
Implementation of the Iterative Relaxation

Algorithm for the Minimum Bounded-Degree
Spanning Tree Problem �

Attila Bernáth, Krzysztof Ciebiera, Piotr Godlewski, and Piotr Sankowski

Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
{athos,ciebie,pgodlewski,sank}@mimuw.edu.pl

Abstract. In the Minimum Bounded-Degree Spanning Tree Problem
we want to find a minimum cost spanning tree that satisfies given degree
bounds. For this problem a very good quality solution can be found using
the iterative relaxation technique of Singh and Lau STOC’07: the cost
will not be worse than the cost of the optimal solution, and the degree
bounds will be violated by at most one. This paper reports on the ex-
perimental comparison of this state-of-art approximation algorithm with
standard, although well-tuned meta-heuristics. We have implemented the
Iterative Relaxation algorithm of Singh and Lau and speeded it up using
several heuristics including row generation and combinatorial LP pivot-
ing. On the other hand, as the heuristic point of reference we have chosen
local search techniques in a Simulated Annealing framework, where we
allow the violation of degree bounds by one. In such setting there are
two natural objectives for comparison: the cost of the solution, and the
number of violated degree bounds. If we keep the number of violated
constraints fixed in both algorithms then Iterative Rounding usually out-
performs Simulated Annealing by several percents.

1 Introduction

This paper is a report on the implementation and experimental verification of the
Iterative Relaxation method for the Minimum Bounded-Degree Spanning Tree
Problem (MBDSPT Problem). In this problem we are given an undirected graph
G = (V,E), costs for the edges c : E → R+ and degree bounds b : V → Z+.
We are looking for the spanning tree T of G = (V,E) that minimizes the total
cost c(T) =

∑
t∈T c(t) and satisfies degree constrains given by b: namely the

number dT (v) of tree edges incident to a node v should not exceed b(v) at any
v. This problem has many applications in situations where we want to connect
nodes, but we have physical constraints on the number of connections (wires)
we can attach to a node. In particular, this problem arised for the first time
in the context of backplane wiring among pins where no more than a fixed
number of wire-ends could be wrapped around any pin on the wiring panel [4].
Similar problem is encountered in VLSI design, where the limit on the number of

� Research was supported by the ERC StG project PAAl no. 259515.

J. Gudmundsson and J. Katajainen (Eds.): SEA 2014, LNCS 8504, pp. 74–86, 2014.
c© Springer International Publishing Switzerland 2014

Implementation of the IR for the MBDST 75

transistors that can be driven by the output current of a transistor is the degree
bound for VLSI routing trees [2]. Another type of applications is the design of a
reliable communication network, since the maximum degree in a spanning tree
is a measure of vulnerability to single-point failures [14].

Observe that setting all the degree bounds to 2 gives a reformulation of the
Minimum Cost Hamiltonian Path Problem. The problem is hopeless to approx-
imate, unless the cost function satisfies some additional property, like triangle
inequality (the inapproximability can be generalized to degree bounds larger
than two [14]). Hence, two questions naturally arise. First is theoretical: can we
propose any theoretically good solution? The second is practical: would such
solution be of practical importance, or would meta-heuristic approaches outper-
form it? There is vast amount of work that try to answer both questions.

From theoretical point of view, after taking into account the mentioned hard-
ness results, the best possible solution has been found in [15] – there is no penalty
in cost but some of the degree bounds can be violated. There was a long line
of research of this type [14,6,7], ending with the ultimate paper by Singh and
Lau [15] that shows that we can find a spanning tree T with cost no more than
the cost of the optimal solution of the original problem, and the price we pay is
that some of the degree bounds might be violated by one, that is dT (v) might
be b(v) + 1 for some nodes. The technique used is the so-called Iterative Relax-
ation Technique.1 On a high level the algorithm works as follows: we formulate
a natural LP relaxation of the problem; we find a basic optimal solution of this
relaxation; we remove edges with zero value in the LP solution; and we remove a
degree bound at some node v where the number of remaining edges is not more
than b(v) + 1. We iterate the above procedure till the solution found is integral.
The main technical ingredient of the method is to prove that properties of basic
solutions assure that there always exists a removable degree bound.

On the other hand, the literature on experimental solution to the MBDSPT
Problem is rather vast. The first implemented algorithm seems to be the branch-
and-bound one given by Narula and Ho [12]. Since then almost every metaheuris-
tic framework (e.g., ant-colony, simulated annealing, or genetic algorithms) has
been implemented and tested for this problem. In this paper, we concentrate
mostly on the implementation issues of the Iterative Relaxation (IR) Technique,
and due to space limitation of this submission we refer the reader for the review
on the existing work to the two recent papers on local search techniques [16] and
Lagrangian relaxation [1].

We have implemented the IR Algorithm of Lau and Singh [15] and optimized
it so that it can solve instances of reasonable size. There are several non-trivial
issues here that need to be solved. The main issue is that the natural LP relax-
ation contains an exponential number of constraints (there exists a polynomial
sized version of this LP, but it is still too large for LP solvers). We used a row
generation technique to overcome this problem, and we tried several heuristics
to speed it up. We also implemented a version that solves the LP relaxation only
once, and for subsequent iterations it uses a “combinatorial pivoting” subroutine.

1 This technique will be explained in more detail in Section 2.

76 A. Bernáth et al.

The implemented IR algorithm is compared with some local search techniques
in a simulated annealing (SA) framework. We make both algorithms work with
the same assumptions, i.e., we allow the SA algorithm to violate every degree
bound by one. We note that our SA algorithm is well tuned to the problem
and is able to compete with state-of-art techniques [9,16,1]. Actually, both IR
and SA perform much better than solutions implemented in [9,16] and in many
cases deliver optimal solutions. You should however, keep in mind that a fair
comparison here is hard, as there are two candidate objectives to consider when
comparing existing approaches. First, the most natural one is the cost. Second,
on the other extreme is the number of violated constraints (e.g., when we are
looking for a Hamiltonian path in an unweighted graph, then we don’t care
about the cost, but we do care about the number of violated constraints). The
problem in this comparison is that standard IR does not allow to control the
number of violated constraints. Although it is allowed to violate all constraints
by one, it actually produces solutions that violate many fewer constraints then
SA. Hence, fair comparison of both method requires to develop a method that
allows to control the number of violations in IR. We achieve this by rounding
different number of variables in each round of the IR. On the other hand, in
SA one can control the number of violated constraints by simply adding this
requirement to the objective function. Equipped with this methods we observe
experimentally that IR performs visibly better then SA when few violations are
allowed. In such case the solution cost is lower by 10-20%. When we allow more
violations the difference between the methods becomes smaller, but generally IR
slightly outperforms SA.

We close the section by introducing some notation. For a graph G = (V,E)
and a subset S ⊆ V we write δG(S) for the set of edges with exactly one endnode
in S, and IG(S) for the set of edges with both endnodes in S (we note that this
notation differs from the one used in [15]). Let furthermore dG(S) = |δG(S)|,
and we will apply the notation δF (S) and dF (S) as well even if F ⊆ E is only
some subset of edges. We will omit the subscript and write I(S), δ(S), etc. when
it causes no confusion. We furthermore simplify dG({v}) to dG(v). For a vector
x : E → R and a set F ⊆ E we let x(F) =

∑
f∈F x(f). In a directed graph

D = (V,A) let δin(S) (δout(S)) denote the set of arcs entering (leaving, resp.)
a set of nodes S. An arborescence is a directed spanning tree in which every
node is entered by at most 1 arc (that is, a spanning tree oriented out of some
node r). For nodes s, t ∈ V , a subset S with s ∈ S ⊆ V − t is called an st-set.

2 The Iterative Relaxation Algorithm

In this section we briefly recall the Iterative Relaxation Algorithm of Singh and
Lau [15] for the Minimum Bounded-Degree Spanning Tree Problem. A nice ac-
count of this method (with many other similar iterative algorithms) can be found
in the book of Lau, Ravi and Singh [10]. Let us start with some preliminaries.

Theorem 1 (Edmonds [5]). Given a graph G = (V,E), the convex hull of
incidence vectors of spanning trees is described by the following system of linear
inequalities.

Implementation of the IR for the MBDST 77

x ∈ R
E, x ≥ 0, (1)

x(I(S)) ≤ |S| − 1 for any non-empty S � V, (2)

x(E) = |V | − 1. (3)

Consider the following IP formulation of the MBDSPT Problem: we want to find
an integer vector x ∈ Z

E satisfying (1)-(3) and x(δ(v)) ≤ b(v) for every v ∈ V ,
and we want to minimize

∑
e∈E c(e)x(e). If we drop the integrality constraints,

we obtain an LP relaxation called the Subtour LP.

The Subtour LP: Assume that we are given an MBDSPT Problem with graph
G = (V,E), edge costs c : E → R+, and degree bounds b : V → Z+. Let us
introduce the following polyhedron for some W ⊆ V and F ⊆ E (W is the set
of nodes where the degree bound is not yet removed, while F is the subset of
edges not yet fixed to zero).

SubP (W,F) = {x ∈ R
E : x ≥ 0, (4)

x(I(S)) ≤ |S| − 1 for any non-empty S � V, (5)

x(E) = |V | − 1, (6)

x(δ(v)) ≤ b(v) for every v ∈ W, (7)

x(e) = 0 for e /∈ F}. (8)

Note that x(e) ≤ 1 is implied by the inequalities (5) above for any edge
e = uv ∈ E (take S = {u, v}). Note that we could get rid of the dependence
on F by simply deleting the edges of E − F as in [10]: we decided not to do
so, because this is closer to our implementation (however, we will often ignore
the reference to F and simply write SubP (W) instead of SubP (W,F)). Given a
vector x ∈ SubP (W,F), a constraint in the system above that holds with equal-
ity for x will be called x-tight (or simply tight, if no confusion can arise). The
constraints of form (5) and (6) will be called set constraints; those of form (7)
will be called degree constraints, whereas the first ones (4) are called non-
negativity constraints. Let SubP = SubP (∅, E) be the polyhedron without
the degree bounds (that is, the convex hull of spanning trees by Theorem 1),
and let SubPb = SubP (V,E) be the polyhedron with all the degree constraints.

The linear program below will be called the Subtour LP and will be denoted
by SubLP (W,F), whereW ⊆ V and F ⊆ E (we will often ignore the dependence
on F and write SubLP (W) only).

min{
∑

e∈E

c(e)x(e) : x ∈ SubP (W,F)}

Clearly, the optimum value of SubLP (V,E) is a lower bound on the optimum
of the MBDSPT Problem. The following theorem gives a useful property of
extreme-point solutions of this LP.

Theorem 2 (Singh and Lau, [15]). Assume that x∗ is an extreme-point so-
lution of SubLP (W,F) and let E∗ = {e ∈ F : x∗(e) > 0} ⊆ F be the support of
x∗. Then there exists at least one node v ∈ W such that dE∗(v) ≤ b(v) + 1.

78 A. Bernáth et al.

Such a degree bound is called removable. The IR Algorithm makes use of this
fact by iteratively fixing more and more edges to zero, and relaxing the degree
bounds that become removable.

2.1 The Algorithm

The Iterative Relaxation Algorithm of Singh and Lau [15] for the MBDSPT
Problem is as follows.

Algorithm IR MBDSPT(G, c, b)

begin

INPUT: A graph G = (V,E), edge costs c, and degree bounds b(v) for every v ∈ V .

OUTPUT: A spanning tree T of G with cost at most the optimum value of SubLP (V,E) and

satisfying dT (v) ≤ b(v) + 1 at every node v.

1.1. Initialize W to V and F to E.

1.2. SolveLP: Find an optimal extreme-point solution x∗ of SubLP (W,F).

1.3. While x∗ is not an integer vector

1.4. Let E∗ = {e ∈ F : x∗(e) > 0} be the support of x∗.
1.5. RelaxLP: Let W ′ be W minus some of the nodes v ∈ W with dE∗(v) ≤ b(v) + 1.

1.6. ResolveLP: Find an extreme-point solution x′ of SubLP (W ′, E∗) satisfying cTx′ ≤
cTx∗ (such solution exists, since x∗ is feasible to SubLP (W ′, E∗)).

1.7. Set W = W ′, F = E∗, and x∗ = x′.
1.8. End while

1.9. Return x∗.
end

Note that in the Relaxation Step we can remove an arbitrary subset of re-
movable degree constraints, but we have to relax at least one of them in order
to make progress (i.e., x′ = x∗ otherwise). We used this observation for finding
different solutions for single instances: see details in Section 4.2. Note also that
the Resolve Step can simply resolve the LP, but the algorithm also works if x′

is not an optimal solution of SubLP (W ′, E∗). This can be used to speed up the
algorithm.However, choosing a suboptimal x′ can degrade the quality (∼ cost)
of the final solution returned by the algorithm.

The main technical difficulty is Step 1.2: finding an optimal extreme point so-
lution of an LP with exponentially many constraints. We tried many approaches
to handle this issue. One possibility is using a polynomial sized LP instead,
e.g., the Extended Bidirected LP. However, this LP is still too large to allow
for efficient solutions. Instead we used row generation method together with ex-
ponential size Subtour LP. Algorithm obtained this way is not guaranteed to
run in polynomial time, but performs very well in practice. We have tested the
following implementation variants of Algorithm IR MBDSPT

1. Find Most Violated: variant with row generation for the Subtour LP done
by choosing the most violated constraint,

2. Find First Violated: variant with row generation for the Subtour LP done
by choosing the first violated constraint from a random source,

Implementation of the IR for the MBDST 79

3. Combinatorial Pivoting: variant with row generation for the Subtour LP
done by choosing the first violated constraint from a random source and
solving the LP only once using the combinatorial pivoting.

Let t1, t2 and t3 be the average running times (on our benchmark instances)
of the respective variants. Row generation (finding violated constraints) for the
Subtour LP was the bottleneck of Find Most Violated. Changing the row gen-
eration method in Find First Violated improved the average running time con-
siderably: t2 ≈ 0.1 · t1.

Solving the LP for the first time (Step 1.2 of Algorithm IR MBDSPT) was
the bottleneck of Find First Violated. 85% of running time t2 was spent on that
step, and only the the remaining 15% was needed for the loop in Steps 1.3 - 1.8.
The third variant: Combinatorial Pivoting improved the running time of this
loop by 60%. It did not, however, have a significant effect on the total running
time of the algorithm, as this loop was not the bottleneck of the implementation
(that is, the average running time of Combinatorial Pivoting became t3 ≈ 0.85 ·
t2 + 0.4 · 0.15 · t2 ≈ 0.9 · t2).

Combinatorial Pivoting did however decrease the number of violated degree
bounds by a factor of up to 10, while only increasing the solution cost by 2%. This
fastest version of the Iterative Relaxation Algorithm solved the largest problems
in our benchmarks (cliques of 700 nodes) in approximately 15 minutes.

3 Local Search

We have tried a few approaches to local search and we come to the conclusions
that Simulated Annealing [8] gives the best results in our case. We limit the
running time of our Local Search to 10s: we have observed that there is no
substantial improvement in the cost of the solution after this time limit. Our local
search algorithm works as follows. An initial spanning tree T of G is selected.
We used a BFS tree rooted at a random node, or a Minimum Cost Spanning
Tree. However, this initial choice has no impact on the obtained solution. Then
we try to improve T by finding two edges e1 ∈ T and e2 ∈ G − T such, that
Tnew = T − e1 + e2 is a spanning tree of G. The penalty of the tree T is defined
as follows.

P (T) =
∑

e∈T

c(e) + cmax ·
∑

v∈V

max(dT (v)− b(v)− 1, 0), (9)

where cmax is the maximum cost of edge in G. In other words the penalty is
equal to the sum of costs of edges in T plus the penalty for each unsatisfied
degree bounds. For every unsatisfied degree bound we add penalty as big as the
biggest edge weight times the height of the violation.

The standard hill climbing method tries to find Tnew with lower penalty
than T , whereas in the SA method the penalty can increase with the following
probability

p(T, Tnew) = exp

(
−P (Tnew)− P (T)

t

)
,

80 A. Bernáth et al.

where t is ”temperature” of the process that continually decreases during the
execution of the algorithm. We use exponential cooling scheme where the tem-
perature of the next step is equal to αt for a constant α < 1.

We have tried two methods of finding Tnew. They both start by selecting a
random non-tree edge e1 ∈ G − E(T) and finding a fundamental cycle C in
T + e1. The first one chooses e2 to be a random edge in C − e1 whereas the
second one sets e2 to be the edge on the cycle C that decreases the penalty to
the largest extent. In the worst case, this selection takes O(d) time, where d is
the diameter of the tree T which is upper bounded by |V |. In our benchmarks
this implementation ran fast enough, so that the SA process always finished in
10 seconds, and longer cooling schemes did not give better quality solutions.

We have run experiments on both hill climbing and simulated annealing. The
latter works visibly better when the degree bounds are small. Moreover, we
have tried different penalties for violations of degree bounds and we have found
out that setting penalties as in (9) gave the best results. In Figure 1 the results
obtained using three implementations of the local search technique are compared
using TSPLIB data

– the hill climbing (HC),
– the simulated annealing with random choice of edges e1 and e2 (SA 1),
– the simulated annealing with random choice of edge e1 and respective best

choice of edge e2 (SA 2). Later comparisons will compare SA 2 with IR.,
since SA 2 gave the best results of three tested algorithms.

10 20 30 40 50 60 70 80 90 100
Graph size

0

2000

4000

6000

8000

10000

12000

14000

R
e
s
u
lt HC

SA 1

SA 2

Fig. 1. Comparison of different implementations of local search techniques. Graph size
is the number of vertices. The y axis shows the cost of a DBST found by hill-climbing
(HC) and two variants of Simulated Annealing (SA 1, SA 2).

4 Experimental Results

We implemented the algorithms described above in C++ (gcc-4.6). As a part
of this project a generic framework for implementing IR methods has been de-
veloped and became a part of the PAAl library [13]. We also used the LEMON
library [11] that proved especially useful for its interface towards LP solvers –
we used the CPLEX LP solver [3]. All of our programs were compiled with -O3

optimization option and run on Intel Xeon CPU E5649@2.53GHz machine.

Implementation of the IR for the MBDST 81

4.1 Test Cases

We tested the algorithms on the following data sets.

TSPLIB Instances: We have taken symmetric TSP instances from the TSPLIB
library. We interpreted these as MBDSPT Problem instances by setting the
degree bounds identically to 2.

Instances From [9]: We compared the results provided by the algorithms with
those found by the heuristics of [9] in terms of the cost function. Using SA we
obtained better quality results, e.g., in 16 out of 31 cases we improved heuristi-
cally obtained solutions of [9]. On the other hand, in all tests with degree bounds
3, 4 or 5 (except tests str1009 and sym704 with degree bound = 3), IR found
an optimal integral solution for the initial LP – without violating any degree
bounds. For 39 out of 118 tests with degree bounds = 2 the IR also found an
optimal (integral) solution for the initial LP.

Instances From [16]: We also compared the results of our algorithms on instances
generated using the algorithm described in [16]. For all of the instances generated
that way the IR found an optimal (integral) solution for the initial LP. Our SA
implementation with limiting of the allowed number of constraint violations to
0 also found results with the same costs as the IR.

Random Generators: We used four random generators. In all generators we
generate connected graphs with a given number of nodes and edges, we assign
edge costs and degree bounds so that the problem is feasible. Let U(N) denote a
random integer variable uniformly distributed in the range [1, N]. The generators
produce the following types of graphs:

– Generator 1: we generate a random spanning tree T and set the edge costs
independently from U(200) (the random spanning tree is generated as fol-
lows: add the nodes one by one and connect the new node with a randomly
chosen previous one). Then we set the degree bounds to be dT (v), so that
T becomes a feasible solution and c(T) is an upper bound on the cost of
an optimal feasible solution. Then we add more edges between nodes not
connected so far, with costs from 100 + U(200) (thus we don’t destroy the
solution T very much). Our observations show that the randomly generated
tree T rarely has nodes with high degrees.

– Generator 2 uses the ideas from [2]: we generate a graph that has a unique
Minimum Cost Spanning Tree (MST), but this tree has high vertex degrees.
We set the degree bounds so that the MST is not a feasible solution, but
we make sure that there exists a feasible solution. This is achived in the
following way. First we generate a random spanning tree T = (V,E) (as in
the previous generator), with costs from 100+U(100), and we set the degree
bounds to be dT (v) for every v (again c(T) is an upper bound on the cost
of an optimal feasible solution). Then we form the MST by choosing node
disjoint stars (each of size roughly

√|V |), and connecting them in a random
way to get a spanning tree. The costs of the edges in this spanning tree are

82 A. Bernáth et al.

chosen from U(100), therefore indeed this tree will be the unique MST (if we
happen to use an edge created previously, we decrease its cost, so the cost of
T might decrease). Finally we add more edges between nodes not connected
so far, with costs from 100 + U(100).

– Generator 3: first we generate a Hamiltonian path with edge costs from
100 + U(100), and set the degree bounds to be equal 2 for every node.
Next we add a unique (non-feasible) MST with high degrees, as detailed
in the previous generator (edge costs from U(100)). Finally we add more
edges between nodes not connected so far, and assign the edge costs from
100 + U(100).

– Generator 4: we generate a clique of k nodes. Edge costs are chosen from
100 + U(100) for all edges except for 3 arbitrary edges incident with an ar-
bitrary node (we call this node the center of the clique), which have costs
form U(100). We repeat the described procedure k times to generate k in-
dependent graphs. Next we treat those graphs as nodes of a new clique and
repeat the above procedure recursively. We add the new edges between the
cliques so that each node that was not the center of a clique in the previous
recursive step gets exactly one new edge to some other clique. We set the
degree bounds to be equal 2 for every node (the generated instance has got
a Hamiltonian path, but it also has a non-feasible MST using all 3 low-cost
edges in some cliques).

4.2 Comparison of IR and SA

First we performed the vanilla test where both IR and SA are allowed to violate
all constraints by one. The comparison of the two methods on TSPLIB instances

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16
IR/SA cost

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(S
A

-I
R

 v
io

la
ti

o
n
s
)/

G
ra

p
h
 s

iz
e

a)

100 200 300 400 500 600 700 800 900 1000
Graph size

0.0

0.2

0.4

0.6

0.8

1.0

1.2
b)

IR cost / SA cost

SA violations / Graph size

IR violations / Graph size

Fig. 2. Comparison of costs and numbers of violated constraints found by IR and SA:
(a) for TSPLIB instances, each point represents a single instance, x axis shows cost
ratio (SA always outperforms IR), y axis shows difference in the number of violations
ratio (IR ouperforms SA in all but one cases) divided by graph size, dashed line is
spline interpolation; (b) for random graphs, x axis shows the number of vertices; SA
outperforms IR in terms of costs but it violates more constraints.

Implementation of the IR for the MBDST 83

is shown in Figure 2 (a). Similarly, we have tested the algorithms on random
graphs obtained from our 4 generators for sizes from 25 to 1100 nodes. The
results for all four graph types are qualitatively the same – Figure 2 (b) gives
results for the first generator. We found out that SA almost always found a
lower cost spanning tree than IR on those four sets of graphs. On the other
hand, IR violates many fewer degree constraints. These results do not give clear
answer which method is better. Hence, in order to obtain more decisive results we
decided to compare the methods when both of them are allowed the same number
of violations. For this comparison we used the Find First Violated version of
Algorithm IR MBDSPT (as described in Section 2.1). While it was 10% slower
than the fastest version, it had the advantage that in each iteration we could
relax more than one constraint. Setting different upper limits on the number of
constraints removed in each Relaxation Step of Algorithm IR MBDSPT gave
different trees as the result of the algorithm. Figures 3 and 4 illustrate the
comparison of numbers of violated constraints and spanning tree costs in selected
cases of random graphs and graphs from TSPLIB. This freedom allows as to
compare both algorithms in case of when the number of violated constrains is
fixed to be the same. We observed that in most of the cases IR finds solutions

0 200 400 600 800 1000
103300

103400

103500

103600

103700

103800

103900

104000

104100

104200

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700
74600

74800

75000

75200

75400

75600

75800

76000

0

10

20

30

40

50

60

70

0 200 400 600 800 10001200
95000

95500

96000

96500

97000

97500

0

10

20

30

40

50

60

70

80

Cost

Violations

Fig. 3. Comparison of costs and number of violated constraints of three random graphs
using IR setting different limits on number of removed constraints (x axis); the left y
axis shows the solution cost and the right y axis the number of violations

0 50 100 150 200 250 300
2480

2485

2490

2495

2500

2505

6

8

10

12

14

16

0 100 200 300 400 500 600
47720

47740

47760

47780

47800

47820

47840

47860

47880

15

20

25

30

35

0 100 200 300 400 500 600
25700

25800

25900

26000

26100

26200

22

24

26

28

30

32

34

36

38

Cost

Violations

Fig. 4. Comparison of costs and number of violated constraints of three TSPLIB graphs
using IR setting different limits on number of removed constraints (x axis); the left y
axis shows the solution cost and the right y axis the number of violations

84 A. Bernáth et al.

having lower cost than SA with the same number of violations. Figures 5 and 6
show results of such comparison using the same set of graphs as in Figures 3

10 20 30 40 50 60

95000

100000

105000

110000

115000

120000

125000

10 20 30 40 50 60

65000

70000

75000

80000

85000

90000

10 20 30 40 50 60 70

85000

90000

95000

100000

105000

110000

115000

120000

125000

130000

SA

IR

Fig. 5. Comparison of IR and SA algorithm on three random graphs. The x axis shows
the number of violated constraints. The y axis shows the solution cost.

6 8 10 12 14 16

2000

2500

3000

3500

4000

4500

15 20 25 30

45000

50000

55000

60000

65000

70000

22 24 26 28 30 32 34 36

20000

30000

40000

50000

60000

70000

80000

SA

IR

Fig. 6. Comparison of IR and SA algorithm on three TSPLIB graphs. The x axis shows
the number of violated constraints. The y axis shows the solution cost.

0 100 200 300 400 500 600 700 800

Graph Size

1.0

1.1

1.2

1.3

1.4

IR
 /

 S
A

 c
o
s
t

Fig. 7. Comparison of IR and SA algorithm on all TSPLIB graphs when the number
of violated constrains in SA is fixed to be the same as violated by IR. The axis x shows
number of vertices. The y axis shows ratio of costs. SA finds better solution only in
case of small graphs. Dashed line is spline interpolation.

Implementation of the IR for the MBDST 85

and 4. These figures demonstrate that when the number of violations is small
the IR outperforms SA usually by a good 10%. On the other hand, when more
violations are allowed this difference decreases, but is still visible in most of
the cases. These results on TSPLIB instances are aggregated on Figure 7. It
shows that SA was able to find only a few solutions that were better then the
ones found by IR. This happened only when graph sizes were small – number
of vertices less or equal to 136. The above results give clear evidence that IR
delivers betters solutions than SA. We note that, although there is a method to
control the number of violated constraints in IR, this method is far from perfect
as it is visible on Figure 4. The results are not monotone and so in order to get
the right number one needs to go through all the possibilities.

Acknowledgements. The authors would like to thank Tamás Király, Marcin
Mucha, Mohit Singh, �Lukasz Sznuk, Piotr Wygocki and the developers of the
LEMON Library for their help.

References

1. Andrade, R., Lucena, A., Maculan, N.: Using Lagrangian dual information to gen-
erate degree constrained spanning trees. Discrete Appl. Math. 154(5), 703–717
(2006), http://www.sciencedirect.com/science/
article/pii/S0166218X0500301X

2. Boldon, B., Deo, N., Kumar, N.: Minimum-weight degree-constrained spanning tree
problem: Heuristics and implementation on an SIMD parallel machine. Parallel
Comput. 22(3), 369–382 (1996)

3. CPLEX, I.I.: High performance mathematical programming engine,
http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer

4. Deo, N., Hakimi, S.: The shortest generalized hamiltonian tree. In: Proceedings
of the 6th Annual Allerton Conference, pp. 879–888. University of Illinois, Illinois
(1968)

5. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1(1), 127–136
(1971)

6. Furer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to
within one of optimal. J. Algorithm 17(3), 409–423 (1994)

7. Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS 2006,
pp. 273–282. IEEE Computer Society, Los Alamitos (2006)

8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

9. Krishnamoorthy, M., Ernst, A.T., Sharaiha, Y.M.: Comparison of algorithms for
the degree constrained minimum spanning tree. J. Heuristics 7(6), 587–611 (2001)

10. Lau, L.C., Ravi, R., Singh, M.: Iterative methods in combinatorial optimization.
Cambridge University Press, Cambridge (2011)

11. Library for Efficient Modeling and Optimization in Networks (LEMON),
http://lemon.cs.elte.hu

12. Narula, S., Ho, C.: Degree-constrained minimum spanning tree. Comput. Oper.
Res. 7, 239–249 (1980)

http://www.sciencedirect.com/science/article/pii/S0166218X0500301X
http://www.sciencedirect.com/science/article/pii/S0166218X0500301X
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://lemon.cs.elte.hu

86 A. Bernáth et al.

13. Practical Approximation Algorithms Library (PAAL),
http://paal.mimuw.edu.pl

14. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Many
birds with one stone: Multi-objective approximation algorithms. In: STOC 1993,
pp. 438–447. ACM, New York (1993),
http://doi.acm.org/10.1145/167088.167209

15. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: STOC 2007, pp. 661–670. ACM, New York (2007)

16. Zahrani, M.S., Loomes, M.J., Malcolm, J.A., Albrecht, A.A.: A local search heuris-
tic for bounded-degree minimum spanning trees. Eng. Optimiz. 40(12), 1115–1135
(2008), http://www.tandfonline.com/doi/abs/10.1080/03052150802317440

http://paal.mimuw.edu.pl
http://doi.acm.org/10.1145/167088.167209
http://www.tandfonline.com/doi/abs/10.1080/03052150802317440

	Implementation of the Iterative RelaxationAlgorithm for the Minimum Bounded-DegreeSpanning Tree Problem
	1 Introduction
	2 The Iterative Relaxation Algorithm
	2.1 The Algorithm

	3 Local Search
	4 Experimental Results
	4.1 Test Cases
	4.2 Comparison of IR and SA

	References

