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Abstract. Motivated by the large applicability as well as the hardness
of P3-convexity, we study new complexity aspects of such convexity re-
stricted to graphs with bounded maximum degree. More specifically, we
are interested in identifying either a minimum P3-geodetic set or a min-
imum P3-hull set of such graphs, from which the whole vertex set of G
is obtained either after one or sufficiently many iterations, respectively.
Each iteration adds to a set S all vertices of V (G) \ S with at least two
neighbors in S. We prove that: (i) a minimum P3-hull set of a graph G

can be found in polynomial time when δ(G) ≥ n(G)
c

(for some constant
c); (ii) deciding if the size of a minimum P3-hull set of a graph is at
most k remains NP-complete even on planar graphs with maximum de-
gree four; (iii) a minimum P3-hull set of a cubic graph can be found in
polynomial time; (iv) a minimum P3-hull set can be found in polynomial
time in graphs with minimum feedback vertex set of bounded size and no
vertex of degree two; (v) deciding if the size of a minimum P3-geodetic
set of a planar graph with maximum degree three is at most k remains
NP-complete.

Keywords: P3-convexity, P3-hull set, P3-geodetic set, planar graphs,
bounded degree, NP-hardness.

1 Introduction

Let G = (V,E) be a graph. For U ⊆ V , let the interval I[U ] of U in G be the set
U∪{u ∈ V (G)\U | |NG(u)∩U | ≥ 2}. A set S of vertices of G is P3-geodetic if I[S]
contains all vertices of G. The P3-geodetic number gP3(G) of a graph G is defined
as the minimum cardinality of a P3-geodetic set. The decision problem related
to determining the P3-geodetic number is known to be NP-complete for general
graphs, and coincides with the well-studied 2-domination number [10,8,11,12,13].

A P3-hull set U of G is a set of vertices such that:

– U0 = U

– Uk = I[Uk−1], for k ≥ 1.
– ∃ k ≥ 0 | Uk = V (G).
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We define HG(S) ⊆ V (G) as I[S]k+1 where the non-negative integer k is such
that I[S]k+1 = I[S]k, k ≥ 0. The cardinality of a minimum P3-hull set of G is
the P3-hull number of G, denoted by hp3(G). Again, the decision problem related
to determining the P3-hull number of a graph is still a well known NP-complete
problem [4].

According to [5], as one of the most elementary models of the spreading of
a property within a network – like sharing an idea or disseminating a virus –
one can consider a graph G, a set U of vertices of G that initially possesses the
property, and an iterative process whereby new vertices u are added to U when-
ever sufficiently many neighbors of u are already in U . The simplest non-trivial
choice leads to the irreversible 2-threshold processes by Dreyer and Roberts [6].
Similar models were studied in various contexts, such as statistical physics, social
networks, marketing, and distributed computing under different names such as
bootstrap percolation, influence dynamics, local majority processes, irreversible
dynamic monopolies, catastrophic fault patterns, and many others [1,2,3,4,5,6].

In the next sections, we analyze the complexity of these problems when some
parameters related to the maximum and minimum degree of a graph are known.
In the following subsection we review some results on planar satisfiability prob-
lems. In Section 2 we present some results on finding a minimum P3-hull set of
graphs with bounded degree. Finally, in Section 3 we analyze complexity aspects
of finding a minimum P3-geodetic set on planar graphs with bounded degree.

1.1 Planar SAT-am3

SAT-am3 [9]
Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set X =
{x1, x2, . . . , xn} of boolean variables, such that each clause contains at most
three literals, each variable appears at most three times, and each literal occurs
at most twice.
Question: Is there a truth assignment to the variables in X that satisfies F?

SAT-am3 is an NP-complete problem [9]. In [9] the problem was not defined
with the restriction of each literal occurs at most twice, but without loss of gen-
erality, if a literal l occurs three times, the clauses containing l can be considered
satisfied and removed from the formula F to be analyzed. Another variant of
SAT is described below.
Planar 3-SAT [9]
Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set
X = {x1, x2, . . . , xn} of boolean variables, where each clause contains at
most three literals, and the bipartite graph HF = (V,E) such that V =
{wc1 , wc2 , . . . , wcm} ∪ {vx1 , vx2 , . . . , vxn} and E contains exactly those pairs
(wci , vxj ) such that either xj or ¬xj belongs to the clause Ci, is planar.
Question: Is there a truth assignment to the variables in X that satisfies F?

Note that not every instance of SAT-am3 is an instance of Planar 3-SAT.
For example, F = (¬x1+x2+x3)(x2+¬x3+¬x5)(x1+¬x2+x4)(x3+¬x4)(¬x1+
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x5) is non-planar because it contains a subdivision of K3,3. However, it is well
known [9,14] that Planar 3-SAT is also an NP-complete problem.

At this point, we describe the intersection of these problems.

Planar SAT-am3

Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set
X = {x1, x2, . . . , xn} of boolean variables, where each clause contains at
most three literals, each variable appears at most three times, each lit-
eral occurs at most twice, and the bipartite graph HF = (V,E) such that
V = {wc1 , wc2 , . . . , wcm} ∪ {vx1 , vx2 , . . . , vxn} and E contains exactly those
pairs (wci , vxj ) such that either xj or ¬xj belongs to the clause Ci, is planar.
Question: Is there a truth assignment to the variables in X that satisfies F?

Lemma 1. Planar SAT-am3 is NP-complete.

Proof. It is easy to see that the problem is in NP. To prove the hardness, we
perform a reduction from Planar 3-SAT. Consider a general Planar 3-SAT

expression F in which xi appears ki times. Assign F ′ = F , and for each xi in
F ′ replace the first occurrence of xi by x1

i , the second by x2
i , and so on, where

x1
i , x

2
i , . . . , x

ki

i are new variables. Add (¬x1
i , x

2
i ), (¬x2

i , x
3
i ), . . . , (¬xki

i , x1
i ) to F ′.

Clearly, F ′ is satisfiable if and only if F is satisfiable.
By Kuratowski’s theorem a finite graph is planar if and only if it does not

contain a subgraph that is a subdivision of K5 or K3,3. To show that HF ′ is
planar, just observe that given a planar embedding of the bipartite graph corre-
sponding to F , one can obtain a planar embedding of the graph corresponding
to F ′ by replacing some vertices u of degree k with a cycle C of order k and a
matching of k edges between V (C) and the neighbors of u. It is easy to see that
the constructed graph has a planar embedding. �

2 P3-Hull Set

In this section we consider both search and decision problems on P3-hull sets.

P3-Hull Set

Instance: A graph G.
Goal: Find a P3-hull set of G with minimum cardinality.

P3-Hull Number

Instance: A graph G; an integer k.
Goal: Decide if G has a P3-hull set with cardinality at most k.

Note that P3-Hull Number is clearly in NP. Moreover, it is easy to see that
if P3-Hull Number is NP-complete then P3-Hull Set is NP-hard.

Let n(G) be the number of vertices of G, NG(x) the neighborhood of a vertex
x in G, dG(x) = |NG(x)| the degree of vertex x in G, and δ(G) and Δ(G) the
minimum and maximum degree of a vertex in G, respectively.
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Lemma 2. Let k be a positive integer. If G is a graph, then

Δk(G) := max

{∣∣∣∣∣
⋂
x∈U

NG(x)

∣∣∣∣∣ | U ∈
(
V (G)

k

)}
≥ n(G)

(
δ(G)
k

)
(
n(G)
k

) .

Proof. Let R =
{
(u, U) : u ∈ V (G), U ∈ (

V (G)
k

)
, u ∈ ⋂

x∈U NG(x)
}

. Since for

every vertex v of G there are
(
dG(v)

k

) ≥ (
δ(G)
k

)
pairs (u, U) in R with u = v,

we have |R| ≥ n(G)
(
δ(G)
k

)
. Conversely, by the definition of Δk(G), for every set

V ∈ (
V (G)

k

)
, there are at most Δk(G) pairs (u, U) in R with U = V , which

implies |R| ≤ Δk(G)
(
n(G)
k

)
. �

Theorem 3. Let c be a positive integer.
If G is a graph with δ(G) ≥ n(G)

c , then

hP3(G) ≤ 2

⎡
⎢⎢⎢

log(2c)

log
(

2c2

2c2−1

)
⎤
⎥⎥⎥+ 2c3.

Proof. In order to construct a small P3-hull set of G we describe an inductive
construction of a sequence G1, . . . , Gk of induced subgraphs of G such that

– Gi = G−HG(Si−1) for a set Si−1 of at most 2(i− 1) vertices of G,

– n(Gi) ≤ n(G)
(
1− 1

2c2

)i−1, and

– δ(Gi) ≥ n(Gi)
c

for i ∈ [k].
Let G1 = G and S0 = ∅.
Now let i be such that Gi and Si−1 are defined. If Gi is complete or n(Gi) <

2c3, then terminate the construction of the sequence and set k to i. Since

hP3(G) ≤ |Sk−1|+ hP3(Gk) ≤ 2(k − 1) + 2c3,

it suffices to bound k in order to complete the proof.
Therefore, we may assume that Gi is not complete and that n(Gi) ≥ 2c3. By

Lemma 2, there are two vertices ui and vi of Gi with at least

n(Gi)

(
δ(Gi)

2

)
(
n(Gi)

2

) ≥ n(Gi)

(n(Gi)

c
2

)
(
n(Gi)

2

) =
n(Gi)(n(Gi)− c)

c2(n(Gi)− 1)
≥ n(Gi)

2c2
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common neighbors. Let Si = Si−1 ∪{ui, vi} and Gi+1 = G−HG(Si). We obtain

n(Gi+1) = n(G)− |HG(Si)|
≤ n(G)− |HG(Si−1) ∪HGi({ui, vi})|
≤ n(G)− |HG(Si−1)| − |HGi({ui, vi})|
= n(Gi)− |HGi({ui, vi})|
≤ n(Gi)− n(Gi)

2c2

= n(Gi)

(
1− 1

2c2

)

≤ n(G)

(
1− 1

2c2

)i

.

Since Gi+1 = G−HG(Si), we have δ(Gi+1) ≥ δ(G)− 1 ≥ n(G)
c − 1. Therefore,

δ(Gi+1)

n(Gi+1)
≥

n(G)
c − 1

n(Gi)
(
1− 1

2c2

) ≥
n(Gi)

c − 1

n(Gi)
(
1− 1

2c2

) ≥ 1

c
.

Since the minimum degree of all graphs Gi in the sequence is at least δ − 1, the
value of k is less than or equal to the smallest integer r with

n(G)

(
1− 1

2c2

)r−1

≤ n(G)

c
− 1.

Since n(G)
c − 1 ≥ n(G)

2c , we obtain

k ≤
⎡
⎢⎢⎢

log(2c)

log
(

2c2

2c2−1

)
⎤
⎥⎥⎥+ 1,

which completes the proof. �

Corollary 4. A minimum P3-hull set of a graph G with δ(G) ≥ n(G)
c (for some

constant c) can be found in polynomial time.

Proof. The proof follows immediately from Theorem 3. �

Theorem 5. P3-Hull Number remains NP-complete on planar graphs with
maximum degree four.

Proof. To prove that deciding whether the P3-hull number of a graph G is less
than or equal k is NP-complete, we perform a reduction from Planar SAT-

am3, proved to be NP-complete in Lemma 1. Here cross edges are meant in the
usual sense of a planar graph: edges crossing other edges in a specific embedding
of a graph in the plane.

Given an instance F of Planar SAT-am3, we construct an instance G of
P3-Hull Set as follows:
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– For each variable xi of F , create a gadget Gxi composed of 62 vertices as
illustrated in Figure 1. Note that Gxi is composed of two subgadgets gxi and
gx̄i , which represent the literals xi and x̄i, respectively.

a1xi
a2xi

a3xi

a4xi

a5xi

a6xi

a7xi

a8xi

a9xi
a10xi

a1x̄i
a2x̄i

a3x̄i

a4x̄i

a5x̄i

a6x̄i

a7x̄i

a8x̄i

a9x̄i a10x̄i

gx̄igxi

Fig. 1. Gadget Gxi

– For each clause Cj of F , create a gadget Gcj composed
of the cycle b1cj , b2cj , b3cj , b4cj , b5cj , b6cj , b7cj , b8cj plus the
vertices b9cj , b10cj , b11cj , b12cj , b13cj , b14cj , b15cj , b16cj and edges
(b1cj , b

9
cj), (b

2
cj , b

10
cj ), (b

3
cj , b

11
cj ), (b

4
cj , b

12
cj ), (b

5
cj , b

13
cj ), (b

6
cj , b

14
cj ), (b

7
cj , b

15
cj ), (b

8
cj , b

16
cj ).

Figure 2 illustrates a gadget Gcj .

b1cj

b2cj

b3cj

b4cj

b5cj

b6cj

b7cj

b8cj

Fig. 2. Gadget Gcj

– If the literal xi occurs twice in F , then create the vertices f1
xi

, f2
xi

, and add
edges (f1

xi
, a7xi

), (f2
xi
, a8xi

). Otherwise, create only f1
xi

and add (f1
xi
, a7xi

).
– If the literal x̄i occurs twice in F , then create the vertices f1

x̄i
, f2

x̄i
, and add

edges (f1
x̄i
, a7x̄i

), (f2
x̄i
, a8x̄i

). Otherwise, create only f1
x̄i

and add (f1
x̄i
, a7x̄i

).
– For each clause Cj do:
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1. if xi is the first literal of Cj , then: if Cj contains the first occurrence of
xi then add edges (a7xi

, b1cj), (a
9
xi
, b2cj); else add edges (a10xi

, b1cj ), (a
8
xi
, b2cj).

2. if xi is the second literal of Cj , then: if Cj contains the first occurrence of
xi then add edges (a7xi

, b5cj), (a
9
xi
, b6cj); else add edges (a10xi

, b5cj ), (a
8
xi
, b6cj).

3. if xi is the third literal of Cj , then: if Cj contains the first occurrence of
xi then add edges (a7xi

, b7cj), (a
9
xi
, b8cj); else add edges (a10xi

, b7cj ), (a
8
xi
, b8cj).

If this step generates cross edges, remove the newly created edges, and
repeat this step replacing b7cj and b8cj by b3cj and b4cj , respectively. This op-
eration keeps the graph planar, as one can check by verifying all possible
configurations.

4. if x̄i is the first literal of Cj , then: if Cj contains the first occurrence of
x̄i then add edges (a7x̄i

, b2cj), (a
9
x̄i
, b1cj); else add edges (a10x̄i

, b2cj ), (a
8
x̄i
, b1cj).

5. if x̄i is the second literal of Cj , then: if Cj contains the first occurrence of
x̄i then add edges (a7x̄i

, b6cj), (a
9
x̄i
, b5cj); else add edges (a10x̄i

, b6cj ), (a
8
x̄i
, b5cj).

6. if x̄i is the third literal of Cj , then: if Cj contains the first occurrence of
x̄i then add edges (a7x̄i

, b8cj), (a
9
x̄i
, b7cj); else add edges (a10x̄i

, b8cj ), (a
8
x̄i
, b7cj).

If this step generates cross edges, remove the newly created edges, and re-
peat this step replacing b7cj and b8cj by b3cj and b4cj , respectively. As above,
this operation keeps the graph planar, as one can check by verifying all
possible configurations.

Let G be the graph obtained by the construction above from an instance F
of Planar SAT-am3. At this point, we will prove that F is satisfiable if and
only if G has a hull set of size 8m+23n, where m is the number of clauses, and
n is the number of variables of F .

If F is satisfiable, then we can obtain a P3-hull set S of G by first adding all
the pendant vertices of G to S. Note that G has 8m+22n pendant vertices. Let
A be a truth assignment of F . If xi = true in A we add a2xi

to S, else we add a2x̄i

to S. As A is a truth assignment of F , each gadget Gcj will be contaminated,
i.e. in HG(S), and consequently all vertices of G will be contaminated. Hence S
is a P3-hull set of size 8m+ 23n.

Conversely, if G has a P3-hull set S of size 8m + 23n, S contains 8m + 22n
pendant vertices and n non-pendant vertices of G. As we can observe in each
gadget Gxi of G, there is a subgraph Bxi such that every vertex v of Bxi is not a
pendant vertex and either it is adjacent to only one leaf and has no non-pendant
neighbor outside Bxi , or v has only one neighbor outside Bxi . Figure 3 illustrates
a gadget Gxi and its subgraph Bxi . Consequently, each subgraph Bxi must have
exactly one vertex in S, which is not a pendant vertex. Otherwise either S is not
a P3-hull set or S has size greater than 8m+23n. At this point we can construct
an assignment A of F by setting xi = true if and only if S∩V (gxi)∩V (Bxi) 
= ∅.
By construction, we can see that A is a truth assignment of F . �

A feedback vertex set of a graph is a set of vertices whose removal leaves a
graph without cycles. In other words, each feedback vertex set contains at least
one vertex of any cycle in the graph.

Lemma 6. Let G be a cubic graph. S ⊆ V (G) is a P3-hull set of G if and only
if S is also a feedback vertex set of G.
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Fig. 3. Gadget Gxi and its subgraph Bxi inside the rectangle. The white vertices are
pendant vertices in G and are not contained in Bxi .

Proof. Let G be a cubic graph and S be a P3-hull set of G. If G[V \ S] has
a cycle C, then each vertex v ∈ C has at most one neighbor outside C, and
consequently C is not in the hull of S, which is a contradiction because S is a
P3-hull set of G.

Conversely, let B be a feedback vertex set of G. As G[V \ B] is a forest and
G is cubic, all pendant vertices of G[V \ B] are in HG(B); by removing these
pendant vertices of G[V \B], we obtain a forest T where each leaf of T has two
neighbors in HG(B). Applying this step recursively, we can see that all vertices
of G[V \B] are in HG(B). �

Proposition 1. [15] A minimum feedback vertex set of a graph G with maxi-
mum degree at most three can be found in polynomial time.

Corollary 7. A minimum P3-hull set of a cubic graph can be found in polyno-
mial time.
Proof. The proof follows immediately from Lemma 6 and Proposition 1. �

Theorem 8. Let F be the class of graphs with no vertex of degree two and with
a minimum feedback vertex set of size bounded by a constant c. Then P3-Hull

Set on F can be solved in polynomial time.

Proof. Let G ∈ F . As G has a minimum feedback vertex set of size bounded by
a constant c, we can find a minimum feedback vertex set B of G in polynomial
time. Let L be the set of pendant vertices in G, and let T = G\{B∪L}. Since G
has no vertex of degree two, each leaf of T has at least two neighbors in {B∪L}
and just as in the proof of Lemma 6, {B ∪ L} is a hull set of G. As L is in any
hull set of G, it is sufficient to examine all subsets of vertices in V (G) \L of size
at most c to find a minimum P3-hull set of G. �
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3 P3-Geodetic Set

Now we consider the following decision problem:

P3-Geodetic Number

Instance: A graph G; an integer k.
Goal: Decide if G has a P3-geodetic set with cardinality at most k.

Note that P3-Geodetic Number is clearly in NP.
As Dominating Set is NP-complete even restricted to planar graphs with

maximum degree three [9], it is easy to see that P3-geodetic Number problem
remains NP-complete on planar graphs with maximum degree four. Just take an
instance G of such restricted Dominating Set problem and construct a graph
G′ by adding a new vertex wv and a new edge (v, wv) for each vertex v of G.
Note that G has a dominating set of size k if and only if G′ has a P3-geodetic
set of size n+ k. As G is a planar graph with maximum degree 3, G′ is a planar
graph with maximum degree 4.

As P3-Geodetic Number is NP-complete on planar graphs with maximum
degree four, and trivially solvable in polynomial time on graphs with maximum
degree two, it is natural to ask about the complexity of P3-Geodetic Number on
planar graphs with maximum degree 3.

Theorem 9. P3-Geodetic Number remains NP-complete on planar graphs
with maximum degree three.

Proof. Deciding whether the P3-geodetic number of a graph G is less than or
equal to k is clearly a problem in NP. To prove the NP-hardness we perform
a reduction from Planar SAT-am3, proved to be NP-complete in Lemma 1.
Given an instance F of Planar SAT-am3 we construct an instance G of P3-

Geodetic Set as follows:

– for each variable xi do: create in G a gadget gxi composed of a cycle
f1
xi
, t1xi

, a1xi
, a2xi

, f2
xi
, t2xi

, a3xi
, a4xi

;
– for each clause Ci containing at most two literals do: create in G a gadget

gci composed of the vertices c1i , c2i and edge (c1i , c
2
i );

– for each clause Cj containing exactly three literals do: create in G
a gadget gcj composed of the vertices c1j , c

2
j , c

3
j , l

1
j , l

2
j and the edges

(c1j , c
2
j ), (c

1
j , c

3
j), (c

1
j , l

1
j ), (c

3
j , l

2
j );

– for each clause Cj of F do:
1. add an edge (c2j , t

p
xi
) if xi is the first or second literal of Cj and it is the

p-th occurrency of xi (1 ≤ p ≤ 2);
2. add an edge (c2j , f

p
xi
) if ¬xi is the first or second literal of Cj and it is

the p-th occurrency of ¬xi (1 ≤ p ≤ 2);
3. add an edge (c3j , t

p
xi
) if xi is the third literal of Cj and it is the p-th

occurrency of xi (1 ≤ p ≤ 2);
4. add an edge (c3j , f

p
xi
) if ¬xi is the third literal of Cj and it is the p-th

occurrency of ¬xi (1 ≤ p ≤ 2).
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At this point, we show that given an instance F of SAT-am3, where n is the
number of variables, m1 the number of clauses with at most two literals, and m2

the number of clauses with three literals, by the construction above we obtain
a graph G such that: F is satisfiable if and only if G has a P3-geodetic set S of
size k, where k = 4n+m1 + 3m2.

(a) (b) (c) (d)

(e) (f) (g) (h)

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

a4xi
a4xi

a4xi
a4xi

a4xi
a4xi

a4xi
a4xi

a3xi
a3xi

a3xi
a3xi

a3xi
a3xi

a3xi
a3xi

t2xi
t2xi

t2xi
t2xi

t2xi
t2xi

t2xi
t2xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

a2xi
a2xi

a2xi
a2xi

a2xi
a2xi

a2xi
a2xi

a1xi
a1xi

a1xi
a1xi

a1xi
a1xi

a1xi
a1xi

t1xi
t1xi

t1xi
t1xi

t1xi
t1xi

t1xi
t1xi

Fig. 4. (a)− (d) Choices of vertices in SA that imply in at least 5 vertices to be added
to SA; thicker edges mean that one of its endpoints must be added to SA; (e) − (h)
Choices of vertices in SA that imply in exactly 4 vertices to be added to SA

Let F be a satisfiable formula and A be a truth assignment of F . We obtain
a P3-geodetic set SA of G from A as follows: (i) every vertex with degree one is
added to SA; (ii) if xi = true in A then t1xi

, t2xi
, a2xi

, a4xi
are added to SA; (iii) if

xi = f alse in A then f1
xi
, f2

xi
, a1xi

, a3xi
are added to SA; (iv) for each clause Ci

with three literals, if c3i has two neighbors in SA then c2i is added to SA, otherwise
c1i is added to SA. As A is a truth assignment of F , each gadget gci of G has at
least one neighbor in SA ∩ {⋃n

1 V (gxi)}; consequently, SA is a P3-geodetic set of
G of size k = 4n+m1 + 3m2.

Conversely, Let SA be a P3-geodetic set of G of size k = 4n+m1 + 3m2. We
construct a truth assignment A for the variables x1, x2, . . . , xn that satisfies all
the clauses in F as follows. Any P3-geodetic set of G contains: (i) at least one
vertex of each gadget gci if Ci has at most two literals; (ii) at least three vertices
of each gadget gci if Ci has three literals; (iii) at least four vertices of each gadget
gxi . As SA has size k, each gadget gxi has exactly four vertices in SA, and at
most two of these vertices has degree three in G: either t1xi

and t2xi
}, or f1

xi
and

f2
xi
}. See Figure 4. At this point, we can construct a truth assignment A of F by

assigning xi = true if and only if t1xi
∈ SA or t2xi

∈ SA and t2xi
has degree three

in G. By (i) and (ii), each gadget gci must have at least one neighbor in SA,
otherwise either SA would not be a P3-geodetic set or we would have |SA| > k.
Consequently, by the construction of G and A, if SA is a P3-geodetic set of G of
size k then A is a truth assignment of F .
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Figure 5 illustrates a boolean formula F and the graph G obtained from F
by the construction above. A possible P3-geodetic set SA is colored red.

x1 x2 x3

c1 c4 c5c2 c3

f1
x1

a4x1
a3x1

t2x1

f2
x1

a2x1
a1x1

t1x1

f1
x2

a4x2
a3x2

t2x2

f2
x2

a2x2
a1x2

t1x2

f1
x3

a4x3
a3x3

t2x3

f2
x3

a2x3
a1x3

t1x3

c11

c21

c12

c22

c13

c23

c14

c24

c34

l14

l24

c15

c25

Fig. 5. (a) Satisfiable boolean formula F = (x1)(x2)(x1+¬x2)(¬x1+¬x2+¬x3)(¬x3);
(b) Graph G constructed from F

It is easy to see that G has maximum degree three. To show that G is planar,
we can split G in two subgraphs Gx = {⋃n

1 gxi} and Gc = {⋃m
1 gcj}. Note that

Gx and Gc are both planar graphs. By contracting each graph gxi and each
gadget gcj of G into a single vertex, we obtain the bipartite graph HF which by
assumption is planar. Hence, G is also a planar graph. �
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