
Partially Dynamic Single-Source Shortest Paths

on Digraphs with Positive Weights

Wei Ding1 and Guohui Lin2,�

1 Zhejiang University of Water Resources and Electric Power
Hangzhou, Zhejiang 310018, China

dingweicumt@163.com
2 Department of Computing Science, University of Alberta

Edmonton, Alberta T6G 2E8, Canada
guohui@ualberta.ca

Abstract. We examine several structural properties of single-source
shortest paths and present a local search algorithm for the partially
dynamic single-source shortest paths problem. Our algorithm works on
both deterministic digraphs and undirected graphs. For a deterministic
digraph with positive arc weights, our algorithm handles a single arc

weight increase in O(n+ n2 log n
m

) expected time, where n is the number
of nodes and m is the number of edges in the digraph. Specifically, our al-
gorithm is an O(n) expected time algorithm when m = Ω(n log n). This
solves partially an open problem proposed by Demetrescu and Italiano
(Journal of the ACM. 51(2004), 968–992).

Keywords: partially dynamic, single-source shortest paths, local search,
expected time.

1 Introduction

An all-pairs shortest paths (APSP) algorithm computes the shortest paths be-
tween every pair of nodes in a given digraph, and a single-source shortest paths
(SSSP) algorithm computes the shortest paths from a given source node to all
the other nodes. When dynamic changes occur to the digraph, a dynamic APSP
(SSSP, respectively) algorithm updates the shortest paths. One can recompute
the shortest paths using the static algorithms, but a truly dynamic algorithm
seeks for updating operations using fundamental properties of the shortest paths,
and is expected to run faster than recomputation by the static algorithms. We
present a partially dynamic SSSP algorithm for digraphs with arbitrary positive
arc weights. We use arc and edge interchangeably in this paper.

Dynamic changes of a digraph (a.k.a. edge update) include topology update and
edge weight update. Topology update includes edge insertions and deletions, and
edge weight update includes weight increase and decrease. Note that topology
update can be realized by edge weight update, and vice versa. When dealing with

� Correspondence author.

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 197–207, 2014.
c© Springer International Publishing Switzerland 2014

198 W. Ding and G. Lin

only edge weight updates, an algorithm is said to be fully dynamic if it can handle
both edge weight increases and decreases, but partially dynamic if it only can
handle edge weight decreases or increases but not both [1,4,5,10,13,16,17]. When
dealing with only topology updates, an algorithm is fully dynamic if it can handle
both edge insertions and deletions, is incremental if it can handle only edge
insertions but not deletions, and is decremental if it can handle only deletions
but not insertions [2,3,7,8,11,14,15]. Incremental and decremental algorithms are
sometimes collectively called partially dynamic.

Demetrescu and Italiano [4,5] studied a generalization of dynamic changes,
in which the weights of all the edges incident at a given node are changed in
one update. Such an update is called a node update, see also [16,17]. Clearly,
dynamic APSP and SSSP algorithms for node updates work for edge updates
too. Throughout this paper, n and m denote the numbers of nodes and edges
(arcs) in the input digraphs, respectively.

The dynamic APSP problem with edge weight updates has been studied ex-
tensively since it was proposed [12]. Ausiello et al. [1] devised a partially dy-
namic APSP algorithm with an O(Cn log n) amortized update time for digraphs
of which all edge weights are less than or equal to a constant C. King [11]
studied the fully dynamic APSP problem on the same class of digraphs and pre-
sented an algorithm with O(n

5
2

√
C logn) worst-case update time. Demetrescu

and Italiano [4,5] considered node updates on digraphs with non-negative real-
valued edge weights, and designed a fully dynamic APSP algorithm with an
O(n2 log3 n) amortized time. Thorup [16,17] presented an improved algorithm
with a worst-case O(n2.75polylog(n)) time. The fully dynamic APSP problem on
random graphs was considered by Friedrich and Hebbinghaus [10], who gave an

O(n
4
3+ε) expected time per update algorithm, for any ε > 0, for random graphs

G(n, p) with uniform random edge weights, and by Peres et al. [13], who pre-
sented an O(log2 n) expected time per update algorithm for complete digraphs
with edge weights selected independently at random from the uniform distribu-
tion on interval [0, 1]. There are also a number of approximate incremental and
decremental APSP algorithms [2,3,14] for undirected graphs with positive edge
weights.

For the dynamic SSSP problem with topology updates, Even and Shiloach [8]
and Dinitz [7] presented O(n) amortized time decremental algorithms for un-
weighted and undirected graphs. King [11] presented a decremental algorithm
to maintain shortest paths of distance up to d in O(md) time, for digraphs

with positive integer edge weights. Bernstein and Roditty [3] devised an O(n
2

m)
amortized time decremental algorithm to maintain (1+ ε)-approximate SSSP on
unweighted and undirected graphs. This is the first algorithm that breaks the
long-standing O(n) update time barrier on decremental SSSP problem, on not-
too-sparse graphs. On the other hand, Roditty and Zwick [15] showed that the in-
cremental and decremental SSSP problems on edge weighted digraphs are at least
as hard as the static APSP problem; by similar reductions they showed that the
incremental and decremental SSSP problems on edge unweighted digraphs are
at least as hard as the Boolean matrix multiplication problem. These hardness

Partially Dynamic SSSP on Digraphs with Positive Weights 199

results hint that it will be difficult to improve the known best algorithms of Even
and Shiloach [8].

For the dynamic SSSP problem with edge weight updates, Fakcharoemphol
and Rao [9] studied the fully dynamic variant on planar digraphs, and devised

an O(n
4
5 log

13
5 n) amortized time algorithm. Demetrescu and Italiano [4] raised

the open problem on whether or not we can solve efficiently (i.e., better than
recomputation) fully dynamic SSSP problem on general graphs. We address
partially this open problem by presenting a partially dynamic SSSP algorithm for
handling arc weight increase on digraphs with positive weights. For deterministic

digraphs, our algorithm can handle a single arc weight increase in O(n+ n2 logn
m)

expected time. When m = Ω(n logn), our algorithm is an O(n) expected time
algorithm. Moreover, our algorithm can also work on undirected graphs with
positive weights.

The rest of the paper is organized as follows. In Sect. 2, we define some
notations frequently used in this paper and the partially dynamic SSSP problem
formally. In Sect. 3, we show several fundamental properties. In Sect. 4, we
present a local search algorithm based on these properties. In Sect. 5, we analyze
the worst-case expected update time of our algorithm handling a single arc
weight increase for deterministic digraphs. In Sect. 6, we conclude the paper
with some future work.

2 Problem Statements and Notations

Let D = (V,A,w, s) be a weighted digraph, where V is the node set, A is
the arc set, s is a designated node called source, and w(·) is a weight function
w : A → R

+. Suppose that the weight of an arc a increases from w(a) up
to w′(a) and all the other arc weights stay unchanged. Let δ = w′(a) − w(a).
Note that w′(a) always remains positive. The resultant digraph is denoted as
D′ = (V,A,w′, s). We use d∗D(s, v) (resp. d∗D′(s, v)) to denote the shortest path
distance from s to node v in D (resp. D′), and use Ts (resp. T ′

s) to denote the
single-source shortest paths tree in D (resp. D′).

Problem 1. Given D = (V,A,w, s) and Ts in D, we replace w(a) with w′(a) for
one arc a to obtain a new digraph D′ = (V,A,w′, s). The problem of updating
Ts to T ′

s in D′ is called the partially dynamic SSSP problem with a single arc
weight increase.

The essence of Problem 1 is to maintain SSSP, that is, to update the given Ts

in D to T ′
s in D′. Obviously, Ts and T ′

s are both out-trees from s, and both can
be taken as rooted trees at s. For any node of V , let Tu (resp. T ′

u) denote the
subtree of Ts (resp. T ′

s) rooted at u. We use πT (s, v) to denote the s-to-v simple
path along Ts, and use dT (s, v) to denote the length of πT (s, v) which is equal
to the sum of the weights on all the arcs of πT (s, v). Clearly, dT (s, v) = d∗D(s, v)
and dT ′(s, v) = d∗D′(s, v) for every v ∈ V . In addition, we use V (·) and A(·)
to denote the node set and arc set of one digraph or its subgraph respectively.
Let S(D,U) denote the subgraph of D induced by the subset U ⊆ V of nodes.

200 W. Ding and G. Lin

For any subset U ⊂ V , we let C[U, V \ U] denote the subset of arcs with tail in
U and head in V \ U .

Let a = (u, v) denote the arc of D from u to v and w(u, v) (or sometimes
w(a)) denote its weight. We call u the tail of a and denote u as ta, and call v
the head of a and denote v as ha. Thus, a = (ta, ha), which is called an outgoing
arc from ta and an incoming arc to ha. The set of all the outgoing arcs from a
node u is denoted as O(u) and the set of all the incoming arcs to v is denoted
as I(v).

3 Fundamental Properties

In the section, we show several fundamental properties which will play an im-
portant role in the design of our local search algorithm, described as PSAI, for
updating SSSP under a single arc weight increase.

Theorem 1. For any a /∈ Ts, no matter how much w(a) increases by to w′(a),
it always holds that d∗D′(s, v) = dT (s, v) for any v ∈ V .

Proof. No matter how much w(a) increases by to w′(a), the length of every
simple s-to-v1 path in D′ passing through a is larger than its length in D, and
the length of every simple s-to-v2 path in D′ not passing through a is the same
as its length in D. So the length of every simple path in D′ is either larger
than or equal to its length in D. When a /∈ Ts, πT (s, v) obviously does not pass
through a, and thus the length of πT (s, v) stays unchanged. Considering that
dT (s, v) = dD(s, v), we conclude that πT (s, v) is always the s-to-v shortest path
in D′ for any v ∈ V . So, d∗D′(s, v) = dT (s, v), ∀v ∈ V . The proof is complete. �	
Theorem 2. For any a ∈ Ts, it always holds that d∗D′(s, u) = dT (s, u) for any
u ∈ V \ V (Tha) regardless of how much w(a) increases by to w′(a).

Proof. When a ∈ Ts, we observe that πT (s, u) does not pass through a for any
u ∈ V \ V (Tha). Thus, the length of πT (s, u) stays unchanged and thus πT (s, u)
is always the s-to-u shortest path in D′ regardless of how much w(a) increases
by to w′(a). This implies that d∗D′(s, u) = dT (s, u), ∀u ∈ V \ V (Tha). The proof
is complete. �	
When a ∈ Ts and its weight increases to w′(a), one observes that since πT (s, v)
passes through a for any v ∈ V (Tha), the length of πT (s, v) in D′ is equal to its
length in D plus w′(a) − w(a). So, the length of πT (s, v) in D′ is larger than
dT (s, v). Since the length of every s-to-v simple path not passing through a
stays unchanged, it may occur that some s-to-v simple paths in D′ not passing
through a have a smaller length than πT (s, v). We conclude that every s-to-v
simple path in D′ having a smaller length than πT (s, v) is surely composed of
one s-to-u simple path in D′, followed by arc (u, v′) and the path v′-to-v in
Tha , where u ∈ I(v′) \ V (Tha). Such an s-to-v′ path can minimize its length by
selecting πT (s, u) as the s-to-u simple path. Let

b(v) = arg min
u∈I(v)\V (Tha)

{dT (s, u) + w(u, v)}, ∀v ∈ V (Tha), (1)

Partially Dynamic SSSP on Digraphs with Positive Weights 201

Fig. 1. Illustration of Da

and b(v) is called a bridge node of v. Let b(v) = null if b(v) does not exist in
D′ and thus (b(v), v) = null. In addition, we use an arc ε(πT (s, v)) to represent
πT (s, v).

Accordingly, we can construct an auxiliary graph Da = (V,Aa, wa(·)) from
D based on a in the following way, see Fig. 1. The new arc set Aa is composed
of all the arcs in the subgraph of D induced by V (Tha) and all ε(πT (s, u)), u ∈
V \ V (Tha) and all (b(v), v), v ∈ V (Tha). For any arc r ∈ Aa, the weight of r,
wa(r), is equal to the length of πT (s, u0) if r represents πT (s, u0), or otherwise
wa(r) = w(r). That is,

Aa = A(S(D,V (Tha))) ∪ {(b(v), v) : v ∈ V (Tha)}
∪{ε(πT (s, u)) : u ∈ V \ V (Tha)}, (2)

and

wa(r) =

{
dT (s, u0) if r = ε(πT (s, u0)),
w(r) otherwise,

∀r ∈ Aa. (3)

Lemma 1. For any a ∈ Ts and any v ∈ V (Tha), it always holds that any s-to-v
shortest path in D′ contains exactly one arc in C[V \ V (Tha), V (Tha)].

Proof. We conclude from s ∈ V \ V (Tha) and v ∈ V (Tha) that any s-to-v
simple path in D′ contains at least one arc in C[V \ V (Tha), V (Tha)]. Sup-
pose that π�(s, v) is an s-to-v shortest path in D′ containing two arcs in
C[V \V (Tha), V (Tha)]. In details, π�(s, v) consists of πT (s, u1), two arcs (u1, v1)
and (u3, v3) in C[V \ V (Tha), V (Tha)] and (v2, u2), two disjoint paths π(v1, v2)
and π(v3, v) in S(D′, V (Tha)), and one path π(u2, u3) in S(D′, V \ V (Tha)),
where u1, u2, u3 ∈ V \ V (Tha) and v1, v2 ∈ V (Tha) (see Fig. 2). Note that it is

202 W. Ding and G. Lin

Fig. 2. Illustrate the proof of Lemma 1

possible that v1 = v2, u2 = u3 and v3 = v. Clearly, the seven parts of π�(s, v)
are disjoint. The sub-path π�(s, u3) of π

�(s, v) is an s-to-u3 simple path in D′.
By Theorem 2, πT (s, u3) is still an s-to-u3 shortest path in D′. So, the length
of πT (s, u3) is less than the length of π�(s, u3). Therefore, a new path π�(s, v)
composed of πT (s, u3), (u3, v3) and π(v3, v) has a smaller length than π�(s, v).
This causes a contradiction. �	
Theorem 3. For any a ∈ Ts, it always holds that d∗D′(s, v) = d∗Da

(s, v) for any
v ∈ V regardless of how much w(a) increases by to w′(a).

Proof. When a ∈ Ts, Theorem 2 shows that πT (s, u) is always an s-to-u shortest
path in D′ for any u ∈ V \ V (Tha) and also an s-to-u shortest path in Da. So,
d∗D′(s, u) = d∗Da

(s, u). The work left is to prove d∗D′(s, v) = d∗Da
(s, v) for any

v ∈ V (Tha).
We observe that the weight of a increases from w(a) up to w′(a) and thus the

length of πT (s, v) in D′ increases by w′(a)−w(a). So, it is certain that an s-to-v
shortest path in D′ is one of such simple paths as composed of three disjoint
parts πT (s, b(v0)), (b(v0), v0) and a v0-to-v path π(v0, v) where v0 ∈ V (Tha). We
conclude from Lemma 1 and (b(v0), v0) ∈ C[V \ V (Tha), V (Tha)] that π(v0, v)
contains no arc in C[V \ V (Tha), V (Tha)]. So, π(v0, v) is a v0-to-v shortest path
in S(D,V (Tha)).

We need to visit all the incoming arcs to v in order to find b(v) for all v ∈
V (Tha) and need to traverse S(D,V (Tha)) to compute a v0-to-v shortest path in
S(D,V (Tha)). Therefore, the problem of finding an s-to-v shortest path in D′ is

Partially Dynamic SSSP on Digraphs with Positive Weights 203

equivalent to the problem of finding an s-to-v shortest path in Da. This implies
that d∗D′(s, v) = d∗Da

(s, v). The proof is complete. �	

4 Local Search Algorithm

From the properties shown in Sect. 3, we need to discuss the situation of the arc
a with its weight increased, i.e., discuss whether a /∈ Ts or a ∈ Ts. When a /∈ Ts,
we conclude from Theorem 1 that πT (s, v) is also an s-to-v shortest path in D′

for any v ∈ V . Therefore, Ts is also a single-source shortest paths tree in D′ with
s as the origin. So we need no work. When a ∈ Ts, we conclude from Theorem
2 that πT (s, u) is also an s-to-u shortest path in D′ for any u ∈ V \V (Tha), and
from Theorem 3 that π(s, v) is an s-to-v shortest path in D′ iff it is an s-to-v
shortest path in Da for any v ∈ V (Tha). So, we only need to update the s-to-v
shortest path for all v ∈ V (Tha). Above discussions can be described as a local
search algorithm PSAI.

For every v ∈ V (Tha), we conclude from Eq. (1) that we need to visit all
the nodes in I(v) and judge whether one node is in Tha or not. We define a
0-1 variable p(v). In details, p(v) = 0 means that v is not in Tha and p(v) = 1
means that v is in Tha . Initially, we set p(v) = 0 for all v ∈ V . In order to make
PSAI facilitate implementing its local search procedure, we use appropriate data
structures to store the input digraph and single-source shortest paths trees.

Algorithm PSAI:
Input: D = (V,A,w, s), Ts and w′(a);
Output: T ′

s in D′.
Step 0: If a /∈ Ts, then return Ts; if a ∈ Ts, then goto Step 1;
Step 1: Use DFS to traverse Tha twice from ha; in the first one, we let

p(v) ← 1, ∀v ∈ V (Tha); in the second one, for every v ∈ V (Tha),
we visit all nodes in I(v) and find b(v) using Eq. (1);

Step 2: Construct Da based on Eqs. (2) and (3);
Step 3: Use Dijkstra’s algorithm in Da to compute the single-source

shortest paths tree with s as the origin, and record it as T ′
s;

Step 4: Use DFS to traverse Tha and reset p(v) ← 0, ∀v ∈ V (Tha);

Theorem 4. PSAI takes O(m + n logn) time in the worst case.

Proof. Let |V (Tha)| = n′, |A(S(D,V (Tha)))| = m′ and
∑

v∈V (Tha)
|I(v)| = K.

Step 1 first takes O(n′) time to use DFS in Tha to do preliminaries, and then
uses DFS in Tha the second time to find b(v), ∀v ∈ V (Tha) which takes O(K)
time. Obviously, n′ ≤ K. So, Step 1 runs O(K) time. Since Tha has at most
n′ bridge nodes, Da has n nodes and at most m′ + n arcs. Clearly, m′ ≤ K.
So, Step 2 spends O(K) time to construct Da. Step 3 uses Dijkstra’s algorithm
[6] in Da to compute T ′

s, whose running time is O(|A(Da)| + |V | log |V |) and
O(K+n logn). Step 4 takes O(n′) time to use DFS in Tha to reset all the values
of p(v), v ∈ V (Tha). Since K ≤ m, PSAI takes O(m+ n logn) time in the worst
case. �	

204 W. Ding and G. Lin

5 Average Case Analysis

Let {·} denote an event, e.g., {ha = u} represents the event of a having a head
u, and {a ∈ Ts} (resp. {a /∈ Ts}) represents the event that Ts contains a (resp.
Ts does not contain a). Let ω = 〈ω1, ω2〉 be an unchangeable couple, where
ω1 ∈ Ω1, ω2 ∈ Ω2 and Ω1, Ω2 are two event spaces as follows

Ω1 = {{ha = u} : u ∈ V }, Ω2 = {{a ∈ Ts}, {a /∈ Ts}}. (4)

Suppose that {ω1 ∈ Ω1} and {ω2 ∈ Ω2} are independent. Let

Ω = Ω1 ×Ω2 = {〈ω1, ω2〉 : ω1 ∈ Ω1, ω2 ∈ Ω2}. (5)

Given any D = (V,A,w, s), we denote by G the topology of D and by Ts the
SSSP tree of D with s as the origin. In fact, a given D means that both G and
Ts of D are given. When D is given, every ω ∈ Ω represents a situation of a
single arc weight increase, and thus acts as an elementary conditional event of
time costs of PSAI. So, Ω is just the conditional event space induced by D.

Let E[Z|X = x, Y = y] denote the conditional expectation of Z when X = x
and Y = y. Lemma 2 shows an important formula on conditional expectation.

Lemma 2. Given two discrete random variables X, Y and another random
variable Z, provided that {X = x} and {Y = y} are the condition events of Z,
we have

E[Z] =
∑
x,y

E[Z|X = x, Y = y] · Pr[X = x, Y = y]. (6)

Let E[time] denote the expected time of PSAI dealing with a single arc weight
increase in D, E[time|ha = u, a ∈ Ts] denote the expected time of PSAI dealing
with the increase of a with ha = u and a ∈ Ts, and E[time|ha = u, a /∈ Ts]
denote the expected time of PSAI dealing with the increase of a with ha = u
and a /∈ Ts. Suppose that a single arc weight increase of D occurs at random
from the uniform distribution on A, i.e.,

Pr[an increase occurs to a] =
1

m
, ∀a ∈ A. (7)

Theorem 5. Given any D = (V,A,w, s), the expected update time of PSAI
dealing with a single arc weight increase is

O
(1

m

∑
u∈V

∑
v∈V (Tu)

|I(v)|+ 1

m

∑
u∈V

|V | log |V |+ 1

m

∑
u∈V

|I(u)|
)
. (8)

Proof. For any u ∈ V , D has a single incoming arc to u which is in Ts, and
|I(u)| − 1 incoming arcs to u which are not in Ts when 1 ≤ |I(u)| ≤ n − 1.
According to Eq. (7), we get

Pr[ha = u, a ∈ Ts] =
1

m
, (9)

Partially Dynamic SSSP on Digraphs with Positive Weights 205

and

Pr[ha = u, a /∈ Ts] =
|I(u)| − 1

m
. (10)

Theorem 1 implies that PSAI needs no work when ha = u and a /∈ Ts, and
thus takes only O(1) time in this case. So,

E[time|ha = u, a /∈ Ts] = O(1). (11)

From the description of PSAI and the proof of Theorem 4, we conclude the
update time of PSAI for any v ∈ V (Tu) when ha = u and a ∈ Ts is

E[time|ha = u, a ∈ Ts] = O(
∑

v∈V (Tu)

|I(v)| + |V | log |V |), (12)

According to Eq. (5), we can further rewrite Ω to be

Ω =
⋃
u∈V

{ha = u, a ∈ Ts} ∪ {ha = u, a /∈ Ts}. (13)

and then derive from Lemma 2 that

E[time] =
∑
ω∈Ω

E[time|ω] · Pr[ω]

=
∑
u∈V

(
E[time|ha = u, a ∈ Ts] · Pr[ha = u, a ∈ Ts]

)
+

∑
u∈V

(
E[time|ha = u, a /∈ Ts] · Pr[ha = u, a /∈ Ts]

)
.

We take Eqs. (9), (10), (11) and (12) into above equality to obtain

E[time] =
∑
u∈V

(
O(

∑
v∈V (Tu)

|I(v)| + |V | log |V |) · 1

m
+O(1) · |I(u)| − 1

m

)

= O
(1

m

∑
u∈V

∑
v∈V (Tu)

|I(v)| + 1

m

∑
u∈V

|V | log |V |+ 1

m

∑
u∈V

|I(u)|
)
. �	

Theorem 6. Given any D = (V,A,w, s), the worst-case expected update time

of PSAI dealing with a single arc weight increase is O(n+ n2 logn
m).

Proof. Obviously, we have

∑
u∈V

|I(u)| = m and
1

m

∑
u∈V

|V | log |V | = n2 logn

m
.

Combining with

1

m

∑
u∈V

∑
v∈V (Tu)

|I(v)| =
∑
u∈V

(1

m

∑
v∈V (Tu)

|I(v)|
)
≤

∑
u∈V

O(1) = O(n),

we conclude that algorithm PSAI runs in O(n + n2 logn
m) expected time in the

worst case. �	

206 W. Ding and G. Lin

6 Concluding Remarks

We have presented a local search algorithm PSAI for handling a single arc weight
increase to maintain SSSP on digraphs. The worst-case update time of PSAI is

O(m+n logn), and the worst-case expected update time of PSAI is O(n+n2 logn
m).

When m = Ω(n logn), PSAI has an O(n) expected updated time. To the best of
our knowledge, we are the first one to propose almost linear time algorithm for
maintaining SSSP. Also, PSAI applies to undirected graphs with positive weights.

When a single arc weight reduces, whether a linear time algorithm exists for
maintaining SSSP on digraphs remains open.

Acknowledgement. This research was supported in part by NSERC.

References

1. Ausiello, G., Italiano, G.F., Marchetti-Spaccamela, A., Nanni, U.: Incremental
algorithms for minimal length paths. Journal of Algorithms 12, 615–638 (1991)

2. Bernstein, A.: Fully dynamic (2+ ε) approximate all-pairs shortest paths with fast
query and close to linear update time. In: Proc. of 50th FOCS, pp. 693–702 (2009)

3. Bernstein, A., Roditty, L.: Improved dynamic algorithms for maintaining approxi-
mate shortest paths under deletions. In: Proc. of 22th SODA, pp. 1355–1365 (2011)

4. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
Journal of the ACM 51, 968–992 (2004)

5. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest
path algorithms. ACM Transactions on Algorithms 2, 578–601 (2006)

6. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische
Mathematik 1, 269–271 (1959)

7. Dinitz, Y.: Dinitz’ algorithm: The original version and Even’s version. In: Essays
in Memory of Shimon Even, pp. 218–240 (2006)

8. Even, S., Shiloach, Y.: An on-line edge-deletion problem. Journal of the ACM 28,
1–4 (1981)

9. Fakcharoemphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths,
and near linear time. In: Proc. of 42nd FOCS, pp. 232–241 (2001)

10. Friedrich, T., Hebbinghaus, N.: Average update times for fully-dynamic all-pairs
shortest paths. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 692–703. Springer, Heidelberg (2008)

11. King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In: Proc. of 40th FOCS, pp. 81–99 (1999)

12. Murchland, J.: The effect of increasing or decreasing the length of a single arc on
all shortest distances in a graph. Technical report, LBS-TNT-26. London Business
School, Transport Network Theory Unit, London, UK (1967)

13. Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in O(n2)
time with high probability. In: Proc. of 51th FOCS, pp. 663–672 (2010)

14. Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected
graphs. In: Proc. of 45th FOCS, pp. 499–508 (2004)

Partially Dynamic SSSP on Digraphs with Positive Weights 207

15. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik,
T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004)

16. Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and allowing nega-
tive cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111,
pp. 384–396. Springer, Heidelberg (2004)

17. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths.
In: Proc. of 37th STOC, pp. 112–119 (2005)

	Partially Dynamic Single-Source Shortest Pathson Digraphs with Positive Weights
	1 Introduction
	2 Problem Statements and Notations
	3 Fundamental Properties
	4 Local Search Algorithm
	5 Average Case Analysis
	6 Concluding Remarks
	References

