
A New Linear Kernel for Undirected Planar

Feedback Vertex Set: Smaller and Simpler

Mingyu Xiao�

School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China

myxiao@gmail.com

Abstract. We show that any instance I of the Feedback Vertex Set
problem in undirected planar graphs can be reduced to an equivalent
instance I ′ such that (i) the size of the instance and the size of the
minimum feedback vertex set do not increase, (ii) and the size of the
minimum feedback vertex set in I ′ is at least 1

29
of the number of vertices

in I ′. This implies a 29k kernel for this problem with parameter k being
the size of the feedback vertex set. Our result improves the previous
results of 97k and 112k.

Keywords: Kernelization, Feedback Vertex Set, Planar Graphs.

1 Introduction

A feedback vertex set of a directed or undirected graph is a subset of vertices
intersecting all cycles in the graph. The Feedback Vertex Set problem asks
us to find a feedback vertex set of minimum size in a given directed or undirected
graph. This problem has applications in operating system, computer architecture
communities, database system, rank aggregation and so on [18,16].

It is known that Feedback Vertex Set is NP-hard even in undirected
planar graphs [12]. Due to the importance of this problem, Feedback Vertex
Set has been extensively studied in exact and parameterized algorithms. Exact
algorithms with running time better than the trivial bound of 2n have been
developed recently for both of Feedback Vertex Set in undirected graphs
(UFVS) and Feedback Vertex Set in directed graphs (DFVS) [10,14,15],
where n stands for the number of vertices in the graph. The running time bound
for UFVS has been improved to 1.7266nnO(1) [18] but the best result for DFVS is
still 1.9977nnO(1) by Razgon [15]. As for parameterized algorithms, we consider
the parameterized problems with parameter k being the size of the feedback
vertex set. Let k-UFVS (resp. k-DFVS) denote the problem of checking whether
or not a given undirected (resp. directed) graph has a feedback vertex set of size
at most k. A parameterized problem is fixed-parameter tractable (FPT) if it can
be solved in f(k)poly(n) time, where poly(n) is an arbitrary polynomial function

� Supported by NFSC of China under the Grant 61370071 and Fundamental Research
Funds for the Central Universities under the Grant ZYGX2012J069.

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 288–298, 2014.
c© Springer International Publishing Switzerland 2014

A New Linear Kernel for Undirected Planar Feedback Vertex Set 289

and f(k) is an arbitrary computable function. There is a long list of contributions
to fast FPT algorithms for k-UFVS [13,9,7,6]. Now it can be solved in 3.83knO(1)

time [6]. Whether k-DFVS is FPT or not had been a big open problem in
parameterized algorithms for many years. Finally it was solved affirmatively
by Chen et. al. [8].

Kernelization is one of the most active topics in parameterized algorithms. In
this area, we aim to find a polynomial-time algorithm that reduces any instance
(I, k) of a parameterized problem to an instance (I ′, k′) of this problem such that
k′ ≤ k and the size of I ′ is bounded by a computable function g(k′) of k′, where
(I ′, k′) is called a kernel of this problem and g(k′) is called the size of the kernel.
We are interested in finding kernels of polynomial size. Whether or not k-DFVS
has a polynomial kernel is still an open problem. As for k-UFVS, there is a long
list of contributions to kernelizations. The first polynomial kernel for k-UFVS in
general graphs was developed in [5], which was improved to a cubic kernel [4].
The current best result is the 4k2 kernel by Thomassé [17]. Linear kernels have
been obtained for k-UFVS in some graph classes, such as bounded-genus graphs
and H-minor free graphs [2,11]. For k-UFVS in planar graphs, Bodlaender and
Pennikx [3] gave the first linear kernel of size 112k, which was improved to 97k
by Abu-Khzam and Khuzam [1]. In this paper, we gave a kernel of size 29k,
greatly improving previous results. In fact, all reduction rules in our algorithm
are parameter-independent. It means that even if the parameter k is not part of
the input, our algorithm can still reduce an instance I to an equivalent instance
I ′ such that the size of I ′ is at most 29 times of the size of the solution to I ′.

2 Preliminaries

Let G = (V,E) be an undirected graph with possible parallel edges and self-
loops. The vertex set and edge set of a graph G′ are denoted by V (G′) and E(G′)
respectively. If there is at least one edge between two vertices, we say that the
two vertices are adjacent. For two adjacent vertices, any one is a neighbor of the
other one. For a vertex subset or a subgraph V ′, the set of vertices in V \V ′ (or
V \V (V ′) for a subgraph V ′) adjacent to at least one vertex in V ′ is denoted by
N(V ′). Furthermore, we use NH(V ′) to denote the set N(V ′) ∩H for a vertex
subset H (or N(V ′) ∩ V (H) for a subgraph H). We may denote a singleton set
{a} by a. For a vertex v, the degree of v is defined to be d(v) = |N(v)| and the
number of edges incident on v is denoted by e(v). Then e(v) ≥ d(v) since the
graph may contain parallel edges. A degree-2 vertex is called a strong degree-2
vertex if there are parallel edges between it and any of the two neighbors of it. A
vertex is called non-trivial if it is a strong degree-2 vertex or a vertex of degree
≥ 3. We use (A,B,E) to denote a bipartite graph with edges between two vertex
sets A and B.

The subgraph induced by a vertex subset V ′ ⊆ V is denoted by G[V ′]. A
path v1v2 · · · vr in the graph is called an induced path if there is exactly one
edge between vertices vi and vi+1 for i ∈ {1, 2, · · · , r − 1} and no edge between
vertices vi1 and vi2 with |i1 − i2| ≥ 2. Note that we do not allow parallel edges
in induced paths.

290 M. Xiao

A graph without any cycle is called a forest. A tree is a connected graph
without any cycle. In a forest, a degree-1 vertex is called a leaf-vertex, a vertex
of degree ≥ 2 is called an inner-vertex, and a vertex of degree ≥ 3 is called
a branch-vertex. A path in a tree is called a branch if it is a maximal path
not containing any branch-vertex. Then after deleting all branch-vertices from
a tree, each component is a branch of the tree. A branch is called a leaf-branch
if it contains at least one leaf-vertex as its endpoint and a branch is called an
inner-branch if all of its vertices are degree-2 vertices in the tree.

Contracting a vertex subset or a subgraph V ′ means deleting V ′, introducing
a new vertex v, for any vertex u ∈ V \ V ′ (or u ∈ V \ V (V ′) for a subgraph V ′)
adding x edges between v and u if there are x edges between V ′ and u before
deleting V ′, and adding a self-loop incident on v if there is a cycle in the induced
graph G[V ′] (or subgraph V ′). Contracting an edge means contracting the two
endpoints of it. In our algorithm, we assume that the initial graph is a connected
graph, because if the graph has more than one component we can simply take
each component as the input to solve it.

2.1 Some Properties of Planar Graphs

Here we give some properties of planar graphs. One of them will be used to get
a bound of the vertex number in our analysis and one of them will be used to
show that after executing each of our operations on a planar graph the resulting
graph is still a planar graph.

The famous Euler’s formula gives a relation among the number of vertices,
the number of edges and the number of faces of a planar graph. Let f be the
number of faces of a planar graph G = (V,E). It holds that

|V | − |E|+ f = 2.

This formula can be used to get some upper bound of the edge number in a
planar graph. For a planar graph, each edge belongs to 2 faces and each face
contains at least 3 edges. For a bipartite planar graph, each edge belongs to 2
faces and each face contains at least 4 edges (since the bipartite graph has no
odd cycle). Then by Euler’s formula, we can get

Proposition 1. For any planar graph, it holds that

|E| ≤ 3|V | − 6 (1)

and, for any bipartite planar graph, it holds that

|E| ≤ 2|V | − 4. (2)

It is also easy to observe the following.

Proposition 2. After applying any one of the following operations on a planar
graph, the resulting graph is still planar

A New Linear Kernel for Undirected Planar Feedback Vertex Set 291

(i) deleting a vertex or an edge,
(ii) contracting an edge,
(iii) adding an edge between two adjacent vertices or two neighbors of a degree-2
or degree-3 vertex, and
(iv) adding a degree-2 vertex adjacent to a pair of adjacent vertices.

3 Reduction Rules

Since that all the reduction operations in the paper are parameter-independent,
we do not include the parameter when we discuss our reduction operations.
A reduction rule is a procedure that takes a planar graph G as the input and
outputs a planar graph G′ and a set S0 ⊆ V such that for any minimum feedback
vertex set S′ of G′, the union S0 ∪ S′ is a minimum feedback vertex set of G.
In what follows, when introducing a reduction rule, we assume that all previous
reduction rules cannot be applied on the current instance anymore.

It is easy to observe the following reduction rules to deal with vertices having
self-loops and some vertices of degree at most 2 in the graph (except strong
degree-2 vertices).

Rule 1. If there is a cycle contains only one vertex (a self-loop incident on the
vertex), delete the vertex from the graph and put it to S0.

Rule 2. For a degree-1 vertex v,
(i) delete v from the graph if there is only one edge between v and its unique
neighbor, and
(ii) delete v and its unique neighbor u and put u to S0 if there are parallel edges
between v and u.

Rule 3. For a degree-2 vertex v with two neighbors u1 and u2,
(i) delete v and add an edge between u1 and u2 if there are only two edges incident
on v, and
(ii) delete v and ui1 and put ui1 to S0 if there are parallel edges between v and
ui1 but only one edge between v and ui2 , where {i1, i2} = {1, 2}.
Note that after applying the above reduction rules all the vertices in the graph
are non-trivial vertices. This property will be used in our analysis. In order to
get a kernel of the problem, we need to reduce some local structures where a
large number of vertices are only adjacent to a few vertices. Next, we will design
some rules for this kind of local structures.

Lemma 1. Let G = (V,E) be a graph such that all above reduction rules can
not be applied anymore. If there is a vertex subset V ′ ⊂ V such that |V ′| ≥ 3,
the induced graph G[V ′] has no cycle, and |N(V ′)| ≤ 2, then there is a minimum
feedback vertex set of G containing all vertices in N(V ′).

Proof. We know that |N(V ′)| = 2 (because if |N(V ′)| = 1 then either Rule 2
or Rule 3 can be applied on any leaf-vertex in G[V ′]). Let N(V ′) = {w1, w2}.

292 M. Xiao

There is no degree-0 vertex in G[V ′], any degree-1 vertex in G[V ′] is adjacent to
both of w1 and w2 in G, and any degree-2 vertex in G[V ′] is adjacent to at least
one of w1 and w2 in G.

If there are at least three degree-1 vertices a1, a2 and a3 in G[V ′], then
any minimum feedback vertex set S of G contains at least two vertices in
{a1, a2, a3, w1, w2}. Note that after deleting w1 and w2 from G, no vertex in V ′

is contained in a cycle. We know that {w1, w2} intersects any cycle containing at
least one vertex in V ′ ∪ {w1, w2}. Thus, S′ = S \ {a1, a2, a3, w1, w2} ∪ {w1, w2}
is still a minimum feedback vertex set of G. If there are at most two degree-1
vertices in G[V ′], then G[V ′] can only be a path P . There are at least three
vertices in P since |V ′| ≥ 3. Any no-endpoint vertex in P is adjacent to at least
one vertex in {w1, w2} in G. It is easy to see that we need at least two vertices to
intersect all cycles in the subgraph G[V ′ ∪ {w1, w2}]. Then any minimum feed-
back vertex set S of G contains at least two vertices in V ′ ∪ {w1, w2}. If S does
not contain both of w1 and w2, then we replace the vertices in (V ′∪{w1, w2})∩S
with {w1, w2} in S to get another minimum feedback vertex set of G. So there
is always a minimum feedback vertex set containing both vertices in N(V ′). 	

This lemma can be used to get reduction rules to deal with some vertex-cuts
of size at most 2. However, our algorithm only uses a very special case where
|V ′| = 3.

Rule 4. Let P = v1v2v3 be an induced path in G such that |N(P)| ≤ 2. Delete
N(P) from the graph and put all vertices in N(P) to S0. (See Figure 1 (a))

Fig. 1. Illustrations for Rules 4 and 5

The next three rules are also used to deal with some induced paths with small
number of neighbors.

A New Linear Kernel for Undirected Planar Feedback Vertex Set 293

Rule 5. Let v0v1v2v3 be an induced path in G where each vertex in V ′ =
{v1, v2, v3} is a non-trivial vertex and |N(V ′)| = 3. Let N(V ′) = {v0, w1, w2}
and V ′′ = {v1, v2, v3, w1, w2}.
(i) If the size of the minimum feedback vertex set of the induced subgraph G[V ′′]
is at least 2, delete w1 and w2, and put the two vertices to S0; and
(ii) If the size of the minimum feedback vertex set of the induced subgraph G[V ′′]
is 1, add a new edge between w1 and w2, and contract edge v2v3 into a single
vertex v2. (See Figure 1 for an illustration)

Proof. Each vertex in V ′ is adjacent to at least one vertex in {w1, w2} and v3 is
adjacent to both of w1 and w2, because any vertex in V ′ is non-trivial and none
of v2 and v3 can be adjacent to v0.

(i): When the size of the minimum feedback vertex set of G[V ′′] is at least
2, any minimum feedback vertex set S of G contains at least two vertices in
V ′′. However, w1 and w2 intersect all cycles containing some vertex in V ′′. Then
S\V ′′∪{w1, w2} is still a minimum feedback vertex set of G. There is a minimum
feedback vertex set containing w1 and w2 and then we can include them to the
solution set directly.

(ii): When the size of the minimum feedback set of G[V ′′] is 1, the vertex
intersecting all cycles in G[V ′′] can only be v2 or v3. For this case, there are no
parallel edges between v3 and a neighbor of it. Let G′ be the resulting graph
after executing the operation in (ii) on G and S′ be a minimum feedback vertex
set of G′. We show that S′ is also a minimum feedback vertex set of G.

First, we show that S′ is a feedback vertex set of G. Case 1. v2 ∈ S′: Note there
are no parallel edges incident on v3 in G. The two graphs G \ {v2} and G′ \ {v2}
are almost the same except the degree-2 vertex v3 in G \ {v2} is replaced with
an edge in G′ \{v2}. Then there is no cycle in G\S′ if there is no cycle in G\S′.
Case 2. v2 �∈ S′: Now S′ contains at least two vertices in {w1, w2, v1}. Assume
to the contrary that there is a cycle C in G \S′. The cycle C must contain some
edges in the induced subgraph G[V ′′]. Furthermore, C is contained in G[V ′′],
because if C also contains an edge not in G[V ′′] then C should pass through
at least two vertices in {w1, w2, v1} in G \ S′. Then the cycle C is either v2wi0

or v2v3wi0 , where wi0 ∈ {w1, w2}. Both cases imply a cycle v2wi0 in G′ \ S′, a
contradiction. So S′ is a feedback vertex set of G.

To show that S′ is also a minimum feedback vertex set of G, we only need to
prove that the size of a minimum feedback vertex of G is not greater than the
size of a minimum feedback vertex of G′. Let S be a minimum feedback vertex
set in G. If S contains only one vertex v∗ in V ′′, then v∗ can only be v2 or v3.
For this case, we can see that S \ {v∗} ∪ {v2} is a feedback vertex set of G′. If
S contains at least two vertices in V ′′, then S′ = S \ V ′′ ∪ {w1, w2} is still a
minimum feedback vertex set of G. Furthermore, S′ is also a feedback vertex set
of G′. Thus, the size of a minimum feedback vertex of G′ will not be larger than
the size of a minimum feedback vertex of G. 	

The next two rules are firstly used in [1] to get a kernel for the problem. We also
need to use them. Figure 2 gives illustrations for these two rules.

294 M. Xiao

1v 2v
0v

3v

w

4v

1v 2v
0v

3v
4v

1v 2v0v 3v 4v 5v 6v 7v

2w

1w

1v 2v0v 3v 4v 5v 6v 7v

2w

Fig. 2. Illustrations for Rules 6 and 7

Rule 6. Let v0v1v2v3v4 be an induced path in G where v1, v2 and v3 are three
degree-3 vertices having a common neighbor w. Delete w from the graph and put
w to S0.

To prove the correctness of this reduction rule, we only need to show that there
is at least one minimum feedback vertex set of G containing w. Let S be a
minimum feedback vertex set of G not containing w. Since w is not in S, we
know that at least two vertices vi1 and vi2 in {v1, v2, v3} are in S. It is easy to
see that any cycle that contains at least one of vi1 and vi2 also contains at least
one of w and v1. Then S′ = S \{vi1 , vi2}∪{w, v1} is a minimum feedback vertex
set of G containing w.

Rule 7. Let v0v1v2v3v4v5v6v7 be an induced path in G where each vertex in V ′ =
{v1, v2, v3, v4, v5, v6} is a vertex of degree ≥ 3 and |N(V ′)| = 4. Let N(V ′) =
{v0, v7, w1, w2}. Assume that |NV ′(w1)| ≥ |NV ′(w2)|. Delete w1 from the graph
and put w1 to S0.

We can verify that there is a minimum feedback vertex set of G containing w1

in the above rule. We omit the full proof here since it can be obtained in [1].
Our algorithm takes a planar graph as the input, iteratively execute the above

reduction rules in order until none of them can be applied anymore, and then
return the resulting planar graph. It is easy to verify that after executing each
of our reduction rules the resulting graph is still planar by Proposition 2. The
algorithm runs in polynomial time, since each reduction rule can be applied
in polynomial time and reduces at least one vertex in the graph. We are only
interested in the size of the resulting graph, so we omit a more detailed analysis
of the complexity of the algorithm. In fact, all of our reduction rules can be
applied in general graphs. We only analyze a kernel for planar graphs. We call
a graph reduced if none of the above reduction rules can be applied.

A New Linear Kernel for Undirected Planar Feedback Vertex Set 295

4 The Analysis

In this section, we assume that G is a reduced planar graph. Let S be an arbitrary
feedback vertex set of G, k = |S| and n = |V (G)|. We will prove that n ≤
29k − 57.

Let F be the remaining graph after deleting the solution set S from the graph
G, i.e., F = G[V \ S]. Then F is a forest. Note that each degree-1 vertex in F is
adjacent to at least 2 vertices in S in G and each degree-2 vertex in F is adjacent
to at least one vertex in S in G since all vertices in G are non-trivial. We analyze
the number of vertices in the forest F . Assume that F has l leaf-vertices and c
connected components.

Lemma 2. It holds that

l ≤ 2k + 2c− 4. (3)

Proof. For each component of F that is not a single edge, we contract all
inner-vertices in it into a single inner-vertex. For each component of F that is
a single edge e, we introduce a degree-2 vertex adjacent to the two endpoints
of e and deleting e. Then the new added vertex will become an inner vertex in
this component. Let F ′ be the resulting forest. Then F ′ has c inner-vertices. We
consider the bipartite graph H = (A = L,B = I ∪ S,E), where L is the set
of leaf-vertices in F ′ and I is the set of inner-vertices in F ′. There is an edge
between a ∈ L and b ∈ I in H if there is an edge between a and b in F ′. There
is an edge between a ∈ L and s ∈ S in H if there is an edge between a and s in
G. The bipartite graph H is still a planar graph since it can be obtained from
G by contracting some edges, deleting some edges or adding a degree-2 vertex
adjacent to two endpoints of an edge. By (2), the number of edges in H is at
most 2|V (H)| − 4 ≤ 2(l + c + k) − 4. On the other hand, each vertex a ∈ L is
adjacent to at least two vertices in S (since G has only no-trivial vertices and
then each leaf-vertex in F is adjacent to at least two vertices in S) and adjacent
to one inner-vertex in I. Then there are at least 3|L| edges between L and I ∪S.
We get 3l ≤ 2(l+ c+ k)− 4, which is (3). 	

Lemma 3. The number of branch-vertices in F is at most l−2c and the number
of inner-branches in F is at most l− 3c.

Proof. Assume that the c trees in F have l1, l2, · · · , lc leaf-vertices respectively.
It is easy to see that a tree with li leaf-vertices has at most li−2 branch-vertices
and at most li − 3 inner-branches. Then F has at most

∑c
i=1(li − 2) = l − 2c

branch-vertices and at most
∑c

i=1(li − 3) = l − 3c inner-branches. 	

A sub-path P of a branch is good if |NS(P)| ≥ 3, i.e., a good sub-path is adjacent
to at least 3 vertices in S. We use the following method to partition each branch
of F into several sub-paths, called chains, such that each vertex in the branch
is contained in exactly one of the sub-paths. Let Q = v1v2 · · · vq be a branch,
where we assume that vq is a leaf-vertex in F if Q is a leaf-branch.

296 M. Xiao

If Q is not a good path, we take Q as a single chain. Otherwise we
partition Q into chains P1 = v1v2 · · · vi1 , P2 = vi1+1vi1+2 · · · vi2 , · · · , Pr =
vir−1+1vir−1+2 · · · vq such that for any chain Pj = vij−1+1vij−1+2 · · · vij , either
(i) Pj is good and vij−1+1vij−1+2 · · · vij−1 is not good or (ii) Pj is not good and
it holds ij = q.

bad inner-chain

leaf-chain

good inner-chain

branch-vertex

Fig. 3. Partitioning each branch in a tree into chains

We fix such a partition P of F and analyze the number of vertices in it. See
Figure 3 for an illustration for the partition. We can see that each vertex of
degree ≤ 2 in F is contained in a chain. A chain is good if it is a good path and
bad otherwise. A chain is called a leaf-chain if it contains at least one leaf-vertex
in F and an inner-chain if it does not contain any leaf-vertex in F . We will
analyze the size and number of the chains. According to the way we partition a
branch into chains, we know that

Lemma 4. The number of bad inner-chains in P is at most l− 3c and each bad
inner-chain contains at most 5 vertices.

Proof. In the partition P of F , each inner-branch can contain at most one bad
inner-chain and each leaf-branch can not contain any bad inner-chain. Then we
know that the number of bad inner-chains in P is bounded by the number of
inner-branches in F . By Lemma 3, the number of inner-branches in F is at
most l − 3c, which implies the first claim in the lemma. Next, we consider the
second claim. Assume to the contrary that a bad inner-chain P contains at least
6 vertices. Since G is a reduced graph and all vertices in it are non-trivial, we
know that each vertex in the bad inner-chain P is adjacent to at least one vertex
in S. Then the condition of either Rule 6 or Rule 7 will hold, which implies a
contradiction. 	

Lemma 5. The number of bad leaf-chains in P is at most 2k+2c− 4 and each
bad leaf-chain contains at most 2 vertices.

Proof. Since each leaf-chain contains at least one leaf-vertex, we know that the
number of bad leaf-chains in P is bounded by the number of leaf-vertices in F .
By Lemma 2, the number of leaves in F is at most 2k+ 2c− 4. We get the first
claim. For the second claim, we can see that if a bad leaf-chain contains at least
3 vertices, then either Rule 4 or Rule 5 can be applied. 	

A New Linear Kernel for Undirected Planar Feedback Vertex Set 297

Lemma 6. The number of good chains in P is at most 2k − 4 and each good
chain contains at most 6 vertices.

Proof. We consider a bipartite planar graph H = (A,B,E), where the number
of vertices in A equals to the number of good chains in P , each vertex a ∈ A
is corresponding a good chain Qa in P , and B = S. The edge set E is defined
by this: there is an edge between vertices a ∈ A and s ∈ B if and only if there
is an edge between s and a vertex in Qa. Note that H can be obtained from
G by contracting all edges in good chains and then deleting some vertices and
edges. By Proposition 2, we know that H is still a planar graph. According to
the definition of good chains, we know that each vertex a ∈ A is adjacent to at
least 3 vertices in B. Then there are at least 3|A| edges between A and B. By
(2), we have that 3|A| ≤ 2(|A|+ |B|)− 4 = 2|A|+ 2k − 4. Then we get

|A| ≤ 2k − 4.

For the second claim, we first assume to the contrary that a good chain Q
contains at least 7 vertices. We look at the sub-path Q′ containing only the first
6 vertices in Q. According to the definition of chains, we know that Q′ should be
a bad path. Then either Rule 6 or Rule 7 can be applied on Q′, a contradiction
to the fact that the graph is a reduced graph. 	

Lemma 7. The number of vertices in F is at most 28k − 57.

Proof. Let n2 denote the number of degree-1 and degree-2 vertices in F and n3

denote the number of vertices of degree ≥ 3, which are branch-vertices in F .
Then n3 ≤ l− 2c by Lemma 3. Each vertex of degree ≤ 2 is contained in a chain
in P . Each chain is either a good chain or a bad chain. Each bad chain is either
a bad inner-chain or a bad leaf-chains. By Lemma 4, Lemma 5 and Lemma 6,
we get

|V (F)| = n2 + n3

≤ n2 + (l − 2c)
≤ 5(l − 3c) + 2(2k + 2c− 4) + 6(2k − 4) + (l − 2c)
= 6l+ 16k − 13c− 32
≤ 6(2k + 2c− 4) + 16k − 13c− 32 by(3)
= 28k − c− 56
≤ 28k − 57.

	

The number of vertices in G is |V (F)|+ |S| ≤ 28k−57+k = 29k−57. Therefore,
we obtain the following theorem

Theorem 1. Let G be a planar graph such that none of the above reduction
rules can be applied on it. Then the size of a minimum feedback vertex set of G

is more than |V (G)|
29 .

298 M. Xiao

References

1. Abu-Khzam, F.N., Bou Khuzam, M.: An improved kernel for the undirected planar
feedback vertex set problem. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012.
LNCS, vol. 7535, pp. 264–273. Springer, Heidelberg (2012)

2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S.,
Thilikos, D.M.: (Meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE Com-
puter Society, Washington, DC (2009)

3. Bodlaender, H.L., Penninkx, E.: A Linear Kernel for Planar Feedback Vertex Set.
In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171.
Springer, Heidelberg (2008)

4. Bodlaender, H.L., van Dijk, T.C.: A Cubic Kernel for Feedback Vertex Set and
Loop Cutset. Theory Comput. Syst. 46(3), 566–597 (2010)

5. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S.,
Rosamond, F.A.: The undirected feedback vertex set problem has a poly(k) ker-
nel. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 192–202. Springer, Heidelberg (2006)

6. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures.
In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg
(2010)

7. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback
vertex set problems. J. Comput. Syst. Sci. 74, 1188–1198 (2008)

8. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55, 1–19 (2008)

9. Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.:
An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem.
In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer,
Heidelberg (2005)

10. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feed-
back vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2),
293–307 (2008)

11. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: SODA 2010, Philadelphia, PA, USA, pp. 503–510 (2010)

12. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. Freeman, San Francisco (1979)

13. Guo, J., Gramm, J., Huffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Com-
put. Syst. Sci. 72(8), 1386–1396 (2006)

14. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

15. Razgon, I.: Computing minimum directed feedback vertex set in O(1.9977n). In:
10th Italian Conference on Theoretical Computer Science, ICTCS 2007, Rome,
Italy, pp. 70–81 (2007)

16. Silberschatz, A., Galvin, P.: Operating System Concepts, 4th edn. Addison-Wesley
(1994)

17. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Transactions on Algo-
rithms 6(2) (2010)

18. Xiao, M., Nagamochi, H.: An Improved Exact Algorithm for Undirected Feedback
Vertex Set. Journal of Combinatorial Optimization (2014), doi: 10.1007/s10878-
014-9737-x; A preliminary version appears as: Xiao, M., Nagamochi, H.: An Im-
proved Exact Algorithm for Undirected Feedback Vertex Set. In: Widmayer, P.,
Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 153–164. Springer,
Heidelberg (2013)

	A New Linear Kernel for Undirected PlanarFeedback Vertex Set: Smaller and Simpler
	1 Introduction
	2 Preliminaries
	2.1 Some Properties of Planar Graphs

	3 Reduction Rules
	4 The Analysis
	References

