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Abstract. Convex bipartite graphs are a subclass of circular convex bi-
partite graphs and chordal bipartite graphs. Chordal bipartite graphs
are a subclass of perfect elimination bipartite graphs and tree convex bi-
partite graphs. No other inclusion among them is known. In this paper,
we make a thorough comparison on them by showing the nonemptyness
of each region in their Venn diagram. Thus no further inclusion among
them is possible, and the known complexity results on them are incom-
parable. We also show the NP-completeness of treewidth and feedback
vertex set for perfect elimination bipartite graphs.
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1 Introduction

Some NP-complete graph problems, such as treewidth and feedback vertex set,
are still NP-complete for bipartite graphs, but tractable for restricted bipar-
tite graphs, such as convex bipartite graphs, chordal bipartite graphs, circular
convex bipartite graphs, and so on. Exploring the properties of these restricted
bipartite graphs and the boundary between NP-completeness and tractability
are well established research directions, see e.g. [2]. In this paper, we show some
separation results for restricted bipartite graphs, including perfect elimination
bipartite graphs, chordal bipartite graphs, convex bipartite graphs, tree con-
vex bipartite graphs, and circular convex bipartite graphs. We also show the
NP-completeness of treewidth and feedback vertex set for perfect elimination
bipartite graphs.

Perfect elimination bipartite graphs, chordal bipartite graphs, and convex
bipartite graphs are well studied bipartite graph classes [2]. In a convex bipartite
graph G = (V1, V2, E), there is a linear ordering L defined on V1, such that for
each vertex in V2, its neighborhood induces an interval under L [4]. Given a cycle,
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an edge with two endpoints nonconsecutive in the cycle is called a chord. In a
chordal bipartite graph, each cycle of length at least six must have a chord [3]. An
edge in a bipartite graph is bisimplicial, if its endpoint neighborhoods induce a
complete bipartite subgraph. A perfect elimination ordering of a bipartite graph
is a linear ordering on a subset of nonadjacent edges, such that each edge in this
subset is bisimplicial in the remaining bipartite subgraphs when all endpoints of
preceding edges are removed, and finally no edge is left in the graph. In a perfect
elimination bipartite graph, there is a perfect elimination ordering [3].

Circular convex bipartite graphs and tree convex bipartite graphs are two
natural generalizations to convex bipartite graphs [13,5,7,19,22,17,15,18,21,14].
In a circular convex bipartite graph G = (V1, V2, E), there is a circular ordering
R defined on V1, such that for each vertex in V2, its neighborhood induces a
circular arc under R [13]. In a tree convex bipartite graph G = (V1, V2, E), there
is a tree T defined on V1, such that for each vertex in V2, its neighborhood
induces a subtree on T [5]. When T is a path, G is just a convex bipartite graph.
When T is a star, G is called a star convex bipartite graph [5]. When T is a
triad, which is three paths with a common endpoint, G is called a triad convex
bipartite graph [7].

It has been known that chordal bipartite graphs is sandwiched between convex
bipartite graphs and perfect elimination bipartite graphs [3], and also between
convex bipartite graphs and tree convex bipartite graphs [6]. Convex bipartite
graphs are a subclass of circular convex bipartite graphs [13]. No other inclusion
of them is known. So our first question is

– Is there any other inclusion among perfect elimination bipartite graphs, tree
convex bipartite graphs, circular convex bipartite graphs, chordal bipartite
graphs, and convex bipartite graphs?

In this paper, we give a negative answer by showing the nonemptyness of each
region in their Venn diagram. Thus no further inclusion among them is possible,
and the known complexity results on them in literatures are incomparable.

Treewidth and feedback vertex set are two well studied NP-complete prob-
lems. They are also NP-complete for bipartite graphs [9,23] and for tree convex
bipartite graphs [21,5,6], but tractable for chordal bipartite graphs [10,11]. Feed-
back vertex set is also tractable for circular convex bipartite graphs [18] and for
triad convex bipartite graphs [7,6]. Our second question is

– Where is the boundary between NP-completeness and tractability to treewidth
and feedback vertex set for these restricted bipartite graphs?

In this paper, we give a partial answer by showing the NP-completeness of
treewidth and feedback vertex set for perfect elimination bipartite graphs. There-
fore, the known tractability of them for chordal bipartite graphs [10,11] can not
be extended to perfect elimination bipartite graphs, unless NP = P .

This paper is structured as follows. After introducing necessary definitions
and facts in Section 2, separation results for restricted bipartite graph classes
are shown in Section 3,NP-completeness results for perfect elimination bipartite
graphs are shown in Section 4, and finally are concluding remarks in Section 5.
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2 Preliminaries

For a graph G = (V,E), we denote the neighborhood of a vertex u by NG(u) =
{v|(u, v) ∈ E}. When G is clear from the context, we just write N(u). A
complete bipartite graph G = (V1, V2, E) has E = {(u, v)|u ∈ V1, v ∈ V2}.
For a bipartite graph G = (V1, V2, E), a subset of pairwise nonadjacent edges
{(u1, v1), (u2, v2), · · · , (uk, vk)} is a perfect elimination ordering, if each (ui, vi)
is bisimplicial in G after removing {u1, v1, u2, v2, · · · , ui−1, vi−1}, and there is no
edge in G after removing {u1, v1, u2, v2, · · · , uk, vk}. A perfect elimination bipar-
tite graph has a perfect elimination ordering [3,2]. A hypergraph H = (V, E) has
the Helly property, if for every subset E ′ ⊆ E , if each pair of e1, e2 in E ′ has a
nonempty intersection, then all the e’s in E ′ have a nonempty intersection.

For a graph G = (V,E), its tree decomposition is a tree T = (B,F ), with each
vertex in B labeled by a subset of V , called bag, such that (1) each edge in E
is contained in at least one bag; (2) for each vertex u in V , all bags containing
u induce a subtree of T . The maximum size of bags minus one is the width of
the tree decomposition. The minimum width over all tree decompositions of a
graph is the treewidth of the graph [9,12]. The following Lemma is easy to prove
by definition of treewidth [9].

Lemma 1. Adding a new pendent vertex to a graph will not change its treewidth.

A feedback vertex set is a subset of vertices whose removal renders the graph
cycle-free. The minimum feedback vertex set problem is to decide whether a
given graph has a feedback vertex set of size no more than a given integer [8].
The minimum size of feedback vertex sets is also called a decycling number.

3 Comparison Results

In this section, we make a thorough comparison on perfect elimination bipartite
graphs, tree convex bipartite graphs, circular convex bipartite graphs, chordal
bipartite graphs, and convex bipartite graphs, by showing the nonemptyness of
each region in their Venn diagram, see Figure 1.

Fig. 1. Venn diagram of five restricted bipartite graph classes and graphs in each region
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We use the following trick to deal with perfect elimination bipartite graphs.
For a non-perfect elimination bipartite graph, we usually can add one pendent
vertex or many pendent vertices to make it a perfect elimination bipartite graph,
while to keep its other properties invariant.

Theorem 1. There is a perfect elimination and circular convex bipartite graph
G1 which is not a tree convex bipartite graph.

Proof. The graph G1 = (V1, V2, E), where V1 = {x, y, z, ua, ub, uc}, V2 = {a, b, c,
dx, dy, dz} and E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (x, dx), (y, dy), (z, dz),
(a, ua), (b, ub), (c, uc)}, is shown in Figure 2 (left).

Fig. 2. A perfect elimination and circular convex bipartite graph G1 which is not a
tree convex bipartite graph

G1 is a perfect elimination bipartite graph, since a perfect elimination ordering
of G1 is given by {(x, dx), (y, dy), (z, dz), (a, ua), (b, ub), (c, uc)}.

G1 is a circular convex bipartite graph, since a circular ordering R on V1 is
given by x ≺ ua ≺ y ≺ ub ≺ z ≺ uc ≺ x, as shown in Figure 2 (middle), such
that the neighborhood of each vertex in V2 induces a circular arc under R.

If G1 is a tree convex bipartite graph with a tree associated on V1, the hyper-
graph H = (V1, E) is a hypertree, where E = {N(d)|d ∈ V2}. Then H = (V1, E)
has the Helly property and the line graph L(H) = (E ,F) is chordal, where
F = {(N(d1), N(d2))|N(d1) ∩ N(d2) �= ∅} (Theorem 1.3.1, page 9, [2]). How-
ever, H = (V1, E) is not Helly, since N(a), N(b), N(c) are pairwise intersect, but
N(a) ∩N(b) ∩N(c) = ∅. This can be seen with the help of the line graph L(H)
shown in Figure 2 (right). The same holds for V2, due to the symmetry of G1.
Therefore, G1 is not a tree convex bipartite graph. �	
Theorem 2. There is a chordal bipartite graph G2 which is not a circular convex
bipartite graph.

Proof. The graph G2 = (V1, V2, E), where V1 = {x, y, z, u1, u2, u3}, V2 = {a0, a1,
a2, a3} and E = {(x, a1), (a1, u1), (u1, a0), (y, a2), (a2, u2), (u2, a0), (z, a3),
(a3, u3), (u3, a0)}, is shown in Figure 3 (left).

There is no cycle in G2 at all, so G2 is a chordal bipartite graph.
Since N(a0) = {u1, u2, u3}, u1, u2 and u3 must be consecutive in any circular

ordering on V1 for G2 to be circular convex bipartite. The same reasoning applies
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Fig. 3. A chordal bipartite graph G2 which is not a circular convex bipartite graph

to N(ai) for i = 1, 2, 3. So x and u1, y and u2, z and u3 respectively must
be consecutive in any circular ordering, say R1, on V1, as shown in Figure 3
(middle). Due to the symmetry in G2, without loss of generality, we can assume
that x ≺ u1 ≺ u2 ≺ u3 ≺ z in R1. Then the only possible place for y is at
between y and z, but in this case, N(a2) = {y, u2} is not a circular arc, since
none of x, u1, u2, z is in N(a2). Thus, y can not be inserted into R1 and G2 is
not circular convex bipartite with a circular ordering on V1. A similar reasoning
also applies to V2, as shown in Figure 3 (right). Thus, G2 is not a circular convex
bipartite graph. �	

Theorem 3. There is a circular convex bipartite graph G3 which is neither a
perfect elimination bipartite graph nor a tree convex bipartite graph.

Proof. The graph G3 = (V1, V2, E), where V1 = {x, y, z}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x)}, is shown in Figure 4 (left).

G3 is a circular convex bipartite graph, since a circular ordering R on V1 can
be defined by x ≺ y ≺ z ≺ x, as shown in Figure 4 (right).

Fig. 4. A circular convex bipartite graph G3 which is neither a perfect elimination
bipartite graph nor a tree convex bipartite graph

G3 is not a perfect elimination bipartite graph, since in any perfect elimination
ordering of G3, the first edge must be bisimplicial in G3, but each edge of G3 is
not bisimplicial in G3. For example, consider an edge (x, a). We have N(x) =
{a, c} and N(a) = {x, y}. Since there is no edge (c, y) in E, N(x) ∪ N(a) does
not induce a biclique in G3. Thus the edge (x, a) is not bisimplicial. The same
holds for other five edges in E due to the symmetry of G3.
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G3 is not a tree convex bipartite graph, since V1 has only three vertices, any
tree on V1 is a path, say x − y − z. But then, the neighborhood of c, which is
NG3(c) = {x, z}, does not induce a subtree. Same for V2 by symmetry. �	
Theorem 4. There is a circular convex and tree convex bipartite graph G4 which
is not a perfect elimination bipartite graph.

Proof. The graph G4 = (V1, V2, E), where V1 = {x, y, z, u}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (u, a), (u, b), (u, c)}, is shown in Fig-
ure 5 (left).

Fig. 5. A circular convex and tree convex bipartite graph G4 which is not a perfect
elimination bipartite graph

G4 is a tree convex bipartite graph, since a tree T = (V1, F ) on V1 can be
defined by F = {(x, u), (y, u), (z, u)}, as shown in Figure 5 (right), such that for
each vertex in V2, its neighborhood induces a subtree in T .

G4 is a circular convex bipartite graph, since a circular ordering R on V2 can
be defined by a ≺ b ≺ c ≺ a, as shown in Figure 5 (right), such that for each
vertex in V2, its neighborhood induces a circular arc in R.

G4 is not a perfect elimination bipartite graph, similarly as G3. �	
Theorem 5. There is a tree convex bipartite graph G5 which is neither a perfect
elimination bipartite graph nor a circular convex bipartite graph.

Proof. The graph G5 = (V1, V2, E), where V1 = {x1, y1, z1, u1, x2, y2, z2, u2},
V2 = {a1, b1, c1, d, a2, b2, c2}, and E = {(x1, a1), (a1, y1), (y1, b1), (b1, z1), (z1, c1),
(c1, x1), (u1, a1), (u1, b1), (u1, c1), (u1, d), (d, u2), (x1, a1), (a1, y1), (y1, b1), (b1, z1),
(z1, c1), (c1, x1), (u1, a1), (u1, b1), (u1, c1)}, is shown in Figure 6 (left).

G5 is not a circular convex bipartite graph, since G5 is essentially two copies
of G4 linked by a vertex d. Though each copies of G4 has a circular ordering,
they can not be combined into a larger one for G5, as readers can check it.

G5 is not a perfect elimination bipartite graph, by the same reasoning as G4,
as well as the fact that the edges (u1, d) and (d, u1) are not bisimplicial.

G5 is a tree convex bipartite graph, since a tree T on V1 can be defined as
shown in Figure 6 (right), such that for each vertex in V2, its neighborhood
induces a subtree in T . �	
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Fig. 6. A tree convex bipartite graph G5 which is neither a perfect elimination bipartite
graph nor a circular convex bipartite graph

Theorem 6. (1) There is a bipartite graph G0 which is neither a tree convex
bipartite graph, a circular convex bipartite graph, nor a perfect elimination bipar-
tite graph. (2) There is a perfect elimination bipartite graph G6 which is neither
a tree convex bipartite graph nor a circular convex bipartite graph.

Proof. (1) The graph G0 = (V1, V2, E) is shown in Figure 7 (left).

Fig. 7. A bipartite graph G0 which is neither a tree convex bipartite graph, a circular
convex bipartite graph, nor a perfect elimination bipartite graph, and a perfect elimi-
nation bipartite graph G6 which is neither a tree convex bipartite graph nor a circular
convex bipartite graph

G0 is not a circular convex bipartite graph, since G0 is essentially two copies of
G1 with a common edge (b, u). Though each copies of G1 has a circular ordering,
they can not be combined into a larger one for G0.

G0 is not a perfect elimination bipartite graph, by the same reasoning as G1,
as well as the fact that the edges (x, b) and (b, u) are not bisimplicial.

G0 is not a tree convex bipartite graph, since any tree on V1 must be a path
x−z−u−v−y, due to the degree two vertices a, d, e, c. But then N(b) = {x, y, u}
does not induce a subtree. The same holds for V2 due to symmetry.

(2) The graph G6 = (V3, V4, F ) is shown in Figure 7 (right).
G6 is neither a circular convex bipartite graph, nor a tree convex bipartite

graph, by exactly the same reasoning as for G0.
G6 is a perfect elimination bipartite graph, since a perfect elimination ordering

is given by {(f, x), (a, z), (d, u), (e, v), (c, y)}, as readers can check it. �	
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Theorem 7. There is a circular convex and tree convex and perfect elimination
bipartite graph G7 which is not a chordal bipartite graph.

Proof. The graph G7 = (V1, V2, E), where V1 = {x, y, z, u, w}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (u, a), (u, b), (u, c), (w, a)}, is shown
in Figure 8 (left).

Fig. 8. A circular convex and tree convex and perfect elimination bipartite graph G7

which is not a chordal bipartite graph

G7 is a perfect elimination bipartite graph, since a perfect elimination ordering
is given by {(w, a), (y, b), (z, c)}, as readers can check it.

G7 is a tree convex bipartite graph, since a tree T = (V1, F ) on V1 can be
defined by F = {(x, u), (y, u), (z, u), (w, u)}, as shown in Figure 8 (middle), such
that for each vertex in V2, its neighborhood induces a subtree in T .

G7 is a circular convex bipartite graph, since a circular ordering R on V2 can
be defined by a ≺ b ≺ c ≺ a, as shown in Figure 8 (right), such that for each
vertex in V2, its neighborhood induces a circular arc in R.

G7 is not a chordal bipartite graph, since the cycle x− a− y − b− z − c− x
of length six has no chord. �	
Theorem 8. There is a tree convex and perfect elimination bipartite graph G8

which is neither a chordal bipartite graph nor a circular convex bipartite graph.

Proof. The graph G8 = (V1, V2, E) is shown in Figure 9 (left).

Fig. 9. A tree convex and perfect elimination bipartite graph G8 which is neither a
chordal bipartite graph nor a circular convex bipartite graph

G8 is a perfect elimination bipartite graph, since a perfect elimination order-
ing is given by {(w1, a1), (y1, b1), (z1, c1), (w2, a2), (y2, b2), (z2, c2), (u1, d1)}, as
readers can check it.
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G8 is a tree convex bipartite graph, similarly as G5, see Figure 9 (right).
G8 is not a circular convex bipartite graph, similarly as G5.
G8 is not a chordal bipartite graph, since the cycle x1−a1−y1−b1−z1−c1−x1

of length six has no chord. �	
Theorem 9. There is a circular convex and chordal bipartite graph G9 which
is not a convex bipartite graph.

Proof. The graph G9 = (V1, V2, E), where V1 = {x, y, z, u, w}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (u, a), (u, b), (u, c), (w, a)}, is shown
in Figure 10 (left).

Fig. 10. A circular convex and chordal bipartite graph G9 which is not a convex bi-
partite graph

G9 is a chordal bipartite graph, since each cycle of length at least six has a
chord, as readers can check it.

G9 is a circular convex bipartite graph, since a circular ordering R on V2 can
be defined by x ≺ u1 ≺ y ≺ z ≺ u2 ≺ x, as shown in Figure 10 (right), such that
for each vertex in V2, its neighborhood induces a circular arc in R.

G9 is not a convex bipartite graph, since G9 is a forbidden subgraph in
Tucker’s characterization of convex bipartite graphs [20]. �	

4 Hardness Results

In this section, we show the NP-completeness of treewidth and feedback vertex
set for perfect elimination bipartite graphs. These two problems are known to
be NP-complete for bipartite graphs. We use a simple reduction from bipartite
graphs to perfect elimination bipartite graphs, which keeps treewidth and decy-
cling number invariant. The reduction just adds a different pendent vertex for
each vertex in one side of the bipartite graph.

Theorem 10. Treewidth is NP-complete for perfect elimination bipartite
graphs.

Proof. Treewidth is well known in NP [1,9]. We reduce from Treewidth which
is NP-complete for bipartite graphs [9].
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Reduction 1.
Input: A bipartite graph G = (V1, V2, E) and a positive integer k, where

V1 = {x1, x2, . . . , xn}.
Output: A bipartite graph G′ = (V1, V

′
2 , E

′) and a positive integer k, where
V ′
2 = V2 ∪ {a1, a2, · · · , an} and E′ = E ∪ {(xk, ak)|k = 1, 2, · · · , n}.

Fig. 11. An example of Reduction 1

Clearly, G′ is bipartite and is computable from G in polynomial time. An
example of G and G′ is shown in Figure 11.

The graph G′ is a perfect elimination bipartite graph, since a perfect elimi-
nation ordering of G′ is given by {(x1, a1), (x2, a2), · · ·, (xn, an)}. Indeed, these
edges are pairwise nonadjacent. Each edge in them has a degree one endpoint
bi, thus are bisimplicial. These edges contain all the vertices in V1, no edge in
G′ will be left after removing these edges and their endpoints.

By repeatedly applying Lemma 1 in the construction of G′ from G, G has
treewidth k if and only if G′ has treewidth k. �	
Theorem 11. Feedback vertex set is NP-complete for perfect elimination bi-
partite graphs.

Proof. Feedback vertex set problem is well known in NP [8]. We reduce from
feedback vertex set which is NP-complete for bipartite graphs [23]. The reduc-
tion is exact the same as Reduction 1 in proof of Theorem 10. The correctness
of this reduction is shown as follows.

First, for any feedback vertex set D′ of G′, there is a feedback vertex set D′′

of G′, such that D′′ only contains vertices in V1 ∪ V2 and D′′ is not larger than
D′. Indeed, if there is a vertex ai in D′, then we can replace ai by xi, since ai is
a pendent vertex not on any cycle.

Second, for any D ⊆ V1 ∪ V2, D is a feedback vertex set in G if and only if it
is a feedback vertex set in G′. Therefore, G has a feedback vertex set of size at
most k if and only if G′ has a feedback vertex set of size at most k. �	

5 Conclusions

We have made a thorough comparison for perfect elimination bipartite graphs,
chordal bipartite graphs, convex bipartite graphs, tree convex bipartite graphs,
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and circular convex bipartite graphs, showing the nonemptyness of each region
in their Venn diagram (Figure 1), thus ruling out any further inclusion among
them. We also show the NP-completeness of treewidth and feedback vertex set
for perfect elimination bipartite graphs.

A trick we used to obtain these results is that, for a bipartite graph, we usually
can add one pendent vertex or many pendent vertices to make it a perfect elimina-
tion bipartite graph, while to keep its other properties invariant. This trick may be
useful to obtain further results for perfect elimination bipartite graphs.

The complexity of feedback vertex set for restricted bipartite graphs is shown
in Figure 12. The complexity of treewidth for triad convex bipartite graphs or
circular convex bipartite graphs is unknown. We conjecture that treewidth is also
tractable for these two classes of bipartite graphs, and thus the same picture as
Figure 12 also holds for treewidth.

Fig. 12. The known inclusion among some restricted bipartite graphs and complexity
classification of feedback vertex set for these bipartite graphs

A set system (U,S) contains a universe set U and a family S of subsets of
U . A set system (U,S) can be represented by a bipartite graph (U,S, E), where
E = {(x, Y )|x ∈ U, Y ∈ S}. When the bipartite graphs are restricted, we also get
the corresponding restricted set systems. Our separation results for the restricted
bipartite graphs are also applicable to the restricted set systems. Recently, some
complexity results on set cover, set packing and hitting set for tree convex,
circular convex, tree-like and circular-like set systems are obtained in [16]. We
can also define perfect elimination set systems and chordal set systems, and the
complexity results for them is largely unknown.

Acknowledgments. The help of anonymous reviewers has improved our pre-
sentation greatly.
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