimum P3-interval problem, respectively. Then, from the two paragraphs
above, optP1(S) = optP2(G)− 4 and valP1(S,S ′) = valP2(G,C) − 4.

With this, we can conclude that this is an AP-reduction with γ = 2. Under
the assumption that P �= NP , Raz and Safra [26] showed that Set Cover is
O(log n)-inapproximable in polynomial time. This holds even for instances in
which the family S has size polynomial in |U |.

x2

x1

y1
y2

y3

x3

x4

a

b

c

d

e

S1

S2

S3

S4

Fig. 3. Reduction of Set Cover to the P3-interval number

Now we turn to the parameterized complexity of the P3-interval number.
The parameterized P3-interval number problem asks whether the corresponding
instance of the P3-interval number problem with a given parameter p have a
P3-interval set with p vertices. To show such results, we shall consider the Pa-
rameterized Set Cover (PSC) problem. In this decision problem, the instance
consists of a pair (U,S) as defined above, and a parameter p (a positive integer).
The question is whether there is a set cover of U with cardinality p. Given an
instance of PSC (Parameterized Set Cover) ((U,S), p), we construct an instance
(G, p + 4) of the Parameterized P3-interval number problem, exactly as in the
reduction in the proof of Theorem 3. This defines an FPT-reduction from PSC to
the Parameterized P3-interval number problem. Hence, using the fact the PSC
is W [2]-complete [19], we may state the following result.

Theorem 4. The Parameterized P3-interval number problem is W [2]-hard.

Inapproximability Results for Graph Convexity Parameters 103

5 Inapproximability of the P3-Carathéodory Number

In this section, we prove that the P3-Carathéodory number is O(n1−ε)-inapproxi-
mable in polynomial time for any ε > 0, even on bipartite graphs, unless P=NP.
For this, we will make a AP-reduction from the problem MAX3SAT-interval

to the problem P3-Carathéodory number, defined below:

Problem 5 (MAX3SAT-interval) Given a 3-SAT instance (C1, C2, . . . Cm),
to obtain the largest k such that the clauses (Ci, Ci+1, . . . , Ci+k−1) are satisfied,
except for at most one clause.

Problem 6 (P3-Carathéodory number) Given a G, to determine the largest
k such that G has a Carathéodory set of order k.

Theorem 7. There is no O(n1−ε)-approximable polinomial algorithm for MAX-

3SAT-interval, for any ε > 0, unless P=NP.

Proof. By contradiction, suppose that there exists a (cn1−ε)-approximable poly-
nomial algorithm A, where c > 0 and ε > 0 are constants and n is the number of
clauses. Given an instance φ = (C1, C2, . . . , Cm) of 3-SAT, generate a sequence

with (2cm)
1
ε clauses, as follows:

Ψ = (C1, C1, C2, C2, . . . , Cm, Cm, C1, C1, C2, C2, . . . , Cm, Cm, . . .).

Consider Ψ as an instance of MAX3SAT-interval. If φ is satisfied, then is
possible to satisfy all (2cm)

1
ε clauses of Ψ . Otherwise, is possible to satisfy less

then 2m consecutive clauses of Ψ .
In the first case, the algorithm A obtain a solution with (2cm)

1
ε /(factor)

consecutive clauses, except for at most one clause, where factor=cn1−ε and n is
the number of clauses. So, n = (2cm)

1
ε and A obtain 2m consecutive clauses,

except for at most one clause.
In the second case, it is easy to see that the algorithm A achieves less than

2m consecutive clauses, except for at most one clause. This is a contradiction,
unless P=NP, therefore the algorithm would decide the 3-SAT problem.

Theorem 8. MAX3SAT-interval ≤AP P3-Carathéodory number.

Proof (Sketch of the proof). We obtain an AP-reduction from MAX3SAT-

interval. Let a given MAX3SAT-interval instance I = (C1, C2, . . . , Cm). We
construct a bipartite graph G as follows:

– Add a caterpillar graph F generated as follows:
• Add the path P2m+5 = u0, v0, u1, v1, . . . , um, vm, um+1, vm+1, z.
• Add a leaf li for every vertex vi of the P2m+5 path, for i = 0, 1, . . . ,m+1.

– For every clause Ci of I, add three vertices yi,1, yi,2, and yi,3 and two further
vertices wi and w′

i. Bijectively associate the three vertices yi,1, yi,2, and yi,3
to the three literals in Ci. Let Yi = {yi,1, yi,2, yi,3}. Add all possible 9 edges
between the 3 vertices in Yi and the 3 vertices in {ui, wi, w

′
i}. Let Y =

⋃m
i=1 Yi

and W1 = {wi | 1 ≤ i ≤ m}.

104 E.M.M. Coelho, M.C. Dourado, and R.M. Sampaio

– Add three new vertices ym+1,1, ym+1,2, and ym+1,3 and two further vertices
wm+1 and w′

m+1. Let Ym+1 = {ym+1,1, ym+2,2, ym+3,3}. Add all possible 9
edges between the 3 vertices in Ym+1 and the 3 vertices in {um+1, wm+1,
w′

m+1}.
– Let Y =

⋃m+1
i=1 Yi and W1 = {wi | 1 ≤ i ≤ m+ 1}.

– For every two vertices yi,j and ym+1,j′ , where i = 1, 2, . . . ,m, add 2 vertices
w and w′ and add all possible 4 edges between the 2 vertices yi,j , ym+1,j′

and the 2 vertices in {w,w′}. Denote the set of all these vertices by W2.
– For every two vertices yi,j and yi′,j′ with i �= i′ such that yi,j and yi′,j′ are

associated to opposite literals x and x̄, add 2 vertices w and w′ and add
all possible 4 edges between the 2 vertices yi,j , yi′,j′ and the 2 vertices in
{w,w′}. Denote the set of all these vertices by W3. Let W = W1 ∪W2 ∪W3.

– Add two vertices a and b adjacent to all vertices of W .

This completes the construction ofG. See Figure 4 for an illustration. Consider
the following bipartition of the vertices of G. The bipartition (B1, B2) shows that
G is a bipartite graph, where B1 = {u0, u1, . . . , um+1, l0, l1, . . . , lm+1, z}∪W and
B2 = {v0, v1, . . . , vm+1, a, b} ∪ Y . Furthermore, the vertices in V (F) ∪ Y induce
a caterpillar C in G whose set of leaves is Y ∪ {u0, z, l0, . . . , lm}.

It is possible to prove that G contains a Carathéodory set of order k if and
only if there exists a truth assignment for I such that there is a sequence of
�k−3

2 � clauses with at most one clause not satisfied.

Corollary 1. For any ε > 0, the P3-Carathéodory number is O(n1−ε)-
inapproximable, even on bipartite graphs, unless P = NP .

u3

v3

l2

w′

1w1

Y1
Y

W

a b

Fig. 4. An illustration of the construction of G for a MAX3SAT-interval instance
with 3 clauses, where the second literal of the second clause is the negation of the first
literal of the third clause. Note that not all vertices are shown.

Inapproximability Results for Graph Convexity Parameters 105

6 Inapproximability of Geodetic Convexity Parameters

Given graphs G1 and G2, the disjoint union G1 ∪G2 is the graph obtained from
the union of the vertex sets and the edge sets, and the join G1+G2 is the graph
obtained from G1 ∪ G2 including all edges between G1 and G2. The following
theorem in [2] shows an important relation between the geodetic convexity and
the P3-convexity. Let Km be a clique with m vertices.

Theorem 9. Let G1 be a triangle free graph with at least three vertices. Then

(i) hngd(G1 +Km) = hnP3(G1),
(ii) ingd(G1 +Km) = inP3(G1),
(iii) cxgd(G1 +Km) = cxP3(G1) +m,
(iv) cthgd(G1 +Km) = max{cthP3(G1), 2}.

This theorem implies directly the following inapproximability results on the
geodetic convexity.

Corollary 2. Concerning the geodetic convexity, we have the following inappro-
ximability results:

– The hull number is APX-hard;
– The Carathéodory number and the convexity number are O(n1−ε)-inappro-

ximable in polynomial time for any ε > 0, unless P=NP;
– The interval number is W [2]-hard and O(log n)-inapproximable in polyno-

mial time, unless P=NP.

The following theorem proves the inapproximability of the geodetic Radon
number.

Theorem 10. For every ε > 0, approximating the geodetic Radon number to
within a factor n1−ε is NP-hard.

Proof (Sketch of the proof). We obtain an AP-reduction from the Maximum
Clique problem to the Maximum Anti-Radon Set problem, which is the problem
of determining the size of a maximum anti-Radon set of a given graph plus one.

Let a graph G be an input instance of Maximum Clique. Let G′ = f(G) be
the graph such that V (G′) = V (G)∪{x, y}, where x and y are new vertices, and
E(G′) = E(G) ∪ {vx, vy : v ∈ V (G)}.

Given a feasible solution R of G′ (that is, R is an anti-Radon set of G′),
let C = g(G,R) = R \ {x, y}. Notice that, if R has two non-adjacent vertices
{u,w}, then the partition ({u,w}, R \ {u,w}) of R is a Radon partition, since
x, y ∈ hull({u,w}) and V (G′) ⊆ hull({x, y}). Consequently, R is a clique of
G′ and we can assume that R contains either x or y. Thus C is a clique of G.
Moreover, |C| = |R| − 1. Recall that valAntiRadon(G,R) = |R|+ 1.

Furthermore, since every clique of G is an anti-Radon set of G′, this implies
that ω(G) ≤ rd(G′)−2 ≤ 2rd(G′). Moreover, ω(G)−|C| = (rd(G′)−2)− (|R|−
1) = rd(G′)−(|R|+1). With this, we can conclude that (f, g) is an AP-reduction
with γ = 2.

106 E.M.M. Coelho, M.C. Dourado, and R.M. Sampaio

7 Appendix: Approximation Preserving Reductions

Given an optimization problem P , let optP (I) denote the optimal solution value
for some instance I of P and, for a solution S of I, let valP (I, S) denote the
associated value. Given an instance I of P and a solution S of I, the performance
ratio RP (I, S) is defined by

RP (I, S) = max

{
optP (I)

valP (I, S)
,
valP (I, S)

optP (I)

}
.

Given a constant r ≥ 1, an r-approximation algorithm for P is an algorithm
that, applied to any instance I of P , runs in time polynomial in the size of I
and produces a solution S such that R(I, S) ≤ r. If such an algorithm exists, P
belongs to APX.

A reduction from P1 to P2 consists of a pair (f, g) of polynomial-time com-
putable functions such that, for any instance I of P1, (a) f(I) is an instance of
P2, and (b) g(I, S) is a feasible solution of I, for any feasible solution S for f(I).

We say that P1 is AP-reducible to P2 (denoted by P1 ≤AP P2) if there exists
a 3-tuple (f, g, γ), where (f, g) is a reduction from P1 to P2 and γ is a positive
constant such that, if RP2(f(I), S) ≤ r, then RP1(I, g(S)) ≤ 1 + γ(r − 1) for
each instance I of P1 and for every feasible solution S for f(I).

We say that a problem P is APX-hard if Q ≤AP P for any APX problem
Q. Roughly speaking, the existence of a r−approximation algorithm for P for
any r > 1 would imply the existence of a s−approximation algorithm for any
s > 1 for all problems in APX. A problem is APX-complete if it is APX and
APX-hard.

The type of reduction used most frequently to prove APX-hardness is the L-
reduction [3]. We say that P1 is L-reducible to P2 (denoted by P1 ≤L P2) if there
exists a 4-tuple (f, g, α, β), where (f, g) is a reduction from P1 to P2 and α and
β are positive constants, such that, for any instance I of P1: (a) |optP2(f(I))| ≤
α|optP1(I)|, and (b)|optP1 (I)−valP1(I, g(I, S))| ≤ β|optP2(f(I))−valP2 (f(I), S)|
for any feasible solution S for f(I).

It is known [3] that, if P1 ≤L P2 and P1 is APX, then P1 ≤AP P2.

References

1. Araújo, J., Campos, V., Giroire, F., Sampaio, L., Soares, R.: On the hull number
of some graph classes. Elec. Notes Disc. Math. 38, 49–55 (2011)

2. Araújo, R.T., Sampaio, R.M., Szwarcfiter, J.L.: The convexity of induced paths of
order three. Electronic Notes in Discrete Mathematics (2013) (to appear)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Combinatorial Optimization Problems and Their Approximability
Properties. Springe, Berlin (1999)

4. Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex
optimization problems. J. Comput. System Sci. 21, 136–153 (1980)

5. Barbosa, R.M., Coelho, E.M.M., Dourado, M.C., Rautenbach, D., Szwarcfiter, J.L.:
On the Carathéodory number for the convexity of paths of order three. SIAM J.
Discrete Math. 26, 929–939 (2012)

Inapproximability Results for Graph Convexity Parameters 107

6. Dourado, M.C., Rautenbach, D., dos Santos, V.F., Schäfer, P.M., Szwarcfiter, J.L.,
Toman, A.: Algorithmic and structural aspects of the P3-Radon number. Ann.
Oper. Res. 206, 75–91 (2013)

7. Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C.: On
geodetic sets formed by boundary vertices. Discrete Math. 306, 188–198 (2006)

8. Centeno, C., Dourado, M., Penso, L., Rautenbach, D., Szwarcfiter, J.L.: Irreversible
conversion of graphs. Theoretical Computer Science 412, 3693–3700 (2011)

9. Centeno, C.C., Dantas, S., Dourado, M.C., Rautenbach, D., Szwarcfiter, J.L.: Con-
vex Partitions of Graphs induced by Paths of Order Three. Discrete Mathematics
and Theoretical Computer Science 12, 175–184 (2010)

10. Centeno, C.C., Dourado, Szwarcfiter, J.L.: On the convexity of Paths of length two
in undirected graphs. Elect. Notes in Disc. Math. 32, 11–18 (2009)

11. Changat, M., Mathew, J.: On triangle path convexity in graphs. Discrete Mathe-
matics 206, 91–95 (1999)

12. Changat, M., Klavz̃ar, S., Mulder, H.M.: The all-paths transit function of a graph.
Czech. Math. J. 51 (126), 439–448 (2001)

13. Deagan, F.F., Nicolai, F., Bransdstädt, A.: Convexity and HHD-graphs. SIAM J.
Discrete Mathematics 12, 119–135 (1999)

14. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the convexity
number of graphs. Graphs and Combinatorics 28, 333–345 (2012)

15. Dourado, M., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the
geodetic number of a graph. Discrete Mathematics 310, 832–837 (2012)

16. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the hull number
of triangle-free graphs. SIAM J. Discrete Math. 23, 2163–2172 (2010)

17. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity results related to mono-
phonic convexity. Discrete Appl. Math. 158, 1269–1274 (2010)

18. Dourado, M.C., Rautenbach, D., dos Santos, V.F., Schäfer, P.M., Szwarcfiter, J.L.:
On the Carathéodory number of interval and graph convexities (to appear)

19. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

20. Duchet, P.: Convex sets in graphs II: Minimal path convexity. J. Combin. Theory,
Ser. B 44, 307–316 (1988)

21. Erdős, P., Fried, E., Hajnal, A., Milner, E.C.: Some remarks on simple tournaments.
Algebra Univers. 2, 238–245 (1972)

22. Everett, M.G., Seidman, S.B.: The hull number of a graph. Discrete Math. 57,
217–223 (1985)

23. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alge-
braic Discrete Methods 7, 433–444 (1986)

24. Farber, M., Jamison, R.E.: On local convexity in graphs. Discrete Math. 66,
231–247 (1987)

25. Parker, D.B., Westhoff, R.F., Wolf, M.J.: On two-path convexity in multipartite
tournaments. European J. Combin. 29, 641–651 (2008)

26. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. of the 29th Annual
ACM Symposium on Theory of Computing, pp. 475–484 (1987)

27. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proc. 38th ACM Symp. Theory of Computing (STOC
2006), pp. 681–690 (2006)

Continuum Armed Bandit Problem

of Few Variables in High Dimensions

Hemant Tyagi and Bernd Gärtner

Institute of Theoretical Computer Science,
ETH Zürich (ETHZ), CH-8092 Zürich, Switzerland

{htyagi,gaertner}@inf.ethz.ch

Abstract. We consider the stochastic and adversarial settings of con-
tinuum armed bandits where the arms are indexed by [0, 1]d. The reward
functions r : [0, 1]d → R are assumed to intrinsically depend on at most k
coordinate variables implying r(x1, . . . , xd) = g(xi1 , . . . , xik) for distinct
and unknown i1, . . . , ik ∈ {1, . . . , d} and some locally Hölder continuous
g : [0, 1]k → R with exponent α ∈ (0, 1]. Firstly, assuming (i1, . . . , ik)
to be fixed across time, we propose a simple modification of the CAB1
algorithm where we construct the discrete set of sampling points to ob-

tain a bound of O(n
α+k
2α+k (log n)

α
2α+k C(k, d)) on the regret, with C(k, d)

depending at most polynomially in k and sub-logarithmically in d. The
construction is based on creating partitions of {1, . . . , d} into k disjoint
subsets and is probabilistic, hence our result holds with high probabil-
ity. Secondly we extend our results to also handle the more general case
where (i1, . . . , ik) can change over time and derive regret bounds for the
same.

Keywords: Bandit problems, continuum armed bandits, functions of
few variables, online optimization.

1 Introduction

In online decision making problems, a player is required to play a strategy,
chosen from a given set of strategies S, over a period of n trials or rounds.
Each strategy has a reward associated with it specified by a reward function
r : S → R which typically changes across time in a manner unknown to the
player. The aim of the player is to choose the strategies in a manner so as to
minimize the regret defined as the difference between the total expected reward
of the best fixed strategy (not varying with time) and the expected reward of
the sequence of strategies played by the player. If the regret after n rounds is
sub-linear in n, this implies as n → ∞ that the per-round expected reward of
the player asymptotically approaches that of the best strategy. There are many
applications of online decision making problems such as routing [1,2], wireless
networks [3], online auction mechanisms [4,5], statistics (sequential design of
experiments [6]) and economics (pricing [7]), to name a few. An important type
of online decision making problem is the multi-armed bandit problem, where the

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 108–119, 2014.
c© Springer International Publishing Switzerland 2014

Continuum Armed Bandit Problem of Few Variables in High Dimensions 109

player only receives the reward associated with the strategy that was played in
the round1. These problems have been studied extensively when the strategy
set S is finite and optimal regret bounds are known within a constant factor
[8,9,6]. On the other hand, the setting in which S is infinite has been an area of
recent attention due to its practical significance. Such problems are referred to
as continuum armed bandit problems and are the focus of this paper. Usually
S is considered to be a compact subset of a metric space such as R

d. Some
applications of these problems are in: (i) online auction mechanism design [4,5]
where the set of feasible prices is representable as an interval and, (ii) online
oblivious routing [2] where S is a flow polytope.

For a d-dimensional strategy space it is well known that any multi-armed
bandit algorithm will incur worst-case regret of Ω(2d) (see [10]). To circumvent
this curse of dimensionality, additional assumptions are made on the structure
of the reward functions such as linearity (see for example [11]) or convexity (see
for example [10]). For these classes of reward functions the regret is typically
polynomial in d and sub-linear in n. We consider the setting where the reward
function r : [0, 1]d → R depends on an unknown subset of k active coordinate
variables implying r(x1, . . . , xd) = g(xi1 , . . . , xik). The environment is allowed
to sample the underlying function g either in an i.i.d manner from some fixed
underlying distribution (stochastic) or arbitrarily (adversarial). To the best of
our knowledge, such a structure for reward functions has not been considered
in the bandit setting previously. On the other hand, there has been significant
effort in other fields to develop tractable algorithms for approximating such types
of functions (cf. [12,13] and references within). Our contribution is therefore to
combine ideas from different communities and apply them to the bandit setting.

The continuum armed bandit problem was first introduced in [14] for d = 1 in
the stochastic setting where a regret bound of o(n(2α+1)/(3α+1)+η) for any η > 0
was shown for Hölder continuous2 reward functions with exponent α ∈ (0, 1].
In [5] a lower bound of Ω(n1/2) was proven for this problem. This was then

improved upon in [10] where upper and lower bounds of O(n
α+1
2α+1 (logn)

α
2α+1)

and Ω(n
α+1
2α+1) were derived for both stochastic and adversarial settings. [15]

considered a class of reward functions with additional smoothness properties
and derived a regret bound of O(n1/2) which is also optimal. In [16] the case
d = 1 was treated, with the reward function assumed to only satisfy a local
Hölder condition around the maximum x∗ with exponent α ∈ (0,∞). Under
these assumptions the authors considered a modification of Kleinberg’s CAB1

algorithm [10] and achieved a regret bound of O(n
1+α−αβ
1+2α−αβ (logn)

α
1+2α−αβ) for

some known 0 < β < 1. In [17,18] the authors studied a very general setting
in which S forms a metric space, with the reward function assumed to satisfy
a Lipschitz condition with respect to this metric and derived close to optimal
regret bounds.

1 Another type is the best expert problem, where the entire reward function is revealed
to the player at the end of each round.

2 A function r : S → R is Hölder continuous if |r(x)− r(y)| ≤ L ‖ x− y ‖α for
constants L > 0, α ∈ (0, 1] and any x,y ∈ S.

110 H. Tyagi and B. Gärtner

Our contributions are twofold. Firstly, we prove that when (i1, . . . , ik) is fixed
across time but unknown to the player, then a simple modification of the CAB1

algorithm can be used to achieve a regret bound 3 of O(n
α+k
2α+k (log n)

α
2α+kC(k, d))

where α ∈ (0, 1] denotes the exponent of Hölder continuity of the reward func-
tions. The factor C(k, d) = O(poly(k) ∗ o(log d)) captures the uncertainty of not
knowing the k active coordinates. The modification is in the manner of discretiza-
tion of [0, 1]d for which we consider a probabilistic construction based on creating
partitions of {1, . . . , d} into k disjoint subsets. The above bound holds for both
the stochastic (underlying g is sampled in an i.i.d manner) and the adversarial
(underlying g chosen arbitrarily at each round) models. Secondly, we extend our
results to handle the more general setting where an adversary chooses some se-
quence of k-tuples (it)

n
t=1 = (i1,t, . . . , ik,t)

n
t=1 before the start of plays. For this

setting we derive a regret bound of O(n
α+k
2α+k (log n)

α
2α+kH [(it)

n
t=1]C(k, d)) where

H [(it)
n
t=1] denotes the “hardness”

4 of the sequence (it)
n
t=1. Furthermore, in case

H [(it)
n
t=1] ≤ S for some S > 0 known to player, the regret bound then improves

to O(n
α+k
2α+k (logn)

α
2α+kS

α
2α+kC(k, d)).

The rest of the paper is organized as follows. In Section 2 we define the
problem statement formally and outline our main results. In Section 3 we present
an analysis for the setting when the active k coordinates are fixed across time,
including the construction of the discrete strategy sets. In Section 4 we consider
the setting where the active k coordinates change across time. Finally in Section
5 we summarize our results and provide directions for future work.

2 Problem Setup and Main Results

The compact set of strategies S = [0, 1]d ⊂ R
d is available to the player. At

each time step t = 1, . . . , n, a reward function rt : S → R is chosen by the
environment. Upon playing a strategy xt ∈ [0, 1]d, the player receives the reward
rt(xt) at time step t. For some k ≤ d, we assume each rt to depend on a fixed but
unknown subset of k variables implying rt(x1, . . . , xd) = gt(xi1 , . . . , xik) where
(i1, . . . , ik) is a k-tuple with distinct integers ij ∈ {1, . . . , d} and gt : [0, 1]

k → R.
For simplicity of notation, we denote the set of such k-tuples of the set {1, . . . , d}
by T d

k and the �2 norm by ‖ · ‖. We assume that k is known to the player, however
it suffices to know a bound for k as well. The second assumption that we make
is on the smoothness property of the reward functions.

Definition 1. A function f : [0, 1]k → R is locally uniformly Hölder continuous
with constant 0 ≤ L <∞, exponent 0 < α ≤ 1, and restriction δ > 0 if we have
for all u,u′ ∈ [0, 1]k with ‖ u− u′ ‖≤ δ that |f(u)− f(u′)| ≤ L ‖ u− u′ ‖α. We
denote the class of such functions f as C(α,L, δ, k).

The function class defined in Definition 1 was also considered in [14,10] and is
a generalization of Lipschitz continuity (obtained for α = 1). We now define the

3 See Remark 1 in Section 3 for discussion on how the log n term can be removed.
4 See Definition 3 in Section 4.

Continuum Armed Bandit Problem of Few Variables in High Dimensions 111

two models that we analyze in this paper. These models describe how the reward
functions gt are generated at each time step t.

Stochastic model. The reward functions gt are considered to be i.i.d samples from
some fixed but unknown probability distribution over functions g : [0, 1]k → R.
We define the expectation of the reward function as ḡ(u) = E[g(u)] where
u ∈ [0, 1]k. We require ḡ to belong to C(α,L, δ, k) and note that the individual
samples gt need not necessarily be Hölder continuous. The optimal strategy x∗

is then defined as follows.

x∗ := argmaxx∈[0,1]dE[r(x)] = argmaxx∈[0,1]d ḡ(xi1 , . . . , xik). (1)

Adversarial model. The reward functions gt : [0, 1]
k → [0, 1] are a fixed sequence

of functions in C(α,L, δ, k) chosen arbitrarily by an oblivious adversary i.e., an
adversary oblivious to the actions of the player. The optimal strategy x∗ is then
defined as follows.

x∗ := argmaxx∈[0,1]d

n∑
t=1

rt(x) = argmaxx∈[0,1]d

n∑
t=1

gt(xi1 , . . . , xik). (2)

Given the above models we measure the performance of a player over n rounds
in terms of the regret defined as

R(n) :=

n∑
t=1

E [rt(x
∗)− rt(xt)] =

n∑
t=1

E

[
gt(x

∗
i1 , . . . ,x

∗
ik)− gt(x

(t)
i1
, . . . ,x

(t)
ik
)
]
.

(3)
In (3) the expectation is defined over the random choices of gt for the stochastic
model and the random choice of the strategy xt at each time t by the player.

Main Results. The main results of our work are as follows. Firstly, assuming
that the k-tuple (i1, . . . , ik) ∈ T d

k is chosen once at the beginning of play and kept
fixed thereafter, we provide in the form of Theorem 1 a bound on the regret which

is O(n
α+k
2α+k (logn)

α
2α+kC(k, d)) where C(k, d) = O(poly(k)∗o(log d)). This bound

holds for both the stochastic and adversarial models and is almost optimal. To

see this, we note that [19] showed a precise exponential lower bound of Ω(n
d+1
d+2)

after n = Ω(2d) plays for stochastic continuum armed bandits with d-variate
Lipschitz continuous reward functions defined over [0, 1]d. In our setting though,
the reward functions depend on an unknown subset of k coordinate variables
hence any algorithm after n = Ω(2k) plays would incur worst case regret of

Ω(n
k+1
k+2) which is still mild if k " d. We see that our upper bound matches this

lower bound for the case of Lipschitz continuous reward functions (α = 1) up to

a mild factor of (log n)
1

2+kC(k, d). We also note that the o(log d) factor in (4)
accounts for the uncertainty in not knowing which k coordinates are active from
{1, . . . , d}.

112 H. Tyagi and B. Gärtner

Theorem 1. Given that the k-tuple (i1, . . . , ik) ∈ T d
k is kept fixed across time

but unknown to the player, the algorithm CAB(d,k) incurs a regret of

O
(
n

α+k
2α+k (logn)

α
2α+k k

α(k+6)
2(2α+k) e

kα
2α+k (log d)

α
2α+k

)
(4)

after n rounds of play with high probability for both the stochastic and adversarial
models.

The above result is proven in Section 3 along with a description of the CAB(d,k)
algorithm which achieves this bound. The main idea here is to discretize [0, 1]d

by first constructing a family of partitions A of {1, . . . , d} with each partition
consisting of k disjoint subsets. The construction is probabilistic and the re-
sulting A satisfies an important property (with high probability) namely the
Partition Assumption as described in Section 3. In particular we have that |A|
is O(kek log d) resulting in a total of Mk|A| sampling points for some integer
M > 0. This discrete strategy set is then used with a finite armed bandit algo-
rithm such as UCB-1 [9] for the stochastic setting and Exp3 [8] for the adversarial
setting, to achieve the regret bound of Theorem 1.

Secondly we extend our results to the setting where (i1, . . . , ik) can change
over time. Considering that an oblivious adversary chooses arbitrarily before
the start of plays a sequence of k tuples (it)

n
t=1 = (i1,t, . . . , ik,t)

n
t=1 of hard-

ness H [(it)
n
t=1] ≤ S (see Definition 3 in Section 4) with S > 0 known to

the player, we show how Algorithm CAB(d,k) can be adapted to this setting

to achieve a regret bound of O
(
n

α+k
2α+k (logn)

α
2α+kS

α
2α+kC(k, d)

)
. Hardness of

a sequence is defined as the number of adjacent elements with different val-
ues. In case the player has no knowledge of S, the regret bound then changes

to O(n
α+k
2α+k (logn)

α
2α+kH [(it)

n
t=1]C(k, d)). Although our bound becomes trivial

whenH [(it)
n
t=1] is close to n (as one would expect), we can still achieve sub-linear

regret when H [(it)
n
t=1] is small relative to n. We again consider a discretization of

the space [0, 1]d constructed using the family of partitions A mentioned earlier.
The difference lies in now using the Exp3.S algorithm [20] on the discrete strat-
egy set, which in contrast to the Exp3 algorithm is designed to control regret
against arbitrary sequences. This is described in Section 4.

3 Analysis When k Active Coordinates Are Fixed across
Time

We begin with the setting where the set of active k coordinates is fixed across
time. The very core of our analysis involves the usage of a specific family of
partitions A of {1, . . . , d} where each A ∈ A consists of k disjoint subsets
(A1, . . . , Ak). In particular we require A to satisfy an important property namely
the partition assumption defined below.

Definition 2. A family of partitions A of {1, . . . , d} into k disjoint subsets is
said to satisfy the partition assumption if for any k distinct integers i1, i2, . . . , ik ∈
{1, . . . , d}, there exists a partition A = (A1, . . . , Ak) in A such that each set in
A contains exactly one of i1, i2, . . . , ik.

Continuum Armed Bandit Problem of Few Variables in High Dimensions 113

The above definition is known as perfect hashing in theoretical computer science
and is widely used such as in finding juntas [21]. There exists a fairly simple
probabilistic method using which one can construct A consisting of O(kek log d)
partitions satisfying the partition assumption property with high probability (see
for example5, Section 5 in [12]). For our purposes, we consider the aforementioned
probabilistic construction. However, there also exist deterministic constructions
resulting in larger family sizes such as the one proposed in [22] where a family
of size O(kO(log k)ek log d) is constructed deterministically in time poly(d, k). For
details we refer the reader to the full version of this paper [23].

Constructing Strategy set PM Using A. Suppose we are given a family
of partitions A satisfying the partition assumption. Then using A we construct
the discrete set of strategies PM ∈ [0, 1]d for some fixed integerM > 0 as follows.

PM :=

⎧⎨
⎩ 1

M

k∑
j=1

αjχAj ;αj ∈ {1, . . . ,M} , (A1, . . . ,Ak) ∈ A

⎫⎬
⎭ ⊂ [0, 1]d (5)

Note that a strategy x = 1
M

∑k
j=1 αjχAj has coordinate value 1

Mαj at each of
the coordinate indices in Aj . Therefore we see that for each partition A ∈ A we
have Mk strategies implying a total of Mk|A| strategies in PM .

Algorithm 1. Algorithm CAB(d, k)

T = 1
Construct family of partitions A satisfying partition assumption
while T ≤ n do

M =

⌈(
k

α−3
2 e−

k
2 (log d)−

1
2

√
T

log T

)2/(2α+k)
⌉

– Create PM using A
– Initialize MAB with PM

for t = T, . . . ,min(2T − 1, n) do
– get xt from MAB
– Play xt and get rt(xt)
– Feed rt(xt) back to MAB

end for
T = 2T

end while

Projection Property. An important property of the strategy set PM is the
following. Given any k-tuple of distinct indices (i1, . . . , ik) with ij ∈ {1, . . . , d}
and any integers 1 ≤ n1, . . . , nk ≤M , there is a strategy x ∈ PM such that

(xi1 , . . . , xik) =
(n1

M
, . . . ,

nk

M

)
.

5 In [12] the authors consider the significantly different function approximation prob-
lem as opposed to our setting of online optimization.

114 H. Tyagi and B. Gärtner

To see this, one can simply take a partition A = (A1, . . . , Ak) from A such that
each ij is in a different set Aj for j = 1, . . . , k. Then setting appropriate αj = nj

when ij ∈ Aj we get that coordinate ij of x has the value nj/M .

Upper Bound on Regret. We now describe our Algorithm CAB(d,k) and
provide bounds on its regret. Note that the outer loop is a standard doubling
trick which is used as the player has no knowledge of the time horizon n. Observe
that before the start of the inner loop of duration T , the player constructs the
finite strategy set PM , where M increases progressively with T . Within the inner
loop, the problem reduces to a finite armed bandit problem. The MAB routine
can be any standard multi-armed bandit algorithm such as UCB-1 (stochastic
model) or Exp3 (adversarial model). The main idea is that for increasing values
of M , we would have for any x∗ and any (i1, . . . , ik) the existence of an arbitrar-
ily close point to (x∗

i1 , . . . , x
∗
ik
) in PM . This follows from the projection property

of PM . Coupled with the Hölder continuity of the reward functions this then
ensures that the MAB routine progressively plays strategies closer and closer
to x∗ leading to a bound on regret. The algorithm is motivated by the CAB1

algorithm [10], however unlike the equi-spaced sampling done in CAB1 we con-
sider a probabilistic construction of the discrete set of sampling points based on
partitions of {1, . . . , d}. Now for the stochastic setting, we make the following
assumption on the distribution from which the random samples g are generated.

Assumption 1. We assume that there exist constants ζ, s0 > 0 so that

E[es(g(u)−ḡ(u))] ≤ e
1
2 ζ

2s2 ∀s ∈ [−s0, s0],u ∈ [0, 1]k.

The above assumption was considered in [10] for the case d = 1 and allows us to
consider reward functions gt whose range is not bounded. Note that the mean
reward ḡ is assumed to be Hölder continuous and is therefore bounded. We now
present in the following lemma the regret bound incurred within an inner loop
of duration T .

Lemma 1. Given that (i1, . . . , ik) is fixed across time then if the strategy set
PM is used with (i) the UCB-1 algorithm for the stochastic setting or, (ii)
the Exp3 algorithm for the adversarial setting, we have for the choice M =⌈(

k
α−3
2 e−

k
2 (log d)−

1
2

√
T

log T

) 2
2α+k

⌉
that the regret incurred by the player after T

rounds is given by R(T) = O
(
T

α+k
2α+k (log T)

α
2α+k k

α(k+6)
2(2α+k) e

kα
2α+k (log d)

α
2α+k

)
.

Proof. For some x′ ∈ PM we can split R(T) into R1(T) +R2(T) where:

R1(T) =

T∑
t=1

E[gt(x
∗
i1 , . . . , x

∗
ik
)− gt(x

′
i1 , . . . , x

′
ik
)], (6)

R2(T) =

T∑
t=1

E[gt(x
′
i1 , . . . , x

′
ik
)− gt(x

(t)
i1
, . . . , x

(t)
ik
)]. (7)

Continuum Armed Bandit Problem of Few Variables in High Dimensions 115

For the k tuple (i1, . . . , ik) ∈ T d
k , there exists x′ ∈ PM with x′

i1
= α1

M , . . . , x′
ik

=
αk

M where α1, . . . , αk are such that |αj/M − x∗
ij
| < (1/M). This follows from

the projection property of A. On account of the Hölder continuity of reward
functions we then have that

E[gt(x
∗
i1 , . . . , x

∗
ik
)− gt(x

′
i1 , . . . , x

′
ik
)] < L

((
1

M

)2

k

)α/2

.

In other words, R1(T) = O(Tkα/2M−α). In order to bound R2(T), we note that
the problem has reduced to a |PM |-armed bandit problem. Specifically we note
from (7) that we are comparing against a suboptimal strategy x′ instead of the
optimal one in PM . Hence R2(T) can be bounded by using existing bounds for
finite-armed bandit problems. Now for the stochastic setting we can employ the
UCB-1 algorithm [9] and play at each t a strategy xt ∈ PM . In particular, on
account of Assumption 1, it can be shown that R2(T) = O(

√
|PM |T logT) (The-

orem 3.1, [10]). For the adversarial setting we can employ the Exp3 algorithm
[8] so that R2(T) = O(

√
|PM |T log |PM |). Combining the bounds for R1(T) and

R2(T) and recalling that |PM | = O(Mkkek log d) we obtain:

R(T) = O(TM−αkα/2 +
√
Mkkek log d T logT) (stochastic) and, (8)

R(T) = O(TM−αkα/2 +
√
Mkkek log d T log(Mkkek log d)). (adversarial) (9)

Plugging M =

⌈(
k

α−3
2 e−

k
2 (log d)−

1
2

√
T

log T

) 2
2α+k

⌉
in (8) and (9) we obtain the

stated bound on R(T) for the respective models. ��
Lastly equipped with the above bound we have that the regret incurred by
Algorithm 1 over n plays is given by:

i=logn∑
i=0,T=2i

R(T) = O
(
n

α+k
2α+k (logn)

α
2α+k k

α(k+6)
2(2α+k) e

kα
2α+k (log d)

α
2α+k

)
.

Remark 1. For the adversarial setting we can use the INF algorithm of [24] as
the MAB routine in our algorithm and get rid of the logn factor from the regret
bound. The same holds for the stochastic setting, if the range of the reward
functions was restricted to be [0, 1]. When the range of the reward functions is
R, as is the case in our setting, it seems possible to consider a variant of the
MOSS algorithm [24] along with Assumption 2 on the distribution of the reward
functions (using proof techniques similar to [25]), to remove the logn factor from
the regret bound.

4 Analysis When k Active Coordinates Change across
Time

We now consider a more general adversarial setting where the k tuple (i1, . . . , ik)
is allowed to change over time. Formally this means that the reward func-
tions (rt)

n
t=1 now have the form rt(x1, . . . , xd) = gt(xi1,t , . . . , xik,t

) where

116 H. Tyagi and B. Gärtner

(i1,t, . . . , ik,t)
n
t=1 denotes the sequence of k-tuples chosen by the adversary be-

fore the start of plays. However we assume that this sequence of k-tuples is not
“hard” meaning that it contains a small number of consecutive pairs (relative to
the number of rounds n) with different values. Furthermore, rt : [0, 1]

d → [0, 1]
with gt : [0, 1]k → [0, 1] where gt ∈ C(α, δ, L, k). We now formally present the
definition of hardness of a sequence.

Definition 3. For any set B we define the hardness of the sequence
(b1, . . . , bn) ∈ Bn by:

H [b1, . . . , bn] := 1 + |{1 ≤ l < n : bl �= bl+1}|. (10)

The above definition is borrowed from Section 8 in [20] where the authors con-
sidered the non-stochastic multi armed bandit problem, and employed the def-
inition to characterize the hardness of a sequence of actions against which the
regret of the players actions is measured. In our setting, we consider the se-
quence of k-tuples chosen by the adversary to be at most S-hard, meaning that
H [(i1,t, . . . , ik,t)

n
t=1] ≤ S for some S > 0, and also assume that S is known

to the player. We now proceed to show how a slight modification of Algo-
rithm CAB(d, k) can be used to derive a bound on the regret in this setting.
Recall that the optimal strategy x∗ := argmaxx∈[0,1]d

∑n
t=1 gt(xi1,t , . . . , xik,t

).
Since the sequence of k-tuples is S-hard, this in turn implies for any x∗ that
H [(x∗

i1,t
, . . . , x∗

ik,t
)nt=1] ≤ S. Therefore we can now consider this as a setting where

the players regret is measured against an S-hard sequence (x∗
i1,t

, . . . , x∗
ik,t

)nt=1.
Now the player does not know which k-tuple is chosen at each time t. Hence we

again construct the discrete strategy set PM (as defined in (5)) using the family
of partitions A of {1, . . . , d}. By construction, we will have for any x ∈ [0, 1]d and
any k-tuple (i1, . . . , ik), the existence of a point z in PM such that (zi1 , . . . , zik)
approximates (xi1 , . . . , xik) arbitrarily well for increasing values of M . Hence,
for the optimal sequence (x∗

i1,t
, . . . , x∗

ik,t
)nt=1, we have the existence of a sequence

of points (z(t))nt=1 where z(t) ∈ PM with the following two properties.

1. S-hardness. H [(z
(t)
i1,t

, . . . , z
(t)
ik,t

)nt=1] ≤ S. This follows easily from

the S-hardness of the sequence (x∗
i1,t

, . . . , x∗
ik,t

)nt=1 and by choosing

for each (x∗
i1,t , . . . , x

∗
ik,t

) a corresponding z(t) ∈ PM such that ‖
(x∗

i1,t
, . . . , x∗

ik,t
)− (z

(t)
i1,t

, . . . , z
(t)
ik,t

) ‖ is minimized.

2. Approximation property. ‖ (x∗
i1,t

, . . . , x∗
ik,t

)− (z
(t)
i1,t

, . . . , z
(t)
ik,t

) ‖=
O(kα/2M−α). This is easily verifiable via the projection property of
the set PM .

Therefore by employing the Exp3.S algorithm [20] on the strategy set PM we
reduce the problem to a finite armed adversarial bandit problem where the play-

ers regret measured against the S-hard sequence (z
(t)
i1,t

, . . . , z
(t)
ik,t

)nt=1 is bounded

from above. The approximation property of this sequence (as explained above)
coupled with the Hölder continuity of gt ensures in turn that the players regret
against the original sequence (x∗

i1,t , . . . , x
∗
ik,t

)nt=1 is also bounded. With this in

Continuum Armed Bandit Problem of Few Variables in High Dimensions 117

mind we present the following lemma, which formally states a bound on regret
after T rounds of play.

Lemma 2. Given the above setting and assuming that:

1. the sequence of k-tuples (i1,t, . . . , ik,t)
n
t=1 is at most S-hard and,

2. the Exp3.S algorithm is used along with the strategy set PM ,

we have for the choice M =

⌈(
k

α−3
2 e−

k
2 (S log d)−

1
2

√
T

log T

) 2
2α+k

⌉
that the regret

incurred by the player after T rounds is given by:

R(T) = O
(
T

α+k
2α+k (log T)

α
2α+k k

α(k+6)
2(2α+k) e

kα
2α+k (S log d)

α
2α+k

)
.

Proof. At each time t, for some z(t) ∈ PM we can split R(T) into R1(T)+R2(T)

where R1(T) = E[
∑T

t=1 gt(x
∗
i1,t , . . . , x

∗
ik,t

) − gt(z
(t)
i1,t

, . . . , z
(t)
ik,t

)] and R2(T) =

E[
∑T

t=1 gt(z
(t)
i1,t

, . . . , z
(t)
ik,t

)− gt(x
(t)
i1,t

, . . . , x
(t)
ik,t

)].

Let us consider R1(T) first. As before, from the projection property of A
we have for each (x∗

i1,t
, . . . , x∗

ik,t
), that there exists z(t) ∈ PM with z

(t)
i1,t

=

α
(t)
1

M , . . . , z
(t)
ik,t

=
α

(t)
k

M where α
(t)
1 , . . . , α

(t)
k are such that |α(t)

j /M − x∗
ij,t
| < (1/M)

holds for j = 1, . . . , k and each t = 1, . . . , n. Therefore from Hölder continuity
of gt we obtain R1(T) = O(Tkα/2M−α). It remains to bound R2(T). To this

end, note that the sequence (z
(t)
i1,t

, . . . , z
(t)
ik,t

)nt=1 with z(t) ∈ PM is at most S-hard.

Hence the problem has reduced to a |PM | armed adversarial bandit problem with
a S-hard optimal sequence of plays against which the regret of the player is to be
bounded. This is accomplished by using the Exp3.S algorithm of [20] which is de-
signed to control regret against any S-hard sequence of plays. In particular from
Corollary 8.3 of [20] we have that R2(T) = O(

√
S|PM |T log(|PM |T)). Combin-

ing the bounds for R1(T) and R2(T) and recalling that |PM | = O(Mkkek log d)
we obtain the following expression for R(T):

R(T) = O(Tkα/2M−α +
√
STMkkek log d log(TMkkek log d)). (11)

Lastly after plugging in the value M =

⌈(
k

α−3
2 e−

k
2 (S log d)−

1
2

√
T

log T

) 2
2α+k

⌉
in

(11), we obtain the stated bound on R(T). ��

By employing Algorithm 1 with MAB sub-routine being the Exp3.S algorithm,
we have that its regret over n plays is given by

i=log n∑
i=0,T=2i

R(T) = O
(
n

α+k
2α+k (logn)

α
2α+k k

α(k+6)
2(2α+k) e

kα
2α+k (S log d)

α
2α+k

)
.

118 H. Tyagi and B. Gärtner

Remark 2. In case the player does not know S, then a regret of

R(n) = O
(
n

α+k
2α+k (logn)

α
2α+k k

α(k+6)
2(2α+k) e

kα
2α+k (log d)

α
2α+kH [(it)

n
t=1]

)
would be incurred by Algorithm 1 with the MAB routine being the Exp3.S

algorithm and for the choice M =

⌈(
k

α−3
2 e−

k
2 (log d)−

1
2

√
T

log T

) 2
2α+k

⌉
. Here it is

shorthand notation for (i1,t, . . . , ik,t). This can be verified easily along the lines
of the proof of Lemma 2 by noting that on account of Corollary 8.2 of [20], we
have R2(T) = O(H [(it)

n
t=1]

√
|PM |T log(|PM |T)).

5 Concluding Remarks

In this work we considered continuum armed bandit problems for the stochastic
and adversarial settings where the reward function r : [0, 1]d → R depends at
each time step on only k out of the d coordinate variables. We proposed an
algorithm and proved regret bounds, both for the setting when the the active k
coordinates remain fixed across time and also for the more general scenario when
they can change over time. There are several interesting lines of future work.
Firstly for the case when (i1, . . . , ik) is fixed across time it would be interesting
to investigate whether the dependence of regret on k and dimension d achieved
by our algorithm, is optimal or not. Secondly, for the case when (i1, . . . , ik) can
also change with time, it would be interesting to derive lower bounds on regret to
know what the optimal dependence on the hardness of the sequence of k tuples is.

Acknowledgments. The authors thank Sebastian Stich for the helpful dis-
cussions and comments on the manuscript and Fabrizio Grandoni for making
us aware of deterministic constructions of perfect hash functions. The project
CG Learning acknowledges the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 255827.

References

1. Awerbuch, B., Kleinberg, R.: Near-optimal adaptive routing: Shortest paths and
geometric generalizations. In: Proceedings of ACM Symposium on Theory of Com-
puting (2004)

2. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Online oblivious routing. In:
Proceedings of ACM Symposium in Parallelism in Algorithms and Architectures,
pp. 44–49 (2003)

3. Monteleoni, C., Jaakkola, T.: Online learning of non-stationary sequences. In: Ad-
vances in Neural Information Processing Systems (2003)

4. Blum, A., Kumar, V., Rudra, A., Wu, F.: Online learning in online auctions.
In: Proceedings of 14th Symp. on Discrete Alg., pp. 202–204 (2003)

5. Kleinberg, R., Leighton, T.: The value of knowing a demand curve: Bounds on
regret for online posted-price auctions. In: Proceedings of Foundations of Computer
Science, pp. 594–605 (2003)

Continuum Armed Bandit Problem of Few Variables in High Dimensions 119

6. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocations rules. Pro-
ceedings of Adv. in Appl. Math. 6, 4–22 (1985)

7. Rothschild, M.: A two-armed bandit theory of market pricing. Journal of Economic
Theory 9, 185–202 (1974)

8. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:
The adversarial multi-armed bandit problem. In: Proceedings of 36th Annual Sym-
posium on Foundations of Computer Science, pp. 322–331 (1995)

9. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2-3), 235–256 (2002)

10. Kleinberg, R.: Nearly tight bounds for the continuum-armed bandit problem. In:
18th Advances in Neural Information Processing Systems (2004)

11. Abernethy, J., Hazan, E., Rakhlin, A.: Competing in the dark: An efficient algo-
rithm for bandit linear optimization. In: Proceedings of the 21st Annual Conference
on Learning Theory, COLT 2008 (2008)

12. DeVore, R., Petrova, G., Wojtaszczyk, P.: Approximation of functions of few vari-
ables in high dimensions. Constr. Approx. 33, 125–143 (2011)

13. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15, 1373–1396 (2003)

14. Agrawal, R.: The continuum-armed bandit problem. SIAM J. Control and Opti-
mization 33, 1926–1951 (1995)

15. Cope, E.W.: Regret and convergence bounds for a class of continuum-armed bandit
problems. IEEE Transactions on Automatic Control 54, 1243–1253 (2009)

16. Auer, P., Ortner, R., Szepesvari, C.: Improved rates for the stochastic continuum-
armed bandit problem. In: Proceedings of 20th Conference on Learning Theory
(COLT), pp. 454–468 (2007)

17. Kleinberg, R., Slivkins, A., Upfal, E.: Multi-armed bandits in metric spaces. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC
2008, pp. 681–690 (2008)

18. Bubeck, S., Munos, R., Stoltz, G., Szepesvari, C.: X-armed bandits. Journal of
Machine Learning Research (JMLR) 12, 1587–1627 (2011)

19. Bubeck, S., Stoltz, G., Yu, J.Y.: Lipschitz bandits without the Lipschitz constant.
In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS
(LNAI), vol. 6925, pp. 144–158. Springer, Heidelberg (2011)

20. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM J. Comput. 32(1), 48–77 (2003)

21. Mossel, E., O’Donnell, R., Servedio, R.: Learning juntas. In: Proceedings of
the thirty-fifth Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 206–212. ACM (2003)

22. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pp. 182–191 (1995)

23. Tyagi, H., Gärtner, B.: Continuum armed bandit problem of few variables in high
dimensions. CoRR, abs/1304.5793 (2013)

24. Audibert, J.-Y., Bubeck, S.: Regret bounds and minimax policies under partial
monitoring. Journal of Machine Learning Research 11, 2635–2686 (2010)

25. Kleinberg, R.D.: Online Decision Problems with Large Strategy Sets. PhD thesis.
MIT, Boston (2005)

Approximability of Connected Factors�

Kamiel Cornelissen1, Ruben Hoeksma1, Bodo Manthey1,
N.S. Narayanaswamy2, and C.S. Rahul2

1 University of Twente, Enschede, The Netherlands
{k.cornelissen,r.p.hoeksma,b.manthey}@utwente.nl
2 Indian Institute of Technology Madras, Chennai, India

{swamy,rahulcs}@cse.iitm.ac.in

Abstract. Finding a d-regular spanning subgraph (or d-factor) of a
graph is easy by Tutte’s reduction to the matching problem. By the
same reduction, it is easy to find a minimal or maximal d-factor of a
graph. However, if we require that the d-factor is connected, these prob-
lems become NP-hard – finding a minimal connected 2-factor is just the
traveling salesman problem (TSP).

Given a complete graph with edge weights that satisfy the triangle
inequality, we consider the problem of finding a minimal connected d-
factor. We give a 3-approximation for all d and improve this to an (r+1)-
approximation for even d, where r is the approximation ratio of the TSP.
This yields a 2.5-approximation for even d. The same algorithm yields
an (r + 1)-approximation for the directed version of the problem, where
r is the approximation ratio of the asymmetric TSP. We also show that
none of these minimization problems can be approximated better than
the corresponding TSP.

Finally, for the decision problem of deciding whether a given graph
contains a connected d-factor, we extend known hardness results.

1 Introduction

The traveling salesman problem (Min-TSP) is one of the basic combinatorial
optimization problems: given a complete graph G = (V,E) with edge weights
that satisfy the triangle inequality, the goal is to find a Hamiltonian cycle of
minimum total weight. Phrased differently, we are looking for a subgraph of G
of minimum weight that is 2-regular, connected, and spanning. While Min-TSP
is NP-hard [11, ND22], omitting the requirement that the subgraph must be
connected makes the problem polynomial-time solvable [18, 24]. In general, d-
regular, spanning subgraphs (also called d-factors) of minimum weight can be
found in polynomial time using Tutte’s reduction [18,24] to the matching prob-
lem. Cheah and Corneil [6] have shown that deciding whether a given graph
G = (V,E) has a d-regular connected spanning subgraph is NP-complete for
every d ≥ 2, where d = 2 is just the Hamiltonian cycle problem [11, GT37].
Thus, finding a connected d-factor of minimum weight is also NP-hard for all

� A full version with all proofs is available at http://arxiv.org/abs/1310.2387

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 120–131, 2014.
c© Springer International Publishing Switzerland 2014

http://arxiv.org/abs/1310.2387

Approximability of Connected Factors 121

d. While one might think at first glance that the problem cannot become easier
for larger d, finding (minimum-weight) connected d-factors is easy for d ≥ n/2,
where n = |V |, as in this case any d-factor is already connected. This poses the
question for which values of d (as a function of n) the problem becomes tractable.
In this paper, we analyze the complexity and approximability of the problem of
finding a d-factor of minimum weight.

1.1 Problem Definitions and Preliminaries

In the following, n is always the number of vertices. To which graph n refers will
be clear from the context.

All problems defined below deal with undirected graphs, unless stated oth-
erwise. For any d, d-RCS is the following decision problem: Given an arbitrary
undirected graph G, does G have a connected d-factor? Here, d can be a con-
stant, but also a function of the number n of vertices of the input graph G.
2-RCS is just the Hamiltonian cycle problem.

Just as Min-TSP is the optimization variant of 2-RCS, we consider the op-
timization variant of d-RCS, which we call Min-d-RCS: As an instance, we are
given an undirected complete graph G = (V,E) and non-negative edge weights
w that satisfy the triangle inequality, i.e., w({x, z}) ≤ w({x, y}) + w({y, z}) for
every x, y, z ∈ V . The goal of Min-d-RCS is to find a connected d-factor of G of
minimum weight. Min-2-RCS is just Min-TSP.

A bridge edge of a graph is an edge whose removal increases the number of
components of the graph. A graph G is called 2-edge connected if G is connected
and does not contain bridge edges. For even d, any connected d-factor is also
2-edge-connected, i.e., does not contain bridge edges. This is not true for odd
d. If we require 2-edge-connectedness also for odd d, we obtain the problem
Min-d-R2CS, which is defined as Min-d-RCS, but asks for a 2-edge-connected d-
factor. For consistency, Min-d-R2CS is also defined for even d, although it is then
exactly the same problem as Min-d-RCS.

Finally, we also consider the asymmetric variant of the problem: given a di-
rected complete graph G = (V,E), find a spanning connected subgraph of G that
is d-regular. Here, d-regular means that every vertex has indegree d and outde-
gree d. We denote the corresponding minimization problem by Min-d-ARCS.
Min-1-ARCS is just the asymmetric TSP (Min-ATSP).

Max-d-RCS and Max-d-ARCS are the maximization variants of Min-d-RCS and
Min-d-ARCS, respectively. For Max-d-RCS and Max-d-ARCS we do not require
that the edge weights satisfy the triangle inequality. In the same way as for
the minimization variants, Max-2-RCS is the maximum TSP (Max-TSP) and
Max-1-ARCS is the maximum ATSP (Max-ATSP).

If the graph and its edge weights are clear from the context, we abuse notation
by also denoting by d-RCS a minimum-weight connected d-factor, by d-R2CS a
minimum-weight 2-edge-connected d-factor, and by d-ARCS a minimum-weight
connected d-regular subgraph of a directed graph.

In the same way, let d-F denote a minimum-weight d-factor (no connectedness
required) of a graph and let d-AF denote a minimum-weight d-factor of a directed

122 K. Cornelissen et al.

graph. Let MST denote a minimum-weight spanning tree, and let TSP and ATSP
denote minimum-weight (asymmetric) TSP tours. We have 2-RCS = TSP and
1-ARCS = ATSP. Furthermore, 2-F is the undirected cycle cover problem and
1-AF is the directed cycle cover problem.

We note that d-factors do not exist for all combinations of d and n. If both
n and d are odd, then no n-vertex graph possesses a d-factor. For all other
combinations of n and d with d ≤ n− 1, there exist d-factors in n-vertex graphs,
at least in the complete graph.

In the following, Kn denotes the undirected complete graph on n vertices. A
vertex v of a graph G is called a cut vertex if removing v increases the number
of components of G.

1.2 Previous Results

Requiring connectedness in addition to some other combinatorial property has
already been studied for dominating sets [13] and vertex cover [8]. For problems
such as minimum s-t vertex separator, which are known to be solvable in poly-
nomial time, the connectedness condition makes it NP-hard, and recent results
have studied the parameterized complexity of finding a connected s-t vertex sep-
arator [19]. Also finding connected graphs with given degree sequences that are
allowed to be violated only slightly has been well-studied [5, 23].

As far as we are aware, so far only the maximization variant Max-d-RCS of
the connected factor problem has been considered for d ≥ 3. Baburin, Gimadi,
and Serdyukov proved that Max-d-RCS can be approximated within a factor of
1− 2

d·(d+1) [2,12]. A slightly better approximation ratio can be achieved if the edge

weights are required to satisfy the triangle inequality [3]. Baburin and Gimadi
also considered approximating both Max-d-RCS and Min-d-RCS (both without
triangle inequality) for random instances [3,4]. For d = 2, we inherit the approx-
imation results for Min-TSP of 3/2 [26, Section 2.4] and Max-TSP of 7/9 [20].
For d = 1, we inherit the O(log n/ log logn)-approximation for Min-ATSP [1] and
2/3 for Max-ATSP [14]. As far as we know, no further polynomial-time approx-
imation algorithms with worst-case guarantees are known for Min-d-RCS. Like
for Min-TSP [26, Section 2.4], the triangle inequality is crucial for approximat-
ing Min-d-RCS and Min-d-ARCS – otherwise, no polynomial-time approximation
algorithm is possible, unless P = NP. Baburin and Gimadi [2, 3] claimed that
Max-d-RCS is APX-hard because it generalizes Max-TSP. However, this is only
true if we consider d as part of the input, as then d = 2 corresponds to Max-TSP.

1.3 Our Results

Table 1 shows an overview of previous results and our results. Our main con-
tributions are a 3-approximation algorithm for Min-d-RCS for any d and a 2.5-
approximation algorithm for Min-d-RCS for even d (Section 3). The latter is
in fact an (r + 1)-approximation algorithm for Min-d-RCS, where r is the fac-
tor within which Min-TSP can be approximated. This result can be extended

Approximability of Connected Factors 123

Table 1. Overview of the complexity and approximability of finding (optimal) con-
nected d-factors. We left out that all optimization variants are polynomial-time solvable
for d ≥ n/2 and APX-hard according to Sections 4.1 and 4.2. Here, r is the approxi-
mation ratio of Min-TSP or Min-ATSP.

problem result reference

d-RCS in P for d ≥ n
2
− 1 trivial for d ≥ n/2, Section 5.2

NP-complete for constant d Cheah and Corneil [6]
and d of any growth rate up to O(n1−ε) Section 4.2

Min-d-RCS (r + 1)-approximation for even d Section 3.2
3-approximation for odd d Section 3.1
2-approximation for d ≥ n/3 Section 5.1
no better approximable than Min-TSP Section 4.1

Min-d-R2CS 3-approximation Section 3.1
no better approximable than Min-TSP Section 4.1

Min-d-ARCS (r + 1)-approximation Section 3.2
no better approximable than Min-ATSP Section 4.1

Max-d-RCS (1− 2
d·(d+1)

)-approximation Baburin and Gimadi [2]

Max-d-ARCS (1− 1
d·(d+1)

)-approximation Section 5.3

to Min-d-ARCS, where r is now the approximation ratio of Min-ATSP. Our ap-
proximation algorithms, in particular for the maximization variants, are in the
spirit of the classical approximation algorithm of Fisher et al. [10] for Max-TSP:
compute a non-connected structure, and then remove and add edges to make it
connected.

As lower bounds, we prove that Min-d-RCS and Min-d-ARCS cannot be ap-
proximated better than Min-TSP and Min-ATSP, respectively (Section 4). In
particular, this implies the APX-hardness of the problems.

We prove some structural properties of connected d-factors and their relation
to TSP, MST, and d-factors without connectedness requirement (Section 2).
Some of these properties are needed for the approximation algorithms and some
might be interesting in their own right or were initially counterintuitive to us.

Our algorithms work for all values of d, even when d is part of the input. The
hardness results are extended to the case where d grows with n. In Section 5, we
improve our approximation guarantee for d ≥ n/3, prove that (n2 − 1)-RCS ∈ P,
and generalize Baburin and Gimadi’s algorithm [2] to directed instances.

2 Structural Properties

In the following two lemmas, we make statements about the relationship between
the weights of optimal solutions of the different minimization problems. We call
an inequality A ≤ c · B tight if, for every ε > 0, replacing c by c − ε does not
yield a valid statement for all instances.

124 K. Cornelissen et al.

Lemma 2.1 (Undirected Comparison)

1. w(MST) ≤ w(d-RCS) ≤ w(d-R2CS) for all d and all undirected instances,
and this is tight.

2. w(d-F) ≤ w(d-RCS) for all d and all undirected instances, and this is tight.
3. w(d-R2CS) ≤ 3 · w(d-RCS) for all odd d and all undirected instances, and

this is tight for all odd d.
4. w(TSP) ≤ w(d-RCS) for all even d and all undirected instances, and this is

tight.
5. w(TSP) ≤ 2 · w(d-RCS) for all odd d and all undirected instances, and this

is tight for all odd d.
6. w(TSP) ≤ 4

3 · w(3-R2CS) for all undirected instances, and this is tight.
7. For all odd d, there are instances with w(TSP) ≥ (43 − o(1)) · w(d-R2CS).
8. w((d − 2)-F) ≤ d−2

d · w(d-F) and w((d − 2)-RCS) ≤ w(d-RCS) for all even
d ≥ 4 and all undirected instances, and both inequalities are tight.

9. Monotonicity does not hold for odd d: for every odd d ≥ 5, there exist in-
stances with w((d − 2)-RCS) ≥ d+2

d · w(d-RCS).

Lemma 2.2 (Directed Comparison)

1. w(d-AF) ≤ w(d-ARCS) for all d and all directed instances, and this is tight.
2. w(ATSP) ≤ w(d-ARCS) for all d and all directed instances, and this is tight.
3. w((d − 1)-AF) ≤ d−1

d · w(d-AF) and w((d − 1)-ARCS) ≤ w(d-ARCS) for all
d ≥ 2 and all directed instances, and both inequalities are tight.

3 Approximation Algorithms

3.1 3-Approximation for Min-d-RCS and Min-d-R2CS

The 3-approximation that we present in this section works for all d, odd or
even. It also works for d growing as a function of n. An interesting feature of
this algorithm, and possibly an indication that a better approximation ratio is
possible for Min-d-RCS, is that the same algorithm provides an approximation
ratio of 3 for both Min-d-RCS and Min-d-R2CS. In fact, we compute a 2-edge-
connected d-regular graph that weighs at most three times the weight of the
optimal connected d-regular graph.

First we make some preparatory observations on 2-edge-connectedness. Given
a connected graph G = (V,E), we can create a tree T (G) as follows: We have a
vertex for every maximal subgraph ofG that is 2-edge-connected (called a 2-edge-
connected component), and two such vertices are connected if the corresponding
components are connected in G. In this case, they are connected by a bridge
edge. Now consider a leaf of tree T (G) and its corresponding 2-edge-connected
component C. Since C is a leaf in T (G), it is only incident to a single bridge edge
e in G. Now assume that G is d-regular with d ≥ 3 odd (for d = 2, any connected
graph is also 2-edge-connected). Let u be the vertex of C that is incident to e.
Then u must be incident to d − 1 other vertices in C. Thus, C has at least d

Approximability of Connected Factors 125

input : undirected complete graph G = (V,E), edge weights w, d ≥ 2
output: 2-edge-connected d-factor R of G

1 compute a minimum-weight d-factor d-F of G;
2 k ← k(d-F)
3 Q ← {e1, . . . , ek} with ei = ei(d-F) = {ui, vi}
4 compute MST of G;
5 duplicate each edge of MST and take shortcuts to obtain a Hamiltonian cycle H
6 take shortcuts to obtain from H a Hamiltonian cycle H ′ through {u1, . . . , uk},

assume w.l.o.g. that H ′ traverses the vertices in the order u1, . . . , uk, u1

7 obtain R from d-F by adding the edges {ui, vi+1} (with k + 1 = 1) and
removing Q

Algorithm 1: 3-approximation for Min-d-RCS and Min-d-R2CS

vertices. Since the d − 1 neighbors of u are not incident to bridge edges, they
must be adjacent to other vertices in C. Since G is d-regular, C has at least d+1
vertices and more than d2/2 > d edges. Therefore, there exists an edge e′ in C
that is not incident to u, i.e., e′ does not share an endpoint with a bridge edge.

If G is not connected, we have exactly the same properties with “tree” replaced
by “forest”.

To simplify notation in the algorithm, let k = k(G) denote the number of
2-edge-connected components of G that are leaves in the forest described above,
and let L1(G), . . . , Lk(G) denote the 2-edge-connected components of a graph
G that correspond to leaves in the tree described above. For such an Li(G), let
ei(G) denote an edge that is not adjacent to a bridge edge in G. The choice of
ei(G) is arbitrary.

We prove that Algorithm 1 is a 3-approximation for both Min-d-RCS and
Min-d-R2CS by a series of lemmas. Since the set of vertices is fixed, we sometimes
identify graphs with their edge set. In particular, R denotes both the connected
d-factor that we compute and its edge set.

Lemma 3.1. Assume that R is computed as in Algorithm 1. Then R is a d-
regular spanning subgraph of G.

Lemma 3.2. Assume that R is computed as in Algorithm 1. Then R is 2-edge-
connected.

Lemma 3.3. Assume that R is computed as in Algorithm 1. Then w(R) ≤
3 · w(d-RCS) ≤ 3 · w(d-R2CS).

The following theorem is an immediate consequence of the lemmas above.

Theorem 3.4. For all d, Algorithm 1 is a polynomial-time 3-approximation for
Min-d-RCS and Min-d-R2CS. This includes the case that d is a function of n.

Remark 3.5. If we are only interested in a 3-approximation for Min-d-RCS and
not forMin-d-R2CS, then we can simplify Algorithm 1 a bit: we only pick one non-
bridge edge for each component and not for every 2-edge-connected component.

126 K. Cornelissen et al.

The rest of the algorithm and its analysis remain the same. However, this does
not seem to improve the worst-case approximation ratio.

Remark 3.6. The analysis is tight in the following sense: By Lemma 2.1(3), a
minimum-weight 2-edge-connected d-factor can be three times as heavy as a
minimum-weight connected d-factor. Thus, any algorithm that outputs a 2-
edge-connected d-factor cannot achieve an approximation ratio better than 3.
Furthermore, since w(MST) ≤ w(d-R2CS) and w(d-F) ≤ w(d-R2CS) are tight
(Lemma 2.1(1) and (2)), the analysis is essentially tight. If we only require con-
nectedness and not 2-edge-connectedness, we see that the analysis cannot be
improved since w(TSP) ≤ 2w(d-RCS) and w(d-F) ≤ w(d-RCS) are tight.

However, it is reasonable to assume that not all these inequalities can be tight
at the same time and, in addition, taking shortcuts in the duplicated MST to
obtain a TSP tour through u1, . . . , uk does not yield any improvement. Therefore,
it might be possible to improve the analysis and show that Algorithm 1 achieves
a better approximation ratio than 3.

Remark 3.7. Lines 4 and 5 of Algorithm 1 are in fact the double-tree heuristic
for Min-TSP [26, Section 2.4]. One might be tempted to construct a better tour
using Christofides’ algorithm [26, Section 2.4], which achieves a ratio of 3/2
instead of only 2. However, in the analysis we compare the optimal solution for
Min-d-RCS to the MST, and we know that w(MST) ≤ w(d-RCS) ≤ w(d-R2CS).
If we use Christofides’ algorithm directly, we have to compare a TSP tour to
the minimum-weight connected d-factor. In particular for odd d, we have that
for some instances w(TSP) ≥ (43 − o(1)) · w(d-R2CS) ≥ (43 − o(1)) · w(d-RCS)
(Lemma 2.1(7)). Even if this is the true bound – as it is for d = 3 (Lemma 2.1(6))
–, the TSP tour constructed contributes with a factor 3/2 times 4/3, which equals
2, to the approximation ratio, which is no improvement.

3.2 (r + 1)-Approximation

In this section, we give an (r+1)-approximation for Min-d-RCS for even values of
d and Min-d-ARCS for all values of d. Here, r is the ratio within which Min-TSP
(for Min-d-RCS) or Min-ATSP (for Min-d-ARCS) can be approximated. This
means that we currently have r = 3/2 for the symmetric case by Christofides’
algorithm [26, Section 2.4] and, for the asymmetric case, we have either r =
O(log n/ log logn) if we use the randomized algorithm by Asadpour et al. [1]
or r = 2

3 · log2 n if we use Feige and Singh’s deterministic algorithm [9]. Al-
though the algorithm is a simple modification of Algorithm 1, we summarize it
as Algorithm 2 for completeness.

Theorem 3.8. If Min-TSP can be approximated in polynomial time within a
factor of r, then Algorithm 2 is a polynomial-time (r + 1)-approximation for
Min-d-RCS for all even d.

If Min-ATSP can be approximated in polynomial time within a factor of r,
then Algorithm 2 is a polynomial-time (r + 1)-approximation for Min-d-ARCS
for all d.

The results still hold if d is part of the input.

Approximability of Connected Factors 127

input : undirected or directed complete graph G = (V,E), edge weights w, d
output: connected d-factor R of G

1 compute a minimum-weight d-factor C of G
2 let C1, . . . , Ck be the connected components of C, and let ei = (ui, vi) be any

edge of Ci

3 compute a TSP tour H using an approximation algorithm with ratio r
4 take shortcuts to obtain from H a TSP tour H ′ through {u1, . . . , uk}, assume

w.l.o.g. that H ′ traverses the vertices in the order u1, . . . , uk, u1

5 obtain R from C by adding the edges (ui, vi+1) (with k + 1 = 1) and removing
e1, . . . , ek

Algorithm 2: (r + 1)-approximation for Min-d-RCS for even d and
Min-d-ARCS

4 Hardness Results

4.1 TSP-Inapproximability

In this section, we prove that Min-d-RCS cannot be approximated better than
Min-TSP.

Theorem 4.1. For every d ≥ 2, if Min-d-RCS can be approximated in polyno-
mial time within a factor of r, then Min-TSP can be approximated in polynomial
time within a factor of r.

The same construction as in the proof of Theorem 4.1 yields the same result for
Min-d-R2CS. A similar construction yields the same result for Min-d-ARCS.

Corollary 4.2. For every d ≥ 2, if Min-d-R2CS can be approximated in polyno-
mial time within a factor of r, then Min-TSP can be approximated in polynomial
time within a factor of r.

Corollary 4.3. For every d ≥ 2, if Min-d-ARCS can be approximated in polyno-
mial time within a factor of r, then Min-ATSP can be approximated in polynomial
time within a factor of r.

Min-TSP, Min-ATSP, Max-TSP, and Max-ATSP are APX-hard [22]. Furthermore,
the reduction from Min-TSP to Min-d-RCS is in fact an L-reduction [21] (see also
Shmoys and Williamson [26, Section 16.2]). This proves the APX-hardness of
Min-d-RCS for all d. The reductions from Min-TSP to Min-d-R2CS and from
Min-ATSP to Min-d-ARCS work in the same way. Furthermore, by reducing
from Max-TSP and Max-ATSP in a similar way (here, the edges between the
copies of a vertex have high weight), we obtain APX-hardness for Max-d-RCS
and Max-d-ARCS as well.

Corollary 4.4. For every fixed d ≥ 2, the problems Min-d-RCS, Min-d-R2CS,
and Max-d-RCS are APX-complete. For every fixed d ≥ 1, Min-d-ARCS and
Max-d-ARCS are APX-complete.

128 K. Cornelissen et al.

4.2 Hardness for Growing d

In this section, we generalize the NP-hardness proof for d-RCS by Cheah and
Corneil [6] to the case that d grows with n. Furthermore, we extend Theorem 4.1
and Corollaries 4.2 and 4.3 and the APX-hardness of the minimization variants
(Corollary 4.4) to growing d. The APX-hardness of Max-d-RCS and Max-d-ARCS
does not transfer to growing d – both can be approximated within a factor of
1−O(1/d2), which is 1− o(1) for growing d.

Let us consider Cheah and Corneil’s [6, Section 3.2] reduction from 2-RCS,
i.e., the Hamiltonian cycle problem, to d-RCS. Crucial for their reduction is the
notion of the d-expansion of a vertex v, which is obtained as follows:

1. We construct a gadget Gd+1 by removing a matching of size �d2� − 1 from a
complete graph on d+ 1 vertices.

2. We connect each vertex whose degree has been decreased by one to v.

The reduction itself takes a graph G for which we want to test if G ∈ 2-RCS
and maps it to a graph Rd(G) as follows: For even d, Rd(G) is the graph
obtained by performing a d-expansion for every vertex of G. For odd d, the
graph Rd(G) is obtained by doing the following for each vertex v of G: add
vertices u1, u2, . . . , ud−2; connect v to u1, . . . , ud−2; perform a d-expansion on
u1, . . . , ud−2. We have G ∈ 2-RCS if and only if Rd(G) ∈ d-RCS.

We note that Rd(G) has (d+2) ·n vertices for even d and Θ(d2n) vertices for
odd d and can easily be constructed in polynomial time since d < n.

Theorem 4.5. For every fixed ε > 0, there is a function f = Θ(n1−ε) that
maps to even integers such that f -RCS is NP-hard.

For every fixed ε > 0, there is a function f = Θ(n
1
2−ε) that maps to odd

integers such that f -RCS is NP-hard.

In the same way as the NP-completeness, the inapproximability can be trans-
ferred. The reduction creates graphs of size (d + 1) · n. The construction is the
same as in Section 4.1, and the proof follows the line of the proof of Theorem 4.5.
Here, however, we do not have to distinguish between odd and even d for the
symmetric variant, as the reduction in Section 4.1 is the same for both cases.

Theorem 4.6. For every fixed ε > 0, there is a function f = Θ(n1−ε) such that
Min-f -RCS and Min-f -R2CS are APX-hard and cannot be approximated better
than Min-TSP.

For every fixed ε > 0, there is a function f = Θ(n1−ε) such that Min-f -ARCS
is APX-hard and cannot be approximated better than Min-ATSP.

5 Further Algorithms

5.1 2-Approximation for d ≥ n/3

If d ≥ n/3, then we easily get a better approximation algorithm for Min-d-R2CS
and Min-d-RCS. In this case, d-F consists either of a single component – then

Approximability of Connected Factors 129

we are done – or of two components C1 and C2 with Ci = (Vi, Ei). In the latter
case, we proceed as follows: first, find the lightest edge e = {u, v} with u ∈ V1

and v ∈ V2. Second, choose any edges {u, u′} ∈ E1 and {v, v′} ∈ E2. Third,
remove {u, u′} and {v, v′} and add {u, v} and {u′, v′}. The increase in weight is
at most 2 · w({u, v}) by the triangle inequality.

The resulting graph is clearly d-regular. It is connected since C1 and C2 are
2-edge-connected: they both consist of at most 2n

3 − 1 vertices and are d-regular
with d ≥ n/3. Thus, they are even Hamiltonian by Dirac’s theorem [25]. Further-
more, any connected d-regular graph must have at least two edges connecting
V1 and V2: If d is even, then this follows by 2-edge-connectedness. If d is odd,
then |V1| and |V2| are even and, thus, an even number of edges must leave either
of them. Thus, w({u, v}) ≤ 1

2 ·w(d-RCS). Since we add at most 2 ·w({u, v}) and
also have w(d-F) ≤ w(d-RCS), we obtain the following theorem.

Theorem 5.1. For d ≥ n/3, there is a polynomial-time 2-approximation for
Min-d-RCS.

5.2 Decision Problem for d = �n
2
� − 1

For d ≥ n/2, any d-factor is immediately connected and also the minimization
variant can be solved efficiently. In this section, we slightly extend this to the
case of d ≥ n

2 − 1.
We assume that the input graph G is connected. To show that the case d =

�n2 � − 1 is in P, we compute a d-factor. If none exists or we obtain a connected
d-factor, then we are done. Otherwise, we have a d-factor consisting of two
components C1 and C2 which are both cliques of size n/2. If G contains a cut
vertex, say, u ∈ C1, then this is the only vertex with neighbors in C2. In this case,
G does not contain a connected d-factor. If G does not contain a cut vertex, there
are two disjoint edges e = {u, v}, e′ = {u′, v′} with u, u′ ∈ C1 and v, v′ ∈ C2.
Adding e and e′ and removing {u, u′} and {v, v′} yields a connected d-factor.

Theorem 5.2. d-RCS is in P for every d with d ≥ n
2 − 1.

5.3 Approximating Max-d-ARCS

The approximation algorithm for Max-d-RCS [2] can easily be adapted to work
for Max-d-ARCS: We compute a directed d-factor of maximum weight. Any com-
ponent consists of at least d + 1 vertices, thus at least d · (d + 1) arcs. We
remove the lightest arc of every component and connect the resulting (still at
least weakly connected) components arbitrarily to obtain a connected d-factor.
Since we have removed at most a 1

d·(d+1)-fraction of the weight, we obtain the

following result.

Theorem 5.3. For every d, Max-d-ARCS can be approximated within a factor
of 1− 1

d·(d+1) .

130 K. Cornelissen et al.

6 Open Problems

An obvious open problem is to improve the approximation ratios. Apart from
this, let us mention two open problems: First, is it possible to achieve con-
stant factor approximations for minimum-weight k-edge-connected or k-vertex-
connected d-regular graphs? Without the regularity requirement, the problem
of computing minimum-weight k-edge-connected graphs can be approximated
within a factor of 2 [17] and the problem of computing minimum-weight k-
vertex-connected graphs can be approximated within a factor of 2 + 2 · k−1

n
for metric instances [15] and still within a factor of O(log k) if the instances
are not required to satisfy the triangle inequality [7]. We refer to Khuller and
Raghavachari [16] for a concise survey.

Second, we have seen that (�n2 � − 1)-RCS ∈ P, but we do not know if
Min-(�n2 � − 1)-RCS can be solved in polynomial time as well. In addition, we
conjecture that also (�n2 � − k)-RCS is in P for any constant k.

References

1. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman
problem. In: Proc. of the 21st Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 379–389. SIAM (2010)

2. Baburin, A.E., Gimadi, E.K.: Approximation algorithms for finding a maximum-
weight spanning connected subgraph with given vertex degrees. In: Operations
Research Proceedings 2004, pp. 343–351 (2005)

3. Baburin, A.E., Gimadi, E.K.: Polynomial algorithms for some hard problems of
finding connected spanning subgraphs of extreme total edge weight. In: Operations
Research Proceedings 2006, pp. 215–220 (2007)

4. Baburin, A.E., Gimadi, E.K.: An approximation algorithm for finding a d-regular
spanning connected subgraph of maximum weight in a complete graph with random
weights of edges. Journal of Applied and Industrial Mathematics 2(2), 155–166
(2008)

5. Chan, Y.H., Fung, W.S., Lau, L.C., Yung, C.K.: Degree bounded network design
with metric costs. SIAM Journal on Computing 40(4), 953–980 (2011)

6. Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete
Applied Mathematics 27(1-2), 59–68 (1990)

7. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the
minimum-cost k-vertex connected subgraph. SIAM Journal on Computing 32(4),
1050–1055 (2003)

8. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for
the connected vertex cover problem in graphs and hypergraphs. Journal of Discrete
Algorithms 8(1), 36–49 (2010)

9. Feige, U., Singh, M.: Improved approximation ratios for traveling salesper-
son tours and paths in directed graphs. In: Charikar, M., Jansen, K., Rein-
gold, O., Rolim, J.D.P. (eds.) APPROX and RANDOM 2007. LNCS, vol. 4627,
pp. 104–118. Springer, Heidelberg (2007)

10. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximation
for finding a maximum weight Hamiltonian cycle. Operations Research 27(4),
799–809 (1979)

Approximability of Connected Factors 131

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company (1979)

12. Gimadi, E.K., Serdyukov, A.I.: A problem of finding the maximal spanning con-
nected subgraph with given vertex degrees. In: Operations Research Proceedings
2000, pp. 55–59. Springer (2001)

13. Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner
trees and connected dominating sets. Information and Computation 150(1), 57–74
(1999)

14. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.I.: Approximation algo-
rithms for asymmetric TSP by decomposing directed regular multigraphs. Journal
of the ACM 52(4), 602–626 (2005)

15. Khuller, S., Raghavachari, B.: Improved approximation algorithms for uniform con-
nectivity problems. Journal of Algorithms 21(2), 434–450 (1996)

16. Khuller, S., Raghavachari, B.: Graph connectivity. In: Kao, M.Y. (ed.) Encyclope-
dia of Algorithms. Springer (2008)

17. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. Jour-
nal of the ACM 41(2), 214–235 (1994)

18. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland Mathematics Stud-
ies, vol. 121. Elsevier (1986)

19. Marx, D., O’sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Transactions on Algorithms 9(4), 30:1–30:35 (2013)

20. Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9 approximation algorithm for the max-
imum traveling salesman problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 298–311. Springer,
Heidelberg (2009)

21. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

22. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with dis-
tances one and two. Mathematics of Operations Research 18(1), 1–11 (1993)

23. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees
to within one of optimal. In: Proc. of the 39th Ann. Int. Symp. on Theory of
Computing (STOC), pp. 661–670. ACM (2007)

24. Tutte., W.T.: A short proof of the factor theorem for finite graphs. Canadian
Journal of Mathematics 6, 347–352 (1954),
http://dx.doi.org/10.4153/CJM-1954-033-3

25. West, D.B.: Introduction to Graph Theory. Prentice-Hall (2001)
26. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-

bridge University Press (2011)

http://dx.doi.org/10.4153/CJM-1954-033-3

Reordering Buffer Management with Advice

Anna Adamaszek1,, Marc P. Renault2, Adi Rosén3, and Rob van Stee4,

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
anna@mpi-inf.mpg.de

2 Université Paris Diderot - Paris 7 and UPMC, France
mrenault@liafa.univ-paris-diderot.fr

3 CNRS and Université Paris Diderot - Paris 7, France
adiro@liafa.univ-paris-diderot.fr

4 University of Leicester, Leicester, United Kingdom
rob.vanstee@le.ac.uk

Abstract. In the reordering buffer management problem, a sequence
of colored items arrives at a service station to be processed. Each color
change between two consecutively processed items generates cost. A re-
ordering buffer of capacity k items can be used to preprocess the input
sequence in order to decrease the number of color changes. The goal is
to find a scheduling strategy that, using the reordering buffer, minimizes
the number of color changes in the given sequence of items.

We consider the problem in the setting of online computation with
advice. In this model, the color of an item becomes known only at the
time when the item enters the reordering buffer. Additionally, together
with each item entering the buffer, we get a fixed number of advice bits,
which can be seen as information about the future or as information
about an optimal solution (or an approximation thereof) for the whole
input sequence. We show that for any ε > 0 there is a (1+ε)-competitive
algorithm for the problem which uses only a constant (depending on ε)
number of advice bits per input item.

Wecomplement the above result by presenting a lower bound ofΩ(logk)
bits of advice per request for an optimal deterministic algorithm.

1 Introduction

In the reordering buffer management problem, a sequence of colored items arrives
at a service station for processing. At any time, the service station is configured
to process items of a certain color c. Changing the configuration of the service
station, i.e., preparing the station to service items of a different color, generates
cost. The total cost of processing a sequence of items is equal to the number of
color changes in the sequence. In order to reduce the processing cost, the service
station is equipped with a reordering buffer that has capacity to hold k items.
At each point in time, the buffer contains the first k items of the input sequence

� Supported by the Alexander von Humboldt Foundation.
�� Work performed while the author was at the Max-Planck-Institut für Informatik,

Saarbrücken, Germany.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 132–143, 2014.
c© Springer International Publishing Switzerland 2014

Reordering Buffer Management with Advice 133

that have not yet been processed, and one arbitrary item has to be chosen to
be extracted from the buffer and processed by the service station. If the color
of the chosen item differs from the color of the previously processed item, the
configuration of the service station has to be changed, generating cost. The goal
is to find a scheduling strategy that, using the reordering buffer, preprocesses the
input sequence to minimize the number of color changes. In the online setting,
which is considered in this paper, the color of an item becomes known only at
the time when the item enters the reordering buffer, i.e., we do not know the
whole input sequence in advance.

This framework has many applications in various areas, such as production
engineering, storage systems, network optimization and computer graphics (see
[3,6,14,17,18] for more details). One simple example is a paint shop of a car
manufacturing plant, where switching colors between two consecutively painted
cars generates costs and delays due to the necessary cleaning and set-up. There-
fore, some paint shops are equipped with a reordering buffer to preprocess the
sequence of incoming cars (see [14]).

In this paper, we study the problem in the setting of online computation with
advice [11]. This setting has received much attention in recent years as it relaxes
the traditional online setting of no information about the future, and allows
the online algorithm to get some partial information about future requests or
about the structure of an optimal (or near-optimal) solution. It also allows one
to quantify the amount of information about the future available to the online
algorithm and to study the interplay between the amount of information and the
attainable competitive ratio. Informally (See Section 2 for a formal definition), in
this setting, the online algorithm receives with each request some b bits of advice
which are the value of a function, defined by the algorithm, of the whole input
sequence (including the future). In this manner the online algorithm receives
some information about the future. Note that we view the advice as given by an
oracle, i.e., we do not consider the issue if the advice can be computed efficiently
when knowing the whole input sequence.

Related work. The reordering buffer management problem has been introduced
by Räcke et al. [18], and has been extensively studied. In the online setting,
the best known results are a deterministic O(

√
log k)-competitive algorithm by

Adamaszek et al. [1], and a randomized O(log log k)-competitive algorithm by
Avigdor-Elgrabli and Rabani [5]. To complement this, there are (nearly) match-
ing lower bounds of Ω(

√
log k/log log k) and Ω(log log k) on the competitive

ratio of any online deterministic and randomized algorithms, respectively [1]. In
the offline setting, i.e., when the whole input sequence is known in advance, the
best known result is a constant factor approximation by Avigdor-Elgrabli and
Rabani [4], while the problem is known to be NP-hard [9,2].

More general versions of the problem have been studied, where the context
switching cost for switching from an item of color c to an item of color c′ depends
on c′ (e.g., [13,1]), or on both c and c′ [12].

The model of online computation with advice considered in the present paper
has been introduced by Emek et al. [11]. In that paper, the authors give tight

134 A. Adamaszek et al.

bounds of Θ(log n/b) on the competitive ratio of deterministic and randomized
online algorithms with advice for metrical task systems, where n is the number
of states of the system and b is the number of advice bits per request. They also
give a deterministic online algorithm with advice for the k-server problem which
is kO(1

b)-competitive, where Θ(1) ≤ b < log k. This has been first improved by

Böckenhauer et al. [7], and subsequently by Renault and Rosén [19] to
⌈
�log k�
b−2

⌉
.

Böckenhauer et al. [8] introduced a somewhat similar model for online algo-
rithms with advice, where the advice is a single tape of bits instead of being
given separately for each request. This allows an algorithm to read a different
number of bits of advice per request, but it also requires that the online algo-
rithm knows how many bits of advice to read with each request. Thus, the two
models are, in general, incomparable. Several results have been given in this re-
lated model [10,8,15,16,7]. For example, in [10,8], the authors explore the number
of bits of advice required for deterministic and randomized paging algorithms,
algorithms for the DiffServ problem, algorithms for a special case of the job shop
scheduling problem, and algorithms for the disjoint path allocation problem, to
be 1-competitive.

Our Contribution. We give an online algorithm with advice for the reordering
buffer management problem that, for any ε > 0, achieves a competitive ratio of
1 + ε, using only O(log(1/ε)) advice bits per request. For any input sequence,
we show how to construct the advice, based on an optimal solution for the given
sequence, which allows us to obtain a good competitive ratio. The overview of
the construction is as follows. The advice bits for each element of a color c encode
how the algorithm should handle all “adjacent” elements of color c, i.e., if the
algorithm should keep all elements of color c in the buffer until more items of
color c arrive, output them at once, or output them, but only after a certain
waiting period. The idea is that the order of the colors with the latter property
is not contained in the advice of single elements (as that would require too many
bits of advice), but it is encoded among all advice bits of the elements of the
given color. The key obstacle is that with a small number of advice bits per
item we cannot encode the exact order in which the colors should be output, in
particular when a small number of elements of some color has to wait for a long
time in the buffer. To deal with this problem, we modify the optimal solution
by selecting some elements which will be removed earlier from the buffer. That
frees additional space in the buffer, which allows us to keep some other elements
longer in the buffer, until one more item of their color arrives, after which we can
output these elements immediately. That significantly shortens the list of colors
which have to be output “soon, but not yet”. After this operation, we can encode
the desired position in the list for all but a small fraction of elements (which also
must be removed earlier from the buffer). We upper bound the increase in the
cost of the generated output sequence by charging the additional color changes
to the color changes of the optimal solution.

We complement the above result by showing that in order for an online algo-
rithm to have optimal performance, the number of bits of advice must depend

Reordering Buffer Management with Advice 135

on k. More precisely, Ω(log k) bits are required. This lower bound applies even
if all the advice bits are given to the algorithm before the sequence starts, and
it matches (up to a constant factor) the trivial upper bound, where the advice
indicates which color switch has to be performed at each step.

2 The Model

We use the definition of deterministic online algorithms with advice as presented
in [11]. An online algorithm is defined as a request-answer game that consists
of a request set R, a sequence of finite nonempty answer sets A1, A2, . . . , and
a sequence of cost functions costn : Rn × A1 × A2 × · · · × An → R

+ ∪ {∞} for
n = 1, 2, In addition, there is an advice space U of size 2b, where b ≥ 0
is the number of bits of advice provided to the algorithm with each request.
With each request, the online algorithm receives some advice that is defined by
a function, ui : R

∗ → U , where i is the request index, that is applied to the whole
request sequence R∗, including future requests. A deterministic online algorithm
with advice can, thus, be represented as a sequence of pairs (gi, ui), where gi is
the function defining the action of the online algorithm at step i and is defined
gi : R

i×U i → Ai for i = 1, 2, The action taken by the online algorithm after
receiving request ri is therefore a function of the first i requests, r1, . . . , ri, and
the advice received so far, u1(σ), . . . , ui(σ).

We use the standard definitions of competitive analysis. We say that an
algorithm is α-competitive if, for every finite request sequence σ, |alg(σ)| ≤
α · |opt(σ)| + ζ, where ζ is a constant which does not depend on the request
sequence σ, |alg(σ)| denotes the cost of the solution generated by alg for σ,
and |opt(σ)| is the cost of an optimal solution for σ.

3 Structure of Advice and the Algorithm

The advice for each input element e consists of two parts: the type te and the
value ve. The type of an element e describes how e, or rather a whole collec-
tion of elements of the same color as e, should be handled by the algorithm
alg, i.e., if alg should keep them in the buffer until more elements of the same
color arrive, if alg should output them at once, or output them, but only af-
ter a certain waiting period. There are four possible types of an element, i.e.,
te ∈ {wait, list,ready,complete}. The value ve of an element e is used to
encode an order, according to which some input elements will be output. For
each element e we have ve ∈ {0, . . . , D − 1}, where D is a constant depending
on ε and will be fixed later.

The advice sequence will be constructed based on an optimal solution opt

for the input sequence.

Time. In this paper, we use the following notion of time. In each time step
1, . . . , n, one element arrives and is stored in the buffer. In each time step
k, . . . , k + n − 1, one element is removed from the buffer, after the element
which arrives at that time (if any) has been stored.

136 A. Adamaszek et al.

Color Blocks. The elements which have the same color are partitioned into
color blocks. A complete color block is a maximal set of elements of one color
ending with an element of type complete, and containing no other elements of
type complete. The advice sequence will be constructed in such a way that the
types of the consecutive elements from one complete color block always form an
expression

(wait)∗ ((list)∗ ∪ (ready)∗)complete,

i.e., first there is an arbitrary number (possibly zero) of elements of type wait,
then an arbitrary number of elements of type list or an arbitrary number of
type ready, and at the end exactly one element of type complete.

At a time t, a color block is that part of a complete color block which is
contained in the buffer (some elements of the complete color block may have
been already served, and some may not have been read yet). The notion of a
color block here differs from the standard definition of a color block for the
reordering buffer management problem, where it denoted the set of all elements
of one color contained in the buffer, which were then output consecutively from
the buffer. We now can have more than one color block of the same color in the
buffer. The advice sequence will be constructed in such a way, that the algorithm
alg will always output all elements of each complete color block consecutively.

We define the type tB of a color block B in the following way. If there is an
element of type complete in B, then the type of B is complete. If all the
elements of B have type wait, B has type wait. Otherwise, the type of B is
list or ready, depending on whether B contains elements of type list or of
type ready.

The values ve of all elements of a color block B together encode a value of a
color block vB ∈ {0, . . . , D|B| − 1}. The value of a color block will be encoded
only for color blocks containing elements of type list, and it will define the order
in which these color blocks will be output by the algorithm alg.

Waiting List. The algorithm alg maintains a waiting list of color blocks of
type list. This list contains only (a subset of) those color blocks that have the
property that some elements of their color are read into the buffer of opt while
opt is serving it. At the beginning of the algorithm, the waiting list is empty.
Whenever a color block B of type list appears (i.e. the first element of type
list for some color block is read from the input), it is inserted into the waiting
list. The initial position of the block on the waiting list, i.e., the position where
the block is inserted, is defined by the value vB of the block. Value 0 denotes the
head of the list. Note that when a new color block is inserted into the waiting
list, the position of other blocks on the list can change.

The value vB of each color block is read from the advice of its elements.
However, some short color blocks may not contain sufficiently many elements to
encode their required position vB. We will check for this case and ensure that
such blocks are never stored in the waiting list. Instead, we serve parts of them
immediately and keep only part in the buffer.

Reordering Buffer Management with Advice 137

The Algorithm. Starting at time k, the algorithm alg chooses a color block
to be output in the following way.

1. If alg has a complete color block in the buffer, it chooses the oldest of them
(i.e., the block which first became complete is chosen).

2. Otherwise, if alg has a color block of type ready in the buffer, it chooses
the oldest of them (i.e., the block which first obtained type ready is chosen).

3. Otherwise alg chooses a color block of type list which is at the head of the
waiting list. The color block is then removed from the waiting list.

The algorithm then outputs consecutively all elements of the chosen color block,
one element at each time step. Notice that when alg starts outputting a color
block, possibly some elements of the block have not yet been read from the input.
When alg gets such elements from the input sequence, it appends them to the
color block and outputs them without making any color change.

The complete construction of the advice sequence is given in Section 4. In
Section 5 we show that the construction of the advice sequence guarantees that
alg can always choose a color block to be output (i.e., there is always a block
of type complete, ready or list in the buffer of alg), and that alg can
always output all elements of a complete color block without any color change in
between (Theorem 1). That means in particular that the cost of the algorithm
is upper bounded by the number of color blocks in the advice sequence.

4 Constructing the Advice Sequence

Overview. The advice sequence Aε(σ) is constructed offline, based on an opti-
mal solution opt for the instance σ of the reordering buffer management prob-
lem. The idea of the construction is as follows. We initially assign each input
element e type te based on the way opt handles e. Let c be the color of e. If
opt makes a color change right after outputting e, e is assigned type complete.
Otherwise, if the whole color block containing e is kept in the buffer of opt until
the next element of color c is read from the input sequence, e gets type wait.
Otherwise, e gets type list. This ensures the following invariant.

Invariant 1. For each color block, its elements are output by opt in a single
block (i.e., without making a color change).

For each color block B which contains elements of type list, we want to assign
a value vB , which is the initial position of the block on the waiting list. The
blocks in the waiting list are ordered according to the order in which they are
output by opt. For each color block, if the advice included the exact position of
the block in the waiting list based on the output sequence of opt, the algorithm
alg would output an optimal solution. However, for some short color blocks,
we cannot encode their position on the waiting list. To deal with this problem,
we will modify the advice data so as to decrease the number of blocks which
are in the waiting list at any time. This modification increases the number of

138 A. Adamaszek et al.

c r r r r cwwww
removed
from buffer

removed
from list

wwww � � � � � c

wwwww r r r r c

removed from list

wwww � � � � � c

Fig. 1. The procedures Split(B) (on the left) and Postpone(B) (on the right). None of
the resulting blocks remain on the waiting list. The letters w, l, r, c are used to denote
elements of types wait, list,ready and complete, respectively. The frames represent
color blocks.

color blocks (i.e., the cost of alg becomes larger than the cost of opt), and
introduces elements of type ready. Blocks containing elements of type ready

are not inserted into the waiting list. We now give an overview of the procedures
used to modify the advice data.

Procedure Remove(B) Remove the block B from the waiting list. For each block
B′ that was inserted into the waiting list at a time later than B, and at a position
(in the list) behind B, decrease vB′ by one.

Procedure Split(B) Run Remove(B). Reassign type complete to the first ele-
ment of block B which had type list, and reassign type ready to the remaining
elements of B which had type list assigned (see Figure 1, left). Note that pos-
sibly some of these elements have not been read from the input yet.

The block B has been split into two blocks, both ending with an element
of type complete. The elements of the first block (called the early block) are
removed from the buffer. The second block is called a late block. This block is
kept in the buffer (but not on the waiting list).

Procedure Postpone(B) Run Remove(B). Reassign typewait to the first element
of B which originally had type list assigned, and reassign type ready to the
remaining elements of B which had type list assigned (see Figure 1, right).
Possibly some of these elements have not been read from the input yet. Blocks
processed in this way are called postponed blocks.

The procedure Split(B) makes alg evict the elements from the first block
of B (i.e., the early block) earlier than they were evicted by opt, generating
free space in the buffer of alg. This allows some blocks to stay in the buffer
until the next element of the block is read from the input, and only then to be
output by alg. These are the blocks for which we run procedure Postpone(B).
We will specify later which blocks will be treated in this way. A block B that is
removed from the waiting list by these procedures will never be inserted into the
waiting list of alg. This is the reason we update the values vB′ of other blocks
on the waiting list when applying procedure Remove(B). We have the following
observation.

Reordering Buffer Management with Advice 139

Observation 1. The procedures Split(B) and Postpone(B) maintain
Invariant 1.

We are now ready to describe the details of the construction of the advice se-
quence Aε(σ). The input elements from the sequence σ are processed one by one,
using a buffer of size k (which we call an advice buffer) and a waiting list. Notice
that at this point we are only creating an advice sequence, that is, assigning type
te and value ve for each input element e, and not creating an output sequence.
In particular, “removing elements from the buffer” does not mean “appending
elements to the output sequence”.

Processing an Input Element. Whenever there is empty space in the buffer,
we read the next element e from the input sequence σ. We proceed as follows.
First, we assign the initial type of the element e as described above, based on
the way opt handles e. Then, if e is the first element in its block which is of
type list, i.e., its color block changes type to list, we insert the color block of
e at the appropriate position, based on the optimal output sequence opt, into
the waiting list. After this operation, if the waiting list has too many blocks of
length similar to the one added, we remove all such blocks from the waiting list by
applying procedure Split(B) to some of the blocks, and procedure Postpone(B)
to the remaining blocks of the given length. We use the following definition.

Definition 1. The class of a block B on the waiting list is �log |B|�, where |B|
is the number of items of this block up to and including the first element of type
list.

We now give the detailed description of actions performed for a newly read
element e of color c. Here C is another constant which will depend on ε.

1. (Type assignment) We assign the element e type te based on the way opt

handles e (see Figure 2).

(a) If opt makes a color change right after outputting e, e is assigned type
complete.

(b) Else, if e has already been assigned type ready due to some previous
Split or Postpone operation (i.e., before e has been read into the buffer),
it keeps the type ready.

(c) Else, if the whole color block containing e is kept in the buffer of opt
until the next element element of color c is read from the input sequence,
e gets type wait.

(d) Else, e gets type list.

Note that the type of the element e can be modified later by applying pro-
cedure Split(B) or Postpone(B) to the color block B of e.

2. (Insertion into the waiting list) If e is the first element of its color block of
type list, insert the color block B of e into the waiting list at position vB
(derived from the solution opt). Let i be the class of block B. Count the
number ni of color blocks of class i which are currently in the waiting list.

140 A. Adamaszek et al.

COMPLETE

e

e

LIST will enter the buffer
after OPT serves e0

e0 e0e

WAIT will enter the buffer
before OPT serves e0

Fig. 2. Possible initial types of elements (excluding the special case of ready). The
type list indicates that opt starts serving this color block before all elements have
been read into the buffer; the remaining elements enter the buffer while the color block
is being served (and while other elements of the color block are being removed).

If ni = C, let B1 and B2 be the two last color blocks of class i in the waiting
list. Run Split(B1) and Split(B2). For each other block B0 of class i on the
waiting list, run Postpone(B0). By performing these operations, we ensure
that alg will never insert these C blocks into the waiting list.

Note that in step 2 some blocks may be split, with the resulting early blocks
being removed from the buffer.

Whenever the advice buffer becomes full, and there are no elements of the
current color block in the buffer, we choose a new color block B to be processed
(i.e., removed from the buffer), according to the rules of alg. The following
lemma shows that the rules of alg can always be successfully applied.

Lemma 1. While creating the advice sequence, if blocks are removed from the
buffer, according to the rules of alg and Step 2 above, then starting from time
k there is always an element of type different than wait in the buffer.

Let B be the color block chosen from the full advice buffer according to the rules
of alg. If B is not on the waiting list, we simply remove it from the buffer. If B
is on the waiting list, we have to consider two cases.

1. The value vB is smaller than D|B|, i.e., it can be encoded using |B| values
ve of the elements of the block. We set appropriately the values ve, and we
remove B from the buffer and from the waiting list. (Note that this time we
do not apply the procedure Remove(B), i.e., we do not modify any values
vB′ of blocks B′.)

Only blocks processed in this way will ever be inserted by alg into the
waiting list.

2. The value vB is at least D|B|. Run Split(B). In this case, only the early block
obtained from B is removed from the buffer.

Notice that, as above, in determining the length of B in Step 1, we count only
the elements up to and including the first element of type list. The reason is
that these are the only elements of B that have been inserted into the buffer
before B has to be inserted into the waiting list, i.e., before the value of B has
to be computed.

Reordering Buffer Management with Advice 141

Note also that the initial value of vB might decrease (due to calls to the
procedure Remove when B is already in the waiting list) before B is processed
by alg. Specifically, it does not matter if vB was initially too high, as long as it
drops below D|B| before the block is chosen to be processed.

5 Analysis of ALG

Lemma 1 leaves open the possibility that alg may be able to serve only part of
a block. This could happen if not all elements of the (complete) block enter the
buffer while alg is serving its color. In such a case, alg would have to return to
this color several times, and its cost would be higher than the number of color
blocks given by the advice sequence Aε(σ). At the beginning of this section, we
will show that this does not happen, and alg always outputs complete color
blocks. Then, we will bound the competitive ratio of alg.

First, we present two technical lemmas.

Lemma 2. In the advice sequence Aε(σ), types of the consecutive elements from
one complete color block always form an expression

(wait)∗ ((list)∗ ∪ (ready)∗)complete.

Lemma 3. Let c1, . . . , c� be a collection of consecutive elements of color c, out-
put by opt with no color change in between, and let t be the time when opt

outputs the first element c1 of the collection. If alg outputs c1 at some time
t′ ≥ t, and it has not output any ci before time t′, it can output all elements
c1, . . . , c� with no color change in between.

We can now consider all types of blocks which alg starts outputting before they
become complete, and show that opt cannot keep the elements of such blocks
longer in the buffer. Applying Lemma 3 gives us the following results.

Lemma 4. When the algorithm alg starts outputting a color block, it can finish
it with no color changes.

Theorem 1. The algorithm alg always finds a color block to be output, and
outputs only complete color blocks.

In the remaining part of this section, we will bound the competitive ratio of
alg, if alg uses the advice sequence Aε(σ). For this, we will need an upper
bound on the cost of alg, as well as a lower bound on the cost of opt. From
the construction of the advice sequence, we know the following.

Observation 2. The cost of alg is upper bounded by the number of color blocks
given by the advice sequence Aε(σ).

Observation 3. The cost of opt is lower bounded by the number of color blocks
other than the late blocks given by the advice sequence Aε(σ).

142 A. Adamaszek et al.

To bound the competitive ratio, it is enough to bound the number of late color
blocks in Aε(σ), compared to the number of color blocks of other types. Late
blocks can be generated in two ways: while inserting new elements into the
waiting list, and while processing a color block at the head of the waiting list.
We call the sets of late blocks generated during these two operations by lateI

and lateP , respectively.

Lemma 5. We have |lateI | ≤ 2
C (|postponed|+ |early|), where postponed

and early denote the sets of postponed and early blocks for Aε(σ).

Lemma 6. We have |lateP | ≤ C
D−1 |listed|, where listed denotes the set of

color blocks which contain elements of type list.

Combining the two Lemmas above and setting C = �2/ε� and D = �C/ε� + 1
gives us the main theorem of the paper.

Theorem 2. For any ε > 0, there is a (1 + ε)-competitive algorithm for the
reordering buffer management problem which uses only O(log(1/ε)) advice bits
per input item.

6 Optimality Lower Bound

In this section, we show that a deterministic algorithm requires Ω(log k) bits of
advice per request in order to be optimal. Throughout this section, we assume
without loss of generality that an algorithm will only perform a color switch
when there are no more items of the current color in the buffer, and the buffer
is either full or contains the last request. Let k be the size of the buffer, and let

σ =
〈
c1, c2 . . . , ck, π1(1), ck+1, π1(2), ck+2 . . . , π1(k), c2k, π2(1), π2(2), . . . , π2(k)

〉
,

where π1 is a permutation of the colors c1, . . . , ck, and π2 is a permutation of
the colors ck+1, . . . , c2k. Note that |σ| = 4k.

As long as the buffer of an optimal algorithm remains full, the algorithm must
switch to the color ci when the next element waiting to enter the buffer has color
ci. In particular, the first k consecutive colors output by the algorithm must be
π1(1), . . . , π1(k). More formally,

Lemma 7. Given σ, let S be the sequence of colors π1(1), . . . , π1(k). Let C be
the set of all the possible optimal sequences of color switches for σ. The k-prefix
of all the sequences in C is S.

Using Lemma 7, we can prove the main theorem of this section.

Theorem 3. At least log k
8 bits of advice per request are required for a determin-

istic algorithm with advice to be optimal.

Reordering Buffer Management with Advice 143

References

1. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Almost tight bounds for
reordering buffer management. In: Fortnow, L., Vadhan, S.P. (eds.) STOC,
pp. 607–616. ACM (2011)

2. Asahiro, Y., Kawahara, K., Miyano, E.: NP-hardness of the sorting buffer problem
on the uniform metric. Discrete Applied Mathematics 160(10-11), 1453–1464 (2012)

3. Avigdor-Elgrabli, N., Rabani, Y.: An improved competitive algorithm for reorder-
ing buffer management. In: Charikar, M. (ed.) SODA, pp. 13–21. SIAM (2010)

4. Avigdor-Elgrabli, N., Rabani, Y.: A constant factor approximation algorithm for
reordering buffer management. In: Khanna, S. (ed.) SODA, pp. 973–984. SIAM
(2013)

5. Avigdor-Elgrabli, N., Rabani, Y.: An optimal randomized online algorithm for
reordering buffer management. CoRR abs/1303.3386 (2013)

6. Blandford, D.K., Blelloch, G.E.: Index compression through document reordering.
In: DCC, pp. 342–351. IEEE Computer Society (2002)

7. Böckenhauer, H.J., Komm, D., Královic, R., Královic, R.: On the advice complexity
of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

8. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

9. Chan, H.-L., Megow, N., Sitters, R., Stee, R.v.: A note on sorting buffers offline.
Theor. Comput. Sci. 423, 11–18 (2012)

10. Dobrev, S., Královič, R., Pardubská, D.: How much information about the fu-
ture is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 412(24), 2642–2656 (2011)

12. Englert, M., Räcke, H., Westermann, M.: Reordering buffers for general metric
spaces. Theory of Computing 6(1), 27–46 (2010)

13. Englert, M., Westermann, M.: Reordering buffer management for non-uniform cost
models. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 627–638. Springer, Heidelberg (2005)

14. Gutenschwager, K., Spiekermann, S., Voß, S.: A sequential ordering problem in
automotive paint shops. Internat. J. Production Research 42(9), 1865–1878 (2004)

15. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

16. Komm, D., Královic, R.: Advice complexity and barely random algorithms. RAIRO
- Theor. Inf. and Applic. 45(2), 249–267 (2011)

17. Krokowski, J., Räcke, H., Sohler, C., Westermann, M.: Reducing state changes
with a pipeline buffer. In: Girod, B., Magnor, M.A., Seidel, H.P. (eds.) VMV,
p. 217. Aka GmbH (2004)

18. Räcke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers. In:
Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 820–832. Springer,
Heidelberg (2002)

19. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server prob-
lem. Theory of Computing Systems, 1–19 (2012)

Online Knapsack Revisited�

Marek Cygan1 and Łukasz Jeż2

1 Institute of Informatics, University of Warsaw, Poland
cygan@mimuw.edu.pl

2 Inst. of Computer Science, University of Wrocław (PL),
and Dept. of Computer, Control, and Management Engineering,

Sapienza University of Rome (IT)
lje@cs.uni.wroc.pl

Abstract. We investigate the online variant of the Multiple Knapsack
problem: an algorithm is to pack items, of arbitrary sizes and profits, in
k knapsacks (bins) without exceeding the capacity of any bin. We study
two objective functions: the sum and the maximum of profits over all
bins. Both have been studied before in restricted variants of our prob-
lem: the sum in Dual Bin Packing [1], and the maximum in Removable
Knapsack [7,8]. Following these, we study two variants, depending on
whether the algorithm is allowed to remove (forever) items from its bins
or not, and two special cases where the profit of an item is a function of
its size, in addition to the general setting.

We study both deterministic and randomized algorithms; for the lat-
ter, we consider both the oblivious and the adaptive adversary model.
We classify each variant as either admitting O(1)-competitive algorithms
or not. We develop simple O(1)-competitive algorithms for some cases
of the max-objective variant believed to be infeasible because only 1-bin
deterministic algorithms were considered for them before.

1 Introduction

Knapsack Problems form a fundamental class of problems in computer science,
and entire books [13,10] are dedicated to them. We focus on an online variant of
the Multiple Knapsack problem, in which k knapsacks (bins) of integer capacities
Ci and a set of items of arbitrary integer sizes and profits are given, and the
goal is to find k disjoint subsets of items, one per bin, that fit in their bins such
that the total profit of all k sets is maximized.

In the online variant that we study, we relax the assumption that all numbers
are integers, and allow real numbers instead. On the other hand, we restrict
the problem significantly by assuming that all bins have the same capacity. This
assumption is motivated by the fact that without any restrictions of this kind, we
would have to take into account instances where all but one bin have capacities
so small that the can accommodate no item. Clearly, such instances are at least
as hard as those with only a single bin, for which there are many impossibility
� Most of this work was carried out while authors were at IDSIA, University of Lugano.

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 144–155, 2014.
c© Springer International Publishing Switzerland 2014

Online Knapsack Revisited 145

results. With all bins having the same capacity, we normalize it and the item
sizes so that the capacity of each bin is 1.

The online algorithm is given the items one after another, at which time it
learns the item’s size and profit. When an item is presented, the algorithm is
required to immediately accept or reject it. In the former cases, it also has to
choose a bin to put the item into. The algorithm is not allowed to move the
items between the bins at any time but it is allowed to remove any item from
any bin at any time in the removable variant. An item removed from a bin is
treated as if it was never placed there, i.e., it cannot be brought back to the bin.
In the non-removable variant, an algorithm is not allowed to remove items from
bins: once put in a bin, an item remains there forever.

In both variants, we consider two objective functions: the sum and the maxi-
mum profit over all bins, denoted sum-objective and max-objective respectively;
the profit of the bin is the sum of profit of all items currently in it. Note that both
objective functions coincide for k = 1; in such case we do not state which one we
are considering. Moreover, we remark that under the max-objective increasing k
cannot increase the competitive ratio, cf. Section 2.1.

The study of online variants of the knapsack problem is motivated by the
richness of its applications and the need of efficiently solving very large instances,
for which data may only be accessible at bunches from external storage [12]. Thus
the potential for improving the competitive ratio at little computational cost by
removals, randomization or additional bins motivates their study.

We investigate general instances and, following existing literature, some re-
stricted classes. When each item in the instance has profit equal to its size, we
call the instance or case proportional; in previous studies such instances have
been called either uniform or unweighted [7,8]. When each item in the instance
has the same profit, irrespective of the size, we call the instance or case unit.

1.1 Previous and Related Results

Max-objective. No deterministic algorithm for 1-bin non-removable problem
(the classic online knapsack problem) is O(1)-competitive [11,12], even in the
proportional and unit case. For the 1-bin proportional case a tight bound of 2 is
known for randomized algorithms in the oblivious adversary model [4]. However,
that work focuses on the advice complexity rather than randomized algorithms,
and prior studies focused on deterministic algorithms for the removable variant.

Even in the removable variant, there is no O(1)-competitive 1-bin determin-
istic algorithm [7,8], so Iwama et al. [7] focused on deterministic algorithms for
its proportional variant. They obtained a tight bound of φ ≈ 1.618 for the 1-bin
variant, and also a tight bound of (approximately) 1.3815 for the k-bin variant
where k ≥ 2; we note that their optimal algorithm for the latter case uses only
two bins even if more are allowed.

Iwama et al. [8] also studied the effect of resource augmentation for 1-bin
settings, i.e., letting a deterministic algorithm use a bin of capacity C > 1
while comparing its profit with the optimum profit attained with a bin of capac-
ity 1. These results are incomparable with ours: on the one hand, a single bin of

146 M. Cygan and Ł. Jeż

capacity C is superior to C bins of capacity 1 each, on the other, C need not be
an integer; in particular, in all the variants where such large bin helps, C ≤ 2
suffices to achieve ratio 1.

Partially fractional online knapsack is a related problem, which differs from
our setting only by allowing the algorithm to accept any fraction of any item;
the general case of its removable variant has been studied for 1 bin of capacity
C ≥ 1 (i.e., with resource augmentation) [14].

Sum-objective. The sum-objective has been studied for the Dual Bin Packing
problem [1], which coincides with the unit case of our non-removable variant.
Since there is no O(1)-competitive algorithm for this setting, those studies fo-
cused on the so called accommodating sequences, in which Opt can fit all the
items in its k bins or, in a generalization, c · k bins for some constant c.

Moreover, as the problems that we consider are fundamental and our algo-
rithmic solutions simple, similar algorithms have appeared in various contexts,
for example in ad auctions [2,6].

1.2 Our Results

We study both objective functions, sum-objective and max-objective, for both
variants, removable and non-removable, for both general and restricted instance
classes. Furthermore, we study both deterministic and randomized algorithms,
distinguishing between the “standard” oblivious and the less common adaptive
adversary model for the latter; see the article that distinguished the models [3]
or the textbook on online algorithms [5] for definition of the adaptive (online)
adversary. Finally, we consider different numbers of bins. We classify all these
settings into “feasible”, which admit O(1)-competitive algorithms, and “infeasi-
ble”, which do not, by giving upper bounds for all feasible settings and lower
bounds for all settings, or pointing to any previously known bounds.

All relevant results are summarized in Table 1 (and its caption; some are not
listed in the table). Here we only note a few features. The proportional case,
studied by Iwama et al. for one and multiple bins [7] with removals, is feasible
even without removals if k > 1 or randomization is allowed. The general case of
the removable variant exhibits similar properties.

We remark that we obtain simple O(1)-competitive randomized algorithms for
some 1-bin settings that are infeasible for deterministic algorithms. This is a rare
phenomenon, exhibited only by a single other natural problem we are aware of.
Namely, online throughput maximization on a single machine [9], where the
constant hidden in O(1) is large and the analysis quite involved.

Due to space constraints, some of the proofs are omitted.

2 Preliminaries

For an item i, we denote its profit by pi and its size by si. In case of se-
quences of items, say i1, i2, . . . , in, we shall abbreviate pij and sij to pj and sj .

Online Knapsack Revisited 147

Table 1. Summary of previous and our results. Column ’var’ describes the variant (R:
removable, NR: non-removable), ’obj’ the objective (while the meaning of max and

∑

is clear, note that it implicitly regards k > 1; 1 as ’obj’ means the single bin setting, in
which both objectives coincide), in the next column ’gen.’ and ’prop.’ stand for general
and proportional case respectively. In ’max’ rows, all upper bounds are attained for
k = 2 whereas all lower bounds hold for all k. For this reason, Theorem 5, which gives
a lower bound matching Theorem 3 for k = 2 does not appear in the table. The table
does not present our results on the adaptive adversary model (Theorems 14 and 15),
which show that for k = 1 randomization does not help against such adversary. The
results without a reference are either folklore or follow from other entries.

var obj case deterministic randomized (oblivious)
lower upper lower upper

R

1
gen. ∞ − e+1

e
≈ 1.37 [Thm. 7] 2 [Sec. 3.1]

prop. φ ≈ 1.62 φ ≈ 1.62 1.25 [Thm. 8] φ ≈ 1.62
unit 1 1 1 1

max
gen. φ ≈ 1.62 [Thm. 6] 2 [Thm. 3] 1 2
prop. ≈ 1.38 [7] ≈ 1.38 [7] 1 ≈ 1.38
unit 1 1 1 1

∑ gen. 7
6 ≈ 1.17 3 + O(1

k
) [Thm. 2] 7

6 ≈ 1.17 3 [Thm. 2]
prop. 8

7 ≈ 1.14 1.5 [15] 8
7 ≈ 1.14 [Thm. 4] 2

unit 7
6 ≈ 1.17 3 + O(1

k
) 7

6 ≈ 1.17 [1] 3

NR

1
gen. ∞ − ∞ −
prop. ∞ − 2 [4] 2 [4]
unit ∞ − ∞ −

max
gen. ∞ − ∞ −
prop. 2 2 [4] 2 [Thm. 12] 2
unit ∞ − ∞ [Thm. 11] −

∑ gen. ∞ − ∞ −
prop. 1 + ln 2 ≈ 1.69 2 [Thm. 10] 1 + ln 2 [Thm. 13] 2
unit ∞ − ∞ [Thm. 11] −

For any positive integer k, the set of bins available to a k-bin algorithm is
Bk = {B1, B2, . . . , Bk}; if k = 1 we shall denote the sole bin by B rather than
B1. Given a set of items X , we shall denote the total profit and the total size of
the items in X by p(X) and s(X), i.e., p(X) =

∑
e∈X pe and s(X) =

∑
e∈X se

respectively. In most of our analyses, the set X will be the set of all items in
a bin; in such case we shall simply write p(B) and s(B) for a bin B, ignoring
the particular instance and step in notation, since they will be clear from the
context. We extend this notation further to sets of bins: if B is a subset of the
set of all bins, then p(B) =

∑
B∈B p(B) denotes the total profit of all the items

in the bins of B and similarly s(B) =
∑

B∈B s(B) denotes their total size. For an
algorithm Alg, we will use Alg to denote both the algorithm and its profit; in
particular this applies to the offline optimum, denoted by Opt. Unless otherwise
stated, all the algorithms are presented assuming there are k bins available.

148 M. Cygan and Ł. Jeż

2.1 Max-objective and Different Numbers of Bins
Note that in the max-objective problem, the optimum offline solution can use
only a single bin. Therefore, in the oblivious adversary model, an R-competitive
k-bin algorithm (which may be randomized) for any variant of the problem
remains R-competitive when � > k bins are allowed, by ignoring the extra bins.
On the other hand, running an arbitrary k1-bin algorithm and k2-bin algorithm
in parallel does not result in a (k1 + k2)-bin algorithm, since the former two
algorithms might conflict by accepting the very same item.

However, if k < �, one can obtain many k-bin algorithms from a given �-bin
algorithm through projections: let Alg be an �-bin algorithm Then, for any
B ⊂ B�, let π(Alg, B) be a |B|-bin algorithm defined as follows: for every bin
B ∈ B, π(Alg, B) simulates Alg on B, ignoring the items that Alg does not
place in B. For the oblivious adversary model, it is easy to see that if Alg is an
R-competitive �-bin algorithm, then choosing B′ of cardinality k from its bins
uniformly at random yields an R · �/k-competitive barely random algorithm.

If k = 1, using � single-bin algorithms is less restrictive, since they are allowed
to conflict. In particular, if Alg1 and Alg2 are (deterministic) 1-bin algorithms
such that at any point Alg1 + Alg2 ≥ Opt, then a barely random 1-bin algo-
rithm that simulates one of them chosen uniformly at random, is 2-competitive.

3 Removable Variants
3.1 Upper Bounds
Let us discuss restricted instances first. For max-objective, optimum bounds
for proportional case were given by Iwama et al. [7], whereas the unit case is
trivial: a deterministic 1-bin algorithm that tentatively puts all new items in its
bin and then repeatedly removes the largest items while the bin overflows is 1-
competitive. We do not consider restricted instances for sum-objective explicitly.

We focus on general instances, for both objective functions. We develop a(
3 + O(k mod 3

k)
)
-competitive deterministic algorithm for sum-objective, whose

barely random variant is 3-competitive irrespective of k. Then we consider
the max-objective and note that for k = 2 bins the same algorithm is 2-
competitive (and optimal). Moreover, while aforementioned randomized algo-
rithm is 3-competitive for all k, we note that for k = 1 its competitive ratio can
be improved to 2 by altering the probability distribution.

To state our algorithm, let us classify items as follows: an item is small if its
size is at most 1/2, otherwise it is large. Essentially, we are going to use two well
known algorithms, extended to many bins, to handle each type of items.
Algorithm Greedy: When a new item e is issued, while there is not enough
space in any bin to put e there, remove the item e′ ∈ {e} ∪ ⋃

i=1,...,k Bi that
minimizes p(e′)/s(e′) from its bin; when that item is e itself, which has no bin,
stop. If e was not removed, put in the bin that can now fit it.
Algorithm PGreedy: Maintain k most profitable items, one per bin, as follows.
When a new item e is issued, put it an empty bin if there is one. Otherwise, if
p(e) > mini=1,...,k p(Bi), replace the minimum-profit item with e.

Online Knapsack Revisited 149

Lemma 1. Let e1, e2, . . . , en be a sequence of items such that p1/s1 ≥ p2/s2 ≥
. . . ≥ pn/sn. Given these items in any order, Greedy will have e1, e2, . . . , en0

in its bins, where either n0 = n or s(Bi) > 1 − max1≤j≤n sj for i = 1, . . . , k.
Finally, for any set of items X from the sequence,

p(X) ≤ p(Bk)
s(Bk)

· max{s(Bk), s(X)} .

Our algorithm is a combination of the two above.
Algorithm MultiGreedy: Use PGreedy on �k/3	 bins for large items and
Greedy on the remaining
2k/3� bins for small items.

Theorem 2. MultiGreedy is R(k)-competitive for the sum-objective, where

R(k) =

⎧
⎪⎨

⎪⎩

3 if k ≡ 0
3 + 3

k−1 if k ≡ 1
3 + 3

2k−1 if k ≡ 2
(mod 3) .

A barely random variant of the algorithm is 3-competitive for all k.

Proof. We focus on MultiGreedy first, introducing and analyzing the random
variant afterwards. Let L (L∗) and S (S∗) denote Alg’s (Opt’s) profit for
large and small items, respectively. Note that the following invariant is clearly
maintained: the MultiGreedy algorithm has the �k/3	 most profitable large
items. Moreover, by Lemma 1, at each step MultiGreedy either has all the
small items, or all of its
2k/3� bins dedicated to small items are at least half-full.

To bound the competitive ratio, we observe that (L∗ + S∗)/(L + S) ≤
max(L∗/L, S∗/S), hence we focus on large and small items separately. Opt
can have at most k large items, so L∗/L ≤ k/�k/3	. As for the small items,
Lemma 1 implies S∗/S ≤ 2k/
2k/3�.

The bound on MultiGreedy’s competitive ratio follows by determining
which of the two upper bounds is larger for each possible remainder. The barely
random algorithm works like MultiGreedy, but it randomly partitions the bins
into “small” and “large” in the very beginning. By previous analysis, it is easy to
observe that its competitive ratio is no larger than the maximum of L∗/E[L] and
S∗/E[S], and that this number is at most 3 if the expected number of “large”
and “small” bins is 1/3 and 2/3 respectively. �
Theorem 3. MultiGreedy with 2 bins is 2-competitive for the max-objective.

Proof. We refine the proof of Theorem 2. Note that for k = 2 MultiGreedy
uses one bin for large items and one bin for small items. On the other hand,
Opt only uses a single bin. If Opt does not use any large item in its solution,
then 2-competitiveness of MultiGreedy follows from the proof of Theorem 2.

Otherwise, Opt uses a single large item, say x. Then MultiGreedy has
some large item y in its “large” bin, and py ≥ px. Furthermore, the total size of
Opt’s small items is at most 1 − sx < 1/2. With this in mind, it follows again
from the proof of Theorem 2 that S ≥ S∗. Hence, L + S ≥ L∗ + S∗ = Opt, and
consequently MultiGreedy = max{L, S} ≥ Opt/2.

150 M. Cygan and Ł. Jeż

By Theorem 2, a barely random 1-bin variant of MultiGreedy is 3-competitive.
But a trivial 2-approximation algorithm for Knapsack gives rise to a 2-competitive
barely random 1-bin algorithm: toss a fair coin and, depending on the result,
simulate either 1-bin Greedy or 1-bin PGreedy.

3.2 Lower Bounds

Note that proving a k/(k − 1) lower bound for deterministic algorithms with the
sum-objective is straightforward. First issue k items of size 1 and profit 1, and
then keep issuing items of size ε2 and profit ε. Eventually, the gain for those
items alone becomes huge, so at some point Alg has to remove one of large
items. At that point the ratio is at least k/(k − 1 + ε).

Moreover, it follows from known results on dual bin packing [1] that even for
randomized algorithms for the unit case there is a lower bound of 7/6. Adapting
that construction yields a slightly weaker bound for proportional case.

Theorem 4. For any k and the sum-objective, no randomized k-bin algorithm
has competitive ratio smaller than 8

7 in the proportional case.

Now we turn our attention to lower bounds for the max-objective.

Theorem 5. No deterministic 2-bin algorithm has competitive ratio smaller
than 2 for the max-objective.

Proof. The adversary’s strategy involves two interwoven sequences of items. To
define them, let us fix arbitrarily small ε > 0. Then the sequences are

small: each item has size ε and profit
√

ε.
large: the i-th (i ≥ 0) item has size 1 − ε · (1 − 2−i) and profit 1 − i · √

ε.

Whenever we say that a small (large) item is issued, we mean the successive
item from the respective sequence. Initially a small item and a large item are
released, in any order. Observe that no large item can be placed together with a
small item in one bin, and consequently (wlog) Alg puts the large item in one
bin and the small one in the other. From this point, the adversary’s strategy is
as follows: if Alg has a small item in one of its bins, issue a large item, otherwise
issue a small item.

Note that by this strategy Alg always has (wlog) a large item in one bin, and
either another large item or a single small one in the other bin; we denote these
two states of Alg by LL and LS respectively.

We claim that Alg’s ratio is at least 2/(1 + 2
√

ε), which tends to 2 as ε tends
to zero. Assume, for contradiction, it is not so. Then Alg behaves in such a way
that no more than 2/

√
ε small items are issued in total, since then the total

profit of all the small items would be at least 2, whereas Alg’s profit is at most
1. Therefore, eventually Alg loops in LS state, since a small item is issued every
time Alg is in LL state.

Once Alg loops in LS state, large items (with slowly decreasing weights) are
released in each step, and eventually their profits drop below 0.5. Since Opt ≥ 1

Online Knapsack Revisited 151

due to the first large item and Alg is 2-competitive, there is a first step when
it does not replace its large item with the new one while in LS state. Denote
the large item that Alg keeps by l and the next large one it forfeits by l′, and
note that pl′ = pl − √

ε ≥ 1
2 , and sl′ < sl. Right after l′, its “complement” l′′ is

released, with sl′′ = 1 − sl′ and pl′′ = pl′ , and the sequence ends. Alg cannot
put l′′ together with l, so even if it puts l′′ together with a small item in the
other bin, its profit is at most pl, whereas Opt’s is at least 2pl′ , so the ratio is
at least 2/(1 + 2

√
ε). This is the final contradiction. �

Notice that Theorem 5 matches the upper bound of Theorem 3. However, the
former applies to k = 2 only. When more than two bins are available, we can
only prove the following weaker lower bound.

Theorem 6. For every k ≥ 3, no deterministic k-bin algorithm has competitive
ratio smaller than φ = (1 +

√
5)/2 ≈ 1.618 for the max-objective.

Proof. Assume, for the sake of contradiction, that Alg is R-competitive for
R = φ − ε where ε > 0. Consider the following instance. Initially, two items of
size 1/2 are issued, one of profit 1 and the other of profit φ. Since 1 + φ = φ2

and R < φ, Alg puts both these items into a single bin, say B1.
Afterwards, a sequence of “small” items of size ε2 and profit ε is issued until

one of the following happens: either the total profit of all the small items issued
so far exceeds φ2 or Alg removes an item (wlog of profit 1) from B1.

In the first case, Alg’s profits for each of its bins is no larger than φ2 + ε,
while the optimum solution uses the large item of profit φ and all the small items
for a total profit of at least φ+ φ2 = φ3, which gives ratio larger than R = φ− ε,
a contradiction.

Thus we focus on the other case: suppose that the total profit of all the small
items released by the moment when Alg removes the item from B1 is x. At that
moment the sequence ends, and Alg’s profit for any bin other than B1 is at
most x, while the one for B1 is at most φ + ε. On the other hand, the optimum
solution uses the large item of profit φ and, depending on the value of x, either
the other large item (of profit 1) or all the small items, whose total profit is x.
Hence in this case the ratio is (φ + max{1, x}) / max{φ + ε, x}, which is larger
than R = φ − ε for all x ≤ φ2. �
Theorem 7. No randomized 1-bin algorithm has competitive ratio smaller than
e+1

e ≈ 1.3678 in the oblivious adversary model.

Proof. We employ Yao’s principle. Fix a large integer n. The set of sequences that
we consider are all the prefixes of length larger than 1 of the following sequence
of items: an item of size and profit 1, followed by n items of size 1/(n + 1) and
profit 1/n each, followed by an item of size 1/(n + 1) and profit 1.

Observe that as the first item’s size is 1 and the total size of all the remaining
items is no larger than 1, every deterministic algorithm (wlog) behaves as one
the following canonical algorithms. Algk keeps the first item (of size and profit
1) in the bin until it sees the k-th small item, i.e., one of size 1/(n + 1), at which

152 M. Cygan and Ł. Jeż

point it removes the large item from its bin and starts collecting the small items.
Since, given the chance, wlog an algorithm replaces the item of profit 1 and size
1 with the one of same profit but size 1/(n + 1), we have that 1 ≤ k ≤ n + 1.

With only n + 1 algorithms to consider, we establish the probability distri-
bution over the n + 1 instances (recall that the first small item appears in all
of them) in such a way that all these algorithms have the same expected profit.
Note that this profit is 1, since Algn+1 always holds a single item of profit 1.
Let pi (1 ≤ n + 1) denote the probability of the i-th instance, or, in other words,
the probability that the instance ends after the i-th small item.

We fix {pi} as follows

pi =

{
1
n

(
1 − 1

n

)i−1
, for i ≤ n

(
1 − 1

n

)n
, for i = n + 1

(1)

It is straightforward to observe that this is a probability distribution.
As for the expected gains of the algorithms, note that

Algk =
∑

i<k

pi · 1 +
n∑

i=k

pi · i − k + 1
n

+ pn+1 ·
(

n − k + 1
n

+ 1
)

,

so that for k ≤ n, the following holds

Algk+1 − Algk = pk −
n+1∑

i=k

pi · 1
n

=
(

1 − 1
n

)

· pk − 1
n

·
n+1∑

i=k+1
pi . (2)

From (1) it follows that (2) is zero, as

1
n

·
n+1∑

i=k+1
pi = 1

n
·
((

1 − 1
n

)n

+ 1
n

(

1 − 1
n

)k

·
n−k−1∑

i=0

(

1 − 1
n

)i
)

= 1
n

·
(

1 − 1
n

)k

,

which is exactly (1 − 1/n)pk.
As every deterministic algorithm’s expected gain is at most one, to prove the

theorem we only need to lower bound the expected optimum profit. Notice that
Opt = 1 unless the last item is issued, in which case Opt = 2. Thus

E [Opt] = 1 + pn+1 = 1 +
(

1 − 1
n

)n

,

which tends to 1 + 1/e from below as n tends to infinity. �
Theorem 8. No randomized 1-bin algorithm for the proportional case has com-
petitive ratio smaller than 1.25 in the oblivious adversary model.

4 Non-removable Variants

It is well known that no deterministic 1-bin algorithm has constant competitive
ratio in the non-removable variant [11,12], even for proportional or unit case.

Online Knapsack Revisited 153

This can be seen by considering (prefixes of) an instance with only two items
for the proportional case: one of arbitrarily small size ε > 0, followed by another
of size 1. For the unit case, one needs to look at (prefixes of) an instance where
an item of size 1 is followed by 1/ε items of arbitrarily small size ε.

We demonstrate that there is a significant difference in these special cases
once more than one bin or random bits are available to the algorithm: for each
objective function, either of these two advantages allows for an optimum ratio
of 2 in the proportional case, but even combined these two advantages are not
sufficient to attain constant ratio in the unit case.

4.1 Upper Bounds (Proportional Case)

For the proportional variant, we note that for k ≥ 2 bins the (deterministic)
algorithm FirstFit is 2-competitive for both max-objective and sum-objective,
and that it gives rise to a 2-competitive 1-bin randomized algorithm.
Algorithm FirstFit: For each item, put it in the first (the one with lowest
number) bin where it fits, ignoring the item if it does not fit in any bin.

Lemma 9. If k ≥ 2 bins, then at any time FirstFit either has all the items
in its bins, or for each 1 ≤ i < j ≤ k we have p(Bi) + p(Bj) > 1.

Lemma 9, whose proof is straightforward, immediately implies the following.

Theorem 10. FirstFit is 2-competitive for k ≥ 2 bins for the sum-objective.

Lemma 9 also implies that FirstFit with 2 bins is 2-competitive for the max-
objective, and simulating one of π(FirstFit, {B1}) and π(FirstFit, {B2}) cho-
sen uniformly at random constitutes a 2-competitive barely random algorithm [4].

4.2 Lower Bounds

We provide lower bounds for both objective functions, for both the unit case
and the proportional case. For the former case, we prove that for every k, no
randomized k-bin algorithm is O(1)-competitive for either objective function,
whereas for the latter case our results are subtler. For the max-objective, we
prove a lower bound of 2 for randomized algorithms with any number of bins,
proving the optimality of FirstFit and its barely random single-bin variant. For
sum-objective we only prove a lower bound of 1 + ln 2 ≈ 1.693, leaving a gap.

Theorem 11. For every k, no randomized k-bin algorithm is O(1)-competitive
for either max-objective or sum-objective in the unit case.

Theorem 12. For every k, no randomized k-bin algorithm has competitive ratio
smaller than 2 for max-objective in the proportional case.

Proof. We use Yao’s principle. We consider instances that defined as follows. Fix
an arbitrarily large integer n and an arbitrarily small ε > 0. For each integer i,

154 M. Cygan and Ł. Jeż

1 ≤ i ≤ n, let si = 1/2 + ε/2i. The instance I�, 1 ≤ � ≤ n, consists of items of
sizes s1, s2, . . . , s�, in this order, followed by a single item of size 1 − s�. Note
that in such an instance every item except the last one has size strictly greater
than 1/2, requiring a separate bin, and the last item fits together with the last
item of size larger than 1/2. Therefore, a deterministic k-bin algorithm for such
set of instances, whatever the probability distribution over them, can be (wlog)
identified by a set of k items, among the potential n items larger than 1/2, that
it is going to put to its k bins given the chance. Note that such an algorithm
can have two items in some of the bins iff one of those k items is the last item
of size larger than 1/2, and otherwise it gains at most 1/2 + ε from any bin. By
adopting the uniform probability distribution over the n instances, we make the
probability of the former at most k/n. Thus with n tending to infinity and ε
tending to zero, in the limit the gain of any deterministic algorithm is at most
1/2 per bin. Clearly, the optimum solution has profit 1 for one of the bins. �
We note that the result of Theorem 12 was already known for k = 1 [4] but,
unlike ours, the proof technique of [4] does not extend to larger k.

Theorem 13. For every k, no randomized k-bin algorithm has competitive ratio
smaller than 1 + ln 2 ≈ 1.693 for sum-objective in the proportional case.

5 A Note on Adaptive Adversary

We note that the observations of Section 2.1 need not hold in the adaptive
adversary model. Namely, as such an adversary solves an instance on-line, he
may benefit from the presence of additional bins even under the max-objective.
Thus it is possible that the optimum competitive ratio in such setting is not a
non-increasing function of k. However, for k = 1 we establish tight bounds for
randomized algorithms in the adaptive adversary model by proving that they
cannot perform better than deterministic algorithms.

Theorem 14. In the adaptive adversary model, no randomized 1-bin algorithm
is O(1)-competitive for the general case of the removable variant.

Theorem 15. In the adaptive adversary model, no randomized 1-bin algorithm
for the proportional case of the removable variant has competitive ratio smaller
than φ = (1 +

√
5)/2 ≈ 1.618.

Theorem 16. In the adaptive adversary model, no randomized 1-bin algorithm
is O(1)-competitive for the proportional case of the non-removable variant.

6 Conclusion and Open Problems

A single gap remains in the non-removable variant, for the sum-objective in the
proportional case. The gaps for this objective in the removable variant are also
significant, both in the general and the two special cases that we studied.

Online Knapsack Revisited 155

There are many gaps to be bridged in the removable variant under the
max-objective as well. Of those, the question whether more than 2 bins or ran-
domization permit ratios smaller than 2 in the general case seems particularly
interesting. A related direction of interest is relating the power of barely random
algorithms to unrestricted randomized algorithms.

Acknowledgements. We thank Monaldo Mastrolilli for suggesting the study
of knapsack problems, Fabrizio Grandoni for suggesting the study of the sum
objective, Yann Disser and Jiří Sgall for helpful discussions, and anonymous
referees for their comments.

Łukasz Jeż was partially supported by Hasler Foundation, Grant 11099,
MNiSW grant N N206 368839, 2010-2013, EU ERC project 259515 PAAl, and
FNP Start scholarship. Marek Cygan was partially supported by NCN grant N
N206 567940.

References
1. Azar, Y., Boyar, J., Favrholdt, L.M., Larsen, K.S., Nielsen, M.N., Epstein, L.: Fair

versus unrestricted bin packing. Algorithmica 34(2), 181–196 (2002)
2. Azar, Y., Khaitsin, E.: Prompt mechanism for ad placement over time. In: Persiano,

G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 19–30. Springer, Heidelberg (2011)
3. Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power

of randomization in online algorithms. Algorithmica 11(1), 2–14 (1994)
4. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice com-

plexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

6. Chekuri, C., Gamzu, I.: Truthful mechanisms via greedy iterative packing. In:
Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009.
LNCS, vol. 5687, pp. 56–69. Springer, Heidelberg (2009)

7. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002)

8. Iwama, K., Zhang, G.: Online knapsack with resource augmentation. Information
Processing Letters 110(22), 1016–1020 (2010)

9. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. J. of Algo-
rithms 49(1), 63–85 (2003)

10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer (2004)
11. Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. J.

Algorithms 29(2), 277–305 (1998)
12. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.

Math. Program. 68, 73–104 (1995)
13. Martello, S., Toth, P.: Knapsack problems. John Wiley & Sons (1990)
14. Noga, J., Sarbua, V.: An online partially fractional knapsack problem. In: Proc. of

the 8th Int. Symp. on Parallel Architectures, Algorithms, and Networks (ISPAN),
pp. 108–112 (2005)

15. Sgall, J.: Private communication (2013)

Counting Approximately-Shortest Paths
in Directed Acyclic Graphs

Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer

Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
{mmihalak,rsramek,widmayer}@inf.ethz.ch

Abstract. Given a directed acyclic graph with positive edge-weights,
two vertices s and t, and a threshold-weight L, we present a fully-
polynomial time approximation-scheme for the problem of counting the
s-t paths of length at most L. We extend the algorithm for the case of
two (or more) instances of the same problem. That is, given two graphs
that have the same vertices and edges and differ only in edge-weights,
and given two threshold-weights L1 and L2, we show how to approxi-
mately count the s-t paths that have length at most L1 in the first graph
and length not much larger than L2 in the second graph. We believe that
our algorithms should find application in counting approximate solutions
of related optimization problems, where finding an (optimum) solution
can be reduced to the computation of a shortest path in a purpose-built
auxiliary graph.

1 Introduction

Systematic generation and enumeration of combinatorial objects (such as graphs,
set systems, and many more) has been a topic of extensive study in the field of
combinatorial algorithms for decades [10]. Counting of combinatorial objects has
been investigated at least as thoroughly, even leading to their own computational
complexity class #P, defined in Valiant’s seminal paper [15]. A counting problem
usually asks for the number of solutions to a given combinatorial problem, such
as the number of perfect matchings in a bipartite graph. In combinatorial op-
timization, the number of optimum solutions can sometimes be computed by a
modification of an algorithm for finding a single optimum solution. For instance,
for shortest s-t paths in graphs with positive edge weights, Dijkstra’s algorithm
easily admits such a modification. The problem we discuss in this paper has a
more general flavor: We aim at counting the number of approximate solutions,
in the sense of solutions whose objective value is within a given threshold from
optimum. For shortest s-t paths, it is not obvious how to count the number of
paths within, say, 10% from optimum. A related problem of enumerating fea-
sible solutions makes a step in this direction: If we can enumerate solutions in
order of decreasing quality, starting from an optimum solution, we have a way to
count approximate solutions. Even though for some problems there are known
enumeration algorithms that return the next feasible solution in the sequence
of solutions within only polynomial extra time (called “polynomial delay”), this

C. Kaklamanis and K. Pruhs (Eds.): WAOA 2013, LNCS 8447, pp. 156–167, 2014.
c© Springer International Publishing Switzerland 2014

Counting Approximately-Shortest Paths in Directed Acyclic Graphs 157

approach will usually not be satisfactory in our setting. The reason is that the
number of approximate solutions can be exponential, and counting by enumer-
ating then takes exponential time, while our interest is only in the count itself.

In this paper we propose a way to count approximate solutions for the shortest
s-t path problem in directed acyclic graphs (DAGs) in polynomial time, but the
count that we get is only approximate, even though we come as close to the exact
count as we wish (technically, we propose an FPTAS). We also show that exact
counting for our problem is #P-hard, thus (together with the FPTAS) fully set-
tling its complexity. We achieve our result by a modification of a conceptually
interesting dynamic program for all feasible solutions for the knapsack problem
[14]. Our motivation for studying our counting problem comes from a new ap-
proach [2] to cope with uncertainty in optimization problems. There, we not only
need to count the number of approximate solutions for a given problem instance,
but we also need to count the number of solutions that are approximate (within
a given approximation ratio) for two problem instances at the same time. For the
case of shortest s-t paths, this means that we are given two input graphs that
are structurally identical, but are allowed to differ in their edge weights. We now
want to count the number of s-t paths that are within, say, 10% from optimum in
both input graphs at the same time. For this problem we propose both a pseudo-
polynomial algorithm and an algorithm that calculates an approximate solution
for a potentially slightly different threshold in fully polynomial time. Our hope is
that our study paves the way for approximately counting approximate solutions
for other optimization problems, such as minimum spanning trees.

The rest of the paper is organized as follows. We outline possible implications
of our result in Section 1.1. We show in Section 1.2 that our problem is #P-
complete. We present the algorithms in Section 2, and conclude the paper in
Section 3.

1.1 Dynamic Programming as Shortest-Path Computation in DAGs

The concept of computing a shortest s-t path in a directed acyclic graph has a
large number of applications in many areas of algorithmics. This is partly due
to the fact that dynamic programming algorithms in which the inductive step
consists of searching for a maximum or a minimum among some functions of
previously-computed values can be viewed as the problem of looking for the
shortest or longest path in a directed acyclic graph.1

In many problems that admit a dynamic programming solution we are inter-
ested not only in the single optimum, but also in other approximately optimal
solutions. For instance, if we single out the context of analysis of biological data,
de novo peptide sequencing [4,11], sequence alignment [13], or Viterbi decoding
of HMMs [3,5] all use dynamic programming to find a shortest path in some
implicit graph. Due to the nature of the data in these applications, producing a
single solution is often insufficient and enumerating all solutions close to the op-
timum is necessary. Our contribution, therefore, provides a faster solution than
1 Note that due to the lack of cycles, the problems of looking for shortest and longest

paths on DAGs are computationally identical.

158 M. Mihalák, R. Šrámek, and P. Widmayer

explicit enumeration for the problems where counting of approximate solutions
is required [13]. Counting and sampling from close-to-optimum solutions is the
key-element of the recent optimization method with uncertain input data of
Buhmann et al. [2]. Our work thus makes a step towards practical algorithms in
this context.

1.2 Counting Approximate Solutions Is #P-complete

The problem of counting the number of all self-avoiding s-t walks in a directed
(or undirected) graph is known to be #P-complete [16]. The proof makes use
of graphs containing cycles, thus it cannot be used to show the hardness of the
problem of counting approximate shortest paths on a directed acyclic graph.
In fact, we can easily count all s-t paths in a directed acyclic graph in time
proportional to the number of edges, if we traverse the graph vertices sorted
in topological order and add up the number of paths arriving to each vertex
from its predecessors. The difficulty thus lies in the addition of edge-weights and
the requirement to count s-t paths of length at most L. In the following, we
show that this problem is #P-complete, by a reduction from the NP -complete
partition problem. Given a set of positive integers S = {s1, . . . , sn}, the partition
problem asks for a partition of S into sets S1 and S2 such that the sums of
numbers in both sets are equal.

Given an instance S = {s1, . . . , sn} of the partition problem, we construct a
graph with n+1 vertices v1, . . . , vn+1 as follows. We consider the elements of S
in an arbitrary order s1, . . . , sn. Then, for every i < n, the graph will contain two
parallel edges between vertices vi and vi+1 with lengths si and −si, respectively.
Then every path from v1 to vn+1 corresponds to one partition of S to subsets S1

and S2. If, between two consecutive vertices vi and vi+1, the edge with length
si is chosen, si will belong to the set S1. If the chosen edge has length −si,
the element si will belong to the set S2. The length of the v1-vn+1 path then
corresponds to the difference between the sums of elements in S1 and in S2 and
the number of paths of length 0 is then equal to the number of optimal solutions
of the partition problem.

If we had an algorithm that can count the number of v1-vn+1 paths of length
at most −1 and the number of v1-vn+1 paths of length at most 0, the difference
between these two numbers is the number of paths of length exactly 0 and thus
the number of solutions to the partition problem.

Since the partition problem is reducible from the #P-complete knapsack prob-
lem [6] and its own reduction as well as ours is parsimonious [9], the problem of
counting all s-t paths of length at most L is #P-complete. Note that the existence
of parallel edges is not necessary for the reduction; we could bisect each parallel
edge creating an auxiliary vertex to form a graph of the same functionality but
without parallel edges. Also, observe that the use of negative edge-weights is
not necessary; we can add to every edge-weight a very large number M (say,
the maximum number in S), and then ask whether there exists a path of length
nM . Thus, we have shown the following.

Counting Approximately-Shortest Paths in Directed Acyclic Graphs 159

Theorem 1. Let G be a directed acyclic graph with integer edge-weights, and
L be an integer. The problem of counting all s-t paths of length at most L is
#P-complete, even if all edge-weights are non-negative.

2 Approximation Algorithms

In this section we present an FPTAS for our counting problem. That is, we
present an algorithm that when given a directed acyclic graph G on n vertices,
two dedicated vertices s and t, a weight-threshold L, and a constant ε > 0,
computes a (1 + ε)-approximation of the total number of s-t paths of length at
most L, and which runs in time polynomial in both n and 1

ε .
Let us note why the most immediate attempt to solve the problem directly

does not work. We could try to calculate the number of paths from s to each
vertex i that are shorter than all possible thresholds L. We can do this incremen-
tally by calculating the paths for vertices sorted in topological order and for each
new vertex combining the paths that arrived from previously computed vertices.
We can then pick some polynomially large subset of the thresholds L and round
all distances down to the nearest one in the subset. While we would end up with
an algorithm of polynomial run-time, it would not constitute a FPTAS, since we
would exactly count the number of paths that are no longer than some length
L′ which does not differ much from our desired maximum length L, instead of
approximately counting the number of solutions that are shorter than the exact
length L.

We first show a recurrence that can be used to exactly count the number of
s-t paths of length at most L. Evaluating the recurrence takes exponential time,
but we will later show how to group partial solutions together in such way that
we trade accuracy for the number of recursive calls. We adapt the approach of
Štefankovič et al. [14], which they used to approximate the number of all feasible
solutions to the knapsack problem.

Let G be a directed acyclic graph with n vertices. We will label the vertices
v1, . . . , vn in such order that there is no path from vi to vj unless i < j, i.e.,
v1, . . . , vn defines a topological ordering. We suppose that v1 = s and vn = t,
otherwise the graph can be pruned by discarding all vertices that appear before
s and after t in the topological order, since no path from s to t ever visits these.

Now, for a given L, instead of asking for the number of s-t paths that have
length at most L, we indirectly ask: for a given value a, what is the smallest
threshold L′ such that there are at least a paths from s to t of length at most
L′? Let τ(vi, a) denote the minimum length L′ such that there are at least a
paths from v1 to vi of length at most L′. To find the number of s-t paths of
length at most L using this function τ , we simply search for the largest a such
that τ(vn, a) ≤ L, and return it as the output. In particular, if the length of
the shortest s-t path is OPT (which can be computed in polynomial time),
we can find, for any ρ > 1, the number of ρ-approximate s-t paths by setting
L := ρOPT .

160 M. Mihalák, R. Šrámek, and P. Widmayer

For a concrete vertex vi with in-degree di, let us denote its di neighbors
that precede it in the topological order by p1, . . . , pdi and let us denote the
corresponding incoming edge lengths by l1, . . . , ldi. For simplicity, we usually
drop the index i when it is clear from the context and just write d, p1, . . . , pd
and l1, . . . , ld. Now, τ(vi, a) can be expressed by the following recurrence

τ(v1, 0) = −∞
τ(v1, a) = 0, ∀a : 0 < a ≤ 1

τ(v1, a) =∞, ∀a : a > 1

τ(vi, a) = min
α1,...,αd∑

αj=1

max
s

(τ(ps, αsa) + ls).

Intuitively, the a paths starting at v1 and arriving at vi must split in some
way among incoming edges. The values αj define such split. We look for a set
of α1, . . . , αd that minimizes the maximum allowed path length needed such
that the incoming paths can be distributed according to αj , j = 1, . . . , d. Note
that while the values of αia do not have to be integer, τ(vi, αia) is equal to
τ(vi, �αia�). Moreover, when evaluating the recursion, it is enough to search for
values αi such that each of the values α1a, . . . , αda is an integer.

Calculating τ using the given recurrence will not result in a polynomial time
algorithm since we might need to consider an exponential number of values for
a, namely 2n−2 on a DAG with a maximal number of edges.2 To overcome this,
we will consider only a polynomial number of possible values for a, and always
round down to the closest previously considered one in the recursive evaluation.
If we are looking for an algorithm that counts with 1 + ε precision, the ratio
between two successive considered values of a must be at most 1 + ε.

For this purpose, we introduce a new function τ ′. In order to achieve precision
of 1 + ε, we will only consider values of τ ′ for minimum path numbers in the
form of qk for all positive integers k such that qk < 2n−2, where q = n+1

√
1 + ε.

The values of τ ′ for other numbers of paths will be undefined. The function τ ′

is defined by the recurrence

τ ′(v1, 0) = −∞
τ ′(v1, a) = 0, ∀a : 0 < a ≤ 1

τ ′(v1, a) =∞, ∀a : a > 1

τ ′(vi, q
j) = min

α1,...,αd∑
αj=1

max
s

(τ ′(ps, q
�j+logq αs�) + ls). (1)

To give a meaning to the expression q�j+logq αi� when αi = 0, we define it to
be equal to 0, which is consistent with its limit when αi goes to 0. We now show
that the rounding does not make the values of τ ′ too different from the values
of τ .
2 To see this, observe that in a topologically sorted graph G, any subset of V \ {s, t}

gives a unique candidate for an s-t path.

Counting Approximately-Shortest Paths in Directed Acyclic Graphs 161

Lemma 1. Let 1 ≤ i and i ≤ j. Then

τ(vi, q
j−i) ≤ τ ′(vi, q

j) ≤ τ(vi, q
j). (2)

Proof. We first prove the first inequality, proceeding by induction on i. The base
case holds since τ(v1, a) ≤ τ ′(v1, b) for any a ≤ b. Suppose now that the first
inequality of (2) holds for every p, p < i. Then, for every 0 ≤ α < 1,

τ ′(p, q�j+logq α�) ≥ τ(p, q�j+logq α�−p)

≥ τ(p, qj−p−1+logq α) ≥ τ(p, αqj−i).

Thus, since every predecessor of vi is earlier in the vertex ordering, we can
use the obtained inequality to get the claimed bound

τ ′(vi, q
j) = min

α1,...,αd∑
αj=1

max
s

τ ′(ps, q
�j+logq αs�) + ls

≥ min
α1,...,αd∑

αj=1

max
s

τ(ps, αsq
j−i) + ls = τ(vi, q

j−i).

The other inequality τ ′(vi, q
j) ≤ τ(vi, q

j) follows by a simpler induction on
i. The base case holds since τ(v1, x) = τ ′(v1, x) for all x. Assume now that the
second part of (2) holds for all p < i. Then

τ ′(p, q�j+logq αi�) ≤ τ(p, q�j+logq αi�) ≤ τ(p, αiq
j).

We can now use the recursive definition to obtain the claimed inequality
τ ′(vi, q

j) ≤ τ(vi, q
j):

τ ′(vi, q
j) = min

α1,...,αd∑
αj=1

max
s

τ ′(ps, q
�j+logq αs�) + ls

≤ min
α1,...,αd∑

αj=1

max
s

τ(ps, αsq
j) + ls = τ(vi, q

j).

��

We can now use τ ′(vn, q
k) to obtain a (1 + ε)-approximation for the counting

problem. Basically, for any L, we show that for the largest integer k such that
τ ′(vn, q

k) ≤ L < τ ′(vn, q
k+1), the value qk will be no more than (1 + ε)±1 away

from the optimum.

Lemma 2. Given L, let k be such that τ ′(vn, q
k) ≤ L < τ ′(vn, q

k+1) and a be
such that τ(vn, a) ≤ L < τ(vn, a+ 1). Then (1 + ε)−1 ≤ a

qk
≤ 1 + ε.

162 M. Mihalák, R. Šrámek, and P. Widmayer

Proof. Using Lemma 1 twice, we get τ(vn, q
k−n) ≤ τ ′(vn, q

k) ≤ L <
τ ′(vn, q

k+1) ≤ τ(vn, q
k+1). As τ(vn, q

k−n) is at most L, and a is largest such
that τ(vn, a) ≤ L, and τ is monotonous in its second parameter, it must be that
qk−n ≤ a. Similarly, τ(vn, qk+1) is larger than L, so by monotonicity a ≤ qk+1.
Thus both a and qk must lie between qk−n and qk+1 and their ratio can be at
most qk+1−(k−n) = qn+1 = 1 + ε and at least qk−(k+1) = (1 + ε)−1/(n+1) >
(1 + ε)−1. ��
We now show that computing the values of τ ′(vi, qk) can be done in time poly-
nomial in n and 1

ε . This then, together with Lemma 2, gives an FPTAS for the
counting problem.

Theorem 2. For any L, any edge-weighted directed acyclic graph G, and any
vertices s, t, there is an FPTAS that counts the number of all s-t paths in G of
length at most L in time O(mn3ε−1 logn).

Proof. Recall that a directed acyclic graph on n vertices has at most 2n−2 s-
t paths. The values of a in τ therefore span at most {1, 2, . . . , 2n−2}, and the
values of qk in τ ′ span at most {1, q, q2, . . . , qs}, where

s := logq(2
n−2) =

(n− 2)

log2 q
=

(n− 2)(n+ 1)

log2(1 + ε)
= O(n2ε−1).

Thus, we evaluate function τ ′ for at most ns = O(n3ε−1) different parameter
pairs.

To show that the evaluation of τ ′ can be done in polynomial time, we need
to show that we can efficiently find α1, . . . , αd that minimize Expression (1).
Fortunately, τ ′(vi, q

k) is monotonous with increasing k, we can thus apply a
greedy approach. Given vi, we will evaluate τ ′(vi, q

k) for all possible values of qk
in one run. Instead of looking for the tuple α1, . . . , αd such that

∑
αi = 1 we will

consider an integer tuple k1, . . . , kd that minimizes maxi τ
′(pi, q

ki) restricted by∑
qki > qk−1. We start with all ki equal to 0 and always increase by one the ki

that minimizes τ ′(pi, q
ki+1) + li. Whenever the sum of all qki gets larger than

some value qk−1, we store the current maximum of τ ′(pi, qki) + li as the value
τ ′(vi, q

k). We terminate once
∑

i q
ki reaches 2n−2. It can be shown that such

approach calculates the same values of τ ′ as searching through ratios αi. As we
can increase each ki at most s times, we make at most ds steps, each of which
involves choosing a minimum from d values and replacing it with a new value.
The latter can be done in time O(log d) ⊆ O(log n), for instance by keeping the
values τ ′(vi, q

ki+1) + li in a heap. The sum of the d’s for all considered vertices
is equal to the number of edges m. The update of

∑
i q

ki , calculation of qk+1

from qk, and comparison with the maximum number of paths can all be done in
O(log(2n)) = O(n) time if we choose q in the form 1+2−t in order to be able to
implement multiplication by q by a sequence of bit-shifts and a single addition.
The resulting bit-time complexity is thus O(mn3ε−1 logn). ��
We note that processing the dynamic programming table for all path numbers in
one go would to improve the time complexity of the original Knapsack FPTAS
[14] by a factor of O(log(n)).

Counting Approximately-Shortest Paths in Directed Acyclic Graphs 163

2.1 Counting Solutions of Given Lengths in Multiple Instances

In this section we consider the problem of counting solutions that are
approximately-optimum for two given instances at the same time. The two in-
stances differ in edge lengths, but share the same topology, effectively forming
a bi-criteria instance. Formally, given two directed acyclic graphs G1 and G2,
differing only in edge-weights, given two vertices s and t, and given two threshold
values L1 and L2, we are interested in the number of the s-t paths that have at
the same time length at most L1 in G1 and length at most L2 in G2.

To solve this algorithmic problem, we cannot directly apply the approach for
the single-instance case (by defining τ to be a pair of path lengths, one for each
of the two instances), as we now have two lengths per edge and it is unclear how
to suitably define a maximum over pairs in Equation (1). In fact, we can show
that we cannot construct a FPTAS for the two instance scenario, or indeed any
approximation algorithm.

Theorem 3. Let G1 and G2 be two directed acyclic graphs with the same sets of
vertices and edges, but possibly different edge-weights, let s and t be two vertices
in them, let L1 and L2 be two length thresholds. The existence of an algorithm
that in time polynomial in number of vertices n computes any finite approxima-
tion of the number of paths from s to t that are shorter than L1 if measured
in the graph G1 and shorter than L2 if measured in the graph G2, implies that
P = NP .

Proof. We show this by reducing the decision version of the knapsack problem
to the aforementioned problem. Let us have a knapsack instance with n items
with weights w1, . . . , wn and prices p1, . . . , pn. Given a total weight limit W and
a price limit P we want to know if we can select a set of items such that the
total weight is at most W and the total price is at least P . The corresponding
DAG will have n + 1 vertices v0, . . . , vn, with two edges between all successive
vertices vk and vk+1 that will correspond to the action of taking or not taking
the k + 1-st element into the knapsack. The first edge between vk and vk+1 will
have length wk+1 in the graph G1 and length 2P

n+1 − pk+1 in the graph G2, the
second edge will have length 0 in the graph G1 and 2P

n+1 in the graph G2. We can
now ask for the number of paths from v0 to vn that are shorter than W in the
graph G1 and shorter than P in the graph G2. If we had an algorithm that gives
us a number that differs from this number by any real and finite multiplicative
ratio c, we could determine whether the original knapsack problem had at least
one solution since the ratio between 1 and 0 is not a real number. ��

This proof is perhaps surprising due to the fact that Gopalan et al. [7] showed a
FPTAS that counts the number of solutions of multi-criteria knapsack instances.
This shows that while knapsack is a special version of our problem, it is in fact less
complex due to the common assumption that the item values are non-negative.

While we cannot obtain a (1 + ε)-approximation of the number of s-t paths
that have length at most L1 in the first instance, and at the same time length
at most L2 in the second instance, we will adopt the techniques for FPTAS in a

164 M. Mihalák, R. Šrámek, and P. Widmayer

single instance, and show a polynomial-time algorithm that provides heuristics
for good estimates of s-t paths that have length at most (1 + δ)L1 in the first
instance, and at the same time length at most L2 in the second instance. We
will only consider the case where L1 is positive.

To do so, we define a function τ2 similar in spirit to τ that uses a maxi-
mum path-length L1 in the form of a “budget” as a parameter of τ2. Formally,
τ2(vi, a, L1) is the smallest length L2 such that there are at least a v1-vi paths,
each of length at most L1 with respect to the edge lengths in the first instance,
and of length at most L2 with respect to the edge length in the second instance.
Similarly to τ , we can express τ2 recursively using the following notation. Let
vi be a vertex of in-degree d, and let p1, . . . , pd be the neighbors of vi preced-
ing it in the topological order. The edge-length of the incoming edge (pj , vi),
j = 1, . . . , di, is lj in the first instance, and l′j in the second instance. Then, τ2
satisfies the following recursion:

τ2(v1, 0, x) = −∞, ∀x ∈ R
+

τ2(v1, a, x) = 0, ∀a : 0 < a ≤ 1, ∀x ∈ R
+

τ2(v1, a, x) =∞, ∀a : a > 1, ∀x ∈ R
+

τ2(vi, a, L1) = min
α1,...,αd∑

αj=1

max
s

τ2(ps, αsa, L1 − ls) + l′s

If we wanted to use τ2 to directly use to solve our counting problem, the
function τ2 would have to be evaluated not only for an exponential number of
path counts a, but also for possibly exponential number of values of L1. To
end up with polynomial runtime, we thus need to consider only a polynomial
number of values for both parameters of τ2. For this purpose, we will introduce
a function τ ′2 that does this by considering only path lengths in the form of rk,
where r = n

√
1 + δ, and path numbers a in the form of qj , where q = n

√
1 + ε,

for positive ε and δ. Function τ ′2 is defined by the following recurrence:

τ ′2(v1, 0, x) = −∞, ∀x ∈ R
+

τ ′2(v1, a, x) = 0, ∀a : 0 < a ≤ 1, ∀x ∈ R
+

τ ′2(v1, a, x) =∞, ∀a : a > 1, ∀x ∈ R
+

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max
s

τ ′2(ps, q
�j+logq αs�, r�logr(r

k−ls)�) + l′s

Similarly to the case of one instance only, one can show that τ ′2 approximates
τ2 well, this time in two variables.

Lemma 3. Let 0 ≤ i, i ≤ j, and i ≤ k. Then

τ2(vi, q
j−i, rk) ≤ τ ′2(vi, q

j , rk) ≤ τ2(vi, q
j , rk−i). (3)

The proof is conceptually similar to the proof of Lemma 1 and is stated in full
in the full version of this paper [12].

Counting Approximately-Shortest Paths in Directed Acyclic Graphs 165

Using Lemma 3, we can show that τ ′2 provides enough information to compute
an approximation of τ2. However, we cannot get a (1 + ε) approximation to the
optimal value as in Lemma 2, because we need to round the value of L1 to a
power of r in order for it to be legal parameter of τ ′2 and we further round it
during the evaluation of τ ′2. We will therefore relate the result of τ ′2 to the results
of τ2 we would have gotten if we considered the value of L1 when rounded up
towards the nearest number that can be represented as rk for integer k and the
value rk−n. Due to the choice of r, the ratio of these two values is 1 + δ.

Lemma 4. Let k be such that τ ′2(vn, qk, r�logr L1�) ≤ L2 < τ ′2(vn, q
k+1, r�logr L1�),

a be such that τ2(vn, a, r
�logr L1�−n) ≤ L2 < τ2(vn, a + 1, r�logr L1�−n), and b be

largest such that τ2(vn, b, r�logr L1�) ≤ L2 < τ2(vn, b + 1, r�logr L1�). Then a ≤ b,
a
qk
≤ 1 + ε, and qk

b ≤ 1 + ε.

Proof. The statement that a ≤ b follows from the definition of a and b: decreasing
the limit on the path length in the first instance from r�logr L1� to r�logr L1�−n

cannot increase the number of possible paths. By applying Lemma 3 twice, we
get

τ2(vn, q
k−n, r�logr L1�) ≤ τ ′2(vn, q

k, r�logr L1�) ≤ L2, (4)

and
L2 < τ ′2(vn, q

k+1, r�logr L1�) ≤ τ2(vn, q
k+1, r�logr L1�−n). (5)

From the definition of a and (5) we can conclude a ≤ qk+1. This implies that
a
qk ≤ q ≤ 1+ ε, due to our choice of q. Similarly, from the definition of b and (4)

we get b ≥ qk−n and thus qk

b ≤ qn ≤ 1 + ε. ��
Lemma 4 shows that the computed number of s-t paths qk cannot be larger
than b by more than a factor of 1 + ε, nor can it be smaller than a by a factor
larger than 1 + ε. Furthemore, with the aforementioned choice of r as n

√
1 + δ,

the difference between the rounded up value of L1 which is r�logr L1� and the
rounded down value which is r�logr L1�−n is (1+ δ). We can now state the overall
running time of the approach. Compared to the function τ ′ we need to evaluate
τ ′2 for �logr L1� = O(nδ−1 logL1) values of rl, in addition to the values of vi
and qk. Otherwise the arguments are identical to the proof of Theorem 2. Note
that logL1 is by definition in O(n), but we list it explicitly since it can be much
smaller in practice.

Lemma 5. Given path-lengths L1 and L2 for two given instances G1 and
G2 of a graph with n edges and m vertices, there is an algorithm that
finds k satisfying τ ′2(vn, q

k, r�logr L1�) ≤ L < τ ′2(vn, q
k+1, r�logr L1�) in time

O(mn3ε−1δ−1 logn logL1).

Putting together Lemma 4 and Lemma 5 we can state the overall result:

Theorem 4. For any L1, L2, any edge-weighted directed acyclic graphs on the
same topology G1 and G2, and any two of their vertices s, t, there exists a length
L′
2 satisfying (1+ δ)−1L2 ≤ L′

2 ≤ L2 and an FPTAS for counting the number of
paths from s to t no longer than L1 when evaluated on the graph G1 and no longer
than L′

2 when evaluated on the graph G2 in the time O(mn4ε−1δ−1 log n logL1).

166 M. Mihalák, R. Šrámek, and P. Widmayer

It is easy to see that we can extend the approach to count paths that approximate
m instances at the same time by adding “budgets” L1, . . . , Lm−1 for the desired
maximal lengths of paths in instances 1, 2, . . . ,m−1. The time complexity would
again increase, for every additional instance with threshold Li by O(nδ−1 logLi).

Pseudo-Polynomial Algorithm for Two Instances. If the discrepancy between a
and b as defined in Lemma 4 is too large and all edges have integer lengths, we can
consider all possible lengths in the first instance, instead of rounding to values
in the form of rk. If implemented in a similar way to the previously discussed
two-instance approximation algorithm, this pseudo-polynomial algorithm would
run in the time O(mn3ε−1L1 log n).

3 Concluding Remarks

We have shown that there is an efficient algorithm to approximate the number
of approximately shortest paths in a directed acyclic graph. This problem is
implicitly or explicitly present as an algorithmic tool in algorithmic solutions to
a large number of different computational problems, not limited to the evaluation
of solutions achieved by dynamic programming which we noted in Section 1.1.

Our result allows us, for instance, to approximately count only the small
(or large) terms of a polynomial p(x) =

∑
i aix

i, ai ≥ 0, represented as a
product

∏
j pj(x) of polynomially many polynomial factors pj(x), where each

pj(x) =
∑

k bkx
k has polynomially many terms, and where every bk ≥ 0. This

is especially interesting if the full expansion of p(x) has exponentially many
terms. This may be a powerful tool, if extended to the case of both negative and
positive bk, enabling the counting of approximate solutions for problems with
known generating polynomials of solutions by weight. For instance, counting of
large graph matchings [8] or short spanning trees [1] can be done via generating
polynomials (which, in general, have exponentially many terms). This direction
is our primary future work.

We have also showed that our algorithm can be extended, given threshold
weights L1, . . . , Lm, and polynomially many graphs G1, . . . , Gm, to count s-t
paths that have, at the same time, length at most L1 in G1 and at most (1+δ)Li

in Gi, i = 2, . . . ,m. In the case when m = 2, this algorithm is necessary for
application of the aforementioned robust optimization method [2] to the various
mentioned optimization problems.

Acknowledgements. We thank Octavian Ganea and anonymous reviewers
for their suggestions and comments. The work has been partially supported
by the Swiss National Science Foundation under grant no. 200021_138117/1,
and by the EU FP7/2007-2013, under the grant agreement no. 288094 (project
eCOMPASS).

Counting Approximately-Shortest Paths in Directed Acyclic Graphs 167

References

1. Broder, A.Z., Mayr, E.W.: Counting minimum weight spanning trees. J. Algo-
rithms 24, 171–176 (1997)

2. Buhmann, J.M., Mihalák, M., Šrámek, R., Widmayer, P.: Robust optimization in
the presence of uncertainty. In: Proc. 4th Conference on Innovations in Theoretical
Computer Sciencei (ITCS), pp. 505–514. ACM, New York (2013)

3. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology 268(1), 78–94 (1997)

4. Chen, T., Kao, M.Y., Tepel, M., Rush, J., Church, G.M.: A dynamic programming
approach to de novo peptide sequencing via tandem mass spectrometry. Journal of
Computational Biology 8(3), 325–337 (2001)

5. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge university press
(1998)

6. Dyer, M., Frieze, A., Kannan, R., Kapoor, A., Perkovic, L., Vazirani, U.: A mildly
exponential time algorithm for approximating the number of solutions to a multi-
dimensional knapsack problem. Combinatorics, Probability and Computing 2(3),
271–284 (1993)

7. Gopalan, P., Klivans, A., Meka, R., Štefankovič, D., Vempala, S., Vigoda, E.: An
FPTAS for # knapsack and related counting problems. In: Proc. 52nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 817–826 (2011)

8. Jerrum, M.: Two-dimensional monomer-dimer systems are computationally in-
tractable. Journal of Statistical Physics 48(1-2), 121–134 (1987)

9. Karp, R.M.: Reducibility among combinatorial problems. Springer (1972)
10. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration,

and Search (1998)
11. Lu, B., Chen, T.: A suboptimal algorithm for de novo peptide sequencing via

tandem mass spectrometry. Journal of Computational Biology 10(1), 1–12 (2003)
12. Mihalák, M., Šrámek, R., Widmayer, P.: Counting approximately-shortest paths

in directed acyclic graphs. arXiv preprint arXiv:1304.6707 (2013)
13. Naor, D., Brutlag, D.: On suboptimal alignments of biological sequences. In:

Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS,
vol. 684, pp. 179–196. Springer, Heidelberg (1993)

14. Štefankovič, D., Vempala, S., Vigoda, E.: A deterministic polynomial-time ap-
proximation scheme for counting knapsack solutions. SIAM Journal on Comput-
ing 41(2), 356–366 (2012)

15. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

16. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

Author Index

Adamaszek, Anna 132
Asahiro, Yuichi 24

Boria, Nicolas 37
Bougeret, Marin 73
Byrka, Jaroslaw 85

Coelho, Erika M.M. 97
Cornelissen, Kamiel 120
Croce, Federico Della 37
Cygan, Marek 144

Dourado, Mitre C. 97

Fenner, Trevor 1

Gärtner, Bernd 108
Giroudeau, Rodolphe 73

Hajiaghayi, MohammadTaghi 49
Hoeksma, Ruben 120

Jansson, Jesper 24
Jeż, �Lukasz 144

Khandekar, Rohit 49
Kortsarz, Guy 49

Lachish, Oded 1
Li, Shanfei 85

Manthey, Bodo 120
Mihalák, Matúš 156
Miyano, Eiji 24

Narayanaswamy, N.S. 120
Neiman, Ofer 12
Nutov, Zeev 49

Ono, Hirotaka 24

Paschos, Vangelis Th. 37
Pferschy, Ulrich 61
Popa, Alexandru 1

Rahul, C.S. 120
Renault, Marc P. 132
Rosén, Adi 132
Rybicki, Bartosz 85

Sampaio, Rudini M. 97
Schauer, Joachim 61
Šrámek, Rastislav 156

Tyagi, Hemant 108

van Stee, Rob 132

Watrigant, Rémi 73
Widmayer, Peter 156

	Preface
	Organization
	Table of Contents
	Min-Sum 2-Paths Problems
	1 Introduction
	2 Preliminaries
	2.1 The Min-Sum 2 Paths Orientation Problem

	3 Algorithm Overview and Definitions
	4 Algorithm 1
	5 Algorithm 2
	6 Main Results
	References

	Low Dimensional Embeddings of Doubling Metrics
	1 Introduction
	2 Preliminaries
	3 Low Dimensional Embedding of the Laakso Graph
	3.1 Construction of the Embedding
	3.2 Analysis of the Embedding

	4 Embedding Doubling Metrics to Low Dimensional �∞
	4.1 Construction
	4.2 Proof

	References

	Degree-Constrained Graph Orientation:Maximum Satisfaction and Minimum Violation
	1 Introduction
	2 Preliminaries
	3 Greedy Algorithms for Min W-Light and Min(W + 1)-Heavy
	4 (In)approximability of the Problems
	5 Degree-Bounded Graphs
	6 Concluding Remarks
	References

	On the MAX MIN VERTEX COVER Problem
	1 Introduction
	2 Approximation of max min vertex cover in GeneralGraphs
	3 Parameterized Analysis
	References

	On Fixed Cost k-Flow Problems
	1 Introduction
	1.1 Problems Considered
	1.2 Previous Work and Our Results

	2 Hardness of Fixed Cost k-Flow (Theorem 1)
	3 Bipartite Fixed-Cost k-Flow (Theorem 2)
	3.1 An O(√k log k) Approximation Algorithm
	3.2 A Bicriteria Approximation Algorithm

	4 Generalized-P2P (Theorem 3)
	4.1 An Exact Algorithm on Trees
	4.2 A 2-Approximation Algorithm for the Case b(V) = 0
	4.3 An O(log |V + ∪ V −|)-Approximation Algorithm
	4.4 An O(log(2 + b(V)))-Approximation Algorithm

	References

	Approximating the Quadratic Knapsack Problem on Special Graph Classes
	1 Introduction
	1.1 Connections to the Densest k-Subgraph Problem
	1.2 Contributions of This Paper

	2 QKP on Graphs of Bounded Treewidth
	3 PTAS for QKP on Certain Graph Classes
	4 Hardness for 3-Book Embeddings
	References

	Approximating the Sparsest k-Subgraphin Chordal Graphs
	1 Introduction
	1.1 Related Problems
	1.2 Contributions and Organization of the Paper
	1.3 Notations and Definitions

	2 2-Approximation in Chordal Graphs
	2.1 Idea of the Algorithm
	2.2 Algorithm and Analysis

	3 NP-Hardness in Chordal Graphs
	4 Approximation in Proper Interval Graphs
	References

	Improved Approximation Algorithm for k-LevelUFL with Penalties, a Simplistic Viewon Randomizing the Scaling Parameter
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Simple Version of Li’s Argument
	2.1 Notation
	2.2 Factor Revealing LP

	3 Reduction from k-Level UFL with Uniform Penaltiesto k-Level UFL
	4 Extended LP Formulation
	5 Algorithm for k-Level UFL with Penalties
	5.1 Close and Distant Facilities
	5.2 Clustering
	5.3 Randomized Facility Opening

	6 Analysis
	6.1 Complete Solution and “One-Level” Description
	6.2 Penalty Discussion
	6.3 Approximation Ratio

	References

	Inapproximability Results for GraphConvexity Parameters
	1 Introduction
	2 The P3-hull Number Is APX-hard
	3 Inapproximability of the P3-Radon Number and theP3-convexity Number
	4 Inapproximability of the P3-interval Number
	5 Inapproximability of the P3-Carath´eodory Number
	6 Inapproximability of Geodetic Convexity Parameters
	7 Appendix: Approximation Preserving Reductions
	References

	Continuum Armed Bandit Problemof Few Variables in High Dimensions
	1 Introduction
	2 Problem Setup and Main Results
	3 Analysis When k Active Coordinates Are Fixed acrossTime
	4 Analysis When k Active Coordinates Change acrossTime
	5 Concluding Remarks
	References

	Approximability of Connected Factors
	1 Introduction
	1.1 Problem Definitions and Preliminaries
	1.2 Previous Results
	1.3 Our Results

	2 Structural Properties
	3 Approximation Algorithms
	3.1 3-Approximation for Min-d-RCS and Min-d-R2CS
	3.2 (r + 1)-Approximation

	4 Hardness Results
	4.1 TSP-Inapproximability
	4.2 Hardness for Growing d

	5 Further Algorithms
	5.1 2-Approximation for d ≥ n/3
	5.2 Decision Problem for d = �n2� − 1
	5.3 Approximating Max-d-ARCS

	6 Open Problems
	References

	Reordering Buffer Management with Advice
	1 Introduction
	2 The Model
	3 Structure of Advice and the Algorithm
	4 Constructing the Advice Sequence
	5 Analysis of ALG
	6 Optimality Lower Bound
	References

	Online Knapsack Revisited
	1 Introduction
	1.1 Previous and Related Results
	1.2 Our Results

	2 Preliminaries
	2.1 Max-objective and Different Numbers of Bins

	3 Removable Variants
	3.1 Upper Bounds
	3.2 Lower Bounds

	4 Non-removable Variants
	4.1 Upper Bounds (Proportional Case)
	4.2 Lower Bounds

	5 A Note on Adaptive Adversary
	6 Conclusion and Open Problems
	References

	Counting Approximately-Shortest Paths in Directed Acyclic Graphs
	1 Introduction
	1.1 Dynamic Programming as Shortest-Path Computation in DAGs
	1.2 Counting Approximate Solutions Is #P-complete

	2 Approximation Algorithms
	2.1 Counting Solutions of Given Lengths in Multiple Instances

	3 Concluding Remarks
	References

	Author Index

