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Preface

The papers in this volume were presented at the 10th International Conference
on Algorithmic Aspects of Information and Management (AAIM 2014), held
during July 8–11, 2014, at Harbour Centre, Simon Fraser University, Vancou-
ver, Canada. It was the first time for the AAIM conference series to be held in
Canada. The topics covered most areas in discrete algorithms and their applica-
tions.

Submissions to the conference were handled electronically. A total of 45 pa-
pers were submitted, of which 30 were accepted. The papers were evaluated
by an international Program Committee overseen by the Program Committee
co-chairs: Qianping Gu, Pavol Hell, and Boting Yang. The Program Commit-
tee consists of Hee-Kap Ahn, Binay Bhattacharya, Anthony Bonato, Zhi-zhong
Chen, Leizhen Cai, Francis Chin, Chuangyin Dang, Xiaotie Deng, Ding-Zhu Du,
Michael Fellows, Bin Fu, Gena Hahn, Kazuo Iwama, David Kirkpatrick, Guohui
Lin, Tian Liu, Tom McCormick, Daniel Paulusma, Lorna Stewart, Xuehou Tan,
Dimitrios Thilikos, Takeshi Tokuyama, Lusheng Wang, Peter Widmayer, Jinhui
Xu, Yinfeng Xu, Guochuan Zhang, Kaizhong Zhang, Xiao Zhou, and Binhai Zhu.
It is expected that most of the accepted papers will appear in a more complete
form in scientific journals.

The submitted papers were from 16 countries/regions: Brazil, Canada, China,
France, Germany, Hong Kong, India, Japan, Korea, Mexico, The Netherlands,
Switzerland, Taiwan, Tunisia, UK, and USA. Each paper was evaluated by
at least three Program Committee members, assisted in some cases by sub-
reviewers. In addition to the 30 selected papers, the conference also included
two invited talks, one by Ming Li on “Approximating Semantics,” and the other
by Christos H. Papadimitriou on “Computational Insights and the Theory of
Evolution.”

We thank everyone who made the meeting a success, the invited speakers,
the authors, the Program Committee members and external reviewers (listed in
the proceedings). Finally, we thank Simon Fraser University for their support
and the local organizers and colleagues for their assistance.

April 2014 Qianping Gu
Pavol Hell

Boting Yang
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Computational Insights

and the Theory of Evolution

Chrisos H. Papadimitrious

Computer Science Division
University of California at Berkeley

Berkeley, CA 94720, USA

chrisos@cs.berkeley.edu

Covertly computational ideas have influenced the Theory of Evolution from
the very start. This talk is about recent work on Evolution that was inspired
and informed by computational insights. Considerations about the performance
of genetic algorithms led to a novel theory of the role of sex in Evolution based
on the concept of mixability, while the equations describing the evolution of a
species can be reinterpreted as a repeated game between genes played through
the multiplicative updates algorithm. Finally, a theorem on Boolean functions
helps us understand better Waddington’s genetic assimilation as well as mecha-
nisms for the emergence of novelty in Life.



Approximating Semantics

Ming Li

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON N2L3G1, Canada

mli@uwaterloo.ca

Latent search engines and question-answering (QA) engines fundamentally
depend on our intuitive notion of semantics and semantic distance. However,
such a semantic distance is likely undefinable, certainly un-computable, and
often blindly approximated. Can we develop a theoretical framework for this
area?

I will describe a theory, using the well-defined information distance, to ap-
proximate the elusive semantic distance such that it is mathematically proven
that our approximation is “better than” any computable approximation of the
intuitive concept of semantic distance. Although information distance itself is
obviously also not computable, it does allow a natural approximation by com-
pression. We will then describe a natural language encoding system to implement
our theory followed by experiments on a QA system.
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Local Event Boundary Detection with Unreliable

Sensors: Analysis of the Majority Vote Scheme�

Peter Brass1, Hyeon-Suk Na2, and Chan-Su Shin3

1 Dept. of Computer Science, City College, New York, USA
peter@cs.ccny.cuny.edu

2 School of Computing, Soongsil University, Seoul, Korea
hsnaa@ssu.ac.kr

3 Dept. of Digital Information Engineering, Hankuk University of Foreign Studies,
Yongin, Korea

cssin@hufs.ac.kr

Abstract. In this paper we study the identification of an event region
X within a larger region Y , in which the sensors are distributed by a
Poisson process of density λ to detect this event region, i.e., its boundary.
The model of sensor is a 0-1 sensor that decides whether it lies in X
or not, and which might be incorrect with probability p. It also collects
information on the 0-1 values of the neighbors within some distance r and
revises its decision by the majority vote of these neighbors. In the most
general setting, we analyze this simple majority vote scheme and derive
some upper and lower bounds on the expected number of misclassified
sensors. These bounds depend on several sensing parameters of p, r,
and some geometric parameters of the event region X. By making some
assumptions on the shape of X, we prove a significantly improved upper
bound on the expected number of misclassified sensors; especially for
convex regions with sufficiently round boundary.

1 Introduction

Suppose we have distributed many sensors in a region, each of which detects if
it rains at that point. We want to obtain a summary: in which sub-region is it
raining? Just listing all the positions at which a raindrop has been detected is
not a helpful answer, first because a long list of positions is not the answer a
user would want on the question “Where does it rain?,” but also because each
individual answer is subject to random errors such as measurement errors.

The abstract model underlying this question is as follows: we have a region Y ,
in which there is a set S of sensors. There is an unknown region X ⊆ Y in which
the event happens. We want to detect the event region X , most importantly,
its boundary, where it is far from the boundary of Y and has a ‘nice’ topology,
not being highly irregular, random or fractal. The sensors s ∈ S are 0-1 sensors
who decide whether s ∈ X or s /∈ X , making an error with probability p in this
measurement, called the measurement error.

� Work by C.-S. Shin was supported by Hankuk University of Foreign Studies Research
Fund.

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014
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1.1 Simple Majority Voting Scheme

Our aim is to reduce the error rate in detecting the boundary of X by allowing
each sensor to compare its initial measurement result with those of its neighbors.
To reduce the error rate by local communication, we assume that each sensor
knows the values measured by all neighboring sensors within distance r. The
most straightforward method to use the neighbors’ sensing information is to
follow the majority.

This majority vote scheme is as follows: if a sensor has k neighbors and knows
its own and those k other measurements, then in its revised decision it just
follows the majority of the measurements of its k neighbors, with itself as tie-
breaking if necessary. This scheme was already proposed by Chintalapudi and
Govindan [6] and further in [12]. It does not use the position information of
the neighboring sensors. It was stated in [12] that this scheme gives a good cor-
rection of measurement errors for sensor error p up to 0.2. However, we think
this observation needs further qualification, since the situation really depends
on several sensing parameters such as the measurement error p and the neigh-
borhood radius r, and some geometric parameters of the event region X such as
the convexity, the perimeter and the boundary curvature.

In this paper, we analyze the majority scheme further, and make explicit and
precise the dependency on these parameters. To analyze this, we first need an
assumption on the distribution of sensors in the region of interest Y . We adapt
the most important model; the sensors are randomly distributed by a Poisson
process of density λ, which is independent from the measurement error p that
the sensors make. To our best knowledge, this gives the first bounds on the
expected number of incorrectly classified sensors in the majority vote scheme
with all these parameters, λ, p, r, and the shape of X .

It should be noticed that our sensors are point sensors; there is no sensing
range, but a yes/no decision about the situation at the sensor. Many other papers
have dealt with continuous-valued sensors, but then the dependence of a sensor’s
decision on the neighboring values is much less clear. Also, for many practical
applications a yes/no decision is ultimately the desired answer: ‘does it rain?’,
‘is there a forest fire?’, etc. The distance r within which we compare the sensor
values is not related to the communication distance of the network nodes; it is
a choice made depending on our a-priori knowledge on the size and shape of X ,
that is, choosing the right radius r is an important aspect. Finally, our majority
vote scheme does not need absolute positions of the sensors, but it is not efficient
in detecting thin and long event regions; to identify such event regions we would
need sensors with known positions with the help of GPS units and by more
complicated decision algorithms.

1.2 Previous Work

Local event boundary detection problem has been studied in several previous
papers.
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Chintalapudi and Govindan [6] were the first to analyze the local event bound-
ary detection problem. They proposed three different types of algorithms; among
them a simple neighborhood counting scheme that does not use the position in-
formation of the neighboring sensors, and a scheme that finds the optimum
line separating in the neighborhood the event-sensors from the no-event-sensors.
They found by simulation that the separating-line scheme performs best, but
provided no analysis of that scheme, and assumed for the other schemes that
the event boundary is a straight line.

Krishnamachari and Iyengar [12] discussed a model with a similar counting
scheme, not using the neighbor’s position information; in their simulation, how-
ever, the sensors are always distributed in a square grid. Wu et al. [22] discussed
continuous-valued sensors, looking for threshold events, and proposed several
methods based on comparing a sensor’s value with the median of a set of neigh-
bor’s values to identify faulty or boundary sensors. Similar was the discussion by
Jin and Nittel [9], who used the mean instead of the median. Ding and Cheng [7]
fit a mixture of multivariate gaussian distributions to the observed sensor values
and decided on the base of that fitted model which sensors are boundary sensors.

Wang et al. [21] considered a model that can be interpreted as only no-event
sensors being available, e.g., because the event like the fire in the forest destroyed
all sensors in its region; they reconstruct a boundary of the regione containing
sensors, based on neighbor connectivity information without the neighbor posi-
tions. Nowak and Mitra [19] use a non-local communication model based on a
hierarchical partitioning scheme to identify event boundaries.

A different line of related works contains the fusion of different information
sources for the same event; e.g., combining the output of multiple classifiers in
a pattern-recognition problem. This has been studied in [14,10,2,5,13,18], but
that problem abstracts from the geometric structure which is the core of our
considerations. Yet another related line of works contains the opinion formation
in social networks [1,16,20,11,17,23].

1.3 Our Results

For a set A in the plane, we denote its area, perimeter, boundary and number
of components, by area(A), peri(A), bd(A) and components(A), respectively.

We assume that the set S of sensors is generated by a Poisson process of
density λ on our region of interest Y . Within Y , an event happens in the region
X . Each sensor s ∈ S makes a 0-1 event detection (or measurement), whether
s �∈ X or s ∈ X , which might be incorrect with probability p. The sensor
errors are independent from each other, and from the Poisson process placing
the sensors. Each sensor knows the measurement results of all other sensors
within radius r and revises his own measurement based on that information.

The comparison with neighboring sensors gives information only if the sensor
has neighboring sensors. The expected number of neighbors in this model is λπr2

and thus the probability that a sensor has no neighbors is e−λπr2 , which should
be much smaller than the measurement error p. The expected number of sen-
sors in Y is λ area(Y ), so without correction by neighborhood comparison, the
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expected number of incorrect sensors, i.e., misclassified sensors, is λ area(Y )p.
Theorem 1 and Theorem 2 show that the expected number of misclassified sen-
sors is improved significantly by the majority vote scheme.

Let Zr be the set of points within distance r to the boundary of X . Any
sensor in this dubious region Zr has potentially neighbors inside and outside X ,
in other words, we possibly have both of correct 0- and 1-answers within the same
neighborhood, which would lead such sensors to make the wrong decision after
the majority vote. Thus the analysis on the expected number of misclassified
sensors in Zr is a key in the majority vote scheme.

In Section 2, we analyze the majority vote scheme in a most general setting
and derive the following bounds on the expected number of misclassified sensors
in Y \ Zr and on the expected number of misclassified sensors in Zr.

Theorem 1. For p ≤ 1/2, the expected number of sensors in Y \ Zr that are
misclassified by the simple majority rule in the neighborhood of radius r is at
most

2λ
√
p(1− p)e−(1−2

√
p(1−p))λπr2 area(Y \ Zr)

and at least√
p(1− p)

4πr2

(
e−(1−2

√
p(1−p))λπr2 − e−λπr2

)
area(Y \ Zr).

Theorem 2. For p ≤ 1/2, the expected number of sensors in Zr that are mis-
classified by the simple majority rule in the neighborhood of radius r is at most

2λr peri(X) + λπr2 components(X).

There exists some event region X such that the expected number of misclassified
sensors in Zr is at least Ω(λr peri(X)).

The ratio of the upper bound to the lower bound in Theorem 1 grows linearly
with the expected number of neighbors λπr2. However, since 2

√
p(1− p) ≤ 1

for any p ≥ 0, they both decrease exponentially with the expected number
of neighbors λπr2, so the expected number of misclassified sensors outside Zr

decreases exponentially with the expected number of neighbors λπr2. Theorem 2
tells us that the expected number of misclassified sensors in Zr grows with the
parameters λ and r, and the perimeter ofX . Thus a regionX with long boundary
or with many components would be the worst in the majority vote scheme.
Moreover such worst examples exist. As a result, Theorems 1 and 2 illustrate
the trade-off between the error outside Zr, which decreases exponentially with
λ and r, and the error inside Zr, which increases with λ and r.

Sensors very near to the boundary of X can be unavoidably misclassified ac-
cording to Theorem 2. If X is thin so that X ⊂ Zr, then there are no sensors
sufficiently deep inside X whose neighbors are mainly inside X , so the region
will not be recognized by the majority vote scheme. We thus need to make some
(seemingly strong) assumptions on the shape of X such that X �⊂ Zr is guar-
anteed. In this paper, we consider X as a convex event region with a bounded
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curvature, i.e., with sufficiently rounded boundary. For such X , in Section 3, we
prove a significantly improved upper bound on the expected number of misclas-
sified sensors in Zr, which is a main result in this paper.

Theorem 3. Let p ≤ 1/2. If the event region X is convex and the radius of
curvature at each point on the boundary is at least r, then the expected num-
ber of sensors in Zr that are misclassified by the simple majority rule in the
neighborhood of radius r is less than

π
√
λ√

2(1− 2p)
peri(X) + 3λπr2 ln

peri(X)

r
.

Finally we perform some simulation for convex and round event regions and
check the effect of the various parameters in the majority vote scheme such as
p, r, λ, and the perimeter of X , and present a refinement method to improve
the performance particularly for the tricky cases, i.e., for small r and large p.

The detail of the simulation and the proof of some lemmas can be found in
the full version [4].

2 Analysis for General Event Regions

In this section we analyze the simple majority rule and prove Theorem 1 and
Theorem 2. Throughout the paper, we will use the following lemma.

Lemma 1. For p ≤ 1/2, the probability B(n) of at least 	n2 
 successes among
n independent Bernoulli trials of success probability p is√

p(1− p)

2n

(
2
√
p(1− p)

)n
≤ B(n) ≤

(
2
√
p(1− p)

)n
.

2.1 Proof of Theorem 1

Recall that Zr is the set of points of Y within distance r to bd(X), the boundary
of X . The expected number of the misclassified sensors in Y \ Zr by the ma-
jority vote is λ area(Y \ Zr) times the probability of a sensor s in Y \ Zr being
misclassified by the majority rule in the neighborhood of radius r.

Suppose that s has k neighbors. Since s ∈ Y \Zr, its k neighbors lie all inside
X or all outside X . The probability of s ∈ Y \ Zr being misclassified is the one
that at least half of measurements of the neighbors should be erroneous. When
k is odd, at least 	k2 
 errors among k measurements must happen. But when k

is even, the measurement of s can be served as a tie breaker, thus at least 	k+1
2 


errors must happen among k + 1 measurements including a measurement of s.
Let B(k) be the probability that at least 	k2 
 successes among k trials with

success probability p ≤ 1/2. For odd k, it holds from binomial distribution
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that B(k) = 1
2(1−p)B(k + 1) ≤ B(k + 1) because 1

2(1−p) ≤ 1 for p ≤ 1/2. The

probability of s ∈ Y \ Zr being misclassified is simplified as follows:

∞∑
k=0

Pr(s has k neighbors)Pr (s makes a wrong decision by majority rule)

=
∑
odd k

Pr(s has k neighbors)B(k) +
∑

even k

Pr(s has k neighbors)B(k + 1)

=
∑
odd k

Pr(s has k neighbors)
1

2(1− p)
B(k + 1) +

∑
even k

Pr(s has k neighbors)B(k + 1)

≤
∞∑

k=0

Pr(s has k neighbors)B(k + 1).

The first probability is 1
k! (λπr

2)ke−λπr2 by the definition of the Poisson pro-

cess. The second probability B(k+1) is at most
(
2
√
p(1− p)

)k+1

by Lemma 1.

Thus we get the upper bound of the probability of s ∈ Y \Zr being misclassified
as follows:

Pr(s ∈ Y \ Zr is misclassified) ≤
∞∑
k=0

1

k!
(λπr2)ke−λπr2

(
2
√
p(1− p)

)k+1

≤ 2
√
p(1− p)e−λπr2

∞∑
k=0

1

k!

(
λπr2 · 2

√
p(1− p)

)k
≤ 2

√
p(1− p)e−(1−2

√
p(1−p))λπr2 .

Multiplying this with λ area(Y \ Zr) gives the upper bound of the theorem.
For the lower bound, we can prove it similarly; refer to [4].

2.2 Proof of Theorem 2

For the upper bound of the theorem, we simply assume that any sen-
sor in Zr always makes the wrong decision. The expected number of sen-
sors in Zr is λ area(Zr), and we have the geometric bound area(Zr) ≤
2r peri(X) + πr2 · components(X) for any general set X . Thus the expected
number of misclassified sensors in Zr by the majority vote rule is at most
λ
(
2r peri(X) + πr2 · components(X)

)
.

We now explain that this bound is asymptotically the best we can ob-
tain for the expected number of misclassified sensors in Zr for any X with
components(X) = O(peri(X)/r). Indeed, if X is a thin and long rectangle of
height r/2 and of width 4r as shown in Figure 1(a), then all sensors in X will
be in Zr, i.e., X ⊂ Zr. The perimeter of X is 9r. Consider any sensor s in X
at distance at least r from the both vertical edges of X . Let A be a disk of
radius r around s. Since the height of X is r/2, A consists of three parts as in
Figure 1(a); two circle segments of A \X and the middle part, A ∩X , between
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the circle segments. The expected numbers of sensors in A\X and A∩X whose
initial measurement is “not in X” are (1− p)λ area(A \X) and pλ area(A ∩X),
respectively. Thus s has at least (1−p)λ area(A\X)+pλ area(A∩X) neighbors
in A whose initial measurement is “not in X”. We can prove that this is at least
half of the number of sensors in A, i.e., ≥ 1

2λπr
2 for any p ≤ 1

2 by simple calcula-
tion. This results in making a wrong decision of s by the majority vote scheme.
The expected number of such misclassified sensors in X is λ(2r × r

2 ) = λr2,
which is at least 1

9λr(9r) =
1
9λr peri(X) = Ω(λr peri(X)).

r
2

r r2r

A

X

s

(a) A thin and long rectangle X

r
r

�

r
2

r
r
2

� − 4r

(b) A non-convex region X with curvature ≥ r

Fig. 1. Two lower bound examples

We can also find such a worst example even when X is not convex but has a
round boundary satisfying some curvature constraint: the radius of curvature is
at least r everywhere on the boundary. Figure 1(b) illustrates an event region
X of the curvature radius r, but not convex. All sensors in roughly ��/4r thin
rectangular strips have a majority of neighbors outside X , thus they will make
wrong decisions. Assume that � is a multiple of 4r, so � ≥ 4r. Total area of thin
strips is at least (r/2)(� + (�− 4r) + . . .+ 4r + 0) ≥ �2/16. The boundary of X
consists of circular arcs at its both ends and linear segments of thin strips. Since
the length of any circular arc is at most 3πr, the total length of circular arcs
is at most 6πr�/(4r). Then peri(X) ≤ 6πr�/(4r) + 2(� + (� − 4r) + . . . + 4r) ≤
(�2/r)((3π/2 + 1)(r/�) + 1/4) ≤ 1.68�2/r since r/� ≤ 1/4. Thus the expected
number of misclassified sensors in Zr of this non-convex region X with bounded
curvature r is at least λ area(thin strips) ≥ 1

16λ�
2 ≥ 1

16λ
(

r
1.68 peri(X)

)
≥

1
27λr peri(X) = Ω(λr peri(X)). We now complete the proof of Theorem 2.

3 Analysis for Convex Event Regions with Round
Boundary

We now prove our main result, Theorem 3 that if X is a convex region with a
round boundary of the curvature radius r, then the expected number of misclas-
sified sensors in Zr significantly decreases. As a result, the convexity and the
curvature constraint both are important for a better bound.
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Let s be a sensor in Zr whose nearest point to bd(X) is s′ in distance δr
for some constant δ > 0. Let A be the disc of radius r around s. Let α be the
fraction of A on the same side of bd(X) as s, i.e., α := area(A ∩X)/ area(A) if
s ∈ X , α := area(A \X)/ area(A) if s /∈ X . Then we can prove the following:

Lemma 2. If p ≤ 1/2 and α ≥ 1/2, then the probability of s being misclassified
is at most

e−
1
2λ area(A)(1−2p)2(2α−1)2 .

This lemma provides us a good bound on the expected number of misclassified
sensors, but only for those satisfying its necessary condition, α ≥ 1/2. Since X
is convex, all sensors in Zr \X satisfy the condition, but some sensors in Zr ∩X
may not satisfy the condition. Indeed, we can show that sensors s ∈ Zr ∩ X ,
which is at distance δr for 0.2 < δ ≤ 1 from bd(X), satisfy the condition, but
the sensors close to bd(X), i.e., being at distance δr from bd(X) for 0 < δ ≤ 0.2,
may not satisfy. Therefore it is unavoidable to split the sensors into “good” and
“bad” groups and to analyze them in different ways.

For easier analysis, we use the following criteria for the split. Consider the disk
A of radius r around s and the boundary curve bd(X) as illustrated in Figure 2.
By Blaschke’s rolling ball theorem, the curve bd(X) enters A once at some point
p, leaves A once at some point p′ and it never enters A afterwards. Let q be the
diametrically opposite point of p in A. Then there are two possibilities when s
is in Zr: q lies in the same side of bd(X) as s, or in the opposite side of bd(X)
to s. For the two cases when s lies in Zr ∩X , see Figure 2. We call s ∈ Zr good
if q lies in the side of bd(X) as s, and otherwise bad. By the convexity of X , it
is clear that all sensors in Zr \X are good.

3.1 Upper Bound on the Misclassified Good Sensors

For good sensors in Zr, we get the following bound on the probability of being
misclassified.

Lemma 3. Let s be a good sensor in Zr whose distance to the boundary of X
is δr. Then the probability of s being misclassified is at most

e−
2
π2 λ area(A)(1−2p)2δ2 .

Proof. As in Figure 2(a), we first consider the case that s ∈ Zr ∩X . Let A be a
disk of radius r around s on the inner parallel curve at distance δr from bd(X),
and let s′ be the closest point on bd(X) from s. Using the curvature constraint
and the fact that q ∈ X , the half of A bounded by line pq is contained in X . In
addition, on the other side of pq, the triangle �pqt of height h ≥ δr, where t is
the intersection of the bisector of pq with bd(X), is also contained in X . Thus
area(A ∩X) ≥ 1

2 area(A) + area(�pqt) = area(A)(12 + δ
π ). This gives us a lower

bound on α(δ), where the area of the portion of A lying inside X is expressed as
α(δ) area(A), that is, α(δ) = area(A∩X)/ area(A). Then α(δ) ≥ 1

2+
δ
π . Similarly,

for good sensors s lying in Zr \X , the portion of A lying outside X satisfies that
α(δ) ≥ 1

2 + δ
π . Plugging the lower bound 1

2 + δ
π into α of Lemma 2, we get the

result.
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s′

p

p′
t

h ≥ δr

A A′

X

q

p

p′

t

q
s

s

s′

θ

h

θ′

ϕ

θ

(a) (b)

Fig. 2. Classification of sensors s ∈ Zr ∩ X. (a) s is good since q ∈ X. (b) s is bad
since q �∈ X.

We integrate this probability over all inner and outer parallel curves and get
an upper bound on the expected number of misclassified good sensors in Zr:

Expected number of misclassified good sensors in Zr ∩X

+ Expected number of misclassified good sensors in Zr \X

≤ λr

∫ 1

0

e−
2
π2 λ area(A)(1−2p)2δ2(peri(X)− 2πδr)dδ

+λr

∫ 1

0

e−
2
π2 λ area(A)(1−2p)2δ2(peri(X) + 2πδr)dδ

= 2λr peri(X)

∫ 1

0

e−
2
π2 λ area(A)(1−2p)2δ2dδ

< 2λr peri(X)

√
π

2
√

2
π2 λ area(A)(1 − 2p)2

<
π
√
λ√

2(1− 2p)
peri(X). (1)

For the upper bound on the integrals, we used that
∫ 1

0
e−cx2

dx =
√
π

2
√
c
erf(

√
c) <

√
π

2
√
c
, where erf(x) is an error function appeared in integrating the Gaussian

function with erf(x) < 1 for any x <∞.

3.2 Upper Bound on the Misclassified Bad Sensors

Now we derive a bound on the expected number of misclassified bad sensors in
Zr. Note that all bad sensors of Zr appear only in Zr∩X , and see Figure 2(b) for
illustration. For bad points(sensors), we do not know any upper bound but 1 on
the probability of being misclassified. However, we can get an upper bound on
the total length of disjoint bad curve segments, which consist of bad points only,
on Cδ, an inner parallel curve at distance δr from bd(X) for some 0 < δ ≤ 1.
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Lemma 4. The total length of bad curve segments on the inner parallel curve
Cδ at distance δr to the boundary of X is at most

min

(
3πr

δ
, peri(X)− 2πδr

)
.

Proof. As in the proof for the good sensors, we define A, s′, and t for a bad sensor
s on the inner curve Cδ. See Figure 2(b). Then the disk A′ around s of radius
δr touches bd(X) at s′ and is completely contained in X . Let θ be the angle
by which the direction of bd(X) changes in counterclockwise direction between
entering and leaving A. Using the facts that h ≥ δr, θ ≥ θ′, and arctan(x) ≥ π

4x
over x ∈ [0, 1], we have that

θ ≥ θ′ = 2ϕ = 2 arctan(h/r) ≥ 2 arctan(δ) ≥ π

2
δ.

Since the total direction change of bd(X) traversing a simple curve once around
is at most 2π, we cannot have more than 4

δ such curve segments on Cδ whose
interiors are disjoint, each with a direction change of at least π

2 δ.

si

si+2
si+1

si+3

Hi

Hi+2

Cδ

≥ 2r

≤ π
3
r

Fig. 3. Left half disks around each picked bad points

We now pick bad points on Cδ at distance of at least r along Cδ as traversing
it in counterclockwise direction as follows. If the points on Cδ are all bad, then
its length becomes the perimeter of Cδ, i.e., at most peri(X)− 2πδr. Otherwise,
there must be at least one good point on Cδ. We traverse Cδ from the good point
in counterclockwise direction. We will meet the first bad point, then we pick this
bad point and call it s0. We next pick the bad point s1 on Cδ at distance of
at least r from s0 along the curve. Continuing this picking process, we can pick
k bad points s0, s1, . . . , sk−1 where the distance from sk−1 to s0 might be less
than r. As in Figure 3(a), we denote by Hi a right half of the disk of radius r
around each picked bad point si with respect to the traversing direction. Then
it is clear that the union of such right half disks covers all the bad points on Cδ

because any bad point s between si and si+1
1 is contained in Hi.

1 The addition on the indices is a modular addition with k.
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Without loss of generality, we assume that k is odd. Let us now consider the
intersections of Cδ with the right half disks H0, H2, . . . , Hk−1 around every even
picked bad points s0, s2, . . . , sk−1. These intersections Hi ∩ Cδ for even i result
in curve segments (or arc intervals) of Cδ whose the left endpoint is si. We claim
that these segments except from the first and last ones are disjoint;Hk−1∩Cδ can
overlap with H0 ∩ Cδ. As in Figure 3, we consider two consecutive intersections,
Hi∩Cδ andHi+2∩Cδ for even i < k−1. It suffices to show that the right endpoint
of Hi ∩ Cδ lies in the left of the left endpoint of Hi+2 ∩ Cδ on the curve. The arc
length between si and si+2 is at least 2r by picking rule, and the length ofHi∩Cδ is
at most π

3 r by curvature constraint. Thus the distance between the right endpoint
ofHi ∩Cδ and the left endpoint ofHi+2 ∩Cδ is at least 2r− π

3 r > 0, so the claim
is proved.

The number of disjoint bad curve segments on Cδ is already proved to be no
more than 4

δ , so the sum of their length (excluding the length of Hk−1 ∩ Cδ)
is at most 4

δ ·
πr
3 = 4πr

3δ . For the last curve segment Hk−1 ∩ Cδ, we simply add

its length πr
3 , which gives the length of (4+δ)πr

3δ ≤ 5πr
3δ for δ ≤ 1. Considering

the curve segments generated by every odd picked bad points, the sum of their
length is at most 4πr

3δ . Note here that the first odd segment does not overlap
with the last odd one. Thus the total length of bad curve segments on Cδ is at
most 5πr

3δ + 4πr
3δ ≤ 3πr

δ . Furthermore, the total length should be no more than
the length of Cδ, peri(X)− 2πδr, which completes the lemma.

Integrating this over all inner parallel curves, we get an upper bound on the
expected number of all misclassified bad sensors in Zr as follows:

Expected number of misclassified bad sensors in Zr

≤ λr

∫ 1

0

min

(
3πr

δ
, peri(X)− 2πδr

)
dδ ≤ λr

∫ 1

0

min

(
3πr

δ
, peri(X)

)
dδ

= λr

(∫ 3πr
peri(X)

0

peri(X)dδ +

∫ 1

3πr
peri(X)

3πr

δ
dδ

)

= 3λπr2
(
1 + ln

peri(X)

3πr

)
≤ 3λπr2 ln

peri(X)

r
. (2)

Now we put both (1) and (2) together to obtain the upper bound on the ex-
pected number of misclassified points in Zr, completing the proof of Theorem 3:

π
√
λ√

2(1− 2p)
peri(X) + 3λπr2 ln

peri(X)

r
.
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Abstract. Minimum Common String Partition (MCSP) has drawn a lot of at-
tention due to its application in genome rearrangement. The best approximation
algorithm has a factor O(log n log∗ n) and it was shown most recently that it is
FPT (but with a very high running time). In this paper, we consider the decision
version of the one-sided MCSP problem (formally called the exact block cover
problem); namely, when one sequence is already partitioned into k blocks, how
to decide whether the other sequence can be partitioned accordingly. While this
decision problem is obviously in FPT, we show interesting results in this paper:
(1) If each letter is allowed to appear at most twice (or three times), then the
problem is polynomially solvable, (2) There is an FPT algorithm which runs in
O∗(2k) time, improving the trivial bound of O∗(k!), and (3) If |Σ| = c, c being
a constant at least 2, then the problem is NP-complete.

1 Introduction

Computing the similarity of strings is an important problem in sequence analysis, com-
putational biology, etc. In this paper, we revisit the Minimum Common String Partition
(MCSP) problem which originates from genome rearrangement problems and provides
a natural measure for string similarity.

We define a partition P of a string X as a sequence P = (P1, P2, . . . , Pm) of
strings whose concatenation is equal to X , that is, P1 · P2 · · ·Pm = X . The strings
Pi are called the blocks of P . Given a partition P of a string X and a partition Q of
a string Y , the pair π = (P,Q) is called a common partition of X and Y if Q is a
permutation of P , i.e., there exists a permutation σ on [m] such that Pi = Qσi . The
minimum common string partition problem is to find a common partition of X , Y with

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 13–22, 2014.
c© Springer International Publishing Switzerland 2014
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the minimum number of blocks. In the Minimum Common String Partition (MCSP)
problem, we are given two strings X and Y of length n over an alphabet Σ. Let each
symbol appear the same number of times in X and Y . Throughout this paper, we assume
that X and Y always satisfy this condition. Clearly, this is a necessary and sufficient
condition for X and Y to have a common string partition. For example, two strings X =
abebcdb and Y = abdbebc have a common partition ((ab, eb, c, db), (ab, db, eb, c)).
There are several versions of MCSP. The restricted version where each letter occurs at
most d times in each input string, is called d-MCSP. Another important version where
the input strings are over an alphabet with size bounded by c, is called MCSP c. Most
of the known results, notably approximation algorithms, only hold for d-MCSP and
MCSP c [11,14,16,3,4,13,15]. The general MCSP problem admits an approximation
algorithm of factor O(log n log∗ n) [5], which is still the current best.

On the framework of parameterized complexity, Damaschke first solved MCSP by an
FPT algorithm referring to parameters k (size of the optimum solution), r (the repetition
number) and d (the distance radio depending on the shortest block in the optimum so-
lution) [6]. Recently, d-MCSP is shown to be in FPT [12]. In [9], exact and polynomial
time algorithms (with certain conditions) are also considered for MCSP.

Most recently, it was also shown that MCSP is FPT, but the high running time in-
dicates that it is probably impractical for most of the real datasets [1,2]. On the other
hand, the One-sided MCSP problem, i.e., assuming a partition of X being given decide
whether Y admits a common partition, admits a simple FPT algorithm: Let X be parti-
tioned into k blocks, Y has a common partition iff there is a permutation of the k blocks
in X which results in a sequence identical to Y . The running time of this algorithm is
O(k!n) = O∗(k!). From now on, we call this the Exact Block Cover problem.

The above observation triggers the start of this research: what is the complexity of the
Exact Block Cover problem? Similar to MCSP, the restricted version where each letter
occurs at most d times in each input string, is called d-EBC. When the input strings are
over an alphabet with size bounded by c, the problem is called EBCc.

Our Contribution
We prove that the problem EBCc is NP-complete when c = 2. For 2-EBC, we present
a simple decision algorithm which runs in O(n2) time. For 3-EBC, we present a more
involved decision algorithm which also runs in O(n2) time. Finally we present an FPT
algorithm for EBC in O∗(2k) time, improving the trivial O∗(k!) bound.

This paper is organized as follows. In Section 2 we present some basic definitions
and notations. In Section 3 we show the hardness result for EBC2. In Section 4, we
show that 2-EBC is polynomially solvable. In Section 5, we show that 3-EBC is also
polynomially solvable. In Section 6, we present an O∗(2k) time FPT algorithm for
EBC. In Section 7, we conclude the paper.

2 Preliminaries

As aforementioned, we recall the formal definition of EBC.

Exact Block Cover

Input: two strings X,Y of length n over an alphabet Σ where each letter appears the
same number of times in X and Y , a partition of X , P = (P1, P2, ..., Pm).
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Question: Can Y have a partition Q such that Q is a permutation of P ?
We define d-EBC as the restricted version where each letter occurs at most d times in

each input string and EBCc as the version where the input strings are over an alphabet
with size bounded by c.

An FPT (Fixed-Parameter Tractable) algorithm for a decision problem Π with pa-
rameter (say, solution value) k is an algorithm which solves the problem in O(f(k)nc) =
O∗(f(k)) time, where f is any function only on k, n is the input size and c is some fixed
constant not related to k. For convenience we also say that Π is in FPT. More details
on FPT algorithms can be found in [7,8].

As described in the introduction, both EBC and MCSP are FPT though the running
time for MCSP is O∗(kk

2

). The latter indicates that such an FPT algorithm is probably
impractical for most of the real datasets.

3 Hardness for EBCc

In this section, we prove that EBCc is strongly NP-complete when c = 2 by a reduction
from 3-PARTITION [10]. Firstly, we quote the formal definition of 3-PARTITION
here.

3-PARTITION

Input: Positive integers n and B, and positive integers set A = {a1, a2, . . . , a3n}, with
B/4 < ai < B/2 and

∑
ai∈A ai = nB.

Question: Can A be partitioned into n disjoint sets S1, S2, . . . , Sn such that, for 1 ≤
i ≤ n,

∑
aj∈Si

aj = B.
The problem 3-PARTITION is strongly NP-hard: that is, there is a polynomial p(n)

such that it is still NP-hard when all the ai are at most p(n). Our reduction is polyno-
mially bounded for instances of this type.

Given an instance of 3-PARTITION with weights a1, a2, . . . , a3n, we construct two
strings X , Y for an instance of EBC2 as follows

X = 0a110a21 · · · 0a3n1

Y = (0B111)n.

Moreover, assume that X is already partitioned as 0ai , i = 1, ..., 3n and 3n blocks of
1’s.

Theorem 1. EBC2 is NP-complete.

Proof. EBC2 is obviously in NP. For the NP-hardess part, we reduce 3-PARTITION to
EBC2. We prove that the 3-PARTITION problem has an precise partition if and only
if X,Y have a common partition with 6n blocks.

On the necessary side, assume that S1, S2, . . . , Sn satisfy
∑

aj∈Si
aj = B for all

i. For any Si = {ap, aq, ar}, we obtain three blocks form X : 0ap , 0aq , 0ar and one
block from Y : 0B. Obviously, the block 0B from Y can be divided into three blocks
corresponding to the blocks from X . Note that in Y we also have 3n blocks of 1’s.
Consequently, we obtain a common partition of X,Y with 6n blocks.
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On the sufficient side, if there is a common partition of X,Y with 6n blocks, then
3n of them are in the form of 0ai and 3n of them are 1’s (due to the given blocks in X).
Then, as B/4 < ai < B/2, each block 0B can be partitioned exactly three times. This
implies that 3-PARTITION has a solution. ��

Note that the above proof implies that the EBC problem remains NP-complete if |Σ| =
c, where c is a constant at least two. The reason is that new letters can be added into X
and Y as blocks. Next, we consider the d-EBC problem, which, symmetric to EBCc,
has a large alphabet.

4 2-EBC Is Polynomially Solvable

In this section, we show that the 2-EBC problem is polynomially solvable. As in the
previous section, we assume that X has already been partitioned into m blocks: X1,
X2, ..., Xm. Moreover, if a letter is only covered once by the blocks of X (e.g., Xi)
then we have to use Xi to cover that letter. So, from now on we assume that each letter
in 2-EBC appears twice in X and twice in Y .

Firstly, we preprocessing the blocks by tackling those blocks that only appears once
in Y . If a block, say Xi, appears only once in Y , obviously, we can match Xi to the
unique location in Y .

Now, we assume that all the remaining blocks appears exactly twice in Y . We con-
struct a block graph GX where the vertices are the remaining blocks in X . There is an
edge between Xi, Xj if Xi is a prefix, suffix or substring of Xj , or there is a suffix X ′

of Xi such that X ′ is a prefix of Xj with Xi−X ′ �= φ and Xj−X ′ �= φ. We call these
two kinds of edges type-1 and type-2 respectively.

For example, let abcd , cded , xy , xyzw be 4 of the m blocks in X . Then, the

edge between abcd , cded is type-2 and the edge between xy , xyzw is type-1.
Clearly we have the following lemma.

Lemma 1. 2-EBC has a solution if and only if the corresponding graph GX contains
no cycle.

Proof. Consider a type-1 edge (Xi, Xj) in GX , W.L.O.G, assume that Xi is a prefix,
suffix or substring of Xj , then Xi is of degree one in Gx, since each letter appears
exactly twice and the letters of Xi appear once in Xi and once in Xj . Therefore, the
type-1 edges will not be contained in any cycle.

For a block Xi, there are at most two blocks Xj and Xk such that (Xi, Xj) and
(Xi, Xk) are type-2 edges. That is because the identical substring X ′ as a suffix of Xi

and a prefix of Xj , or vice versa, appears once in Xi and once in Xj . Therefore, each
block connects at most two type-2 edges.

(⇒) Assume to the contrary that there is a cycle C = [X1, X2, . . . , Xk] in GX ,
where (Xi, Xi + 1)(1 ≤ i ≤ k) and (Xk, X1) are all type-2 edges. Since Y is a linear
sequence, any sub-permutation of Y has two ends. If the blocks could be matched to Y ,
they must be matched in a linear order. Assume that {X1, X2, . . . , Xk} are matched to
Y in the order of [Xp(1), Xp(2), . . . , Xp(k)], then X(p(1)−1)mod k can not appear twice,
since its suffix is on the immediate left of Xp(1) and its prefix is on the immediate right
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of X(p(1)−2)mod k in Y , the two locations are separated. Therefore, X(p(1)−1)mod k

should have been matched to Y before GX is constructed, a contradiction.
(⇐) Assume that GX contains no cycle. Then GX is a forest, each connected com-

ponent of which is a tree. From the above argument, we know that there are at most
one path of type-2 edges in each tree, and each type-1 edges connects a leaf of the tree.
Since a tree is a bipartite graph, we can firstly arrange the blocks on the two sides of the
bipartite graph alternatively along the type-2-edge-path, then arrange the leaves accord-
ingly. Since each block appears twice in Y , it could be formed by the concatenation of
all its neighbors. Therefore, the concatenation of blocks on each side of the bipartite
graph is a sequence in Y . Moreover, the two sequences are disjoint since each block is
separated with its neighbors in Y . ��

Here is an example. Let Y = abcdefgabcdefg, the blocks of X are { ab , bc ,

cdef , fg , de , ga }. The block ga appears only once in Y , so we have to match it
to the substring ga. We then obtain two sequences abcdef and bcdefg. The (bipartite)
graphGX is composed of 5 nodes ab , bc , cdef , fg , and de , and there are 4 edges

in GX : ( ab , bc ), ( bc , cdef ), ( cdef , fg ), which are type-2, and ( cdef , de ),
which is type-1. GX is a tree in this case. The blocks on the two sides of the type-
2-edge-path in GX can be arranged as ab cdef and bc fg (where de can be easily
placed).

We present the general algorithm as follows:

Algorithm EBC-2(B,S)
Input: Two strings X,Y such that each symbol appears the same number of times,
and, at most twice in each string; and a partition B of X . Initially S = {Y }.
Output: A partition Q of S which is common to B (if exists)
1 If B = S = ∅, return YES.
2 Compute the occurrence of each block of B in a string in S.
3 If the number of occurrence for some Bi ∈ B is 0, return NO.
4 If the number of occurrence for some Bi ∈ B is 1

4.1 then update B ← B − {Bi}
4.2 Put Bi in Q, together with its location on Y .
4.3 Let Y = S1 ·Bi · S2. Update S ← {S1, S2}.
4.4 Call EBC-2(B,S).

5 If all blocks in B appear twice in S, then build the block graph GB for all blocks in B.
5.1 For each connected component H ′ of GB , convert it into a bipartite graph H .
5.1.1 Check whether S contains two disjoint substrings of the same contents

corresponding to each side of the vertices of H . If the answer is negative,
return NO. Otherwise, delete these two substrings and store them in Q
(with location information), delete the blocks corresponding to the vertices
of H , update S and continue with another connected component of GB .

5.2 If B = S = ∅, then return YES and retrieve the partition Q.

Theorem 2. There is an O(n2) time algorithm which decides 2-EBC.

Proof. The correctness of Algorithm EBC-2 can be seen from Lemma 1. As for the
running time of Algorithm EBC-2, the dominating part is on Step 5, where we could
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have O(n) blocks and we need to check whether there is an edge between any pair of
two blocks. Step 2 can be done in o(n2) time with the suffix tree, but it will not change
the overall running time — so we can even use a naive O(n2) time algorithm. The
remaining steps all take linear time. ��

In the next section, we show that 3-EBC is also polynomially decidable. The technique
is more involved.

5 3-EBC Is Polynomially Solvable

In this section, we show that 3-EBC is also polynomial. Let I = (P, Y ) be an instance
of 3-EBC, where P = {P1, P2, . . . , Pm}. Let Σ′ be a new alphabet where Σ∩Σ′ = ∅.
A duo is a substring of length two. A specific duo is an appearance of a duo in P or Y .
The following three lemmas are trivial due to the definition of exact block cover.

Lemma 2. For each block Pi, if it appears TB1(Pi) times in P = {P1, P2, . . . , Pm}
and TB2(Pi) in Y , then TB1(Pi) ≤ TB2(Pi); otherwise there is no partition of Y
which is a permutation of P . If TB1(Pi) = TB2(Pi), then in a partition Q of Y , all
the Pi’s must be blocks.

Lemma 3. For each duo Di, if it appears TD1(Di) times in P = {P1, P2, . . . , Pm}
and TD2(Di) in Y , then TD1(Di) ≤ TD2(Di); otherwise, there is no partition of Y
which is a permutation of P .

Lemma 4. For each duo Di, if TD1(Di) = TD2(Di), by replacing Di with a new
letter from Σ′, we obtain another EBC instance I ′ = (P ′ = {P ′

1, P
′
2, . . . , P

′
m}, Y ′)

such that I is a Yes-instance if and only if I ′ is a Yes-instance.

Next, we show how to reduce the total size of the instance I .

Lemma 5. For a letter a, if there exist two duos ax and ay (x �= y) in P , then at least
one of these two duos could be replaced by a new letter from Σ′ to have a reduced
equivalent instance I ′.

Proof. Since a appears at most three times in Y , there are at most three duos of the
form a?. So, we have TD2(ax) + TD2(ay) ≤ 3. Then the lemma holds because 1 ≤
TD1(ax) ≤ TD2(ax), 1 ≤ TD1(ay) ≤ TD2(ay) and, either TD1(ax) = TD2(ax)
or TD1(ay) = TD2(ay). ��

Corollary 1. For a letter b, if there exist two duos ub and vb (u �= v) in P , then at
least one of these two duos could be replaced by a new letter from Σ′ to have a reduced
equivalent instance I ′.

Thus, in the following part of this section, we assume that for each block Pi, TB1(Pi)
< TB2(Pi), and for each duo Di, TD1(Di) < TD2(Di). Since each letter appears at
most three times inP , as well as in Y , then there are three cases for (TB1(Pi), TB2(Pi))
and (TD1(Di), TD2(Di)), which are (2,3),(1,3),(1,2). We will handle each case
respectively.
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From Lemma 5, if (TD1(xy), TD2(xy)) = (2, 3), there must be two blocks of the
form αx and yβ in P (where α, β represents a substring of a block); if (TD1(xy), TD2

(xy)) =(1,3) or (TD1(xy), TD2(xy)) = (1, 2), there must be two blocks of the form
α1x and α2x in P , as well as two blocks of the form yβ1 and yβ2;

Lemma 6. For the duo xy, if (TD1(xy), TD2(xy)) = (2, 3), by constructing a new
blockαxyβ, we can obtain another EBC instance I ′ = (P ′ = {P ′

1, P
′
2, . . . , P

′
m−1}, Y ′)

such that I is a Yes-instance if and only if I ′ is a Yes-instance.

Proof. (⇒) If I is a Yes-instance, then αx and yβ must match to two adjacent blocks
in Y , equally, the block αxyβ match to some block containing duo xy in Y . So, we can
delete the block αxyβ.

(⇐) If I ′ is a Yes-instance, let αxyβ match to a block Qi in Y , it is trivial that αx
and yβ can both match to disjoint parts of Qi. ��

Lemma 7. For the duo xy, if (TD1(xy), TD2(xy)) = (1, 3), by constructing four
new block α1xy, α2xy, β1, β2, we can obtain another EBC instance I ′ = (P ′ =
{P ′

1, P
′
2, . . . , P

′
m}, Y ′) such that I is a Yes-instance if and only if I ′ is a Yes-instance.

Proof. (⇒) If I is a Yes-instance, then the blocks α1x, α2x, yβ1, yβ2 must form two
pairs. Each of αix, yβj must match to two adjacent blocks in Y , equally, the block αixy
and βj match to some block containing duo xy in Y .

(⇐) If I ′ is a Yes-instance, let αixy and βj match to two adjacent blocks Qs and Qt

in Y , it is trivial that αx and yβ can match to Qs − y and y +Qt. ��

Note that after the above modifications of the instance I , if TD1(xy) = TD2(xy) = 3
then xy can be replaced by a new letter from Σ′ due to Lemma 4.

It remains to handle the case where all duos appear once in P and twice in Y . Similar
to the block graph in Section 4, we now construct a block graph GX , where the vertices
are those blocks containing at least two letters. There is an edge between Xi, Xj if the
last letter of Xi is equal to the first letter of Xj . Since there does not exist common duos
between blocks, each block can act the role of Xi at most once and the role of Xj at
most once, and the maximum degree of vertices in GX is two. So, GX is composed of
cycles, paths and isolated vertices. (Note that GX is not necessarily bipartite.)

Lemma 8. If for each duoXi, (TD1(Xi), TD2(Xi)) = (1, 2), then it is a Yes-instance.

Proof. We prove this lemma by finding disjoint blocks of the Xis from Y .

1. For those blocks which are isolated vertices in GX , it is trivial that we can find
them from Y .

2. For those blocks appearing in some path x1y1α1x2, x2y2α2x3, . . . , xkykαkxk+1

of GX , we can find them from Y in the order along the path. Note that each block
also appears twice in Y , otherwise it should have been handled by Lemma 2. Since
splitting xiyiαixi+1 from Y can destroy at most one specific duo xi+1yi+1, we can
detect the block xi+1yi+1αi+1xi+2 and so on.
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3. For those blocks appearing in some cycle x1y1α1x2, x2y2α2x3, . . . , xkykαkx1 of
GX , we assert that there exists a block xjyjαjx(j+1)mod k, such that splitting it
from Y will not destroy the duo x(j+1)mod ky(j+1)mod k. Assume to the contrary
that splitting xjyjαjx(j+1)mod k from Y will destroy the duox(j+1)modky(j+1)modk

for all 1 ≤ j ≤ k, then x1y1α1x2y2α2x3 · · ·xkykαkx1 forms a cyclic sequence, a
contradiction. Therefore, let xiyiαixi+1 be such a block, then after splitting it from
Y , we can detect other blocks in a backward order along the cycle.

This completes the proof of the lemma. ��

Theorem 3. 3-EBC is polynomially solvable.

Proof. Given a 3-EBC instance, we firstly handle it by Lemma 2, then by Lemma 4,
followed by Lemma 6, Lemma 7, and Lemma 4, and finally by Lemma 8. The time
complexity is O(n2). ��

6 A Better FPT Algorithm for EBC

As we discussed in the introduction section, let k be the solution value for EBC, then
the problem admits an FPT algorithm with a running time of O∗(k!). This running time
might still be too high for application purposes. Here we present a better FPT algorithm
which runs in O∗(2k) time.

Recall that in the EBC problem we are given two strings X and Y of length n over
an alphabet Σ and a partition (X1, X2, · · · , Xk) of X . The question is whether Y is
a string jointed by a permutation of {Xi}ki=1. We consider the parameterized problem
with the parameter being k. Here we give a dynamic programming algorithm that runs
in O∗(2k) time.

Let Y be the set of all nonempty substrings of Y . It is easy to see that

|Y| =
(
n+ 1

2

)
< n2.

Let S be a nonempty subset of P = {Xi}li=1 and xj be an element in S. We use
EBC(S, xj) to store strings satisfying the following properties:
1. Y ′ is a string jointed by a permutation of S and xj is the last element in the permu-
tation; and
2. Y ′ ∈ Y (i.e., Y ′ is a substring of Y ).
When no string satisfies the condition, we simply let EBC(S, xj) be an empty set.

Since EBC(S, xj) is a subset of Y , we know that for each EBC(S, xj),

|EBC(S, xj)| ≤ |Y| < n2.

It is clear that EBC is an yes instance if and only if there exists an xj0 such that
EBC(S = P, xj0 ) is not an empty set. Our dynamic programming algorithm will
compute EBC(S, xj) for every pair (S, xj). It is trivial to compute EBC(S, xj) when
S contains only one element xj . For the cases |S| > 1, we use the following method
to compute EBC(S, xj) from EBC(S′, x′

j) with |S′| < |S|: Let S−j = S \ {xj}.
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For each element x′
j ∈ S−j , for each string S∗ ∈ EBC(S−j , x

′
j), if S∗xj (the string

jointed by S∗ and xj ) is an element in Y , then add S∗xj into EBC(S, xj).
It is easy to observe the correctness of the above step. To compute EBC(S, xj), we

need to compute at most |EBC(S−j , x
′
j)||S−j | ≤ n3 strings and check each of them

is a substring of Y or not. So we use most n4 basic computation steps.
The above method to compute EBC(S, xj) can be transformed in a dynamic pro-

gramming algorithm by solving EBC(S, xj) increasing the size of S. The number of
different EBC(S, xj) is

∑k
i=1

(
k
i

)
i < 2kk. Therefore, we have the following theorem.

Theorem 4. The Exact Block Cover problem can be solved in O(k2kn4) time.

7 Closing Remarks

In this paper, we consider the one-sided version of the famous MCSP (Minimum Com-
mon String Partition) problem — Exact Block Cover (EBC). EBC obviously has a sim-
ple FPT algorithm with a running time of O∗(k!). We show that (1) EBC admits a better
FPT algorithm with a running time of O∗(2k); (2) EBC2, i.e., when the alphabet is bi-
nary, is NP-complete and (3) 2-EBC (resp. 3-EBC), i.e., when each letter appears at
most twice (resp. three times) in both of the input strings, is decidable with an O(n2)
running time. An immediate question is whether 4-EBC (or in general, d-EBC, where
d is a constant at least 4) is decidable in polynomial time.
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Abstract. Recently, Cheng et al. [1] proposed the minimax regret
1-sink location problem in dynamic path networks and presented an
O(n log2 n) time algorithm for the proposed problem, where n is the
number of vertices. In this paper, we study the general problem, i.e.,
minimax regret k-sink location problem in the dynamic path networks.
Based on the algorithm for the 1-sink location problem, we design an
O(n2(log n)1+log kCk−1

n ) time algorithm for the general problem, where
Ck−1

n is the number of combination choosing k − 1 from n.

Keywords: minimax regret, k-sink location, dynamic flow, path
networks, evacuation problem.

1 Introduction

Within five years, there are two big earthquakes happening in Sichuan province
China, i.e., Wenchuan Big Earthquake and Lushan Big Earthquake. Today, there
are so many big disasters occurring worldwide, such as the 2010 Haiti Earth-
quake, the 2011 Tohoku-Pacific Ocean Earthquake and Tsunamis and so on.
When a big disaster happens, in order to counter potential emergency effec-
tively, it is need to evacuate all evacuees (disaster victims) of every settlement
(disaster point) in the disaster region as fast as possible to an evacuation building
(rescue point) waiting for further assist. We have to consider where evacuation
buildings are assigned and how to partition a large area into small regions so
that one evacuation building is designated in each region. There are several con-
siderable criterions for this evacuation problem. To minimize the time required
to complete the evacuation, [5] has studied the tree network problem where a
nonnegative weight that represents the number of evacuees at each vertex is
known. For this certain problem, [5] proposed an O(n log2 n) time algorithm to
find an optimal location of one sink (the location of an evacuation building).
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However, it’s important to note that the number of evacuees at each vertex
(the vertex weight) is changing over time and uncertain when the potential emer-
gency occurs. For example, in an office area in a big city there are many people
during the daytime on weekdays while there are much less people on weekends
or during the night time. Sometimes, it is also impossible or inappropriate to
assume any specific probability distribution on the unknown information. There-
fore, we consider a minimax regret criterion assuming that the weight of any
vertex can take any value within a corresponding pre-specified interval and use
the minimax regret approach to deal with this uncertain problem. Supposing a
particular realization (assignment of a weight to each vertex) is called a scenario,
our objective is to choose one evacuation building point (1-sink) to minimize the
maximum regret for any possible scenario of weight. [1] considered the simplest
case, i.e. minimax regret 1-sink location problem, for which the disaster region
consists of a single road and the number of evacuation buildings is just equal to
1. For this uncertain problem, [1] proposed an O(n log2 n) algorithm. Not long
after, [2] and [6] independently improved the algorithm to O(n log n). Recently,
[3] proposed an O(n2 log2 n) algorithm for the corresponding problem on the
tree networks. And [4] extended 1-sink location problem on the path networks
to 2-sink problem and proposed an O(n3 logn) algorithm. In this paper, we ex-
tend the problem on the path networks to more general case where there are k
sinks to be assigned on the road line, and propose an O(n2(logn)1+log kCk−1

n )
algorithm based on [1].

2 Preliminaries

In this section, we formulate the general problem with k sinks based on the
formulation of 1-sink problem. Thus, we first state the the simplest minimax
regret 1-sink location problem in dynamic path networks formulated by [1] as
follows.

Let P = (V,E) be a path where V = {v0, v1, ..., vn} and E = {e1, e2, ..., en}
such that vi−1 and vi are endpoints of ei for 1 ≤ i ≤ n. Let N = (P, l,W, c, τ) be
a dynamic flow network with the underlying undirected graph being a path P ,
where l is a function that associates each edge ej ∈ V with the positive length
l(ej), W is also a function that associates each vertex vi ∈ V with an interval of
the weight (the number of the evacuees) W (vi) = [wi, wi] with 0 ≤ wi ≤ wi, c is
a constant representing the capacity of each edge: the least upper bound for the
number of the evacuees passing a point in an edge per unit time, and τ is also a
constant representing the time required for traversing the unit distance of each
evacuee.

Let S =
∏

1≤i≤n[wi, wi] denote the Cartesian product of all W (vi) for 1 ≤ i ≤
n. When a scenario s ∈ S is given, we use the notation wi(s) to denote the weight
of each vertex vi ∈ V under the scenario s. Suppose that a path P is embedded
on a real line and each vertex vi ∈ V is associated with the line coordinate xi

such that xi = x0 +
∑

1≤j≤i

l(ej) for 1 ≤ i ≤ n. For a point x ∈ P , we also use a

notation x to denote the line coordinate of the point, and the left side of x (resp.
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the right side of x) to denote the part of P consisting of all points t ∈ P such
that t < x (resp. t > x). Suppose that a sink (evacuation building) is located at
a point x ∈ P . Let ΘL(x, s) (resp. ΘR(x, s)) denote the minimum time required
for all evacuees on the left side (resp. the right side ) of x to complete evacuation
to x under a scenario s ∈ S. For the ease of exposition, we assume that c = 1
(the case of c > 1 can be treated in essentially the same manner). Note that we
assume that the capacity of the entrance of an evacuation building is infinite,
and thus, if we place a sink in a vertex vi, all evacuees of vi can finish their
evacuation in no time. Then, ΘL(x, s) and ΘR(x, s) are expressed as follows:

ΘL(x, s) = max
0≤i≤n−1

{(x− xi)τ +
∑

0≤j≤i

wj(s)|x0 ≤ xi < x}, (1)

ΘR(x, s) = max
1≤i≤n

{(xi − x)τ +
∑

i≤j≤n

wj(s)|x < xi ≤ xn}. (2)

Now, under s ∈ S, the minimum time required for the evacuation to x ∈ P of
all evacuees is defined by

Θ(x, s) = max {ΘL(x, s), ΘR(x, s)} . (3)

Under any s ∈ S, let xopt(s) be the optimal sink location, then the regret for
x under s is defined as

R(x, s) = Θ(x, s) −Θ(xopt(s), s). (4)

Moreover, we also define the maximum regret of x as

Rmax(x) = max{R(x, s)|s ∈ S}. (5)

If Rmax(x) = R(x, s∗) for a scenario s∗, then we call s∗ the worst case scenario
for x. The goal is to find a point x∗ ∈ P , called the minimax regret sink, which
minimizes Rmax(x) over x ∈ P , i.e., the objective is

minimize{Rmax(x)|x ∈ P}. (6)

For this minimization problem (6), we have presented an O(n log2 n) time
algorithm [1]. For the general case, minimax regret k-sink location problem, we
have to assign k ≥ 1 sinks on the path and the objective is also to minimize the
time regret under the worst case scenario.

Note that it is necessary to partition the path first for the general problem. We
define PT k = {V1, V2, ..., Vk} a k-partition for all the vertices on the path. Where
V1 = {v0, ..., vk1}, V2 = {vk1+1, ..., vk2},...,Vk = {vkk−1+1, ..., vkk

}, vk0+1 = v0,
vkk

= vn and ki < kj for ∀i < j. For any Vi ∈ PT k, we have to locate one sink
(evacuation building) at a point v ∈ Vi and all the evacuees in the region Vi will
evacuate to v.

Given a k-partition PT k, under s ∈ S, we can compute the optimal one
sink location for all Vis in O(n log n) time [1]. Let θ(Vi, s) denote the minimum
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time to complete the evacuation of all evacuees in Vi under s ∈ S. Then for
the k-partition PT k, under s ∈ S, the minimum time required to complete the
evacuation of all evacuees on the path is defined by

Θ(PT k, s) = max{θ(Vi, s)|Vi ∈ PT k}. (7)

Under any s ∈ S, let PT opt(s) be the optimal k-partition, then the regret for
any k-partition PT k under s is defined as

R(PT k, s) = Θ(PT k, s)−Θ(PT opt(s), s). (8)

Moreover, we also define the maximum regret of PT k as

Rmax(PT k) = max{R(PTk, s)|s ∈ S}. (9)

If Rmax(PT k) = R(PT k, s
∗) for a scenario s∗, then we call s∗ the worst case

scenario for PTk. The goal is to find a k-partition PT ∗
k ∈ PT which minimizes

Rmax(PT k) over PTk ∈ PT , where PT is the set of all k-partitions, i.e., the
objective is

minimize{Rmax(PT k)|PT k ∈ PT }. (10)

Obviously, during an optimal evacuation process there is sure no traffic flow
conflict which means that all the evacuees between one point v and one sink x
should evacuate to x as long as the evacuees at v evacuate to x. Additionally, we
assume all the evacuees at one point have to evacuate to the same sink in order
to prevent traffic disturbance happening.

3 Properties and Algorithms for Certain k-sink Problem

For the proposed minimax regret k-sink location problem, we first study the
certain problem where the weight scenario s is given and then present some
properties and design algorithms in this section.

Given a scenario s, the certain k-sink location problem is to assign k sinks
(evacuation buildings) at the path minimizing the time to complete the evacua-
tion, i.e., the objective is

minimize{Θ(PT k, s)|PT k ∈ PT }. (11)

For a k-partition PT k, let v be the boundary point of any Vb and Vb+1 where
v ∈ Vb and v /∈ Vb+1. We also call v a b-partition-boundary point. Suppose the
left-side b-partition and the right-side (k − b)-partition are both optimal, i.e.,
the minimum completing times of both sides of v are respectively equal to

Θv
L(PT b, s) = min{Θ(PT b, s)|PT b ∈ PT Lv

b }, (12)

Θv
R(PT k−b, s) = min{Θ(PT k−b, s)|PT k−b ∈ PT Rv

k−b}. (13)
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where PT Lv

b (resp. PT Rv

k−b) is the set of all b-partitions for the left side of v
(resp. all (k − b)-partitions for the right side of v).

Now, under s ∈ S, the minimum time required to complete the evacuation of
a k-partition with v as the b-partition-boundary point is defined by

Θv
b (PT k, s) = max{Θv

L(PT b, s), Θ
v
R(PT k−b, s)}. (14)

Under any s ∈ S, the minimum time required to complete the evacuation of
an optimal k-partition is defined as

Θopt(PT k, s) = min{Θv
b (PT k, s)|v ∈ V }. (15)

That is, if let voptb(s) be the optimal b-partition-boundary point, then

voptb(s) = argmin
v∈V

{Θv
b (PT k, s)}. (16)

Then, similar to the Propositions 1 and 2 in [1] for the certain 1-sink location
problem, we correspondingly have the following two propositions for the certain
k-sink location problem.

Proposition 1. Under a scenario s ∈ S, voptb(s) is unique.

Proposition 2. Under a scenario s ∈ S,
(i) for any vertex l at the left of voptb(s), Θ

l
L(PT b, s) < Θl

R(PT k−b, s) holds;
(ii) for any vertex r at the right of voptb(s), Θ

r
L(PT b, s) > Θr

R(PT k−b, s) holds.

Based on Propositions 1 and 2, we first design the following algorithm BSA2 for
the simplest certain case with k = 2.

Binary Search Algorithm BSA2: Given any scenario s ∈ S, do
Step 1. Initially, partition the vertex set V into two conjoined subsets, Vl and

Vr, and let Vl = Φ and Vr = V . Define F = V initially.
Step 2. For both Vl and Vr, solve the certain 1-sink location problem based

on [1]. Compute their evacuation times defined as τl and τr, respectively. Then
the time required to complete the evacuation of 2-sink problem is equal to
max{τl, τr}. If τl < τr, then move the vertices of left half of set F to Vl where

the number of half of set F equals
⌈
|F |
2

⌉
− 1 and 	x
 means the smallest integer

larger than x. Update the sets both Vl and Vr, and turn to Step 3. If τl > τr,
then move the vertices of right half of set F to Vr . Update the sets both Vl and
Vr, and turn to Step 3. If it is the case τl = τr before |F | = 0, then the two
optimal 1-sink locations are also the optimal locations for the 2-sink problem
and then stop. If it is always the case τl �= τr till |F | = 0, then turn to Step 4.

Step 3. For the updated Vl and Vr , compute and update their corresponding
evacuation times τl and τr , respectively. If τl < τr, then update the set F and
let F = F ∩ Vr and turn to Step 2. If τl > τr, then update the set F and let
F = F ∩ Vl and turn to Step 2.

Step 4. Compute and compare the evacuation times of 2-sink location prob-
lem during the last two iterations. Choose the smaller one as the optimal evacua-
tion time and the corresponding sink positions are also the optimal sink locations
for the certain 2-sink location problem. And then stop.
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Theorem 1. The sink location of BSA2 is the optimal solution to the certain
2-sink location problem. And the time complexity of BSA2 is O(n log2 n).

Proof. First, for the correctness, each iteration of Step 2 improves the sink per-
formance, i.e., reduces the time to complete the evacuation based on Propositions
1 and 2. Which guarantees the correctness.

Next, we prove the time complexity. For Steps 2, 3 and 4 in each iteration,
we all solve two small-scale certain 1-sink location problems and thus the time
complexity of Steps 2, 3 and 4 is O(n log n) [1]. For Step 1, it spends O(1) time.
Moreover, BSA2 has at most logn iterations. Thus, The time complexity of
BSA2 is O(n log2 n). ��
For the algorithm BSA2, if we solve the certain 1-sink location problem for
Vl and solve the certain 2-sink location problem for Vr, then we can easily get
the optimal sink locations for the certain 3-sink location problem in O(n log3 n)
time. Therefore, we have the following corollary for the general certain k-sink
problem.

Corollary 1. For the general certain k-sink location problem, Binary Search
Algorithm can solve the optimal sink locations in O(n logk n) time.

However, we can design an alternative Binary Search Algorithm BSAk for
the general problem in O(n(log n)1+log k) time as follows.

Binary Search Algorithm BSAk: Given any scenario s ∈ S, suppose that

we already have an algorithm solving the certain
⌈
|k|
2

⌉
-sink problem and the

certain
⌊
|k|
2

⌋
-sink problem. Where 	x
 means the smallest integer larger than x

and �x means the largest integer smaller than x. And do
Step 1. Initially, partition the vertex set V into two conjoined subsets, Vl and

Vr, and let Vl = Φ and Vr = V . Define F = V initially.

Step 2. For Vl and Vr , solve the certain
⌈
|k|
2

⌉
-sink location problem and

the certain
⌊
|k|
2

⌋
-sink location problem, respectively. Compute their evacuation

times defined as τl and τr, respectively. Then the time required to complete the
evacuation of k-sink location problem is equal to max{τl, τr}. If τl < τr, then
move the vertices of left half of set F to Vl where the number of half of set F

equals
⌈
|F |
2

⌉
−1. Update the sets both Vl and Vr, and turn to Step 3. If τl > τr,

then move the vertices of right half of set F to Vr. Update the sets both Vl

and Vr, and turn to Step 3. If it is the case τl = τr before |F | = 0, then the
corresponding sink locations are the optimal locations for the k-sink problem
and then stop. If it is always the case τl �= τr till |F | = 0, then turn to Step 4.

Step 3. For the updated Vl and Vr, compute and update their corresponding
evacuation times τl and τr , respectively. If τl < τr, then update the set F and
let F = F ∩ Vr and turn to Step 2. If τl > τr, then update the set F and let
F = F ∩ Vl and turn to Step 2.

Step 4. Compute and compare the evacuation times of k-sink location prob-
lem during the last two iterations. Choose the smaller one as the optimal evacua-
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tion time and the corresponding sink positions are also the optimal sink locations
for the certain k-sink location problem. And then stop.

Theorem 2. The sink location of BSAk is the optimal solution to the certain
k-sink location problem. And the time complexity of BSAk is O(n(log n)1+log k).

Proof. First, the correctness is obviously based on Propositions 1 and 2 and the
proof of Theorem 1.

Next, we prove the time complexity. The time complexity of BSAk depends on

two parts, the time complexity solving the certain
[
|k|
2

]
-sink location problem

and the iterations of algorithm BSAk, where [x] means the smallest integer
larger than x. It is obviously that the iterations of algorithm BSAk are no more

than logn. Suppose the time complexity solving the certain
[
|k|
2

]
-sink problem

is equal to T (
[
|k|
2

]
), then the time complexity of BSAk is defined as

T ([|k|]) = T (

[
|k|
2

]
) logn = T (

[
|k|
4

]
) log2 n = . . . = T (2)(logn)log k−1. (17)

Because the time complexity of BSA2 solving the certain 2-sink location lo-
cation problem is T (2) = O(n log2 n), the time complexity of BSAk is equal to
T ([|k|]) = O(n(log n)1+log k). ��

4 Properties and Algorithms for Minimax Regret k-sink
Problem

Because there are Ck−1
n (Ck−1

n is the number of combination choosing k−1 from
n) possible k-partitions in all for the problem with n vertices and k sinks, it is
initially to compare all these partitions and then choose the one with minimum
maximal regret as the optimal partition.

Given a k-partition PT k = {V1, V2, ..., Vk}, a scenario s ∈ S is said to be
i-left-dominant (resp. i-right-dominant) if for one and at most one set Vi =
{vki−1+1, ..., vki} with vx ∈ Vi, wj(s) = wj for ki−1 + 1 ≤ j < x, wj(s) = wj

for x ≤ j ≤ ki and wj(s) = wj for ∀vj /∈ Vi hold (resp. wj(s) = wj for
ki−1 + 1 ≤ j < x, wj(s) = wj for x ≤ j ≤ ki and wj(s) = wj for ∀vj /∈ Vi

hold). Given any Vi, let Si
L (resp. Si

R) denote the set of all i-left-dominant (resp.
i-right-dominant) scenarios. Si

L consists of the following scenarios:

sijL = (wki−1+1, . . . , wj , wj+1, . . . , wki
) for j = ki−1 + 1, . . . , ki − 1, (18)

siki

L = (wki−1+1, wki−1+2, . . . , wki), (19)

and Si
R consists of the following scenarios:

sijR = (wki−1+1, . . . , wj , wj+1, . . . , wki) for j = ki−1 + 1, . . . , ki − 1, (20)

siki

R = (wki−1+1, wki−1+2, . . . , wki
), (21)
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Let SL = ∪
1≤i≤k

Si
L and SR = ∪

1≤i≤k
Si
R, then both SL and SR consist of n + 1

scenarios. That is, SL and SR consist of 2(n+ 1) scenarios in all. The following
is a key theorem.

Theorem 3. For any k-partition PT k ∈ PT , there is a worst case scenario for
PT k which belongs to SL ∪SR.

Proof. The proof of Theorem 3 is straightforward from Theorem 1 of [1]
Given a k-partition PTk, assume that the worst case scenario s′ does not

belong to SL ∪SR, and the time to complete the evacuation under s′ results
from Vi, i.e., equal to θ(Vi, s

′). Let Θ(PT opt(s
′), s′) be the evacuation time of

one optimal k-partition under s′. Then the regret for PT k under s′ is defined as

R(PT k, s
′) = θ(Vi, s

′)−Θ(PT opt(s
′), s′). (22)

If we decrease the weights of all vertices excluded in Vi to their corresponding
lower bound, then the value of θ(Vi, s

′), i.e. the evacuation time for partition PT k

is surely unchanged. However, the evacuation time for one optimal k-partition
under the renewed scenario likely decreases and impossibly increases at least.
Further, if the weight structure in Vi is not consistent with either i-left-dominant
scenario or i-right-dominant scenario, then we can design an alternative i-left-
dominant scenario or i-right-dominant scenario to largen (at least to maintain)
the regret directly based on Theorem 1 of [1]

In one word, given a k-partition PT k, we can always renew the worst case
scenario s′ to an alternative scenario s∗ ∈ SL ∪SR resulting in a larger regret
or an unchanged regret at least. ��
Based on Theorem 3 and algorithm BSAk, we design an algorithm MMRAk

solving minimax regret k-sink problem as follows.
MiniMax-Regret-Algorithm MMRAk:
Step 1. For any k-partition PTk, (C

k−1
n k-partitions in all) do

Step 1.1. Under any worst case scenario s ∈ SL ∪SR, compute the evacuation
time of PTk, Θ(PT k, s).
Step 1.2. Solve the certain k-sink location problem under the same scenario s
based on algorithm BSAk. And compute the optimal evacuation time,
Θ(PT opt(s), s).
Step 1.3. Define the regret of PT k under s as R(PTk, s) = Θ(PT k, s) −
Θ(PT opt(s), s). Repeat Step 1.1 and Step 1.2 for any s ∈ SL ∪SR. Compare
the regrets among all the 2(n + 1) worst case scenarios and define the largest
one as the maximum regret of PT k.

Step 2. Compare the maximum regrets among all the Ck−1
n k-partitions and

define the smallest one as the minimax regret and choose the corresponding sink
locations as the optimal solution to the minimax regret k-sink problem.

Obviously, MMRAk solves the minimax regret k-sink location problem based
on Theorem 3 and the fact that there are Ck−1

n k-partitions in all. For any s ∈
SL ∪SR, Step 1.1 solves k certain 1-sink location problem and spends O(n log n)
time [1] and Step 1.2 spends O(n(log n)1+log k) time to solve the certain k-sink
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location problem based on Theorem 2. Because Step 1.3 has 2(n+1) iterations,
for any k-partition PT k, Step 1 spends O(n2(log n)1+log k) time to compute its
maximum regret. Step 2 needs to compute Ck−1

n maximum regrets. Thus, we
have the following theorem.

Theorem 4. The sink location of MMRAk is the optimal solution to the min-
imax regret k-sink location problem. And the time complexity of MMRAk is
O(n2Ck−1

n (logn)1+log k).

5 Future Directions

In this paper, we extend the minimax 1-sink location problem in dynamic path
networks proposed by [1] to the general case, i.e., the minimax regret k-sink
location problem. We find several observations and facts based on which we
present an O(n2Ck−1

n (log n)1+log k) time algorithm to solve the general problem.
However, the presented algorithm is very initial. And thus, one interesting direc-
tion is to improve the presented algorithm. Another direction is to extend the
problem to more general graphs, like trees.
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1 Introduction

The one-way trading problem, which was introduced by El-Yaniv et al.[10, 11]
and Borodin et al.[6], involves selling a fixed amount of a product to a sequence
of buyers, with the objective of maximizing the seller’s revenue. A major dif-
ference between this problem and other general revenue maximization problems
commonly studied in economics and computer science is that for the general
problems, the seller has some control of the prices; he can determine the amount
and the price of product to be sold to each buyer. However, for the one-way trad-
ing problem, a seller has no control of the prices, and when a buyer arrives, he
can only determine the amount of the product to be sold at the then-prevailing
market price. There are many applications that can be modeled as a one-way
trading problem. One example is money-exchange, in which a seller has some
initial asset, say US dollars, and he wants to sell them at the price of some target
asset, say yen. In fact, the one-way trading problem is formulated as a money
exchange problem in [10].The exchange rate fluctuates everyday. To maximize
the amount of yen gained, the seller needs to decide, for each day, the right
amount of US dollars to be changed at the exchange rate used on that day.
Other applications such as stock selling in a stock market and electricity selling
in a power grid can also be modeled naturally as one-way trading problem.

It is easy to solve the offline version of the problem; if the seller knows all
the future prices, he can simply wait for the highest price and then sell all his
product at that price. However, our problem is online in nature, and without
knowledge of future prices, a player cannot be sure whether the current price is
the highest. More formally, in our one-way trading problem, there is a seller who
has L units of product to be sold, and there is a sequence of buyers u1, u2, . . . , uσ

arriving. When a buyer ui arrives, the then-prevailing unit price pi is revealed
and the seller needs to decide the amount xi of product to be sold to ui at price
pi, and the objective is to maximize

∑
i pixi subject to

∑
i xi ≤ L. The main

features of the problem that make it difficult and interesting include: (1) the
seller has no control of the prices, which fluctuates with time, and (2) he does
not have any knowledge about the future prices, i.e., when ui arrives, he does
not know any price pj where j > i, and (3) he needs to decide the amount of
product to be sold to a buyer ui as soon as ui arrives.

Previous results
After introducing the one-way trading problem, El-Yaniv et al. gave in [11] an
algorithm for the problem that works under the assumption that there are
a lower bound m and an upper bound M on the market prices such that
pi ∈ [m,M ] for all pi, and that these bounds m and M are known to the al-
gorithm. They proved that their algorithm has competitive ratio O(log(M/m)),
and showed that it is optimal by deriving a matching lower bound. They also
studied the case when only the ratio M/m is known, and gave an optimal al-
gorithm for this case. Without knowledge of M/m in advance, an algorithm with
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competitive ratio O(log(M/m) log1+ε(log(M/m))) was given in [11]. 1 More re-
cently, Fujiwara et al.[12] have studied the one-way trading problem under the
assumption that the input prices follow some given probability distribution.
In [9], Chen et al. introduced the planning game problem, which is similar to
the one-way trading problem, and they gave an algorithm for their problem
which imposes some different constraint on the prices: instead of assuming that
pi ∈ [m,M ] for some price range [m,M ], their algorithm assumes that the dif-
ference between any two consecutive prices pi and pi+1 is not too large, or more
precisely, they assumed that for any i, pi/β ≤ pi+1 ≤ αpi for some fixed α, β > 1.
They showed that if there are n buyers, their algorithm has competitive ratio
nαβ−(n−1)(α+β)+(n−2)

αβ−1 .

In [11], El-Yaniv et al. also studied another problem similar to the one-way
trading problem, namely the 1-max-search problem, in which there is a sequence
of prices coming online, and when a price arrives, we have to decide immediately
whether we accept the price or not. The objective is to accept the highest price.
By assuming that all prices fall in the range [m,M ] and these bounds m and
M are known, they gave an algorithm for this problem with competitive ratio
O(
√

M/m), i.e., the ratio of the highest price and the price accepted by the algo-

rithm is O(
√

M/m). In [14], Lorenz et al. generalized the 1-max-search problem
to the k-max-search problem, in which the objective is to accept the k highest
prices. By requiring that the bounds m and M are known, they gave an optimal
algorithm for the problem, which has competitive ratio k+1

√
kk(M/m).

For recent related research on revenue maximization that allows price setting,
we mention the auction problem [4, 13] and the pricing problem [1–3, 5, 7, 8]. For
the auction problem, there are bidders competing for the products by sending their
bids to the auctioneer, and the auctioneer chooses some bidders, and determines
the price and amount of products to be sold to each chosen bidder. For the pricing
problem, we have studied an interesting version in [16] in which the seller has m
units of products to sell and each buyer has a valuation (i.e., price at which he
is willing to buy) represented by a function v(x), which gives the valuation per
unit if x units are purchased. When the highest valuation v∗ is known, we gave an
algorithm with competitive ratio O(log v∗). Moreover, this algorithm was shown
to be asymptotically optimal by giving a matching lower bound. We also studied
in [17] an extension of this problem, in which there are multiple types of products
and each user is interested in a particular bundle of products.

Our Contribution
In this paper, we consider the unbounded one-way trading algorithm that does
not need to impose any constraint on the market prices, and we derive a bound
on its competitive ratio that depends directly on the input, or more precisely,
depends on r∗ = p∗/p1, the ratio of the highest price p∗ = maxi pi and the

1 Remark 4 in [11] said that it is possible to achieve an upper bound of
O(log(M/m)(log(log(k)(M/m)))1+ε), however, this bound contradicts with the gen-
eral lower bound of the competitive ratio in this paper. Thus, the claimed upper
bound in [11] does not hold for general case.
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first price p1 (in fact, our algorithm will treat p1 as the lowest price and ignore
any prices lower than p1). Furthermore, the algorithm does not make any as-
sumption on the number of prices pi in the input sequence and an adversary
can terminate the sequence at any time by sending buyers with extremely low
prices. In fact, we propose a generic one-way trading algorithm whose behav-
ior depends on some given function f(x), which can be any function satisfying
the following conditions: (i) It is non-increasing, and (ii)

∫∞
1

f(t)dt is bounded.
Roughly speaking, f(x) helps us determine the amount of products the seller
should sell at price x. We show that by using f(x) in our generic algorithm, we
have a one-way trading algorithm with competitive ratio O( 1

r∗f(r∗)). Thus, to

get a small competitive ratio, it suffices to find a f(x) that satisfies (i) and (ii),
and f(x) is as large as possible. We observe that the following class of functions
satisfies our requirements:

1

x log x(log(2) x) . . . (log(h−1) x)(log(h) x)1+ε
,

where h is any positive integer and ε is any positive real number, and where log(k) x
denotes the function log log . . . log x, which applies the logarithm function k times
to x. Based on these functions, (a different function for each different value of h and
ε) our generic algorithmgives us a class of one-way trading algorithms such that for
any fixed positive integer h and positive number ε, we have an algorithmAh,ε such

that when log(h) r∗ > 1, Ah,ε has competitive ratio O((log r∗) . . . (log(h−1) r∗)
(log(h) r∗)1+ε); otherwise, its competitive ratio is bounded by some constant Γh

depending only on h. We also show that the bounds are almost tight by employing
the divergence of the same class of function when ε = 0 to design an adversary such
that, given any online algorithmA for the problem, the adversary gives a sequence
of buyers σ such that the ratio between the revenue obtained by an optimal offline
algorithm on σ and that obtained byA isΩ((log r∗) . . . (log(h−1) r∗)(log(h) r∗)) for
any positive integer h. Moreover, we show that our results still hold if the amount
of products sold to each buyer is constrained to be at most a maximum amount
specified by the buyer.

2 Upper Bound

Since products could be sold fractionally, we may assume, without loss of gener-
ality, that the seller has one unit of product to sell. The offline version is easy to
solve: the whole product is assigned to the buyer with the highest market price.
However, for the online version, we have no information about the future prices,
including the bound of the highest market price. If the whole amount of product
has been sold by the time a buyer with very high market price arrives, the per-
formance will be poor. Thus, we must keep or reserve some amount in case there
is a future buyer with a higher market price. On the other hand, if we reserve
too much for the possible buyer with higher market price and assign very little
to the buyers who have come already, the performance will be also poor since the
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possible buyer with higher price may not come. Thus, to have a good performance,
the amount sold and the amount remaining should be balanced nicely.

For the purposes of illustrating the main ideas of our algorithm only, consider
the case when all prices are non-negative integers; in general, our algorithm is
not restricted to integer prices. We make the following observations.

– Our algorithm should only sell products when the price is strictly higher
than the maximum price that we have seen so far. For example, suppose the
input sequence of prices is 1, 4, 2, 3, 6, 5, 12. We can ignore the prices 2, 3, 5
and do not sell any at these prices because the optimal offline algorithm will
ignore these prices anyway; if our solution is competitive for the input 1, 4,
6, 12, it will also be competitive for the input 1, 4, 2, 3, 6, 5, 12. Therefore,
we can focus on handling price sequences that are strictly increasing.

– If we have a good solution for a sequence of strictly increasing and consecu-
tive prices, i.e., for the price sequence 1, 2, 3, ..., p∗, then we can easily modify
it to get a good solution for any price sequences that are strictly increasingly
with the highest price p∗. For example, suppose that for the prices 1, 2, 3, 4,
our algorithm sells an amount δ1, δ2, δ3, δ4 of products at prices 1, 2, 3, 4,
respectively and thus obtains a revenue of R = δ1 + 2δ2 + 3δ3 + 4δ4. Then,
for the strictly increasing price sequence 1, 3, 4, we can sell an amount of δ1
at price 1, δ2 + δ3 at price 3, and δ4 at price 4. Then, the revenue we obtain
is δ1 + 3(δ2 + δ3) + 4δ4 ≥ R.

Therefore, our algorithm can focus on strictly increasing and consecutive price
sequences. For these sequences, we only need to determine the amount δi of
products to be sold at price pi. Since there is only one unit of product, we must
have

∑+∞
i=1 δi ≤ 1. Another property that is desirable is that the δis should be

decreasing, i.e., δ1 > δ2 > δ3 > ...2; the leading δis should be large so that we
can sell enough products even if the market crashes very early, i.e., the adversary
declares immediately that there are no more buyers, or buyers with extremely
low market prices. Then, for any input price sequence with highest value p∗, our
algorithm will have revenue at least δ1 + 2δ2 + ...+ p∗δ∗ ≥ (p∗)2δ∗/2, and since
no algorithm (including the offline optimal algorithm) can have revenue higher
than p∗, the competitive ratio of this algorithm is O(1/(p∗δ∗)) (Lemma 1).

Now we give the algorithm. The algorithm assigns amounts based on a non-
increasing function f(x), which computes the value of δi such that

∫ +∞
0

f(x)dx =

1,
∫ 1

0 f(x)dx = δ1,
∫ 2

1 f(x)dx = δ2, ...,
∫ i

i−1 f(x)dx = δi.
Let (p1, p2, ..., p

∗) be the sequence of strictly increasing transacted prices, i.e.
prices at which the seller sells some (non-zero) amount to the buyer. For ease of
analysis, we can normalize this sequence to be (r1, r2, ..., r

∗) = (1, p2/p1, ..., p
∗/p1)

where the first price r1 is 1 and the normalized maximum r∗ is the ratio of the
highest transacted price p∗ to the lowest transacted price p1. Any buyers with
market price less than p1 will be ignored. For the sake of simplicity, we shall

2 The decreasing of δi can be argued easily. WLOG, assume that p1 < p2 and δ1 ≤ δ2,
we can show that the competitive ratio can be decreased by moving a small amount
from δ2 to δ1. This process can continue until δ1 > δ2.
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denote ri as the normalized price of the i-th buyer and r∗ as the highest normal-
ized price. The online selling strategy is described below as Algorithm 1. Note
that Algorithm 1 can handle non-integer prices.

Algorithm 1. Online Selling

Initially, let cr∗ ← 0. {}cr∗ is the current highest normalized price.
repeat

when a buyer with normalized market price r comes
if r > cr∗ then

Assign
∫ r

cr∗ f(x)dx products to this buyer.
cr∗ ← r

end if
until no buyer comes

Lemma 1. Suppose r∗ is the highest normalized market price, if f(.) is a non-
increasing function, the competitive ratio is at most O( 1

r∗·f(r∗) ).

Proof. The revenue received from Algorithm 1 is

r1

∫ r1

0

f(r)dr + r2

∫ r2

r1

f(r)dr + ...+ r∗
∫ r∗

r∗−
f(r)dr ≥

∫ r∗

0

r · f(r)dr

where r∗− is the second highest normalized market price in the sequence.
Since f(r) is non-increasing, the revenue received from Algorithm 1 is at least∫ r∗

0

r · f(r)dr ≥ f(r∗)
∫ r∗

0

rdr = f(r∗) · (r
∗)2

2
.

Note that the maximum revenue is r∗ given that the seller has only one unit to
sell, and therefore, the competitive ratio is at most

r∗∫ r∗

0
r · f(r)dr

= O(
1

r∗ · f(r∗) ).

��

In order to get a good performance, we need to find a non-increasing function
f(x) such that

∫∞
0 f(x)dx converges to 1, or more simply,

∫∞
0 f(x)dx = c for

some constant c (as we can normalize it to 1 later), and for any x > 1, f(x)
is as large as possible. After assuming the first market price is 1, we may just
analyze the property of

∫∞
1

f(x)dx. It is well known that
∫∞
1

1
xdx diverges and

thus f(x) = 1/x is too large. Similarly as
∫∞
1

1
x1+ε dx converges for any ε > 0,

f(x) = 1/(x ·xε) is too small. This suggests that f(x) = 1/(xξ(x)) where ξ(x) is
an increasing function and ξ(x) = o(xε) for any ε > 0. A good candidate for ξ(x)
is a poly-log function of x. This motivates us to focus on the class of functions
f(x) = 1/(x logx log(2) x . . . (log(i) x)1+ε) where ε > 0 and log(i) x denotes the
application of the logarithm function i times to x, where i ≥ 0. Now we define
the class of functions formally.
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Definition 1. Assume real number ε ≥ 0, integer i ≥ 0, b0 = 1, and bi+1 = ebi ,
define function qi,ε(x) for x ≥ bi as follows.

qi,ε(x) =

{
x1+ε if i = 0
x · qi−1,ε(lnx) if i > 0

Thus, q1,ε(x) = x · (lnx)1+ε, q2,ε(x) = x · (lnx) · (ln(2) x)1+ε, and qi,ε(x) =

x · (ln x) · (ln(2) x) · ... · (ln(i) x)1+ε. The following lemma gives the condition when∫ +∞
bi

1
qi,ε(x)

dx converges.

Lemma 2. For each integer i ≥ 0,
∫ +∞
bi

1
qi,ε(x)

dx converges if and only if ε > 0,

in particular,
∫ +∞
bi

1
qi,0(x)

dx diverges.

Proof. By induction on i. When i = 0, b0 = 1, it is easy to see that
∫ +∞
b0

1
q0,ε(x)

dx

=
∫ +∞
1

1
x1+ε dx converges if and only if ε > 0. Assume that the hypothesis is

true for i − 1. As bi = ebi−1 , we have
∫ +∞
bi

1
qi,ε(x)

dx =
∫ +∞
ebi−1

1
x·qi−1,ε(ln x)dx =∫ +∞

bi−1

1
qi−1,ε(y)

dy, where y = lnx. Thus,
∫ +∞
bi

1
qi,ε(x)

dx converges if and only if
ε > 0. ��

The following theorem shows the competitive ratio of Algorithm 1 by construct-
ing f(x) from qi,ε(x), i.e., proving that the area under f(x) when x > 0 is
bounded and f(x) is non-increasing and defined for all x > 0.

Theorem 1. Suppose r∗ is the highest normalized market price, there exists an
online algorithm Ah,ε for the unbounded one-way trading problem with competi-
tive ratio O(1) if r∗ < bh and O(qh−1,ε(log r

∗)) if r∗ ≥ bh for any fixed positive
integer h and any real number ε > 0.

Proof. For any fixed positive integer h, bh is a constant such that ln(h) bh = 1.
From Lemma 2, for any real number ε > 0, suppose

∫ +∞
bh

1
qh,ε(x)

dx converges to

a constant, say c. As ln(h)(x) ≥ 1 when x ≥ bh, we define function fh,ε(x) as
follows.

fh,ε(x) =

{
1

bh+c·qh,ε(bh)
if 0 < x < bh

qh,ε(bh)
bh+c·qh,ε(bh)

· 1
qh,ε(x)

if x ≥ bh

It can be verified that
∫ +∞
0

fh,ε(x)dx = 1 and fh,ε(x) is non-increasing (since
fh,ε(x) = fh,ε(bh) is a constant when 0 < x < bh and fh,ε(x) is decreasing when
x ≥ bh), i.e., fh,ε(x), which depends on h and ε, satisfies the requirement of
Algorithm 1, which gives Ah,ε. By Lemma 1, we can analyze the competitive
ratio w.r.t. the highest market price r∗.
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– If r∗ < bh, the competitive ratio is O(
bh+c·qh,ε(bh)

r∗ ), which is O(1).
– If r∗ ≥ bh, the competitive ratio is O( 1

r∗·fh,ε(r∗)
), which is O(qh−1,ε(log r

∗)),

i.e., O(log r∗ log(2) r∗...(log(h) r∗)1+ε).
��

Now we consider the case where each buyer has a maximum amount of products
he wants to buy at the market price. This variant can be regarded as an extension
of the previous part. Algorithm 1 assigns products only based on the buyer’s
market price with no regard for how much the buyer is able to buy, i.e., the
buyer’s quota. Modify Algorithm 1 by taking into consideration the buyer’s
quota, we have the following conclusion. (For details, please see appendix.)

Theorem 2. For the unbounded one-way trading problem, if each buyer has a
maximum amount of products he wants to buy at the market price, there is an on-
line selling strategy with competitive ratio O(1) if r∗ < bh and O(qh−1,ε(log r

∗))
if r∗ ≥ bh for any fixed integer h and any real number ε > 0, where r∗ is the
highest normalized market price.

3 Lower Bound

In this part, we present a lower bound for the competitive ratio of the unbounded
one-way trading problem. We will show that the lower bound and the upper
bound given in Section 2.1 are almost tight; in another words, Algorithm 1 is
near optimal.

To derive a lower bound on the competitive ratio, we give an adversary that
determines the sequence of prices p1, p2, p3 . . ., and whenever the seller has sold
some products, the adversary checks the total revenue the seller has accumulated
so far, and if it is not competitive, the adversary declares immediately that there
are no more buyers, or buyers with extremely low market price, i.e., the market
“crashes”. The prices pi’s grow exponentially, i.e., pi = Θ(ei). The adversary also
determines for each i a bound Δi, which is the minimum amount of product sold
during the first i prices in order to prevent the market crashes. In other words, if
the amount of product sold at price p1, p2, . . . , pk are s1, s2, . . . , sk, respectively,
and s1 ≥ Δ1, s1+s2 ≥ Δ2, . . . ,

∑j−1
k=1 sk ≥ Δj−1, and

∑j
k=1 sk < Δj , the market

crashes immediately at price pj. Note that in such case, the seller has sold at
most Δj − Δj−1 unit of product at pj , and since pj is much larger than all
previous prices, we would be able to show that the total revenue obtained by
the seller will be dominated by the last transaction and is O((Δj − Δj−1)pj).
On the other hand, an offline algorithm can sell the whole unit of product at pj
and gets the maximum revenue pj . Thus the competitive ratio of the algorithm
is Ω( 1

Δj−Δj−1
) if the adversary “crashes” the market after pj . The challenge for

getting a large lower bound is to decide the Δ′
is such that (i) they are unbounded

(i.e., Δi → ∞ when i → ∞) so that the seller will fail eventually to meet the
requirement on the minimum amount of product sold, and (ii) Δi −Δi−1 is as
small as possible. The bound Δi =

1
e+1 +

1
e+2 + . . .+ 1

e+i can be considered as a
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good candidate, which will lead us to a lower bound of Ω(i) or Ω(log pi) when
the highest price pi = O(ei). Below, we describe some other Δi’s that will lead
us to a substantially larger bound.

From Lemma 2, we know that qh,0(x) is a good candidate such that there is

a bh > 0 causing
∫ +∞
bh

1
qh,0(x)

dx to diverge, where ln(h) bh = 1. The adversary

in Algorithm 2 uses
∑j

k=1
1

qh,0(bh+k−1) as a candidate for Δj as mentioned be-

fore and sj is the amount of products assigned to buyer uj . Since 1/qh,0(x) is

monotone decreasing and
∫ +∞
bh

1
qh,0(x)

dx diverges for any fixed integer h > 0, the

sum
∑∞

k=1
1

qh,0(bh+k−1) diverges. Therefore, Algorithm 2 must be terminated on

some buyer since the seller has only one unit of product.

Algorithm 2. Adversary for online selling

Assume that the seller has one unit of product to sell.
Let j ← 0.
repeat

Let j ← j + 1.
Send buyer uj with market price ebh+j−1 to the seller.
The seller sells sj product to buyer uj .

until
∑j

k=1 sk ≤ ∑j
k=1

1
qh,0(bh+k−1)

Assume the adversary stops sending buyers after the arrival of buyer uj .

From Algorithm 2, the total revenue received is
∑j

k=1 sk · ebh+k−1, while the
maximum offline revenue is ebh+j−1. The following lemma estimates the total
revenue received from Algorithm 2.

Lemma 3.
∑j

k=1 sk · ebh+k−1 = O( ebh+j−1

qh,0(bh+j−1) )

Proof. From the adversary’s strategy, at any step j′ < j,

j′∑
k=1

sk >

j′∑
k=1

1

qh,0(bh + k − 1)
,

and in the last step j,

j∑
k=1

sk ≤
j∑

k=0

1

qh,0(bh + k − 1)
.

Therefore,
j∑

k=1

sk · ebh+k−1 ≤
j∑

k=1

ebh+k−1

qh,0(bh + k − 1)
.

In Lemma 4, we show that

ebh+k

qh,0(bh + k)
· qh,0(bh + k − 1)

ebh+k−1
=

e · qh,0(bh + k − 1)

qh,0(bh + k)
≥ c
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for some constant c > 1 and any k ≥ 1. Thus,

j∑
k=1

ebh+k−1

qh,0(bh + k − 1)
≤ ebh+j−1

qh,0(bh + j − 1)
· 1

1− 1/c
= O(

ebh+j−1

qh,0(bh + j − 1)
).

��

Lemma 4. For any integer h ≥ 1 and k ≥ 1, there exist a constant c > 1, such
that

e · qh,0(bh + k − 1)

qh,0(bh + k)
≥ c

Proof. Based on the logarithmic characteristic of qh,0(x), i.e., the increasing rate

is decreasing with the increase of x,
qh,0(bh+k−1)
qh,0(bh+k) achieves the lowest value when

k = 1. Thus, it is sufficient to prove the following inequality for any integer
h ≥ 1.

e · qh,0(bh)
qh,0(bh + 1)

≥ c > 1 (1)

We prove Inequality (1) by induction on h.

Basis step: h = 1. As bh = e,

e · q1,0(b1)
q1,0(b1 + 1)

=
e · b1 · ln b1

(b1 + 1) · ln(b1 + 1)
≈ 1.513 > 1

Induction step: Assume Inequality (1) is true for h,

e · qh,0(bh)
qh,0(bh + 1)

=
e · bh · ln bh · ... · ln(h) bh

(bh + 1) · ln(bh + 1) · ... · ln(h)(bh + 1)

=
e · bh
bh + 1

h∏
h′=1

ln(h
′) bh

ln(h
′)(bh + 1)

≥ c > 1 (2)

Then for h+ 1,

e · qh+1,0(bh+1)

qh+1,0(bh+1 + 1)
=

e · bh+1 · ln bh+1 · ... · ln(h+1) bh+1

(bh+1 + 1) · ln(bh+1 + 1) · ... · ln(h+1)(bh+1 + 1)

=
e · bh+1

bh+1 + 1

h+1∏
h′=1

ln(h
′) bh+1

ln(h
′)(bh+1 + 1)

(3)

We shall prove that e·bh+1

bh+1+1

∏h+1
h′=1

ln(h′) bh+1

ln(h′)(bh+1+1)
as given in Equation (3) is

larger than
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e·bh
bh+1

∏h
h′=1

ln(h′) bh
ln(h′)(bh+1)

as given in Equation (2) term by term. Since ln bh+1 = bh,

we have ln(bh+1 + 1) < bh + 1. Thus, for any 2 ≤ h′ ≤ h+ 1,

ln(h
′) bh+1

ln(h
′)(bh+1 + 1)

>
ln(h

′−1) bh

ln(h
′−1)(bh + 1)

As for the first few terms, because ln bh+1 = bh and ln(bh+1 + 1) = bh + δ,
where δ � 1, we have

bh+1 · ln bh+1

(bh+1 + 1) · ln(bh+1 + 1)
≥ bh

bh + 1

Thus, we have shown that

e · qh,0(bh + k)

qh,0(bh + k + 1)
≥ c > 1.

��

Based on the above analysis, Theorem 3 gives the lower bound on the competitive
ratio of the unbounded one-way trading problem.

Theorem 3. The competitive ratio of the unbounded one-way trading problem
is at least Ω(qh,0(log r

∗)) = Ω(log r∗ · log(2) r∗ · ... · log(h+1) r∗) where r∗ is the
highest normalized market price and h > 0 is any fixed integer.

Proof. Assume that Algorithm 2 terminates on some buyer uj. As mentioned be-

fore, the revenue received from Algorithm 2 is
∑j

k=1 sk·ebh+k−1 = O( ebh+j−1

qh,0(bh+j−1) )

(Lemma 3), and the maximum offline revenue is ebh+j−1 by assigning the whole
product to buyer uj with the market price ebi+j−1. As pj = ebh+j−1, the perfor-

mance ratio is at least Ω(qh,0(bh + j − 1)) = Ω(log pj log
(2) pj ... log

(h+1) pj)) =

Ω(log r∗ log(2) r∗... log(h+1) r∗)) since bh can be regarded as a constant and r∗ =
pj/p1 = ej−1. ��

4 Conclusion

There are many real applications where the market price fluctuates and cannot
be controlled by the seller. It is a problem of practical interest to find a good
revenue-maximizing (or profit-maximizing) selling strategy for the seller in such
a situation. This paper has made an attempt towards this direction. However,
the strategy prescribed in this paper may not be too practical in the sense that,
for example, products are not sold when the market price decreases. The reality
is that, in practice, the seller may have a fixed time-frame to sell and cannot wait
forever for the buyer with the highest price to arrive, and price movements from
one moment to the next may not be drastic or arbitrary. Additional assumptions
and/or constraints to the unbounded one-way trading problem to reflect such
practical realities will be studied in our next attempt and hopefully could lead
to more practical selling strategies.
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Abstract. Motivated by applications in privacy-preserving data pub-
lishing, we study the problem of making an undirected graph
k-anonymous by adding few vertices (together with incident edges). That
is, after adding these “dummy vertices”, for every vertex degree d in the
resulting graph, there shall be at least k vertices with degree d. We
explore three variants of vertex addition (justified by real-world consid-
erations) and study their (parameterized) computational complexity. We
derive mostly (worst-case) intractability results, even for very restricted
cases (including trees or bounded-degree graphs) but also obtain a few
encouraging fixed-parameter tractability results.

1 Introduction

This work is concerned with making an undirected graph k-anonymous, that is,
transforming it (at “low cost”) into a graph where every vertex degree occurs
either zero or at least k times. This graph modification scenario is motivated
by data privacy requests in social networks; it focuses on degree-based attacks
on identity disclosure of network nodes. Liu and Terzi [12] (also see Clarkson
et al. [5] for an extended version) pioneered degree-based identity anonymization
in graphs, which recently developed into a very active research field [1, 2, 3, 4,
10, 14, 18] with theoretical as well as practical work. So far, the most common
models have relied on edge modifications (allowing either only edge addition
or both edge addition and deletion) [2, 5, 10, 14, 12, 18]. We are aware of one
theoretical work [1] that considers vertex deletion as modification operation;
there mostly computational hardness results have been achieved. Chester et al.
[3] started to investigate vertex addition; here we follow this line of research.

There is good reason why vertex addition may be preferred to other graph
modification operations when aiming at k-anonymity. The central point here is
the “utility” of the anonymized graph. For instance, in the edge addition scenario
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Fig. 1. Example (k = 2): The input graph on the left is not yet 2-anonymous. The
graph in the middle shows a solution for the vertex cloning variant. The two added
vertices (black) are clones of the middle vertex. Note that it is not possible to 2-
anonymize the graph by adding only one clone. The graph on the right shows a solution
for the general variant where the new vertex can be connected arbitrarily.

inserting a new edge destroys distance properties between vertices and indeed
may introduce undesirable and misleading “fake relations”. Adding new vertices
and connecting them to some of the vertices of the original graph could avoid this
problem and gives at least a better chance to preserve essential graph properties
such as connectivity, shortest paths, or diameter. Chester et al. [3] provide a
more thorough discussion of the benefits of vertex addition. The basic decision
version of the problem we study is as follows.

Degree Anonymization (va)

Input: A simple undirected graph G = (V,E) and k, t ∈ N.
Question: Is there a k-anonymous graph G′ = (V ∪ V ′, E ∪ E′) such that

|V ′| ≤ t and E′ ⊆ {{u, v} ⊆ V ∪ V ′ | u ∈ V ′ ∨ v ∈ V ′}, where a
graph is said to be k-anonymous if and only if every vertex degree
in it appears either zero or at least k times ?

It is important to note that Chester et al. [3] studied a slightly different model,
with decisive consequences for computational complexity: Their model gets as
input a graph G = (V,E), and integers t and k, and also a vertex subset X ⊆ V ,
and the task is to k-anonymize the degree sequence (that is, the vertex degrees
sorted in ascending order) of X ∪ V ′ and the degree sequence of X . On the
contrary, we consider the simpler model where X = V , and we require to k-
anonymize only the degree sequence of X∪V ′ (= V ∪V ′). Consider the following
example highlighting this difference: Let G = (V,E) be an eight-vertex graph
containing one star with five leaves plus an edge (that is, K1,5 ∪ P2 ). Let k = 2
and X = V . Since G contains seven vertices of degree 1 and one vertex of
degree 5, the solution of Chester et al. [3] will give four as the minimum number
of vertices needed to 2-anonymize the degree sequence. In our model, however,
this instance can be solved by adding only one new vertex, and connecting it
to exactly five old vertices of degree 1 (e.g., transforming the K1,5 into a K2,5).
This happens because the new vertex and the old vertex of degree 5 will form
together a 2-anonymized “block”. However, we believe that our results extend
to the model of Chester et al. [3].
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Table 1. Overview of our results: Each column represents a different problem variant,
where VC (respectively Π , VA) stands for Degree Anonymization (vc) (respectively
Π-Preserving Degree Anonymization (va), Degree Anonymization (va)). The
first row refers to standard complexity analysis, while the remaining rows show results
with respect to several parameters. Here, Δ denotes the maximum degree of the input
graph, k is the degree of anonymity, s is the maximum number of added edges, and t
is the maximum number of added vertices.

parameter VC Π VA

- NP-h. [Th. 1] NP-h. [Th. 3] weakly NP-h. [Th. 5]
Δ NP-h., Δ = 3 [Th. 1] open open
k NP-h.a, k = 2 [Th. 2] NP-h.a, k = 2 [Th. 3] open

s open W[1]-h.b [Th. 4] FPT [Th. 9]
t W[2]-h. [Th. 2] W[2]-h. [Th. 3] XPc [Th. 6]

(Δ, k) open open FPT [Th. 8]
(Δ, t) open open FPT [Th. 7]
(t, k) W[2]-h. [Th. 2] W[2]-h. [Th. 3] XPc [Th. 6]

a Even on trees.
b Only for Π = Distances.
c Open whether in FPT.

Our contributions. Partially answering an open question of Chester et al. [3],
we show that Degree Anonymization (va) is weakly NP-hard for a com-
pact encoding of the input. Based on this, we provide several (fixed-parameter)
tractability results, exploiting parameterizations by the maximum vertex degree
of the input graph, the number of added vertices, and the number of (implicitly)
added new edges. Moreover, we also study variants of Degree Anonymization

(va) where we only allow “cloned” vertices to be added (that is, identical copies
of existing vertices with exactly the same neighborhood; this problem variant is
denoted by Degree Anonymization (vc)) or where we explicitly demand the
preservation of some desirable features such as distance properties (this prob-
lem variant is denoted by Π-Preserving Degree Anonymization (va)). For
these practically interesting variants we prove computational hardness already
for very restricted cases (for instance even on trees). Table 1 surveys most of our
results.

Due to the lack of space, most proofs are deferred to a full version.

2 Preliminaries and Problem Definitions

Preliminaries. We consider simple undirected graphs G = (V,E). We denote
by deg(v) the degree of a vertex v ∈ V and byΔ := maxv∈V deg(v) the maximum
degree of G. For an integer 0 ≤ i ≤ Δ, we define Bi := {v ∈ V | deg(v) = i}, the
block of degree i. We say that Bi is empty (full) if Bi = ∅ (|Bi| ≥ k). For a full
block Bi, we say that it has z := |Bi−k| many spare vertices. We call a block Bi
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good if it is empty or full, otherwise we call it bad (that is, 0 < |Bi| < k). The
block sequence B(G) := {(i, |Bi|) | Bi �= ∅} of G contains the degrees and sizes
of each non-empty block. We call a block sequence realizable if it is the block
sequence of a graph. For any graph G and for any pair of vertices u and v, we
define distG(u, v) to be the length of the shortest path between u and v in G
(and distG(u, v) = ∞ if there is no path connecting u and v in G). For n ∈ N,
we define [n] := {1, 2, . . . , n}.

Problem Definitions. Degree Anonymization (va) allows to add vertices and
edges incident to the new vertices. For a given solution of some yes-instance, we
denote the actual number of new vertices by t′ (obviously, 0 ≤ t′ ≤ t) and the
total number of newly inserted edges by s.

Π-Preserving Degree Anonymization (va) adds some constraints on
the new edges. The idea is to preserve some desirable properties of the input
graph. A general definition reads as follows.

Π-Preserving Degree Anonymization (va)

Input: An undirected graph G = (V,E) and k, t ∈ N.
Question: Is there a k-anonymous graph G′ = (V ∪ V ′, E ∪ E′) such that

|V ′| ≤ t, E′ ⊆ {{u, v} ⊆ V ∪ V ′ | u ∈ V ′ ∨ v ∈ V ′}, and Π is
preserved?

We now discuss what “Π is preserved” means for three properties we consider
here. First, we say that the connectedness remains unchanged if any pair of
disconnected vertices in G remains disconnected in G′. As introducing ver-
tices and edges cannot disconnect vertices, this property can be formalized
as ∀ u, v ∈ V : distG(u, v) = ∞ ⇐⇒ distG′(u, v) = ∞. Second, we say that
the distances remain unchanged if, for any pair of vertices in G, their distance
is the same in G and G′, formally, ∀ u, v ∈ V : distG(u, v) = distG′(u, v). Third,
we say that the diameter remains unchanged if the diameter of G and G′ is the
same, formally, maxu,v∈V distG(u, v) = maxu,v∈V ∪V ′ distG′(u, v). Note that the
diameter property also considers paths between newly added vertices, whereas
this is not the case for the first two properties. The reason for this is that the
diameter is naturally defined as a single number, whereas the other properties
store information for each pair of vertices.

A further restricted variant of Degree Anonymization (va) is to use vertex
cloning for modifying the graph. Here, cloning a vertex v means to introduce a
new vertex v′ and make v′ adjacent to all neighbors of v. Formally, we arrive at
the following problem:

Degree Anonymization (vc)

Input: An undirected graph G = (V,E) and k, t ∈ N.
Question: Can G be transformed into a k-anonymous graph by at most t

vertex cloning operations?

We remark that there are different cloning variants: Consider two adjacent ver-
tices u and v. If both u and v are cloned, then although the clone u′ is adjacent
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to v and the clone v′ is adjacent to u, the clones u′ and v′ may or may not be
adjacent depending on the variant. If the clones are inserted simultaneously at
the same time, then u′ and v′ are not adjacent. If the clones are inserted one
after the other, then u′ and v′ are adjacent (no matter in what order they are
inserted). Our results for Degree Anonymization (vc) (Theorems 1 and 2)
hold for both variants.

Parameterized Complexity. An instance (I, k) of a parameterized problem con-
sists of the actual instance I and an integer k being the parameter [6, 9, 16]. A
parameterized problem is called fixed-parameter tractable (FPT) if there is an
algorithm solving it in f(k) · |I|O(1) time, whereas an algorithm with running
time O(|I|f(k)) only shows membership in the class XP (clearly, FPT ⊆ XP). One
can show that a parameterized problem L is (presumably) not fixed-parameter
tractable with a parameterized reduction from a W[1]-hard or W[2]-hard problem
(such as Clique or Set Cover parameterized by solution size) to L. A param-
eterized reduction from a parameterized problem L to another parameterized
problem L′ is a function that, given an instance (I, k), computes in f(k) · |I|O(1)

time an instance (I ′, k′) (with k′ ≤ g(k)) such that (I, k) ∈ L⇔ (I ′, k′) ∈ L′.

3 Constrained Degree Anonymization

Cloning seems a natural and well-motivated modification operation for social
networks. Unfortunately, we face computational intractability even on very re-
stricted input graphs with maximum degree three. The corresponding reduction
is from Independent Set.

Theorem 1. Degree Anonymization (vc) is NP-hard, even on graphs with
maximum degree three.

Also from the viewpoint of fixed-parameter algorithms, we have no good news
with respect to the standard parameter “solution size” t, even on trees. The
corresponding reduction is from Set Cover.

Theorem 2. Degree Anonymization (vc) is NP-hard and W[2]-hard with
respect to the number t of clones, even if the degree k of anonymity is two and
the graph is a tree.

We can adjust the reduction from Theorem 2 to also work for Π-Preserving

Degree Anonymization (va).

Theorem 3. For Π ∈ {Distances, Diameter, Connectivity}, Π-Preserving

Degree Anonymization (va) is NP-hard and also W[2]-hard with respect to
the number t of added vertices, even if k = 2. For Π ∈ {Distances, Connectivity},
this is also true on trees.

We strengthen (using a reduction from Clique) parts of Theorem 3 by also
showing that the problem remains intractable with respect to the typically larger
parameter number s of added edges. For simplicity, we consider s as part of the
input.
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Fig. 2. Visualization of our knowledge about
the complexity of Degree Anonymization

(va) depending on the values of k and t.
The NO-cases follow from Observation 1, the
YES-cases are due to Lemma 1, and the
polynomial-time solvable cases follow from
Lemma 2. For values inside the “?-area”, the
complexity is open for the graph problem
(the number version is weakly NP-hard, see
Theorem 5).

Theorem 4. For Π = Distances, Π-Preserving Degree Anonymization

(va) is W[1]-hard with respect to the number s of new edges.

4 Plain Degree Anonymization

In this section, we study the general problem Degree Anonymization (va),
without any restrictions on how to connect the new vertices to the input graph.
This freedom might raise hope to find solutions more efficiently. Indeed, settling
the computational complexity of Degree Anonymization (va) turns out to
be tricky in that, on the one hand, we observe that several cases are fairly easy
to solve, but we are not aware of any polynomial-time algorithm solving the
problem in general. On the other hand, we can only prove weak NP-hardness for
a number version of the problem.

In terms of fixed-parameter tractability, however, Degree Anonymization

(va) turns out to be more accessible. We obtain some fixed-parameter tractabil-
ity results regarding, amongst others, certain (combined) parameters (for
example, s, (Δ, k), and (Δ, t)), for some of which we proved the cloning and
property-preserving problem variants to be W-hard.

Easy Cases. We start analyzing the complexity of Degree Anonymization

(va) with respect to the two input values k and t. Figure 2 provides a two-
dimensional map indicating those combinations of k and t for which the problem
is polynomial-time solvable or even trivial. In the following, we briefly state the
corresponding results, starting with the following easy observation:

Observation 1. Let I = (G, k, t) be an instance of Degree Anonymization

(va) with G being an n-vertex graph. If k > n+ t, then I is a no-instance.

Next, we identify some yes-instances using the fact that—due to a result by
Erdős and Kelly [7]—it is always possible to construct a regular graph if we are
allowed to add enough, that is, at least n, new vertices.

Lemma 1. Let I = (G, k, t) be an instance of Degree Anonymization (va)

with G being an n-vertex graph. If k ≤ n+ t and t ≥ n, then I is a yes-instance.
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We finish with some polynomial-time solvable instances which can be solved
using f -factors [13, Chapter 10].

Lemma 2. Degree Anonymization (va) is polynomial-time solvable for 2k >
(n+ t).

Proof. Let I = (G = (V,E), k, t) be an instance of Degree Anonymization

(va) with 2k > (n+t). By Observation 1 and Lemma 1, we can assume that k ≤
n + t < 2k and t < n. Observe that in this case any solution (if existing)
transforms G into a regular graph. Hence, the question is whether there is a
regular graphH with at most n+t vertices containingG as induced subgraph.We
solve this problem by using the polynomial-time solvable f -Factor problem [13,
Chapter 10], which is defined as follows:

f -Factor
Input: A graph G = (V,E) and a function f : V → N0.
Question: Is there an f -factor, that is, a subgraph G′ = (V,E′) of G such

that degG′(v) = f(v) for all v ∈ V ?

Our algorithm is as follows. First, we guess in O(n2) time the number t′ ≤ t of
vertices that we will add and the degree d of the final regular graph H . Second,
we create an f -Factor instance (G′ = (V ′, E′), f) as follows: We define the
set V ′ := V ∪ X where X is a set of t′ vertices. We start with an edgeless
graph G′ and then add all edges such that one endpoint is in X , formally,
E′ = {{u, v} | u ∈ X, v ∈ V ′}. Finally, we set f(v) := d− degG(v) for all v ∈ V
and f(u) = d for all u ∈ X . This completes the f -Factor instance I ′. Clearly, I ′

is a yes-instance if and only if there exists a d-regular graphH with n+t′ vertices
containing G as an induced subgraph. Hence, our algorithm runs in polynomial
time. ��

(Weak) NP-Hardness. In Figure 2, we left open the computational complexity of
Degree Anonymization (va) for instances with 2k ≤ n+ t. We now partially
settle this question claiming that an equivalent number version of the problem
is weakly NP-hard. To this end, notice that since we are not allowed to add any
edges between old vertices, the actual structure of the input graph G becomes
negligible and we only need to store the information of how many vertices of
which degree it contains (that is, its block sequence B(G)):

Observation 2. Let G and G′ be two graphs with identical block sequences,
that is, B(G) = B(G′). Then, for the Degree Anonymization (va) instances
I := (G, k, t) and I ′ := (G′, k, t), it holds that I is a yes-instance if and only if I ′

is a yes-instance.

Based on Observation 2, we can now define an equivalent number version of
Degree Anonymization (va).

Block Sequence Anonymization (va)

Input: A realizable block sequence B and k, t ∈ N.
Question: Is there a graph G with block sequence B such that (G, k, t) is a

yes-instance of Degree Anonymization (va)?
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Note that Block Sequence Anonymization (va) is a pure number problem.
This helps us to develop a polynomial-time reduction from a weakly NP-hard
version of the Subset Sum problem. An NP-hard problem is weakly NP-hard if
it can be solved in polynomial-time provided that the input is encoded in unary.
We conclude with the following theorem:

Theorem 5. Block Sequence Anonymization (va) is weakly NP-hard.

Proof (sketch). The reduction is from the weakly NP-hard Change Making

problem [15]: Given integers a1, . . . , an, m, and b, are there nonnegative integers
x1, . . . , xn such that Σi∈[n]xi ≤ m, and Σi∈[n]xiai = b? We can assume, without
loss of generality, that ∀i, j : |ai − aj | ≥ m3. If this property does not hold,
then we simply multiply all numbers by m3, that is, we set ai := m3 · ai and
b := m3 · b. It is easy to verify that this new instance is a yes-instance if and
only if the original instance is a yes-instance.

We now create an equivalent Block Sequence Anonymization (va) in-
stance (B, k, t), with t := m and k := t(b + n + 5t + 1). The realizable block
sequence B is the block sequence of a graph G, which is defined as follows. We
introduce several gadgets, that is, subgraphs of G with distinguished vertices of
specific degrees which play an important role in the correctness proof. In the
following, we only specify the degrees of these proper vertices. To realize these
gadgets, we add an appropriate number of degree-one neighbors. Our construc-
tion ensures that, when k-anonymizing G by adding t vertices, the degree-one
vertices will always keep their degree. The construction works as follows.

Add a b-gadget consisting of 5t base vertices of degree n+t, b count vertices of
degree n+2t−1, and k−b−5t b-catch vertices of degree n+2t. For each i ∈ [n],
add one ai-gadget consisting of one ai-vertex of degree ai +n+4t+1 and k− 1
ai-catch vertices of degree ai+n+5t+1. Finally, add a dummy gadget consisting
of one dummy vertex of degree n + 4t + 1 and k − 1 dummy catch vertices of
degree n+ 5t+ 1. This completes the construction. ��

Tractability Results. While it remains open whether Degree Anonymiza-

tion (va) is NP-hard, the weak NP-hardness result for Block Sequence

Anonymization (va) (Theorem 5) indicates that also the graph problem may
be hard to solve. Hence, a parameterized approach solvingDegree Anonymiza-

tion (va) is reasonable. Notably we provide several (fixed-parameter) tractabil-
ity results contrasting the hardness results for the constrained problem versions
considered in Section 3.

A natural parameter to consider is the solution size t. Unfortunately, we do not
know whether Degree Anonymization (va) is fixed-parameter tractable with
respect to t; we only know that Degree Anonymization (va) is polynomial-
time solvable when t is a constant.

Theorem 6. Degree Anonymization (va) parameterized by the maximum
number t of added vertices is in XP.

We can, however, “improve” containment in XP with respect to t to fixed-
parameter tractability with respect to the combined parameter (t,Δ). Before
proving the theorem, we introduce some notation and a helpful lemma.
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For a set A of vertices whose addition transforms a graph G = (V,E) into a
k-anonymous graph, we call A an addition set and we write G + A for the k-
anonymous graph. Furthermore, the edges in G+A having at least one endpoint
in A (the “added” edges) are denoted by E(A). Hence, G+A = (V ∪A,E∪E(A)).

Clearly, for an addition set A of size t all vertices in G + A, except those
in A, have degree at most Δ + t where Δ is the largest degree in G. It may
happen that the degree of some (potentially all) vertices from A in G + A is
larger than Δ + t. In this case, there are full blocks in G + A of degree larger
than Δ+t consisting only of vertices from A, implying that t ≥ k. We call blocks
corresponding to degrees greater than Δ+ t large-degree blocks. Lemma 3 shows
that we may assume that there are at most two large-degree blocks which are,
in terms of their degree values, not too far away from each other. This will later
allow us to guess their degrees.

Lemma 3. Let (G, k, t) be a yes-instance of Degree Anonymization (va).
There is an addition set A of size at most t such that in G + A there are no
large-degree blocks, or there is only one large-degree block, or there are only two
large-degree blocks whose degrees differ by exactly one.

Theorem 7. Degree Anonymization (va) is fixed-parameter tractable with
respect to the combined parameter (t,Δ).

Proof. Our algorithm consists of three phases. First (Phase I), we guess what
the solution looks like, specifically guessing the degrees of the good blocks, and
the degrees of the new vertices, while respecting the guessed degrees of the good
blocks. Then (Phase II), we use a bottom-up lazy method to solve the instance
for the old vertices, but with respecting guessed degrees of the new vertices.
Finally (Phase III), we use integer linear programming to solve the instance for
the new vertices. A detailed description follows.

Phase I: we guess the subgraph induced by the new vertices (in O(2t
2

) time).
We know, from Lemma 3, that the number of possible blocks in the solution is
upper-bounded by Δ+t+2 = O(Δ+t). We guess the degrees of the large-degree
blocks (in O(n) time). Then, we guess, for each block, whether it is empty or
full (in O(2Δ+t)). Finally, we guess the degree of each new vertex (in (Δ + t)t

time). Phase I runs in n ·O
(
2t

2 · 2Δ+t · (Δ+ t)t
)
= n · f1(t,Δ) time.

For ease of presentation, we say that we move a vertex up, meaning that we
connect it to some new vertices, thus changing its degree and moving it to a
different block of some desired degree. We can choose which new vertices to use
in a round-robin way, but considering their guessed degrees (that is, each new
vertex participates in the round-robin until it reaches its guessed degree).

Phase II: we perform the following bottom-up lazy method. We start from
the lowest degree block, and work all the way up to the highest degree block.
If the current block Bi is guessed to become empty, then we move its vertices
up, to the first block above it which is guessed to become full (if there is a gap
greater than t to such a block, we halt with a negative answer). Otherwise, if it
is guessed to become full, then we distinguish between the following two cases: if
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the number of old vertices in the block plus the number of new vertices guessed
to be in this block is at least k, then we do nothing, because it means that this
block is already anonymized with respect to the old vertices, and continue to the
next block. Otherwise, Bi has a shortage of some zi many vertices to become full,
so we find the maximum j < i such that the number of old vertices in Bj plus the
number of new vertices guessed to be in Bj is greater than k (specifically, equals
to k+ zj for some zj spare vertices in Bj ; if the gap i− j is greater than t, then
we halt with a negative answer, because Bi cannot be k-anonymized). We move
min(zi, zj) spare vertices from Bj to Bi. If, after moving these spare vertices, Bi

still needs some more vertices (that is, if zi > zj), then we repeat this step once
more, looking for the maximum j′ < j such that the number of old vertices in
Bj′ plus the number of new vertices guessed to be in Bj′ is greater than k, until
we have enough vertices in the current block. If in the end of this phase, all of
the blocks are anonymized, we continue to the next phase. The overall cost of
Phase II is O(Δ+ t)3 = f2(t,Δ).

Our approach is lazy for two reasons. The first reason is that we use the spare
vertices from the closest full block below the current one. The second reason is
that we move the minimum number of vertices to make the blocks anonymized
with respect to the old vertices, that is, we only change the bad blocks to become
full, but not overfull.

Phase III: We check if we reached the exact guessed total number s of edges
added. If so, then we halt with a positive answer, as this means that the new
vertices reached their guessed degrees. If we reached a larger number, then we
halt with a negative answer, since Phase II is lazy, it means that we cannot k-
anonymize the graph using the guessed number of edges added. If we reached a
smaller number, then we still have some hope of reaching s, because of the
laziness of Phase II, so we try to move some more vertices, until we reach
the guessed total number of edges added, while not destroying the anonymity of
the blocks. To this end, denote the number of spare vertices in each full block Bi

by zi. Notice that we can move any number of up to zi vertices from this block,
to any full block above it, and no other moves are possible. Now our problem
reduces to the following integer linear program:

Input: n′ numbers {z′1, . . . , z′n′}, n′ ×m′ matrix A = aij , and integer Z.
Task: maximize

∑
i∈[n′]

∑
j∈[m′] aijxij such that

∑
i∈[n′]

∑
j∈[m′] aijxij ≤ Z

and ∀j :
∑

i∈[n′] aij ≤ zj

Specifically, we set n′ and m′ to be the number of full blocks. For each full block,
we set z′i to be zi and ai,j to be the gap between the jth full block and the ith
full block. Fortunately, the number of variables is upper-bounded by the number
of full blocks squared, (therefore, upper-bounded by O((Δ+ t)2)). By a famous
result of Lenstra [11], it follows that the running time is exponential only in the
number of variables, therefore the cost of this phase is poly(n) · f3(t,Δ).

We now prove the correctness of the algorithm. As the algorithm only performs
permitted operations (that is, adds up to t new vertices and connects up to s
edges, each incident to at least one new vertex), it follows that if the input
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is a no-instance, then the algorithm returns a negative answer. Otherwise, if
the input is a yes-instance, then at least one set of guesses from Phase I will be
correct. Any solution must at least move the vertices that are moved in Phase II,
and then the problem reduces to the ILP presented in Phase III. ��

The question whether fixed-parameter tractability also holds for the parameter t
or Δ alone remains open. Nevertheless, we find that fixed-parameter tractability
also holds for the combined parameter (Δ, k).

Theorem 8. Degree Anonymization (va) is fixed-parameter tractable with
respect to the combined parameter (Δ, k).

Contrasting the W[1]-hardness of Π-Preserving Degree Anonymization

(va) parameterized by the number s of new edges (Theorem 4), we conclude with
fixed-parameter tractability for Degree Anonymization (va) with respect
to s. We again assume that s is given as part of the input.

Theorem 9. Degree Anonymization (va) is fixed-parameter tractable with
respect to the number s of newly inserted edges.

5 Conclusion

Table 1 in the introductory section overviews most of our results and leaves
several specific open questions. Moreover, it is fair to say that our positive al-
gorithmic results are basically of classification nature and require further im-
provement for practical relevance. Indeed, a more holistic approach in terms of a
full-fledged multivariate complexity analysis [8, 17], perhaps also driven by the
analysis of real-world network data characteristics, may help to derive practically
useful algorithmic results. A deeper investigation of approximation algorithms
(cf. [3, 4]) may be beneficial as well. Finally, typical social network properties
such as measured by the clustering coefficient or the average path length are
studied in experimental work [3], but the complexity of Π-Preserving De-

gree Anonymization (va) with respect to these properties is unexplored so
far.
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[7] Erdős, P., Kelly, P.: The minimal regular graph containing a given graph. Amer.
Math. Monthly 70, 1074–1075 (1963)

[8] Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: Parameter ecology and the deconstruction of computational complexity.
Eur. J. Combin. 34(3), 541–566 (2013)

[9] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[10] Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complex-
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Abstract. In this paper, we study the preemptive bi-criteria scheduling
problems on m parallel machines with machine unavailable intervals. The
goal is to minimize the makespan subject to the constraint that the total
completion time is minimized. We study the model where each machine
can have multiple unavailable intervals, but at any time, there is at most
one machine unavailable. We show that there is an optimal polynomial
time algorithm for this model.

1 Introduction

This research concerns both bi-criteria scheduling and scheduling with limited
machine availability simultaneously. As Panwalkar et al. ([17]) points out, de-
cision makers are often faced with the problem of satisfying several different
groups of people simultaneously. Thus, managers actually need to develop sched-
ules based on multiple criteria. A lot of applications for multi-criteria scheduling
have been addressed in the books ([21], [20]), surveys ([3], [1], [6] )and the refer-
ences therein. On the other hand, machines may not be continuously available
due to breakdown, preventive maintenance or processing unfinished jobs from a
previous planning horizon. Applications for scheduling subject to machine avail-
ability have been addressed in many surveys ([2], [10], [16], [19], [18]) and the
references therein. In the real life, both models may co-exist in some scenarios.
While manufacturers aim at optimizing multi-criteria simultaneously, resourses
may not be always available. So it is natural to consider bi-criteria scheduling
subject to the limited machine availability.

In this paper we study the criteria of makespan and total completion time
and the goal is to optimize makespan subject to the condition that the total
completion time is minimized. The makespan and total completion time are
two objectives of considerable interest. Minimizing makespan can ensure a good
balance of the load among the machines and minimizing the total completion
time can minimize the inventory holding costs. It is quite common that the
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manufacturers wish to minimize both objectives. The motivations for bi-criteria
scheduling concerned with makespan and total completion have been addressed
by Gupta et al. ([5]), Leung and Young in [12], and survey papers about multi-
criteria scheduling mentioned above.

We consider preemptive schedules for multiple parallel machines. A job can be
preempted by another job or interrupted by machine unavailable intervals and
resumed later on any available machine. Machines may not be always available.
Specifically, we study the case that each machine may have multiple unavailable
periods, but there is at most one machine unavailable at any time. In reality,
this machine model exists in many scenarios since the preventive maintenance
or periodical repair is usually done on a rotation basis instead of maintaining or
repairing several machines simultaneously.

Formally speaking, there is a set of n jobs, J = {J1, J2, · · · , Jn}, that need
to be scheduled on m machines. Each job Jj has a processing time pj. Without
loss of generality, the processing times of jobs are assumed to be integer. Jobs
are resumable, that is, after interrupted by the unavailable interval, the job can
continue to be processed after the machine has become available. Let S be a
feasible schedule of these jobs, the completion time of job Jj in schedule S is
denoted by Cj(S). If S is clear from the context, we will use Cj for short. The
makespan of S is Cmax(S) = max{Cj(S)}, and the total completion time of S
is
∑

Cj(S). The goal is to schedule the set of jobs on m parallel machines so as
to minimize Cmax(S) subject to the machine unavailability constraint and the
condition that

∑
Cj is minimized. Each machine may have multiple unavailable

periods, but there is at most one machine unavailable at any time. By extending
the 3-field notation α | β | γ introduced by Graham et al. [4], we denote our
problem by Pm−1,1 | r − a, pmtn | Cmax/

∑
Cj .

1.1 Literature Review

So far there are two research papers that consider multicriteria scheduling with
limited machine availability constraint [7] [8]. In [7], Huo and Zhao give optimal
polynomial algorithms for three problems: (1) P1,1 | r − a, pmtn |

∑
Cj/Cmax;

(2) P1,1 | r − a, pmtn | Cmax/
∑

Cj ; and (3) P2 | r − a, pmtn | Cmax/
∑

Cj in
which both machines are unavailable during an interval [t, t + x) and at most
one machine is unavailable at any other time. In [8], Huo and Zhao give optimal
polynomial algorithms for two problems: (1) Pm, ri | r−a, pmtn |

∑
Cj/Cmax ≤

T where each machine has a release time; (2) Pm−1,1 | r−a, pmtn |
∑

Cj/Cmax ≤
T where each machine may have multiple unavailable periods, but there is at
most one machine unavailable at any time.

In the following we will review the relevant results in the area of bi-criteria
scheduling and in the area of scheduling with limited machine availability, respec-
tively. We will survey the results concerning with makespan and total completion
time only. For more details about multicriteria scheduling, see [3], [1], [21], [6],
[20] and the references therein. For details about scheduling with limited machine
availability, see the surveys [10], [2], [16], [19] and [18].
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Research on multicriteria scheduling problems on parallel machines has not
been dealt with adequately in the literature. Gupta et al. ([5]) proposes an
exponential algorithm to solve optimally the bi-criteria problem of minimizing
the weighted sum of makespan and mean flow time on two identical parallel
machines. When preemption is allowed, P | pmtn | Cmax/

∑
Cj and P | pmtn |∑

Cj/Cmax are polynomially solved by Leung and Young in [12], and Leung and
Pinedo in [13], respectively.

With limited machine availability, when there are multiple machines, if pre-
emption is not allowed, makespan minimization and total completion time mini-
mization problems are both NP-hard ([11],[19], [9]). When preemption is allowed
and the machines have limited availability constraint, the makespan problem is
shown to be solvable in P by Liu and Sanlaville ([15]); additionally if the number
of available machines does not go down by 2 within a period of pmax (which is
the largest processing time of the jobs), Leung and Pinedo([14]) solved the to-
tal completion time minimization problem using PSPT (preemptive SPT, i.e., at
any time, when a machine becomes available for processing jobs, the job with the
minimum remaining time gets scheduled.) rule. In [7], Huo and Zhao show that
for two parallel machines with a single zero-availability interval, the problem of
minimizing total completion time can be solved optimally. When each machine
has a release time, that is, machine Mi is only available in interval [ri,∞), where
ri ≥ 0, it is easy to show that SPT (shortest processing time first) rule minimizes∑

Cj while for general unavailability constraint, the problem becomes NP-hard.
Approximation algorithms are developed for total completion time (see Lee and
Liman (1993)) and makespan (see Lee (1991), Lin et al. (1997) and Kellerer
(1998)).

1.2 New Contributions

In this paper, we study the problem Pm−1,1 | r − a, pmtn | Cmax/
∑

Cj and we
show this problem is in P by developing an optimal algorithm.

It should be noted that although the authors in [7] have solved a special case
of m = 2 and it is natural to conjecture the problem is still in P when m > 2, it
turns out the optimal algorithm itself and the proof of its optimality is totally
different from the optimal algorithm for m = 2 and is much more complicated.

1.3 Organization

Our paper is organized as follows. In Section 2, we give some preliminary results.
In Section 3, we study Pm−1,1 | r− a, pmtn | Cmax/

∑
Cj . In Section 4, we draw

the conclusion.

2 Preliminaries

By following similar arguments from [7] and [14], one can easily show the
following two lemmas:
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Lemma 1. For m machines, m ≥ 2, such that at any time at most one machine
is unavailable, PSPT generates an optimal schedule for

∑
Cj.

Lemma 2. For m machines with arbitrary unavailability constraints, m ≥ 2,
there is an optimal schedule for the objective Cmax/

∑
Cj , such that if pi < pj,

then Ci ≤ Cj.

Throughout this paper, we assume jobs J1, J2, . . . , Jn are indexed in nonde-
creasing order of their processing times, i.e., p1 ≤ p2 ≤ . . . ≤ pn.

3 Pm−1,1 | r − a, pmtn | Cmax/
∑

Cj

In this section, we show that the problem Pm−1,1 | r − a, pmtn | Cmax/
∑

Cj is
in P by developing a polynomial time optimal algorithm. Let T ∗ be the optimal
makespan among all the schedules with minimum total completion time. The
basic idea of our optimal algorithm is to schedule the first n−m jobs one by one
using PSPT rule, which guarantees the optimal total completion time; compute
the optimal makespan T ∗ based on the partial schedule and the last m jobs; and
at last schedule all the jobs to minimize the total completion time subject to
Cmax ≤ T ∗ by calling the optimal algorithm for problem Pm−1,1 | r − a, pmtn |∑

Cj/Cmax ≤ T ∗ which is developed by Huo and Zhao [8].
Let S be the partial schedule produced by scheduling the first n−m jobs using

PSPT rule. It is easy to see that jobs J1, J2, · · · , Jn−m have the completion
time C1 ≤ C2 ≤ · · · ≤ Cn−m. Since our schedule is preemptive, we can always
exchange jobs or exchange jobs with unavailable intervals so that job Jn−2m+1,
Jn−2m+2, · · · , Jn−m are completed on machine M1, M2, · · · , Mm, respectively
and no jobs are scheduled after Cn−2m+1, Cn−2m+2, · · · , Cn−m on machine M1,
M2, · · · , Mm, respectively. Let fi(1 ≤ i ≤ m) be the completion time of the last
job on machine Mi. That is, fi = Cn−2m+i for all 1 ≤ i ≤ m. Reschedule all
the unavailable intervals such that all the unavailable intervals between fi and
fi+1(1 ≤ i ≤ m − 1) are on machine Mi and all the unavailable intervals after
fm are on machine Mm. And let Si(1 ≤ i ≤ m− 1) be the set of the unavailable
intervals after fi on Mi and Ui(1 ≤ i ≤ m − 1) be the total length of all the
intervals in Si. For machine Mm, let Sm be the set of the unavailable intervals
during [fm, f1 + U1 + pn−m+1] and Um be the total length of all the intervals
in Sm.

Now let us consider the lowerbound of makespan by which jobs Jn−m+1, · · · ,
Jn can be finished. Job Jn has the largest time, so in order to complete job Jn as
early as possible, we should schedule Jn on machine M1, that is, the lowerbound
by which job Jn can be finished is F1 = f1 + U1 + pn (Note that Jn can not be
scheduled on more than one machines simultaneously at any time) and appar-
ently this is also the lowerbound by which jobs Jn−m+1, · · · , Jn can be finished
and we use B1 to represent this lowerbound. Similarly, Jn−1 should be scheduled
onM2 and its completion time is F2 = f2+U2+pn−1. If F2 ≤ B1, then the lower-
bound by which job Jn and Jn−1 can be finished is still B1; otherwise, the lower-
bound by which jobs Jn and Jn−1 can be finished will be B1+(F2−B1)/2, which
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is also the lowerbound by which jobs Jn−m+1, · · · , Jn can be finished and we use
B2 to represent this lowerbound. let Δ1 = F2−B1 be the difference between the
completion time of job Jn−1 on machine M2 and the lowerbound of makespan
obtained so far, then B2 = max{B1, B1 + Δ1/2}. If B2 > B1, we update the
Δ1 = 0 since the completion time of last job on M2 and the so far obtained
lowerbound of makespan are both B2. We repeat this procedure and let Bk−1 be
the lowerbound of makespan by which jobs Jn−k+2, · · · , Jn can be finished, then

we can get the lowerbound Bk = max{Bk−1, Bk−1 + (
∑k−1

j=1 Δj)/k} by which
Jn−k+1, · · · , Jn can be finished, which is also the lowerbound by which Jn−m+1,
· · · , Jn can be finished. And if Bk > Bk−1, we updateΔj = 0 for all 1 ≤ j ≤ k−1.
Now we consider job Jn−m+1 and let Bm−1 be the lowerbound of makespan by
which jobs Jn−m+2, · · · , Jn can be finished. Job Jn−m+1 will be scheduled on
machine Mm and its completion time will be Fm = fm + Um + pn−m+1 and
the lowerbound for jobs Jn−m+1, · · · , Jn will be Bm = max{Bm−1, Bm−1 +

(
∑m−1

j=1 Δj)/m}. Note that Um is the total length of unavailable intervals during
[fm, f1 + U1 + pn−m+1], and f1 + U1 + pn−m+1 is the job Jn−m+1’s completion
time if we schedule it by PSPT rule. Since all jobs Jn−m+2, · · · , Jn complete at
or after min{F1, F2, · · · , Fm−1} = min{f1+U1+pn, f2+U2+pn−1, · · · , fm−1+
Um−1+pn−m+2} which is larger than f1+U1+pn−m+1, if there is an unavailable
interval between [f1+U1+pn−m+1,min{Fm, Bm}], then job Jn−m+1 will be fin-
ished after a part of unavailable interval, which will increase the job Jn−m+1’s
completion time, and thus the total completion time is not optimal any more.
So in this case, we will fix job Jn−m+1 so that it completes at the beginning of
this unavailable interval and then compute the lowerbound of makespan for jobs
Jn−m+2, · · · , Jn following the above procedure.

Formally, we compute Bk(1 ≤ k ≤ m) which is the lowerbound of makespan
by which jobs Jn−k+1, · · · , Jn can be finished as follows:

(1) B1 = F1 where F1 := f1 + U1 + pn.
(2) For 2 ≤ k ≤ m, let Fk = fk +Uk + pn−k+1 and Δk−1 = Fk −Bk−1, compute

Bk = max{Bk−1, Bk−1 + (
∑k−1

j=1 Δj)/k} and if Bk > Bk−1, update Δj = 0
for all 1 ≤ j ≤ k − 1.

Let s be the starting time of the earliest unavailable interval after f1 + U1 +
pn−m+1. If Fm ≤ s or Bm ≤ s, set T ∗ = Bm. Otherwise, starting at time s, we
feasibly backward schedule job Jn−m+1 on machine Mm and available intervals
on machines Mm−1, Mm−2, · · · , in this order until job Jn−m+1 is fully scheduled
and then update fi, Si and Ui for m − 1 ≥ i ≥ 1 and we use f ′

i and U ′
i to

represent the updated fi and Ui. We compute B′
k(1 ≤ k ≤ m − 1) same as Bk

and set T ∗ = B′
m−1. That is,

(1) B′
1 = F1 where F1 := f ′

1 + U ′
1 + pn.

(2) For 2 ≤ k ≤ m − 1, let Fk = f ′
k + U ′

k + pn−k+1 and Δk−1 = Fk − Bk−1,

compute B′
k = max{B′

k−1, B
′
k−1 +(

∑k−1
j=1 Δj)/k} and if B′

k > B′
k−1, update

Δj = 0 for all 1 ≤ j ≤ k − 1.
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we present the complete algorithm formally as follows:

Algorithm ALG-OPT

(1) Let S be the PSPT schedule of J1, · · · , Jn−m+1

(2) Exchange jobs or exchange jobs with unavailable intervals so that job
Jn−2m+1, Jn−2m+2, · · · , Jn−m are completed on machine M1, M2, · · · ,
Mm, respectively and no jobs are scheduled after Cn−2m+1, Cn−2m+2, · · · ,
Cn−m on machine M1, M2, · · · , Mm, respectively.

(3) Let fi be the completion time of the last job scheduled on machine Mi, and
assume that the machines are numbered so that f1 ≤ f2 . . . ≤ fm.

(4) Reschedule all the unavailable intervals such that all the unavailable inter-
vals between fi and fi+1(1 ≤ i ≤ m − 1) are on machine Mi and all the
unavailable intervals after fm are on machineMm. And let Si(1 ≤ i ≤ m−1)
be the set of the unavailable intervals after fi on Mi and Ui(1 ≤ i ≤ m−1)
be the total length of all the intervals in Si. Let Sm be the set of the un-
available intervals during [fm, f1 + U1 + pn−m+1] on machine Mm and Um

be the total length of all the intervals in Sm.
(5) Let F1 := f1 + U1 + pn, B1 := F1 and k := 2
(6) while k ≤ m

1. let Fk = fk + Uk + pn−k+1 and Δk−1 = Fk −Bk−1

2. If
∑k−1

j=1 Δj ≤ 0
3. Set Bk := Bk−1

4. Else
5. Set Bk := Bk−1 + (

∑k−1
j=1 Δj)/k and update all Δj = 0 for all

1 ≤ j ≤ k − 1
(7) Let s be the starting time of the earliest unavailable interval after f1+U1+

pn−m+1

(8) If Fm ≤ s Set T ∗ = Bm and go to step (17)
(9) If Bm ≤ s Set T ∗ = Bm and go to step (17)

(10) Let p := pn−m+1

(11) p := p− (s− fm − Um)
(12) Set k := m− 1
(13) while k ≥ 1

1. If p > 0
2. If p ≤ Uk+1 Set U ′

k := Uk + p and p := 0
3. Else if p ≤ Uk+1 + fk+1 − fk − Uk Set U ′

k := Uk + p and p := 0
4. Else set f ′

k := fk+1, p := p−(Uk+1+fk+1−fk−Uk) and U ′
k := Uk+1

5. Else set f ′
k := fk and U ′

k := Uk

6. k = k − 1
(14) Let F ′

1 := f ′
1 + U ′

1 + pn, B
′
1 := F ′

1 and k := 2
(15) while k ≤ m− 1

1. let F ′
k := f ′

k + U ′
k + pn−k+1 and Δ′

k−1 = F ′
k −B′

k−1

2. If
∑k−1

j=1 Δ
′
j ≤ 0

3. Set B′
k := B′

k−1

4. Else
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5. Set B′
k := B′

k−1 + (
∑k−1

j=1 Δ
′
j)/k and update all Δ′

j = 0 for all
1 ≤ j ≤ k − 1

(16) Set T ∗ = B′
m−1

(17) Make machine Mm unavailable after s and other machines all available
after s, and call the optimal algorithm for problem Pm−1,1 | r − a, pmtn |∑

Cj/Cmax ≤ T ∗ (See Appendix) to schedule all the jobs to minimize the
total completion time subject to makespan less than or equal to T ∗ and let
S′ be the produced schedule

(18) Return S′

Lemma 3. For any 2 ≤ x ≤ m, we have either (1) Bx = Bx−1 or (2) Bx =
(Fx +Fx−1+ · · ·+F1)/x and Fx−Bx = x−1

x (Fx−Fx−1)+
x−2
x (Fx−1−Fx−2)+

· · ·+ 1
x (F2 − F1)

Now, let us look at the schedule produced by PSPT rule, which, by [14], has
the minimum total completion time. Jobs will be scheduled in increasing order
of their processing times, that is, J1, · · · , Jn. And it is easy to see that job
Ji(1 ≤ i ≤ n) is scheduled and completes as early as possible by PSPT rule. We
will show that for the problem of Pm−1,1 | r− a, pmtn | Cmax/

∑
Cj , there must

exist an optimal schedule with the first n−m jobs complete as early as possible.

Lemma 4. For the problem of Pm−1,1 | r − a, pmtn | Cmax/
∑

Cj , there must
exist an optimal schedule such that the first n − m jobs complete as early as
possible, which is same as the schedule produced by PSPT rule.

Proof. Assume not. Let S∗ be an optimal schedule such that the first n−m jobs
do not complete as early as possible and let job Ji(i ≤ n−m) be the first job in
S∗ that is not completed as early as possible. Then there must exist a time t < Ci

and index j > i such that Jj is scheduled at time t but job Ji is not scheduled at
t. Let C∗

max be the makespan of S∗. We claim that the completion time of job Jj
must be less than C∗

max. Assume not. That is, Cj = C∗
max. Since i ≤ n−m, by

lemma 1, there must exist at least m jobs with the completion time larger than
or equal to Ci, and among these m jobs, there must exist a job Jk(k > i) not
scheduled at time [Ci−1, Ci]. If we do the following triple exchange: move job Jj
at [t, t+1] to [C∗

max, C
∗
max+1], move job Ji at [Ci− 1, Ci] to [t, t+1], and move

job Jk at [Ck−1, Ck] to [Ci−1, Ci]. In this case, the completion time of job Jj is
increased by 1, the completion time of job Ji and Jk are both decreased at least
by 1, and the completion time of all other jobs are not changed, and thus the
total completion time is decreased by 1, which is contradict to the fact that S∗

has the minimum total completion time. So we must have Cj < C∗
max. In this

case, there must exist a job Jk that is scheduled at time interval [Cj , Cj +1] but
not at time interval [Ci − 1, Ci] and we can convert S∗ such that Ji is scheduled
at time t without changing the total completion time and makespan by triple
exchange: move Ji at [Ci − 1, Ci] to time [t, t + 1], move job Jj at [t, t + 1] to
[Cj , Cj + 1], and move job Jk at [Cj , Cj + 1] to [Ci − 1, Ci].

We can repeat the above procedure and convert S∗ such that the first n−m
jobs complete as early as possible, which is the same as the schedule produced by
PSPT rule, that is, the schedule obtained after step 1 in Algorithm ALG-OPT.
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Lemma 5. Let S be the schedule obtained after step 4 in Algorithm ALG-OPT,
for all 1 ≤ k ≤ m− 1, there exists a feasible schedule to schedule the last k jobs
on the first k machines by Bk based on S.

Lemma 6. Let S be the schedule obtained after step 4 in Algorithm ALG-OPT,
there exists a feasible schedule to schedule jobs Jn−m+1, · · · , Jn by T ∗ on S.

Lemma 7. If fm+Um+pn−m+1 > s and s < Bm in Algorithm ALG-OPT, there
must exists at least one job among Jn−m+1, · · · , Jn with completion time less
than or equal to s in any schedule such that total completion time is minimized
and the first n−m jobs are scheduled in PSPT order.

Lemma 8. The schedule produced by Algorithm ALG-OPT, S, has the mini-
mum total completion time.

Proof. In Algorithm ALG-OPT, if fm + Um + pn−m+1 ≤ s or s ≥ Bm, by
Lemma 5 and Lemma 6, there exists a feasible schedule such that jobs Jn, · · · ,
Jn−m+1 finish before Bm and no job finish after s on machine Mm, so the total
completion time of jobs Jn, · · · , Jn−m+1 in S is

∑m
x=1(fx + Ux + pn−x+1 which

is same as in the schedule produced by PSPT algorithm. On the other hand,
if fm + Um + pn−m+1 > s and s < Bm, from Algorithm ALG-OPT, we fix
job Jn−m+1 to finish at s and by Lemma 5, we can obtain a feasible schedule
such that Jn, · · · , Jn−m+2 finish before B′

m, so the total completion time is∑m
x=1(fx + Ux + pn−x+1), which is same as in the schedule produced by PSPT

algorithm.

Lemma 9. The schedule produced by Algorithm ALG-OPT, S, has the mini-
mum makespan subject to the condition that the total completion time is mini-
mized.

Proof. In Algorithm ALG-OPT, we have two cases: (1) fm +Um + pn−m+1 ≤ s
or s ≥ Bm; (2)fm + Um + pn−m+1 > s and s < Bm. Let S be the schedule
obtained after step 4 in Algorithm ALG-OPT. For case (1), we claim that Bk

is the earliest time that jobs Jn, · · · , Jn−k+1 can be completed in S. We prove
this by induction. If k = 1, apparently, B1 = f1 + U1 + pn is the earliest time
that job Jn can be completed in S. Assume when k = x, Bx is the earliest time
that jobs Jn, · · · , Jn−x+1 can be completed in S. Let us look at k = x + 1.
If
∑x

j=1 Δj ≤ 0, we have Bx+1 := Bx, and apparently it is true that Bx+1

is the earliest time that Jn, · · · , Jn−x can be completed in S. Otherwise, we
have Bx+1 := Bx + (

∑x
j=1 Δj)/(x + 1) and apparently all the jobs Jn, · · · ,

Jn−x have the same completion time on machines M1, · · · , Mx+1. Since for
any machine Mi1(1 ≤ i1 ≤ x + 1) and any machine Mi2(x + 2 ≤ i2 ≤ m)
in S, fi1 + Ui1 ≤ fi2 ≤ fi2 + Ui2 and there is no idle time on any machines
Mi1(1 ≤ i1 ≤ x + 1) before Bx+1, Bx+1 is the earliest time that jobs Jn, · · · ,
Jn−x can be completed in S.

For case (2), by Lemma 7, there must exist at least one job among Jn−m+1, · · · ,
Jn with completion time less than or equal to s in any schedule such that total
completion time is minimized and the first n − m jobs are scheduled in PSPT
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order. First, we show that there must exist an optimal schedule such that the first
n−m jobs completes as early as possible and Jn−m+1 completes no later than s.
Let S∗ be an optimal schedule such that the first n−m jobs completes as early as
possible and let Jy(n−m+1 ≤ y ≤ n) be the job that completes no later than s in
S∗. Backward starting from the completion time of job Jn−m+1 in S, for any time
that job Jn−m+1 is scheduled but Jy is not scheduled, we can always exchange job
Jn−m+1 at this time with Jy at the time that job Jy is scheduled but Jn−m+1 is
not scheduled. Since py ≥ pn−m+1, we must be able to exchange job Jn−m+1 and
job Jy without overlap and without changing the total completion time and the
makespan of S∗. That is, we have convert S∗ into an optimal schedule such that
the first n−m jobs completes as early as possible and Jn−m+1 completes no later
than s. Now by the same argument of case (1), we can show that B′

k is the earliest
time that jobs Jn, · · · , Jn−k+1 can be completed in S subject to the condition that
job Jn−m+1 completes no later than s.

So we have that T ∗ is the minimum makespan subject to the condition that
the total completion time is minimized. So when the optimal algorithm for the
problem Pm−1,1 | r−a, pmtn |

∑
Cj/Cmax ≤ T is called to produce the schedule

such that all the jobs complete before T ∗ and no job is scheduled after t on
machine Mm, the total completion time of all the jobs in the produced scheduled
must be optimal, that is, the schedule produced by Algorithm ALG-OPT, S, has
the minimum makespan subject to the minimized total completion time.

By Lemma 8 and Lemma 9, we have the following theorem.

Theorem 1. Algorithm ALG-OPT is optimal for Pm−1,1 | r − a, pmtn | Cmax/∑
Cj .

4 Conclusion

In this paper, we study the bi-criteria scheduling problems subject to the machine
unavailability constraintwith total completion time andmakespan as primary and
secondary criteria respectively. Our focus is on the parallel machine environment
where eachmachine can havemultiple unavailable intervals, but at any time, there
is at most one machine unavailable. We develop an optimal polynomial time algo-
rithm. Both algorithm and the proof are quite involved and subtle. It is expected
that the problem is still solvable when each machine has a release time after which
the machine is always available. And it is interesting to know the problem’s com-
plexity when more than one machine are unavailable at some time.
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Abstract. In this paper we study the edge-clique cover number of the ten-
sor product Kn × Kn. We derive an easy lowerbound for the edge-clique
number of graphs in general. We prove that, when n is prime θe(Kn×Kn)
matches the lowerbound. Moreover, we prove that θe(Kn × Kn) matches
the lowerbound if and only if a projective plane of order n exists. We also
show an easy upperbound for θe(Kn×Kn) in general, and give its limiting
value when the Riemann hypothesis is true.

1 Introduction

The edge-clique cover problem is the problem of determining if the set of edges
of a graph can be expressed as a union of k cliques (i.e., if k cliques in the
graph can cover all the edges in the graph). We denote by θe(G) the minimum
number of cliques that are necessary to cover all its edges. Finding a minimum
edge-clique cover is NP-complete even in very restricted graph classes [1,8,13].
It is known that the edge-clique cover problem is equivalent to finding a set
representation of a graph G with at most k elements in the universe [5,15].
This number is also known as the intersection number [5,9]. In this paper we
concentrate on the edge-clique cover problem of the tensor product Kn × Kn.

Unlike the clique cover problem, the edge-clique cover problem does not at-
tract computer scientists’ attention very much. However, the edge-clique cover
problem is related to various applications in discrete mathematics, and more and
more people started to conduct research on it [15]. For example, suppose that G
is the intersection graph of a family of subsets of a set X. The minimal cardinality
of X such that G is the intersection graph of a family of subset of X is equal to
θe(G) [15].

Another problem related to edge-clique cover problem is about competition
graphs (or niche overlap graphs). In ecology, we can use a competition graph
to represent the competition between predators who prey on the same target.
People started to ask what do the competition graphs of acyclic graphs look like.
Roberts [14] found that by adding e isolated vertices to any graph G, where
e = |E(G)|, the resulting graph becomes a competition graph of some acyclic
graph. Further, Opsut [12] proved that the minimum number of isolated vertices
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we need to add to G, denoted by k(G), to make it a competition graph of an
acyclic graph is bounded by

θe(G) − n+ 2 � k(G) � θe(G),

where n = |V(G)|.
The research into edge-clique cover problem also made contributions to some

other optimization problems. Kou et al. [10] showed that the optimization prob-
lem of keyword conflict is equivalent to the problem that finds the minimum
number of cliques to cover the edges in a graph.

Finding the minimum edge-clique cover is hard. Gramm et al. [6] approached
a method to reduce the number of vertices of G so that the edge-clique cover
problem on G can be solved faster. Recently, Cygan et al. [3] proved that such
an approach is optimal in running time by reducing 3-CNF-SAT formula with
n variables and m clauses to an equivalent edge-clique cover instance (G, k)
with k = O(logn) and |V(G)| = O(n +m), provided that the Exponential Time
Hypothesis holds. In this paper, we focus on the edge-clique cover problem of
the tensor product of Kn × Kn, which is one of the graph products that play an
important role in graph decomposition into isomorphic subgraphs [11].

The rest of this paper is organized as follows. Section 2 introduces the tensor
product Kn × Kn. Section 3 derives a lowerbound for θe(Kn × Kn). Sections 4
and 5, respectively, prove that θe(Kn × Kn) matches the lowerbound when n is
a prime and when a projective plane of order n exists. Section 6 derives an easy
upperbound for θe(Kn × Kn) in general, and gives its limiting value when the
Riemann hypothesis is true.

2 The Tensor Product Kn ×Kn

We write [n] = {1, . . . ,n}. We refer to ‘gridpoints’ as the elements of the set

V = { (i, j) | i ∈ [n] and j ∈ [n] }.

We also write the set V as [n]× [n].
Apart from the model suggested by the name we may also consider the grid-

points as the edges of the complete bipartite graph Kn,n. In the following we
write H = Kn,n. The graph H has as color classes the sets R (for rows) and C

(for columns). Thus we can write

V = E(H) = { (i, j) | i ∈ [n] and j ∈ [n] }.

Definition 1. The tensor product Kn ×Kn has V as its set of vertices. Two vertices
(i, j) and (k, �) are adjacent if and only if

i �= k and j �= �.
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Notice that the tensor product is the complement of the Cartesian product
Kn�Kn also known as rook’s graph. In this product two pairs (i, j) and (k, �) are
adjacent if they lie in the same ‘row’ or ‘column,’ that is, the pairs are adjacent if
either

(i = k and j �= �) or (i �= k and j = �).

Definition 2. A matching in H is a subgraph M of H in which every vertex has
exactly one neighbor.

In other words, a matching in H is a collection of pairwise parallel edges. We call
two edges ‘parallel’ if they have no endpoint in common. Notice that a matching
in H is a clique of Kn × Kn.

3 Edge-Clique Covers

We are interested in the edge-clique cover problem (especially in graph limits).
In this paper we concentrate on the edge-clique cover problem of the tensor
product Kn × Kn.

Definition 3. Let G be a graph. An edge-clique cover C is a set of cliques such that
each edge of G has both its endpoints in at least one element of C.

We denote by θe(G) the minimum number of cliques that are necessary to cover
all its edges. This number is also known as the intersection number.

Definition 4. Let G be a graph. An edge-clique partition is a collection of cliques C
such that each edge is in precisely one element of C.

Lemma 1. If we denote by ecp(G) the minimal number of cliques in an edge-clique
partition of G then we have

ecp(G) � θe(G).

Proof. Obviously, the number ecp(G) exists, since there is a partition of the
edges, namely where each clique is a single edge. Notice that any edge-clique
partition is an edge-clique cover. Therefore,

θe(G) � ecp(G) for any graph.

This proves the lemma. ��

Theorem 1. For any graph G

θe(G) � 2 · e(G)

ω(G) · (ω(G) − 1)
,

where we write ω(G) for the clique number of G and e(G) for the number of edges
of G.
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Proof. Let C be an edge-clique cover. Every edge of G has both its endpoints in
an element of C. As each element of C has at most ω(G) · (ω(G) − 1)/2 edges,
thus we find that

e(G) � |C| ·ω(G) · (ω(G) − 1)/2. (1)

This proves the theorem. ��

Notice that, to achieve this lowerbound we need to have an edge-clique partition
of the edges into maximum cliques.

Theorem 2. For the tensor product we find

θe(Kn × Kn) � n(n − 1).

Proof. The number of edges in Kn × Kn is n2(n − 1)2/2, since there are n2

vertices, and the degree of each vertex is exactly (n − 1)2. The clique number
ω(Kn ×Kn) is n, since the set of vertices {(i, i) | i ∈ [n]} forms a clique, and any
n + 1 vertices cannot form a clique (otherwise, by pigeonhole principle there
exist two vertices (i, j) and (k, �) with i = k, thus there are no edges between
them). The theorem follows immediately from Theorem 1. ��

Remark 1. Notice that this lowerbound is much stronger than Gýarfás lower-
bound [7], which gives, (since Kn × Kn has no twins)

θe(Kn × Kn) � 	log2(n2 + 1)
.

In the following section we show that the lowerbound of Theorem 2 holds for
infinitely many Kn × Kn (when n is prime).

4 The Prime Case

In this section, we show that when n is prime then θe(Kn × Kn) satisfies the
lowerbound mentioned in Theorem 2. Indeed, we show a slightly more general
result.

Theorem 3. For any prime p and any m with m � p,

θe(Kp × Km) = p(p − 1).

Proof. We construct an edge-clique partition C with p(p−1) cliques, each clique
containing exactly m vertices. For a clique Cx,y in C with x ∈ [p] and y ∈ [p−1],
it contains the vertices

{(x+ (t − 1)× y, t) | 1 � t � m},

where the first coordinate is taken modulo p. As the total number of edges cov-
ered by all the cliques in C is at most p(p−1)m(m−1)/2 = e(Kp×Km), to show
that C is an edge-clique cover, it is sufficient to show that each edge in Kp × Km

is covered by some clique in C. In other words, we want to show, for any two



70 W.-K. Hon et al.

vertices (i, j) and (k, �) with i �= j and k �= �, there exists some clique containing
both vertices.

Let u be the inverse of j − � in modulo-p arithmetic. That is, u ∈ [p − 1] such
that u(j − �) ≡ 1 mod p. Let v ∈ [p − 1] be the value u × (i − k) mod p, and
z ∈ [p] be the value i − (j − 1) × v mod p. Then we can easily check that both
(i, j) and (k, �) belong to the clique Cz,v in C. This proves the theorem. ��

5 The Projective Plane Case

In this section, we further show that θe(Kn × Kn) matches the lowerbound if
and only if a projective plane of order n exists. Immediately, this implies the
lowerbound is matched when n is a prime power.1

Definition 5 ([17]). A finite projective plane of order n is defined as a set of
n2 + n + 1 points with the properties that:

1. Any two points determine a line;
2. Any two lines determine a point;
3. Every point has n + 1 lines on it, and
4. Every line contains n + 1 points.

An example of a projective plane of order 2 is shown in Figure 1.

Fig. 1. A projective plane of order 2. Note that one of the lines is a circle.

We next show our main result of this section, which is inspired from the De
Bruijn-Erdős theorem about θe(Kn) [4].

Theorem 4 (De Bruijn-Erdős for Kn×Kn). Assume that there exists a projective
plane P of order n. Then there exists an edge-clique cover of Kn×Kn with n(n−1)
cliques.

1 There exists a projective plane of order n for each prime power n, and all known
projective planes are of prime power order.
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Proof. Let P denote the set of points and L denote the set of lines in the projective
plane P. Based on P and L, we choose a subset P ′ of n2 points from P, and define
a one-to-one correspondence to the n× n gridpoints of Kn × Kn as follows.

Take one line L0 ∈ L. Take two points ∞ and ∞
′ on L0. Through each of ∞

and∞
′ go n lines other than L0. In the case these n lines go through∞, they are

called ‘columns.’ Similarly, the n lines through ∞
′, except L0, are called ‘rows.’

Notice that each row intersects each column in exactly one point. Let P ′ de-
note the set of these intersection points, and we see that |P ′| = n2. If ri is a
row and cj is a column then the unique intersection ri ∩ cj is the point of P
corresponding to the gridpoint (ri, cj).

We next show that n(n − 1) lines of L correspond to an edge-clique cover of
Kn × Kn with n(n − 1) cliques. Consider another point p ∈ L0 \ {∞,∞′}. There
are n−1 of those points and through each go n lines other than L0. Each of these
n(n− 1) lines hits every row and every column in exactly one point, so that the
points on the line (except p) correspond to a maximum clique in Kn × Kn.

Moreover, every pair of points in P ′ that are not on the same row or column,
is on a unique line q ∈ L. Thus, each edge of Kn × Kn is covered by one of the
n(n − 1) cliques defined above. The theorem thus follows. ��

As projective plane of each prime power order is known to exist, we have the
following corollary.

Corollary 1. For any n = pk where p is a prime and k is a positive integer,

θe(Kn × Kn) = n(n − 1).

Definition 6. We define diagonal as a set of points in the grid that form a clique
in the tensor product.

Notice, if the projective plane-possibility occurs in Theorem 4, then all cliques
Ai in the edge-clique cover of Kn have n + 1 vertices. Each pair of vertices lies
in exactly one clique (so we have an edge-clique partition in which each clique
has cardinality n+ 1) and every pair of cliques intersect in exactly one point.

We next show the converse; if there exists an edge-clique covering C such that
|C| = n(n − 1), then there exists a projective plane of order n.

Definition 7. An affine plane A is an ordered pair A = (P,L) of sets. Say P is
the set of ‘points’ and L is the set of ‘lines.’ There is an incidence relation between
points and lines; we refer to this by saying that ‘a point lies on a line’ and ‘a line
goes through a point.’ For the pair (P,L) to be an affine plane, the sets need to
satisfy the following requirements.

(1). Every two points lie together on exactly one line.
(2). For every point-line pair (P, L) with P /∈ L there is exactly one line M that

goes through P and such that M is parallel to L.
(3). There are three points that are not on one line.
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Definition 8. An affine plane of order n is an affine plane that
(1). All lines contain n points.
(2). Each point is contained in n+ 1 lines.
(3). There are n2 points in P.
(4). There are n2 + n lines in L.
Part of the converse is proved by the following result.

Theorem 5 ([18]). For every affine plane A of order n, there exists a unique, up
to isomorphism, projective plane P of order n.

Theorem 6 (The converse theorem). Assume that

θe(Kn × Kn) = n(n − 1).

Then there exists a projective plane of order n.

Proof. Since C is an edge-clique cover that reaches the lowerbound, the cliques of
C partition the edges ofKn×Kn intomaximum cliques. Each clique has cardinality
n (it is a maximal diagonal of [n]× [n]). We refer to these cliques as ‘lines.’

We add two sets of lines, namely the set of rows and the set of columns. We
refer to A = (V ,C′) as the incidence structure of points and lines, where

V = The gridpoints of the grid with size n× n

C′ = C ∪ { rows, columns }.

We prove that A = (V ,C′) is an affine plane.
Notice that the rows and columns are sets of parallel lines, that is, their pair-

wise intersection is empty. Of course, we also have that every line of C hits every
row and column exactly once.

Notice that the first requirement for an affine plane is satisfied. We prove the
second.

Let (P,L) be a point-line pair of A such that P lies not on L. We prove that
there is exactly one line M, parallel to L, that goes through P. (Case 1) If L is
a row (or a column), we set M to be the row (or the column) that contains P;
also, all the other lines that go through P must intersect L. (Case 2) Else, if L is
a line of C, then for each point � ∈ L, there is exactly one line through P that
contains �; also, for any distinct points � and � ′ in L, the line through P and � and
the line through P and � ′ must be distinct (else, the edge {�, � ′} are covered twice
in C). Since |L| = n, this determines n lines through P. On the other hand, the
point P lies on n − 1 diagonals of C, and on one row and one column, so that P
is in n + 1 lines, thus implying that exactly one line through P does not contain
any point of L. Then this line M through P must be parallel to L.

The above shows that the second requirement of an affine plane is satisfied.
For the third requirement, we can easily check that (1, 1), (1, 2), (2, 1) are not
on the same line, for any line of C′. Thus, A is an affine plane. Furthermore, we
can easily check that A is an affine plane of order n. By Theorem 5, a projective
plane of order n exists. This proves the theorem. ��
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We obtain the following theorem as an immediate corollary.
Theorem 7. The computational complexity of the edge-clique partition problem
into maximal cliques is equivalent to the time-complexity of checking if there exists
a projective plane of order n.

Remark 2. We are not aware of a time-complexity class defined by the equiva-
lence of a problem to the existence of a projective plane of order n. There are
many problems in this class. The De Bruijn -Erdös theorem plays also an impor-
tant role in the proof of Cygan et al.

6 An Upperbound and a Limiting Value for θe(Kn ×Kn)

In this section we derive an easy upperbound for θe(Kn × Kn) in general, and
give its limiting value when the Riemann hypothesis is true.

A good strategy to find a small edge-clique cover of Kn × Kn for general n,
seems to be to go to the next prime number n′ > n, and to ‘truncate’ the optimal
solution of Kn′×Kn′ (which has n′(n′−1) cliques). By Bertrand’s postulate [16],
it is known that n ′ � 2n−1 for all n � 2, so immediately we have the following
theorem and corollary.

Theorem 8. For any integer n � 2,

θe(Kn × Kn) � (2n − 1)(2n − 2).

Corollary 2. For any integers m and n with n � m � 2,

θe(Kn × Km) � (2n − 1)(2n − 2).

Using the same idea, we show the following result.

Theorem 9. For any integers m and n with n � m � 2,

lim
n→∞

θe(Kn × Km)

n(n − 1)
= 1

if the Riemann hypothesis is true.

Proof. Let pi denote the ith smallest prime. Next, assume that the Riemann hy-
pothesis is true; then, Cramér [2] showed that pi+1−pi = O(

√
pi lnpi). For our

case, let us consider the largest prime p, say pj, that is smaller than n. Then, we
have pj = Θ(n) (as n/2 � pj � n by Bertrand’s postulate), so that

n ′ − n = pj+1 − n < pj+1 − pj = O(
√
n lnn).

Consequently, by Theorem 2 and Corollary 2 we get

1 � lim
n→∞

θe(Kn × Km)

n(n − 1)

� lim
n→∞

θe(Kn′ × Kn′)

n(n − 1)

� lim
n→∞

(n +O(
√
n lnn))(n − 1 +O(

√
n lnn))

n(n − 1)
= 1.

This completes the proof of the theorem. ��
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Abstract. We propose a novel method that integrates dictionary, heuristics and 
data mining approaches to efficiently and effectively recognize exact protein 
names from the literature. According to the protein name dictionary and heuris-
tic rules published in related studies, core tokens of protein names can be effi-
ciently detected. However, exact boundaries of protein names are hard to be 
identified. By regarding tokens of a protein name as items within a transaction, 
we apply mining associations to discover significant sequential patterns (SSPs) 
from the protein name dictionary. Based on SSPs, protein name parts are ex-
tended from core tokens to left and right boundaries for correctly recognizing the 
protein name. Based on Yapex101 corpus, Protein Name Recognition System 
(PNRS) achieves the F-score (74.49%) better than existing systems and papers. 

Keywords: protein name recognition, association mining, dictionary mining, 
heuristics. 

1 Introduction 

The huge amount of literature data drives an urgent demand for integrating informa-
tion/knowledge extraction (IKE) techniques with bioinformatics systems. One prere-
quisite for knowledge extraction from scientific literature is accurately recognizing 
and mapping biological entity names in free text to corresponding entries in biological 
databases [16]. Several text and data mining conferences are continuously  
focusing on the research topic: applying IKE methods to bioinformatics systems. The 
Genomics Track competition of TREC (http://trec.nist.gov/) and BIOKDD 
(http://www.acm.org/) competition of ACM repeatedly hold competitions of extract-
ing biological information and knowledge. However, these studies and bioinformatics 
systems suffer from a common problem, name recognition. 

Recognizing protein names is the first step while biomedical researchers attempt to 
investigate some proteins through computer-aided extractions of protein-protein inte-
ractions (PPI), protein-disease relations and protein-function annotations [18]. How-
ever, new and unknown protein names are frequently created in the literature, IKE 
systems cannot effectively extract protein-related information without identifying 
protein names first. Consequently, protein name recognition (PNR) is an important 
issue for protein-related IKE systems. 
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Conventional name recognition systems aim to identify names of people, locations 
or organizations from general documents like news articles. In these applications, the 
best systems published in MUC (Message Understanding Conference) have reached 
the perfect performance almost comparable to human annotators [21]. Thus, tradition-
al name recognition problems are regarded as solved problems. However, in the topic 
of molecular biology, recognizing protein names from biomedical literature is a real 
challenge since there is no standard nomenclature for naming protein entities. Many 
examples of irregularities and ambiguities of the protein naming are summarized in 
[7]. Following cases also make PNR problems more complex. 

• Protein names may be extremely short or extremely long (compound words), in 
terms of number of characters or number of words. For example, the Swiss-Prot 
dictionary has protein names varying from 2 characters (AR) to 192 characters (in-
cluding space characters). Consequently, finding exact left and right boundaries of 
a protein name is very difficult. 

• Names of chemical compounds, genes, cells, or PPI may also be identified as pro-
tein names. E.g., “CTC box binding factor 75 kDa subunit” is a protein name but 
looks like the PPI information. 

• Divergent recognitions of humans: One recognizes “TFPI-C-factor Xa” and the 
other prefers “TFPI” and “factor Xa”. 

Above examples list only some PNR problems, there are still many exceptions for 
naming proteins. Consequently, there are no rules for biomedical researchers while 
giving names to new proteins, recognizing name entities from the literatures is there-
fore more difficult than identifying general names like locations, people, news events, 
etc. 

2 Related Works 

Although many systems combine several approaches to identify protein names, PNR 
methods can be roughly classified as follows: dictionary-, learning-, rule- and align-
ment-based methods. Dictionary-based methods [6][9][21] match each n-gram text of 
a sentence with patterns appearing in dictionaries or curated patterns. The effective-
ness is therefore limited to proteins included in dictionaries so that the recall rate is 
low. Machine learning-based methods [4][5][11][13][18][23][24][25] reduce the PNR 
problem to classify tokens into positive or negative parts of protein names based on 
the curated training corpus. Then, positive tokens are merged to form a complete 
name. The performance is influenced by the annotated corpus and may be overesti-
mated due to the bias problem of mixing training and testing data. Rule-based me-
thods [7][8][21][22] obviously suffer from the manual cost of experts’ heuristics, 
though rule systems are efficient and easy to be implemented. Alignment-based me-
thods [12][15] translate each character of both protein names (within dictionaries) and 
sentences of articles into a symbol so that protein names and sentences are regarded 
as symbolic sequences. By running the local alignment method to align the sentence 
(query) and dictionary (target) sequences, acceptable recall rate may be achieved. 
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However, the precision rate is low due to many meaningless alignments like “page 
20” aligned with “protein p 20”. 

Due to different test sets and evaluation criteria, these methods are hard to be com-
pared under the same benchmark. According to the widely used Yapex test corpus, 
the best F-score values under the STRICT evaluation are 60.95% and 67.1%, which 
are published in the Yapex website1 and the literature [7], respectively. Therefore, the 
Yapex test corpus with proposed evaluation criteria is employed to evaluate our sys-
tem. We also follow the definition of protein name used in the Yapex naming policy: 
“A protein name semantically denotes a single biological entity composed of one or 
more amino acid chains.” This definition excludes the names of genes, protein fami-
lies, domains, fragments and organisms, as well as, unspecific references to single 
protein molecules [18]. 

3 PNRS 

The system, Protein Name Recognition System (PNRS), has developed and provides 
services on the Web. We propose a novel dictionary-mining approach to find sequen-
tial patterns for extending protein name boundaries from core tokens detected by heu-
ristic rules and dictionaries. Several studies [7][8][10][21] were cited to manually 
build heuristic rules of protein naming features. These rules are applied to detect pro-
tein name fragments as core tokens since many protein name fragments share com-
mon morphological features like upper/lower case English alphabets, digits, Greek 
letters or Roman numbers, etc. Based on heuristic rules, core tokens can be efficiently 
identified, but exact left and right boundaries of protein names are hard to be correctly 
recognized.  

 

Fig. 1.  The system architecture of PNRS: backend and online processes 

                                                           
1 http://www.sics.se/humle/projects/prothalt/yapex_prestanda.html 
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Based on these ideas, the system architecture of PNRS is shown in Fig. 1. PNRS 
reads biomedical articles (XML format) and extract metadata through our PubMed 
Crawler module. The title and abstract are partitioned into sentences by the Sentence 
Splitter module. Implementations of both modules are trivial and omitted in this pa-
per. In the CTS module, heuristic rules and the Swiss-Prot protein name dictionary2 
are applied to extract core tokens within sentences. Once core tokens are detected, 
CTE module extracts candidates of protein names by performing left-and-right exten-
sion (L-R-Ext) from core tokens based on significant sequential patterns (SSPs) 
mined from the dictionary in the backend process (SSP Miner). Finally, protein name 
candidates pass filtering rules (verified by the PNF module) are recognized as exact 
protein names. 

3.1 Core Token Selector (CTS) 

Given a sentence string, Tokenizer modules first split the string into tokens. Both 
types of Tokenizers are employed to extract different kinds of tokens for CTS and 
following SSP Miner. C-Tokenizer splits a sentence into tokens (c-tokens) according 
to user-defined delimiter characters: space, ‘,‘, ‘.‘, ‘/‘, ‘;‘ and ‘?‘. Mor-
phological information like uppercase/lowercase phenomena of tokens remains un-
changed to keep the primitive tokens so that heuristic rules can be applied to detect 
core tokens. Using c-tokens extracted by C-Tokenizer as the input, CTS applies heu-
ristic rules to select core tokens. However, some rules tend to select common words 
as core tokens. The rule “starts with one uppercase character and number of tokens is 
no more than 4” [8] will select irrelevant tokens like “Dual”, “Two”, “Like”, etc. To 
remedy this drawback, the PubMed Crawler automatically collects more than 18 mil-
lions abstracts from NCBI PubMed and counts each token frequency appearing in 
these titles and abstracts. The top 500 highest-frequent words, with number of charac-
ters no more than 4, are selected into the PNRS stopword list to filter off irrelevant 
core tokens. M-Tokenizer inherits from C-Tokenizer to split a token into useful pat-
terns. To rapidly retrieve m-tokens for searching, dictionary finding and mining; the 
inverted index [20] is employed to efficiently store tokens (TID) and associated sen-
tences (SID). As shown in Fig. 2, the index is useful to Search Engine (search 
PubMed articles), CTS (dictionary-based core token finding) and CTE (extend core 
tokens based on m-token patterns matched with SSPs). Procedures of CTS are listed 
as follows: 

• Step 1 (rules): Manually build heuristic rules from references [7][8][10][21] to 
recognize core tokens from c-tokens. 

• Step 2 (dictionary): Core tokens are also detected by matching m-token patterns of 
a sentence with those within the dictionary. 

• Step 3 (union): Both kinds of core tokens are merged to form the core token set of 
the sentence. 

                                                           
2 ftp://ftp.uniprot.org/pub/databases/uniprot/ 
 current_release/knowledgebase/complete/uniprot_sprot.xml.gz 
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• Step 4 (filtering): To filter off irrelevant tokens that are not likely to be protein 
name fragments, tokens appearing in the PNRS stopword list (including the NCBI 
stopword list3) or containing special symbols (‘#’, ‘@’, ‘~’, ‘!’, ‘$’, ‘%’, 
‘<’, ‘>’, ‘&’, ‘*’ and ‘\’) are omitted. Some general words (gain, contain, 
increase, decrease, phase, etc.) that match the rule (ends with “-in” and “-ase”)  are 
also removed from the core token set. 

 

Fig. 2.  Tokenize sentences into tokens stored in the inverted index for reusing 

3.2 Significant Sequential Pattern (SSP) Miner 

Heuristic rules are useful to detect core tokens, but hard to determine the exact protein 
name. Rule-based approaches [8][21] also use rules to perform left-and-right exten-
sions from core tokens so that both boundaries of the protein name are probably  
recognized. However, rules are not effective in finding name boundaries due to  
no standard nomenclature for naming proteins. To extend core tokens and find protein 
name boundaries, the semantic relationship between tokens (co-occurrence of words), 
referred to as “significant pattern (SP)” of tokens, is considered. Numerous  
protein names were curated in the dictionary, mining SP tokens from dictionary seems 
feasible. Mining association [1][2] attempts to discover co-occurrence of items in  
the same transactions within the database. Based on this idea, we successfully  
mine term associations from documents to improve the performance of document 
classification [14]. However, following observations make mining SP different from 
mining association. 

                                                           
3 http://www.ncbi.nlm.nih.gov/entrez/query/ 
 static/help/pmhelp.html 
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• The sequences of tokens within SPs are meaningful. For example, SP <alpha crys-
tallin> differs from <crystallin alpha> so mining significant pattern is revised as 
mining “Significant Sequential Pattern (SSP)”. 

• Tokens within a sequential pattern can be gapped since <A chain>, <B chain>, 
<chain 1>, <chain 2>, and other similar patterns are frequently used in the dictio-
nary. Therefore, SSP tokens should tolerate one or more “don’t care tokens (X-
tokens)”. E.g. “Alpha crystallin A chain” may derive <crystallin X chain>. 

• The distance between tokens of SSP must be considered while regarding a sequen-
tial pattern as SSP. AD (Average Distance) measure is proposed to estimate the  
average distance while grouping patterns with same begin-end tokens. E.g. <crys-
tallin X chain>, <crystallin X X chain> and <crystallin X X X chain> are grouped 
into <crystallin * chain>  with AD = 2 (6 X-tokens in 3 SPs). Trivially, AD is the 
average tolerable X-tokens of a SP; AD-threshold is therefore applied to assess a 
sequential pattern, within tolerable X-token counts (gaps), as a SSP. 

According to above observations, mining “sequential pattern” [3], discovering a se-
quence of itemsets frequently appearing in transactions, seems useful to mine SSP. The 
SSP consists of a sequence of tokens instead of itemsets; mining SSP is a special case of 
mining sequential pattern since each itemset within a sequential pattern has only one item 
(token). To extract tokens of sequential patterns from the dictionary, n-gram index ap-
proach is simply modified as Gapped Bi-gram Indexer (GBI), as shown in the backend 
process (SSP Miner) of Fig. 1. All possible bi-gram tokens with gaps are extracted and 
grouped to calculate AD values. Then, the SSP selector qualified bi-gram sequential 
patterns as SSPs according to the predefined AD-threshold (default value = 1, i.e., allow-
ing one X-tokens). Without losing the generality, only bi-gram SSP is considered in 
PNRS since following CTE gradually extending core tokens through bi-gram SSPs will 
cover tri-gram extensions, and vice versa. Consequently, the problem of mining SSP is 
translated into mining sequential pattern with the extra AD measure. 

• The Swiss-Prot dictionary is regarded as the transaction database. 
• A protein name entry in the dictionary is mapped to a transaction of the database. 
• Protein name m-tokens extracted by M-Tokenizer are sequences of itemsets. 

 
Fig. 3.  Mining SSP with the AD measure 
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As shown in Fig. 3, tokens (itemsets) of the first protein name (transaction) in-
dexed by GBI generate 6 patterns, in which <A D> will be filtered off by AD-
threshold = 1. After processing the second transaction, <A D> becomes SSP since the 
AD value is reduced to 1. All sequential patterns with AD values are stored in the 
database so that SSP selector is able to rapidly extract SSPs with different AD-
threshold values for various experiments or purposes. Currently, support and confi-
dence values considered by mining association to find qualified association rules or 
sequential patterns are not used in SSP Miner due to low-frequencies of SSPs. For 
each protein name entry in the dictionary, GBI invokes the SPAD algorithm to extract 
all sequential patterns and stores information of occurrence frequency (F) and accu-
mulated gaps (G, i.e., the accumulated X-token counts) into the database table. After 
parsing all the dictionary’s entries, SSP Miner removes patterns that contain tokens 
included in the PNRS stopword list. Finally, the AD value of a sequential pattern is 
set to G/F (columns are defined as REAL data type in the database table). 

 

Algorithm. SPAD /* store SP and AD into the database */ 
  Input: p  // a protein name entry 
  Output: Write each pattern with AD into SPTable (in database) 
  Build a m-token array S for p by M-Tokenizer 
  Set L to the array length of S 
  for i = 0 to L - 2 do 
    for j = i + 1 to L - 1 do 
      psp = S[i] + ‘ ‘ + S[j]  /* a possible sequential pattern */ 
      AD = j – i – 1  /* X-token count: gap = 0, 1, 2, ... */ 
      Update the database table by the SQL statement* 
      end for 
  end for 
  Update each pattern’s AD value by one SQL statement+ 
*: update SPTable set G = G + AD, F = F + 1 where pattern = SP 
+: update SPTable set AD = G/F 

3.3 Core Token Extender (CTE) 

By defining the AD-threshold value (default = 1), SSPs can be efficiently retrieved from 
the database. Given a sentence with core token set, the Core Token Extender (CTE) 
module applies SSPs to perform left-and-right extension (L-R-Ext) processes from core 
tokens. Assuming the sentence “A B C D E” has a core token “C” and the AD-threshold 
is set to 1, L-Ext and R-Ext start from “C” and verify if <A C>, <A B>, <B C>, <C E>, 
<D E> and <C D> are SSPs. If <A C> is SSP, the protein name is left extended to “A B 
C”. Obviously, CTE tries to extend more tokens through the farthest SSPs based on the 
AD-threshold. For the example “Tail-anchored protein of 66 amino acid residues that is 
homologous to the yeast YSY6 protein”, CTS generates the core token set: {protein, 
yeast, YSY6 protein}. Former two core tokens are based on rules and the last one is 
matched by the Swiss-Prot dictionary. After mining SSPs from the dictionary, CTE 
extends the first core token “protein” to find a candidate “tail-anchored protein” through 
L-Ext with SSP <tail protein>. Another candidate “yeast YSY6 protein” can be obtained 
by R-Ext with the core token “YSY6 protein”. Finally, CTE discovers two protein name 
candidates, “Tail-anchored protein” and “yeast YSY6 protein”. The implementation of 
L-Ext and R-Ext algorithm is trivial and simple. 
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3.4 Protein Name Filter 

Protein Name Filter (PNF) applies following rules [21] to remove noisy protein name. 

• Candidates only contain following words: factor(s), protein(s), kinase(s),  
receptor(s), chain(s), etc. 

• Candidates only contain Greek letters: alpha, beta, gamma, etc. 
• Candidates only contain Roman characters like I, II, etc. 

We follow the strict definition of protein name [7] used in Yapex tagging policy to 
develop our system. By consulting with domain experts, following filtering rules are 
additionally included:  

• Protein names end with “-ed”, “-ing”, “-tion”, “-rial”, “-ent”, etc. 
• In the sentence, if the succeeding token of the protein name is: cell(s), domain(s) or 

folding(s). 
• Groups, but not specific proteins: growth factor, nuclear factor, transcription factor, 

vitamin, etc. 
• Contains 20 amino acid code abbreviations: ARG, ALA, LEU, etc. 

4 Experiment and Evaluation 

To compare the performance of PNRS with other systems, Yapex test corpus  
(Yapex101), is employed as the benchmark. The Yapex webpage also lists current 
best results of precision, recall and F-score measures based on different evaluation  
methods summarized as followings [7]: 

• STRICT: Only count exact matches to the Yapex answers. Of course, the answer 
count is 1,966. 

• PNP (Protein Name Parts): Count each matched token as one match, the answer 
count is the total number of c-tokens. 

• SLOOPY: Consult with domain experts to revise PNP hits. This evaluation method 
is not considered since it may have biases due to different domain knowledge of 
experts. 

• L BOUNDARY: Exactly match the left boundary of an answer. The answer count 
is the same with that of STRICT. 

• R BOUNDARY: Exactly match the right boundary of an answer. The answer 
count is the same with that of STRICT. 

• ANY BOUNDARY: Exactly match left or right boundaries of an answer. The 
answer count doubles that of STRICT. 

Based on the “dictionary + rule” method and experiment results, CTE applies SSPs 
(AD-threshold = 1, i.e. one X-token) to enhance the rule-based CTE module and ex-
tend the protein name parts from core tokens. L-Ext and R-Ext are separately used to 
observe the effectiveness. As shown in Fig. 4, the performance of R-Ext (F-score = 
65.82%) is slightly better than that of L-Ext (F-score = 65.61%) since most derived 
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protein names share the same prefix tokens (left boundaries). However, PNF works 
better for R-Ext process due to filtering off more irrelevant candidates of protein 
names. Since filtering rules tend to focus on right extension variances, the F-score 
improvements of PNF for R-Ext and L-Ext are 7.44% and 5.97%, respectively. Ob-
viously, the best performance (F-score = 74.49%) is simultaneously applying L- and 
R-Ext processes. Consequently, SSP Miner achieves 11.12% increments on the  
F-score in par with our “dictionary + rule” method. 

 

Fig. 4.  Results of applying SSP to L-R-Ext (L-Ext vs. R-Ext) 

Table 1.  Systems usually combine several approaches denoted by: Rule (R), Dictionary (D), 
Machine Learning (ML), Data Mining (DM), Natural Language Processing (NLP) 

 ML/D [13] ML/R/D [18] R [21] R/D [21] ML [13] NLP/R/D [7] DM/R/D PNRS 
Precision (%) 45.1 61.0 57.6 58.3 76.0 67.8 70.9 
Recall (%) 69.7 59.0 65.3 66.8 59.5 66.4 78.4 
F-score (%) 54.8 60.0* 61.2 62.3 66.7 67.1 74.5 
*: The F-score is measured without the case of induction bias. Using training data as the testing set results 
in the bias of machine learning and gets the higher F-score (75%).  

Table 2.  Comparison of the Yapex results with PNRS 

Evaluation Methods Systems Answers Analyses Hits Recall Precision F-score 

STRICT PNRS 1,966 2,174 1,542 78.43 70.93 74.49 
Yapex 1,966 1,899 1,178 59.91 62.03 60.95 

PNP PNRS 2,704* 2,918 2,219 82.06 76.05 78.94 
Yapex 2,705 2,720 2,062 76.22 75.80 76.01 

L BOUNDARY PNRS 1,966 2,174 1,618 82.30 74.42 78.16 
Yapex 1,966 1,899 1,340 68.15 70.56 69.34 

R BOUNDARY PNRS 1,966 2,174 1,621 82.45 74.56 78.31 
Yapex 1,966 1,899 1,422 72.32 74.88 73.58 

ANY BOUNDARY PNRS 3,932 4,348 3,239 82.38 74.49 78.24 
Yapex 3,932 3,798 2,762 70.24 72.72 71.46 

*: There is one token match difference between PNRS and Yapex under the PNP evaluation. We have carefully verified 
the data and parsing programs to make sure without bugs. 
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Comparing with the current best result [7] and other methods, PNRS outperform 
other systems, as shown in Table 1. In par with the primitive “rule + dictionary” me-
thod [21] and the complex NLP-based approach [7], PNRS improves the F-score with 
12.2% and 7.7%, respectively. More comparisons of systems and evaluations on the 
Yapex benchmark are summarized in [13]. Obviously, PNRS is as simple as the “rule 
+ dictionary” method since we apply backend dictionary mining to discover SSPs so 
that many exceptions of rule-based extension method can be cured. Without consider-
ing the time cost of backend mining process, CTE’s SSP-based extension process is 
as efficient as rule-based extension by using clustered index (on SSP patterns). Table 
2 shows the detail measures of matches of PNRS and Yapex system. PNRS outper-
forms Yapex on all precision, recall and F-score measures based on any evaluation 
methods. 

4.1 Experiments: SSP (AD-Threshold) 

To evaluate the effectiveness of using different SSP sets to extend core tokens, AD-
threshold values (0, 1, 2, 3) are applied to obtain four SSP sets (SSP0 – SSP4). As 
shown in Table 3, applying SSP0 to L-R-Ext gets lower F-score (72.35%); however, 
the performance is better than the “dictionary + rule” PNR method (Fig. 4) and the 
current best F-score (67.1%). Intuitively, we set the default AD-threshold to 1. Using 
SSPs that allow one X-token gap obtains the better performance, but not the best. 
However, the deviations among SSP1 – SSP3 can be neglected and using more SSPs 
does not guarantee better results. To find the best F-score of the optimal SSP set, we 
use fine-grain (step = 0.1) AD-thresholds to verify the F-score vs. the size of SSP set. 
As shown in Fig. 5, the number of SSPs is slightly increased during every 0.1 incre-
ment on the AD-threshold. Dramatic promotions of SSP counts happen in integer 
thresholds. This phenomenon certifies our observations:  

Table 3.  Evaluate precision, recall and F-
score with AD-threshold (0, 1, 2, 3) in SSP 
Miner 

AD-Threshold R (%) R (%) F-score (%) 
0 (SSP0) 75.33 69.60 72.35 
1 (SSP1) 78.43 70.93 74.49 
2 (SSP2) 78.69 70.83 74.55 
 

 
Fig. 5.   SSP counts vs. AD-thresholds 

• Gapped sequential patterns are widely used in naming proteins like “Alpha crystal-
lin A chain” named from the gapped pattern <crystallin * chain>. 

• The frequency of SSP, such as <crystallin * chain>, if very low so that the integer 
AD-threshold has striking increment. 

Applying each SSP set to evaluate matches (Analyses, Hits) with corresponding to 
precision, recall and F-score, results are summarized in Table 4. In general, larger 
AD-threshold values (looser SSP filtering constraints) identify more protein names. 
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Hits of protein names are basically increased following larger thresholds, though 
some analyzed names are not matched with answers in equal ratios with increments of 
AD-Threshold values. The best result (F-score = 74.85%) happen in two thresholds: 
0.4 and 0.5. However, the difference between largest and smallest (74.37%) F-score is 
very low (0.48%); finding the optimal AD-Threshold seems not important in the 
range [0.1, 3]. As our observation, considering gaps within begin-end tokens of the 
SSP is useful to improve the performance. Consequently, mining SSP from dictionary 
is effective to discover extension features to enhance the extension process and find 
exact protein names. 

Table 4. Detail measures on matches, precision, recall and F-score with AD-threshold from 0 
to 3 stepped by 0.1. Rows with the same column values are merged into one row. 

AD-Th 
Analysis Hits R (%) P (%) F-Score 

0 
2,128 1,481 75.33 69.60 72.35 

Best (0.4, 0.5) 2,162 1,545 78.59 71.46 74.85 

Worst (3) 2,189 1,545 78.59 70.58 74.37 

Detail measures are available on http://www.bios.csie.ncnu.edu.tw/PNRS/Table4.htm. 

 
By re-implementing dictionary- and rule-based PNR methods, we observed that 

one of the hardest PNR problems is extending core tokens to find exact protein name 
boundaries. We propose a novel dictionary mining approach to discover SSPs for 
extending protein name fragments so that exact protein names can be correctly identi-
fied. Based on our “dictionary + rule” method, SSP-based CTE improves the F-score 
with 11.12% increments (Fig. 4 and 5). In par with the “rule + dictionary” method 
(Seki and Mostafa, 2003), F-score = 62.3%, PNRS reaches 12.19% improvements on 
F-score. Accordingly, the novel SSP mining approach is effective to find more exact 
protein names. 

5 Conclusion 

We developed the Protein Name Recognition System that applies mining significant 
sequential patterns from the dictionary to deal with the problem of protein name ex-
tension. We propose a flexible architecture to efficiently do several experiments. CTS 
module applies C-Tokenizer and M-Tokenizer to parse a sentence into different types 
of tokens, c-tokens and m-tokens, for rule-matching, dictionary-finding and pattern-
mining. We carefully verified both dictionary- and rule-based methods (with CTS, 
CTE and PNF modules) and obtained similar results (F-score = 63.37%) in par with 
past studies. Based on the result, CTE applies SSPs to perform L-R-Ext process and 
find exact protein names. Based on the STRICT evaluation criterion on Yapex101, 
SSP-based extension approach achieves F-score = 74.49%, with 7.4% increments on 
the current best result (67.1%). The general architecture of PNRS is flexible to be 
customized for recognizing miscellaneous name entities like diseases, genes, func-
tions, protein-protein interactions, etc. Based on mining SSPs from various domains 
dictionaries, the challenge of name extension may be efficiently and effectively 
solved in the future. 
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A Facility Coloring Problem in 1-D�
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Abstract. Consider a line segment R consisting of n facilities. Each
facility is a point on R and it needs to be assigned exactly one of the
colors from a given palette of c colors. At an instant of time only the
facilities of one particular color are ‘active’ and all other facilities are
‘dormant’. For the set of facilities of a particular color, we compute the
one dimensional Voronoi diagram, and find the cell, i.e, a segment of
maximum length. The users are assumed to be uniformly distributed over
R and they travel to the nearest among the facilities of that particular
color that is active. Our objective is to assign colors to the facilities in
such a way that the length of the longest cell is minimized. We solve
this optimization problem for various values of n and c. We propose an
optimal coloring scheme for the number of facilities n being a multiple
of c as well as for the general case where n is not a multiple of c. When
n is a multiple of c, we compute an optimal scheme in Θ(n) time. For
the general case, we propose a coloring scheme that returns the optimal
in O(n2 log n) time.

1 Introduction

In this paper we study a facility location problem. There are n facilities to be
distributed between c classes of service providers. Each class of service provider
should be assigned at least one facility and no facility should be assigned to more
than one class. Moreover, when one class of service provider is active, all other
classes are dormant. Our objective is to partition the set of facilities in c classes
such that the users are served as equitably as possible, i.e., the maximum length
amongst the regions covered by any facility of any class is minimized.

In the area of wireless sensor networks, an effective approach for energy con-
servation is scheduling sleep intervals for sensors [1]. One can assign a color to
each sensor, each color representing a set of sensors which would be active at
a given time when the rest are in the sleep mode. Here the objective would be
to color the nodes such that the maximum area covered by any active node is
minimized. Lin et al [2] have explored the problem of maximizing the lifetime
of wireless sensor networks. Their study is based on finding the maximum num-
ber of disjoint connected covers that satisfy both sensing coverage and network
connectivity.
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Here we study the MinVor problem. Let nη be the number of facilities of color
class η, where η = 0, . . . , c−1 and n = Σc−1

η=0nη. For each η, we draw the Voronoi
diagram considering the corresponding nη facilities which represents the active
sensors while the remaining n−nη facilities represent the sensors in sleep mode.
A Voronoi diagram of a set of k sites partitions the Euclidean space into k regions
such that the region of each site consists of all points that are closer to it than
to any other site. For our problem, the region R is a horizontal line segment. Let
γη,j denote the length of the Voronoi zones of the j-th facility from the left end
of some color η.

Formally, the MinVor problem is to devise a coloring scheme that minimizes
maxη=0,1,...,c−1 maxj=1,2,...,jη γη,j where jη is the total number of facilities as-
signed the color η.

Problems similar to the MinVor problem in the plane have been considered
in [1, 3–5]. Funke et al [1] presented a greedy algorithm that provides complete
coverage with an approximation factor no better than Ω(logn), where n is the
number of sensor nodes. An algorithm is said to provide complete coverage if the
set of the selected sensors always covers the region R, provided that there exists
a feasible solution. The communication graph is an undirected graph in which
sensors are represented as nodes and there is an edge between two nodes if they
can talk to each other. Attempts have been made to cover the Communication
Graph using a connected dominating set (CDS) S′, which is a subset of the set
of sensors, S, such that each node in S \ S′ is adjacent to some node in S′ and
the communication subgraph induced by S′ is connected. Clark et al [3] have
shown that the problem of finding a minimum CDS for unit-disk graphs is NP-
hard. An 8-approximation algorithm with O(n) time complexity was suggested
by Wan et al [4] which was later improved to a 6.91 approximation factor [5].

In this paper we consider the case where R is a horizontal line segment and
provide optimal solutions. As input to the problem we have the location of n
facilities, specified by a distance vector d̄ = 〈d1, d2, . . . , dn+1〉, where the i-th

facility is placed at a distance of
∑i

j=1 dj from the left end of R, for i = 1, . . . , n
and dn+1 is the distance of the n-th facility from the right end of R. We consider
various cases depending on the values of n and c. Note that each facility is
assigned exactly one of the colors from {0, 1, . . . , c−1} and each color is assigned
to at least one facility. We assume that the density of users is uniform over R
and hence the Voronoi length reflects the proportional user volume.

For n < 2c observe that there has to be a color with only one facility whose
Voronoi zone is the whole space. In Section 3 we prove that C1 (see Definition 1)
is an optimal coloring for any distance vector if the number of facilities is twice
the number of colors. In Section 4 we show that if the number of facilities is any
multiple of c, the same coloring scheme provides an optimal solution. Section 5
suggests a coloring scheme for the general case where n is not a multiple of c
which produces an optimal coloring in O(n2 logn) time.
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2 Notations and Definitions

The facilities on the horizontal line segment R are to be assigned colors from the
set {0, 1, . . . , c − 1}. A facility at position f means that among the n facilities
on the line segment R, it is the f -th one from the left and hence at a distance
Σf

k=1dk from the left boundary of the line segment R. Pi,j is the position of the
j-th facility from the left belonging to the color class i, i.e., there are exactly
Pi,j − 1 facilities to the left of this facility among which j − 1 are of color i. We
define M(a, b) = 1

2Σ
b
�=a+1d�, where M(a, b) is the Voronoi length of a facility at

some position f whose immediate left neighbor of the same color is at position a
and whose immediate right neighbor of the same color is at position b, a < f < b
(see Figure 1 for an illustration). We define L(a, b) = Σa

�=1d�+
1
2Σ

b
�=a+1d�, where

L(a, b) is the Voronoi length of a facility at position a which is the leftmost of
its color and whose immediate right neighbor (of the same color) is at position
b. Analogously, we define R(a, b) = 1

2Σ
b
�=a+1d� +Σn+1

�=b+1d�, where R(a, b) is the
Voronoi length of a facility at position b which is the rightmost of its color and
whose immediate left neighbor (of the same color) is at position a.

d1 d2 da db dn dn+1

1 2 a− 1 a b− 1 b n− 1 n

2M(a, b)

M(a, b)

L(a, b)
R(a, b)

Fig. 1. M(a, b), L(a, b) and R(a, b)

We define the objective function of a coloring C as Δ(C), which is the largest
Voronoi length among all the facilities corresponding to all the colors.

In this paper we use certain fixed coloring schemes, as they turn out to be
optimal for specific configurations. One such scheme is as follows.

Definition 1. (Coloring C1): Consider a coloring of the facilities from the left
in the order 0, 1, . . . , c−1, c−1, . . . , 0, 0, 1, . . . , c−1, c−1, . . . , 0, . . .. We define this
assignment of colors as the coloring C1. The position of the jth facility of color i
for C1 is denoted by Fi,j. Note that Fi,j = 2c� j−1

2 +(2c− i)(1−χj)+ (i+1)χj,
where χj = 1 if j is odd and 0 otherwise.

For example, for n = 9 and c = 3, C1 will color the facilities by the colors
0, 1, 2, 2, 1, 0, 0, 1, 2, from left to right on R (see Figure 2). Let αi,j be the length
of the Voronoi cell of the j-th facility from the left belonging to the color class
i, where facilities are colored by C1. Note that

αi,j =

⎧⎨
⎩

M(Fi,j−1, Fi,j+1) if j �= 1, ji
L(Fi,j , Fi,j+1) if j = 1
R(Fi,j−1, Fi,j) if j = ji



A Facility Coloring Problem in 1-D 91

3 2 5 7 3 5 10 1 2 2 1 0 2 5 70 1 2

Fig. 2. An example for n = 9, c = 3 using C1. The facilities are represented by
circles and the numbers 0, 1 or 2 within the facility represent the color of the fa-
cility. The distance vector is d̄ = 〈3, 2, 5, 7, 3, 5, 1, 2, 5, 7〉. The length of Voronoi

cells of the facilities are as follows: α0,1 = L(1, 6) = 3 + (2+5+7+3+5)
2

= 14,

α0,2 = M(1, 7) = (2+5+7+3+5+1)
2

= 11.5, α0,3 = R(6, 7) = 1
2
+ (2 + 5 + 7) = 14.5,

α1,1 = L(2, 5) = (3 + 2) + (5+7+3)
2

= 12.5, α1,2 = M(2, 8) = (5+7+3+5+1+2)
2

= 11.5,

α1,3 = R(5, 8) = (5+1+2)
2

+ (5 + 7) = 16, α2,1 = L(3, 4) = (3 + 2 + 5) + 7
2
= 13.5,

α2,2 = M(3, 9) = (7+3+5+1+2+5)
2

= 11.5, α2,3 = R(4, 9) = (3+5+1+2+5)
2

+ 7 = 15.
Therefore Δ(C1) = α1,3 = 16.

Δ(C1) = max{αi,j}, for all i = 0, . . . , c − 1 and j = 1, 2, . . . , ji, where ji is the
total number of facilities assigned to color i.

The value of the objective function for the optimum coloring is denoted by
Opt.

3 n = 2c

In Theorem 1 we show that C1 is an optimal coloring when we have n = 2c
facilities. It is obvious that for each color there will be exactly two facilities,
otherwise the Voronoi cell for at least one of the colors will be whole of R, which
is clearly non-optimal. In Case 1 of Theorem 1, we show that if the objective
function for C1 returns the Voronoi length of the 1st facility of some color i (i.e.
Δ(C1) = αi,1), then any attempt to get a new coloring to reduce αi,1 will ensure
that in the new coloring there will be some color i′, such that the length of the
Voronoi cell corresponding to its 1st facility will be at least αi,1. The analogous
result for the case where the objective function for C1 returns the Voronoi length
of 2nd facility of some color i is shown in Case 2 of Theorem 1. Using these two
cases, we show in Theorem 1 that for n = 2c, C1 is an optimal coloring.

We consider C′ to be a coloring scheme different from C1 introduced as a
candidate for possible improvement over C1. Let α′

i,j denote the length of the
Voronoi cell corresponding to the j-th facility from the left belonging to the color
class i in C′. Let F ′

i,j be the position of the j-th facility from the left of color i
using C′.

Theorem 1. For n = 2c, C1 is an optimal coloring for the MinVor problem.

Proof. Suppose Δ(C1) = αi,� for some i ∈ {0, . . . , c − 1} and some � ∈ {1, 2}
for C1.
Case 1: � = 1: We investigate if it is possible to achieve an objective function
whose value is smaller thanΔ(C1) by any alternate coloring scheme C′. F ′

j,k is the
position of the k-th facility of color j for the coloring C′ and α′

j,k be the Voronoi
length of the facility at F ′

j,k in C′. Note that each color in C′ is assigned to exactly
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two facilities. Let S1 = {i′ : F ′
i′,1 ≥ i+ 1}, i.e., S1 is the set of colors whose first

facility for coloring C′ is at position i + 1 or higher. Clearly |S1| ≥ c − i. Note
F ′
i′,1 ≥ Fi,2 implies α′

i′,1 = L(F ′
i′,1, F

′
i′,2) ≥ L(Fi,1, Fi,2) ≥ αi,1 = Δ(C1). Hence

F ′
i′,1 < Fi,2 = 2c−i ∀ i′ ∈ {0, . . . , c−1} (from Definition 1). Let S2 = {i′ : F ′

i′,2 ≥
2c−i} i.e., S2 is the set of colors whose second facility for coloring C′ is at position
2c− i or higher. Since F ′

i′,1 < 2c− i ∀ i′, |S2| = i+ 1. Therefore |S1|+ |S2| > c,
i.e., S1 and S2 are not disjoint and there exists some i′ such that F ′

i′,1 ≥ Fi,1

and F ′
i′,2 ≥ Fi,2 ⇒ L(F ′

i′,1, F
′
i′,2) ≥ L(i+1, 2c− i) = L(Fi,1, Fi,2)⇒ α′

i′,1 ≥ αi,1.

Case 2: � = 2: Let d′i = dn+2−i ∀ i = 1, . . . , n+ 1. Then, for the distance vector
d̄′ = 〈d′1, . . . , d′n+1〉, the value of the objective function is αi,1. This is because
if the Voronoi length of the 2nd facility for color i is the value of the objective
function for coloring C1, if we look at the mirror image such that the �-th facility
from the left is now the �-th facility from the right, then the Voronoi length of
the 1st facility for color i is the value of the objective function for coloring C1.
So, as demonstrated in Case 1, for the distance vector d̄′, for any new coloring
C′, ∃ some i′ such that F ′

i′,1 ≥ Fi,1 and F ′
i′,2 ≥ Fi,2. Hence for the distance vector

d̄ = 〈d1, . . . , dn+1〉, for any coloring C′, there exists some i′ such that F ′
i′,1 ≤ Fi,1

and F ′
i′,2 ≤ Fi,2. Therefore, there exists some i′ such that F ′

i′,1 ≤ Fi,1 and
F ′
i′,2 ≤ Fi,2 ⇒ R(F ′

i′,1, F
′
i′,2) ≥ R(Fi,1, Fi,2)⇒ α′

i′,2 ≥ αi,2.
Hence, no coloring C′ can result in an objective function with value less than

Δ(C1). �

4 n = kc, k > 2

In this section, we extend the C1-coloring result of the previous section to the
cases where n = kc and k > 2.

Theorem 2. For n = kc and any integer k > 2, C1 is an optimal coloring for
the MinVor problem.

Proof. As the facilities are colored by the coloring C1, let Voronoi length of
the j-th facility of the color η achieve maximum amongst all the facilities, i.e.
Δ(C1) = αη,j . If j = 1 or k, then we are looking at facilities at the left or right
end among all the facilities of color η. Else, we are dealing with some intermediate
facility of color η.

Consider first the case j /∈ {1, k}. Let S = {Fη,j−1+1, Fη,j−1+2, . . . , Fη,j+1−
1}. We investigate if it is possible to achieve an objective function with value
smaller than Δ(C1) by the alternate coloring scheme C′. There exists an i such
that for the coloring C′ there is at most one facility of color i in S because
there are c colors and |S| = 2c − 1. Let there be one facility, say the j1-th
of color i with a position in S and jmax is the number of facilities of color i.
Then for 1 < j1 < jmax, F

′
i,j1−1 ≤ Fη,j−1 < F ′

i,j1 < Fη,j+1 ≤ F ′
i,j1+1 which

implies α′
i,j1

≥ αη,j = Δ(C1). If j1 = 1, Fη,j−1 < F ′
i,1 < Fη,j+1 ≤ F ′

i,2 which
implies α′

i,j1 = L(F ′
i,1, F

′
i,2) ≥ αη,j = Δ(C1). If j1 = jmax, F

′
i,jmax−1 ≤ Fη,j−1 <

F ′
i,jmax

< Fη,j+1 which implies α′
i,j1 = R(F ′

i,jmax−1, F
′
i,jmax

) ≥ αη,j = Δ(C1).



A Facility Coloring Problem in 1-D 93

For j = 1, the situation is similar to the Case 1 of Theorem 1. We have
Δ(C1) = αη,1 = L(η + 1, 2c − η). We investigate if it is possible to achieve an
objective function with value smaller than Δ(C1) by C′. Let S1 = {i′ : F ′

i′,1 ≥
Fη,1}. Since Fη,1 = η + 1, |S1| ≥ c − η. Let S2 = {i′ : F ′

i′,2 ≥ Fη,2}. Since
Fη,2 = 2c−η and F ′

i′,1 < Fη,2 ∀ i′, |S2| ≥ η+1. Therefore |S1|+ |S2| > c, i.e., S1

and S2 are not disjoint and ∃ some i′ such that F ′
i′,1 ≥ Fη,1 and F ′

i′,2 ≥ Fη,2 ⇒
L(F ′

i′,1, F
′
i′,2) ≥ L(Fη,1, Fη,2)⇒ α′

i′,1 ≥ αη,1.
For j = k, we have Δ(C1) = αη,k = L(n − 2c + u, n − u + 1) for some u ∈

{1, . . . , c}. Let ji′ be the number of facilities assigned to the color i′ by the new
coloring scheme C′ for which we investigate if it is possible to achieve an objective
function with value smaller than Δ(C1). Note that if F ′

i′,ji′
≤ Fη,k−1 for some

i′, then R(F ′
i′,ji′−1, F

′
i′,ji′

) ≥ R(Fη,k−1, Fη,k) since F ′
i′,ji′−1 < F ′

i′,ji′
≤ Fη,k−1 <

Fη,k. Hence we assume F ′
i′,ji′

> Fη,k−1 ∀ i′. Let S′
1 = {i′ : F ′

i′,ji′
≤ Fη,k}. Since

Fη,k = n − u + 1, |S′
1| ≥ c − u + 1. Let S′

2 = {i′ : F ′
i′,ji′−1 ≤ Fη,k−1}. Since

Fη,k−1 = n− 2c+ u and F ′
i′,ji′

> Fη,k−1 ∀ i′, |S′
2| ≥ u. Therefore |S′

1|+ |S′
2| > c,

i.e., S′
1 and S′

2 are not disjoint and ∃ some i′ such that F ′
i′,ji′

≤ Fη,k and

F ′
i′,ji′−1 ≤ Fη,k−1 ⇒ R(F ′

i′,ji′−1, F
′
i′,ji′

) ≥ R(Fη,k−1, Fη,k)⇒ α′
i′,ji′

≥ αη,k. �

5 n = kc+ m

In this section we consider the general case where n is not a multiple of c. Note
that 0 < m < c. In Section 5.1, we introduce a coloring C2 where the facility
of any color and its next to next neighbouring facilities of the same color have
exactly 2c− 1 facilities in between them. If the maximum Voronoi length among
all the facilities in this coloring corresponds to an interior facility of some color,
i.e, a facility which is neither the leftmost nor the rightmost of its color, then
C2 is the optimal coloring. Otherwise, for a given Δ, we define a coloring CΔ in
Section 5.2. We denote the Voronoi length of the j-th facility of the i-th color
for coloring C2 as βi,j and for coloring CΔ as γi,j . In Theorem 3 we show that
there exists an optimal CΔ which can be obtained in O(n2 logn) time.

5.1 Coloring C2

Definition 2. (Coloring C2): Let S1 = 0, 1, . . . ,m − 1, S̄1 = m − 1,m −
2, . . . , 1, 0, S2 = m,m+ 1, . . . , c− 1, S̄2 = c− 1, c− 2, . . . ,m+ 1,m. Consider a
coloring of the facilities from the left in the order S1, S2, S̄1, S̄2, S1, S2, S̄1, S̄2, . . ..
We define this assignment of colors as the coloring C2.

Lemma 1. If the value of the objective function for C2 is not equal to βi,1 or
βi,k for some i ∈ {m,m+ 1, . . . , c− 1}, then C2 is an optimal coloring.

Proof. The value of the objective function for C2 can not be equal to βi′,1 or
βi′,k+1 for some i′ ∈ {0, . . . ,m−1}. By Definition 2, ∀ i′ ∈ {0, 1, . . . ,m−1} and
∀ i ∈ {m,m+ 1, . . . , c− 1}, Pi′,1 = i′ + 1 < i+ 1 = Pi,1 < Pi′,2 = c+ i′ + 1 <
c + i + 1 = Pi,2, which implies βi′,1 = L(Pi′,1, Pi′,2) < L(Pi,1, Pi,2) = βi,1.
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Similarly Pi′,k < Pi,k−1 < Pi′,k+1 < Pi,k and hence βi′,k = R(Pi′,k, Pi′,k+1) <
R(Pi,k−1, Pi,k) = βi,k.

Consider the case where the value of the objective function for C2 is βi,j for
some intermediate facility j of any color i. We call j-th facility of a color i as an
intermediate facility when 2 ≤ j ≤ k − 1 for i ∈ {m,m+ 1, . . . , c− 1} or when
2 ≤ j ≤ k for i ∈ {0, 1, . . . ,m−1}). Then, by Definition 2, Pi,j+1−Pi,j−1 = 2c.
Any alternate coloring scheme C′ will have at least one color i′ with at most one
facility in S = {Pi,j−1 +1, . . . , Pi,j+1 − 1}. If there is one facility of i′ in S, then
its Voronoi length is at least βi,j and if there is no facility of i′ in S, then the
Voronoi length of a facility of color i′ nearest to S is greater that βi,j . Hence
the value of the objective function can not be reduced from βi,j by any different
coloring scheme C′. �

5.2 Coloring CΔ

If the objective function for C2 returns the Voronoi length of the 1st
or last facility of some color in {m,m + 1, . . . , c − 1}, C2 need not
be optimal. For example if n = 18, c = 5 and the distance vec-
tor d = (2, 10, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), then C2 returns an
objective function 20.5 where as Opt = 19 for the coloring scheme
0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 3, 0, 1, 2, 4, 2, 1, 0. To handle such cases, let us consider a
number Δ such that max(maxu=1,...,n−2c M(u, u+2c),maxu=1,...,c L(u, 2c−u+
1),maxu=1,...,c R(n−2c+u, n−u+1))≤ Δ ≤ max(M(1, n),maxu=1,...,c L(u, n−
u+1),maxu=1,...,c R(u, n−u+1)). The lower bound of Δ will be clear from Ob-
servation 1 and the upper bound is arrived considering the extreme cases where
the 1st and 3rd facilities of a colour are at positions 1 and n respectively, or the
1st and 2nd facilities of a colour are at positions u and n − u + 1 respectively
for some u ∈ {1, 2, . . . , c}, or the last but one and last but one facilities of a
colour are at positions u and n− u+ 1 respectively for some u ∈ {1, 2, . . . , c}.
We intend to define a Coloring CΔ where the value of the objective function will
be lesser than or equal to Δ. If Δ is less than the optimum, clearly the coloring
doesn’t exist. There are O(n2) possible choices for Δ since the optimum can be
of the form L(a, b), M(a, b) or R(a, b), where 1 ≤ a < b ≤ n.

Observation 1. If maxu=1,...,n−2c M(u, u + 2c) > Δ or maxu=1,...,c L(u, 2c −
u+1) > Δ or maxu=1,...,cR(n− 2c+ u, n− u+1) > Δ, then CΔ does not exist.

Proof. Proof omitted due to paucity of space. �

After choosing a Δ at least as large as the maximum among
maxu=1,...,n−2cM(u, u+2c), maxu=1,...,c L(u, 2c− u+1) and maxu=1,...,c R(n−
2c+ u, n− u+ 1), our scheme to obtain CΔ can be divided into two parts. The
first part assigns k facilities to each of the colors m, . . . , c − 1, ensuring that
the Voronoi length of each of these k(c−m) facilities is lesser than or equal to
Δ. The second part assigns the remaining colors 0, . . . ,m − 1 to the remaining
m(k + 1) facilities, each of these colors being assigned to k + 1 facilities.
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In the first part of the coloring scheme, we identify the facilities to be as-
signed the colors m, . . . , c − 1. Initially we define the positions of the first fa-
cilities of these colors as Pi,1 = i + 1 ∀ i ∈ {m, . . . , c − 1}. Pc−1,2 is such that
L(Pc−1,1, Pc−1,2) ≤ Δ < L(Pc−1,1, Pc−1,2+1), i.e., the farthest positon to ensure
that γc−1,1 ≤ Δ.

Observation 2. Pc−1,2 ≥ c+ 1

Proof. Δ is chosen such that Δ > maxu=1,...,c L(u, 2c− u+ 1) ≥ L(c, c+ 1). As
Pc−1,1 = c and Pc−1,2 is such that L(Pc−1,1, Pc−1,2) ≤ Δ < L(Pc−1,1, Pc−1,2+1),
the observation follows. �

Now ∀ i = c − 2, . . . ,m, we define Pi,2 such that L(i + 1, Pi,2) ≤ Δ < L(i +
1, Pi,2 + 1). If k is odd and Pi,2 > 2c − i + 2m, we set Pi,2 = 2c − i + 2m. If
k is even and Pi,2 > 2c − i + m, we set Pi,2 = 2c − i +m. If Pi,2 ≤ Pi+1,2, we
backtrack by reducing Pi+1,2 and if necessary even earlier defined assignments of
colors. Essentially we reduce Pi+1,2 by one, but if that conflicts with Pi+2,2, we
reduce that by 1 and so on. Please note that the operation of backtracking will
stop at Pc−1,2 or before because of the lower bound discussed in Observation 2.
We observe, similar to the Observation 2, the following:

Observation 3. Pi,2 ≥ 2c− i

To assign the j-th facility of each of these colors, ∀ j = 3, . . . , k − 1:

1. If j is odd, we define Pi,j , where the order of i is m, . . . , c− 1, i.e, first Pm,j

is identified, then Pm+1,j and so on. If k is odd, Pi,j = (j − 1)c+ i+ 1. If k
is even, Pi,j is such that M(Pi,j−2, Pi,j) ≤ Δ < M(Pi,j−2, Pi,j +1). If i > m
and Pi,j ≤ Pi−1,j , we backtrack starting with Pi−1,j = Pi,j − 1. If i = m and
Pi,j ≤ Pi,j−1, we backtrack starting with Pi,j−1 = Pi,j − 1. For even k and
Pi,j > jc+ i+m+ 1, we set Pi,j = jc+ i+m+ 1.

2. If j is even, the order of i is c− 1, . . . ,m while defining Pi,j , i.e, first Pc−1,j

is identified, then Pc−2,j and so on. We ensure that M(Pi,j−2, Pi,j) ≤ Δ <
M(Pi,j−2, Pi,j +1). If i < c−1 and Pi,j ≤ Pi+1,j , we backtrack starting with
Pi+1,j = Pi,j − 1. If i = c− 1 and Pi,j ≤ Pi,j−1, we backtrack starting with
Pi,j−1 = Pi,j−1. If k is odd and Pi,j > jc− i+2m, we set Pi,j = jc− i+2m.
If k is even and Pi,j > jc− i+m, we set Pi,j = jc− i+m.

Observation 4. Pi,j+1 − Pi,j−1 ≥ 2c ∀ j = 2, 3, . . . , k − 1.

Proof. Δ is chosen such that Δ ≥ maxu=1,...,n−2c M(u, u + 2c). If Pi,j+1 −
Pi,j−1 < 2c for any j ∈ {2, 3, . . . , k − 1}, then γi,j = M(Pi,j−1, Pi,j+1) <
M(u, u+ 2c) for some u. �

Observation 5. Pi,j ≥ (j − 1)c+ i+ 1 for odd j and Pi,j ≥ jc− i for even j.

Proof. Pi,1 = i+1 and by Observation 4 for odd j, Pi,j −Pi,1 ≥ j−1
2 2c⇒ Pi,j ≥

(j − 1)c + i + 1. By Observations 2 and 3, Pi,2 ≥ 2c − i for all i ∈ {m,m +
1, . . . , c− 1}. Therefore for even j, Pi,j − Pi,2 ≥ j−2

2 2c⇒ Pi,j ≥ jc− i. �
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Now we define Pi,k, i.e., the last position for the colors i = m, . . . , c − 1. If k
is odd, we define Pi,k = n − c −m + i + 1 ∀ i = m, . . . , c − 1. If k is even, we
define Pi,k = n− i ∀ i = m, . . . , c− 1. Irrespective of whether k is odd or even,
if M(Pi,k−2, Pi,k) > Δ for any i ∈ {m, . . . , c − 1} or R(Pi,k−1, Pi,k) > Δ for
any i ∈ {m, . . . , c− 1}, then CΔ does not exist for the given Δ. Otherwise we
proceed to the second part of the coloring scheme.

In the second part of the scheme, we assign facilties to the colors 0, . . . ,m−1.
We have remaining m(k+1) facilities to be colored 0, . . . ,m− 1. We color them
using Coloring C1 for m colors. It is easy to note that,

Observation 6. For i = 0, 1, . . . ,m − 1, we have Pi,1 = i + 1, Pi,k+1 = n − i
for odd k and Pi,k+1 = n−m+ i+ 1 for even k.

5.3 Optimality of CΔ

In this section we prove that an optimal coloring CΔ and the corresponding
Δ = Opt can be identified in O(n2 logn) time. Proof of Lemma 4 is omitted
because of paucity of space.

Lemma 2. For all i′ ∈ {0, . . . ,m− 1}

1. γi′,1 ≤ L(u, 2c− u+ 1) for some u ∈ {1, . . . , c}
2. γi′,k+1 ≤ R(n− 2c+ u, n− u+ 1) for some u ∈ {1, . . . , c}
3. Pi′,j′+1 − Pi′,j′−1 ≤ 2c ∀ j′ ∈ {2, . . . , k}.

Proof. If 2c − i′ < Pi′,2 ≤ 2c for some i′ ∈ S1 = {0, . . . ,m − 1}, then to its
left there are at least 2c− i′ facilities of which the first c are the first facilities
of each color (by the description of CΔ and Observation 6). Moreover, there
are m − i′ − 1 more facilities with colors in S1 with position less than Pi′,2. So
in {c + 1, . . . , Pi′,2 − 1} there are atleast 2c − i′ − (m − i′ − 1) = c − m + 1
facilities with colors in S2 = {m, . . . , c− 1}, which implies Pi′′,3 < Pi′,2 < 2c for
some i′′ ∈ S2 . Then Pi′′,3 − Pi′′,1 < 2c violating Observation 4. If Pi′,2 > 2c,
then there are at most 2m − 1 of the facilities with position less than Pi′,2 are
from S1. Therefore there are at least 2c − (2m − 1) = 2(c − m) + 1 facilities
assigned colors from m,m+1, . . . , c− 1 with positions in {1, 2, . . . , c}, i.e., there
is a color i ∈ {m,m + 1, . . . , c − 1} such that Pi,3 ≤ 2c. But Pi,1 > m for all
i ∈ {m,m+ 1, . . . , c − 1} and hence Pi,3 − Pi,1 < 2c violating Observation 4.
So Pi′,2 ≤ 2c − i′ for all i′ ∈ S1 and hence γi′,1 ≤ L(u, 2c − u + 1) for some
u ∈ {1, . . . , c}.

Similarly γi′,k+1 ≤ R(n− 2c+ u, n− u+ 1) for some u ∈ {1, . . . , c}.
Suppose ∃ i′ ∈ S1 such that Pi′,j′+1 − Pi′,j′−1 > 2c. Let T = {Pi′,j′−1 +

1, . . . , Pi′,j′+1 − 1} and |T | = 2c − 1 + u where u > 0. Since the colors in
S1 form an C1 of m colors for the m(k + 1) facilities they are assigned to,
∀ i1 ∈ S1 − {i′} there are exactly two facilities in T . Hence there are 2c −
1 + u − (2m − 1) = 2(c − m) + u facilities in T with colors in S2. Let colors
i1, . . . , iu ∈ S2 have 3 facilities each in T . If the leftmost facility in T of any color
ia ∈ {i1, . . . , iu} is positioned at Pia,ja > Pi1,j1−1 + u, then Pia,ja+2 − Pia,ja <
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2c, violating Observation 4. Similarly, the rightmost facility in T of any color
ia ∈ {i1, . . . , iu} can not positioned at Pia,ja+2 < Pi1,j1+1 − u. Therefore,
positions Pi1,j1−1+1, . . . , Pi1,j1−1+u are assigned to colors from {i1, . . . , iu} and
positions Pi1,j1+1−u, . . . , Pi1,j1+1−1 are assigned to colors from {i1, . . . , iu}. Let
Pia,ja = Pi1,j1−1+1. If Pia,ja+2 = Pi1,j1+1−u, then TheoremPia,ja+2−Pia,ja =
2c − 1 < 2c, violating Observation 4. If Pia,ja+2 > Pi1,j1+1 − u, then there
exists an ib such that Pib,jb+2 = Pi1,j1+1 − u and Pib,jb > Pi1,j1−1 + 1. Hence
Pib,jb+2 − Pib,jb < (Pi1,j1+1 − u)− (Pi1,j1−1 + 1) = 2c− 1 < 2c, again violating
Observation 4. �

Lemma 3. If CΔ exists and γi,j is the Voronoi length of the j-th facility of color
i, then ∀ i and ∀ j , γi,j ≤ Δ .

Proof. By the definition of CΔ, if it exists, γi,j ≤ Δ ∀ i ∈ {m, . . . , c − 1},
∀ j ∈ {1, . . . , k}.

From Lemma 2 we have for all i′ ∈ {0, . . . ,m− 1}

1. γi′,1 ≤ L(u, 2c− u+ 1) for some u ∈ {1, . . . , c}
2. γi′,k+1 ≤ R(n− 2c+ u, n− u+ 1) for some u ∈ {1, . . . , c}
3. Pi′,j′+1 − Pi′,j′−1 ≤ 2c ∀ j′ ∈ {2, . . . , k}, i.e., ∀ j ∈ {2, . . . , k}, γi′,j ≤

M(u, u+ 2c) for some u ∈ {1, . . . , n− 2c}

Our coloring scheme for CΔ chooses a Δ at least as large as the max-
imum among maxu=1,...,n−2cM(u, u + 2c), maxu=1,...,c L(u, 2c − u + 1) and
maxu=1,...,cR(n− 2c+ u, n− u+1). Therefore γi′,j ≤ Δ ∀ i′ ∈ {0, . . . ,m− 1},
∀ j ∈ {1, . . . , k + 1}. �
Lemma 4. If Ca is an optimal coloring where the colors of the facilities
1, 2, . . . , c are not distinct or the colors of the facilities n−c+1, n−c+2, . . . , n are
not distinct, there exists another optimal coloring Cb where the colors of the facil-
ities 1, 2, . . . , c are distinct and the colors of the facilities n−c+1, n−c+2, . . . , n
are distinct.

Lemma 5. If Opt ≤ Δ, there exists a CΔ where the value of the objective func-
tion is Δ.

Proof. Suppose, if possible, there exists some Δ ≥ Opt and the coloring scheme
announced that CΔ does not exist for such Δ. This announcement is made if,
for some i ∈ {m, . . . , c− 1}, at least one of the following occurs:

1. M(Pi,k−2, Pi,k) > Δ
2. R(Pi,k−1, Pi,k) > Δ

If M(Pi,k−2, Pi,k) > Δ and there would exist a coloring C′ where
the j-th facility for color η is at position P ′

η,j , has Voronoi length γ′
η,j ,

maxi=0,...,c−1maxj=1,...,jmaxη
γ′
η,j ≤ Δ and at least one of the following is true:

1. P ′
i,k−2 > Pi,k−2

2. P ′
i,k < Pi,k
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As is obvious from the definition of CΔ, Pi,k−2 could not be increased without
increasing γi,k−1 or γη,u for some η and some u ≤ k− 1. So if P ′

i,1 = Pi,1 = i+1,
then P ′

i,k−2 > Pi,k−2 would imply that the value of the objective function for
C′ is greater than Δ. Lemma 4 suggests for every optimal coloring we can have
a recoloring such that P ′

i,1 = Pi,1 = i + 1 ∀ i ∈ {0, 1, . . . , c − 1}. P ′
i,k < Pi,k

can not be achieved because by Lemma 4 there exists an optimal coloring such
that the colors of the facilities n − c + 1, n − c + 2, . . . , n are distinct and if
P ′
i,1 = Pi,1 = i + 1 ∀ i ∈ {0, 1, . . . , c − 1}, the maximum Voronoi length will

only increase if P ′
i,k < Pi,k since it would violate the C1 coloring for the colors

m,m+ 1, . . . , c− 1.
If R(Pi,k−1, Pi,k) > Δ and there would exist a coloring C′ where

the j-th facility for color η is at position P ′
η,j , has Voronoi length γ′

η,j ,
maxi=0,...,c−1maxj=1,...,jmaxη

γ′
η,j ≤ Δ and at least one of the following is true:

1. P ′
i,k−1 > Pi,k−1

2. P ′
i,k > Pi,k

But, as explained above while considering the case P ′
i,k−2 > Pi,k−2, we can not

have P ′
i,k−1 > Pi,k−1 if P ′

i,1 = Pi,1 = i + 1 ∀ i ∈ {0, 1, . . . , c − 1}. P ′
i,k > Pi,k

would violate the C1 coloring for the colors m,m + 1, . . . , c − 1 as it would for
P ′
i,k < Pi,k. �

Theorem 3. For n = kc + m, 0 < m < c, an optimal coloring scheme can be
obtained in O(n2 logn) time.

Proof. From Lemma 5 it is clear that there exists a Δ such that CΔ is optimal.
A candidate for Δ is any of the following:

1. L(a, b) where 1 ≤ a < b ≤ n

2. M(a, b) where 1 ≤ a < b ≤ n

3. R(a, b) where 1 ≤ a < b ≤ n

There are O(n2) candidates for Δ, which can be sorted in ascending order in
O(n2 logn) time. For a given Δ, we can identify CΔ in O(cn) time as follows.
We have a list of n cumulative distances Dj = Σj

i=1di ∀ j = 1, 2, . . . , n. One can
calculate L(a, b) = Da+Db

2 , M(a, b) = Db−Da

2 and R(a, b) = dn+1 +Dn− Da+Db

2
for any pair of a and b in constant time. For odd k, Pi,j is fixed for odd j and,
for even j, jc− i ≤ Pi,j ≤ jc− i+2m. For even k, jc+ i ≤ Pi,j ≤ jc+ i+m+1
for odd j and jc− i ≤ Pi,j ≤ jc − i +m for even j. So, for identifying Pi,j for
i ∈ {m,m+1, . . . , c−1} using the ruleM(Pi,j−2, Pi,j) ≤ Δ ≤M(Pi,j−2, Pi,j+1)
for j > 2 or L(Pi,1, Pi,2) ≤ Δ ≤ L(Pi,1, Pi,2+1), we need O(m) time for each i, j
and hence O(cn) time for all the facilities as m < c. For backtracking we need:

1. At most c− i time for odd k and even j for each i ∈ {m,m+ 1, . . . , c− 1}
2. No backtracking for odd k and odd j

3. At most c− i time for even k and even j for each i ∈ {m,m+1, . . . , c− 1}
4. At most m time for even k and odd j for each i ∈ {m,m+ 1, . . . , c− 1}
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So for backtracking we need O(cn) time and altogether we need O(cn) time for
each Δ. Using binary search over the sorted list of O(n2) candidates for Δ, we
obtain the optimum coloring by trying atmost O(log n) candidates. Hence the
total time complexity is O(cn logn) +O(n2 logn) , i.e., O(n2 logn). �

6 Conclusions

With the objective of coloring the available facilities to a population of users
distributed uniformly in a line segment R such that the load of the different
facilities are distributed as equitably as possible (MinVor problem) we obtained
some interesting results. We observed that when n = kc, C1 offers us an optimal
coloring for any distance vector, while for n = kc+m facilities with c colors for
the MinVor problem, we have C2 is the optimal coloring in some special cases
and otherwise CΔ is the optimal coloring with Δ being the optimal value which
can be obtained in O(n2 logn) time.

If Δ < maxu=1,...,n−2c M(u, u+ 2c) = M(u1, u1 + 2c) , there must be a color
i with only one facility in {u1 + 1, . . . , u1 + 2c− 1}. The Voronoi length of that
facility of color i is clearly atleast M(u1, u1 + 2c) > Δ.

Let Δ < maxu=1,...,c L(u, 2c− u+ 1) = L(u2, 2c− u2 + 1). If the first facility
of color i is at position u2 or higher, we say that it follows Property 1. If the
2nd facility of color i is at position (2c − u2 + 1) or higher, we say that it
follows Property 2. Clearly at least c − u2 + 1 colors follow Property 1 and u2

colors follow Property 2. So, there is at least one color, say i1, whose 1st facility
is at position u2 or higher and 2nd facility at 2c − u2 + 1 or higher. Clearly
L(Pi1,1, Pi1,2) ≥ L(u2, 2c− u2 + 1) > Δ.

Similarly if Δ < maxu=1,...,c R(n − 2c + u, n − u + 1) = R(n − 2c + u3, n −
u3 + 1), there is at least one color, say i2, whose last facility is at position
n−u3+1 or lower and the 2nd last facility at n−2c+u3 or lower, which implies
R(Pi2,j−1, Pi2,j) ≥ R(n− 2c+ u3, n− u3 + 1) > Δ, where j is the total number
of facilities of color i2.

References

1. Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., Segal, M.: Improved approximation
algorithms for connected sensor cover. Wireless Networks 13(2), 153–164 (2007)

2. Lin, Y., Zhang, J., Chung, H.S.-H., Ip, W.-H., Li, Y., Shi, Y.-H.: An Ant Colony
Optimization Approach for Maximizing the Lifetime of Heterogeneous Wireless Sen-
sor Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C 42(3),
408–420 (2012)

3. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86(1-3), 165–177 (1990)

4. Wan, P.-J., Alzoubi, K.M.: Ophir Frieder: Distributed Construction of Connected
Dominating Set in Wireless Ad Hoc Networks. MONET 9(2), 141–149 (2004)

5. Funke, S., Kesselman, A., Meyer, U., Segal, M.: A simple improved distributed
algorithm for minimum CDS in unit disk graphs. TOSN 2(3), 444–453 (2006)



Approximation Algorithms

for Packing Element-Disjoint Steiner Trees
on Bounded Terminal Nodes

Daiki Hoshika and Eiji Miyano

Department of Systems Design and Informatics, Kyushu Institute of Technology,
Iizuka, Fukuoka 820-8502, Japan

hoshika@theory.ces.kyutech.ac.jp, miyano@ces.kyutech.ac.jp

Abstract. In this paper we discuss approximation algorithms for the
Element-Disjoint Steiner Tree Packing problem (Element-STP for
short). For a graph G = (V,E) and a subset of nodes T ⊆ V , called
terminal nodes, a Steiner tree is a connected, acyclic subgraph that con-
tains all the terminal nodes in T . The goal of Element-STP is to find as
many element-disjoint Steiner trees as possible. Element-STP is known
to be APX -hard even for |T | = 3 [1]. It is also known that Element-STP
is NP-hard to approximate within a factor of Ω(log |V |) [3] and there
is an O(log |V |)-approximation algorithm for Element-STP [2,4]. In this

paper, we provide a � |T |
2
-approximation algorithm for Element-STP on

graphs with |T | terminal nodes. Furthermore, we show that the approx-
imation ratio of 3 for Element-STP on graphs with five terminal nodes
can be improved to 2.

1 Introduction

In this paper we study a popular variant of the Steiner Tree Packing prob-
lem on undirected graphs (STP for short): The instance of STP is a pair of an
undirected graph G = (V,E) and a subset of nodes T ⊆ V , where each node in
T is called a terminal node, and each non-terminal node, i.e., node in V \ T is
called a Steiner node. Throughout the paper, we use n to denote the number
of nodes |V | in the input graph. A Steiner node or an edge in G is called an
element. For an instance (G, T ), a Steiner tree is a connected, acyclic subgraph
in G that contains all the terminal nodes in T , but Steiner nodes are optional.
A Steiner tree that contains all terminal nodes in T is called a T -Steiner tree.
Given a graph G = (V,E) and a set T of terminal nodes, we say that the set T
is k-edge connected if there exist k edge-disjoint paths between any two nodes
u, v ∈ T . Also, we say that the set T is k-element connected if there exist k
element-disjoint paths between any two nodes u, v ∈ T . If all the nodes in G are
terminal nodes, i.e., T = V , then we simply say that the graph G is k-edge or
k-element connected.

The STP problem was originally formulated by Grötschel, Martin, and Weis-
mantel [7,8]. Then, many researchers have been interested in the computational

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 100–111, 2014.
c© Springer International Publishing Switzerland 2014



Approximation Algorithms for Packing Element-Disjoint Steiner Trees 101

complexity and (in)approximability of STP since it has applications in VLSI cir-
cuit design [9], wireless networks, and data broadcasting [11]. One of the most
popular variants of STP in the literature is the Element-Disjoint Steiner

Tree Packing problem (Element-STP for short). The objective of Element-STP
is to find as many element-disjoint T -Steiner trees as possible. Element-STP was
first considered by Hind and Oellermann [10]. (Also, the element-connectivity
is independently reintroduced as a connectivity measure intermediate to edge
and vertex connectivities by Jain, Măndoiu, Vazirani, and Williamson [12].) For
Element-STP, Cheriyan and Salavatipour [4] provide a randomized algorithm
achieving an approximation ratio of O(log n). Subsequently, Calinescu, Chekuri,
and Vondrak [2] give a derandomized O(log n)-approximation algorithm. As for
inapproximability of Element-STP, in [3], Cheriyan and Salavatipour prove that
Element-STP is hard to approximate within a factor of Ω(logn).

If the input is a non-restricted, general unweighted graph, then Element-STP
has a high computational complexity, even from the viewpoint of the approxima-
bility; the O(log n)-approximation algorithm is the best possible one. Thus, sev-
eral researchers have investigated the (in)tractability and the (in)approximability
of Element-STP when its input graphs are restricted to some special classes of
graphs and/or the number of terminal nodes is bounded. It is shown [3] that
the inapproximability of Ω(log n) holds even if the input graphs are restricted to
bipartite graphs. On the other hand, Aazami, Cheriyan, and Jampani [1] design
an approximation algorithm for Element-STP on planar graphs that achieves an
approximation ratio of almost 2. In the same paper, they show that the prob-
lem of finding two element-disjoint T -Steiner trees in an input planar graph is
NP-hard. This implies that one cannot improve the approximability of 2 for
Element-STP if we impose no further restrictions on the inputs.

Our Contributions. The goal of this paper is to design an approximation al-
gorithm whose approximation ratio does not depend on the number n of nodes,
but depends only on the number |T | of terminal nodes; we provide a 	|T |/2
-
approximation algorithm for Element-STP on graphs with |T | terminal nodes
by proving the ratio between the element-connectivity of T and the maximum
number of element-disjoint T -Steiner trees is bounded by 	|T |/2
. Furthermore,
we show that the approximation ratio of 3 for Element-STP on graphs with five
terminal nodes can be improved to 2. On the other hand, it is known [1] that
Element-STP is APX -hard even for graphs with three terminal nodes, and the
standard LP relaxation of Element-STP even on planar graphs with |T | terminal
nodes has an integrality gap≥ 2−2/|T |. It is important to note that in [4], the au-
thors mention that their randomized algorithm achieving an approximation ratio
of O(log n) can be modified to O(log |T |) by sacrificing the success probability
of the Monte Carlo randomized algorithm. Unfortunately, however, the constant
coefficient hidden by the big-O notation is clearly large (it would be at least 6
by a careful reading). This implies that when |T | = 5, the previous approxima-
tion ratio is at least 12. Therefore, even our deterministic 	|T |/2
-approximation
algorithm can outperform the previous randomized algorithm in [4] (or its de-
randomized version in [2]) from the viewpoint of the approximation ratio at least
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if the number of terminal nodes is bounded by a small constant. (Due to the
page limitation, we omit some proofs from this extended abstract.)

Related Work. Another variant of STP which has been energetically stud-
ied is the Edge-Disjoint Steiner Tree Packing problem (Edge-STP for
short). Kaski [13] shows that Edge-STP is NP-hard even on graphs with seven
terminal nodes. Chriyan and Salavatipour [3] prove the APX -hardness of Edge-
STP on graphs with four terminal nodes, and subsequently, Aazami, Cheriyan,
and Jampani [1] prove the APX -hardness of Edge-STP on graphs with three
terminal nodes. As for the approximability of Edge-STP, Jain, Mahdian, and
Salavatipour [11] provide an O(|T |)-approximation algorithm for Edge-STP on
graphs with |T | terminal nodes. The constant-factor approximation algorithm is
first provided by Lau [16,17]; he show that if the terminal set T is 24k-edge con-
nected, then there exist k edge-disjoint T -Steiner trees in the input graph, and
provide a 24-approximation algorithm by using the approximation algorithm of
Jain et al. [11] for a linear programming relaxation of Edge-STP. Later, West
and Wu [20] improve the approximation ratio to 6.5 by showing that if the ter-
minal set T is 6.5k-edge connected, then there exist k edge-disjoint T -Steiner
trees. Very recently, DeVos, McDonald, and Pivotto [5] make a further improve-
ment to 5k+4 from 6.5k. Furthermore, Kriesell [15] designs a 1.5-approximation
algorithm for |T | = 4 terminal nodes.

2 Preliminaries

In this paper, we only consider simple, undirected, unweighted and connected
graphs. Let G = (V,E) be a graph; we sometimes denote by V (G) and E(G)
the node set and edge set of G, respectively. For a subset V ′ of V (G), we denote
by G[V ′] the subgraph of G induced by V ′. We denote simply by G \ V ′ the
induced subgraph G[V \ V ′]. For a subgraph G′ of G, let G \ G′ = G \ V (G′).
Let N(v) (N(S), respectively) be the set of neighbor nodes of the node v (the
set of neighbor nodes of the set S, respectively).

In this paper we focus on Element-STP, which is formulated as follows:

Element-Disjoint Steiner Tree Packing (Element-STP)

Instance: Graph G = (V,E) and terminal nodes T ⊆ V .
Goal: Find a maximum cardinality set of element-disjoint T -Steiner

trees.

We often call the terminal nodes black nodes, and the non-terminal nodes white
nodes. For example, b1 and w1 represent a terminal node and a Steiner node,
respectively, in Figure 1-(a). Also, an edge between two white nodes is called a
white edge. A cut C(T1, T2) is a partition of a set T = T1∪T2, where T1∩T2 = ∅.
An element cut-set of a cut C(T1, T2) is defined as a set of Steiner nodes and
edges whose removal disconnects T = T1 ∪ T2 into two subsets T1 and T2. The
element connectivity of the set T of terminal nodes is the minimum size of all
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the element cut-sets of T . The set T of terminal nodes is said to be k-element
connected if the element connectivity of T is at least k.

For a pair of a graph G and a terminal set T as an instance of Element-STP,
let ALG(G, T ) and OPT (G, T ) be the numbers of obtained element-disjoint
T -Steiner trees by a polynomial-time algorithm ALG and an optimal algorithm,
respectively. Then, the algorithm ALG is called an α-approximation algorithm
and the approximation ration of ALG is α where α ≥ 1 if the inequality
OPT (G, T )/ALG(G, T ) ≤ α holds.

Recall that the problem of finding a set of edge-disjoint T -Steiner trees of
maximum cardinality is denoted by Edge-STP. For a while, we consider Edge-
STP. If all of the nodes are terminal nodes, i.e., T = V , then the problem is the
same as the problem of finding a maximum cardinality set of edge-disjoint span-
ning trees. For this special case of Edge-STP, Tutte [19] and Nash-Williams [18]
independently show a necessary and sufficient condition for an input graph to
have k edge-disjoint spanning trees. Moreover, as a corollary of their result, every
2k-edge connected graph contains k edge-disjoint spanning trees. The matroid
intersection algorithm can find a largest set of edge-disjoint spanning trees in
polynomial time. Kriesell [14] conjectures that the corollary of Tutte and Nash-
Williams’s result can generalize to Edge-STP:

Conjecture 1 (Kriesell’s conjecture [14]). If T ⊆ V (G) is 2k-edge connected,
then there is a polynomial-time algorithm which finds at least k edge-disjoint
T -Steiner trees in G.

If this conjecture is settled by a constructive proof, then we may obtain a
2-approximation algorithm for Edge-STP. As mentioned above, DeVos, McDon-
ald, and Pivotto [5] recently have made a major advance on Kriesell’s conjecture
by presenting the following result:

Proposition 1 ([5]). If T ⊆ V (G) is 5k + 4 edge-connected, then there is a
polynomial-time algorithm which finds at least k edge-disjoint T -Steiner trees
in G.

Now we go back to Element-STP. Note that if T = V , then Element-STP is
equivalent to Edge-STP since there are no Steiner nodes. Thus, both problems
can be solved in polynomial time if T = V . However, Element-STP is quite
different from Edge-STP if T �= V ; for example, Edge-STP has a constant-factor
approximation algorithm, but Element-STP is hard to approximate within a
factor ofΩ(log n) as mentioned before. On the other hand, similarly to Edge-STP,
an O(log n)-approximation algorithm for Element-STP is provided by showing
the relationship between the element-connectivity and the number of element-
disjoint T -Steiner trees in a graph.

Proposition 2 ([4,2]). If T ⊆ V (G) is O(k · logn)-element connected, then
there is a polynomial-time algorithm which finds at least k element-disjoint T -
Steiner trees in G.

Now we define the Element Disjoint Bipartite Steiner Tree Packing

problem as a subproblem of Element-STP: The input is restricted to be a bipartite
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graph such that the set T of terminal nodes is one part of the bipartition, and
the set V \ T of Steiner nodes is the other part. Let the input bipartite graph
be denoted by G = (T ∪ (V \ T ), E). It is known [10,4] that we can efficiently
transform any graph G = (V,E) with the set T of terminal nodes into a bipartite
graph G′ with the same terminal set T such that T is one part of the bipartition
in G′ and the element-connectivity of T is unchanged.

Proposition 3 ([10,4]). Consider a graph G = (V,E) that has a set T of
terminal nodes such that T is k-element connected. There is a polynomial-time
algorithm that repeatedly deletes or contracts white edges to obtain a bipartite
graph G′ from G such that T stays k-element connected, and moreover, T forms
one part of the bipartition in G′.

It is important to note that the element-connectivity of the terminal set T is
an upper bound on the maximum number of element-disjoint T -Steiner trees.
Thus, for a bipartite graph G = (T ∪ (V \ T ), E) such that T is k-element con-
nected, if we can design a polynomial-time algorithm which can find at least
	 kα
 element-disjoint T -Steiner trees, then the approximation ratio of the algo-
rithm is α. Indeed, for a special case where the degree of every Steiner node in
an input bipartite graph is at most Δ, Frank, Király, and Kriesell [6] present
a Δ-approximation algorithm by using the matroid intersection theorem and
algorithm:

Proposition 4 ([6]). Consider a bipartite graph G = (T ∪ (V \T ), E), where T
is a set of terminal nodes and V \T is a set of Steiner nodes. Then, if the degree
of every Steiner node is at most Δ and T is Δ · �-element connected, then there
is a polynomial-time algorithm which finds at least � element-disjoint T -Steiner
trees in G.

The following observation is very simple but plays an important role in the next
two sections: Suppose that the number of element-disjoint T -Steiner trees in a
bipartite graph G = (T ∪ (V \ T ), E) is at least �. Also suppose that a subset Si

of Steiner nodes for each i = 1, 2, · · · , � forms the ith element-disjoint T -Steiner
tree (in some order), where Si ∩ Sj = ∅ for i �= j. Then, G[T ∪ S1] through
G[T ∪ S�] can be thought as � element-disjoint T -Steiner trees. Furthermore,
one can easily see that, for example, for some i ∈ {1, 2, · · · , �}, the number of
element-disjoint T -Steiner trees in G[V \ (S1 ∪ · · · ∪ Si)] is at least � − i. In the
following sections, our approximation algorithms construct such element-disjoint
T -Steiner trees, one by one.

3 �|T |/2�-Approximation Algorithm for Graphs with |T |
Terminal Nodes

In this section we show that there is a 	|T |/2
-approximation algorithm for
Element-STP on graphs with a set T of terminal nodes. Assume that the set T of
terminal nodes in the input graph G is k-element connected. Then, we achieve
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the 	|T |/2
-approximability of Element-STP by showing that we can find at
least �2k/|T | element-disjoint T -Steiner trees from G such that T is k-element
connected. Our algorithm consists of the following four phases, (Phase 1) through
(Phase 4):

(Phase 1). We transform the input graph G with the set T of terminal nodes
into the bipartite graph, say, G0 = (T ∪ (V \ T ), E) such that G0 has the
same set T of terminal nodes such that T remains k-element connected by
using the algorithm described in Proposition 3, deleting or contracting white
edges.

Note that the maximum degree Δ of Steiner nodes in V \ T is at most |T |.
Therefore, a trivial consequence of Proposition 4 is that we can design a |T |-
approximation algorithm on graphs with |T | terminal nodes. For d = 1, · · · , |T |,
let the subset of Steiner nodes of exactly degree d be denoted by Wd, i.e.,
Wd ∩ Wd′ = ∅ for d �= d′, and V \ T =

⋃
d=1,2,··· ,|T |Wd. In the following

we can show that the approximability can be improved to 	|T |/2
 by remov-
ing repeatedly all the Steiner nodes in

⋃
d=�|T |/2�+1,··· ,|T | Wd, while keeping the

element-connectivity of T in the resulting graph sufficiently high:

Lemma 1. Consider a bipartite graph G = (T ∪ (V \ T ), E), where T is a set
of terminal nodes, V \T is a set of Steiner nodes, and T is k-element connected
(k > 0). Suppose that there is a Steiner node wd of the degree d ≥ 	|T |/2
+1 in
G. Then, there exists a T -Steiner tree in G such that (i) a subset S of Steiner
nodes containing wd forms the T -Steiner tree, and (ii) in the induced graph
G[V \ S], the element connectivity of T is at least (k − 	|T |/2
). (The proof is
omitted.) ��

(Phase 2). Let wΔ be a Steiner node of the maximum degree Δ ≥ 	|T |/2
+ 1
in the bipartite graph G0. From Lemma 1, we can find a T -Steiner tree in G0

such that a subset S of Steiner nodes containing wΔ forms the T -Steiner tree,
and moreover T in G0\S is (k−	|T |/2
)-element connected. Then, we remove
S from G0 and obtain G1 = G0 \S. If

⋃
d=�|T |/2�+1,··· ,|T |Wd �= ∅ in G1, then

set G0 = G1 and repeat this phase; otherwise, i.e., if
⋃

d=�|T |/2�+1,··· ,|T |Wd =

∅, then go to the next phase.

Suppose that eventually we can obtain L element-disjoint T -Steiner trees in
total from the initial G0 after the Lth iteration in (Phase 2), and the maximum
degree of Steiner nodes in the obtained graph G1 is at most 	|T |/2
. From
Lemma 1, we can assume that G1 is (at least) (k−L	|T |/2
)-element connected.

(Phase 3). By setting the maximum degree of Steiner nodes Δ = 	|T |/2
 and
thus � = (k−L	|T |/2
)/(	|T |/2
) = k/(	|T |/2
)−L in Proposition 4, we can
find (k/(	|T |/2
)−L) element-disjoint T -Steiner trees from G1, i.e., in total
k/(	|T |/2
) element-disjoint T -Steiner trees can be found from the initial
bipartite graph G0.
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(Phase 4). By “uncontracting” the edges that were contracted in (Phase 1),
we obtain a set of k/(	|T |/2
) element-disjoint T -Steiner trees in the input
graph G.

Theorem 1. There is a 	|T |/2
-approximation algorithm for Element-STP on
graphs with a set T of terminal nodes where |T | ≥ 2.

4 2-Approximation Algorithm for Graphs with at Most
Five Terminal Nodes

In this section, we consider a special case where the number of terminal nodes is
at most five. From Theorem 1, we have a 3-approximation algorithm for Element-
STP if the terminal nodes are bounded by five. In the following we show that
the approximation ratio of 3 can be improved to 2 for graphs with at most five
terminal nodes.

Theorem 2. There is a 2-approximation algorithm for Element-STP on graphs
with a set of at most five terminal nodes.

Proof. Without loss of generality, we can assume that the input is a bipartite
graph G = (T ∪ (T \ V ), E) with a terminal set T from Proposition 3. Let
T = {b1, b2, b3, b4, b5} be the set of five terminal nodes. Also, let the subset of
Steiner nodes of exactly degree d be denoted by Wd, i.e., Wd∩Wd′ = ∅ for d �= d′

and V \ T = W1 ∪W2 ∪W3 ∪W4 ∪W5. Here, we can assume that W1 = ∅ since
Steiner nodes of degree one do not connect any two terminal nodes and thus
they are not contained in any element-disjoint T -Steiner trees.

In the following we show that if T is k-element connected, then there is a
polynomial-time algorithm which finds at least 	k2
 element-disjoint T -Steiner
trees in G by using very similar ideas to the proof of the previous section. We
show that, repeatedly, we can choose a T -Steiner tree in G such that T is k-
element connected, and then remove all Steiner nodes in the T -Steiner tree from
G, while preserving the (k− 2)-element connectivity of T in the resulting graph,
until the maximum degree of Steiner nodes decreases to two. Our algorithm
consists of the following four phases: (Phase 1) W5 �= ∅, (Phase 2) W5 = ∅ but
W4 �= ∅, (Phase 3) W5 = W4 = ∅ but W3 �= ∅, and (Phase 4) W5 = W4 = W3 =
∅. If T is 2-element connected, then it is sufficient for us to find just one T -Steiner
tree in order to obtain the approximability of 2. Thus, we always assume that
k ≥ 3 in the following.

(Phase 1). W5 �= ∅. Every Steiner node w in W5 and its adjacent five terminal
nodes in T forms a T -Steiner tree, say, ST , where every terminal node is a
leaf in the tree ST , and hence its degree is one. Therefore, if all the Steiner
nodes in ST are removed from the graph, then the element-connectivity of
the set T of terminal nodes decreases exactly by one. As a result, we can
find |W5| element-disjoint T -Steiner trees, each of which contains one Steiner
node in W5, and thus, by removing all the Steiner nodes in W5 from G, we
can obtain a new graph G′ such that T in G′ is k′-element connected, where
k′ = k − |W5| ≥ k − 2|W5|.
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b1 b2 b3 b4 b5

w1 w2w1 w2 w1 w2

b1 b2 b3 b4 b5b1 b2 b3 b4 b5
(a) ST1,1 (b) ST1,2 (c) ST1,3

Fig. 1. Three types of T -Steiner trees in Phase 2

(Phase 2). W5 = ∅ but W4 �= ∅. By renaming G′ and k′ in Phase 1 as G
and k, respectively, we again consider a graph G such that T is k-element
connected. See Figure 1. Consider a Steiner node, say, w1 of degree four, as-
suming N(w1) = {b1, b2, b3, b4}, without loss of generality. If T is k-element
connected, then there is at least one Steiner node, say, w2, which is ad-
jacent to the rightmost terminal node b5 and at least one black node of
{b1, b2, b3, b4}. One can see that there are only three types of T -Steiner trees,
ST1,1, ST1,2 and ST1,3 as shown in Figures 1-(a), (b), and (c), respectively.
Therefore, two Steiner nodes w1 and w2, and all the terminal nodes in T
forms one T -Steiner tree, say, ST . If we remove w1 and w2 from the graph,
the element-connectivity of the set T of terminal nodes decreases by at most
two. By repeating this phase, we remove all Steiner nodes in W4 from V (G);
W4 eventually gets empty. When we find � T -Steiner trees in this phase, T
is still (k − 2�)-element connected.

(Phase 3). W5 = W4 = ∅ but W3 �= ∅. Our goal in this phase is to remove all
Steiner nodes of degree three in the selected T -Steiner trees, and reduce into
the graph which only contains Steiner nodes of degree at most two. Phase 3
is further divided into the following two phases (more detailed descriptions
of them are given later):
(Phase 3-1). We first choose a T -Steiner tree, say, ST in G such that the

maximum degree of terminal nodes in ST is at most two. Then, we
remove the set S of all the Steiner nodes in ST and obtain the graph
G′ = G\S. If G′ contains another T -Steiner tree such that the maximum
degree of terminal nodes in the T -Steiner tree is at most two, then we
repeat this phase; otherwise, go to (Phase 3-2).

(Phase 3-2) We first choose a T -Steiner tree, say, ST ′ in G′ such that
the maximum degree of terminal nodes in ST ′ is at most three. Then,
we remove the set S′ of all the Steiner nodes in ST ′ and obtain the
graph G′′ = G′ \ S′. If W3 �= ∅, then we repeat this phase; otherwise, go
to (Phase 4).

Take a look at Figure 2. It can be easily verified that there are only four
different types of T -Steiner trees such that the maximum degree of terminal
nodes is at most two, (a) ST2,1, (b) ST2,2, (c) ST2,3, and (d) ST2,4. Actually,
however, we do not need to consider ST2,2-type T -Steiner trees. The reason is as
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b1 b2 b3 b4 b5

w1 w2w1 w2 w3 w1 w2 w3

(a) ST2,1

w1 w2 w3

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

(b) ST2,2 (c) ST2,3 (d) ST2,4

Fig. 2. Four types of T -Steiner trees in Phase 3-1, (a) ST2,1, (b) ST2,2, (c) ST2,3, and
(d) ST2,4

follows: Now we assume that T is k-element connected and k ≥ 3. Then, another
white node, say, w4 must connect the leftmost black node b1 to at least one node
of {b2, b3, b4, b5}. For example, if w4 connects b1 to b2, then G[T ∪ {w2, w3, w4}]
is identical to ST2,4. As another example, if w4 connects b1 to b5, then G[T ∪
{w1, w3, w4}] is identical to ST2,3, and so on.

Lemma 2. Consider a bipartite graph G = (T ∪ (V \ T ), E), where T is a set
of terminal nodes, V \T is a set of Steiner nodes, and T is k-element connected
(k ≥ 3). Suppose that G contains a T -Steiner tree ST2,1 illustrated in Figure 2-
(a) (ST2,3 illustrated in Figure 2-(c) and ST2,4 illustrated in Figure 2-(d), re-
spectively). Then, the element connectivity of T in G\{w1, w2} (G\{w1, w2, w3}
and G \ {w1, w2, w3}, respectively) is at least (k− 2). (The proof is omitted.) ��

The detailed description of (Phase 3-1) is as follows:

(Phase 3-1) (i) We find an ST2,1-type T -Steiner tree in a graph G, remove
the set, say, S1 of all the Steiner nodes in the T -Steiner tree, and obtain
the graph G \ S1. If G \ S1 contains another ST2,1-type T -Steiner tree, then
repeat (i); otherwise go to the next. (ii) Let the obtained graph after the
iterations of (i) be denoted by G1. We find an ST2,3-type T -Steiner tree in
G1, remove the set, say, S2 of all the Steiner nodes in the T -Steiner tree, and
obtain the graph G2 = G1 \ S2. If G1 \ S2 contains another ST2,3-type T -
Steiner tree, then repeat (ii); otherwise go to the next. (iii) The very similar
operations to (i) and (ii) are iterated for ST2,4-type T -Steiner trees if there
is an ST2,4-type T -Steiner tree in G2.

Now we can assume that a (current) bipartite graph G = (T ∪ (V \ T ), E)
contains no T -Steiner trees illustrated in Figures 2-(a) through (d), where the set
T of terminal nodes is k-element connected (k ≥ 3). For the case where W3 �= ∅,
the remaining types of T -Steiner trees are only three ones illustrated in Figure 3,
(a) ST3,1, (b) ST3,2, and (c) ST3,3. Recall that the maximum degree of black
nodes is three. Roughly speaking, we first remove all ST3,1-type T -Steiner trees,
then remove all ST3,2-type T -Steiner trees, and finally remove all ST3,3-type
T -Steiner trees. Here, we view ST3,1 and ST3,2:
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b1 b2 b3 b4 b5

(a) ST3,1

w1 w2 w3 w1 w2 w3 w1 w2 w3

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

(b) ST3,2 (c) ST3,3

Fig. 3. Three types of T -Steiner trees in Phase 3-2, (a) ST3,1, (b) ST3,2, and (c) ST3,3

Lemma 3. Consider a bipartite graph G = (T ∪ (V \ T ), E) which does not
contain any T -Steiner tree illustrated in Figures 2-(a) through (d), where T is
a set of terminal nodes, V \ T is a set of Steiner nodes, and T is k-element
connected (k ≥ 3). Suppose that G contains a T -Steiner tree ST3,1 illustrated in
Figure 3-(a) (or ST3,2 illustrated in Figure 3-(b)). Then, the element connectivity
of T in G \ {w1, w2, w3} is at least (k − 2).

Proof. (a) First consider an ST3,1-type T -Steiner tree. We can show that from
the assumptions that T in G is k-element connected and G does not contain
any T -Steiner tree illustrated in Figure 2, if we remove any set W ′ of (k − 3)
white nodes in V \{w1, w2, w3} from G, then the resulted graph G\W ′, renamed
by G′, always contains a subgraph whose shape is identical to ST+

3,1 illustrated
in Figure 4-(a) although the reasons are omitted here. Consider the graph G \
(W ′∪{w1, w2, w3}), which contains the connected graph G[T ∪{w4, w5, w6, w7}].
Namely, T in G[T ∪{w4, w5, w6, w7}], or equivalently T in G\(W ′∪{w1, w2, w3})
is still (at least) 1-element connected. Thus, it can be shown that the element
connectivity of T in G \ {w1, w2, w3} is at least (k − 2) as follows: Suppose for
contradiction that the element connectivity of T in G \ {w1, w2, w3} is at most
(k − 3). It follows that there must exist a set W ′ of (k − 3) white nodes such
that T in (G \ {w1, w2, w3}) \W ′ is disconnected, and so we have arrived at a
contradiction. Therefore, the element connectivity of T in G\ {w1, w2, w3} must
be at least (k − 2).

(b) Similarly to the above, we can show that G contains a subgraph whose
structure is identical to ST+

3,2 illustrated in Figure 4-(b) such that the element

connectivity T in ST+
3,2 is at least three, and the element connectivity of T in

G \ {w1, w2, w3} is at least (k − 2). [End of the proof of Lemma 3] ��

Observation. The remaining T -Steiner trees we have to consider are identical
to ST3,3 in Figure 3-(c). Without loss of generality, we consider a bipartite graph
G = (T ∪ (V \ T ), E) such that T is 3-element connected and G contains a T -
Steiner tree ST3,3 illustrated in Figure 3-(c). From the assumption that T is
3-element connected and similar arguments as in the proof of Lemma 3, G must
have further three Steiner nodes, say, w4, w5 and w6; namely, G must contain
a subgraph which is identical to ST+

3,3 in Figure 4-(c). Therefore, if T in G is
3-element connected, then we can find at least two element-disjoint T -Steiner
trees, G[T ∪ {w1, w5, w6}] and G[T ∪ {w2, w3, w4}].
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(a) ST+
3,1

w1 w2 w3

w4 w5 w6 w7 w4 w5 w6 w7 w4 w5 w6

w1 w2 w3 w1 w2 w3

(b) ST+
3,2 (c) ST+

3,3

Fig. 4. T -Steiner trees in the proof of Lemma 3 and Observation

The detailed description of (Phase 3-2) is as follows:

(Phase 3-2) (i) We find an ST3,1-type T -Steiner tree in a graph G, remove
the set, say, S1 of all the Steiner nodes in the T -Steiner tree, and obtain
the graph G \ S1. If G \ S1 contains another ST3,1-type T -Steiner tree, then
repeat (i); otherwise go to the next. (ii) Let the obtained graph after the
iterations of the previous (i) be denoted by G1. We find an ST3,2-type T -
Steiner tree in G1, remove the set, say, S2 of all the Steiner nodes in the
T -Steiner tree, and obtain the graph G2 = G1 \ S2. If G1 \ S2 contains an-
other ST3,2-type T -Steiner tree, then repeat (ii); otherwise go to the next.
(iii) If G2 contains an ST3,3-type subgraph, then we find two element-disjoint
T -Steiner trees, G[T ∪{w1, w5, w6}] and G[T ∪{w2, w3, w4}] in G2. Then, we
remove the set {w1, w2, · · · , w6} of six Steiner nodes and obtain the graph
G\{w1, w2, · · · , w6}. If the obtained graph contains another ST3,3-type sub-
graph, then we repeat (iii); otherwise go to (Phase 4).

Consider the current bipartite graph after (Phase 3) and rename it as G′ =
(T ∪ (V ′ \ T ), E′). Suppose that we have already found L element-disjoint T -
Steiner trees. Then, from Lemma 2, Lemma 3 and the above observations, the
element connectivity of T in G′ is at least (k − 2L) if the initial element con-
nectivity of T in the input graph G is at least k. Note that at this moment,
W5 = W4 = W3 = ∅.

(Phase 4) By using the algorithm in Proposition 4, we can find at least (	k/2
−
L) element-disjoint T -Steiner trees from G′.

In total, at least 	k/2
 element-disjoint T -Steiner trees can be found from the
input bipartite graph G. The algorithm obviously runs in polynomial time. This
completes the proof of Theorem 2. ��
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Abstract. The garden hose complexity is a new communication com-
plexity introduced by H. Buhrman, S. Fehr, C. Schaffner and F. Speel-
man [BFSS13] to analyze position-based cryptography protocols in the
quantum setting. We focus on the garden hose complexity of the equal-
ity function, and improve on the bounds of O. Margalit and A. Matsliah
[MM12] with the help of a new approach and of our handmade simulated
annealing based solver. We have also found beautiful symmetries of the
solutions that have lead us to develop the notion of garden hose permu-
tation groups. Then, exploiting this new concept, we get even further,
although several interesting open problems remain.

1 Introduction

1.1 Quantum Position Based Cryptography and the Garden Hose
Model

Position based cryptography was first introduced in [CGMO09], while its quan-
tum setting was introduced in [BFS11] and also [BCF+11]. The basic idea is to
use the geographical location as its only credential. For example, one message
might be decrypted only if the receiver is in a specified location. In the setting
of position verification, a special application of position based cryptography, Al-
ice wants to convince Bob that she is in a particular position. In [CGMO09] it
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has been shown that position verification using classical protocols is impossi-
ble against colluding adversaries (who control all positions except the prover’s
claimed position). In the quantum setting [BFS11], a general impossibility has
been shown: using an enormous amount of quantum entanglement, colluding
adversaries are always able to make it look to the verifiers as if they were at the
claimed position.

In [BFSS13], the authors proposed a protocol PV f
qubit for one dimensional

quantum position verification, while the basic ideas generalize to higher dimen-
sions. There are two verifiers V0, V1 and one prover P in between them and f is
a fixed publicly known Boolean function f : {0, 1}n × {0, 1}n → {0, 1}. Again,
the above protocol PV f

qubit is insecure under two adversarial attackers Alice and
Bob if they share enough number of EPR pairs. It has been shown that there
is a one-one correspondence between attacking the position-verification scheme
PV f

qubit and computing the function f in the garden-hose model [BFSS13]. More
generally, we can translate any strategy of Alice and Bob in the garden-hose
model to a perfect quantum attack of PV f

qubit by using one EPR pair per pipe
and performing Bell measurements where the players connect the pipes. We omit
the details of the connection between them here while emphasizing on the new
communication complexity model: the garden hose model.

Alice and Bob want to compute f(x, y) of a Boolean function f : {0, 1}n ×
{0, 1}n → {0, 1} together where Alice gets x and Bob gets y. They have m
water pipes numbered by 1, 2, · · · ,m between them and in addition Alice has
a water tap 0. When Alice gets input x, she makes a configuration A(x): a
(nontrivial) partial matching in {0, 1, · · · ,m}, i.e. Alice uses hoses to connect
those pairs of pipes according to the matching. When Bob gets input y, he
makes a configuration B(y): a (nontrivial) partial matching in {1, · · · ,m}. Then
Alice opens the water tap, when water comes out from Alice’s side, we say the
output is 1, otherwise it is 0. Say that f : {0, 1}n × {0, 1}n → {0, 1} can be
computed by m pipes in the garden hose model if for every possible input (x, y)
there is a configuration pair (A(x), B(y)) such that water comes out in correct
side. The garden hose complexity of f , denoted by GH(f), is defined as the
minimum number of pipes that computes f .

We will focus on computing GH(EQn) for the equality function EQn in this
paper, where EQn(x, y) is 1 if x = y and 0 if x �= y.

Example 1. Let n = 1. Then three pipes suffice for Alice and Bob in computing
EQ1, i.e. GH(EQ1) ≤ 3. Here is one solution:

A(0) = {01}, A(1) = {02}, B(0) = {13}, B(1) = {23}.

Figure 1 describes the configuration pictorially.
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Fig. 1. Implementation of EQ1 function

1.2 Prior Results and Our Results

It has been known that GH(EQn) is lower bounded by n+1. Actually computing
upper bound for GH(EQn) featured as April 2012’s “Ponder This” puzzle on
the IBM website1. The best solution there gives

GH(EQn) ≤
8

log 46
· n+O(1) ≈ 1.448n+O(1)

by applying IBM SAT-Solver[MM12]. With the help of a new approach and of
our handmade simulated annealing based solver, we have improved their bounds.
We have also found beautiful symmetries of the solutions that have lead us to
develop the notion of garden hose permutation groups. Then, exploiting this new
concept, we push the upper bound to the following.

Theorem 1. The garden hose complexity of the equality function:

GH(EQn) ≤
28

log 313
· n+O(1) ≈ 1.359n+O(1).

2 Matrix Idea

Similar to the role of matrix in communication complexity, here we introduce the
configuration matrix Mm for garden hose model where m is the number of water
pipes. Rows (columns) in Mm are indexed by all possible configurations for Alice
(Bob). Each entry is either 0 or 1 determined by which direction the water comes
out according to its corresponding row and column. Below explicitly describes
all elements in M3 and M4, two smallest nontrivial configuration matrices.

M3 =

12 13 23
01
02
03

⎡
⎣ 1 1 0
1 0 1
0 1 1

⎤
⎦

1 http://ibm.co/I7yvMz

http://ibm.co/I7yvMz
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M4 =

12 13 14 23 24 34
01
02
03
04

01, 23
01, 24
01, 34
02, 13
02, 14
02, 34
03, 12
03, 14
03, 24
04, 12
04, 13
04, 23

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We observe that:

Lemma 1. GH(EQn) ≤ m if and only if Mm contains a permutation submatrix
of size 2n.

We will delay the proof to the full version of the paper.
We already gain some information from above M3 and M4: GH(EQ1) = 3,

GH(EQ2) = 4, GH(EQ3) ≥ 5.
To make the configuration matrix smaller, lemma 2 says we can assume Alice

has only one open pipe for even m. Before the lemma, we define some notations
first.

For a configuration A(x), we call the pipe which connects the water tap (num-
ber 0) the water-in pipe, and we call the pipe where the water comes out (from
Alice’s side) in the configuration (A(x), B(x)) the water-out pipe.

We divide Mm into blocks Mm = [M i,j
m ]1≤i≤m/2,1≤j≤(m−1)/2 where M i,j

m con-
sists of those rows where Alice has i hoses and those columns where Bob has j

hoses. For example, M3 = M1,1
3 ,M4 =

[
M1,1

4

M2,1
4

]
.

Lemma 2. For even m ≥ 4, if Mm contains a permutation submatrix of size k,

then the last-row-block of Mm, [M
m/2,1
m ,M

m/2,2
m , · · · ,Mm/2,(m−2)/2

m ], also con-
tains a permutation submatrix of size k.

Proof. We take the permutation submatrix of size k, denoted by S × T . If S
is not contained in the last-row-block, then we take a row A(x) ∈ S, which is
outside of the last-row-block. In configuration A(x), Alice has m pipes: a water-
in pipe, a water-out pipe, some pairs of pipes connected with hoses, and others.
Because m is even, there are even “other” pipes. We connect them by hoses
arbitrarily. After that, every pipe is connected with a hose, except the water-out
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pipe. Therefore, this configuration, denoted by A′(x), is in the last-row-block.
We replace A(x) by A′(x). We can prove that it is still a permutation submatrix.
Then, we repeat the replacement many times, and we can move S × T into the
last-row-block finally. ��

By the lemma above, we know that if m is even, in order to search maximum size
of permutation submatrix in Mm, we can restrict ourselves to the last-row-block
of Mm, which means on Alice’s side there is only one pipe without any hose
connection. In the following construction, we assume that m is always even.

Actually we do not have to restrict ourselves to permutation matrices of size
power two for the following lemma.

Lemma 3. If Mm contains a permutation submatrix of size k, then Mmt con-
tains a permutation submatrix of size kt for every t = 1, 2, · · · .

Proof. In Mm, we denote the rows and columns of the permutation submatrix
of size k by {A(x)|x ∈ [k]} and {B(y)|y ∈ [k]}, respectively, where A(x) and
B(y) intersect at entry 1 if and only if x = y. In Mmt, we will define A′ and B′

s.t. {A′(x′)|x′ ∈ [k]t} × {B′(y′)|y′ ∈ [k]t} is permutation submatrix of size kt.
We group mt pipes into t blocks, where each block has m pipes. B′ is just the

product of B in each block, i.e.

B′(y′) = {{im+ a, im+ b}|{a, b} ∈ B(y′i), i ∈ [t]}.

The construction of A′ is almost the same as B′, but we connect the water-out
pipe to the water-in pipe in the next block. Formally speaking,

A′(x′) = {{im+ a, im+ b}|{a, b} ∈ A(x′
i), a, b �= 0, i ∈ [t]}

∪ {{0, in(A(x′
0))}}

∪ {{im+ out(A(xi)), (i + 1)m+ in(A(xi+1))}|i = 0, 1, · · · , t− 2}.

��

By the two lemmas above, we have the following corollary.

Corollary 1. If there exist m and k such that Mm contains a permutation sub-
matrix of size k, then the garden hose complexity of the equality function:

GH(EQn) ≤
m

log k
n+O(1).

For example when m = 4, k = 6 thus m
log k = 4

log 6 ≈ 1.547. In [MM12] it is

shown that when m = 8, k = 46 thus m
log k = 8

log 46 ≈ 1.448 which is the best
known result before this paper.

For larger m, we are devising computer programs to search for the maximum
size of permutation submatrix in Mm. We need more properties to search faster.

Lemma 4. Bob’s one configuration cannot cover another one, i.e. B(y) ⊆
B(y′)⇒ y = y′.
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Proof. The water comes out from Alice’s side in configuration (A(y), B(y)). If
we add more hoses on Bob’s side, the water path does not change. So, the water
comes out from the same pipe on Alice’s side in configuration (A(y), B(y′)).
Therefore, y = y′. ��

To find a large permutation submatrix, we first want to find a large set of Bob’s
configurations such that one doesn’t cover another. In the program, we assume
each configuration in the set has the same number of pipes, so we don’t need to
worry about the covering problem. Moreover, to maximize the size of the set,
we assume Bob’s hoses covers almost half of the pipes. Appendix A gives more
ideas of our simulated annealing program.

3 Some Symmetric Solutions

From previous section we know that when m = 12, k = 395, m
log k = 12

log 395 ≈
1.391 which is already better than 1.448 in [MM12]. However, if we want better,
unstructured searching program does not help any more. One possible hope
is to study the structure of solutions, in particular we are interested in those
symmetries behind some solutions. In this section we use one example to explain
the basic idea then generalize it in next section.

It is known that M4 contains a permutation submatrix of size 6. Here we write
down one solution(the permutation submatrix).

12 13 14 23 24 34
01, 23
01, 24
01, 34
02, 13
02, 14
03, 12

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Here Alice and Bob are computing the equality function f(x, y) where x, y ∈
[6]. On input x, Alice makes a configuration A(x), while on input y, Bob makes
a configuration B(y). Thus we can also write the above solution in the following
form.

A(1) = {01, 23}, B(1) = {14}

A(2) = {01, 24}, B(2) = {13}

A(3) = {01, 34}, B(3) = {12}

A(4) = {02, 13}, B(4) = {24}

A(5) = {02, 14}, B(5) = {23}

A(6) = {03, 12}, B(6) = {34}

The symmetry of the above solution can be seen in two ways, although equiv-
alent.
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First let us assume that Alice and Bob only know how to connect pipes on
input (1, 1), i.e. they only have

A(1) = {01, 23}, B(1) = {14}

now the question is: how can they get other configurations from (A(1), B(1))?
One possible way is to use a group to act on (A(1), B(1)). By doing this, hopefully
they can get all other configurations. In other words, the final solution is invariant
under some group action.

Two groups fit for our setting here, the alternating group A4 and the sym-
metric group S4. Take A4 for example.

A4={(1),(123),(132),(124),(142),(134),(143),(234),(243),(12)(34),(13)(24),(14)(23)}

For an element σ ∈ A4, define its action on A(1), B(1) as

A(σ) = {0σ(1), σ(2)σ(3)}, B(σ) = {σ(1)σ(4)}

then we have

A((1)) = {01, 23}, B((1)) = {14} → A(1), B(1)
A((123)) = {02, 13}, B((123)) = {24} → A(4), B(4)
A((132)) = {03, 12}, B((132)) = {34} → A(6), B(6)
A((124)) = {02, 34}, B((124)) = {12}
A((142)) = {04, 13}, B((142)) = {24}
A((134)) = {03, 24}, B((134)) = {13}
A((143)) = {04, 12}, B((143)) = {34}
A((234)) = {01, 34}, B((234)) = {12} → A(3), B(3)
A((243)) = {01, 24}, B((243)) = {13} → A(2), B(2)

A((12)(34)) = {02, 14}, B((12)(34)) = {23} → A(5), B(5)
A((13)(24)) = {03, 14}, B((13)(24)) = {23}
A((14)(23)) = {04, 23}, B((14)(24)) = {14}

Note that the group action also generates other configurations which are not
in the solution, for example A((124)) = {02, 34}. However, this should not be a
problem since if we look into the row of A((124)) in matrix M4, it is exactly the
same as row A((234)) = {01, 34}, thus we still get a solution by choosing any
one of A((234)) or A((124)).

Another way to look into the symmetry of the above solution is through
geometry. Treat four pipes as four vertices of a regular tetrahedron. Let vertex 1
be water-in pipe and vertex 4 be water-out pipe, 2 and 3 are connected by Alice
while 1 and 4 are connected by Bob. This is the initial configuration (A(1), B(1))
as before, and call it the base construction. Now rotate or reflect the tetrahedron
(see figure 2), then the rotation group A4 or the symmetric group S4 of the
tetrahedron are exactly the same as we discussed from the first perspective. Also
the meaning of equivalence between A((234)) and A((124)) discussed above can
be explained here as we are not making any difference by switching the water-in
and water-out pipe since it does not change the side where water comes out.
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Fig. 2. A geometric explanation of symmetric solutions

4 Group Invariant Framework

The symmetry discussion in previous section can be summarized by the following
formula:

symmetric solution = base construction + group action

Now we generalize this idea here.
Let m be an even integer as before. Let t be the number of hoses that Bob

uses. Without loss of generality we assume that on input (1, 1),

A(1) = {01, 23, · · · , (2t− 2)(2t− 1), (2t+ 1)(2t+ 2), · · · , (m− 1)m}

B(1) = {12, 34, · · · , (2t− 1)(2t)}
Here (A(1), B(1)) is the base construction.

Let G ≤ Sm be a permutation group. For every g ∈ G, define the group action
as

A(g)={0g(1), g(2)g(3), · · · , g(2t−2)g(2t−1), g(2t+1)g(2t+2), · · · , g(m−1)g(m)}

B(g) = {g(1)g(2), g(3)g(4), · · · , g(2t− 1)g(2t)}. (1)

Now we can check matrix Mm if the intersection of rows {A(g)|g ∈ G} and
columns {B(g)|g ∈ G} forms a permutation submatrix. If so, then we call G an
(m, t)-garden hose permutation group. However, in some cases, the intersec-
tion may contain repeated rows or columns. If we remove those repeated ones and
the rest still forms a permutation submatrix, then we callG aweak (m, t)-garden
hose permutation group. Correspondingly, call the solution {A(g), B(g)|g ∈ G}
a (weak) group invariant solution. For example, S4 and A4 discussed in section
3 are both (4, 1)-weak garden hose permutation groups.

Now we are reducing the problem of the garden hose complexity for the equal-
ity function to the problem of deciding which group is a garden hose permutation
group. If there is an (m, t)-garden hose permutation group G, then the garden
hose complexity for the equality function

GH(EQn) ≤
m

log |G|n+O(1). (2)
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5 Group Invariant Construction

For a given m, we can check all conjugacy classes of the subgroups of symmetric
group Sm, to see which one is a (weak) garden hose permutation group. Each
of them gives an upper bound for GH(EQn) according to formula (2). Tables of
Marks [PM] shows conjugacy classes of the subgroups of small symmetric groups.
Note that to check if a submatrix in Mm is a permutation matrix is much easier
than searching a permutation matrix in it. Moreover, lemma 5 helps us check if
a group is a gardenhose permutation group in a more efficient way by scanning
only one row or column of submatrix generated by that group. Appendix B lists
some results by computer programs.

Lemma 5. G is a garden hose permutation matrix if and only if the intersection
of row A(1) and columns B(g) : g ∈ G has exactly one 1.

Proof. ⇒ By definition.
⇐ Denote by M = {A(g)|g ∈ G} × {B(g)|g ∈ G}. It suffices to show that (1)
every row in M has exactly one 1; (2) every column in M has exactly one 1.
(1) follows from the observation that the intersection of A(h1) and B(h2) in
M has the same value as the intersection of A(g−1h1) and B(g−1h2) for any
g, h1, h2 ∈ G. (2) is verified since the column B(1) in M has exactly one 1 by
the same observation.

5.1 Wreath Product Construction

There is a particular group which stands out in our search results. Denote it by
W2. W2(≤ S10) has generators

(3, 5, 10), (2, 7, 8), (1, 2, 3)(4, 7, 10)(5, 6, 8).

For those familiar with wreath product[OOR04], we know that W2
∼= C3 ! C3,

the wreath product of two cyclic group of order 3. Computer program tells us
that W2 is a (10, 2) garden hose permutation group. Since |W2| = 34 = 81, by
formula (2) we get m

log |W2| =
10

log 81 ≈ 1.577. This ratio is worse than best result

by our simulated annealing program, and it is even worse than 1.448 by Margalit
and Matsliah[MM12]. However, the reason that why it stands out from others
is its special structure: the wreath product, from which there is a way we can
generalize, in hope of beating best current result.

A natural question is: is there any large l such that there exists a garden hose
permutation group Wl and Wl

∼= C3 ! · · · ! C3︸ ︷︷ ︸
l

? We conjecture that this is the

case.

Conjecture 1 (3-tree conjecture). For every l ≥ 2 there exists a group Wl ≤
S3l+1, Wl

∼= C3 ! · · · ! C3︸ ︷︷ ︸
l

and Wl is a (3l + 1, t) garden hose permutation group

for some t.
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One consequence of the 3-tree conjecture is: we can push the upper bound for
GH(EQn) even further.

Theorem 2. If conjecture 1 holds, then the garden hose complexity of the equal-
ity function:

GH(EQn) ≤
2

log 3
· n+O(1) ≈ 1.262n+O(1).

Proof. Since

|Wl| = 31+3+···+3l−1

= 3
3l−1

2 ,

and m = 3l + 1, thus by formula (2), we have

m

log |Wl|
=

3l + 1

log(3
3l−1

2 )
=

2

log 3
· 3

l + 1

3l − 1
,

for large enough l, the above tends to 2
log 3 ≈ 1.262.

We already know that the 3-tree conjecture holds for l = 2, actually it also
holds for l = 3 which gives us better upper bound for GH(EQn) unconditionally.
And we are ready to prove theorem 1.

Proof (proof of theorem 1). It suffices to provide conjugate representatives for
W3 = g−1Kg ∼= C3 ! C3 ! C3 where
g=(3, 17, 4, 15)(6, 24, 20, 11)(2, 28, 18, 5, 26, 22, 14, 2)(7, 21, 13, 8, 25, 23, 19, 10, 16)
and K is generated by:
(1, 2, 3), (4, 5, 6), (1, 4, 7)(2, 5, 8)(3, 6, 9),
(10, 11, 12), (13, 14, 15), (10, 13, 16)(11, 14, 17)(12, 15, 18),
(19, 20, 21), (22, 23, 24), (19, 22, 25)(20, 23, 26)(21, 24, 27),
(1, 10, 19)(2, 11, 20) · · ·(9, 18, 27)
Then, by computer programs, one can check it is a (28, 7) garden hose permu-
tation group. Thus 28

log 313 ≈ 1.359.

6 Further Research

At least two questions arise. First try to prove the 3-tree conjecture. Second, is
there any other garden hose permutation group besides W2 and W3 such that the
structure can be generalized in order to get better upper bound for GH(EQn)?

The authors would like to thank Mike Saks for useful discussions.
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A Simulated Annealing Program

This program searches for a large permutation submatrix of the configuration
matrix Mm.

We assume m is even, Alice’s configuration has only one open pipe, and Bob’s
hoses covers half of the pipes.

First we find a small permutation submatrix, than it grows larger. In each
iteration, we try to add one row or one column. If it fails to grow at some point,
we remove one row and/or one column from it, and try again. We give the
pseudo-code as below.

/∗
∗ X i s a se t o f rows . Y i s a se t o f columns .
∗ The submatrix X ∗ Y i s the permutation submatrix we want to f ind .
∗/

X = empty se t
Y = empty se t

add a row :
for x in ( a l l rows \ X) in random order {

i f submatrix {x} ∗ Y i s a l l−ze ro {
goto add a column

}
}
/∗ Fai led to add a row . Remove a row and a column . ∗/
Pick a 1 in submatrix X ∗ Y at random .
Denote the l o c a t i o n o f the 1 by (x1 , y1 ) .
Remove x1 from X.
Remove y1 form Y.
goto add a row

add a column :
for y in ( a l l columns \ Y) in random order {

i f submatrix X ∗ {y} i s a l l−ze ro and (x , y ) i s one {
/∗ We have a la rg e r one . ∗/
X = X union {x}
Y = Y union {y}
print X ∗ Y i s a permutation submatrix
goto add a row

}
}

http://ibm.co/P7qNpC
http://www.gap-system.org/Datalib/tom.html
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/∗ Fai led to add a row . ∗/
with prob . 1/4 {

goto add a row /∗ Discard y . ∗/
}
/∗ with prob . 3/4 ∗/
/∗ Remove a row and a column . ∗/
Pick a 1 in submatrix X ∗ Y at random .
Denote the l o c a t i o n o f the 1 by (x1 , y1 ) .
Remove x1 from X.
Remove y1 form Y.
goto add a column

We run the program on a PC. If it has not found a larger permutation sub-
matrix (no “print”) in a long time, we kill the program and run it again. The
following table shows the search results on m ≤ 12, where k is the size of the
maximum permutation submatrix the program find.

m 4 6 8 10 12
k 6 15 48 144 395

running time < 1 sec < 1 sec 10 sec 1 hour 1 day
m/ log k 1.547... 1.535... 1.432... 1.394... 1.391...

B List of Some (Weak) Garden Hose Permutation
Groups
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Abstract. We study the minimum cut problem in the presence of un-
certainty and show how to apply a novel robust optimization approach,
which aims to exploit the similarity in subsequent graph measurements
or similar graph instances, without posing any assumptions on the way
they have been obtained. With experiments we show that the approach
works well when compared to other approaches that are also oblivious
towards the relationship between the input datasets.

1 Introduction

Dealing with uncertainty is an ever more common problem. We are flooded
with data recorded by virtually all modern devices from cars to cellular phones,
data about various networks, observations of different phenomena. In order to
be able to extract meaningful information from this data, we need to be able
to remove or at least identify the noise that is inherently present, whether due
to measurement errors or due to systematic influence of unknown factors. In
this paper we consider a novel method of robust optimization introduced by
Buhmann et al. [1], and apply it to the problem of searching for the global
minimum cut in a graph.

Finding the global minimum cut in a graph is a well studied problem with
applications ranging from information retrieval [2] to computer vision [3]. The
problem is to separate the set of graph vertices V into two non-empty disjoint
sets X and V \X , such that the sum of the weights of edges that have one end-
point in X and another in V \X is minimized. Since a cut is fully determined by
the subset X , we will denote it only by X with the possible caveat that X and
V \X denotes the same cut. We are in particular interested in the minimum cut
as a measure of network robustness [4]: If the weight of an edge represents the
effort needed to cut that particular edge, the minimum cut represents the least
effort necessary to disconnect the graph.

Suppose that we are looking for a minimum cut in a graph, for instance one
that represents connections between nodes in a sensor network. However, instead
of the “true” graph we are only given two snapshots of it from two different points
in time, with the same topology, but with different edge-weights. What should
we do in order to identify a minimum cut in the “true” underlying graph, or a
cut that will be minimum in a third, similar, snapshot?

It is clear that without very precise understanding of the process by which
we obtain the graph measurements, we are unable to answer this question with

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 124–136, 2014.
c© Springer International Publishing Switzerland 2014
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full confidence and thus any solution will be only an heuristic. Nevertheless,
the setting is a realistic and very common one, and we should not give up. For
instance, one intuitive course of action would be to average the weights provided
by two instances edge by edge and compute a minimum cut on the resulting
graph. In this paper we want to show that a different method, also oblivious to
the properties of the data generator, might yield better results.

1.1 Approximation Set Optimization

We will introduce the aforementioned robust optimization method of Buhmann
et al. [1] in greater detail. We will refer to it as approximation set optimization.
Recall that the weight of a graph cut X is the sum of the weights of the edges
that have one endpoint in X and another in V \X , we will denote it by w(X).

Definition 1 (ρ-Approximate Cut)
Let λ(G) denote the weight of a global minimum cut in G. For a parameter ρ ≥ 1,
a ρ-approximate cut X is a cut with weight at most ρλ(G), w(X) ≤ ρλ(G).

Definition 2 (ρ-Approximation Set)
A ρ-approximation set of G, denoted by Aρ(G), is the set of all ρ-approximate
cuts in G, Aρ(G) = {X ∈ V | w(X) ≤ ρλ(G)}.

Let G1 and G2 be two weighted graphs with the same topology but different edge-
weights. The approximation set optimization method states that we should find a
factor ρ, for which the intersection of the ρ-approximation sets Aρ(G1)∩Aρ(G2)
is the largest, when compared to the expected size of this intersection if the
instances were generated at random. We then pick a solution at random from
the intersection of the resulting ρ-approximation sets. Formally, we look for ρ∗

such that

ρ∗ = argmax
ρ

|Aρ(G1) ∩ Aρ(G2)|
Es (|Aρ(G1)|, |Aρ(G2)|)

, (1)

where Es(|Aρ(G1)|, |Aρ(G2)|) is the expected size of the intersection of the ρ-
approximation sets of the given size. We call the value

|Aρ∗(G1) ∩ Aρ∗(G2)|
Es (|Aρ∗(G1)|, |Aρ∗(G2)|)

(2)

unexpected similarity. It is a measure of similarity of G1 and G2, with respect to
the optimization problem of looking for the minimum cut.

In order to successfully apply the method, we need to be able to solve five
problems: Count the number of ρ-approximate cuts in a graph G, count the num-
ber of cuts in the intersection of the approximate sets of two graphs G1 and G2,
compute the function for the expected intersection Es, find the optimal factor
ρ∗, and choose a cut at random from the set of all cuts that are ρ-approximate
for the graphs G1 and G2 at the same time.
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1.2 Related Work

Robust optimization is a widely studied subject. However, in order to be able to
derive provably optimal methods, one needs to restrict the scope of inputs, or
make other strong assumptions about them. For instance Stochastic optimization
[5, 6] and Robust optimization [7] expect that we know respectively the complete
distribution of an instance and the complete set of instances. Various methods of
optimization for stable inputs on the other hand suppose that the input cannot
change too much [8–10]. In our case, by not assuming anything about the input
we lose the ability to apply any of these but greatly increase the scope of problems
for which we can hope to achieve good solutions.

The remainder of the paper is structured as follows. In Sect. 2 we show how to
count the sizes of ρ-approximation sets of cuts and their intersections, in Sect. 3
we will derive a approximate formula for the expected size of the approximation
set intersection on random instances, followed by experimental evaluation of the
method in Sect. 4 and concluding remarks in Sect. 5.

2 Algorithms for Counting Small Cuts

For many combinatorial optimization problems, the problem of counting ap-
proximate solutions is #P-complete, even if the optimization problem itself is
efficiently solvable. The reason for this lies in the possibly exponential number of
solutions. For instance, there can be nn−2 short spanning trees in a graph with
n vertices or 2n−2 short s-t paths in a directed acyclic graph [11]. For minimum
cuts, however, the possible number of near-optimal cuts is small. Dinits et al.
[12] showed that there can be at most

(
n
2

)
= O(n2) minimum cuts in a graph and

Karger [13] showed that the number of ρ-approximate cuts is at most O(n2ρ).
This makes our life significantly easier, since we can afford to enumerate, not
only count the cuts in the approximation sets. Note that calculating the num-
ber of cuts shorter than an arbitrary threshold is still #P-complete [14]. This is
not surprising, since with rising threshold the problem must turn from easy to
difficult, as calculating the maximum graph cut is a NP-complete problem.

There are at least two different algorithms that can compute the ρ-approxi-
mation sets of a graph. One is by Nagamochi, Nishimura and Ibaraki [15] and
it solves the task deterministically in O(mn2ρ) time if m is the number of edges
of the graph with n vertices. The other is an adaption of the recursive contrac-
tion algorithm by Karger and Stein [16], and it finds all ρ-approximate cuts in
O(n2ρ log3 n) time with high probability.

We will use the approach of Karger and Stein because it is the fastest currently
known algorithm. Apart from that it allows us to make an adaptation with which
we can directly compute the approximation sets.

2.1 Karger and Stein’s Algorithm

The main idea of the recursive contraction algorithm [16], described by Re-

cursiveContract in Algorithm 1, to find a minimum cut are random edge
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contractions. It means that edges are repeatedly chosen at random and then
contracted, i.e., the two end vertices of an edge are merged into a single vertex.
The algorithm starts with two entire copies of the graph. On each of them it
performs random edge contractions until the graph has shrunk down to a certain
size. That is, routine Contract(G, x) repeatedly performs edge contractions
in G until only x vertices remain. Then the graph is copied again and the al-
gorithm continues recursively, again on both graphs, until only two vertices and
one connecting edge remain. These two vertices define the cut, since every edge
contracted into one of them corresponds to a vertex of the graph, and the weight
of the remaining edge corresponds to the cost of this cut. The algorithm keeps
track of the found cuts and the best cut is returned. The intuition behind the
algorithm is that in the beginning, the probability of contracting an edge from
a minimum cut, and thus excluding this cut from the set of possible results, is
low. As the algorithm progresses, this chance increases, but this is combated by
the increased number of concurrent evaluations.

Algorithm 1 (Recursive Contraction Algorithm).
RecursiveContract(G)
if |V | ≤ 6 then

G ← Contract(G, 2)
return the cut

else
repeat twice

G′ ← Contract(G, �n/√2 + 1)
RecursiveContract(G′)

return the smaller cut
end

The whole algorithm RecursiveContract runs in O(n2 logn) time. A con-
traction of a graph to 	n/

√
2 + 1
 vertices needs O(n2) time and the depth of

the recursion is in O(log n). The probability that the algorithm finds a particu-
lar minimum cut is at least Ω(1/ logn), since the bound of 	n/

√
2 + 1
 in the

contraction procedure ensures that the probability of not contracting an edge of
the minimum cut is always greater than fifty percent. Finally, if we repeat the
algorithm O(log2 n) times, we will find any particular minimum cut with high
probability. For more details we refer to [13] and [16].

The algorithm can be adjusted in such a way that it returns all minimum cuts
it finds instead of only one. Since the total number of unique minimum cuts in a
graph is bounded from above by

(
n
2

)
, we can find every minimum cut with high

probability, within the total time complexity of O(n2 log3 n).
Karger and Stein’s algorithm can also be modified to find all ρ-approximate

cuts [16], by changing the reduction factor from 	n/
√
2+ 1
 to 	n/ 2ρ

√
2+ 1
 and

stopping the contraction when 2ρ vertices remain. In this case, all remaining pos-
sible cuts are evaluated. The running time increases to O(n2ρ logn), whereas the
success probability remains the same. Since the number of ρ-approximate cuts is
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bounded by Θ(n2ρ), we can find all ρ-approximate cuts with high probabil-
ity by repeating the algorithm O(log2 n) times. This gives the overall time of
O(n2ρ log3 n).

2.2 Approximation Set Optimization Algorithm

Recall that we want to determine ρ that maximizes the unexpected similarity
of the two graphs G1 and G2 with respect to the minimum cut problem. To
this end we first need to compute the ρ-approximation sets of G1 and G2 and
their intersection. The former is done by ApproximationSet(G, ρ), which is
an adapted version of Karger and Stein’s recursive contraction algorithm. Af-
terwards, we are ready to compute the expected and unexpected similarity, Es
and u_sim. By sampling for the best ρ we find the intersection of Aρ∗(G1) and
Aρ∗(G2) from which we can pick a cut at random, as a solution that generalizes
for both instances. The whole process is described in Algorithm 2.

Algorithm 2 (Approximation Set Optimization Algorithm).
for ρ = 1 until ρ = MAX do

Aρ(G1) ← ApproximationSet(G1, ρ)
Aρ(G2) ← ApproximationSet(G2, ρ)
intersection ← intersect(Aρ(G1), Aρ(G2))
u_sim ← |intersection| / Es(|Aρ(G1)|, |Aρ(G2)|)
if u_sim > max_sim then

max_sim ← u_sim
ρ∗_intersection ← intersection

end
end

Now let us discuss some issues of the algorithm in more detail and derive its
time complexity. Karger and Stein’s version of the algorithm returns the cuts
in an implicit way. Since we want to be able to compute the intersection of the
approximation sets of two different graphs as well as to choose a cut from the
intersection and apply it to a third graph, we need them explicitly. One simple
possibility to meet this requirement is to store for each vertex whether it is in
the cut or not. The entire cut can then be represented as a bit string of length n.
Notice, that this notation is ambiguous, since the inverse of a bit string describes
the same cut. We can fix this by allowing only cuts that have the first bit set
to zero. By treating the bit strings as numbers, we can sort the cuts in the
approximation sets and then build the two intersection in a merging fashion in
O(n2 logn) time, since the number of cuts in each approximation set is bounded
from above by Θ(n2ρ).

Returning the cuts in an explicit manner also implies extra work during the
computation of the approximation sets in ApproximationSet(G, ρ). After
every recursion phase the union of the two found approximation sets is returned.
To overcome difficulties like different smallest cut weights and duplicates, one
possibility is to again sort the cuts. This extra work requires a factor of O(log n)
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additional time for the entire approximation set computation. So we end up
with an approximation set algorithm that takes O(n2ρ log4 n) time. The time
to compute u_sim, the unexpected similarity, depends on the complexity of the
function Es. We postpone this to Sect. 3.

The last thing we have to look at is the range and step size of the values for
ρ in the for loop. To choose a good bound for the largest ρ we want to test is
not easy. It depends a lot on the structure of the graphs and the range of their
weights, as well as on how different the instances are. Therefore, we cannot avoid
sampling in a relatively unbounded area. But we may want to start with rather
big steps and refine them as we go on.

3 Expected Intersection Size

Having described an algorithm that counts the size of individual approximation
sets and their intersection, we turn to the question of deriving a formula for the
expected size of the intersection of the approximation sets. For a more detailed
exposure we refer the reader to Chap. 3.2 of the bachelor thesis of Barbara
Geissmann [17].

For the expected similarity, we will only consider cuts on complete graphs.
Otherwise we would need to track whether each cut X cuts the graph into only
two parts, since the Karger-Stein algorithm and its modifications return only
such cuts.

We first show that an arbitrary subset of cuts does not necessarily have to
form a valid approximation set.

Definition 3 (Crossing Cuts). Two cuts X and Y cross each other if X∩Y �=
∅, X − Y �= ∅, Y −X �= ∅, and V −X − Y �= ∅.

Definition 4 (Composed Cuts). Let X and Y be two cuts that cross each
other. Then they must define four further cuts:

Z1 = X ∩ Y Z2 = X − Y
Z3 = Y −X Z4 = V −X − Y .

(3)

We call Z1, Z2, Z3, and Z4 the composed cuts of X and Y .

Theorem 1. If two cuts X and Y in the approximation set Aρ(G) cross each
other, then at least two of the four composed cuts of X and Y have to be in
Aρ(G) as well.

Proof. According to the Fig. 1 we denote by a, b, c, and d the sums of the weights
of the cut edges between the sets Z1, Z2, Z3, and Z4, as in Definition 4. Without
loss of generality, let us suppose that a ≤ b, c ≤ d, b ≤ d. Then, for cuts X and
Y to be in the approximation set, there must be a threshold t := ρλ(G) such
that a + b ≤ t and c + d ≤ t. The four composed cuts will have weights a + c,
a+ d, b+ c, and b+ d. However, it must hold that a+ c ≤ t because both a and
c are at most t/2, and also b+ c ≤ t because we can replace d in c+ d ≤ t with
b which is at most as large. ��
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Fig. 1. Crossing cuts

Theorem 1 shows that not every subset of cuts forms a feasible approxima-
tion set. Using Theorems 1 and 2 from [1] we can conclude that the expression
|Aρ(G1)||Aρ(G2)|/|S|, where S denotes the set of all cuts, is a lower bound on
the expected size of the intersection, but not its true value. We see that as soon
as we have crossing cuts, we lose freedom in the number of cuts which we can
freely choose. We will show that this loss of freedom is substantial enough that
by restricting ourselves to approximation sets without crossing cuts we get a
approximation of the true expected value.

The number of ways in which we can cut a graph of n vertices m times so
that the cuts do not cross is equal to the number of ways we can partition a
set of n integers into m + 1 non-empty subsets. The latter describes the well
known Stirling number of the second kind, denoted by

{
n

m+1

}
, and defined by

the explicit formula {
n

k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn . (4)

Observe that in a complete graph, a non-empty cut on n vertices can be chosen
in 2n−1− 1 ways. Furthermore, the smallest approximation set that can contain
crossing cuts is of size 4. Such an approximation set would be approached by{
n
5

}
. We conclude that at least if the number of vertices n is large compared

to the number of cuts in the approximation set, the loss of freedom to choose
2 additional cuts significantly outweighs the additional flexibility we gained by
choosing the second cut in 2n−1 − 2 ways. Note that with increasing number of
crossing cuts, the number of composed cuts grows even further.

We now calculate the expected similarity for non-crossing cuts and use it as an
approximation for the unexpected similarity when cuts cross. Let k := |Aρ(G1)|,
l := |Aρ(G2)|, and let Fx denote all approximation sets that contain exactly x
cuts. Then by Lemma 2 of [1] we have

Es(k, l)=
1

|Fk||Fl|
∑

F1∈Fk
F2∈Fl

|F1 ∩ F2|= 1

|Fk||Fl|
∑
s∈S

|{F ∈ Fk | s ∈ F}| · |{F ∈ Fl | s ∈ F}|

=
1{

n
k+1

}{
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} ·
∑n−1

i=1
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n
i

)∑k−1
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i

j+1

}{
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}) ·∑l−1
j=0

({
i

l+1

}{
n−i
l−j

}))
(2k+1 − 2)(2l+1 − 2)

. (5)
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The factors 2k+1 − 2 and 2l+1 − 2 prevent from double-counting by choosing
the same cuts in a different order.

Deriving a closed formula for Es seems difficult, due to the Stirling numbers
of the second kind. We can, however, evaluate the expression algorithmically for
every necessary k and l. In order to avoid straight-forward O(n7) computation,
we pre-compute all binomial coefficients from

(
n
1

)
to
(

n
n−1

)
in linear time using

the identity
(

n
i+1

)
=
(
n
i

)
· (n−i)
(i+1) . Similarly, using the combinatorial identity

{
n
k

}
=

k
{
n−1
k

}
+
{
n−1
k−1

}
, we can pre-compute all Stirling numbers from

{
0
0

}
to
{
n
n

}
in

time O(n2). Using the previously pre-computed values, we can compute all inner
summands for different values of l and k in O(n3) time and space. An evaluation
of the formula for two particular values of k and l thus needs only O(n) time
and the evaluation for all possible pairs of k and l thus fits into the O(n3) time
necessary for the pre-computations.

4 Experimental Results

In order to evaluate the performance of the approximation set optimization for
this problem, we tested it on various sets of input instances and compared the
performance to two other algorithms. The first being an algorithm where we
average edge weights edge by edge and compute minimum cut on the resulting
graph and the second being an algorithm where we increase ρ until the intersec-
tion of ρ-approximation sets is non-empty for the first time and we choose the
cut from this intersection. We look at this second algorithm because it intuitively
seems to be a very good approach.

4.1 Tests

Every test is as follows. Three complete, undirected, weighted graph instances
are taken as input, where the first two are used to predict a good solution for
a future one. Then, this solution is tested against the third instance. Fig. 2
illustrates all tests done.

4.2 Data

We run experiments on three different kind of graphs to evaluate the quality
of the found solution: On graphs constructed with real world data which we
expect to be similar, on totally random graphs which we do not expect to be
similar at all, and on artificially generated similar random graphs, which all
have some small cuts in common. The tests on real world data are based on
the historical daily prices between 1999 and 2010 of thirteen different stock
indices1 [18]. The vertices of our graph correspond to individual stock indices
and the edges between them correspond to their similarity with respect to the
1 BEL-20, Dow Jones, Hang Seng, Nikkei, AEX, CAC-40, Dax, Eurotop100, FTSE100,

JSX, Nasdaq, AS30, RTSIndex, SMI.
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Input: Three complete, undirected, weighted graphs, G1, G2, and
G3.
Output: Four different results:

– Average: Add the edge weights of G1 and G2 pairwise. Compute
a minimum cut for the new formed graph. Apply the solution on
G3.

– FirstIntersection: Find the smallest ρ that results in a non-
empty intersection of the ρ-approximation sets for G1 and G2.
Pick a random cut from the intersection and apply it on G3.

– BestSimilarity: Find ρ∗ which maximizes the unexpected sim-
ilarity of G1 and G2. Pick a random cut from the intersection and
apply it on G3.

– Optimum: Compute a minimum cut of G3.

Fig. 2. Specification of the Experiment

problem of finding a contiguous sub-array of maximum sum2, as calculated by
the approximation set optimization method [1]. Every graph corresponds to one
year. For the random graphs, we assign a random weight to every edge. For
the artificially made similar graphs we randomly define some cuts to be small
and allocate small weights to their edges. To all the other edges we randomly
assigned a weight from a larger range.

4.3 Results

Real World Data. Since similarity compares exponentially growing quantities,
we took logarithms of the generated edge weights. The results are listed in Fig.
3. In addition to results on all tests, we extracted pairs of instances with higher
than median unexpected similarity and tried to use only those to predict results.
As perhaps the only unexpected result, this did not seem to improve the speci-
ficity. It seems that the differences between various years vary too much (which
corresponds to our ability to predict market behaviour, which is, in general,
poor).

sum of % of opt sum of all % of opt
all tests tests with

(858) U ≥ Ũ (462)
Average 65062.20 188.70% 34826.08 187.28%
First Intersection 63682.42 184.70% 34702.42 186.62%
Best Rho 63116.60 183.06% 34702.42 186.62%
Optimum 34478.63 100.00% 18595.24 100.00%

Fig. 3. Stock Market Data (Logarithmised)

2 In other words, finding out when to buy and when to sell in order to maximize profit,
if we are only allowed to do each operation once.
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Random Graphs. These experiments are mainly done for control purposes. If
the data is truly random, we do not expect any algorithm to hold a significant
edge, and indeed, the results reflect this. Note that while no algorithm works well
here, we are able to realize that this will be so due to low unexpected similarity
between instances. Figs. 4 and 5 list the results.

sum of % of opt sum of all % of opt
all tests tests with

U ≥ Ũ (260)
Average 460763 132.74% 232340 132.91%
First Intersection 459802 132.47% 232688 133.11%
Best Rho 458033 131.96% 232546 133.03%
Optimum 347112 100.00% 174810 100.00%

Fig. 4. Random Graphs of 15 Vertices, Edge Weight Range [0-255]

sum of % of opt sum of all % of opt
all tests tests with

(512) U ≥ Ũ (261)
Average 1616070 122.16% 820594 121.99%
First Intersection 1612010 121.86% 821715 122.15%
Best Rho 1602646 121.15% 820574 121.99%
Optimum 1322892 100.00% 672683 100.00%

Fig. 5. Random Graphs of 50 Vertices, Edge Weight Range [0-255]

Similar Random Graphs. With these experiments we wanted to verify our expec-
tation that results improve with increasing similarity of graphs, e.g. the larger
the expected value of a random cut gets compared to the expected value of a
small cut, the better are our results, see Figs. 6, 7, and 8. For fixed small cut
cost we get even better results, see Figs. 9, 10, and 11.

sum of % of opt sum of all % of opt
all tests tests with

(512) U ≥ Ũ (259)
Average 142105 114.43% 65818 108.95%
First Intersection 139536 112.36% 64596 106.93%
Best Rho 139331 112.20% 64596 106.93%
Optimum 124182 100.00% 60410 100.00%

Fig. 6. Similar Graphs with Small Range [0,31] and Big Range [0,255]
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sum of % of opt sum of all % of opt
all tests tests with

(512) U ≥ Ũ (286)
Average 132521 116.03% 72361 113.60%
First Intersection 131285 114.95% 70983 111.44%
Best Rho 128573 112.57% 70983 111.44%
Optimum 114213 100.00% 63697 100.00%

Fig. 7. Similar Graphs with Small Range [0,31] and Big Range [0,127]

sum of % of opt sum of all % of opt
all tests tests with

(512) U ≥ Ũ (258)
Average 126123 119.87% 61841 116.91%
First Intersection 126831 120.54% 61923 117.06%
Best Rho 123126 117.02% 61581 116.42%
Optimum 105220 100.00% 52897 100.00%

Fig. 8. Similar Graphs with Small Range [0,31] and Big Range [0,63]

sum of % of opt sum of all % of opt
all tests tests with

(512) U ≥ Ũ (401)
Average 79607 110.85% 57501 104.94%
First Intersection 78311 109.04% 57603 105.13%
Best Rho 77953 108.54% 57573 105.08%
Optimum 71818 100.00% 54792 100.00%

Fig. 9. Similar Graphs with Small Cut Weight 240 and Random Weight Range [0,255]

sum of % of opt sum of all % of opt
all tests tests with

(512) U ≥ Ũ (402)
Average 155440 111.97% 117571 106.03%
First Intersection 155676 112.14% 117530 106.00%
Best Rho 153880 110.84% 117530 106.00%
Optimum 138828 100.00% 110881 100.00%

Fig. 10. Similar Graphs with Small Cut Weight 500 and Random Weight Range [0,255]

Computation Time. Intuitively, the smaller and the more similar the graph
instances are, the faster we should find ρ∗. This is the case because the size
of the intersection of the two approximation sets is non-empty even for small
values of ρ, and we can stop the search sooner. Our experiments confirmed this.
However, even the test cases with the largest graphs and worst similarity values,
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sum of % of opt sum of all % of opt
all tests tests with

(512) U ≥ Ũ (374)
Average 292254 107.90% 217775 104.36%
First Intersection 291094 107.47% 217787 104.36%
Best Rho 288942 106.68% 217685 104.32%
Optimum 270853 100.00% 208679 100.00%

Fig. 11. Similar Graphs with Small Cut Weight 1000 and Random Weight Range
[0,255]

i.e., random graphs with fifty vertices, completed in less than a minute on a
single core of a usual processor.

5 Conclusion

We showed how to apply approximation set optimization to the problem of look-
ing for a minimum cut in a graph by adapting a known minimum cut algorithm
and estimating the expected intersection of two sets of small cuts.

In general, the experimental results reaffirm our expectation that the algo-
rithm is better at generalizing than other simple heuristic algorithms. In addition
to this, the unexpected similarity gives us additional information about the use-
fulness of our result. In some applications this can be a significant benefit. Having
information about the quality of the calculated solution may be very important,
in particular when the calculated solution is far from optimal.

By the choice of the optimal parameter ρ, our approach selects a set of mini-
mum cuts which are expected to have low weight in the following graph instances.
This can be of significant help as it divides the solution space into sets of relevant
and irrelevant cuts, for instance, in a network robustness scenario, it separates
the cuts that are likely to be critical from those that are not.
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Abstract. Large volume surveillance missions are characterized by the
employment and collaboration of several agents processing diverse infor-
mation sources’ inputs in order to ensure a surveillance task. Given the
time dependant relevance of the shared information, an efficient global
routing policy needs to be set up to optimize information exchange in
the backbone of the surveillance network. We propose to model this
problem as a single path multicommodity flow problem, where several
commodities are to be shared in a capacitated network. The consid-
ered objective function is to minimize the overall network congestion.
As the problem is NP-Hard, a hybrid genetic approach is proposed as
a solution approach. A greedy search procedure based on the nearest
neighbor method is transplanted into the genetic algorithm. The em-
pirical validation is done using a simulation environment called Inform
Lab. A comparison to a state-of-the-art ant colony system approach is
performed based on a real case of maritime surveillance application and
some randomly generated instances. The analysis of the results obtained
in the two sets was supported by statistical nonparametric Wilcoxon
signed-rank tests. The experimental results show that the hybrid genetic
algorithm performs consistently well for large sized problems.

1 Introduction

In a surveillance system, information processing is not necessarily performed by
a centralized unit. With the advent of social networking, distributed computing
and smart sensors, surveillance task has become a network distributed process.
A surveillance mission is characterized by the collaboration of several nodes pro-
cessing diverse information sources’ inputs in order to achieve a global goal. These
interactions rely on a communication network supporting the information sharing
among the dispersed entities. The execution of any surveillance mission requires
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a web of heterogeneous communication networks to exchange information and co-
ordinate actions. This network is generally composed by mobile and fixed surveil-
lance assets. The stationary nodes represent the network backbone. Given that
such network is private and configurable, a centralized global routing algorithm
for the backbone can be designed prior to the mission execution to ensure meet-
ing the global goal. The considered routing problem consists of sending various
messages from a set of sources to different destinations. Each node in the network
can be an information producer (source) or/and an information consumer (desti-
nation) or simply a neutral relay node. An arc is characterized by a transmission
delay. We assume that each source has a preforcasted bandwidth demand, that
represents the transmission rate of this node. Different routing algorithms were
proposed in the literature assuming a centralized control of route selection. In the
context of multiple pairs of source-destination have to be managed, the problem
is defined as a multicommodity flow problem (MCFP) [1] which was largely ap-
plied to transportation problems. In telecommunication, a commodity represents
a certain demand of a telecommunication traffic between two nodes.

In this paper, the routing objective is to ensure having a load balance over the
network, by minimizing the most congested arc traffic value, with the constraint
that each communication request can only be communicated on a single path be-
tween its source and destination nodes. Although the requirement that the data
flow of each request is communicated using a single path may reduce the utiliza-
tion of network resources, this assumption is prevalent in a number of application
contexts especially for real-time applications [10]. For instance a video streaming
in a surveillance context requires keeping the traffic intact, that is, without demul-
tiplexing at the source, independent switching at intermediate nodes, and multi-
plexing at the destination. The solution of this problem consists of defining how to
exchangemessages frompairs of producers-consumersnodes by generating a single
transmission path, such that it minimizes the traffic in the most congested arc.

This routing problem can be modeled as a single path multicommodity flow
problem (SMCFP) [3]. The problem was recently studied by Li et al. [10], in the
context of an optical switching network, where minimizing network congestion is
an important concern in traffic grooming over wavelength division multiplexing
(WDM) for a given logical topology. As a solution approach, and given the NP-
hardness of the SMCFP, an ant colony system metaheuristic was designed [10].
In this paper, we propose a more effective metaheuristic based in hybrid genetic
algorithm (HGA). The k-shortest paths for every source-destination pair is used
to initialize the population. To avoid the premature converge of the GA, a greedy
local searchmethod is transplanted to push the search process towards unexplored
areas. The local search procedure is based in the nearest neighbor search method,
integrated during the mutation phase. A series of experiments is conducted based
on real application of maritime surveillance as well as some randomly generated
large instances. The experimental results prove the efficiency of the HGA.

This paper is organized as follows. Section2 provides an the literature overview
of related routing algorithms. Section 3 presents the problem description and
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its mathematical programming formulation. Section 4 describes the proposed
solution approach. Section 5 provides some experimental results illustrating the
efficiency of the proposed method.

2 Literature Review

An efficient routing algorithm should find an optimum path for packet trans-
mission so as to satisfy some quality of services (transmission delay, bandwidth
consumption, packet loss) [3,10,11]. Different routing protocols were designed in
the literature depending on network architecture and the application context.
On one end of the spectrum are the widely used network protocols designed
based on engineering heuristic algorithms. As noted by Chiang et al. [6] these
algorithms lack the theoretical foundation to analyze how well the network per-
forms globally (e.g., whether the network resources are optimally shared). On
the other end of the spectrum, recent progress has put many routing protocols
on a mathematical foundation as well using network flow models. In these op-
timization frameworks, traffic demand is usually assumed to be known a priori.
In the standard network flow problem the object is to send a flow through a
network from some set of source nodes to a set of destination nodes, in some
optimal fashion. For a solution to be feasible it must comply with the mass
balance constraints for each node, i.e. the flow into a node must equal the flow
out of the node, and the flow on each arc must not exceed the arc’s capacity. If
multiple pairs of source-destination nodes are managed, the problem is modeled
as a multicommodity flow problen (MCFP) [1]. In the MCFP problem several
entities, or commodities, share the network. Each commodity has its own mass
balance constraints, but the arc capacity constraints are shared.

Different objective functions were considered in the literature, such as, the
cost, average delay, maximum congestion, reliability and maximum flow. As-
suming that the demand can be split along several paths, the complexity of the
MFCP is polynomial. The reader can refer to Ahuja et al. [1], for a comprehensive
survey of linear MCFPs and the different solution approaches.

However for some applications, an upper bound on the number of paths used
by each commodity needs to be set. This NP-hard problem is called the mul-
ticommodity k-splittable flow problem (MCkFP). MCkFP was introduced by
Baier et al. [5], they presented approximation algorithms for both single and
multicommodity k-splittable flow problems, while considering the maximum flow
problem with the maximum budget-constrained. Truffot et al. [15] used branch-
and-price to solve the maximum MCkFP.

When k = 1, i.e all flow for each commodity must be sent via just one path,
such problem is denoted the SMCFP or the unsplittable MCFP, first introduced
by Kleinberg [8] and proven to be NP-hard. This assumption of having a sin-
gle path is necessary in real time applications. It may be also applicable to
circuit-oriented technologies such as optical networks employing WDM. In such
network, to be able to send data from one access node to another, one needs
to establish a single route, also called a light path, between the two nodes and
to allocate a free wavelength on all of the links on the path. Bandyopadhyay
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[2] studied the SMCFP to model the non-bifurcated traffic grooming problem,
having the objective of minimizing the cost of the network by minimizing the
number of lightpaths and maximizing the throughput of the network. Decom-
position method is considered to computationally solve this problem on large
networks. Alternatively, Barnhart et al. [3] proposed an exact method using
branch-and-price-and-cut algorithm. Such exact algorithms are feasible only for
small instances. More recently, a metaheuristic approach based on ant colony
system method was developed [10], while studying two variants of the problem.
The first version minimizes the network congestion, in order to solve the problem
traffic grooming over WDM. The second version considers the general case of
the minimum cost SMCFP.

3 Problem Description

In this paper, we address the optimization of information routing in surveil-
lance network. This problem is about exchanging various messages from a set of
sources to different destinations. Each node in the network can be an informa-
tion provider (source) or/and a destination requiring an information or simply a
relay node. These nodes are connected across a web of heterogeneous links. An
arc is characterized by a limited capacity c, we assume throughout the paper
that all the arcs have the same capacity. Given these statements, the network
can be modeled as a directed graph (N,A) where N = {v1, .., v|N |} is the set of
nodes and A = {e1, .., e|A|} is the set of arcs. Each arc from a node i to node
j is represented by (i, j). The solution of this problem consists of defining how
to exchange messages from pairs of producers-consumers nodes by generating a
single transmission path, such that it minimizes the traffic in the most congested
arc. The SMCFP can be described using a mathematical model [10] as follows:

Notation:

N the set of nodes {v1, .., v|N |}
A the set of arcs {e1, .., e|A|}
K the set of commodoties
sk the source node of commodity k

dk the destination node of commodity k
sizek the size of the supply of

commodity k

λmax network congestion that equals the
maximum traffic load on network’s arcs

xk the flow vector of commodity k

xk
ij a binary decision variable⎧⎨

⎩
1 if the entire quantity of
commodity k uses arc (i, j)

0 otherwise
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min λmax (1)

s.t ∑
k∈K sizek xk

ij ≤ λmax (i, j) ∈ A (2)

∑
j:(i,j)∈A xk

ij −
∑

j:(j,i)∈A xk
ji =

⎧⎨
⎩

1 if i = sk
-1 if i = dk
0 otherwise

i ∈ N k ∈ K (3)

xk
ij ∈ {0, 1} (i, j) ∈ A k ∈ K (4)

The objective of SMCFP is to minimize network congestion value λmax. Con-
straints (2) define the congestion value in the network. Constraints (3) and (4)
ensure that each commodity is sent along a single path linking its source sk to
its destination dk.

4 Solution Approach: A Hybrid Genetic Algorithm
(HGA)

The combinatorial structure of the proposed model makes generation of the
solution difficult and time consuming. In addition, the problem complexity is NP-
hard due to the single path constraint. These reasons justify the computational
impracticality of exact algorithms for solving this problem. Therefore, we propose
to solve it using a metaheuristic method, based on genetic algorithm (GA).
Owing to the distinctive features such as domain independence, robustness and
parallel nature, GAs have been proved to be an effective approach for solving
optimization problems. The successful application of GAs for solving similar
routing problems [14] motivated the choice of the metaheuristic. Starting with
an initial population, constructed by a greedy procedure, the individuals evolve
to new solutions that approximate better the global optimum. The basic outline
of the algorithm is described, and each procedure is briefly explained.

4.1 Chromosome Representation

Better efficiency of GA-based search could be achieved by well defining the chro-
mosome representationand its related operators so as to generate feasible solutions
and avoid repair mechanism. Figure 1 depicts the structure of a chromosome. A
chromosome is coded as a vector of K substrings where K is the number of com-
modities. Each substring is composed of the list of indexes i of the used arcs ai
composing the generated path.
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Fig. 1. Chromosome representation

Hybrid genetic algorithm

Initialization

i = 0
Set the parameters values: Population size L, propability crossover Pc

and the stopping criteria
Generate first population P0 of size L

Iterative process
repeat
i = i+ 1
Crossover: generate the set Ri of offspring of size L
Mutation: apply the nearest neighbour method
Pi = Pi−1 ∪Ri

Evaluate the generated offsprings
Select best L solution from Pi

until (Stopping criteria is met)

4.2 Generating the First Population

A hybrid approach is used for the initialization of the population. For every
source-destination pair the k-shortest paths connecting them are generated using
Yen’s algorithm [9]. Each gene in a chromosome represents one of the k-shortest
paths selected randomly. Thus a single chromosome contains a set of plausible
paths for all the source-destination pairs.

4.3 Crossover

The proposed algorithm applies the random key method for the crossover; the
offsprings are produced from two parent solutions following these steps:
1) two chromosomes ch1 and ch2 are chosen from the current population Pi

2) a probability p is randomly generated
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3) if p < Pc then the substring for a new child is chosen from the first chromosome
ch1 otherwise it is taken from the second chromosome ch2

4) Repeat 2 and 3 until reaching the last substring.

4.4 Mutation: Nearest Neighbor Method

A random uniform mutation with a probability of Pm = 1/L is used, where
L is the population size. After choosing the chromosome s to be modified, a
greedy algorithm based on nearest neighbor method is used. One of the paths
in the current solution s will be reconstructed using a greedy procedure, while
keeping the same paths for the other commodities. The main idea is to search
for a new path that has a minimum congestion while considering the changes
made in the available capacity in the network. We propose to use a probabilistic
path construction strategy so that we start from the source node and move until
reaching its corresponding destination. The choice of a neighbor depends on a
local information θij of an arc (i, j). This value is expressed in terms of the traffic
load lij of the link;

θij =
1

lij
(5)

While constructing a path, and to move from a current node i to another, a
probabilistic selection rule is applied. The next node is chosen using the roulette
wheel selection procedure of evolutionary computation. The probability distri-
bution is:

pij =
θij∑

h∈N(i) θih
∀j ∈ N(i) (6)

Where N(i) defines the neighborhood of node i.

4.5 Selection Procedure

After generating the offsprings, the obtained solutions are evaluated according
their fitness function (λmax). L solutions are selected to be the population of
the next iteration using the roulette wheel selection. In this method the chro-
mosomes are selected according to their fitness. Better chromosomes, are having
more chances to be selected as parents. It is the most common method for im-
plementing fitness proportionate selection.

5 Experimental Study

We performed many computational experiments for different problem sizes in
order to validate the performance of the HGA. The algorithm is coded in Java.
A Core2 duo 2GHZ laptop has been used for these experiments. As a simulation
environment, we used Inform-Lab simulation testbed [13,7]. This environment
enables to execute different algorithms for distributed information fusion and
dynamic resource management. An empirical comparison with the Ant Colony
System (ACS) method [10] is performed.
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5.1 Parameter Tuning

The parameter setting of a metaheuristic may impact the solution quality. We
propose to use an automatic procedure, F-Race to determine the best config-
uration of some main GA parameters. The F-Race approach is proposed by
Birattari [4] to automatically configure a metaheuristic. Among a set of candi-
date configurations, the final configuration returned by the F-Race procedure is
detailed in table 1. The same stopping criteria is used for both HGA and ACS,
expressed in terms of a maximum number of iterations, number of iterations
without improvement and maximum CPU time.

Table 1. Parameter setting

Parameter Value

Population size 200
Pc 0.6
Nb of iterations 1000
Nb of iterations without improvement 100
Max CPU time(s) 500

5.2 Experimental Results

The experimental design is in two-fold:

– We test the efficiency of the HGA in a real case of routing in a maritime
surveillance problem. As some of these instances are fairly of small sizes,
CPLEX 12.2 is also implemented to solve them optimally using the (1)-(4)
formulation.

– We propose to characterize the proposed algorithm by providing more em-
pirical results showing its performance (quality of solution and CPU time
versus problem size) in a larger set of randomly generated instances.

The analysis of the results obtained in the two sets was supported by statistical
nonparametric Wilcoxon signed-rank tests, with a 95% confidence level.

1. Real case of maritime surveillance problem:
Inform lab is a testbed supporting the development of two groups of algo-
rithms, which are particularly useful for wide-area surveillance applications:
distributed dynamic information fusion and distributed dynamic resource
management. It contains different surveillance vignettes with different sce-
narios (detecting that a boat is sinking, or some entity is smuggling). In a
vignette several cooperative platforms are deployed. These agents are coop-
erating in order to fulfill a mission. The large volume surveillance problem
is characterized by the employment of mobile and fixed surveillance assets
to a large geographic area in order to identify, assess and track the maxi-
mum number of moving, stopped or drifting objects. Platforms include satel-
lites, airborne platforms (e.g., helicopters, marine patrol aircraft and UAVs),
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Fig. 2. Inform Lab testbed [13]

seaborne platforms (e.g., coastguard, military and police vessels), stationary
and land platforms (e.g., radar stations, land vehicles). Coastal surveillance
are good examples of large volume surveillance. During the mission, a set
messages has to be shared between these platforms. The proposed HGA is
used in order to optimize the messages routing in the backbone of the surveil-
lance network. The real case study supports the mission “is smuggling” in
the coastal area of Vancouver Island, contains a network of 50 nodes and 421
arcs. The nodes are fixed assets representing the potential sites in the pa-
cific coast of Vancouver. This networks is heterogeneous composed by both
optical and cellular mediums. Considering this network, different scenarios
where generated to vary the number of commodities. Traffic estimation is
performed prior to the execution of the algorithm to get the sizes of the com-
modities. A screenshot of the testbed running is depicted in figure 2. The
comparison was supported by statistical nonparametric Wilcoxon. We report
in table 2 the results of Cplex , HGA and ACS (the best generated solution
value best, the standard deviation value Std and the CPU time) over 30
independent runs of each problem instance. The results of the Wilcoxon test
are given in the last column wilc, where +, -, and ≈ denote that the HGA
performed significantly better than, significantly worse than, or statistically
equivalent to the ACS, respectively.

2. Experiments with randomly generated instances:
A set of 15 random large instances is generated. We kept the same empirical
design defined by Li et al. [10], in order to have a meaningful comparison.
The instance features are summarized in Table 3. The number of nodes varies
between 40 to 60, and the number of arcs ranges between 209 to 386. We
assume that a communication request exists between each pair of nodes.
The reader can refer to [10] for more details about the instances setting.
Each Instance is solved with 30 independent runs. We report in table 3 the
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Table 2. Experimental results of the surveillance case study

Problem |k| Cplex HGA ACS Wilc
OPT CPU(s) Best Std CPU(s) Best Std CPU(s)

1 100 521 342 521 0 9.2 521 0 6.4 ≈
2 200 584 379 584 0 10.5 584 0 7.1 ≈
3 300 654 532 654 0 12.7 654 0 8.9 ≈
4 400 738 487 738 0 13.7 738 5.7 11 ≈
5 500 806 327 811 8.6 14.2 806 4.9 13.5 −
6 600 876 549 876 6.7 16.7 886 5.6 15.3 ≈
7 700 1021 1863 1021 9.4 17.6 1034 10.2 17.8 ≈
8 800 1086 742 1086 10.7 18.4 1099 12.7 18.9 +
9 900 1119 802 1121 12.3 15.2 1187 11.5 16.9 +
10 1000 1235 637 1235 11.7 20.1 1256 12.8 22.3 +
11 1100 1298 1568 1298 2.8 16.3 1346 14.9 28.6 +
12 1200 1421 1084 1426 13.7 21.7 1435 11.6 35.5 +
13 1300 1527 893 1537 10 22.7 1566 15.2 43.2 +
14 1400 1647 2155 1662 15.4 24.9 1702 20.9 50.4 +
15 1500 1754 1428 1754 18.2 27.5 1798 17.5 59.6 ≈
16 1600 1884 1964 1896 17.5 25.8 1996 18.6 64.4 +
17 1700 - - 2027 20.4 29.6 2081 19.4 80.1 +
18 1800 2178 2866 2198 23.5 30.1 2254 21.4 112.8 +
19 1900 - - 2284 25.7 31.7 2311 25.9 129.8 +
20 2000 - - 2465 17.8 30.9 2502 24.3 134.8 +

Average - 1197 1095.1 1359.7 11.5 20.47 1386.8 35.33 42.48

average of the following measures: the best generated solution value best,
the standard deviation value Std, the CPU time of HGA and ACS and the
Wilcoxon test result Wilc.

Based on the results of tables 2 and 3, one can notice that:

– The computational difficulty increases significantly with network size and the
number of commodities to be routed. From table 2, we can notice that it be-
comes gradually impractical to solve large instances by Cplex. For instances
17, 18 and 20 no optimal solution is returned when CPLEX terminates. While
HGA succeeded in solving these three instances in a an average of 30s.

– Over the two testbeds, The HGA outperformed the ACS in 27 instances
(60% of the instances) in terms of solution quality (i.e. best values).

– For large instances, the HGA was able to converge to the best solution more
rapidly than the ACS method. The computational requirements of the ACS
seem to increase rapidly with the problem size.

– Over the different runs, and given the Std values, the HGA gives generally
a more accurate approximation of the global optimum.

– Based on the Wilcoxon signed-rank tests, HGA performed significantly bet-
ter than the ACS in 21 instances. While in 12 instances the results from the
statistical test are inconclusive. The ACS outperformed the HGA in only
two instances.



The Maritime Surveillance Case 147

Table 3. Experimental results of randomly generated instances

Problem Problem description HGA ACS Wilc
|N | |K| |A| Best Std CPU(s) Best Std CPU(s)

1 40 1560 209 3178 0 35.36 3178 0 52.3 ≈
2 40 1560 211 3021 0 23.7 3021 0 45.7 ≈
3 40 1560 214 3011 14.2 25.3 2988 0 44.3 ≈
4 50 2450 321 2725 5.8 67.5 2751 21.5 147.8 ≈
5 50 2450 322 2389 20.5 62.4 2404 28.62 123.7 ≈
6 50 2450 324 2397 25.7 68.4 2420 0 148.9 +
7 50 2450 328 2411 27.6 97.4 2458 48.24 289.3 +
8 55 2970 345 3452 38.4 142.3 3679 69.2 350.4 +
9 55 2970 360 3178 37.6 136.4 3258 52.7 287.6 +
10 55 2970 350 3293 41.2 174.5 3465 46.8 500 +
11 55 2970 357 3326 29.5 168.4 3316 28.5 435.5 −
12 60 3540 394 4238 47.2 186 4526 58.4 500 +
13 60 3540 396 4210 84.2 174 4481 70.5 500 +
14 60 3540 391 4379 62.3 194.5 4638 75.3 500 +
15 60 3540 386 4922 61.4 245.3 4966 50.2 500 +

Average - - - 3341.3 33.04 120.09 3435.13 39.33 295.03

6 Conclusion

In this paper, we proposed a new global routing algorithm for optimizing in-
formation exchange in large volume surveillance application. The surveillance
problem consist in deploying a set of surveillance agents collaborating in order
to perform a set of missions in a large geographic operation region. Given the
traffic requests in the network backbone and the limited capacity of the links,
solving the routing problem consists in finding the best paths between the end-
nodes so that we minimize the overall congestion. We proposed to model this
problem as a SMCFP. Due to its combinatorial nature, the SMCFP is NP-hard.
Therefore, we propose a HGA to solve it. An experimental study is conducted
and a comparison with an existing ACS approach is performed, based on the
Wilcoxon signed-rank test. The representative results and the comparison show
the effectiveness of our algorithm.
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Abstract. This paper considers the k-sink location problem in dynamic
path networks. In our model, a dynamic path network consists of an
undirected path with positive edge lengths, uniform edge capacity, and
positive vertex supplies. Here, each vertex supply corresponds to a set of
evacuees. Then, the problem requires to find the optimal location of k
sinks in a given path so that each evacuee is sent to one of k sinks. Let
x denote a k-sink location. Under the optimal evacuation for a given x,
there exists a (k−1)-dimensional vector d, called (k−1)-divider, such that
each component represents the boundary dividing all evacuees between
adjacent two sinks into two groups, i.e., all supplies in one group evacuate
to the left sink and all supplies in the other group evacuate to the right
sink. Therefore, the goal is to find x and d which minimize the maximum
cost or the total cost, which are denoted by the minimax problem and
the minisum problem, respectively. We study the k-sink location problem
in dynamic path networks with continuous model, and prove that the
minimax problem can be solved in O(kn log n) time and the minisum
problem can be solved in O(kn2) time, where n is the number of vertices
in the given network.

Keywords: sink location, dynamic network, evacuation planning.

1 Introduction

The Tohoku-Pacific Ocean Earthquake happened in Japan on March 11, 2011,
and many people failed to evacuate and lost their lives due to severe attack
by tsunamis. From the viewpoint of disaster prevention from city planning and
evacuation planning, it has now become extremely important to establish ef-
fective evacuation planning systems against large scale disasters. In particular,
arrangements of tsunami evacuation buildings in large Japanese cities near the
coast has become an urgent issue. To determine appropriate tsunami evacuation
buildings, we need to consider where evacuation buildings are assigned and how
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to partition a large area into small regions so that one evacuation building is des-
ignated in each region. This produces several theoretical issues to be considered.
Among them, this paper focuses on the location problem of multiple evacuation
buildings assuming that we fix the region such that all evacuees in the region
are planned to evacuate to one of these buildings. In this paper, we consider the
simplest case for which the region consists of a single road.

In order to represent the evacuation, we consider the dynamic setting in graph
networks, which was first introduced by Ford et al. [3]. In a graph network under
the dynamic setting, each vertex is given supply and each edge is given length
and capacity which limits the rate of the flow into the edge per unit time. We call
such networks under the dynamic setting dynamic networks. Dynamic networks
can be considered in discrete and continuousmodels. In discrete model, each input
value is given as an integer. Then each supply can be regarded as a set of evacuees,
and edge capacity is defined as the maximum number of evacuees who can enter
an edge per unit time. On the other hand, in continuous model, each input value
is given as a real number. Then each supply can be regarded as fluid, and edge
capacity is defined as the maximum amount of supply which can enter an edge
per unit time. In either model, we assume that all supply at a vertex is sent to
the same sink. The k-sink location problem in dynamic networks is defined as the
problem which requires to find the optimal location of k sinks in a given network
so that all supply of each vertex is sent to one of k sinks in the shortest time.

For the 1-sink location problem in dynamic networks, the following two crite-
ria can be naturally considered: maximum cost criterion and total cost criterion
(in static networks, these criteria correspond to the center problem and the me-
dian problem in facility location, respectively). If a sink location x is given in a
dynamic network with discrete model, the cost of x for an evacuee is defined as
the minimum time required to send him/her to x (by taking into account the
congestion). Then two criteria are defined as the maximum of cost of x for all
evacuees and the sum of cost of x for all evacuees, respectively. Now let us turn
to continuous model. In continuous model, we define the unit as the infinites-
imally small portion of supply, then the cost is defined on each unit. If a sink
location x is given in a dynamic network with continuous model, the cost of x
for a unit is defined as the minimum time required to send the unit to x. Also
two criteria are defined as the maximum of cost of x for all units and the sum
of cost of x for all units, respectively. Definitions for k-sink location problem
are given later. Then, the minimax (resp. minisum) k-sink location problem in
dynamic networks requires to find a k-sink location in a given dynamic network
which minimizes the maximum (resp. total) cost. Mamada et al. [7] studied the
minimax 1-sink location problem in dynamic tree networks with discrete model
assuming that the sink must be located at a vertex, and proposed an O(n log2 n)
time algorithm. Higashikawa et al. [4] also studied the same problem as [7] as-
suming that edge capacity is uniform and the sink can be located at any point
in the network, and proposed an O(n log n) time algorithm. On the other hand,
to the authors’ knowledge, no one has studied the minisum sink location problem
in dynamic networks.
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In this paper, we study the k-sink location problem in a dynamic path network
with continuous model assuming that edge capacity is uniform and the sink can
be located at any point in the network, and prove that the minimax problem
can be solved in O(kn log n) time and the minisum problem can be solved in
O(kn2) time. This paper is the first one which studies the minisum sink location
problem in dynamic networks and also the minimax k-sink location problem in
dynamic networks.

2 Minimax k-sink Location Problem

2.1 Definitions

Let P = (V,E) be an undirected path where V = {v0, v1, . . . , vn} and E =
{e1, e2, . . . , en} such that vi−1 and vi are endpoints of ei for 1 ≤ i ≤ n. Let
N = (P, l, w, c, τ) be a dynamic network with the underlying graph being a path
P , l is a function that associates each edge ei with positive length li, w is also a
function that associates each vertex vi with positive weight wi representing the
amount of supply at vi, c is a positive constant representing the amount of supply
which can enter an edge per unit time, and τ is also a constant representing the
time required by flow for traversing the unit distance. We call such networks with
path structures dynamic path networks. In the following, we use the notation P
to denote the set of all points p ∈ P . Also, for a vertex vi ∈ P with 0 ≤ i ≤ n, we
abuse the notation vi to denote the distance from v0 to vi, and for a point p ∈ P ,
we abuse the notation p to denote the distance from v0 to p. Then, we can regard
P as embedded on a real line such that v0 = 0. For two points p, q ∈ P with
p < q, [p, q] (resp. [p, q), (p, q] and (p, q)) denote the part of P which consists of
all points x ∈ P such that p ≤ x ≤ q (resp. p ≤ x < q, p < x ≤ q and p < x < q).

Suppose that k sinks are located at points x1, x2, . . . , xk ∈ P such that
x1 ≤ x2 ≤ . . . ≤ xk, respectively. Note that each sink can be located at any
point in P . In this paper, we assume that if we place a sink at a vertex, all
supply of the vertex can finish the evacuation in no time. So, without loss of
generality, we assume k ≤ n + 1 (otherwise, at least one sink can be located at
each vertex). Let x = (x1, x2, . . . , xk) which is a k-dimensional vector, called k-
sink location. Let us consider the optimal evacuation for a given x. In this paper,
we assume that all units of a vertex are sent to the same sink. We call a directed
path along which all units of a vertex are sent to a sink evacuation path. Then,
any two evacuation paths never cross each other in an optimal evacuation (oth-
erwise, we can realize the better or equivalent evacuation by exchanging the two
destinations of crossing evacuation paths). Suppose that there exists only one
vertex vj in [xi, xi+1] and all units of the vertex are sent to xi, then xi+1 can be
moved to vj+1 without increasing the cost of any unit. Therefore, if we optimally
locate k sinks with k ≥ 2, there exist at least two vertices in [xi, xi+1] for any i
with 1 ≤ i ≤ k − 1, i.e., there exist two vertices vj and vj+1 with 0 ≤ j ≤ n− 1
in [xi, xi+1] such that all supplies on [xi, vj ] are sent to xi and all supplies on
[vj+1, xi+1] are sent to xi+1. We call such a vertex vj dividing vertex. For an
integer i with 1 ≤ i ≤ k− 1 with k ≥ 2, let di be an index of the dividing vertex
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in [xi, xi+1). By the above discussion, di−1 + 1 ≤ di holds for 1 ≤ i ≤ k where
d0 = −1 and dk = n. Let d = (d1, d2, . . . , dk−1) which is a (k − 1)-dimensional
vector, called (k−1)-divider. For a given d, let Pi(d) = [vdi−1+1, vdi ] for 1 ≤ i ≤ k
where d0 = −1 and dk = n, then we need only consider x such that xi is given on
Pi(d) for 1 ≤ i ≤ k. For given x and d, and also for an integer i with 1 ≤ i ≤ k,
let Θi(x,d) denote the minimum time required to send all supplies on Pi(d) to
xi. Letting Θ(x,d) = max{Θi(x,d) | 1 ≤ i ≤ k}, the minimax k-sink location
problem is defined as follows:

Qminimax : minimize
{
Θ(x,d) | x ∈ P k and d ∈ {0, 1, . . . , n}k−1

}
. (1)

In the following, for a l-dimensional vector y = (y1, y2, . . . , yl) and a value z, we
use the notation (y, z) to denote a (l + 1)-dimensional vector (y1, y2, . . . , yl, z).

2.2 Recursive Formulation

We now consider a subproblem of the above mentioned problem: for some inte-
gers i, j and p with 0 ≤ i < j ≤ n and 1 ≤ p ≤ k, the p-sink location problem in
[vi, vj ]. For [vi, vj ], let x

∗(p, i, j) denote the optimal p-sink location and d∗(p, i, j)
denote the optimal (p−1)-divider. Note that x∗(p, i, j) is a p-dimensional vector
and d∗(p, i, j) is also a (p − 1)-dimensional vector, so d∗(p, i, j) is not defined
for p = 1. Also, let OPT(p, i, j) denote the minimum time required to send all
supplies on [vi, vj ] divided by d∗(p, i, j) to x∗(p, i, j). Note that if p ≥ j − i + 1
holds, the optimal sink location is trivial, i.e., OPT(p, i, j) = 0.

Next, we show the recursive formula of OPT(p, i, j). For integers i, j and p
with 0 ≤ i < j ≤ n and 1 ≤ p ≤ k − 1, let us consider the optimal (p+ 1)-sink
location and p-divider for [vi, vj ], i.e., x

∗(p + 1, i, j) and d∗(p + 1, i, j). Since
any two evacuation paths never cross each other in an optimal evacuation, there
exists an integer h with i ≤ h ≤ j−1 such that all supplies on [vh+1, xj ] are sent
to the rightmost sink and all supplies on [xi, vh] are sent to the other k sinks.
Thus, we have the following recursion:

OPT(p+ 1, i, j) = min
i≤h≤j−1

max{OPT(p, i, h),OPT(1, h+ 1, j)}. (2)

Here, let d be an integer which minimizes the maximum of OPT(p, i, h) and
OPT(1, h+ 1, j) on i ≤ h ≤ j − 1:

d = argmin
i≤h≤j−1

max{OPT(p, i, h),OPT(1, h+ 1, j)}. (3)

Then, x∗(p+ 1, i, j) and d∗(p+ 1, i, j) can be represented by using d as follows:

x∗(p+ 1, i, j) = (x∗(p, i, d),x∗(1, d+ 1, j)), (4)

d∗(p+ 1, i, j) = (d∗(p, i, d), d). (5)
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2.3 Properties

In this section, we show several key properties of our problem. Here, for integers
p and i with 2 ≤ p ≤ k and 1 ≤ i ≤ n, let fp,i(t) denote a function defined on
{t ∈ Z | 0 ≤ t ≤ i− 1}:

fp,i(t) = max{OPT(p− 1, 0, t),OPT(1, t+ 1, i)}. (6)

Note that for fixed p and i, OPT(p− 1, 0, t) is monotonically increasing in t and
OPT(1, t + 1, i) is monotonically decreasing in t. Thus, we have the following
claim.

Claim 1. For any integers p and i with 2 ≤ p ≤ k and 1 ≤ i ≤ n, function
fp,i(t) is unimodal in t on 0 ≤ t ≤ i− 1.

Let dp,i be an integer which minimizes fp,i(t) for 0 ≤ t ≤ i− 1:

dp,i = argmin
0≤t≤i−1

fp,i(t). (7)

By Claim 1, there uniquely exists dp,i. Then, by (4) and (5), we have

x∗(p, 0, i) = (x∗(p− 1, 0, dp,i),x
∗(1, dp,i + 1, i)), (8)

d∗(p, 0, i) = (d∗(p− 1, 0, dp,i), dp,i). (9)

We also have the following claim.

Claim 2. For any integers p and i with 2 ≤ p ≤ k and 2 ≤ i ≤ n, the following
inequality holds:

dp,i−1 ≤ dp,i. (10)

Now, for fixed integers i and j with 0 ≤ i < j ≤ n, let us consider how to
compute x∗(1, i, j) and OPT(1, i, j). Suppose that a sink is located at a point x
in [vi, vj ]. Let Θi,j(x) denote the minimum time required to send all supplies on
[vi, vj ] to x. Here, let ΘL

i,j(x) (resp. Θ
R
i,j(x)) denote the minimum time required

to send all supplies on [vi, x) (resp. (x, vj ]) to x. Then, Θi,j(x) is the maximum
of ΘL

i,j(x) and ΘR
i,j(x), i.e.,

Θi,j(x) = max{ΘL
i,j(x), Θ

R
i,j(x)}. (11)

For discrete model, Kamiyama et al. [6] showed that ΘL
i,j(x) and ΘR

i,j(x) are
expressed as follows:

ΘL
i,j(x) = max

l

{
τ(x − vl) +

⌈∑
i≤h≤l wh

c

⌉
− 1

∣∣∣∣ vl ∈ [vi, x)

}
,

ΘR
i,j(x) = max

l

{
τ(vl − x) +

⌈∑
l≤h≤j wh

c

⌉
− 1

∣∣∣∣ vl ∈ (x, vj ]

}
.
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From these, we can immediately develop the formulae for continuous model
as follows:

ΘL
i,j(x) = max

l

{
τ(x − vl) +

∑
i≤h≤l wh

c

∣∣∣∣ vl ∈ [vi, x)

}
, (12)

ΘR
i,j(x) = max

l

{
τ(vl − x) +

∑
l≤h≤j wh

c

∣∣∣∣ vl ∈ (x, vj ]

}
. (13)

Note that ΘL
i,j(x) (resp. Θ

R
i,j(x)) is a piecewise linear monotone increasing (resp.

decreasing) function of x. Therefore, function Θi,j(x) is unimodal in x. By the
properties shown in [2] and [5], we immediately have the following two claims.

Claim 3. For any integers i and j with 0 ≤ i < j ≤ n and a point x ∈ [vi, vj ],
(i) if ΘL

i,j(x) ≤ ΘR
i,j(x) holds, x

∗(1, i, j) ≥ x holds, and

(ii) if ΘL
i,j(x) ≥ ΘR

i,j(x) holds, x
∗(1, i, j) ≤ x holds.

Claim 4. For given integers i and j with 0 ≤ i < j ≤ n, suppose that for
the interval [vl, vl+1] with i ≤ l ≤ j − 1, ΘL

i,j(vl) ≤ ΘR
i,j(vl) and ΘL

i,j(vl+1) ≥
ΘR

i,j(vl+1) hold, and let α∗ denote the solution to an equation for α: ΘR
i,j(vl) −

ατ(vl+1 − vl) = ΘL
i,j(vl+1)− (1− α)τ(vl+1 − vl). Then,

(i) if 0 ≤ α∗ ≤ 1 holds, x∗(1, i, j) is a point dividing the interval [vl, vl+1] with
the ratio of α∗ to 1− α∗ and OPT(1, i, j) = ΘR

i,j(vl)− α∗τ(vl+1 − vl) holds,

(ii) if α∗ < 0 holds, x∗(1, i, j) = vl and OPT(1, i, j) = ΘR
i,j(vl) hold, and

(iii) if α∗ > 1 holds, x∗(1, i, j) = vl+1 and OPT(1, i, j) = ΘL
i,j(vl+1) hold.

We also have the following claim.

Claim 5. For any integers i and j with 0 ≤ i < j ≤ n, the following inequality
holds:

x∗(1, i, j) ≤ x∗(1, i+ 1, j). (14)

Also, for any integers i and j with 0 ≤ i ≤ j ≤ n − 1, the following inequality
holds:

x∗(1, i, j) ≤ x∗(1, i, j + 1). (15)

2.4 Algorithm

The algorithm basically computes OPT(1, 0, 1), . . ., OPT(1, 0, n), OPT(2, 0, 1),
. . ., OPT(2, 0, n), . . ., OPT(k, 0, 1), . . ., OPT(k, 0, n) in this order. For some in-
tegers p and i with 2 ≤ p ≤ k and 2 ≤ i ≤ n, let us consider how to ob-
tain OPT(p, 0, i). Actually, in order to obtain OPT(p, 0, i), the algorithm needs
OPT(p − 1, 0, l) for l = 1, 2, . . . , n and OPT(p, 0, i − 1). Suppose that the algo-
rithm has already obtained OPT(p−1, 0, l) for l = 1, 2, . . . , n and OPT(p, 0, i−1).
By (2), (6) and (7), we have

OPT(p, 0, i) = fp,i(dp,i) = max{OPT(p− 1, 0, dp,i),OPT(1, dp,i + 1, i)}. (16)
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Here, we assumed that OPT(p − 1, 0, dp,i) has already been obtained. Thus, in
order to obtain OPT(p, 0, i), we only need to compute OPT(1, dp,i +1, i). Recall
that by (7), dp,i is the unique point which minimizes function fp,i(t). Now, the
algorithm knows where dp,i−1 exists, and by Claim 2, dp,i−1 ≤ dp,i holds. So
the algorithm starts to compute fp,i(t) for t = dp,i−1, and continues to compute
in ascending order of t, as will be shown below. Note that function fp,i(t) is
unimodal in t by Claim 1, which implies that fp,i(t) is strictly decreasing until
t = dp,i. Thus, if the algorithm reaches the first integer t∗ ≥ dp,i−1+1 such that
fp,i(t

∗− 1) ≤ fp,i(t
∗), it outputs t∗− 1 as dp,i. Then, the algorithm also outputs

fp,i(t
∗ − 1) as OPT(p, 0, i).

Computation of fp,i(t) for t ≥ dp,i−1: As above mentioned, the algorithm
first computes fp,i(t) with t = dp,i−1 which is defined as follows:

fp,i(dp,i−1) = max{OPT(p− 1, 0, dp,i−1),OPT(1, dp,i−1 + 1, i)}. (17)

Since the algorithm has already obtained OPT(p− 1, 0, dp,i−1), we only need to
compute OPT(1, dp,i−1+1, i). To do this, we actually need to find x∗(1, dp,i−1+
1, i). By (15) in Claim 5, x∗(1, dp,i−1 + 1, i− 1) ≤ x∗(1, dp,i−1 + 1, i) holds. On
the other hand, the algorithm has already obtained OPT(p, 0, i− 1) as follows:

OPT(p, 0, i− 1) = max{OPT(p− 1, 0, dp,i−1),OPT(1, dp,i−1 + 1, i− 1)}, (18)

which implies that x∗(1, dp,i−1 +1, i− 1) has been obtained. Suppose that there
exists x∗(1, dp,i−1 + 1, i− 1) ∈ [vl, vl+1] with dp,i−1 + 1 ≤ l ≤ i− 2. By Claim 3,
for any interval [vh, vh+1] with dp,i−1 +1 ≤ h ≤ i− 1, there exists x∗(1, dp,i−1 +
1, i) in [vh, vh+1] if ΘL

dp,i−1+1,i(vh) ≥ ΘR
dp,i−1+1,i(vh) and ΘL

dp,i−1+1,i(vh+1) ≤
ΘR

dp,i−1+1,i(vh+1) hold. Therefore, if we maintain the data structure (which will

be explained in the next subsection) so that we can compute these values, the
algorithm can test if there exists x∗(1, dp,i−1+1, i) in [vh, vh+1] or not. Then, the
algorithm starts to test if there exists x∗(1, dp,i−1 + 1, i) ∈ [vh, vh+1] for h = l,
and continues to test in ascending order of h. If an interval [vl∗ , vl∗+1] where
x∗(1, dp,i−1+1, i) exists is found, then x∗(1, dp,i−1+1, i) and OPT(1, dp,i−1+1, i)
can be computed in O(1) time by Claim 4. The computation of fp,i(t) for t ≥
dp,i−1 + 1 can be treated in the similar manner as above.

2.5 Data Structure

For the computation mentioned in Section 2.4, the algorithm maintains a data
structure D(i, j) for integers i and j with 0 ≤ i < j ≤ n so that ΘL

i,j(vs) and

ΘR
i,j(vs) can be efficiently computed for any integer s with i ≤ s ≤ j. This data

structure is based on that in [5]. Basically, D(i, j) consists of two binary heaps
TL(i, j) and TR(i, j), and two values osL(i) and osR(j) explained below. In order
to compute ΘL

i,j(vs) (resp. Θ
R
i,j(vs)), the algorithm uses TL(i, j) and osL(i) (resp.

TR(i, j) and osR(j)). Here, we explain TL(i, j) and osL(i) in detail (TR(i, j) and
osR(j) can be constructed in a symmetric manner).
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TL(i, j) is a binary heap with i − j + 1 leaves i, i + 1, . . . , j corresponding
to vertices vi, vi+1, . . . , vj and internal nodes such that each internal node has
pointers to left and right children. For a node ν in TL(i, j), let κL

i,j(ν) (resp.

κR
i,j(ν)) denote the left (resp. right) child of ν, and imin(ν) (resp. imax(ν)) denote

the index of a minimum (resp. maximum) leaf of a subtree rooted at ν, which
are stored at ν. Note that for a leaf l, imin(l) = imax(l) = l holds. Then, each
node (including leaf) ν in TL(i, j) also stores

value(ν) = max
l

{
−vlτ +

∑
0≤h≤l wh

c

∣∣∣∣ imin(ν) ≤ l ≤ imax(ν)

}
, (19)

and the corresponding index of the leaf that attains the maximum.
On the other hand, the value osL(i) is the offset value defined as

osL(i) =

∑
0≤h≤i−1 wh

c
. (20)

Here, for an integer s with i ≤ s ≤ j, let Pathi,j(s) denote the path in TL(i, j)
from a leaf s to the root. Then, by (12), ΘL

i,j(vs) can be represented as follows:

ΘL
i,j(vs) = vsτ +max{value(κL

i,j(ν)) | ν ∈ Pathi,j(s)} − osL(i), (21)

which can be computed in O(log n) time by following Pathi,j(s). Since ΘR
i,j(vs)

can be also computed in O(log n) by using TR(i, j) and osR(j), we have the
following claim.

Claim 6. For any integers i, j and s with 0 ≤ i < j ≤ n and i ≤ s ≤ j, ΘL
i,j(vs)

and ΘR
i,j(vs) can be computed in O(log n) time once D(i, j) has been obtained.

Note that TL(i, j) can be updated to TL(i+1, j) or TL(i, j+1) in O(log n) time
and osL(i) can be updated to osL(i + 1) in O(1) time. In general, we have the
following claim.

Claim 7. (i) For any integers i and j with 0 ≤ i < j ≤ n, D(i, j) can be updated
to D(i+ 1, j) in O(log n) time.
(ii) For any integers i and j with 0 ≤ i < j ≤ n − 1, D(i, j) can be updated to
D(i, j + 1) in O(log n) time.

2.6 Time Complexity

As mentioned in Section 2.4, in order to obtain OPT(p, 0, i) for fixed p and i,
the algorithm computes fp,i(dp,i−1), . . ., fp,i(dp,i), fp,i(dp,i + 1). Thus, in order
to obtain OPT(p, 0, i) for fixed p and all i = 1, 2, . . . , n, the algorithm does such
O(n) computations. And through these computations, O(n) intervals are tested
in total (see Section 2.4). In order to test if there exists x∗(1, i, j) in some interval
[vh, vh+1] or not, the algorithm needs to confirm that ΘL

i,j(vh) ≥ ΘR
i,j(vh) and

ΘL
i,j(vh+1) ≤ ΘR

i,j(vh+1) hold by Claim 3, which takes O(log n) time by Claim 6.
Thus, such O(n) computations take O(n log n) time in total.
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On the other hand, let us consider the total time required to update the data
structure. For fixed p and i, when OPT(p, 0, i − 1) is obtained, the algorithm
maintains D(dp,i−1 + 1, i − 1) and first updates to D(dp,i−1 + 1, i). After re-
peatedly updating, the algorithm maintains D(dp,i + 1, i) when OPT(p, 0, i) is
obtained. Thus, in order to obtain OPT(p, 0, i), the algorithm updates the data
structure dp,i − dp,i−1 + 1 times, and so, for fixed p and all i = 1, 2, . . . , n, the
algorithm does O(n) times by Claim 2, which takes O(n log n) time by Claim 7.
Therefore, OPT(p, 0, i) for all i = 1, 2, . . . , n and p = 1, 2, . . . , k can be obtained
in O(kn logn) time.

Theorem 1. The minimax k-sink location problem in a dynamic path network
with uniform capacity can be solved in O(kn logn) time.

3 Minisum k-sink Location Problem

In this section, an input graph of this problem is a dynamic path network defined
in Section 2. As a preliminary step, let us consider the minisum 1-sink location
problem.

3.1 Properties of the Minisum 1-sink Location Problem

Suppose that a sink is located at a point x ∈ P where P is the input path with
n+1 vertices. In continuous model, the cost is defined on each infinitesimal unit
of supply, i.e., the cost of x for a unit is defined as the minimum time required
to send the unit to x. Let sum(x) denote the total cost of x, i.e., the sum of cost
of x for all units on P . Here, let sumL(x) (resp. sumR(x)) denote the sum of
cost of x for all units on [v0, x) (resp. (x, vn]). Then, sum(x) is the maximum of
sumL(x) and sumR(x), i.e.,

sum(x) = sumL(x) + sumR(x). (22)

Without loss of generality, we assume sumL(v0) = 0 and sumR(vn) = 0. Now,
suppose that x is located in an open interval (vh, vh+1) with 0 ≤ h ≤ n− 1, then
let us explain how function sumL(x) is determined.

Case 1: For every integer i with 1 ≤ i ≤ h, τ(vi − vi−1) > wi/c holds. In
this case, the first unit of each vertex on [v0, vh] can reach x after leaving the
original vertex without being blocked due to the existence of other units at an
intermediate vertex. For an integer i with 0 ≤ i ≤ h, let sumi(x) denote the
sum of cost of x for all units of vi. Here, suppose that there are α units at vi
with sufficiently large α, i.e., the size of each unit is equal to wi/α, and these
units continuously reach x. Then by (12), the l-th unit finishes reaching x at
time τ(x− vi) + l · (wi/α)/c. Therefore, by taking α to the infinity, sumi(x) can
be represented as follows:

sumi(x) = lim
α→∞

α∑
l=1

wi

α

(
τ(x − vi) + l · wi

α
· 1
c

)
= wiτ(x− vi) +

wi
2

2c
, (23)
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and then, sumL(x) is represented as follows:

sumL(x) =
∑

0≤i≤h

sumi(x) =
∑

0≤i≤h

(
wiτ(x − vi) +

wi
2

2c

)
. (24)

Case 2: There exists an integer j with 1 ≤ j ≤ h such that τ(vj − vj−1) ≤ wj/c
holds. First, we set ρi = vi and σi = wi for 0 ≤ i ≤ h. Suppose that j is the
minimum integer such that 1 ≤ j ≤ h and τ(ρj − ρj−1) ≤ σj/c. In this case, the
first unit of ρj−1 must catch up with the last unit of ρj before the last unit of ρj
leaves ρj , then shifting the supply corresponding to σj−1 from ρj−1 to ρj does
not change the cost of x for any unit. We update ρi and σi for 0 ≤ i ≤ h− 1 as
follows:

ρi ← ρi and σi ← σi for 0 ≤ i ≤ j − 2,
ρj−1 ← ρj and σj−1 ← σj−1 + σj ,
ρi ← ρi+1 and σi ← σi+1 for j ≤ i ≤ h− 1,

(25)

and delete ρh and σh. As long as there exist two vertices denoted by ρj−1 and
ρj such that τ(ρj − ρj−1) ≤ σj/c holds, we repeatedly update or delete ρi and
σi in the similar manner. Suppose that ρ0, . . . , ρh∗ eventually remain such that
τ(ρi − ρi−1) > σi/c holds for any i with 1 ≤ i ≤ h∗ or h∗ = 0. Then by (22),
sumL(x) is represented as follows:

sumL(x) =
∑

0≤i≤h∗

(
σiτ(x − ρi) +

σi
2

2c

)
. (26)

We can compute sumR(x) in the similar manner as sumL(x). Thus, for an
open interval (vj , vj+1) with 0 ≤ j ≤ n − 1, function sum(x) is linear in x
with slope τ(

∑
0≤i≤j wi −

∑
j+1≤i≤n wi). Now let us consider an open interval

(vj , vj+1) with 0 ≤ j ≤ n − 1 such that
∑

0≤i≤j wi −
∑

j+1≤i≤n wi ≥ 0 holds.
Then, we can see that for any two points p, q ∈ (vj , vj+1) with p < q, sum(p) ≤
sum(q) holds. We will show that for sufficiently small ε > 0, sum(vj) ≤ sum(vj+

ε) holds. We confirm sumR(vj) = sumR(vj + ε) +
(∑

j+1≤i≤n wi

)
· τε and

sumL(vj + ε) ≥ sumL(vj) +
(∑

0≤i≤j wi

)
· τε. From these and the assump-

tion of
∑

0≤i≤j wi−
∑

j+1≤i≤n wi ≥ 0, we can derive sum(vj) ≤ sum(vj + ε). In
general, we have the following claim.

Claim 8. (i) For an open interval (vj , vj+1) with 0 ≤ j ≤ n − 1 such that∑
0≤i≤j wi −

∑
j+1≤i≤n wi ≥ 0, sum(vj) ≤ sum(p) holds where p ∈ (vj , vj+1).

(ii) For an open interval (vj , vj+1) with 0 ≤ j ≤ n − 1 such that
∑

0≤i≤j wi −∑
j+1≤i≤n wi < 0, sum(vj+1) < sum(p) holds where p ∈ (vj , vj+1).

Let x∗ denote the optimal sink location which minimizes sum(x). Then, Claim
8 implies that x∗ is located at some vertex.

Claim 9. There exists x∗ at a vertex.
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3.2 Algorithm and Time Complexity for the Minisum 1-sink
Location Problem

We propose the algorithm which can solve the minisum 1-sink location problem
in a dynamic path network. Basically, the algorithm first computes sumL(vi)
for 1 ≤ i ≤ n in ascending order of i, and next sumR(vi) for 0 ≤ i ≤ n − 1 in
descending order of i. After computing all these values, sum(vi) can be computed
and evaluated for 0 ≤ i ≤ n in O(n) time. Then, by Claim 9, the optimal sink
location x∗ is at a vertex which minimizes sum(vi) for 0 ≤ i ≤ n. Below, we
show how to compute sumL(vi) (computation of sumR(vi) can be treated in the
similar manner).

Now, suppose that for some integer j with 1 ≤ j ≤ n− 1, sumL(vj) has been
already computed as sumL(vj) =

∑
0≤i≤h(j)

(
σiτ(vj − ρi) + σi

2/2c
)
, where h(j)

is a non-negative integer, and ρi and σi is obtained for 0 ≤ i ≤ h(j) in the
same manner as mentioned in Case 2, Section 3.1. Let Wj−1 =

∑
0≤i≤j−1 wi =∑

0≤i≤h(j) σi and suppose that Wj−1 has also been computed. We then show

how to compute sumL(vj+1). The algorithm newly sets

sum′ = sumL(vj), and W ′ = Wj−1. (27)

Next, the algorithm tests if τ(vj − ρi) ≤ wj/c for 0 ≤ i ≤ h(j) in descending
order. If so, it updates sum′ and W ′ as follows:

sum′ ← sum′ −
(
σiτ(vj − ρi) +

σi
2

2c

)
, and W ′ ←W ′ − σi, (28)

and deletes ρi. If the maximum integer m such that τ(vj − ρm) > wj/c is found
or τ(vj − ρ0) ≤ wj/c is obtained, the algorithm stops testing. In the former
case, after the algorithm tests h(j)−m+1 times, ρ0, . . . , ρm remain. Then, after
computing Wj as Wj = Wj−1 + wj , by (26), sumL(vj+1) can be computed as

sumL(vj+1) = sum′ + W ′τ(vj+1 − vj) +(
(Wj −W ′)τ(vj+1 − vj) +

(Wj −W ′)2

2c

)
. (29)

For the next recursive step, the algorithm eventually sets

h(j + 1) = m+ 1, ρm+1 = vj , and σm+1 = Wj −W ′. (30)

Since the algorithm tests h(j)−m+1 = h(j)−h(j+1)+2 times to compute
sumL(vj+1), it needs to test

∑
1≤i≤n−1(h(i) − h(i + 1) + 2) times to compute

sumL(vi) for 2 ≤ i ≤ n. By h(1) = 0, we have
∑

1≤i≤n−1 (h(i)− h(i+ 1) + 2) =
−h(n) + 2(n− 1) = O(n).

Lemma 1. The minisum 1-sink location problem in a dynamic path network
with uniform capacity can be solved in O(n) time.
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3.3 Extension to the Minisum k-sink Location Problem

For a subproblem, that is, the p-sink location problem in [vi, vj ] with 0 ≤ i <
j ≤ n and 1 ≤ p ≤ k, let OPT(p, i, j) denote the optimal cost (which is defined
in the same manner as mentioned in Section 2.2). Then, for integers p and i with
2 ≤ p ≤ k and 1 ≤ i ≤ n, OPT(p, 0, i) can be recursively represented as follows:

OPT(p, 0, i) = min
0≤t≤i−1

{OPT(p− 1, 0, t) + OPT(1, t+ 1, i)}, (31)

and let dp,i be an integer which minimizes OPT(p − 1, 0, t) + OPT(1, t + 1, i)
for 0 ≤ t ≤ i − 1. Then, we can show that dp,i−1 ≤ dp,i holds for any integers
p and i with 2 ≤ p ≤ k and 2 ≤ i ≤ n as with Claim 2 for the minimax
problem (details are omitted). Thus, in the similar manner as mentioned in
Section 2.4, after solving 1-sink location problem in the subgraph O(kn) times,
we can obtain the solution for the k-sink location problem. By Lemma 1, it takes
O(kn2) time in total. Recall that in the minimax problem, each 1-sink problem
can be solved in O(log n) time by using the unimodality of the objective function
and the special data structure. On the other hand, in the minisum problem, the
objective function for 1-sink problem is not unimodal, so there is the difference
between time bounds for two problems.

Theorem 2. The minisum k-sink location problem in a dynamic path network
with uniform capacity can be solved in O(kn2) time.

4 Conclusion

In this paper, we prove that the minimax k-sink location problem can be solved
in O(kn logn) time and the minisum k-sink location problem can be solved in
O(kn2) time. On the other hand, we leave as an open problem to reduce the
time bound to O(kn) for the minimax problem or the minisum problem, and
extend the solvable networks into dynamic path networks with general capacities
or more general networks (e.g., trees).
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Abstract. Let k be a positive integer. The k-Colouring problem is
to decide whether a graph has a k-colouring. The k-Precolouring Ex-

tension problem is to decide whether a colouring of a subset of a graph’s
vertex set can be extended to a k-colouring of the whole graph. A k-list
assignment of a graph is an allocation of a list — a subset of {1, . . . , k}
— to each vertex, and the List k-Colouring problem asks whether the
graph has a k-colouring in which each vertex is coloured with a colour
from its list. We prove a number of new complexity results for these
three decision problems when restricted to graphs that do not contain a
cycle on s vertices or a path on t vertices as induced subgraphs (for fixed
positive integers s and t).

1 Introduction

It is well-known deciding whether a graph can be coloured with at most k colours
is NP-complete even if k = 3 [18], and so the problem has been studied for special
graph classes; see the surveys of Randerath and Schiermeyer [21] and Tuza [23],
and the very recent survey of Golovach, Johnson, Paulusma and Song [8]. In
this paper, we consider the computational complexity of several graph colouring
problems for graph classes defined in terms of forbidden induced subgraphs. We
introduce some notation and terminology before stating our results.

Terminology. Let G = (V,E) be a graph. A colouring of G is a mapping
c : V → {1, 2, . . .} such that c(u) �= c(v) whenever uv ∈ E. We call c(u) the
colour of u. A k-colouring of G is a colouring with 1 ≤ c(u) ≤ k for all u ∈ V .
We study the following decision problem:

k-Colouring

Instance : A graph G.
Question : Is G k-colourable?
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A k-precolouring of G = (V,E) is a mapping cW : W → {1, 2, . . . k} for some
subset W ⊆ V . A k-colouring c is an extension of cW if c(v) = cW (v) for each
v ∈ W . Another decision problem:

k-Precolouring Extension

Instance : A graph G and a k-precolouring cW of G.
Question : Can cW be extended to a k-colouring of G?

A list assignment of a graph G = (V,E) is a function L that assigns a list L(u)
of admissible colours to each u ∈ V . If L(u) ⊆ {1, . . . , k} for each u ∈ V , then L
is also called a k-list assignment. A colouring c respects L if c(u) ∈ L(u) for all
u ∈ V . Here is our next decision problem:

List k-Colouring

Instance : A graph G and a k-list assignment L for G.
Question : Is there a colouring of G that respects L?

Note that k-Colouring can be viewed as a special case of k-Precolouring
Extension which is, in turn, a special case of List k-Colouring.

Let G be a graph and {H1, . . . , Hp} be a set of graphs. We say that G
is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}; if p = 1, we write H1-free instead of (H1)-free. We denote the
cycle, complete graph and path, each on r vertices, by Cr, Kr and Pr, respec-
tively. The complement of a graph G = (V,E), denoted by G, has vertex set V
and an edge between two distinct vertices if and only if these vertices are not
adjacent in G. The disjoint union of two graphs G and H is denoted G+H , and
the disjoint union of r copies of G is denoted rG.

Our Results. Several papers [4,9,13] have considered the computational com-
plexity of the three decision problems defined above when restricted to (Cs, Pt)-
free graphs. In this paper, we continue this investigation. Our first contribution
is to state the following theorem that provides a complete summary of our cur-
rent knowledge. In Section 5, we prove the theorem by providing references for
results that demonstrate or imply each case. The cases marked with an asterisk
are new results presented in this paper. We use p-time to mean polynomial-time
throughout the paper.

Theorem 1. Let k, s, t be three positive integers. The following statements hold
for (Cs, Pt)-free graphs.

(i) List k-Colouring is NP-complete if

1.∗ k ≥ 4, s = 3 and t ≥ 8 2.∗ k ≥ 4, s ≥ 5 and t ≥ 6.

List k-Colouring is p-time solvable if

3. k ≤ 2, s ≥ 3 and t ≥ 1
4. k = 3, s = 3 and t ≤ 6
5. k = 3, s = 4 and t ≥ 1
6. k = 3, s ≥ 5 and t ≤ 6

7. k ≥ 4, s = 3 and t ≤ 6
8. k ≥ 4, s = 4 and t ≥ 1
9. k ≥ 4, s ≥ 5 and t ≤ 5.
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(ii) k-Precolouring Extension is NP-complete if

1. k = 4, s = 3 and t ≥ 10
2. k = 4, s = 5 and t ≥ 7
3. k = 4, s = 6 and t ≥ 7
4.∗ k = 4, s = 7 and t ≥ 8

5. k = 4, s ≥ 8 and t ≥ 7
6. k ≥ 5, s = 3 and t ≥ 10
7.∗ k ≥ 5, s ≥ 5 and t ≥ 6.

k-Precolouring Extension is p-time solvable if

8. k ≤ 2, s ≥ 3 and t ≥ 1
9. k = 3, s = 3 and t ≤ 6

10. k = 3, s = 4 and t ≥ 1
11. k = 3, s ≥ 5 and t ≤ 6

12. k ≥ 4, s = 3 and t ≤ 6
13. k ≥ 4, s = 4 and t ≥ 1
14. k ≥ 4, s ≥ 5 and t ≤ 5.

(iii) k-Colouring is NP-complete if

1.∗ k = 4, s = 3 and t ≥ 39
2. k = 4, s = 5 and t ≥ 7
3. k = 4, s = 6 and t ≥ 7
4. k = 4, s = 7 and t ≥ 9

5. k = 4, s ≥ 8 and t ≥ 7
6. k ≥ 5, s = 5 and t ≥ 7
7. k ≥ 5, s ≥ 6 and t ≥ 6.

k-Colouring is p-time solvable if

8. k ≤ 2, s ≥ 3 and t ≥ 1

9. k = 3, s = 3 and t ≤ 7
10. k = 3, s = 4 and t ≥ 1
11. k = 3, s ≥ 5 and t ≤ 7

12. k = 4, s = 3 and t ≤ 6
13. k = 4, s = 4 and t ≥ 1

14. k = 4, s = 5 and t ≤ 6
15. k = 4, s ≥ 6 and t ≤ 5

16. k ≥ 5, s = 3 and t ≤ k + 2
17. k ≥ 5, s = 4 and t ≥ 1
18. k ≥ 5, s ≥ 5 and t ≤ 5.

We describe the rest of the paper.
In Section 2, we consider List k-Colouring restricted to (Cs, Pt)-free graphs

and prove two results. We first show that List 4-Colouring is NP-complete
for (C5, C6,K4, P1 + 2P2, P1 + P4, P6)-free graphs, thus strengthening the NP-
completeness result of List 4-Colouring for P6-free graphs [10]. (We observe
that P1 + 2P2 is also known as the 5-vertex wheel and P1 + P4 is sometimes
called the gem or the 5-vertex fan.) We also show that List 4-Colouring is
NP-complete for P8-free bipartite graphs.

In Section 3, we show that for all k ≥ 4, k-Precolouring Extension is NP-
complete for P10-free bipartite graphs extending a result of Kratochv́ıl [17] who
showed that 5-Precolouring Extension is NP-complete for P13-free bipar-
tite graphs. We also prove that 4-Precolouring Extension is NP-complete
for (C5, C6, C7, C8, P8)-free graphs and that for all k ≥ 5, k-Precolouring
Extension is NP-complete for (Cs, Pt)-free graphs if s ≥ 5 and t ≥ 6.

In Section 4, we show that 4-Colouring is NP-complete for (C3, P39)-free
graphs improving a result of Golovach et al. [9] who showed that 4-Colouring

is NP-complete for (C3, P164)-free graphs.
In Section 5, we prove Theorem 1 by combining a number of previously known

results with our new results, and in Section 6 we summarize the open cases and
pose a number of related open problems.
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Related Work. In this paper, we focus on (Cs, Pt)-free graphs. We comment
that this can be seen as a natural continuation of investigations into the complex-
ity of k-Colouring and List k-Colouring for Pr-free graphs (see [8]). The
sharpest results are the following. Hoàng et al. [14] proved that, for all k ≥ 1,
List k-Colouring is p-time solvable on P5-free graphs. Huang [15] proved
that 4-Colouring is NP-complete for P7-free graphs and that 5-Colouring is
NP-complete for P6-free graphs. Recently, Chudnovsky, Maceli and Zhong [5,6]
announced a p-time algorithm for solving 3-Colouring on P7-free graphs.
Broersma et al. [3] proved that List 3-Colouring is p-time solvable for P6-
free graphs. Golovach, Paulusma and Song [10] proved that List 4-Colouring

is NP-complete for P6-free graphs. These results lead to the following table (in
which the open cases are denoted by “?”).

Table 1. The complexity of k-Colouring, k-Precolouring Extension and List

k-Colouring for Pr-free graphs

k-Colouring k-Precolouring Extension List k-Colouring

k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

r ≤ 5 P P P P P P P P P P P P
r = 6 P ? NP-c NP-c P ? NP-c NP-c P NP-c NP-c NP-c
r = 7 P NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c
r ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

2 New Results for List Colouring

We start by proving that List 4-Colouring is NP-complete for the class of
(C5, C6,K4, P1 + 2P2, P1 + P4)-free graphs. This result will follow from a closer
analysis of the hardness reduction for List 4-Colouring for P6-free graphs [10],
which is from the problem Not-All-Equal 3-Sat with positive literals only.
This problem was shown to be NP-complete by Schaefer [22], and is defined as
follows. The input I consists of a set X = {x1, x2, . . . , xn} of variables, and
a set C = {D1, D2, . . . , Dm} of 3-literal clauses over X in which all literals are
positive. The question is whether there exists a truth assignment for X such that
each Di contains at least one true literal and at least one false literal. We may
assume without loss of generality (see, for example, [10]) that each Di contains
either two or three literals and that each literal occurs in at most three different
clauses. Given such an instance, Golovach et al. [10] define the following graph JI
and 4-list assignment L.

• a-type and b-type vertices: for each clause Dj , there are two clause com-
ponents Dj and D′

j each isomorphic to P5. Considered along the paths
the vertices in Dj are aj,1, bj,1, aj,2, bj,2, aj,3 with lists of admissible colours
{2, 4}, {3, 4}, {2, 3, 4}, {3, 4}, {2, 3}, respectively, and the vertices in D′

j are
a′j,1, b

′
j,1, a

′
j,2, b

′
j,2, a

′
j,3 with lists of admissible colours {1, 4}, {3, 4}, {1, 3, 4},

{3, 4}, {1, 3}, respectively.
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• x-type vertices: for each variable xi, there is a vertex xi with list of admissible
colours {1, 2}.

• For every clause Dj with variables xi1 , xi2 , xi3 , there are edges aj,hxih and
a′j,hxih for h = 1, 2, 3.

• There is an edge from every x-type vertex to every b-type vertex.

See Figure 1 for an example of the graph JI . In this figure, Dj is a clause with
ordered variables xi1 , xi2 , xi3 . The thick edges indicate the connection between
these vertices and the a-type vertices of the two copies of the clause gadget.
Indices from the labels of the clause gadget vertices have been omitted to increase
visibility.

a b a b a a b a b a

Dj D′
j

x1 xi1 xi2 xi3 xn

Fig. 1. An example of a graph JI , as shown in [10]. Only the clause Dj = {xi1 , xi2 , xi3}
is displayed

The following two lemmas are known.

Lemma 1 ([10]). The graph JI has a colouring that respects L if and only if I
has a satisfying truth assignment in which each clause contains at least one true
and at least one false literal.

Lemma 2 ([10]). The graph JI is P6-free.

We are now ready to prove our main result.

Theorem 2. The List 4-Colouring problem is NP-complete for the class of
(C5, C6,K4, P1 + 2P2, P1 + P4, P6)-free graphs.

Proof. Lemma 1 shows that the List 4-Colouring problem is NP-hard for the
class of graphs JI , where I = (X, C) is an instance of Not-All-Equal 3-Sat

with positive literals only, in which every clause contains either two or three lit-
erals and in which each literal occurs in at most three different clauses. Lemma 2
shows that each JI is P6-free. As the List 4-Colouring problem is readily seen
to be in NP, it remains to prove that each JI is (C5, C6,K4, P1 + 2P2, P1 + P4)-
free. For contradiction, assume that some JI has an induced subgraph H iso-
morphic to a graph in {C5, C6,K4, P1 + 2P2, P1 + P4}.
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First suppose that H ∈ {C5, C6}. The total number of x-type and b-type
vertices can be at most 3, as otherwise H contains an induced C4 or a vertex of
degree at least 3, which is not possible. Because |V (H)| ≥ 5 and the subgraph
of H induced by its b-type and x-type vertices is connected, H must contain at
least two adjacent a-type vertices. This is not possible.

Now suppose that H = K4. Because the b-type and x-type vertices induce
a bipartite graph, H must contain an a-type vertex. Every a-type vertex has
degree at most 3. If it has degree 3, then it has two non-adjacent neighbours
(which are of b-type). Hence, this is not possible.

Finally suppose that H ∈ {P1 + 2P2, P1 + P4}. Let u be the vertex that has
degree 4 in H . Then u cannot be of a-type, because no a-type vertex has more
than three neighbours in JI . Suppose u is of b-type. Then every other vertex
of H is either of a-type or of x-type. Because vertices of the same type are not
adjacent, H must contain two a-type vertices and two x-type vertices. Then an
a-type vertex is adjacent to two x-type vertices. This is not possible. Suppose u is
of x-type. Then every other vertex of H is either of a-type or of b-type. Because
vertices of the same type are non-adjacent, H must contain two a-type vertices
and two b-type vertices. However, then u is adjacent to two a-type vertices in
the same clause-component. This is not possible. ��

Our second hardness result is also based on the hardness reduction of List 4-
Colouring for P6-free graphs. Let JI be defined as before. We subdivide every
edge between an a-type vertex and an x-type vertex and give each new vertex
the list {1, 2} (we say that these new vertices are of c-type). This results in a new
graph J ′

I with list assignment L′ which extends the original list assignment L
for JI .

Lemma 3. The graph J ′
I is P8-free and bipartite.

Proof. The graph J ′
I is readily seen to be bipartite. Below we prove that J ′

I

P8-free (but not P7-free).
Let P be an induced path in J ′

I . If P contains no x-type vertex, then P
contains vertices of at most one clause-component together with at most two c-
type vertices. This means that |V (P )| ≤ 7. If P contains no b-type vertex, then P
can contain at most one x-type vertex (as any two x-type vertices can only be
connected by a path that uses at least one b-type vertex). Consequently, P
can have at most two a-type vertices and at most two c-type vertices. Hence,
|V (P )| ≤ 5 in this case. From now on assume that P contains at least one b-type
vertex and at least one x-type vertex. Also note that P can contain in total at
most three vertices of b-type and x-type.

First suppose that P contains exactly three vertices of b-type and x-type.
Then these vertices form a 3-vertex subpath in P of types b, x, b or x, b, x. In
both cases we can extend both ends of the subpath only by an a-type vertex
and an adjacent c-type vertex, which means that |V (P )| ≤ 7. Now suppose
that P contains exactly two vertices of b-type and x-type. Because these vertices
are of different type, they are adjacent and we can extend both ends of the
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corresponding 2-vertex subpath of P only by an a-type vertex and an adjacent
c-type vertex. This means that |V (P )| ≤ 6. This completes our proof. ��

The following lemma can be proven by exactly the same arguments that were
used to prove Lemma 1.

Lemma 4. The graph J ′
I has a colouring that respects L′ if and only if I has a

satisfying truth assignment in which each clause contains at least one true and
at least one false literal.

Lemmas 3 and 4 imply the last result of this section.

Theorem 3. List 4-Colouring is NP-complete for P8-free bipartite graphs.

3 New Results for Precolouring Extension

In this section we give three results on the k-Precolouring Extension prob-
lem.

Let k ≥ 4. Consider the bipartite graph J ′
I with its list assignment L′ from

Section 2. The list of admissible colours L′(u) of each vertex u is a subset of
{1, 2, 3, 4}. We add k−|L′(u)| pendant vertices to u and precolour these vertices
with different colours from {1, . . . , k} \ L′(u). This results in a graph J ′′

I with a
k-precolouring cW , where W is the set of all the new pendant vertices.

Lemma 5. The graph J ′′
I is P10-free and bipartite.

Proof. Because J ′
I is P8-free and bipartite by Lemma 3, and moreover, we only

added pendant vertices, J ′′
I is P10-free and bipartite. ��

The following lemma can be proven by exactly the same arguments that were
used to prove Lemma 1.

Lemma 6. The graph J ′′
I has a k-colouring that is an extension of cW if and

only if I has a satisfying truth assignment in which each clause contains at least
one true and at least one false literal.

Lemmas 5 and 6 imply the first result of this section.

Theorem 4. For all k ≥ 4, k-Precolouring Extension is NP-complete for
the class of P10-free bipartite graphs.

Here is our second result.

Theorem 5. The 4-Precolouring Extension problem is NP-complete for
the class of (C5, C6, C7, C8, P8)-free graphs.



Narrowing the Complexity Gap for Colouring (Cs, Pt)-Free Graphs 169

Proof. Let JI be the instance with list assignment L as constructed in Section 2.
Instead of considering lists, we introduce new vertices, which we precolour (we
do not precolour any old vertices). For each clause Dj we add five new vertices,
sj , tj , uj,1, uj,2, uj,3. We add edges aj,1sj , aj,3tj and aj,huj,h for h = 1, . . . 3.
We precolour sj , tj , uj,1, uj,2, uj,3 by colours 3, 4, 1, 1, 1, respectively. For
each clause D′

j we add five new vertices, s′j , t
′
j , u

′
j,1, u

′
j,2, u

′
j,3. We add edges

a′j,1s
′
j , a

′
j,3t

′
j and a′j,hu

′
j,h for h = 1, . . . 3. We precolour sj , tj , uj,1, uj,2, uj,3 by

colours 3, 4, 2, 2, 2, respectively. Finally, we add two new vertices c1, c2, which
we make adjacent to all x-type vertices, and two new vertices y1, y2, which we
make adjacent to all b-type vertices. We colour c1, c2, y1, y2 with colours 3, 4,
1, 2, respectively. This results in a new graph J∗

I . Because y1, y2 can be viewed
as x-type vertices and c1, c2 as b-type vertices, because every other new vertex
is a pendant vertex and because JI is (C5, C6, P6)-free (by Theorem 2), we find
that J∗

I is (C5, C6, C7, C8, P8)-free. Moreover, our precolouring forces the lists
L(v) upon every vertex v of JI . Hence, J∗

I has a 4-colouring extending this
precolouring if and only if JI has a colouring that respects L. By Lemma 1 the
latter is true if and only if I has a satisfying truth assignment in which each
clause contains at least one true and at least one false literal. ��

Broersma et al. [3] showed that 5-Precolouring Extension for P6-free graphs
is NP-complete. It can be shown that the gadget constructed in their NP-hardness
reduction is Cs-free for all s ≥ 5. By adding k−5 dominating vertices, precoloured
with colours 6, . . . , k, to each vertex in their gadget, we can extend their result
from k = 5 to k ≥ 5. This leads to the following theorem.

Theorem 6. For all k ≥ 5, k-Precolouring Extension is NP-complete for
(Cs, Pt)-free graphs if s ≥ 5 and t ≥ 6.

4 New Results for Colouring

In this section, we prove that 4-Colouring is NP-complete for (C3, P39)-free
graphs. We do this by modifying the graph J ′′

I from Section 3 when k = 4.
First we review a well-known piece of graph theory. TheMycielski construction

of a graph G = (V,E) is the new graph G′ constructed from G by adding a new
vertex v′ for each v ∈ V that is adjacent to every neighbour of v in G, followed
by adding a further new vertex u adjacent to every new vertex v′. By repeating
this construction from K2, a sequence of graphs M2,M3, . . . is obtained. Here,
M2 = K2, M3 = C5 and M4 is the well-known Grötzsch graph. Mycielski [19]
showed that every Mk is C3-free and has chromatic number k. Moreover, any
proper subgraph of Mk is (k − 1)-colourable (see for example [1]).

We focus on M5. For any pair of adjacent vertices p and r, M5 − pr is 4-
colourable and, in every 4-colouring, p and r are coloured alike (else a 4-colouring
ofM5 has been found). We letMpq be the graph obtained fromM5−pr by adding
a new vertex q and making it adjacent to r only. Note that Mpq is 4-colourable
and that, in any 4-colouring of Mpq, the vertices p and q must have different
colours.
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Let G be a graph with e = xy ∈ E(G). The M-identification of e in G is the
following operation: delete the edge e = xy and add a copy of Mpq between x
and y by identifying p ∈Mpq and q ∈Mpq with x and y, respectively. We denote
this copy of Mpq by Me.

We are now ready to explain how we modify the graph J ′′
I . Recall that k = 4.

First we take a complete graph on four new vertices t1, . . . , t4. We perform an
M -identification of every edge titj . Recall that we had defined a precolouring
W for a subset W ⊆ V (J ′′

I ). We add an edge between a vertex ti and a vertex
u ∈ W if and only if cW (u) �= i. This results in a new graph J ′′′

I .
In the next three lemmas we show three properties of J ′′′

I . The proof of the
third lemma has been omitted due to page restrictions.

Lemma 7. The graph J ′′′
I is 4-colourable if and only if I has a satisfying truth

assignment in which each clause contains at least one true and at least one false
literal.

Proof. We claim that J ′′′
I is 4-colourable if and only if J ′′

I has a 4-colouring that
is an extension of cW . This follows by construction and from the fact that p and
q have different colours in any 4-colouring of Mpq. In order to prove the lemma
it remains to apply Lemma 6. ��

Lemma 8. The graph J ′′′
I is C3-free.

Proof. The graph J ′′′
I is C3-free because of the following three reasons. Firstly,

Mpq is C3-free. Secondly, we applied an M -identification for every edge titj . So,
the vertices t1, . . . , t4 form an independent set of J ′′′

I . Thirdly, the neighbours
of t1, . . . , t4 in J ′′

I are all in W , and W is an independent set of J ′′
I , and thus

of J ′′′
I . ��

Lemma 9. The graph J ′′′
I is P39-free.

The main result of this section now follows from Lemmas 7–9.

Theorem 7. 4-Colouring is NP-complete for (C3, P39)-free graphs.

5 Proof of Theorem 1

To prove Theorem 1 we need first to discuss some additional results. Kobler and
Rotics [16] showed that for any constants p and k, List k-Colouring is p-time
solvable on any class of graphs that have clique-width at most p, assuming that
a p-expression is given. Oum [20] showed that a (8p − 1)-expression for any n-
vertex graph with clique-width at most p can be found in O(n3) time. Combining
these two results leads to the following theorem.

Theorem 8. Let G be a graph class of bounded clique-width. For all k ≥ 1, List
k-Colouring can be solved in p-time on G.
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We also need the following result due to Gravier, Hoáng and Maffray [11]
who slightly improved upon a bound of Gyárfás [12] who showed that every
(Ks, Pt)-free graph can be coloured with at most (t− 1)s−2 colours.

Theorem 9 ([11]). Let s, t ≥ 1 be two integers. Then every (Ks, Pt)-free graph
can be coloured with at most (t− 2)s−2 colours.

We now prove Theorem 1 by considering each case. For each we either refer back
to an earlier result, or give a reference; the results quoted can clearly be seen to
imply the statements of the theorem.

We first consider the intractable cases of List k-Colouring and note that (i).1
follows from Theorem 3, and Theorem 2 implies that List 4-Colouring is
NP-complete for the class of (C5, C6, P6)-free graphs which proves (i).2.

Now the tractable cases. Erdös, Rubin and Taylor [7] and Vizing [24] observed
that 2-List Colouring is p-time solvable on general graphs implying (i).3.
Broersma et al. [3] showed that List 3-Colouring is p-time solvable for P6-
free graphs from which we can infer (i).4 and (i).6. Golovach et al. [9] proved that
for all k, r, s, t ≥ 1, List k-Colouring can be solved in linear time for (Kr,s, Pt)-
free graphs. By taking r = s = 2, we obtain (i).5 and (i).8. The class of (C3, P6)-
free graphs was shown to have bounded clique-width by Brandstädt, Klembt and
Mahfud [2]; using Theorem 8 we see that List k-Colouring is p-time solvable
on (C3, P6)-free graphs for all k ≥ 1 demonstrating (i).7. Hoàng, Kamiński,
Lozin, Sawada, and Shu [14] proved that for all k ≥ 1, List k-Colouring is
p-time solvable on P5-free graphs proving (i).9.

We now consider k-Precolouring Extension. The tractable cases all follow
from the results on List k-Colouring just discussed. So we are left to con-
sider the NP-complete cases. Theorem 4 implies (ii).1 and (ii).6. Theorems 5
and 6 imply (ii).4 and (ii).7 And (ii).2, (ii).3 and (ii).5 follow immediately from
corresponding results for k-Colouring proved by Hell and Huang [13].

Finally, we consider k-Colouring; first the NP-complete cases. Theorem 7 gives
us (iii).1. Golovach, Paulusma and Song [9] proved that for all s ≥ 5, there exists
a constant t(s) such that 4-Colouring is NP-complete for (C5, . . . , Cs, Pt(s))-
free graphs. In particular, they showed that 4-Colouring is NP-complete
for (C5, P23)-free graphs, and this result has been strengthened by Hell and
Huang [13] who proved all the other NP-completeness subcases.

Chudnovsky, Maceli and Zhong [5,6] announced that 3-Colouring is p-time
solvable on P7-free graphs, and Chudnovsky, Maceli, Stacho and Zhong [4] an-
nounced that 4-Colouring is p-time solvable for (C5, P6)-free graphs. Theo-
rem 9 gives us (iii).16. All other tractable cases follow from the corresponding
tractable cases for List k-Colouring. ��

6 Open Problems

From Theorem 1, we see that the following cases are open in the classification
of the complexity of graph colouring problems for (Cs, Pt)-free graphs:
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(i) For List k-Colouring the following cases are open:

• k = 3, s = 3 and t ≥ 7
• k = 3, s ≥ 5 and t ≥ 7

• k ≥ 4, s = 3 and t = 7.

(ii) For k-Precolouring Extension the following cases are open:

• k = 3, s = 3 and t ≥ 7
• k = 3, s ≥ 5 and t ≥ 7
• k = 4, s = 3 and 7 ≤ t ≤ 9

• k = 4, s ≥ 5 and t = 6
• k = 4, s = 7 and t = 7
• k ≥ 5, s = 3 and 7 ≤ t ≤ 9

(iii) For k-Colouring the following cases are open:

• k = 3, s = 3 and t ≥ 8
• k = 3, s ≥ 5 and t ≥ 8
• k = 4, s = 3 and 7 ≤ t ≤ 38
• k = 4, s ≥ 6 and t = 6

• k = 4, s = 7 and 7 ≤ t ≤ 8
• k ≥ 5, s = 3 and t ≥ k + 3
• k ≥ 5, s = 5 and t = 6.

Besides solving these missing cases (and the missing cases from Table 1) we pose
the following problems specifically. First, does there exist a graph H and an
integer k ≥ 3 such that List k-Colouring is NP-complete and k-Colouring

is p-time solvable for H-free graphs? Theorem 1 shows that if we forbid two
induced subgraphs then the complexity of these two problems can be different:
take k = 4, H1 = C5 and H2 = P6. Second, is List 4-Colouring NP-complete
for P7-free bipartite graphs? This is the only missing case of List 4-Colouring

for Pt-free bipartite graphs due to Theorems 1 and 3.
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Abstract. This paper studies the broadcast function B(n). We consider
the possible vertex degrees and possible connections between vertices of
different degrees in graphs with b(G) = �log2 n. Using this, we present
improved lower bounds on B(n) when n = 2k − 2p and n = 2k − 2p + 1
(3 ≤ p < k). Also, we prove that B(24) ≥ 36 for graphs with maximum
vertex degree at most 4.

Keywords: Broadcasting, minimum broadcast graphs, broadcast func-
tion, lower bounds on broadcast function.

1 Introduction

Broadcasting is the process of distributing a message from a node, called the
originator, to all other nodes of a communication network. Broadcasting is ac-
complished by placing series of calls over the communication channels of the
network and takes place in discrete time units, sometimes called rounds. Each
call involves only two nodes (one sender and one receiver), requires one time
unit, and each node participates in at most one call at each time unit.

A network can be modeled as a connected graph G = (V,E), where V is
the set of all nodes and E is the set of all communication lines. The broadcast
time b(v,G) or just b(v) of a vertex v in a connected graph G is defined as the
minimum time required to inform all the vertices of G from originator v. The
broadcast time b(G) of a graph G is defined as b(G) = max{b(v) | v ∈ V }.

The set of calls used to distribute the message from originator v to all other
vertices is called a broadcast scheme for vertex v. The broadcast scheme for v is
a spanning tree rooted at v where all the communication lines are labeled with
the transmission time. Each communication line is used exactly once and the
message is always transmitted from a parent to a child.

For any graph G on n vertices, b(G) ≥ 	logn
 (all logarithms in this paper
are base two), since after each time unit the number of informed vertices can
at most double. A graph G with b(G) = 	logn
, is called a broadcast graph
(bg). A broadcast graph with the minimum possible number of edges is called
a minimum broadcast graph (mbg). An mbg has very important practical im-
plications; it represents the cheapest possible architecture to build a network,
in which broadcasting can be accomplished in theoretically minimum possible

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 174–184, 2014.
c© Springer International Publishing Switzerland 2014
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time. The broadcast function B(n) is defined as the number of edges in an mbg
on n vertices.

B(n) is known only for very few values of n, in particular for all n ≤ 32 except
for n = 23, 24 and 25. The values of B(n) for 1 ≤ n ≤ 15 are presented in [6],
also, B(17) = 22 [17], B(18) = 23, B(19) = 25 [3],[19], B(20) = 26, B(21) =
28, B(22) = 31 [16], B(23) = 33 or 34 [4],[16], B(26) = 42 [18],[20], B(27) =
44, B(28) = 48, B(29) = 52 [18], B(30) = 60 [3],[13], B(31) = 65 [3]. B(n) is also
known for n = 2k, B(2k) = k2k−1 [6], for n = 2k−2, B(2k−2) = (k−1)(2k−1−1)
[5],[13], B(58) = 121, B(59) = 124, B(60) = 130, B(61) = 136 [18], B(61) = 136,
B(63) = 162 [15], B(127) = 389 [8].

Since mbg’s seem to be extremely difficult to find, a long sequence of papers
presented techniques to construct broadcast graphs and to obtain upper bounds
on B(n). Most techniques combine several known mbg’s and bg’s on smaller sizes
to create new ones of a larger size (see e.g. [1],[2],[3],[5],[7],[8],[9],[11],[12],[13]).

However, it is extremely difficult to prove a lower bound on B(n) that matches
the obtained upper bound from a broadcast graph construction. When n = 2k or
n = 2k − 2, a simple lower bound based on the minimum vertex degree matches
the known upper bounds, thus the known mbg’s are for these cases are k-regular
and k− 1-regular graphs respectively. However, when n < 2k − 2, mbg’s are not
regular graphs, hence the simple lower bounds based only on minimum vertex
degree are not very helpful. For small n, an mbg can be found by exhaustive
case analysis, but when n becomes large, the number of possible graphs grows
exponentially and this technique is no longer useful.

Similar to the approach taken in [16],[18] in this paper we consider the possible
vertex degrees in any broadcast graph on n vertices and possible connections
between vertices of different degrees.

Our first observation is that in a broadcast graph on n = 2k − x vertices
where 1 ≤ x ≤ 2k−1, the minimum vertex degree must be at least k−�log x. A
broadcast tree rooted at some vertex v of a smaller degree will contain at most
n = 2k−x−1 vertices. This number is smaller than the total number of vertices.
It means that not all vertices will be able to receive the broadcast message by
the time k from originator v. From this observation it follows that

B(2k − x) ≥ 2k − x

2
· (k − �log x).

The fact that a given graph is a broadcast graph determines not only the
minimum possible vertex degree in it, but also the possible connections between
vertices of different degrees. By making more accurate observations the above
mentioned bound can be improved. This approach was used in [16] to obtain
lower bounds on B(n) when n = 2k − 3, n = 2k − 4, n = 2k − 5 and n = 2k − 6.
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The following bounds are presented:

B(2k − 3) ≥
⌈
2k − 3

2
· (k − 2 +

3k − 5

k2 − k − 1
)

⌉
,

B(2k − 4) ≥
⌈
2k − 4

2
· (k − 2 +

4

2k + 1
)

⌉
,

B(2k − 5) ≥
⌈
2k − 5

2
· (k − 2 +

2

2k − 1
)

⌉
,

B(2k − 6) ≥
⌈
2k − 6

2
· (k − 2 +

1

k
)

⌉
.

The same approach is also used in [15] to get a lower bound on B(n) when
n = 2k − 1.

B(2k − 1) ≥
⌈
2k − 1

2
· (k − 1 +

1

k + 1
)

⌉
.

We find this method of getting lower bounds on B(n) promising and we will
use it to find lower bounds on B(n) when n = 2k − 2p and n = 2k − 2p + 1
(3 ≤ p < k). The main difficulty in the above approach is that when x increases,
the lower bound on the minimum degree presented above decreases and then the
number of possibilities of different relations between vertices of different degree
increases as well and it becomes more and more difficult to deal with them and
derive an improved lower bound on B(2k − x).

One of the motivations for looking on these two particular forms of n is that
the smallest values for which B(n) is not known are n = 23, n = 24 and n = 25.
The latter two have a form n = 2k − 7 and n = 2k − 8 respectively. Where are
known broadcast graphs on 24 and 25 vertices having 36 and 40 edges respec-
tively [3] but whether these graphs are mbg’s or not is not known. Tight lower
bounds on B(24) and B(25) may help to address this problem.

2 Lower Bound on B(2k − 7)

As mentioned above, there are tight lower bounds on B(n) when n = 2k−1, 2k−
3, 2k− 4, 2k− 5, 2k− 6. We continue on this line and in this section we present a
new lower bound on B(n) when n = 2k−7. In the following section, we generalize
the presented result for n = 2k− 2p+1. Thus, the proof in this section will help
to follow the proof of Section 3.

In our approach, we extend the technique presented by Sacle in [18].

Theorem 1. B(2k − 7) ≥ 2k−7
2 ((k − 3) + 5k−11

(k+1)(k−2) ).

Proof. Recall that in a broadcast graph on n = 2k − 7 vertices, the minimum
possible vertex degree is k − 3. Let us look at the broadcast tree rooted at a
vertex u of degree k− 3. We observe that u must have at least one neighbour of
degree at least k, at least two neighbours of degree at least k − 1 and at least
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three neighbours of degree at least k − 2. We also observe that a vertex cannot
have all neighbours of degree k−3. In other words each vertex in the graph must
have at least one neighbour of degree at least k − 2. Let vi denote the number
of vertices of degree i. We can write the following inequalities:∑

i≥k

(i− 1)vi ≥ vk−3,

∑
i≥k−1

(i− 1)vi ≥ 2vk−3,

∑
i≥k−2

(i− 1)vi ≥ 3vk−3.

For the number of edges in the graph, denoted by m, we will have

2m =
∑

i≥k−3

ivi = n+
∑

i≥k−3

(i− 1)vi.

This implies that ∑
i≥k−3

(i− 1)vi = 2m− n.

After substituting this in the above three inequalities we will get

2m− n− (k − 4)vk−3 − (k − 3)vk−2 − (k − 2)vk−1 ≥ vk−3,

2m− n− (k − 4)vk−3 − (k − 3)vk−2 ≥ 2vk−3,

2m− n− (k − 4)vk−3 ≥ 3vk−3.

After rearranging the terms we will have

2m− n ≥ (k − 3)vk−3 + (k − 3)vk−2 + (k − 2)vk−1,

2m− n ≥ (k − 2)vk−3 + (k − 3)vk−2,

2m− n ≥ (k − 1)vk−3.

After subtracting vk−1 and vk−3 from the right hand sides of the first and the
second inequalities respectively, we will get

2m− n ≥ (k − 3)(vk−3 + vk−2 + vk−1),

2m− n ≥ (k − 3)(vk−3 + vk−2),

2m− n ≥ (k − 1)vk−3.

It follows that

vk−3 + vk−2 + vk−1 ≤
2m− n

k − 3
,

vk−3 + vk−2 ≤
2m− n

k − 3
,
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vk−3 ≤
2m− n

k − 1
.

Alternatively, for the number of edges we also have the following expression

2m ≥ nk − (vk−1 + 2vk−2 + 3vk−3) =

= nk − (vk−1 + vk−2 + vk−3)− (vk−2 + vk−3)− vk−3.

By substituting the above 3 inequalities in this inequality we get

2m ≥ nk − (2m− n)(
2

k − 3
+

1

k − 1
).

From which it follows that

m ≥ n

2
·
k + ( 2

k−3 + 1
k−1 )

1 + ( 2
k−3 + 1

k−1 )
=

n

2
·
k + ( 2

k−3 + 1
k−1 )

1 + ( 2
k−3 + 1

k−1 )
.

This gives the following lower bound on B(2k − 7)

B(2k − 7) ≥ n

2
·
k + ( 1

k−1 + 2
k−3 )

1 + ( 1
k−1 + 2

k−3 )
=

2k − 7

2
((k − 3) +

5k − 11

(k + 1)(k − 2)
).

3 Lower Bound on B(2k − 2p + 1)

In this section we obtain a new lower bound on B(n) where n = 2k − 2p + 1
based on the degree sequence restrictions of any broadcast graph on 2k − 2p +1
vertices.

Theorem 2. B(2k − 2p + 1) ≥ 2k−2p+1
2 ((k − p) + k(2p−1)−(p2+p−1)

k(k−1)−(p−1) ).

Proof. We observe that in an mbg on 2k − 2p +1 vertices, each vertex of degree
k − p must have at least one neighbour of degree at least k, two neighbours of
degree at least k− 1, three neighbours of degree at least k− 2, ... , p neighbours
of degree at least k − p + 1. After noticing that a vertex cannot have all its
neighbours of degree k − p we are getting the following inequalities∑

i≥k

(i − 1)vi ≥ vk−p,

∑
i≥k−1

(i− 1)vi ≥ 2vk−p,

∑
i≥k−2

(i− 1)vi ≥ 3vk−p,

...∑
i≥k−p+1

(i− 1)vi ≥ pvk−p.
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For the number of edges in the graph, denoted by m we will have

2m =
∑

i≥k−p

ivi = n+
∑

i≥k−p

(i− 1)vi.

This implies that ∑
i≥k−p

(i− 1)vi = 2m− n.

After substituting this in the above p inequalities and reversing their order we
will get

2m− n− (k − p− 1)vk−p ≥ pvk−p,

2m− n− (k − p− 1)vk−p − (k − p)vk−p+1 ≥ (p− 1)vk−p,

2m− n− (k − p− 1)vk−p − (k − p)vk−p+1 − (k − p+ 1)vk−p+2 ≥ (p− 2)vk−p,

...

2m− n−
i∑

j=0

(k − p− 1 + j)vk−p+j ≥ (p− i)vk−p,

...

2m− n−
p−1∑
j=0

(k − p− 1 + j)vk−p+j ≥ vk−p.

After rearranging the terms we will have

2m− n ≥ (k − 1)vk−p,

2m− n ≥ (k − 2)vk−p + (k − p)vk−p+1,

2m− n ≥ (k − 3)vk−p + (k − p)vk−p+1 + (k − p+ 1)vk−p+2,

...

2m− n ≥ (k − p)vk−p +

p−1∑
j=1

(k − p− 1 + j)vk−p+j .

By replacing all the k − 2, k − 3, ..., k − p + 1 coefficients on the right side of
these inequalities with k − p, which is the smallest one, we will get

2m− n ≥ (k − 1)vk−p,

2m− n ≥ (k − p)(vk−p + vk−p+1),

2m− n ≥ (k − p)(vk−p + vk−p+1 + vk−p+2),

...

2m− n ≥ (k − p)(vk−p + vk−p+1 + vk−p+2 + ...+ vk−1).
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Alternatively, we have the following trivial inequality

2m ≥ nk − (vk−1 + 2vk−2 + 3vk−3 + ...+ pvk−p) =

= nk− (vk−1 + ...+ vk−p)− (vk−2 + ...+ vk−p)− (vk−3 + ...+ vk−p)− ...− vk−p.

By substituting the terms in parenthesis with their upper bounds from the pre-
vious set of inequalities we will get

2m ≥ nk − (2m− n)(
1

k − 1
+

p− 1

k − p
).

It follows that

B(2k − 2p + 1) ≥ m ≥ n

2
·
k + ( 1

k−1 + p−1
k−p )

1 + ( 1
k−1 + p−1

k−p )
=

=
2k − 2p + 1

2
((k − p) +

k(2p− 1)− (p2 + p− 1)

k(k − 1)− (p− 1)
).

Note that by plugging p = 3 in Theorem 2 we get the lower bound from
Theorem 1.

4 Lower Bound on B(2k − 2p)

In this section we present a new lower bound on B(2k − 2p).

Theorem 3. B(2k − 2p) ≥ 2k−2p

2 ((k − p) + k(2p−2)−(p2+p−2)
k(k−2)−(p−2) ).

Proof. Most of the proof is omitted due to its similarity to the proof for B(2k −
2p − 1). We observe that in an mbg on 2k − 2p vertices, each vertex of degree
k−p must have at least two neighbours of degree at least k−1, three neighbours
of degree at least k − 2, ... , p neighbours of degree at least k − p+ 1. See Fig.
1. This will give the following inequalities:∑

i≥k−1

(i− 1)vi ≥ 2vk−p,

∑
i≥k−2

(i− 1)vi ≥ 3vk−p,

...∑
i≥k−p+1

(i− 1)vi ≥ pvk−p.

Note that the first inequality from Theorem 2 is missing here. The reason
is that in a broadcast graph on 2k − 2p + 1 vertices, unlike for the 2k − 2p

case, a vertex of degree k − p can have a neghbour of degree k − 1. Using these
inequalities in a similar way as in Theorem 2, we were able to prove the presented
lower bound on B(2k − 2p).



New Lower Bounds on Broadcast Function 181

Fig. 1. Broadcast tree rooted at vertex u of degree k − p. The neighbours of u are
sorted in the decreasing order of their degree and labeled 1, 2, ..., k− p. The number in
each triangle is the maximum possible number of vertices in that subtree. The number
on each vertex is the minimum required degreed of that vertex.

5 About the Value of B(24)

A broadcast graph on 24 vertices and 36 edges was constructed by Bermond et
al. [3]. This gives B(24) ≤ 36.

We will prove the B(24) ≥ 36 inequality for graphs G with Δ(G) ≤ 4, i.e. for
graphs with maximum vertex degree at most 4. It will follow that, if it exists,
a broadcast graph on 24 vertices and less than 36 edges, must have at least one
vertex of degree at least 5.

Let vi denote the number of vertices of degree i, and αij denote the number
of all edges between vertices of degree i and j. By our definition αij = αji.

Lemma 1. For a broadcast graph G on 24 vertices, δ(G) ≥ 2, i.e. v1 = 0.

Proof. Let G be a broadcast graph on 24 vertices, i.e b(G) = 	log 24
 = 5. Let
u be the broadcast originator and deg(u) = 1. In the first round, it will inform
its only neighbor v. In the remaining 4 rounds, v will be able to inform at most
16 = 24 vertices. It follows that in 5 rounds u can inform only at most 17 vertices,
as shown in Fig. 2.

Theorem 4. A broadcast graph G on 24 vertices and Δ(G) ≤ 4, must have at
least 36 edges.

Proof. From Lemma 1, it follows that v1 = 0. By counting the number of edges
adjacent to vertices of degree 4, we will have

4v4 = α42 + α43 + 2α44.

We observe that the broadcast tree rooted at a vertex u of degree 2 must
have a form shown in Figure 3, otherwise in 5 rounds it will not be possible
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Fig. 2. Broadcast tree rooted at a vertex of degree 1

Fig. 3. Subtree of a broadcast tree rooted at a vertex of degree 2

to inform 24 vertices. The number next on each vertex indicates the minimal
possible degree for that vertex. For example, a vertex with label 3 may actually
have degree 4.

From the figure we observe that a vertex of degree 2 must have both its
neighbours of degree 4. Therefore,

α42 = 2v2.

From the fact that a vertex of degree 4 cannot have all its neighbours having
degree 2, it follows that it has at least one adjacent is edge going to vertex of
degree 3 or 4. Also we note that a vertex of degree 2 must have a neighbour
v (left child in Figure 3) of degree 4 having at least 2 edges going to a vertex
of degree 3 or 4. That is v cannot have three neghbours of degree 2. Vertex v
can be shared between at most 2 vertices of degree 2. It follows that there are
at least

⌈
v2
2

⌉
such vertices “v”, i.e. vertices of degree 4 having at least 2 edges

going to a vertex of degree 3 or 4. Thus, we can claim that that

α43 + α44 ≥ v4 +
⌈v2
2

⌉
.

From the observation that an edge between vertices of degree 4 in Figure 3
can be shared among at most 4 vertices of degree 2 we have that

α44 ≥
⌈v2
4

⌉
.
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Finally, by using the expressions above we will have

4v4 = α42 + α43 + 2α44 = α42 + (α43 + α44) + α44 ≥

≥ 2v2 + v4 +
⌈v2
2

⌉
+
⌈v2
4

⌉
≥ (2 +

1

2
+

1

4
)v2 + v4 =

11

4
v2 + v4.

It follows that

v4 ≥
11

12
v2.

To prove that b(24) ≥ 36 = 24·3
2 , we must show that in any broadcast graph

of on 24 vertices, the average vertex degree is at least 3. In our case, this means
that in any broadcast graph G with Δ(G) = 4, |G| = 24, we must show that
v4 ≥ v2. From v4 ≥ 11

12v2 it almost always follows that v4 ≥ v2. The only pair of
values for which it is not the case is v2 = 12, v4 = 11, but this would mean that
v3 = 24 − v2 − v4 = 1. We observe that this is not possible, since in any graph
the number of vertices of odd degree must be even.

6 Summary

In [7], it was shown that B(n) ≥ n
2 (�logn − log(1 + 2�logn� − n)). Let k be

the index of the leftmost 0 bit in the binary representation (αp−1αp−2...α1α0)
of n − 1. In [14], the following bound was obtained B(n) ≥ n

2 (p − k − 1). This
bound was later improved in [10] to B(n) ≥ n

2 (p − k − 1 + β) where β = 0 if
k = 0 or if α0 = α1 = ... = αk−1 = 0, otherwise β = 1. For cases n = 2p− 2k +1
and n = 2p− 2k, these bounds give B(n) ≥ n

2 (p− k). It follows that the bounds
from Theorems 2 and 3 are obviously better.

Note that the best known upper bounds on B(n) for both n = 2p − 2k + 1

and n = 2p − 2k is B(n) ≤ 2p−2k

2 (p − k+1
2 ) [9]. So, still there is a gap between

the best known lower and upper bounds.
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Abstract. This paper proposes strategies for maintaining a database of compu-
tational results of functions f on sequence arguments x, where x is sorted in
non-decreasing order and f(x) has greatest dependence on the first few terms of
x. This scenario applies also to symmetric functions f , where the partial deriva-
tives approach zero as the corresponding component value increases. The goal is
to pre-compute exact values f(u) on a tight enough net of sequence arguments,
so that given any other sequence x, a neighboring sequence u in the net giving a
close approximation can be efficiently found. Our scheme avoids pre-computing
the more-numerous partial-derivative values. It employs a new data structure that
combines ideas of a trie and an array implementation of a heap, representing grid
values compactly in the array, yet still allowing access by a single index lookup
rather than pointer jumping. We demonstrate good size/approximation perfor-
mance in a natural application.

Keywords: Data structures, memoization, sequences, metrics, topology, ma-
chine learning, cloud computing.

1 Introduction

In many computational tasks, we need to evaluate a function on many different argu-
ments, in applications such as aggregation where we can tolerate approximation. Evalu-
ations f(x) may be expensive enough to demand memoization of pre-computed values,
creating a fine enough grid of argument-value pairs to enable approximating f(x) via
one or more neighboring pairs (u, f(u)). In this paper we limit ourselves to external
memoization, here meaning building the complete grid in advance. Such applications
of grids in high-dimensional real spaces R� are well known (see history in [1]). What
distinguishes this paper is a different kind of space in which the arguments are ho-
mogeneous sequences not just arbitrary vectors, where f and the space obey certain
large-scale structural properties.

To explain our setting and ideas, consider first the natural grid strategy in R
� of

employing the Taylor expansion to approximate f(x) via a nearby gridpoint u:

f(x) = f(u) +
�∑

i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·
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If we make the grid fine enough, and assume that f is reasonably smooth, we can ignore
the terms with second and higher partials, since (xi − ui)(xj − uj) is quadratically
small in the grid size. Doing this still requires knowledge of the gradient of f on the
grid-points, however. Memoizing—that is, precomputing and storing—all the partials
on the gridpoints might be � times as expensive as memoizing the values f(u). Hence,
depending on the application, one may employ an approximation to the gradient or a
recursive estimation of the partials.

In our setting, we are given a different kind of structure with a little more knowledge.
Here we need to compute functions f on sequence arguments x = (x1, x2, x3, . . . )
under the following circumstances.

(a) The sequence entries and function values belong to [0, 1].
(b) For all i < j and x, ∂f/∂xi > ∂f/∂xj at x.
(c) The sequences are non-decreasing, and for all i, ∂f/∂xi becomes small as xi ap-

proaches 1.
(d) While exact computation of f(x) is expensive, moderate precision suffices, espe-

cially when there is no bias in the approximations.

Part (b) says that the initial terms have the highest influence on the result, while (c)
together with (b) implies that as the sequence approaches its ceiling, terms lose their
influence. Part (c) also allows us to assume all sequences have the same length �, using
1.0 values as trailing padding if needed. Applications obeying (d) include calculation
of means and percentiles and other aggregate statistics, as are typical for streaming al-
gorithms [2], and various tasks in curve fitting, machine learning [3], complex function
evaluation, and Monte Carlo simulations (see [4]).

For further intuition, note that this setting applies to any function f that is symmetric,
that is whose value is independent of the order of the arguments. Such a function really
depends on the values of the arguments in a ranking structure. We may without loss of
generality restrict the arguments to be sequenced by rank. Then (b) says that the first-
ranked arguments matter most, while (c) says that elements with not only poor rank but
also poor underlying scores have negligible marginal influence.

The goal is to build a data structure U of arguments and values f(u) with these
properties:

1. Coding: For all argument sequences x there are u ∈ U such that |f(u)−f(x)| < ε.
2. Size: |U | is not too large, as a function of ε.
3. Efficiency: A good neighbor or small set of neighbors u can be found in time

proportional to the length of the sequence, with only O(1) further computation
needed to retrieve the value f(u).

4. Only a “black box” memo table of values f(u) is needed, with the remainder of
the approximation algorithm staying (essentially) independent of f .

Our main contribution is the construction of a family G of grid structures U and a
simple memoizing algorithm A that is parameterized by a weighting function wt(· · · )
used in lieu of the gradient. Among functions we consider are wt(· · · ) = 0, which
means ignoring the gradient, and

wt(i,x,−) = 1

i
(1− xi). (1)
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The intuition for this is that the first i elements have size no larger than xi, which is
to say equal or higher rank and influence on f(x) to xi. If they were all equal, then
each would have a share 1/i of their total influence. The multiplier (1 − xi) aims to
moderate the influence as the argument component xi itself increases. It is also the
simplest multiplier that goes to zero as xi goes to 1. Our algorithm A uses weights in a
balancing strategy that reflects the other sequence elements xj for j < i.

We report success on a fairly general range of functions f that arise from a natural
application in which probabilities are estimated. Some of the f represent salient basic
mathematical problems in their own right. Key features of our data structure, algorithm,
and overall strategy are:

– The grid is not regular but “warped”: it starts fine but becomes coarse as i increases,
eventually padding with nonce 1 values.

– The grid has an efficient compact mapping to an array, like a “warped” array im-
plementation of a heap, so that values f(u) can be looked up by one index rather
than pointer jumping.

– The actual gradient of f is replaced by the universal substitute ( 1) and various
other weighting method described later, which reflects properties (b) and (c) above.

– The algorithm to find a good grid neighbor u to the given argument x uses weights
wi = wt(i, · · · ) to balance rounding.

This seems like a “cookbook” approach, but our point is that we have more structure
to work with, before the steps of the recipe that have f as a particular ingredient need
to be acted on. In our application there is no connection between the weights wi and
the functions f except for the axiomatic properties (b) and (c) and lack of unusual
pathology in f . We demonstrate performance that is almost ten times faster than without
memoization, and with four-place accuracy from a grid that starts with only two-place
fineness. First we describe the application.

2 Estimating Probabilities and Means

Although our application comes from the chess decision-making model of [5], the
present computational task is simple and general and can be described without ref-
erence to chess. The main model-design parameter is a real function h, and varying h
implicitly defines the functions f treated in this paper. The argument is a non-increasing
sequence of �-many real numbers ai beginning with a1 = 1. The goal is to fit �-many
probability values pi according to the equations

h(pi)

h(p1)
= ai; 0 ≤ pi ≤ 1,

�∑
i=1

pi = 1.

In modeling our grid, we transform xi = 1 − ai so that the most influential values
xi as those closest to 0. The function value f(x) is just the first probability, p1. This
is hence a fairly broad setting of curve-fitting. Our application further involves data
with myriad sequences x, for which we need to compute sums M =

∑
x∈S f(x) over

sampled subsets S of the data, which when divided by |S| become means. When S is
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moderately large, it suffices to have good approximation for f provided it is unbiased.
Again this is highly typical in computational applications.

When h is the identity function id, we can solve for f in closed form:

fid(a) =
1∑
i ai

, so fid(x) =
1

�−
∑

i xi
.

For other functions h, however, we know only iterative techniques to compute f(x) =
p1, and from p1 the other probabilities, to desired precision. These iterations are expen-
sive, so we seek to save them. When h is the logarithm function—more precisely the
function h(p) = 1/ log(1/p)—we obtain the equations:

log(1/p1)

log(1/pi)
= ai, so pi = p

1/ai

1 .

Viewing bi = 1/ai as a general non-decreasing sequence, not necessarily beginning at
1, defines the following mathematical problem: Given y and real numbers b1, . . . , b�,
find a real number p such that

y = pb1 + pb2 + · · ·+ pb� .

When � = 1 so there is just one number b, then p = y1/b, so this is just the problem
of root-finding. Hence we think of this problem as computing “vectorized roots” b

√
y.

Above we have the case y = 1 and also b1 = 1.
To restore some of the intuition from chess, the xi values are the perceived differ-

ences of various chess moves mi in a chess position from the optimal move m1. These
are obtained from the differences Δ(m1,mi) given by analysis from a strong computer
chess program, after factoring in model parameters representing the skill of a particular
chess player P . The pi are estimates for the probabilities that P will choose the re-
spective moves, and in particular p1 is the probability of finding the move the computer
thinks is best. The value M becomes the expected number of agreements with the com-
puter on the set S of moves. We imagine that for testing a small set of a few hundred
moves one might pay the time for exact computation, but for training the model on sets
of many tens of thousands, using sequences of values from 10–20 different levels of
analysis on each move, explains the need for memoization. The better moves have xi

close to zero. If there are k such moves, then p1 will be order-of 1/k, and so a (k+1)st
good move will have influence only at most about 1/(k + 1). Moves with xi close to
1 are “blunders,” and the exact value of a blunder matters little in the phenomenon of
player choice that we are modeling. Hence the axiomatic properties in the Introduction
are fulfilled in an intuitive sense based on chess, but our point here is that they flow
originally from a quite general mathematical system of equations.

3 The Tapered Grid Data Structures

When working with sequences, it is natural first to think of a trie data structure, that is
a tree whose root branches to the possible first sequence elements (often restricted to
those actually used), each of those nodes to possible second elements, and so on. When
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presented with a new sequence x, upon replacing entries xi by ones in the domain if
needed, one follows tree links until reaching a node for which x is known to be the
unique sequence through it, whereupon f(x) can be stored at that node, or the node is
deep enough to store a good approximation. The main advantage of tries is flexibility
to add new sequences and values dynamically and compactly, but this comes with high
use of main memory and cache misses with pointer jumps.

We sacrifice the dynamism to store pre-computed values. This brings, however, the
need to cover all possible next elements, not just those present in the dynamically built
data. Since chess positions can have 50 or more legal moves we regard � = 50, so to
store the result for all possible x with 2-decimal-place accuracy would involve powers
of 101 that bust the information capacity of the universe. Hence our first task is to
finalize the ordered vector s such that ui ∈ s for all u ∈ U where i belong to [1, �].
Keeping in mind the constraint that ui ≤ uj ⇐⇒ i ≤ j, the grid that we construct is
one we call a self-similar tapered tree.

Definition 1. A self-similar tapered tree is a tree where every node has a branching
label b, which is also its number of children. Its children have branches labeled b, b −
1, . . . , 1 going from left to right.

One more definition is useful in this context:

Definition 2. The branching factor of the grid is the maximum number of children any
node can have at any depth. The branching factor of any depth is maximum number of
children any node can have at that particular depth.

The branching factor of the root is the same as that of the grid, which is the length
|s| of s in our case. The choice of elements in s and its length are implementation
dependent, though we usually start with compact branches and later space out the gaps
as the argument entries approach the ceiling 1.0.

Because the grid grows exponentially in size with increasing depth, we need to use
at least one of the two compromises:

– Truncate: cut off the depth of the grid at some depth d0 � �.
– Warp: reduce the branching factor geometrically as the depth of the grid d in-

creases.

To demonstrate the ideas, we develop two schemes. The first idea is utilized by
both of our schemes. For best exposition we implement the first before introducing
the second. After choosing a fixed-spacing vector s, we parameterize our first scheme
by the maximum depth d and a fixed branching factor B at every depth. Our reduced-
branching scheme replaces B by a specifier G of a rounded geometric progression to
define the family G of grids U = U(d,G), in which the omission of “�” as a parameter
is deliberate.

For our first scheme, once we finalize the branching factor b, the depth d and the
spacing vector s, we can generate all the sequences, where the root always contains the
value 0.0. Of all the sequences, (0.0, 0.0, 0.0, . . . ) is the infimum (in which all moves
have equal value) and (0.0, 1.0) ≡ (0.0, 1.0, 1.0, 1.0, . . . ) is the supremum. All other
monotone sequences are totally ordered between them by prefix lexicographical order.
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We evaluate f(u) for each of the sequences in the same order and store the output in a
file, array or any sequential data structure that supports random access.

For our second implementation, we add the idea of “warping”. The grid is built in
such a way that, at every subsequent depth, the branching factor gets reduced by half.
If the branching factor for the root is 2n+1, then the maximum depth possible for such
a grid is n+ 2. The leaf nodes will contain values u0 and u|s|−1.

It is easy to generate all the sequences in increasing order, evaluate the function and
just store the evaluations in file. The real complication is calculating the location/index
where the evaluation for the given vector is stored in the file.

Lemma 1. For the grid with fixed branching factor B at every depth, given any vector
u = (u1, u2, . . . , ud) where depth d > 0, we can find the index of u in O(d) time.

Proof. For performing the indexing, we first need to create a table. The table holds
Vi,b, which is the number of nodes at any depth i for any core branch b. Core branches
are branches generated from the root, while i and b index the corresponding row and
column of the table respectively. The constructed table has d rows and B columns. The
entries for the table for the first implementation can be generated using equation( 2).

Vi,b =

⎧⎪⎨
⎪⎩
0 if i = 1

1 if i = 2∑B
j=b Vi−1,j otherwise

(2)

or

Vi,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if i = 1

1 if i = 2

Vi−1,b + Vi,b+1 if (b < B) ∧ (i > 2)

Vi−1,b otherwise,

The creation of the table, which is a one-time event, takes O(Bd) time. Once the table is
generated, for calculating the index for the vector u = (u1, . . . , ud), we first calculate
the position of ui where i ∈ {1, 2, . . . , d} in the table. We can define a mapping function
h : ui → mi where mi is the corresponding column in the grid for ui. Then the index
would be:

index =
d−1∑
i=1

h(ui+1)−1∑
j=h(ui)

Vd+1−i,j . (3)

Calculating the index requires summing O(Bd) terms. By generating a second table
that stores the partial sum

∑b
j=0 Vi,j for every b and i, we can perform the inner sum

operation of equation (3)in constant time. This makes the whole indexing take O(d)
time.

The fixed branching factor algorithm is well suited for most of the application. But in
cases where the precision of evaluating f is most crucial for the initial values of the
vector u, we use the “warping” concept. A warped grid of depth d has initial branching
factor 2d + 1 and at each subsequent depth, the branching factor gets reduced by half.
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Lemma 2. For a grid with exponentially reducing branching factor B, given any vector
u = (u1, u2, . . . , ud) and depth d > 0, we can find the index of the sequence in O(d)
time.

Proof. As with the grid for fixed branching, for preforming indexing we first need to
generate a table. The constructed table has d rows and B columns. The entries for the
table for the second implementation can be generated using equation (4).

Vi,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if i = 1

1 if i = 2

Vi−1,b + Vi,b+2i−2 if (b + 2i−2 ≤ B) ∧ (i > 2)

Vi−1,b otherwise,

(4)

where i ranges from 1 to d, and Vi,b is the number of nodes at depth i and for core
branch index b. The generation of the table requires O(Bd) time.

The indexing for this scheme is different than that of our first scheme. If the mapping
function is g : (ui, k)→ mi,k we can evaluate mi,k using equation (5).

mi,k =

{
0 if (h(ui)− 1) mod 2k−1 �= 0

B − (B − 1)/2k−1 + (h(ui)− 1)/2k−1) otherwise,
(5)

Here the function h is the mapping function used for fixed branched grid and k
represents the depth for which the index is sought. while mi,k = 0 indicates that the
corresponding ui is not present for the particular depth. This information can be stored
for future lookup. The modified indexing function for this reduced branched grid is:

index =

d−1∑
i=1

g(ui+1,i)−1∑
j=g(ui,i)

Vd+1−i,j (6)

Again, by the same procedure as described for fixed branching, we can calculate the
corresponding index for any vector in O(d) time.

We can further specialize the scheme by reducing the branches only at specific depths.
This gives us better control on the overall size and precision of the grid.

Lemma 3. For a grid with initial branching factor B with a binary vector r of size d
indicating reduction in branches at any depth, given any vector u = (u1, u2, . . . , ud)
and depth d > 0, we can find the index of the sequence in O(d) time.

Proof. Like the earlier two approaches, we first need to construct a table for lookup.
The table needs to be constructed recursively from depth j = d to 1 due to the variable
nature of r. The intermediate rows in the table will be rewritten for each j. The con-
structed table has d rows and B columns. The first two values in r are 0 which indicates
no reduction in branches while the rest of the values can be either 0 or 1 indicating
no reduction and reduction in branches respectively. The entries for the table for this
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implementation can be generated using equation (7) for any intermediate depth i and
final depth j where R(i, j) =

∑d−j+i
k=d−j+1 rk.

Vi,b,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if i = 1

1 if i = 2

Vi−1,b,j + Vi,b+2R(i,j) if (b+ 2R(i, j) ≤ B) ∧ (i > 2)

Vi−1,b,j otherwise,

(7)

where i ranges from 1 to j, and Vi,b,j is the number of nodes at intermediate depth i
and for branch index b for the purpose of generating row j of the table . Once the table
is created we can ignore the j parameter for indexing purpose. Due to the recursive
nature of creation, the generation of the table requires O(Bd2) time in comparison to
O(Bd) time required for earlier two implementation. After the construction of the table
the mapping function g : (ui, k) → mi,k can be evaluated using equation (8) where

R(k) =
k+1∑
j=1

rj .

mi,k =

{
0 if (h(ui)− 1) mod 2R(k) �= 0

B −B/2R(k) + (h(ui)− 1)/2R(k)) otherwise,
(8)

The indexing scheme is the same as reduced-branching implementation.

4 Interpolation Algorithm

Although the members of U are totally ordered lexicographically, the values f(u)
are generally not monotone in this ordering, and this makes the neighborhood topol-
ogy play havoc when given a non-grid sequence x. For instance, if the spacing starts
0.00, 0.02, 0.04, . . . in the first few index places i ≥ 2, then the sequence

x = 0.00, 0.01, 0.20, 0.40, 0.60, 0.80, 1.0 . . .

has as its lower neighbor the sequence 0.00, 0.00, 1.0, 1.0 . . . , which generally gives
much higher p1, and its upper neighbor the sequence 0.00, 0.02, 0.02, 0.02, 0.02 . . . in
which all moves are close to equal and p1 has nearly its minimum possible value, which
is 1/�. Thus attempting to use the neighbors in the trie structure of the sequences is bad.
Instead, given (any) x, we define its component-wise bounds x+ and x−. In this case,
assuming the spacing continues . . . , 0.20, 0.35, 0.50, 0.75, 1.0, we get:

x+ = 0.00, 0.02, 0.20, 0.50, 0.75, 1.0, 1.0 . . .

x− = 0.00, 0.00, 0.20, 0.35, 0.50, 0.75, 1.0 . . .

Since these are members of U , it is plausible to output some weighted average of f(x+)
and f(x−). We mix this idea with interpolating to find a better argumentu between x+

and x−. For this purpose we use the spacing vector s, which contains all possible points
in ascending order, ending with the maximum, 1.0. We also let wt(i,x, j, s) stand for
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a weighting function which can be the aforementioned (1 − xi)/i gradient or might
reflect s and its index j as well.

Our procedure INTERPOLATE(x, s, d;u) creates u of depth d by first truncating x
to length d (or padding x with extra 1.0 values if its length is < d), initializing j and
“credit” c to 0, and then executing the following loop for i = 1 to d:

1. while (s[j + 1] < x[i]) do j := j + 1; //so x[i] ≤ s[j + 1]
2. let a = (s[j] + s[j + 1])/2;
3. if a > x[i] + c then do u[i] := s[j] and c := c+ wt(i,x, j, s) ∗ (x[i]− s[j]);
4. else do u[i] = s[j + 1]; j := j + 1; and c := c−wt(i,x, j, s) ∗ (s[j + 1]− x[i]);

If we round down in step 3, then higher c may influence us to round up in the next
iteration. Once we round up, however, the increment in j makes s[j + 1] the new floor,
so we can never round down to a lower value. The x[i] values may stay below this
floor—then the while-loop in step 1 does nothing, and negative adjustments in c will
prevent further rounding up unless x[i′] itself increases for some i′ > i. The algorithm
runs in O(d) time since j never backtracks. A modified version of this interpolation
algorithm can be used for reduced and selective branching implementation where at
any depth s may have half the elements that its earlier depth in case of reduction of
branches at that depth. In that case, we need to replace j by j/2. An additional check is
required to make sure that for every i, u[i] ≥ u[i− 1].

5 Experimental Results

We implemented all of the schemes in C++ with highest optimization on a shared Red
Hat Enterprise Linux Server release 5.7 (Tikanga) 32GB 64-bit system configured for
non-interactive, CPU-intensive and long-running processes. Our main tests employed
the vector-root function from Section 2 as f . The core branches used for the fixed
branched grid are shown in table 1. For this scheme, we set the branching factor to 16
and the depth to 15. We generated the evaluation for every possible vector using the
core-branch values, and stored the evaluations in a file. The generated file had a total of
77, 558, 760 entries, starting from the evaluation for a vector of all 0’s to the entry for
the length-2 vector (0, 1).

Table 1. Core branches used for fixed-branch grid

Index 1 2 3 4 5 6 7 8 9 10 11 14 13 14 15 16
Value 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.0

For testing the performance of our scheme, we used 8,000 random vectors x. The
distribution was controlled by a parameter b governing the expected time to hit the
1.0 ceiling—in chess terms it expressed how many reasonable (non-blunder) moves to
expect in a position. This was done by initializing p = 0, making x1 = 0 the first entry,
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and for each iteration, generating a uniformly distributed random number r between p
and 1. Then we select the next element of the vector as p+ r−p

b and update p to the same
value. We have tested our implementation for various b values ranging from 3 to 6.

For each of those 8,000 vectors, we first calculated the exact vector-root using New-
ton’s method and then calculated the closest neighbor of that vector using various inter-
polation algorithm (refer Section 4) and found the corresponding index for that vector.
Finally we accessed the file to fetch the evaluation at that location. For interpolation, we
used various weighting and mapping policies. The details of the various interpolation
schemes are as follows:

1. The simple nearest neighbor (NN) strategy follows the algorithm INTERPOLATE

with wt(· · · ) = 0. Each value in the input vector was hence matched to the nearest
grid point, subject to the monoticity requirement.

2. The universal gradient (UG) strategy sets the weight to (1−xi)/i, per equation (1).
3. The gridpoint weight (GW) strategy sets the weight to wt(i,x, j, s) = (1−sj)(1−

xi), where sj is the nearest gridpoint to which xi is mapped.
4. The simple lower bound (LB) policy maps every element of the vector to the nearest

grid value which is smaller or equal to xi . The generated vector is the pointwise
lower bound for x.

5. The simple upper bound (UB) policy maps every element of the vector to the near-
est grid value which is equal or greater than xi. The generated vector is the point-
wise upper bound for x.

The last two furnish comparisons to show that cavalier interpolation produces signifi-
cantly worse results.

Table 2. Comparison between interpolation
algorithms

b = 3 4 5 6
NN 0.0010 0.0007 0.0004 -0.0003
UG 0.0009 0.0007 0.0002 -0.0007
GW 0.0008 0.0003 -0.0008 -0.0023
LB -0.2284 -0.2711 -0.2993 -0.3209
UB 0.1871 0.1487 0.1221 0.1011

Table 3. Comparison between interpolation
algorithms for selective branching

b = 3 4 5 6
NN 0.0004 0.0007 0.0009 0.0005
UG 0.0004 0.0006 0.0008 0.0004
GW 0.0003 0.0004 0.0005 0.0002
LB -0.0131 -0.0142 -0.0150 -0.0154
UB 0.0158 0.0172 0.0173 0.0163

Table 2 presents the average deviation from the exact vector-root computation for the
various strategies and values of b. The results show that each of the first three schemes
gives good approximation, but there is no clear winner, rather the best performance
depends on the distribution of data.

Figure 1 shows a scatter plot of the deviation from the true values of the vector root
function where b was set to 5 and the UG strategy was used.

We ran similar tests for reduced-branching implementation. The branching factor of
the grid was set to 257, where each branch was equally spaced between 0 and 1, and
the depth of the grid was 10. For interpolation we used ‘NN’ strategy. We tested the
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Fig. 1. Performance analysis for the fixed-branch grid

Fig. 2. Approximation performance analysis for the reduced-branched grid

implementation with 8, 000 iterations. Figure 2 shows the closeness of fit. The average
deviation for the scheme from the true vector-root value was −0.0008, where the stan-
dard deviation was 0.0052. For selective branching implementation, we set the branch-
ing factor and depth to 33 and 20 respectively. The branches were equally spaced, and
reduction of branches occurred at depth 5, 9, 17.

From Table 3 we observe the selective reducing scheme can produce output very
close to accurate , and among all interpolation algorithm, ’gridpoint weight’ strategy
works better.

Figure 3 represents the histogram for deviation from actual calculation of vector
root. The bias parameter ‘b was set to 6 to generate the random vectors used for the
histogram.

On an average, the execution time for any scheme was around 10 times faster than
the real-time vector-root evaluation.
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Fig. 3. Performance analysis for the selective branched grid

6 Conclusions and Future Work

In this paper we have developed a special purpose data structure for storing sample
points of a function f so that the values of f at other points can be interpolated effi-
ciently. This data structure can be used to store the result of computation intensive func-
tion values for faster remote computing. Our main concern is not space efficiency [6,7]
rather faster retrieval of function evaluation. As the function is not evaluated in real
time, this suits the requirement of embedded system, where both the processing power
and conservation of energy is vital [8]. Along with these benefits, this data structure is
around 10 times faster and provides good approximation in comparison to the real-time
evaluation of various functions.
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Abstract. We examine several structural properties of single-source
shortest paths and present a local search algorithm for the partially
dynamic single-source shortest paths problem. Our algorithm works on
both deterministic digraphs and undirected graphs. For a deterministic
digraph with positive arc weights, our algorithm handles a single arc

weight increase in O(n+ n2 log n
m

) expected time, where n is the number
of nodes and m is the number of edges in the digraph. Specifically, our al-
gorithm is an O(n) expected time algorithm when m = Ω(n log n). This
solves partially an open problem proposed by Demetrescu and Italiano
(Journal of the ACM. 51(2004), 968–992).

Keywords: partially dynamic, single-source shortest paths, local search,
expected time.

1 Introduction

An all-pairs shortest paths (APSP) algorithm computes the shortest paths be-
tween every pair of nodes in a given digraph, and a single-source shortest paths
(SSSP) algorithm computes the shortest paths from a given source node to all
the other nodes. When dynamic changes occur to the digraph, a dynamic APSP
(SSSP, respectively) algorithm updates the shortest paths. One can recompute
the shortest paths using the static algorithms, but a truly dynamic algorithm
seeks for updating operations using fundamental properties of the shortest paths,
and is expected to run faster than recomputation by the static algorithms. We
present a partially dynamic SSSP algorithm for digraphs with arbitrary positive
arc weights. We use arc and edge interchangeably in this paper.

Dynamic changes of a digraph (a.k.a. edge update) include topology update and
edge weight update. Topology update includes edge insertions and deletions, and
edge weight update includes weight increase and decrease. Note that topology
update can be realized by edge weight update, and vice versa. When dealing with
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only edge weight updates, an algorithm is said to be fully dynamic if it can handle
both edge weight increases and decreases, but partially dynamic if it only can
handle edge weight decreases or increases but not both [1,4,5,10,13,16,17]. When
dealing with only topology updates, an algorithm is fully dynamic if it can handle
both edge insertions and deletions, is incremental if it can handle only edge
insertions but not deletions, and is decremental if it can handle only deletions
but not insertions [2,3,7,8,11,14,15]. Incremental and decremental algorithms are
sometimes collectively called partially dynamic.

Demetrescu and Italiano [4,5] studied a generalization of dynamic changes,
in which the weights of all the edges incident at a given node are changed in
one update. Such an update is called a node update, see also [16,17]. Clearly,
dynamic APSP and SSSP algorithms for node updates work for edge updates
too. Throughout this paper, n and m denote the numbers of nodes and edges
(arcs) in the input digraphs, respectively.

The dynamic APSP problem with edge weight updates has been studied ex-
tensively since it was proposed [12]. Ausiello et al. [1] devised a partially dy-
namic APSP algorithm with an O(Cn log n) amortized update time for digraphs
of which all edge weights are less than or equal to a constant C. King [11]
studied the fully dynamic APSP problem on the same class of digraphs and pre-
sented an algorithm with O(n

5
2

√
C logn) worst-case update time. Demetrescu

and Italiano [4,5] considered node updates on digraphs with non-negative real-
valued edge weights, and designed a fully dynamic APSP algorithm with an
O(n2 log3 n) amortized time. Thorup [16,17] presented an improved algorithm
with a worst-case O(n2.75polylog(n)) time. The fully dynamic APSP problem on
random graphs was considered by Friedrich and Hebbinghaus [10], who gave an

O(n
4
3+ε) expected time per update algorithm, for any ε > 0, for random graphs

G(n, p) with uniform random edge weights, and by Peres et al. [13], who pre-
sented an O(log2 n) expected time per update algorithm for complete digraphs
with edge weights selected independently at random from the uniform distribu-
tion on interval [0, 1]. There are also a number of approximate incremental and
decremental APSP algorithms [2,3,14] for undirected graphs with positive edge
weights.

For the dynamic SSSP problem with topology updates, Even and Shiloach [8]
and Dinitz [7] presented O(n) amortized time decremental algorithms for un-
weighted and undirected graphs. King [11] presented a decremental algorithm
to maintain shortest paths of distance up to d in O(md) time, for digraphs

with positive integer edge weights. Bernstein and Roditty [3] devised an O(n
2

m )
amortized time decremental algorithm to maintain (1+ ε)-approximate SSSP on
unweighted and undirected graphs. This is the first algorithm that breaks the
long-standing O(n) update time barrier on decremental SSSP problem, on not-
too-sparse graphs. On the other hand, Roditty and Zwick [15] showed that the in-
cremental and decremental SSSP problems on edge weighted digraphs are at least
as hard as the static APSP problem; by similar reductions they showed that the
incremental and decremental SSSP problems on edge unweighted digraphs are
at least as hard as the Boolean matrix multiplication problem. These hardness
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results hint that it will be difficult to improve the known best algorithms of Even
and Shiloach [8].

For the dynamic SSSP problem with edge weight updates, Fakcharoemphol
and Rao [9] studied the fully dynamic variant on planar digraphs, and devised

an O(n
4
5 log

13
5 n) amortized time algorithm. Demetrescu and Italiano [4] raised

the open problem on whether or not we can solve efficiently (i.e., better than
recomputation) fully dynamic SSSP problem on general graphs. We address
partially this open problem by presenting a partially dynamic SSSP algorithm for
handling arc weight increase on digraphs with positive weights. For deterministic

digraphs, our algorithm can handle a single arc weight increase in O(n+ n2 logn
m )

expected time. When m = Ω(n logn), our algorithm is an O(n) expected time
algorithm. Moreover, our algorithm can also work on undirected graphs with
positive weights.

The rest of the paper is organized as follows. In Sect. 2, we define some
notations frequently used in this paper and the partially dynamic SSSP problem
formally. In Sect. 3, we show several fundamental properties. In Sect. 4, we
present a local search algorithm based on these properties. In Sect. 5, we analyze
the worst-case expected update time of our algorithm handling a single arc
weight increase for deterministic digraphs. In Sect. 6, we conclude the paper
with some future work.

2 Problem Statements and Notations

Let D = (V,A,w, s) be a weighted digraph, where V is the node set, A is
the arc set, s is a designated node called source, and w(·) is a weight function
w : A → R

+. Suppose that the weight of an arc a increases from w(a) up
to w′(a) and all the other arc weights stay unchanged. Let δ = w′(a) − w(a).
Note that w′(a) always remains positive. The resultant digraph is denoted as
D′ = (V,A,w′, s). We use d∗D(s, v) (resp. d∗D′(s, v)) to denote the shortest path
distance from s to node v in D (resp. D′), and use Ts (resp. T ′

s) to denote the
single-source shortest paths tree in D (resp. D′).

Problem 1. Given D = (V,A,w, s) and Ts in D, we replace w(a) with w′(a) for
one arc a to obtain a new digraph D′ = (V,A,w′, s). The problem of updating
Ts to T ′

s in D′ is called the partially dynamic SSSP problem with a single arc
weight increase.

The essence of Problem 1 is to maintain SSSP, that is, to update the given Ts

in D to T ′
s in D′. Obviously, Ts and T ′

s are both out-trees from s, and both can
be taken as rooted trees at s. For any node of V , let Tu (resp. T ′

u) denote the
subtree of Ts (resp. T ′

s) rooted at u. We use πT (s, v) to denote the s-to-v simple
path along Ts, and use dT (s, v) to denote the length of πT (s, v) which is equal
to the sum of the weights on all the arcs of πT (s, v). Clearly, dT (s, v) = d∗D(s, v)
and dT ′(s, v) = d∗D′(s, v) for every v ∈ V . In addition, we use V (·) and A(·)
to denote the node set and arc set of one digraph or its subgraph respectively.
Let S(D,U) denote the subgraph of D induced by the subset U ⊆ V of nodes.
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For any subset U ⊂ V , we let C[U, V \ U ] denote the subset of arcs with tail in
U and head in V \ U .

Let a = (u, v) denote the arc of D from u to v and w(u, v) (or sometimes
w(a)) denote its weight. We call u the tail of a and denote u as ta, and call v
the head of a and denote v as ha. Thus, a = (ta, ha), which is called an outgoing
arc from ta and an incoming arc to ha. The set of all the outgoing arcs from a
node u is denoted as O(u) and the set of all the incoming arcs to v is denoted
as I(v).

3 Fundamental Properties

In the section, we show several fundamental properties which will play an im-
portant role in the design of our local search algorithm, described as PSAI, for
updating SSSP under a single arc weight increase.

Theorem 1. For any a /∈ Ts, no matter how much w(a) increases by to w′(a),
it always holds that d∗D′(s, v) = dT (s, v) for any v ∈ V .

Proof. No matter how much w(a) increases by to w′(a), the length of every
simple s-to-v1 path in D′ passing through a is larger than its length in D, and
the length of every simple s-to-v2 path in D′ not passing through a is the same
as its length in D. So the length of every simple path in D′ is either larger
than or equal to its length in D. When a /∈ Ts, πT (s, v) obviously does not pass
through a, and thus the length of πT (s, v) stays unchanged. Considering that
dT (s, v) = dD(s, v), we conclude that πT (s, v) is always the s-to-v shortest path
in D′ for any v ∈ V . So, d∗D′(s, v) = dT (s, v), ∀v ∈ V . The proof is complete. ��

Theorem 2. For any a ∈ Ts, it always holds that d∗D′(s, u) = dT (s, u) for any
u ∈ V \ V (Tha) regardless of how much w(a) increases by to w′(a).

Proof. When a ∈ Ts, we observe that πT (s, u) does not pass through a for any
u ∈ V \ V (Tha). Thus, the length of πT (s, u) stays unchanged and thus πT (s, u)
is always the s-to-u shortest path in D′ regardless of how much w(a) increases
by to w′(a). This implies that d∗D′(s, u) = dT (s, u), ∀u ∈ V \ V (Tha). The proof
is complete. ��

When a ∈ Ts and its weight increases to w′(a), one observes that since πT (s, v)
passes through a for any v ∈ V (Tha), the length of πT (s, v) in D′ is equal to its
length in D plus w′(a) − w(a). So, the length of πT (s, v) in D′ is larger than
dT (s, v). Since the length of every s-to-v simple path not passing through a
stays unchanged, it may occur that some s-to-v simple paths in D′ not passing
through a have a smaller length than πT (s, v). We conclude that every s-to-v
simple path in D′ having a smaller length than πT (s, v) is surely composed of
one s-to-u simple path in D′, followed by arc (u, v′) and the path v′-to-v in
Tha , where u ∈ I(v′) \ V (Tha). Such an s-to-v′ path can minimize its length by
selecting πT (s, u) as the s-to-u simple path. Let

b(v) = arg min
u∈I(v)\V (Tha )

{dT (s, u) + w(u, v)}, ∀v ∈ V (Tha), (1)
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Fig. 1. Illustration of Da

and b(v) is called a bridge node of v. Let b(v) = null if b(v) does not exist in
D′ and thus (b(v), v) = null. In addition, we use an arc ε(πT (s, v)) to represent
πT (s, v).

Accordingly, we can construct an auxiliary graph Da = (V,Aa, wa(·)) from
D based on a in the following way, see Fig. 1. The new arc set Aa is composed
of all the arcs in the subgraph of D induced by V (Tha) and all ε(πT (s, u)), u ∈
V \ V (Tha) and all (b(v), v), v ∈ V (Tha). For any arc r ∈ Aa, the weight of r,
wa(r), is equal to the length of πT (s, u0) if r represents πT (s, u0), or otherwise
wa(r) = w(r). That is,

Aa = A(S(D,V (Tha))) ∪ {(b(v), v) : v ∈ V (Tha)}
∪{ε(πT (s, u)) : u ∈ V \ V (Tha)},

(2)

and

wa(r) =

{
dT (s, u0) if r = ε(πT (s, u0)),
w(r) otherwise,

∀r ∈ Aa. (3)

Lemma 1. For any a ∈ Ts and any v ∈ V (Tha), it always holds that any s-to-v
shortest path in D′ contains exactly one arc in C[V \ V (Tha), V (Tha)].

Proof. We conclude from s ∈ V \ V (Tha) and v ∈ V (Tha) that any s-to-v
simple path in D′ contains at least one arc in C[V \ V (Tha), V (Tha)]. Sup-
pose that π�(s, v) is an s-to-v shortest path in D′ containing two arcs in
C[V \V (Tha), V (Tha)]. In details, π�(s, v) consists of πT (s, u1), two arcs (u1, v1)
and (u3, v3) in C[V \ V (Tha), V (Tha)] and (v2, u2), two disjoint paths π(v1, v2)
and π(v3, v) in S(D′, V (Tha)), and one path π(u2, u3) in S(D′, V \ V (Tha)),
where u1, u2, u3 ∈ V \ V (Tha) and v1, v2 ∈ V (Tha) (see Fig. 2). Note that it is
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Fig. 2. Illustrate the proof of Lemma 1

possible that v1 = v2, u2 = u3 and v3 = v. Clearly, the seven parts of π�(s, v)
are disjoint. The sub-path π�(s, u3) of π

�(s, v) is an s-to-u3 simple path in D′.
By Theorem 2, πT (s, u3) is still an s-to-u3 shortest path in D′. So, the length
of πT (s, u3) is less than the length of π�(s, u3). Therefore, a new path π�(s, v)
composed of πT (s, u3), (u3, v3) and π(v3, v) has a smaller length than π�(s, v).
This causes a contradiction. ��

Theorem 3. For any a ∈ Ts, it always holds that d∗D′(s, v) = d∗Da
(s, v) for any

v ∈ V regardless of how much w(a) increases by to w′(a).

Proof. When a ∈ Ts, Theorem 2 shows that πT (s, u) is always an s-to-u shortest
path in D′ for any u ∈ V \ V (Tha) and also an s-to-u shortest path in Da. So,
d∗D′(s, u) = d∗Da

(s, u). The work left is to prove d∗D′(s, v) = d∗Da
(s, v) for any

v ∈ V (Tha).
We observe that the weight of a increases from w(a) up to w′(a) and thus the

length of πT (s, v) in D′ increases by w′(a)−w(a). So, it is certain that an s-to-v
shortest path in D′ is one of such simple paths as composed of three disjoint
parts πT (s, b(v0)), (b(v0), v0) and a v0-to-v path π(v0, v) where v0 ∈ V (Tha). We
conclude from Lemma 1 and (b(v0), v0) ∈ C[V \ V (Tha), V (Tha)] that π(v0, v)
contains no arc in C[V \ V (Tha), V (Tha)]. So, π(v0, v) is a v0-to-v shortest path
in S(D,V (Tha)).

We need to visit all the incoming arcs to v in order to find b(v) for all v ∈
V (Tha) and need to traverse S(D,V (Tha)) to compute a v0-to-v shortest path in
S(D,V (Tha)). Therefore, the problem of finding an s-to-v shortest path in D′ is
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equivalent to the problem of finding an s-to-v shortest path in Da. This implies
that d∗D′(s, v) = d∗Da

(s, v). The proof is complete. ��

4 Local Search Algorithm

From the properties shown in Sect. 3, we need to discuss the situation of the arc
a with its weight increased, i.e., discuss whether a /∈ Ts or a ∈ Ts. When a /∈ Ts,
we conclude from Theorem 1 that πT (s, v) is also an s-to-v shortest path in D′

for any v ∈ V . Therefore, Ts is also a single-source shortest paths tree in D′ with
s as the origin. So we need no work. When a ∈ Ts, we conclude from Theorem
2 that πT (s, u) is also an s-to-u shortest path in D′ for any u ∈ V \V (Tha), and
from Theorem 3 that π(s, v) is an s-to-v shortest path in D′ iff it is an s-to-v
shortest path in Da for any v ∈ V (Tha). So, we only need to update the s-to-v
shortest path for all v ∈ V (Tha). Above discussions can be described as a local
search algorithm PSAI.

For every v ∈ V (Tha), we conclude from Eq. (1) that we need to visit all
the nodes in I(v) and judge whether one node is in Tha or not. We define a
0-1 variable p(v). In details, p(v) = 0 means that v is not in Tha and p(v) = 1
means that v is in Tha . Initially, we set p(v) = 0 for all v ∈ V . In order to make
PSAI facilitate implementing its local search procedure, we use appropriate data
structures to store the input digraph and single-source shortest paths trees.

Algorithm PSAI:
Input: D = (V,A,w, s), Ts and w′(a);
Output: T ′

s in D′.
Step 0: If a /∈ Ts, then return Ts; if a ∈ Ts, then goto Step 1;
Step 1: Use DFS to traverse Tha twice from ha; in the first one, we let

p(v)← 1, ∀v ∈ V (Tha); in the second one, for every v ∈ V (Tha),
we visit all nodes in I(v) and find b(v) using Eq. (1);

Step 2: Construct Da based on Eqs. (2) and (3);
Step 3: Use Dijkstra’s algorithm in Da to compute the single-source

shortest paths tree with s as the origin, and record it as T ′
s;

Step 4: Use DFS to traverse Tha and reset p(v)← 0, ∀v ∈ V (Tha);

Theorem 4. PSAI takes O(m + n logn) time in the worst case.

Proof. Let |V (Tha)| = n′, |A(S(D,V (Tha)))| = m′ and
∑

v∈V (Tha )
|I(v)| = K.

Step 1 first takes O(n′) time to use DFS in Tha to do preliminaries, and then
uses DFS in Tha the second time to find b(v), ∀v ∈ V (Tha) which takes O(K)
time. Obviously, n′ ≤ K. So, Step 1 runs O(K) time. Since Tha has at most
n′ bridge nodes, Da has n nodes and at most m′ + n arcs. Clearly, m′ ≤ K.
So, Step 2 spends O(K) time to construct Da. Step 3 uses Dijkstra’s algorithm
[6] in Da to compute T ′

s, whose running time is O(|A(Da)| + |V | log |V |) and
O(K+n logn). Step 4 takes O(n′) time to use DFS in Tha to reset all the values
of p(v), v ∈ V (Tha). Since K ≤ m, PSAI takes O(m+ n logn) time in the worst
case. ��
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5 Average Case Analysis

Let {·} denote an event, e.g., {ha = u} represents the event of a having a head
u, and {a ∈ Ts} (resp. {a /∈ Ts}) represents the event that Ts contains a (resp.
Ts does not contain a). Let ω = 〈ω1, ω2〉 be an unchangeable couple, where
ω1 ∈ Ω1, ω2 ∈ Ω2 and Ω1, Ω2 are two event spaces as follows

Ω1 = {{ha = u} : u ∈ V }, Ω2 = {{a ∈ Ts}, {a /∈ Ts}}. (4)

Suppose that {ω1 ∈ Ω1} and {ω2 ∈ Ω2} are independent. Let

Ω = Ω1 ×Ω2 = {〈ω1, ω2〉 : ω1 ∈ Ω1, ω2 ∈ Ω2}. (5)

Given any D = (V,A,w, s), we denote by G the topology of D and by Ts the
SSSP tree of D with s as the origin. In fact, a given D means that both G and
Ts of D are given. When D is given, every ω ∈ Ω represents a situation of a
single arc weight increase, and thus acts as an elementary conditional event of
time costs of PSAI. So, Ω is just the conditional event space induced by D.

Let E[Z|X = x, Y = y] denote the conditional expectation of Z when X = x
and Y = y. Lemma 2 shows an important formula on conditional expectation.

Lemma 2. Given two discrete random variables X, Y and another random
variable Z, provided that {X = x} and {Y = y} are the condition events of Z,
we have

E[Z] =
∑
x,y

E[Z|X = x, Y = y] · Pr[X = x, Y = y]. (6)

Let E[time] denote the expected time of PSAI dealing with a single arc weight
increase in D, E[time|ha = u, a ∈ Ts] denote the expected time of PSAI dealing
with the increase of a with ha = u and a ∈ Ts, and E[time|ha = u, a /∈ Ts]
denote the expected time of PSAI dealing with the increase of a with ha = u
and a /∈ Ts. Suppose that a single arc weight increase of D occurs at random
from the uniform distribution on A, i.e.,

Pr[an increase occurs to a] =
1

m
, ∀a ∈ A. (7)

Theorem 5. Given any D = (V,A,w, s), the expected update time of PSAI
dealing with a single arc weight increase is

O
( 1

m

∑
u∈V

∑
v∈V (Tu)

|I(v)|+ 1

m

∑
u∈V

|V | log |V |+ 1

m

∑
u∈V

|I(u)|
)
. (8)

Proof. For any u ∈ V , D has a single incoming arc to u which is in Ts, and
|I(u)| − 1 incoming arcs to u which are not in Ts when 1 ≤ |I(u)| ≤ n − 1.
According to Eq. (7), we get

Pr[ha = u, a ∈ Ts] =
1

m
, (9)
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and

Pr[ha = u, a /∈ Ts] =
|I(u)| − 1

m
. (10)

Theorem 1 implies that PSAI needs no work when ha = u and a /∈ Ts, and
thus takes only O(1) time in this case. So,

E[time|ha = u, a /∈ Ts] = O(1). (11)

From the description of PSAI and the proof of Theorem 4, we conclude the
update time of PSAI for any v ∈ V (Tu) when ha = u and a ∈ Ts is

E[time|ha = u, a ∈ Ts] = O(
∑

v∈V (Tu)

|I(v)| + |V | log |V |), (12)

According to Eq. (5), we can further rewrite Ω to be

Ω =
⋃
u∈V

{ha = u, a ∈ Ts} ∪ {ha = u, a /∈ Ts}. (13)

and then derive from Lemma 2 that

E[time] =
∑
ω∈Ω

E[time|ω] · Pr[ω]

=
∑
u∈V

(
E[time|ha = u, a ∈ Ts] · Pr[ha = u, a ∈ Ts]

)
+∑

u∈V

(
E[time|ha = u, a /∈ Ts] · Pr[ha = u, a /∈ Ts]

)
.

We take Eqs. (9), (10), (11) and (12) into above equality to obtain

E[time] =
∑
u∈V

(
O(

∑
v∈V (Tu)

|I(v)| + |V | log |V |) · 1
m

+O(1) · |I(u)| − 1

m

)
= O

( 1

m

∑
u∈V

∑
v∈V (Tu)

|I(v)| + 1

m

∑
u∈V

|V | log |V |+ 1

m

∑
u∈V

|I(u)|
)
. ��

Theorem 6. Given any D = (V,A,w, s), the worst-case expected update time

of PSAI dealing with a single arc weight increase is O(n+ n2 logn
m ).

Proof. Obviously, we have∑
u∈V

|I(u)| = m and
1

m

∑
u∈V

|V | log |V | = n2 logn

m
.

Combining with

1

m

∑
u∈V

∑
v∈V (Tu)

|I(v)| =
∑
u∈V

( 1

m

∑
v∈V (Tu)

|I(v)|
)
≤
∑
u∈V

O(1) = O(n),

we conclude that algorithm PSAI runs in O(n + n2 logn
m ) expected time in the

worst case. ��
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6 Concluding Remarks

We have presented a local search algorithm PSAI for handling a single arc weight
increase to maintain SSSP on digraphs. The worst-case update time of PSAI is

O(m+n logn), and the worst-case expected update time of PSAI is O(n+n2 logn
m ).

When m = Ω(n logn), PSAI has an O(n) expected updated time. To the best of
our knowledge, we are the first one to propose almost linear time algorithm for
maintaining SSSP. Also, PSAI applies to undirected graphs with positive weights.

When a single arc weight reduces, whether a linear time algorithm exists for
maintaining SSSP on digraphs remains open.

Acknowledgement. This research was supported in part by NSERC.
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Obtaining Split Graphs by Edge Contraction
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Abstract. We study the parameterized complexity of the following
Split Contraction problem: Given a graph G and an integer k as
parameter, determine whether G can be modified into a split graph by
contracting at most k edges. We show that Split Contraction can be

solved in FPT time 2O(k2)n5, but admits no polynomial kernel unless
NP ⊆ coNP/poly.

1 Introduction

Graph modification problems constitute a fundamental and well-studied family
of problems in algorithmic graph theory, and many classical graph problems can
be formulated as graph modification problems. A graph modification problem
takes a graph G and an integer k as input, and asks whether G can be modified
into a graph belonging to a specified graph class, using at most k operations of a
given type, such as vertex deletion, edge deletion, or edge addition. The number
k of operations measures how close a graph is to such a specified class of graphs.

Recently the study of modifying graphs by edge contraction has been initiated
from the parameterized point of view, yielding several results for the following
Π-Contraction problem: Given a graph G and a positive integer k as pa-
rameter, determine whether G can be modified into a Π-graph (i.e. a graph
belonging to class Π) by contracting at most k edges. The Π-Contraction

problem has been proved to be FPT for Π being bipartite graphs (Heggernes
et al. [15], Guillemot and Marx [12]), trees and paths (Heggernes et al. [14]),
planar graphs (Golovach et al. [11]), graphs with degree constraints (Golovach
et al. [10], Belmonte et al. [1]), complete graphs (Cai and Guo [4], Lokshtanov
et al. [17]), and cographs (Lokshtanov et al. [17]). On the other hand, very re-
cently Cai and Guo [4], and Lokshtanov et al. [17] independently showed that
Π-Contraction is W[2]-hard for Π being chordal graphs. Furthermore, Cai
and Guo [4] also proved W[2]-hardness of Π-Contraction for Π being H-free
for any fixed 3-connected graph H .

In this paper, we study the parameterized complexity of Π-Contraction

when Π is the class of split graphs, which forms a subclass of chordal graphs.
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Split Contraction

Instance: Graph G = (V,E), positive integer k.
Question: Can we obtain a split graph from G by contracting at

most k edges?
Parameter: k.

The edge deletion and vertex deletion variants of this problem, known as
Split Deletion and Split Vertex Deletion, asks whether an input graph
can be modified into a split graph by deleting at most k edges or at most k ver-
tices respectively. Both problems have been shown to be FPT (Cai [3]) and have
polynomial kernels (Guo [13]). Recently, faster FPT algorithms and improved
kernels have been constructed (Ghosh et al. [9], Cygan and Pilipczuk [7]). As
split graphs are characterized by forbidden induced subgraphs {2K2, C4, C5},
the solution set of Split Deletion or Split Vertex Deletion must hit ev-
ery induced copy of these forbidden subgraphs in the input graph, implying that
choices for branching can be bounded. This observation directly or indirectly
yields the above FPT algorithms and kernelization reduction rules for Split

Deletion and Split Vertex Deletion. Unfortunately, such observation is
no longer true for Split Contraction as contractions can occur for edges not
involved in any induced copies of forbidden subgraphs, making Split Contrac-

tion much harder than its edge deletion and vertex deletion variants.
Although most known techniques for Split Deletion and Split Vertex

Deletion seems unavailable for Split Contraction due to the above reason,
there is a simple relationship between Split Vertex Deletion and Split

Contraction: Every yes-instance (G, k) of Split Contraction is a yes-
instance (G, 2k) of Split Vertex Deletion. Therefore all known FPT al-
gorithms for Split Vertex Deletion can be used to obtain 2k vertices whose
deletion results in a split graph) in a yes-instance of Split Contraction, which
will be used as a starting point for obtaining our FPT algorithm for Split Con-

traction.

Our Contributions. We show that Split Contraction can be solved in time
2O(k2)n5. Our algorithm starts by finding a large split subgraph H in the input
graph and then considers two cases in terms of the clique size of the split sub-
graph H . If the clique of H is large, then we show that almost all vertices in
this clique are finally included in the clique of some target split graph. We use
a branch-and-search algorithm to enumerate all edge contractions and reduce
our instance to several instances of Clique Contraction that is known to
be FPT. If the clique of H is small, then there will be a large independent set
in the input graph. We develop reduction rules based on a variant of “modular
decomposition” of the input graph: Partition the set of vertices into groups such
that each group induces an independent set and all vertices in each group have
the same neighbors. We can bound the number of such groups, delete “irrel-
evant” vertices in each group, and reduce the input graph to an “equivalent”
graph with bounded number of vertices. We note that these reduction rules are
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useful for obtaining kernelization algorithms of other contraction problems such
as Clique Contraction and Biclique Contraction.

On the other hand, we prove, by a polynomial parameter transformation from
the Red-Blue Dominating Set problem, that Split Contraction admits
no polynomial kernel unless NP ⊆ coNP/poly. This is in contrast to that Split
Deletion and Split Vertex Deletion have polynomial kernels.

2 Preliminaries

Graphs. We consider simple and undirected graphs G = (V,E), where V is the
vertex set and E is the edge set. Two vertices u, v ∈ V are adjacent iff uv ∈ E.
A vertex v is incident with an edge e iff v is an endpoint of e. The neighbor
set NG(v) of a vertex v ∈ V is the set of vertices that are adjacent to v in
G. The closed neighbor set of v is denoted by NG[v] = NG(v) ∪ {v}. For a set
X of vertices or edges in G, we use G − X to denote the graph obtained by
deleting X from G. For a set of vertices V ′ ⊆ V , we write G[V ′] to denote the
subgraph of G induced by V ′ and write E[V ′] to denote the set of edges in G
whose both endpoints are in V ′. A graph G is a split graph if its vertex set can
be partitioned into a clique K and an independent set I, where (K; I) is called
a split partition of G. The class of split graphs is hereditary and is characterized
by the set {2K2, C4, C5} of forbidden induced subgraphs.

Edge Contraction. The contraction of edge e = uv in G removes u and v from
G, and replaces them by a new vertex adjacent to precisely vertices that were
adjacent to at least one of u or v. The resulting graph is denoted by G/e. For a
set of edges F ⊆ E(G), we write G/F to denote the graph obtained from G by
sequentially contracting all edges from F .

For a graphH , ifH can be obtained fromG by a sequence of edge contractions,
then G is contractible to H , or called H-contractible. Let V (H) = {h1, · · · , hl},
then G is H-contractible iff it has a so-called H-witness structure: a partition
of V (G) into l sets W (h1), · · · ,W (hl), called witness sets, such that each W (hi)
induces a connected subgraph of G and for any two hi, hj ∈ V (H), there is an
edge between W (hi) and W (hj) in G iff hihj ∈ E(H). We obtain H from G by
contracting vertices in each W (hi) into a single vertex.

Parameterized Complexity. A paramerized problem Q is a subset of Σ∗ ×N

for some finite alphabet Σ. The second component is called the parameter. The
problem Q is fixed-parameter tractable (FPT) if it admits an algorithm deciding
whether (I, k) ∈ Q in time f(k)|I|O(1), where |I| is the size of I and f is a
computable function depending only on k.

A kernelization of Q is a polynomial-time computable function that maps an
instance (I, k) to an instance (I ′, k′) such that (a) (I, k) ∈ Q ⇔ (I ′, k′) ∈ Q, and
(b) |I ′|, k′ ≤ g(k) for some computable function g. If g is a polynomial function
then we say that Q admits a polynomial kernel. A problem Q is incompressible
if it admits no polynomial kernel unless NP ⊆ coNP/poly.
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A polynomial parameter transformation from a problem Q to a problem Q′ is
a polynomial-time computable function that maps (I, k) to (I ′, k′) such that (a)
(I, k) ∈ Q ⇔ (I ′, k′) ∈ Q′, and (b) k′ ≤ h(k) for some polynomial function h.

3 FPT Algorithm

In this section, we address the parameterized complexity of the Split

Contraction problem. We first point out that this problem is NP-complete
by reducing from another NP-complete edge contraction problem Clique Con-

traction [4]: Given a graph G and an integer k, can we modify G into a clique
by contracting at most k edges? We construct a graph G′ from G by adding an
independent set of k + 2 new vertices and making new vertices adjacent to all
vertices in G. Observe that at least two of these new vertices are not involved in
any edge contractions, therefore at least one of them belongs to the independent
set of the target split graph, which implies that all old vertices belong to the
clique of the target graph. Thus we conclude that G′ can be modified into a
split graph using k edge contractions iff there exists a set of k edges in G whose
contraction makes G into a clique.

Theorem 1. Split Contraction is NP-complete.

We now present an FPT algorithm for Split Contraction based on an kO(k)+
O(m) time algorithm for Clique Contraction.

Theorem 2 (Cai & Guo [4]). Clique Contraction can be solved in time
O(27kk2k+5 +m).

Note that an n-vertex graph G must contain an induced split subgraph of (n−
2k) vertices if (G, k) is a yes-instance of Split Contraction, because k edge
contractions can affect at most 2k vertices. We start by finding an (n−2k)-vertex
induced split subgraph H in O(22kn5) time using a known algorithm for Split
Vertex Deletion (Ghosh et al. [9]). Let Vk = V (G)−V (H), and let (KH ; IH)
be a split partition of H where KH is a maximal clique and IH is an independent
set. We first consider case |KH | > 2k. In this case, at least one vertex in KH is
not involved in any edge contraction. The case |KH | ≤ 2k will be discussed in
the last part of the algorithm.

We branch out by contracting every possible set E′ ⊆ E[Vk] of at most k edges
and obtain a resulting instance (G′, k′) where G′ = G/E′ and k′ = k− |E′|. For
each resulting instance (G′, k′), let V ′

k ⊆ V (G′) be the set obtained from Vk after
contractions. We have |V ′

k| ≤ |Vk| = 2k.

Proposition 3. (G, k) has a solution S iff there exists a resulting instance
(G′, k′) such that (G′, k′) has a solution F = S − E′ satisfying F ∩ E[V ′

k] = ∅.

Suppose that (G′, k′) is a yes-instance and has a solution F . Then the graph
G′/F is a split graph and has a split partition (KF ; IF ). We further branch on
at most 3|V

′
k| ways to find a partition V ′

k = R ∪Kp ∪ Ip such that R consists of
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R

IH

KH

Ip

Kp

H

G′[V ′
k ]

Fig. 1. An illustration of the structure of G′

exactly vertices in V ′
k that are incident with some edges in F , Kp ⊆ KF induces

a clique, and Ip ⊆ IF induces an independent set. See Fig. 1 for an illustration.
It is easy to see that |R| ≤ k′.

We consider the relationship between {KH , IH} and {KF , IF }. It is clear that
vertices in IH that are adjacent to some vertices in Ip must be in the clique KF

of the target split graph, while other vertices in IH can be in the independent
set IF after contractions. The following proposition states that there exists one
solution F such that almost all vertices in KH are finally in the clique KF of
the target graph.

Proposition 4. If (G′, k′) is a yes-instance, then it has a solution F such that
there is at most one vertex in KH that is finally in the independent set IF .

Proof. For an arbitrary solution F of (G′, k′), if there are at least two vertices
in KH that are finally in the independent set IF , they must be contained in a
same witness set W0 because they are adjacent originally. Thus the number of
such vertices is bounded by k + 1, implying that there is a vertex u ∈ KH that
is in the clique KF (i.e., not in IF ) since |KH | > 2k.

By the definition of witness sets, we see that the induced subgraph G′[W0]
has a spanning tree whose edges are all contained in F . Let x be an arbitrary
leaf in this spanning tree. We can remove one edge from F to separate the vertex
x from the witness set W0, and add an edge ux into F to make x adjacent to
all vertices in KF after contracting F . It is easy to see that the resulting set
obtained from F is also a solution of (G′, k′), and x is no longer in the witness
set W0. We repeat this operation on F until there is exactly one vertex in the
witness set W0. Then we obtain a solution set F satisfying the requirement. ��

Our algorithm further considers the following two cases. It outputs “YES” if
either case outputs “YES”.

Case 1. There are no vertices in KH that are finally in IF . Let T1 be a subset
of IH containing exactly vertices that are adjacent to some vertices in Ip. It is
clear that all vertices in T1 are finally in KF (i.e., not in IF ) after contractions.
Therefore every vertex in T1 must be involved in at least one edge contraction,
implying that |T1| ≤ k′.
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Remember that R consists of exactly vertices in V ′
k that are incident with

some edges in F , which implies that all vertices in R are merged into KH ∪ IH
after contracting edges in F . In order to contract G′ into a split graph, it is
better to merge vertices R into KH ∪T1 than into IH −T1. Thus we may assume
that all vertices in R are finally in KF after contractions. Our goal becomes to
check whether T1 ∪KH ∪ R ∪Kp induces a clique after contracting at most k′

edges in G′.
Since |KH | > 2k, there exists a vertex u ∈ KH that is not involved in any

edge contraction. Obviously u is adjacent to all vertices in KF . We can obtain
an edge set F1 from F by removing every edge of F whose endpoints are both
outside KH ∪ R, and replacing every edge ab ∈ F such that a ∈ IH − T1 and
b ∈ KH ∪ R by an edge ub in F . Since contracting such edge ab only affects
vertex b and vertex b can also be merged into the clique KF by contracting ub,
it is clear that F1 is also a solution set of G′ which consists of edges between
KH ∪R and T1 ∪KH ∪R.

Proposition 5. (G′, k′) has a solution set that is entirely contained in G′[T1 ∪
KH ∪R ∪Kp] if it is a yes-instance for Case 1.

By the above proposition, we first find the set T1 in linear time and then apply an
FPT algorithm for Clique Contraction (Theorem 2) to determine whether
G′[T1∪KH ∪R∪Kp] can be made into a clique by at most k′ edge contractions.
If it outputs “YES”, then (G′, k′) is a yes-instance. The running time is bounded
by k′O(k′) +O(m).

Case 2. There is exactly one vertex in KH that is finally in IF . For every
w ∈ KH that is not adjacent to any vertex in Ip, we check whether (G′, k′) is a
yes-instance by assuming that w is such a vertex, .

Let T2 be a subset of IH containing exactly vertices that are adjacent to some
vertices in Ip∪{w}. It is clear that every vertex in T2 is finally in KF (i.e., not in
KI) and thus is involved in some edge contraction. We have |T2| ≤ k′. Our goal
is to check whether T2 ∪ (KH −{w})∪R∪Kp induces a clique after contracting
at most k′ edges in G′.

Since |KH | > 2k, there exists a vertex u ∈ KH that is not involved in any
edge contraction. Similar to Case 1, we can obtain an edge set F2 from F by
removing every edge of F whose both endpoints are outside (KH−{w})∪R, and
replacing every edge ab ∈ F such that a ∈ IH ∪{w}−T1 and b ∈ (KH−{w})∪R
by an edge ub in F . The resulting set F2 is also a solution set of G′.

Proposition 6. (G′, k′) has a solution set that is entirely contained in G′[T2 ∪
(KH − {w}) ∪R ∪Kp] if it is a yes-instance for Case 2.

We also apply a k′O(k′)+O(m) time algorithm for Clique Contraction (The-
orem 2) to determine whether G′[T2 ∪ (KH − {w}) ∪R ∪Kp] can be made into
a clique by contracting at most k′ edges. If it outputs “YES”, then (G′, k′) is a
yes-instance.

Combining Case 1 and Case 2, we can decide whether a resulting instance
(G′, k′) is a yes-instance in kO(k)n+O(mn) time when |KH | > 2k.
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Furthermore, we deal with the remaining case: |KH | ≤ 2k. We partition the
vertex set V (G) into disjoint sets X1, · · · , Xd such that each Xi induces a max-
imal independent set and all vertices in each Xi have the same neighbors in
G. This procedure is equivalent to partitioning the complement graph G into
critical cliques, which can be done in linear time [6, 16]. A critical clique K in
a graph is a clique such that all vertices in K have the same closed neighbor
sets, and K is maximal under this property. It has been proved that all vertices
in a graph can be uniquely partitioned into groups such that each group forms
a critical clique [6, 16]. We now use the following reduction rules to obtain a
smaller instance.

Rule 1. If d > 24k + 4k, then output “NO”.

Rule 2. If there are more than 2k+5 vertices in Xi for some i, then arbitrarily
retain 2k + 5 vertices among them and remove others in Xi from G.

It is clear that applying these reduction rules requires linear time. We now show
the correctness of Rule 1 and Rule 2.

Lemma 7. Rule 1 and Rule 2 are correct.

Proof. Since |KH | ≤ 2k, we have |Vk ∪KH | ≤ 4k and |IH | ≥ n− 4k. Note that
vertices in IH have at most 24k different connection configurations to vertices
Vk ∪ KH . Thus IH can be partitioned into at most 24k maximal independent
sets such that vertices in each set have the same neighbors in G. Together with
vertices Vk∪KH , the number d is bounded by 24k+4k if (G, k) is a yes-instance.
Thus Rule 1 is correct.

Moreover, we prove that the input graph G has a k-solution iff the graph G∗

obtained after one application of Rule 2 has a k-solution. Let Yi be the set of
remaining vertices in Xi for 1 ≤ i ≤ d.

Suppose that G has a solution S ⊆ E(G). For every vertex a that is incident
with some edge in S and is removed after applying Rule 2, there exists 1 ≤ j ≤ d
such that a ∈ Xj − Yj . Since |Yj | = 2k + 5 > 2k, there exists a vertex b ∈ Yj

that is not incident with any edge in S. Obviously a and b are not adjacent. We
replace all edges {aw ∈ S : w ∈ V (G)} by {bw : aw ∈ S} in S for every such
a, and then obtain a set S′ ⊆ E(G∗). Since NG(a) = NG(b) for every such a, it
is easy to see that G/S′ is isomorphic to G/S that is a split graph. Note that
G∗/S′ is an induced subgraph of G/S′ because S′ is entirely included in E(G∗).
Therefore G∗/S′ is a split graph.

Conversely, suppose that G∗ has a solution S∗, i.e., G∗/S∗ is a split graph.
We claim that G/S∗ is also a split graph. Assume that, to the contrary, G/S∗

contains an induced subgraph D isomorphic to some graph in {2K2, C4, C5}. For
every vertex a that is contained in V (D) and is removed after applying Rule 2,
we know that a is in Xj − Yj for some j. Since S∗ ⊆ E(G∗) and a /∈ V (G∗), a is
not incident with any edge in S∗. Note that |Yj | = 2k + 5 ≥ 2k + |V (D)|, there
exists a vertex b ∈ Yj that is not contained in V (D) and not incident with any
edge in S∗. We replace a by b in D for every such a, and then obtain an induced
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subgraph D′ whose vertices are clearly in V (G/S∗). Note that all vertices in
V (D′) remain after applying Rule 2. Therefore D′ is an induced subgraph of
G∗/S∗. Since NG(a) = NG(b) for every such a, it is easy to see that D′ is
isomorphic to D, contradicting to the fact that G∗/S∗ is a split graph that is
D-free. Thus G/S∗ is {2K2, C4, C5}-free, implying that S∗ is a solution of G. ��

After applying Rule 1 and Rule 2, we reduce G to a graph of O(24kk) vertices.

Thus the problem can be solved in time O(
(
(24kk)2

k

)
+ m) = 2O(k2) + O(m) by

using brute-force search when |K1| ≤ 2k.
Our FPT algorithm for Split Contraction is summarized in Fig. 2:

Algorithm Split Contraction (G, k)

1 Find an induced split subgraph H = (KH ; IH ) of size (n − 2k) in G.
if it does not exist then

return “NO”.
else let Vk = V (G) − V (H).

2 if |KH | > 2k then

2.1 Branch into instances (G′, k′) by contracting edges E′ ⊆ E[Vk].

2.2 Enumerate all partitions V ′
k = (R,Kp, Ip).

2.3 Let T1 = {v ∈ IH | ∃x ∈ Ip, vx ∈ E(G′)}.
if Clique Contraction(G′[T1 ∪KH ∪R ∪ Kp], k

′) =“YES” then
return “YES”.

2.4 for each w ∈ KH not adjacent to Ip do
Let T2 = {v ∈ IH | ∃x ∈ Ip ∪ {w}, vx ∈ E(G′)}.
if Clique Contraction(G′[T2 ∪ (KH − {w}) ∪ R ∪Kp], k

′) =“YES” then
return “YES”.

2.5 Repeat 2.1 − 2.4, return “NO” if no (G′, k′) yields “YES”.

3 elseif |KH | ≤ 2k then

3.1 Partition V (G) into disjoint sets X1, · · · , Xd: Each Xi induces a maximal
independent set, and vertices in each Xi have the same neighbors.

3.2 Reduction Rule 1: If d > 24k + 4k, then output “NO”.

3.3 Reduction Rule 2: If there are more than 2k + 5 vertices in Xi for some i,
then retain 2k + 5 vertices among them and remove others in Xi.

3.4 Apply brute-force search to find a solution in the reduced graph G∗.

Fig. 2. Outline of algorithm for Split Contraction

Theorem 8. Split Contraction can be solved in time 2O(k2)n5.

Proof. In the above algorithm, we use an O(22kn5) time algorithm to find an
(n− 2k)-vertex induced split subgraph H . If |KH | > 2k, we branch into at most
|E[Vk]|k = kO(k) instances (G′, k′) and enumerate at most 3|V

′
k| = 3O(k) parti-

tions V ′
k = (R,Kp, Ip), and for each resulting instance with a specific partition it

costs kO(k)n+O(mn) time to determine whether the instance is a yes-instance.
Thus the running time of this case is bounded by kO(k)mn. If |KH | ≤ 2k, the

problem is solvable in time 2O(k2)+O(m) by applying reduction rules and brute-

force search. Therefore the total running time of the algorithm is 2O(k2)n5. ��
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4 Incompressibility

To give a complete picture, we show that Split Contraction is very unlikely
to have polynomial kernels. To this end, we give a polynomial parameter trans-
formation from the following Red-Blue Dominating Set problem, which has
been proved to be incompressible using the Colors and IDs technique (Dom et
al. [8]).

Red-Blue Dominating Set

Instance: Bipartite graph G = (X,Y ;E) and an integer t.
Question: Does Y have a subset of at most t vertices that dominates X?
Parameter: |X |, t.

Without loss of generality, we may assume that every vertex in X has at least
one neighbor in Y and thus t ≤ |X |. Our method is inspired by the reduction
for Tree Contraction (Heggernes et al. [14]).

Theorem 9. Split Contraction admits no polynomial kernel unless NP ⊆
coNP/poly.

Proof. Given a bipartite graph G = (X,Y ;E) and a positive integers t, we
construct a graph G′ from G by creating a clique C of size |X |+ t+ 3, making
a designated vertex u ∈ C adjacent to all vertices of Y , and for every v ∈ X
appending |X |+ t+ 1 new leaves to v. See Fig. 3 for an illustration.

u

X

Y

G, t = 2

X

Y

G′

· · · · · · · · ·

Fig. 3. A transformation from Red-Blue Dominating Set to Split Contraction

We claim that Y has a subset of at most t vertices that dominates X iff G′

can be made into a split graph by contracting at most |X |+ t edges.
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Suppose that Y ′ is a t-subset of Y that dominates X . Since vertices of {u} ∪
Y ′ ∪X induce a connected graph, we can merge these |X |+ t+1 vertices into a
single vertex by using |X |+ t edge contractions. The subgraph of G′ induced by
{u} ∪ Y ∪X is contracted to a star, and thus G′ is modified into a split graph
after contractions.

Conversely, suppose thatG′ contains at most |X |+t edges F whose contraction
results in a split graph. Note that there exist two vertices a and b other than u
in C such that a, b, and u are in the different witness sets because |C| ≥ |F |+3.
If there exists some x ∈ X such that x and u are in different witness sets, then
x is not adjacent to neither a nor b in the target graph. Note that there exists
a leaf x′ appending to x that is not involved in any edge contraction by the
construction. Therefore {x, x′, a, b} form an induced 2K2, contradicting to the
fact that G′/F is a split graph. Thus all vertices in X ∪{u} must be in the same
witness set. Observe that each path starting from one vertex in X to u must go
through some vertices in Y , implying that X is dominated by a subset I of Y
where I consists of exactly vertices in Y that share the same witness set with u.
Therefore we obtain a solution set I of G with |I| ≤ |F | − |X | ≤ t vertices.

We have given a polynomial parameter transformation fromRed-Blue Dom-

inating Set to Split Contraction. Based on a general result (Bodlaender et
al. [2]) for kernelization transformation, Split Contraction admits no poly-
nomial kernel unless NP ⊆ coNP/poly. ��

5 Concluding Remarks

In this paper we have shown that Split Contraction is fixed-parameter
tractable, but admits no polynomial kernel unless NP ⊆ coNP/poly. We be-

lieve that the running time 2O(k2)n5 for Split Contraction can be improved.
The bottleneck in the current algorithm lies in the case |KH | ≤ 2k, which costs

2O(k2) + O(m) time comparing with time 2O(k log k)mn for |KH | > 2k. It seems
possible to design faster algorithm for the case |KH | ≤ 2k, since in this case the
input graph contains a large independent set of n− 4k vertices.

Conjecture 10. Split Contraction can be solved in time 2O(k log k)nO(1).

It will be also interesting to study Π-Contraction for other subclasses Π of
chordal graphs. In particular, Interval Contraction deserves special atten-
tion, as its vertex deletion variation, Interval Vertex Deletion, has been
shown to be FPT by Cao and Marx [5] recently.

Problem 11. Determine whether Interval Contraction is fixed-parameter
tractable.
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Abstract. For a graph property Π , i.e., a collection Π of graphs, the
Connected Induced Π-Subgraph problem asks whether a graph G
contains k vertices V ′ such that the induced subgraph G[V ′] is connected
and belongs to Π .

In this paper, we regard k as a parameter and study the parameter-
ized complexity of Connected Induced Π-Subgraph for hereditary
properties Π . We give an almost complete characterization in terms of
whether Π includes all complete graphs, all stars, or all paths: FPT if
Π includes all complete graphs and stars, or excludes some complete
graphs, stars and paths; and W[1]-hard otherwise (except the case that
Π includes all complete graphs and paths but exclude some stars). For
the remaining case, we show that it is W[1]-hard if Π includes all com-
plete graphs Kt, excludes a star K1,s but includes all trees of maximum
degree less than s. Our results imply a complete characterization for Π
being H-free graphs for a fixed graph H : W[1]-hard if H is Kt with t ≥ 3
or K1,s with s ≥ 2, and FPT otherwise.

1 Introduction

Subgraph problems are central to graph algorithms and have been studied ex-
tensively under frameworks of both traditional complexity and parameterized
complexity [4] [3]. For a graph property Π , i.e., a collection Π of graphs, any
graph in Π is a Π-graph and the Induced Π-Subgraph problem asks whether
the input graph contains an induced Π-subgraph with k vertices. Property Π is
hereditary if all induced subgraphs of a Π-graph are Π-graphs.

A classical result of Lewis and Yannakakis [6] states that Induced Π-

Subgraph is NP-hard for any “interesting” hereditary propertyΠ (i.e., Π holds
for infinitely many graphs but not for all graphs), and the problem remains NP-
hard if we require the induced Π-subgraph to be connected. Khot and Raman [5]
give a complete characterization of the parameterized complexity of Induced
Π-Subgraph, with k being the parameter, depending on whether Π includes
all complete graphs or trivial graphs (i.e., graphs without edges): W[1]-complete
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if Π includes all trivial graphs but not all complete graphs or vice versa, and
FPT otherwise. In connection with this, Cai [1] showed earlier that the para-
metric dual of Induced Π-Subgraph (i.e., determining whether an n-vertex
G contains an induced Π-graph on n− k vertices, instead of k vertices) is FPT
whenever Π can be characterized by a finite set of forbidden induced subgraphs.

In this paper, we investigate the parameterized complexity of the following
induced Π-subgraph problems with an additional requirement that the k-vertex
induced Π-graph is connected. We will mainly focus on hereditary properties Π .

Connected Induced Π-Subgraph

Instance: Graph G, positive integer k as parameter.
Question: Does G contain a connected induced Π-subgraph on k vertices?

We note that the work of Khot and Raman [5] does not address the issue
of connectedness in induced Π-graphs. On the other hand, FPT algorithms of
Cai [1] for the parametric dual of Induced Π-Subgraph also work when the
required Π-subgraphs on n− k vertices need to be connected, and therefore the
parametric dual of Connected Induced Π-Subgraph is FPT whenever Π is
characterized by a finite set of forbidden induced subgraphs.

It turns out that the situation for Connected Induced Π-Subgraph is
more complicated than that for Induced Π-Subgraph, and the parameterized
complexity of Connected Induced Π-Subgraph depends on whether Π in-
cludes all complete graphs, stars, and paths (instead of complete graphs and
trivial graphs for Induced Π-Subgraph). Table 1 summarizes our results for
hereditary properties Π into six cases.

Table 1. The parameterized complexity of Connected Induced Π-Subgraph for
hereditary properties Π

Property Π Include all complete graphs Exclude some complete graphs

Include all stars FPT W[1]-hard

Exclude some stars
include all paths

unknown, but W[1]-hard if
include all degree-bounded trees

W[1]-hard

Exclude some stars
exclude some paths

W[1]-hard FPT

For the remaining unknown case (Π includes all complete graphs and paths
but excludes some stars), we are able to establish its W[1]-hardness when paths
are replaced by trees of maximum degree less than s in the condition, where
K1,s is the smallest star excluded by Π .

Our results settle the parameterized complexity of Connected Induced Π-

Subgraph for many well-known hereditary properties Π . See Table 2 for some
examples. Furthermore, our results also imply a complete characterization when
Π is H-free graphs for a fixed graph H : W[1]-hard if H is Kt with t ≥ 3 or K1,s

with s ≥ 2, and FPT otherwise.
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All graphs in the paper are simple undirected graphs. For a graph G, we
use V (G) to denote its vertex set and E(G) its edge set. We use n and m,
resp., to denote the numbers of vertices and edges of G. For a subset V ′ ⊆ V ,
NG(V

′) denotes the neighbours of V ′ in V (G) − V ′, and G[V ′] represents the
subgraph induced by V ′. A universal vertex v of G is a vertex adjacent to all
other vertices in G. We use R(t, s) to denote the Ramsey number, i.e., any
graph with R(t, s) vertices contains either a t-clique or an independent s-set.
We use MΔ,D to denote the Moore’s bound [7] which is the maximum number
of vertices in a connected graph G with maximum degree Δ and diameter D:

MΔ,D = 1 + Δ
D−1∑
i=0

(Δ − 1)i < ΔD+1 for Δ ≥ 2. A property Π is hereditary

iff it has a forbidden induced subgraph characterization, i.e., there is a smallest
forbidden set Forb(Π) of graphs such that G is a Π-graph iff G contains no
graph in Forb(Π) as an induced subgraph. For any Π-graphs, co-Π graphs
denote complement graphs of Π-graphs.

Table 2. Some well-known hereditary properties Π for Connected Induced Π-

Subgraph problems settled by our results

Property Π Include all complete graphs Exclude some complete graphs

Include all stars perfect graphs
chordal graphs
interval graphs

3-colorable graphs
bipartite graphs
planar graphs

Exclude some stars
include all paths

claw-free graphs
line graphs
line graphs of bipartite graphs

degree-bounded graphs

Exclude some stars
exclude some paths

co-planar graphs
co-bipartite graphs
co-forest graphs

degree-bounded graphs with
small vertex cover

In the rest of the paper, we present FPT algorithms in Section 2, give W[1]-
hardness proofs in Section 3, and consider the remaining case in Section 4. We
discuss some open problems in Section 5.

2 FPT Algorithms

We start with the two fixed-parameter tractable cases in Table 1. To obtain these
FPT algorithms, we use a combination of Ramsey’s theorem, Moore’s bound,
and the random separation method of Cai, Chan and Chan [2].
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Theorem 1. Let Π be a decidable property. Then Connected Induced Π-

Subgraph is FPT whenever

1. Π includes all complete graphs and stars, or
2. Π is hereditary and excludes some complete graphs, some stars, and some

paths.

Proof. By the assumption that Π is decidable, we may assume that it takes T (k)
time to determine whether a k-vertex graph is a Π-graph.
Case 1. Π includes all complete graphs and stars.

We show that G always has a solution if it has a vertex of degree at least
R(k − 1, k − 1), and otherwise we can use the random separation method to
determine if it has a solution.

If G contains a vertex v of degree at least R(k − 1, k − 1), then by Ramsey’s
theorem, N(v) contains k − 1 vertices V ′ that induce either a complete graph
or an independent set. Therefore G[V ′ ∪ {v}] is either a complete graph Kk or a
star K1,k−1, which is a connected Π-graph. Otherwise, the maximum degree of
G is at most d for d = R(k − 1, k − 1)− 1.

Since d is bounded above by a function of k only, we use the random separation
method to design an FPT algorithm1. First, we randomly color each vertex of
G independently by red or green with probability 1

2 . A set V ′ of k vertices is a
well-colored solution if

1. G[V ′] is a connected Π-graph, and
2. all vertices in V ′ are green and all vertices in N(V ′) are red.

Let Vg be the set of green vertices of G. Then a well-colored solution is a
connected component of G[Vg] that is a k-vertex Π-graph. Therefore, given a
red-green coloring of G, we can easily determine whether there is a well-colored
solution in O(m+ n+ n

kT (k)) = O(dn+ nT (k)) time.
It follows that, when G has a solution V ′, we can find it with probability at

least 2−dk in O(dn + nT (k)) time, since |V ′ ∪N(V ′)| ≤ dk and a random red-
green coloring has probability at least 2−dk to make V ′ a well-colored solution.

To derandomize the algorithm, we use a family of (n, dk)-universal sets of
size ≤ 2O(dk) log n [9] and obtain a deterministic algorithm that runs in time
O(2O(dk)(dn+nT (k)) logn), which is an FPT algorithm as d = R(k−1, k−1)−1.
Case 2. Π excludes some complete graphs, some stars, and some paths.

Let Kt, K1,s, and Pl, respectively, be the smallest complete graph, smallest
star and shortest path excluded by Π . If a Π-graphH has a vertex v of degree at
least R(t− 1, s), then NH(v) contains either a (t− 1)-clique or an independent
set of size s, and thus H [NH(v) ∪ {v}] contains either complete graph Kt or
star K1,s, contradicting to H being a Π-graph as Π is hereditary. Therefore the
maximum degree of any Π-graph is less than R(t− 1, s).

Since Pl is not a Π-graph, the diameter of any connected Π-graph is at most
l − 1. By Moore’s bound, any graph of maximum degree Δ and diameter D

1 Bounded search tree also works in FPT time f(k)nO(1) but with much worse f(k) =

O(2d
k

T (k)).
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has at most ΔD+1 vertices. Therefore any connected Π-graph contains less than
c = R(t− 1, s)l vertices. As t, s and l are constants, c is a constant independent
of k and n.

If k ≥ c, then the answer to the problem is always “NO”. Otherwise we can
use exhaustive search to determine whether G contains a connected induced
Π-subgraph on k vertices. The running time for the algorithm is O(T (k)nk) =
O(T (k)nc), which is FPT time.

We can use the above theorem to deduce that Connected Induced Π-

Subgraph is FPT for many well-known properties. The following corollary lists
a few of them, where the last two are not hereditary.

Corollary 1. Connected Induced Π-Subgraph is FPT for Π being per-
fect graphs, chordal graphs, interval graphs, cographs, split graphs, permutation
graphs, degree bounded graphs with bounded-size vertex cover, graphs of bounded
diameter d with d ≥ 2 and graphs of bounded-size dominating set.

3 W[1]-Hardness

In this section, we will establish W[1]-hardness of three cases in Table 1. We
need the following theorem of Khot and Raman [5] in our proofs.

Theorem 2. (Khot and Raman) For any hereditary property Π, Induced
Π-Subgraph is W[1]-complete if Π includes all trivial graphs but not all com-
plete graphs or vice versa, and FPT otherwise.

We start with the case that Π includes all complete graphs but excludes some
stars and paths. For a graph F , let F ∗ be the graph obtained from F by deleting
all universal vertices of F . For a hereditary property Π , let Π∗ be the property
with

Forb(Π∗) = {F ∗ : F ∈ Forb(Π)}
(e.g. Forb(Π∗) = {2K1, C4} forΠ defined by Forb(Π) = {P3, C4,K4−e}). Note
that stars in Forb(Π) become independent sets in Forb(Π∗), and independent
sets in Forb(Π) remain independent sets in Forb(Π∗).

Theorem 3. If a hereditary property Π includes all complete graphs but ex-
cludes some stars and paths, Connected Induced Π-Subgraph is W[1]-hard.

Proof. Since Π excludes some stars, Forb(Π) contains a star or an independent
set, and thus Forb(Π∗) contains an independent set. Also, since Π includes
all complete graphs, Forb(Π) contains no complete graph and thus Forb(Π∗)
contains no complete graph. Then Π∗ includes all complete graphs and excludes
some independent sets, and therefore it follows from Theorem 2 that Induced
Π∗

-Subgraph is W[1]-hard.
We nowprove the theoremby anFPT reduction from InducedΠ∗

-Subgraph.
Let (G, k) be an arbitrary instance of Induced Π∗

-Subgraph. Let Pl and K1,s,
respectively, be the smallest path and smallest star excluded by Π . And let

d = max{|V (F )| − |V (F ∗)| : F ∈ Forb(Π) and |V (F ∗)| ≤ k}
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and r = R(k, s)l + d. For a graph F ∗, it is easy to see that we have only
one corresponding F ∈ Forb(Π). Therefore d is a finite number related to k
and property Π but independent of n. We construct an instance (G′, k′) of
Connected Induced Π-Subgraph from (G, k) as follows:

1. Add to G a complete graph on r new vertices U ,
2. add all possible edges between G and U to form graph G′, and set k′ = k+r.

We claim that G contains a k-vertex induced Π∗-subgraph iff G′ contains a
k′-vertex connected induced Π-subgraph. Suppose that G contains a k-vertex
induced Π∗-graph H . Then G′[V (H)∪U ] is connected with k+ r = k′ vertices.
If it contains an induced subgraph F ∈ Forb(Π), then F ∗ resides entirely inside
H as all vertices of V (F ) ∩ U are universal vertices of F . But F ∗ ∈ Forb(Π∗)
contradicting to H being a Π∗-graph. Therefore G′[V (H) ∪ U ] is a k′-vertex
connected induced Π-graph.

Conversely, suppose that G′ contains a k′-vertex connected induced Π-graph
H ′. We show that G contains a k-vertex induced Π∗-graph by considering two
cases. Let H = H ′ ∩G, which is also a Π-graph as Π is hereditary.

Case 1. H contains at least R(k, s)l vertices.
If H ′ contains a vertex v of U , then H has no independent set of size s as v is

adjacent to every vertex of H and H ′ is K1,s-free. Since H has R(k, s)l > R(k, s)
vertices, it follows from Ramsey’s theorem that H contains a complete graphKk,
which is a k-vertex Π∗-subgraph in G.

Otherwise H = H ′ and thus H is connected. Since Π excludes path Pl, the
diameter of H is at most l − 1 and hence, by Moore’s bound, H has at most
Δl vertices, where Δ is the maximum degree of H . It follows that H contains
a vertex v of degree at least R(k, s) as V (H) ≥ R(k, s)l. Since H is a Π-graph,
it is K1,s-free. Therefore G[NH(v)] contains no independent s-set. According to
Ramsey’s theorem, G[NH(v)] contains a complete graph Kk.

Case 2. H contains less than R(k, s)l vertices.
Since k′ = k + r, H contains at least k vertices and H ′ contains at least d

vertices of U . We arbitrarily select k vertices S from H and claim that G[S]
is a Π∗-subgraph. Suppose to the contrary that G[S] contains a graph F ∗ ∈
Forb(Π∗) for some F ∈ Forb(Π), then |V (F ∗)| ≤ |S| = k. We can arbitrarily
choose |V (F ) − V (F ∗)| vertices U ′ from V (H ′) ∩ U as |V (H ′) ∩ U | ≥ d and
|V (F ) − V (F ∗)| ≤ d. Since in G′ all vertices of U ′ are adjacent to all vertices
of G and thus G′[V (F ∗) ∪ U ′] is isomorphic to F , contradiction to H ′ being
a Π-graph. Therefore G[S] contains no graphs in Forb(Π∗), and is a k-vertex
Π∗-subgraph.

Corollary 2. Connected Induced Π-Subgraph is W[1]-hard for Π being
the following properties: co-planar graphs, co-bipartite graphs, and co-forests.

For a graph F , let F− denote the graph obtained from F by removing a universal
vertex of F and also all isolated vertices in the resulting graph. For a hereditary
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property Π , let Π− be the property with Forb(Π−) = {F− : F ∈ Forb(Π)}. By
a proof similar with that of Theorem 3, we can use Π− to obtain the following
theorem (the proof will appear in the full paper):

Theorem 4. If Π includes all stars but excludes some complete graphs, then
Connected Induced Π-Subgraph is W[1]-hard.

For the case that Π includes all paths, but excludes some complete graphs and
some stars, we use an FPT reduction from Independent Set problem to prove
the W[1]-hardness.

Theorem 5. If a hereditary property Π includes all paths, but excludes some
complete graphs and stars, Connected Induced Π-Subgraph is W[1]-hard.

Proof. We prove the theorem by an FPT reduction from the Independent Set

problem. Let Kt and K1,s be the smallest clique and star excluded by Π . Then
both s and t are at least 3 as paths are Π-graphs. Set r = 4sR(t, k), which is a
function of k only, as s and t are constants.

For an arbitrary instance (G, k) of Independent Set, we construct an in-
stance (G′, k′) of Connected Induced Π-Subgraph by setting k′ = k(r +
1)− 1 and constructing graph G′ as follows:

1. For each vertex v of graph G, replace it by a path P (v) = v(1), . . . , v(r) on
r vertices. We refer to P (v) as a vertex-path.

2. For each edge uv of G, add all possible edges between P (u) and P (v).
3. For each nonedge uv of G, connect u(r) and v(1) by a path P (uv) of length

two, and also connect u(1) and v(r) by a path P (vu) of length two. We refer
to the middle vertices of P (uv) and P (vu) as nonedge-vertices.

The construction of (G′, k′) takes O(R(t, k)(m + n)) = O(f(k)(m + n)) time
which is FPT. We claim that G has an independent k-set iff G′ contains a
connected induced Π-subgraph with k′ = k(r+1)−1 vertices. If I = {v1, . . . , vk}
is an independent k-set in G, then

P (v1), P (v1v2), P (v2), P (v2v3), . . . , P (vk)

is an induced path in G′ with k(r + 1) − 1 = k′ vertices, which is a connected
induced Π-graph in G′.

Conversely, suppose that G′ contains a connected induced Π-subgraph G′[S′]
on k′ vertices S′. Let S be vertices in G whose vertex-paths in G′ contain vertices
of S′. We show that G[S] has an independent k-set.

By the construction of G′ and the assumption that G′[S′] is Kt-free, we see
that G[S] is also Kt-free. Therefore if |S| ≥ R(t, k), we deduce from Ramsey’s
theorem that G[S] has an independent k-set.

Otherwise |S| < R(t, k). A vertex v ∈ S is a large-vertex if P (v) contains at
least 2s vertices from S′, and small-vertex otherwise. We show that large-vertices
form an independent set in G. Consider two arbitrary large-vertices u and v. If
uv is an edge of G, then in G′ we have all edges between P (u) and P (v). Since
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P (u) is a path and contains at least 2s vertices of S′, it has an independent s-set
I in G′. But I together with any vertex of P (v) in S′ induce star K1,s in G′,
contradicting to G′[S′] being K1,s-free. Therefore u and v are not adjacent in G,
and large-vertices form an independent set in G.

It remains to show that there are at least k large-vertices. First we bound the
number of nonedge-vertices in S′. Since G′[S′] is connected, we see that, by the
construction of G′, each nonedge-vertex in S′ is adjacent to an endpoint of some
vertex-path P (v). Since G′[S′] is K1,s-free, the endpoint of any vertex-path P (v)
is adjacent to at most s − 1 nonedge-vertex, implying that S′ contains at most
2(s− 1)|S| < 2(s− 1)R(t, k) nonedge-vertices.

Now let p be the number of large-vertices. Since every vertex-path has r
vertices, S′ contains at most pr vertices from vertex-paths of large-vertices. Fur-
thermore, S′ contains 2s|S| < 2sR(t, k) vertices from vertex-paths of small-
vertices. Since S′ consist of vertices from vertex-paths of large-vertices, vertex-
paths of small-vertices, and nonedge-vertices, we have pr > k′−2sR(t, k)−2(s−
1)R(t, k) > (k(r + 1)− 1)− 4sR(t, k) = (k − 1)(r + 1), implying p ≥ k.

Corollary 3. Connected Induced Π-Subgraph is W[1]-hard for Π being
degree-bounded graphs.

4 The Remaining Case

In this section, we present a partial result for the remaining case: Π includes
all complete graphs and paths, but excludes some stars. We show that the case
is W[1]-hard when Π includes all complete graphs, excludes a star K1,s but
includes all trees of maximum degree less than s. For this purpose, we need the
W[1]-hardness of Induced Even Path problem on bipartite graphs, which asks
whether a bipartite graph contains an induced path on 2k vertices. We also need
the following construction of composition (a.k.a. lexicographic product) G[H ] of
two graphs G and H : replace each vertex v of G by a distinct copy Hv of H and
each edge uv of G by a complete bipartite graph joining all vertices of Hu with
all vertices of Hv.

Theorem 6. Induced Even Path is W[1]-hard on bipartite graphs.

Proof. We give an FPT reduction from Induced Matching on bipartite graphs
which asks whether a bipartite graph contains an induced matching with k edges
and is W[1]-hard [8]. For an arbitrary instance (G, k) of Induced Matching

with G = (X,Y ;E) being a bipartite graph, we construct an instance (G′, k′) of
Induced Even Path as follows:

1. Take the composition graph G[Kk] as base graph B, where Kk is the trivial
graph on k vertices. For a vertex v in G, let {v1, . . . , vk} be its corresponding
vertices in B. Let Xi = {xi : x ∈ X} and Yi = {yi : y ∈ Y } for 1 ≤ i ≤ k.
See Figure 1 for an example.

2. For eachXi (resp., Yi), add a vertex x∗
i (resp., y∗i ) and make it adjacent to all

vertices of Xi (resp., Yi) by adding edges. Call x∗
i and y∗i external-vertices.
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3. Set l = 4k + 1. Attach to x∗
1 (resp., y∗k) a path P0 (resp., Pk) of length l,

and for each 1 ≤ i ≤ k− 1 connect y∗i with x∗
i+1 by a path Pi = y∗i , . . . , x

∗
i+1

of length l. All internal vertices of Pi’s are new vertices. Call each Pi an
external-path.

4. Set k′ = k(l + 3) + l + 1 = 4k(k + 2) + 2, which is even.

b

c

a

d

a1

c1

G B′

a2

c2

b1 b2

d1 d2

a1

c1

B′′

b1

d1

a2 b2

c2 d2

X1

Y1 Y2

X2

Fig. 1. B′ and B′′ are two different ways viewing base graph for k being 2. Each
subgraph induced by Xi ∪ Yi is a copy of G.

Each induced subgraph B[Xi ∪ Yi] in the base graph is a copy of G. It is easy
to see that G has an induced k-matching iff B has an induced k-matching.

It is clear that the above construction takes polynomial time, and that G′ is
a bipartite graph as every external-path has odd length. We claim that G has
an induced k-matching iff G′ has an induced k′-path.

Suppose that I = {x1y1, . . . , xkyk} is an induced k-matching of G = (X,Y ;E)
where each xi ∈ X and yi ∈ Y . Then obviously

P = P0, x
1
1, y

1
1 , P1, x

2
2, y

2
2 , P2, . . . , x

k
k, y

k
k , Pk

is a path on k(l + 3) + l + 1 = k′ vertices. To see that P is an induced path of
G′, we note that, by the construction of G′, the only possible chords of P are
edges inside the base graph

B[x1
1, y

1
1, . . . x

k
k, y

k
k ].

Since {xiyi : 1 ≤ i ≤ k} is an induced k-matching of G, there is no edge in G
connecting xi with any yj for i �= j, implying that there is no edge between xi

i

and yjj in B, hence in G′. Therefore P is an induced k′-path in G′.
Conversely, suppose that P is an induced k′-path of G′. It suffices to show that

B has an induced k-matching as we mentioned earlier that G has an induced
k-matching iff B has an induced k-matching. A path connecting two external-
vertices is an internal-path if all its internal vertices are in the base graph B. If
P contains k−1 external-paths {Pi : 1 ≤ i ≤ k−1} as well as vertices x∗

1 and y∗k,
then these external-paths are linked together with x∗

1 and y∗k by k internal-paths
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to form P . Consider the [x∗
1, y

∗
k]-section of P : it alternates between internal-

paths and external-paths, and each internal-path contains at least one distinct
edge inside the base graph B. The k internal-paths give us k such edges in B,
one for each internal-path. It is easy to see that these k edges form an induced
k-matching of B.

Otherwise, either P misses one of x∗
1 and y∗k, or P contains both x∗

1 and y∗k
but misses all internal vertices of an external-path. In both cases, P contains at
least l = 4k+1 edges of the base graph B, implying an induced matching of size
at least (4k + 1)/3 > k in B as a path of length l has an induced matching of
size at least l/3. Therefore B has an induced k-matching and so does G.

Note that we can use a similar construction to show the W[1]-hardness of
Induced Cycle on bipartite graphs, which asks whether a bipartite graph
contains an induced cycle on k vertices. Now we are ready to prove the following
theorem.

Theorem 7. Connected Induced Π-Subgraph is W[1]-hard if Π includes
all complete graphs, excludes a star K1,s but includes all trees of maximum degree
less than s.

Proof. We give an FPT reduction from Induced Even Path on bipartite
graphs. Let (G, 2k) be an instance of Induced Even Path with G = (X,Y ;E)
being a bipartite graph. To construct an instance (G′, k′) of our Connected

Induced Π-Subgraph, we use the composition G[Kk] of G as the skeleton in
our reduction, and then attach some selection-trees to ensure that G admits an
induced 2k-path iff G′ contains a connected induced Π-subgraph on k′ vertices.
A selection-tree T is the star-shaped tree consisting of a vertex as the root of T
and s− 2 root-to-leaf paths each of length l = 2(s− 1)2k+2k − 2k. Note that T
contains (s−2)l+1 vertices. We now give the construction of (G′, k′) as follows:

1. Take the composition graph G[Kk] as our base graph B. For a vertex v in
G, let {v1, . . . , vk} be its corresponding vertices in B. For 1 ≤ i ≤ k, let
Xi = {xi : x ∈ X} and Yi = {yi : y ∈ Y }.

2. For X1 (resp., Y1) in B, make s− 2 vertex-disjoint selection-trees, and add
all possible edges between their roots and all vertices of X1 (resp., Y1).

3. For each Xi (resp., Yi) in B (2 ≤ i ≤ k), make s−3 vertex-disjoint selection-
trees, and add all possible edges between their roots and all vertices of Xi

(resp., Yi).
4. Set k′ = [2k(s− 3) + 2][(s− 2)l + 1] + 2k.

Clearly, G′ is bipartite and the construction takes FPT time as k′ = O(s2lk).
Note that, for k ≥ 4, G has an induced k-path iff B has an induced k-path. Also
note that k′ − 2k equals the total number of vertices in all selection-trees as G′

contains 2k(s− 3) + 2 selection-trees. We claim that G has an induced 2k-path
iff G′ has a connected induced Π-graph on k′ vertices.

If G has an induced path P = {x1, y2, x3, y4, . . . , x2k−1, y2k}, then obviously
P ′ = {x1

1, y
2
2 , x

3
2, y

4
3 , . . . , x

2k−1
k , y2k1 } is an induced path of G′. Let S′ be the set

of vertices in all selection-trees plus all vertices in P ′. Then G′[S′] is a tree with
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all selection-trees attached to P ′ and its maximum degree is s − 1. Therefore
G′[S′] is a connected induced Π-graph with k′ vertices.

Conversely, suppose thatG′[S′] is a connected inducedΠ-graph with |S′| = k′.
Let Vb = S′ ∩ V (B), i.e., Vb contains vertices of base graph in S′. It suffices to
show that G′[Vb] contains an induced 2k-path. Since G′ is bipartite and G′[S′]
is a Π-graph (recall that a Π-graph is K1,s-free), the maximum degree of G′[S′]
is at most s− 1. For a selection-tree, we refer to the s− 2 neighbors of its root
as selection-vertices.

If S′ misses some selection-vertices, then Vb contains at least l + 2k = 2(s−
1)2k+2k vertices. Let Vr be the set of root vertices in S′, then |Vr| ≤ 2(s −
3)k + 2 ≤ 2(s − 2)k as there are 2(s − 3)k + 2 selection-trees. Since G′[S′] is
connected and S′ − {Vb ∪ Vr} only contains non-root vertices of selection-trees,
G′[Vb ∪ Vr ] is connected. Since the maximum degree of G′[S′] is at most s − 1,
the maximum degree of G′[Vb ∪ Vr] is also bounded by s − 1. It follows that
G′[Vb], which is obtained by deleting |Vr| vertices from G′[Vb ∪ Vr], has at most
(s− 1)|Vr | ≤ 2(s− 1)(s− 2)k components. Let G′

1 be the largest component of

G′[Vb], then G′
1 contains at least |Vb|

2(s−1)(s−2)k > l+2k
2(s−1)2k ≥ (s − 1)2k vertices.

As G′
1’s maximum degree is ≤ s− 1 and G′

1 is connected, according to Moore’s
bound, there is an induced 2k-path.

Otherwise S′ contains all selection-vertices and roots of selection-trees, we
show that G′[Vb] is just an induced 2k-path. If S′ contains more than one vertex
of Xi, then the degree of a root attached to Xi will exceed s− 1, contradicting
to G′[S′]’s maximum degree being ≤ s − 1. Since the connectedness of G′[S′]
forces S′ to contain at least one vertex of each Xi, S′ contains exactly one
vertex of Xi, i.e., |Vb ∩ Xi| = 1. Similarly, we have |Vb ∩ Yi| = 1 and then
|Vb| = 2k. Now each root is adjacent to only one vertex in Vb and G′[S′] is
connected, which implies that G′[Vb] is connected. Let x

1
1 and y2k1 be the vertices

in Vb ∩ X1 and Vb ∩ Y1 respectively. There are already s − 2 roots attached to
x1
1, which means |NG′[Vb](x

1
1)| ≤ 1, i.e., x1

1 is adjacent to at most one vertex in

Vb. Similarly, |NG′[Vb](y
2k
1 )| ≤ 1. Furthermore we have |NG′[Vb](v)| ≤ 2 for every

v in {v : v ∈ Vb, v �= x1
1 and v �= y2k1 } as v is in Xi or Yi for 2 ≤ i ≤ k and v has

s− 3 roots attached to it in G′[S′]. Since G′[Vb] is connected, G
′[Vb] must be an

induced 2k-path with x1
1 and y2k1 being endpoints.

Corollary 4. Connected Induced Π-Subgraph is W[1]-hard for Π being
claw-free graphs, line graphs, line graphs of bipartite graphs, or line graphs of
multigraphs.

5 Concluding Remarks

We have obtained an almost complete characterization of the parameterized com-
plexity of Connected Induced Π-Subgraph in terms of whether Π contains
all complete graphs, all stars, or all paths.

Theorem 8. Let Π be a hereditary property. Then Connected Induced Π-

Subgraph is
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1. FPT if Π includes all complete graphs and stars, or excludes some complete
graphs, stars and paths; and

2. W[1]-hard if Π
(a) includes all complete graphs, but excludes some stars and paths,
(b) includes all stars, but excludes some complete graphs, or
(c) includes all paths, but excludes some complete graphs and stars.

Corollary 5. Connected Induced H-Free Subgraph is W[1]-hard if H is
a complete graph Kt for some fixed t ≥ 3 or star K1,s for some fixed s ≥ 2, and
FPT otherwise.

For the remaining case, we believe that it is also W[1]-hard.

Conjecture 1. Connected Induced Π-Subgraph is W[1]-hard for any hered-
itary Π that includes all complete graphs and paths, but excludes some stars.

We note that Raman and Sikdar [10] have studied the parameterized complex-
ity of Induced Π-Subgraph for digraphs. In light of the work in this paper, it
seems quite interesting to study Induced Π-Subgraph on digraphs for strong
connectivity.

Problem 1. Determine the parameterized complexity of Induced Π-Subgraph

on digraphs with the requirement: a Π-subgraph need to be strongly connected.
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Abstract. In this paper, we consider the online hierarchical scheduling
problem on two parallel machines, with the objective of maximizing the
minimum machine load. Since no competitive algorithm exists for this
problem, we consider the semi-online version with bounded processing
times, in which the processing times are bounded by an interval [1, α]
where α ≥ 1. We prove that no algorithm can have a competitive ratio
less than 1+α and give an optimal algorithm with the competitive ratio
of 1 + α. Moreover, if we further know the sum of jobs’ processing time
in advance, we prove that no algorithm can have a competitive ratio less
than α where 1 ≤ α < 2, and we also propose an algorithm which is
shown to be optimal for the case 1 ≤ α < 2.

Keywords: Scheduling, Semi-online, Load balancing, Competitive ra-
tio, Hierarchy.

1 Introduction

Hierarchical scheduling onm parallel machines problem has been widely studied.
The typical goal is to minimize the maximum load of any machine (i.e., min-
imize makespan). Hwang et al. [3] studied the offline version and proposed an
approximation algorithm lg-lpt with the makespan no more than 5

4 times the
optimum for m = 2, and 2− 1

m−1 times the optimum for m ≥ 3. For the online
version, Park et al. [7] and Jiang et al. [4] independently presented an optimal
algorithm with a competitive ratio of 5

3 for the case of two machines. Besides,
there are also many papers focus on the semi-online hierarchical scheduling on
two machines [5],[6],[7],[9].

Meanwhile, another goal that to maximize the minimum load of any machine
(i.e., load balancing problem) was also studied well. Chassid and Epstein [1]
considered the hierarchical load balancing model on two machines of possibly
different speeds. They proved that no competitive algorithm exists for this prob-
lem, and they overcame this barrier by two ways. The first one is a fractional
assignment model where each job can be arbitrarily split between the machines.
The second one is a semi-online model where the sum of jobs’ processing time is
known in advance. They designed algorithms of best possible competitive ratios
for both cases. Wu et al. [10] proved that no competitive algorithm exists for
the semi-online version where the largest processing time of all jobs is known in

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 231–240, 2014.
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advance. However, when the hierarchy of the largest job is further known, Wu

et al. [8] designed an optimal algorithm with a competitive ratio of 1 +
√
2
2 for

the case where the largest job belongs to the higher hierarchy and designed an
optimal algorithm with competitive ratio of β for the case where the largest job
belongs to lower hierarchy, β is the largest root of equation x3−2x2−2x+2 = 0.
For the version where the optimal offline value is known in advance, Wu et al.
[10] proposed an optimal algorithm with competitive ratio of 2. Then Hou and
Kang [2] investigated this problem on m parallel uniform machines with two
hierarchies. They also proved that there exists no competitive algorithm and
overcame this barrier by the way of fractional assignment, and they designed a
best possible algorithm with competitive ratio of 2ks+m−k

ks+m−k for any speed s.
In this paper, we consider the online hierarchical load balancing problem on

two parallel machines with bounded processing times. Jobs arrive one by one
over a list and each job has a positive processing time and hierarchy 1 or 2.
The machines have different capability, i.e., the first machine M1 can process
all the jobs while the second machine M2 can process only jobs with hierarchy
2. As we know, Chassid and Epstein [1] proved that there exists no competitive
algorithm for this problem, this paper overcomes this barrier by a semi-online
version where the processing times are bounded by an interval [1, α] where α ≥ 1.
We prove that no algorithm can have a competitive ratio less than 1 + α and
give an optimal algorithm with the competitive ratio of 1 + α. Moreover, if we
further know the sum of jobs’ processing time in advance, we prove that no
algorithms can have a competitive ratio less than α and propose an algorithm
which is shown to be optimal for the case 1 ≤ α < 2. Note that for the case
where α ≥ 2, the lower bound of 2 has been proved in [8], and they have also
presented an optimal algorithm. So, we just focus on the case where 1 ≤ α < 2.
For convenience, we call the first problem as hierarchical scheduling problem with
bounded processing times, and call the second problem as hierarchical scheduling
problem with total processing time.

The rest of this paper is organized as follows: Section 2 gives some basic
definitions. In Section 3, we investigate the hierarchical scheduling problem with
bounded processing times. In Section 4, we investigate the hierarchical scheduling
problem with total processing time. Section 5 concludes the paper.

2 Problem Definition

We are given two machines and a series of jobs arriving online which are to be
scheduled irrevocably at the time of their arrivals. The first machine can process
all the jobs while the second one can process only part of the jobs. The arrival
of a new job occurs only after the current job is scheduled. Let σ = {J1, ..., Jn}
be the set of all jobs arranged in the order of arrival. We denote each job by
Ji = (pi, gi), where pi is the processing time (also called job size) of job Ji
and gi ∈ {1, 2} is the hierarchical level of job Ji. gi = 1 if the job Ji must be
processed by the first machine, and gi = 2 if it can be processed by either of the
two machines. pi and gi are not known until the arrival of job Ji.
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The schedule can be seen as the partition of σ into two subsets, denoted by
〈S1, S2〉, where S1 and S2 contain job indices assigned to the first and the second
machine, respectively. Let t(S1) = ΣJi∈S1pi and t(S2) = ΣJi∈S2pi denote the
loads of the first machine and the second machine, respectively. The following
notations will be used.

Ti: total size of the first i jobs.
Di: total size of jobs with hierarchy 1 in the first i jobs.
pmi : the largest job size among the first i jobs.
t(Si

1): total size of jobs scheduled on M1 after job Ji is scheduled.
t(Si

2): total size of jobs scheduled on M2 after job Ji is scheduled.

The minimum value of t(S1) and t(S2), i.e. min{t(S1), t(S2)}, is defined as the
minimum machine load of the schedule 〈S1, S2〉. The objective is to find a sched-
ule 〈S1, S2〉 that maximizes the minimum machine load.

We define Li = min{Ti−Di,
Ti

2 , Ti− pmi } as the standard upper bound of the
optimal minimum machine load of the sequence containing the first i jobs.

Lemma 1. The optimal minimum machine load is at most Li at any moment i.

For a job sequence σ and an algorithm A, let cA denote the objective function
value produced by A and let copt denote the optimal objective function value
in an offline version. Then the competitive ratio of A is defined as the smallest
number r such that for any σ, copt ≤ r · cA.

3 Hierarchical Scheduling with Bounded Processing
Times

In this section, we study the hierarchical load balancing problem on two machines
with bounded processing times. The processing times are bounded by an interval
[1, α] where α ≥ 1.

3.1 Lower Bounds of Competitive Ratio

When the processing times are bounded by an interval [1, α], we prove that no
online algorithm can have a competitive ratio less than 1 + α.

Theorem 1. There exists no algorithm with a competitive ratio less than 1+α.

Proof. Consider an algorithm A and the following sequence of jobs. The first
job is with g1 = 2 and p1 = 1. If algorithm A schedules J1 on M1, we further
generate the last job with g2 = 1 and p2 = 1. Therefore, we have copt = 1 and
cA = 0, which lead to

copt
cA

=∞. Otherwise, if algorithm A schedules J1 on M2,
we generate job J2 = (α, 2). Algorithm A must schedule it on M1, otherwise,
copt = 1 and cA = 0, which again makes

copt
cA

= ∞. Then we further generate
jobs J3 = (1, 1) and J4 = (α, 1), these two jobs must be scheduled on M1. Since
the optimal algorithm will schedule jobs J1 and J2 on M2 and schedule jobs J3
and J4 on M1, we have copt = 1 + α and cA = 1. Hence, we cannot have an
algorithm with a competitive ratio less than 1 + α. ��
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3.2 An Optimal Algorithm

In this subsection, we present an optimal online algorithm with a competitive ra-
tio of 1+α to match the lower bound. First, we describe our algorithm as follows.

Algorithm M:
Step 1. Let S0

1 = ∅, S0
2 = ∅, i = 1;

Step 2. Receive job Ji = (pi, gi), update Ti, Di, p
m
i and Li;

Step 3. If gi = 1, schedule it to M1. Go to Step 5;
Step 4. If gi = 2. Schedule Ji on M1 if t(Si−1

1 ) < 1
1+αLi, else schedule it on

M2. Go to Step 5;
Step 5: If there is a new job, let i = i+ 1 and go to Step 2. Else, output

S1 and S2.

Let cM be the cost of algorithm M and copt be the cost of the optimal offline
algorithm.

Theorem 2. If cM = min{t(Sn
1 ), t(S

n
2 )} = t(Sn

1 ), then
copt
cM

≤ 1 + α.

Proof. If no jobs are scheduled on M2 by algorithm M , obviously, t(Sn
1 ) = Tn ≥

copt holds. Otherwise, assume Ji is the last job scheduled on M2. According to
the rules of algorithm M , we have t(Si−1

1 ) ≥ 1
1+αLi. Since Ln − Li ≤ Tn − Ti

and all the jobs arrived after Ji will be scheduled on M1, we have

t(Sn
1 ) = t(Si−1

1 ) + (Tn − Ti) ≥ 1
1+αLi + (Ln − Li) ≥ 1

1+αLn ≥ 1
1+αcopt.

��

Lemma 2. If job Ji with gi = 2 is scheduled on M1 by algorithm M , then the
case of Li = Ti −Di cannot happen.

Proof. If job Ji with gi = 2 is scheduled onM1 by algorithmM , according to the
rules of algorithm M , we have t(Si−1

1 ) < 1
1+αLi. If Li = min{Ti −Di,

Ti

2 , Ti −
pmi } = Ti − Di, then we have Ti − Di ≤ Ti

2 , which means Di ≥ Ti

2 . Since

t(Si−1
1 ) ≥ Di−1 = Di, then we have t(Si−1

1 ) ≥ Ti

2 > 1
1+αLi, that is contradicted

with t(Si−1
1 ) < 1

1+αLi. Hence, the case of Li = Ti −Di cannot happen. ��

Lemma 3. If job Ji with gi = 2 is scheduled on M1 by algorithm M and Ti < 4,
then t(Si

2) ≥ 1
1+α (Ti −Di).

Proof. In this case, 1
1+αLi ≤ 1

1+α ·
Ti

2 ≤
Ti

4 < 1 must hold. This implies that no

jobs are scheduled on M1 before job Ji, i.e., t(S
i−1
1 ) = 0. Otherwise, t(Si−1

1 ) ≥
1 > 1

1+αLi. Moreover, there is at least one job that scheduled on M2, otherwise,

Li = Ti − pmi = 0 = t(Si−1
1 ) must hold. This is contradicted with job Ji is

scheduled on M1. Therefore, we have t(Si
2) ≥ 1. Since pi ≤ α, we have

Ti−Di

t(Si
2)
≤ Ti

t(Si
2)
≤ t(Si

2)+pi

t(Si
2)

≤ 1 + pi

t(Si
2)
≤ 1 + α.

��
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Lemma 4. If job Ji with gi = 2 is scheduled on M1 by algorithm M and Li =
Ti

2 , then t(Si
2) ≥ 1

1+α (Ti −Di).

Proof. We will prove the lemma by discussing the following two cases according
to the values of α.

Case 1. α ≥ 2.
Since job Ji with gi = 2 is scheduled on M1, we have t(Si−1

1 ) < 1
1+αLi =

1
2(1+α)Ti. Since Li = min{Ti −Di,

Ti

2 , Ti − pmi } = Ti

2 , Ti − pmi ≥ Ti

2 must hold,

which means pmi ≤ Ti

2 . Of course, pi ≤ pmi ≤ Ti

2 must hold. Then we have

t(Si
2) = Ti − t(Si−1

1 )− pi > Ti − 1
2(1+α)Ti − Ti

2 = α
2(1+α)Ti.

Combined with α ≥ 2 and Ti ≥ Ti −Di, we have

t(Si
2) >

α
2(1+α)Ti ≥ 1

1+α (Ti −Di).

Case 2. 1 ≤ α < 2.
In this case, we have 2α(1+α)

2α−1 ≤ 4. We discuss the following two subcases
according to the values of Ti.

Subcase 2.1. Ti ≥ 4.
In this subcase, we have Ti ≥ 2α(1+α)

2α−1 since 2α(1+α)
2α−1 ≤ 4. Then we have

2αTi − 2α(1 + α) ≥ Ti.

Since pi ≤ α and t(Si−1
1 ) < 1

2(1+α)Ti, we have

t(Si
2) = Ti − t(Si−1

1 )− pi > Ti − 1
2(1+α)Ti − α = 2α+1

2(1+α)Ti − α.

Then we have

t(Si
2)

t(Si−1
1 )

>
2α+1

2(1+α)
Ti−α

1
2(1+α)Ti

= 2αTi−2α(1+α)+Ti

Ti
≥ Ti+Ti

Ti
= 2

which further implies that

Ti−Di

t(Si
2)
≤ Ti

t(Si
2)

=
t(Si−1

1 )+t(Si
2)+pi

t(Si
2)

= 1 +
t(Si−1

1 )+pi

t(Si
2)

.

Now, we need to prove that t(Si
2) ≥ 2 will hold in this subcase. If t(Si−1

1 ) = 0,
then we have t(Si

2) = Ti − t(Si−1
1 ) − pi > 2 since Ti ≥ 4 and pi ≤ α < 2.

Otherwise, we have t(Si−1
1 ) ≥ 1. Combined with t(Si

2) > 2t(Si−1
1 ), t(Si

2) >
2t(Si−1

1 ) ≥ 2 must hold. Hence, we have t(Si
2) ≥ 2 in this subcase.

We continue to prove the lemma. If t(Si−1
1 ) ≥ pi, combined with t(Si

2) >
2t(Si−1

1 ) and α ≥ 1, we have

Ti−Di

t(Si
2)
≤ 1 +

t(Si−1
1 )+pi

t(Si
2)

≤ 1 +
2t(Si−1

1 )

t(Si
2)

< 2 ≤ 1 + α.
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Otherwise, t(Si−1
1 ) < pi, combined with t(Si

2) ≥ 2 and pi ≤ α, we have

Ti−Di

t(Si
2)
≤ 1 +

t(Si−1
1 )+pi

t(Si
2)

< 1 + 2pi

2 ≤ 1 + 2α
2 = 1 + α.

So, in this subcase, we have t(Si
2) >

1
1+α (Ti −Di).

Subcase 2.2. Ti < 4.
Based on Lemma 3, we have t(Si

2) >
1

1+α (Ti −Di). ��

Lemma 5. If job Ji with gi = 2 is scheduled on M1 by algorithm M and Li =
Ti − pmi , then t(Si

2) ≥ 1
1+α (Ti −Di).

Proof. As Li = Ti − pmi , we have Ti − pmi ≤ Ti

2 , which implies pmi ≥ Ti

2 . If p
m
i

belongs to Si−1
1 , we have t(Si−1

1 ) ≥ Ti

2 > 1
1+αLi. This is contradicted with job

Ji is scheduled on M1 by algorithm M . If pmi belongs to Si
2, we have t(Si

2) ≥
Ti

2 ≥
1

1+αTi ≥ 1
1+α (Ti −Di).

If pmi = pi, then we have Ti − pmi = t(Si−1
1 ) + t(Si

2). Since job Ji is scheduled
on M1 by algorithm M , we have t(Si−1

1 ) < 1
1+αLi =

1
1+α (Ti − pmi ). Hence,

t(Si
2) = Ti − pmi − t(Si−1

1 ) > Ti − pmi − 1
1+α (Ti − pmi ) = α

1+α (Ti − pmi ).

Then we discuss the following two cases according to the values of α.

Case 1. α ≥ 2.
In this case, since t(Si−1

1 )+ t(Si
2) = Ti−pi = Ti−pmi and t(Si−1

1 ) < 1
1+α (Ti−

pmi ), we have
t(Si

2) >
α

1+α (Ti − pmi ) > 2t(Si−1
1 ).

If no jobs are scheduled on M1 before job Ji, then there is at least one job
that scheduled on M2, otherwise, Li = Ti−pmi = 0 = t(Si−1

1 ) must hold. This is
contradicted with job Ji is scheduled on M1. Therefore, t(S

i
2) ≥ 1. Since pi ≤ α,

we have
Ti−Di

t(Si
2)
≤ Ti

t(Si
2)
≤ t(Si

2)+pi

t(Si
2)

≤ 1 + pi

t(Si
2)
≤ 1 + α.

If there is at least one job that scheduled on M1 before job Ji, then we have
t(Si

2) > 2t(Si−1
1 ) ≥ 2. Since pi ≥ Ti

2 > t(Si−1
1 ) and pi ≤ α, we have

Ti−Di

t(Si
2)
≤ Ti

t(Si
2)

= 1 +
t(Si−1

1 )+pi

t(Si
2)

< 1 + α.

Case 2. 1 ≤ α < 2.
Since Ti

2 ≤ pmi < 2, we have Ti < 4. Based on Lemma 3, we have t(Si
2) >

1
1+α (Ti −Di).

��

Theorem 3. Algorithm M is (1+α)-competitive which is shown to be optimal.

Proof. Based on Theorem 2, if cM = min{t(Sn
1 ), t(S

n
2 )} = t(Sn

1 ), then
copt
cM

≤
1 + α. Therefore, we just need to prove

copt
cM

≤ 1 + α will hold when cM =
min{t(Sn

1 ), t(S
n
2 )} = t(Sn

2 ). We discuss the following two cases.
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Case 1. No jobs with hierarchy 2 are scheduled on M1.
In this case, we have t(Sn

2 ) = Tn −Dn. Since Tn −Dn ≥ Ln ≥ copt, t(S
n
2 ) ≥

copt >
1

1+αcopt holds.

Case 2. At least one job with hierarchy 2 is scheduled on M1.
Let Jf denote the last job with gf = 2 scheduled onM1. Based on Lemma 2-5,

we have t(Sf
2 ) ≥ 1

1+α (Tf −Df). Since all the jobs with hierarchy 2 are scheduled
on M2 after job Jf , then we get

t(Sn
2 ) = t(Sf

2 ) + ((Tn −Dn)− (Tf −Df ))

which implies that

t(Sn
2 ) = t(Sf

2 ) + ((Tn −Dn)− (Th −Df ))
≥ 1

1+α (Tf −Df) + ((Tn −Dn)− (Tf −Df )

≥ 1
1+α (Tn −Dn).

Since Tn −Dn ≥ Ln ≥ copt, t(S
n
2 ) ≥ 1

1+αcopt hold.
Since the lower bound of this problem is 1 + α, so algorithm M is (1 + α)-

competitive which is shown to be optimal. ��

4 Hierarchical Scheduling with Total Processing Time

In this section, we further know jobs’ total processing time in advance. Note
again, for the case where α ≥ 2, the lower bound of 2 has been proved in Wu et
al. [8], and they have also presented two optimal algorithms. So, we just focus
on the case where 1 ≤ α < 2. Let Σ denote the jobs’ total processing time.

4.1 Lower Bounds of Competitive Ratio

In this subsection, we prove that no online algorithm can have a competitive
ratio less than α where 1 ≤ α < 2.

Theorem 4. There exists no online algorithm with a competitive ratio less than
α for 1 ≤ α < 2.

Proof. Consider an algorithm A and the following sequence of jobs. We know
Σ = 2 + α in advance. The first job is J1 = (1, 1), then it will be scheduled on
M1. We further generate job J2 = (1, 2). If algorithm A schedule it on M1, then
the last job with g3 = 1 and p3 = α will arrive. Therefore, we have copt = α and
cA = 0, which lead to

copt
cA

= ∞. So, algorithm A will schedule J2 on M2, then
the last job with g2 = 2 and p2 = α arrives. No matter which machine that J3
is scheduled on, we have cA = 1. Since the optimal algorithm will schedule jobs
J1 and J2 on M1 and schedule job J3 on M2, we have

copt
cA

= α. So, we cannot
have an algorithm with a competitive ratio less than α. ��
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4.2 An Optimal Algorithm

In this subsection, we present an optimal online algorithm with a competitive
ratio of α to match the lower bound. Let L = Σ

2 . First, we describe our algorithm
as follows.

Algorithm H:
Step1. Let S0

1 = ∅, S0
2 = ∅, i = 1;

Step2. Receive job Ji = (pi, gi);
Step3. If gi = 1, let Si

1 = Si−1
1

⋃
{Ji}. Go to Step 5 ;

Step4. If gi = 2,
4.1. If t(Si−1

2 ) + pi <
1
αL, let S

i
2 = Si−1

2

⋃
{Ji}. Go to Step 5 ;

4.2 (Stopping criterion 1). If t(Si−1
2 )+ pi ≥ 1

αL and Σ− t(Si−1
2 )− pi ≥ 1

αL,
schedule job Ji on M2 and schedule all the remaining jobs to M1. Stop and
output M1 and M2.
4.3 (Stopping criterion 2). If t(Si−1

2 ) < 1
αL, Σ − t(Si−1

2 ) − pi < 1
αL and

Σ − t(Si−1
2 ) − pi < t(Si−1

2 ), schedule job Ji and all the remaining jobs to M1.
Stop and output M1 and M2.
4.4 (Stopping criterion 3). If t(Si−1

2 ) < 1
αL, Σ − t(Si−1

2 ) − pi < 1
αL and

Σ− t(Si−1
2 )− pi ≥ t(Si−1

2 ), schedule job Ji to S2 and schedule all the remaining
jobs to M1. Stop and output S1 and S2.
Step5: If no more jobs arrive, stop and output S1 and S2; Else, let i = i + 1
and go to Step 2 .

Before we prove algorithm H is optimal, we give a lemma first.

Lemma 6. Suppose 1 ≤ α < 2, for an arbitrary job sequence σ, if the number
of jobs in σ, denoted by n, is an even number, then the total processing time of
arbitrary n

2 jobs in σ is at least 1
αL.

Proof. Let Sh be a job set of arbitrary n
2 jobs in σ, and Sl be the set of the other

n
2 jobs where Σ = t(Sh) + t(Sl). Then we have

t(Sh)− 1+α
2 L = t(Sh)− 1+α

2 · t(Sh)+t(Sl)
2 = 3−α

4 t(Sh)− 1+α
2 · t(Sl)

2 .

As α < 2, we have 3−α
4 > 0. Combined with t(Sh) ≤ n

2α and t(Sl) ≥ n
2 , we

have
t(Sh)− 1+α

2 L ≤ 3−α
4 · n2 · α−

1+α
2 · n4 = −n

8 · (α− 1)2 ≤ 0

which means that the total processing times of arbitrary n
2 jobs in σ is at most

1+α
2 L. Further, we get

t(Sl) ≥ Σ − 1+α
2 L = 3−α

2 L.

Since 3−α
2 L− 1

αL ≥ 0 will hold for 1 ≤ α < 2, then we have t(Sl) ≥ 1
αL. By the

same way, we can get t(Sh) ≥ 1
αL. So, the total processing time of arbitrary n

2
jobs in σ is at least 1

αL. ��
Straightforwardly, we have the following corollary.
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Corollary 1. Suppose 1 ≤ α < 2, for an arbitrary job sequence σ which contains
n jobs, the total processing time of arbitrary n′ jobs in σ is at least 1

αL where
n′ ≥ 	n2 
.

Theorem 5. Algorithm H is α-competitive for 1 ≤ α < 2.

Proof. Suppose the theorem is false, then there must exist at least one instance
I which makes

copt
cH

> α. Let n be the number of jobs in I. We distinguish the
following two cases according to the value of n.

Case 1: n is an even number.
In this case, we have two subcases. The first subcase is that no jobs with

hierarchy 2 are scheduled to S1. If no jobs with hierarchy 2 are scheduled on M1,
according to the rules of algorithm H , we have t(S2) = Σ −Dn ≥ copt. Also, we
have t(S1) ≥ 1

αL ≥
1
αcopt, otherwise, based on Lemma 6, at least one job with

hierarchy 2 will be scheduled on M1. The other subcase is that there is at least
one job with hierarchy 2 is scheduled on M1. Based on Lemma 6, algorithm H
schedules at most n

2 jobs of I on M2, which implies that algorithm H will stop
at Step 4.2, which further implies that t(S1) ≥ 1

αL and t(S2) ≥ 1
αL. Again, we

have cH = min{t(S1), t(S2)} ≥ 1
αcopt.

Case 2: n is an odd number.
Divide I into two job sets I1 and I2 where I1 contains

n+1
2 jobs and I2 contains

n−1
2 jobs. The processing time of any job in I1 is not greater than the processing

time of any job in I2. Let t(I1) and t(I2) denote the total processing time of
jobs in I1 and I2, respectively, where t(I1) + t(I2) = Σ. As the processing times
are bounded in the interval [1, α], we have t(I1) ≥ n+1

2 and t(I2) ≤ n−1
2 α. Since

the optimal algorithm must schedule at most n−1
2 jobs in I to one of the two

machines, and according to the definition of I2, we know that I2 contains the
n−1
2 jobs which have the most largest processing time, so copt ≤ t(I2) holds.
If algorithm H stops at Step 4.2, cH = min{t(S1), t(S2)} ≥ 1

αcopt can be
got directly. If algorithm H stops at Step 5, then no jobs with hierarchy 2 are
scheduled to S1. Also we have cM = min{t(S1), t(S2)} ≥ 1

αcopt. Therefore, it
must stop at Step 4.3 or Step 4.4.

Suppose algorithm H stops at Step 4.3, and job Ji is the job makes t(Si−1
2 ) <

1
αL, Σ − t(Si−1

2 ) − pi <
1
αL and Σ − t(Si−1

2 ) − pi < t(Si−1
2 ) hold. In this case,

we have t(S2) = t(Si−1
2 ) and t(S1) = Σ − t(Si−1

2 ). Since t(S2) = t(Si−1
2 ) < 1

αL,
based on Corollary 1, there are at most n−1

2 jobs are scheduled on M2 and at
least n+1

2 jobs are scheduled on M1. This means that t(S1) ≥ 1
αcopt.

So, cH = min{t(S1), t(S2)} = t(S2) < 1
αcopt. As Σ − t(S2) − pi < t(S2) <

1
αcopt, we get t(S1)−pi < t(S2) <

1
αcopt. Then we have t(S1)+t(S2)−pi <

2
α copt

or α(t(S1)− pi + t(S2)) < 2copt. As t(S1) + t(S2) = t(I1) + t(I2), we have

α(t(S1)− pi + t(S2)) = α(t(I1) + t(I2)− pi) ≥ (n− 1)α.

Since t(I2) ≤ n−1
2 α and copt ≤ t(I2), we have

2copt ≤ 2t(I2) ≤ (n− 1)α.
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These two inequalities imply that

(n− 1)α ≤ α(t(S1) + t(S2)) < 2copt + pi ≤ (n− 1)α

which is a contradiction.
If algorithmH stops at Step 4.4, we can the get same contradiction like Step 4.3.
Hence, we know that such an example which makes

copt
cH

> α do not exist. ��

5 Conclusion

In this paper, we consider the semi-online version of hierarchical scheduling
problem on two parallel machines with the objective of maximizing the minimum
machine load. If the processing times are bounded in an interval [1, α], we show
the lower bound of competitive ratio is 1 + α and present an algorithm which
is shown to be optimal. If we further know the sum of jobs’ processing times
(i.e., the total processing time), we show a lower bound of α for the case where
1 ≤ α < 2 and present an optimal algorithm for the case where 1 ≤ α < 2.
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Abstract. Convex bipartite graphs are a subclass of circular convex bi-
partite graphs and chordal bipartite graphs. Chordal bipartite graphs
are a subclass of perfect elimination bipartite graphs and tree convex bi-
partite graphs. No other inclusion among them is known. In this paper,
we make a thorough comparison on them by showing the nonemptyness
of each region in their Venn diagram. Thus no further inclusion among
them is possible, and the known complexity results on them are incom-
parable. We also show the NP-completeness of treewidth and feedback
vertex set for perfect elimination bipartite graphs.
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bipartite graphs, NP-completeness, treewidth, feedback vertex set.

1 Introduction

Some NP-complete graph problems, such as treewidth and feedback vertex set,
are still NP-complete for bipartite graphs, but tractable for restricted bipar-
tite graphs, such as convex bipartite graphs, chordal bipartite graphs, circular
convex bipartite graphs, and so on. Exploring the properties of these restricted
bipartite graphs and the boundary between NP-completeness and tractability
are well established research directions, see e.g. [2]. In this paper, we show some
separation results for restricted bipartite graphs, including perfect elimination
bipartite graphs, chordal bipartite graphs, convex bipartite graphs, tree con-
vex bipartite graphs, and circular convex bipartite graphs. We also show the
NP-completeness of treewidth and feedback vertex set for perfect elimination
bipartite graphs.

Perfect elimination bipartite graphs, chordal bipartite graphs, and convex
bipartite graphs are well studied bipartite graph classes [2]. In a convex bipartite
graph G = (V1, V2, E), there is a linear ordering L defined on V1, such that for
each vertex in V2, its neighborhood induces an interval under L [4]. Given a cycle,
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an edge with two endpoints nonconsecutive in the cycle is called a chord. In a
chordal bipartite graph, each cycle of length at least six must have a chord [3]. An
edge in a bipartite graph is bisimplicial, if its endpoint neighborhoods induce a
complete bipartite subgraph. A perfect elimination ordering of a bipartite graph
is a linear ordering on a subset of nonadjacent edges, such that each edge in this
subset is bisimplicial in the remaining bipartite subgraphs when all endpoints of
preceding edges are removed, and finally no edge is left in the graph. In a perfect
elimination bipartite graph, there is a perfect elimination ordering [3].

Circular convex bipartite graphs and tree convex bipartite graphs are two
natural generalizations to convex bipartite graphs [13,5,7,19,22,17,15,18,21,14].
In a circular convex bipartite graph G = (V1, V2, E), there is a circular ordering
R defined on V1, such that for each vertex in V2, its neighborhood induces a
circular arc under R [13]. In a tree convex bipartite graph G = (V1, V2, E), there
is a tree T defined on V1, such that for each vertex in V2, its neighborhood
induces a subtree on T [5]. When T is a path, G is just a convex bipartite graph.
When T is a star, G is called a star convex bipartite graph [5]. When T is a
triad, which is three paths with a common endpoint, G is called a triad convex
bipartite graph [7].

It has been known that chordal bipartite graphs is sandwiched between convex
bipartite graphs and perfect elimination bipartite graphs [3], and also between
convex bipartite graphs and tree convex bipartite graphs [6]. Convex bipartite
graphs are a subclass of circular convex bipartite graphs [13]. No other inclusion
of them is known. So our first question is

– Is there any other inclusion among perfect elimination bipartite graphs, tree
convex bipartite graphs, circular convex bipartite graphs, chordal bipartite
graphs, and convex bipartite graphs?

In this paper, we give a negative answer by showing the nonemptyness of each
region in their Venn diagram. Thus no further inclusion among them is possible,
and the known complexity results on them in literatures are incomparable.

Treewidth and feedback vertex set are two well studied NP-complete prob-
lems. They are also NP-complete for bipartite graphs [9,23] and for tree convex
bipartite graphs [21,5,6], but tractable for chordal bipartite graphs [10,11]. Feed-
back vertex set is also tractable for circular convex bipartite graphs [18] and for
triad convex bipartite graphs [7,6]. Our second question is

– Where is the boundary between NP-completeness and tractability to treewidth
and feedback vertex set for these restricted bipartite graphs?

In this paper, we give a partial answer by showing the NP-completeness of
treewidth and feedback vertex set for perfect elimination bipartite graphs. There-
fore, the known tractability of them for chordal bipartite graphs [10,11] can not
be extended to perfect elimination bipartite graphs, unless NP = P .

This paper is structured as follows. After introducing necessary definitions
and facts in Section 2, separation results for restricted bipartite graph classes
are shown in Section 3,NP-completeness results for perfect elimination bipartite
graphs are shown in Section 4, and finally are concluding remarks in Section 5.
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2 Preliminaries

For a graph G = (V,E), we denote the neighborhood of a vertex u by NG(u) =
{v|(u, v) ∈ E}. When G is clear from the context, we just write N(u). A
complete bipartite graph G = (V1, V2, E) has E = {(u, v)|u ∈ V1, v ∈ V2}.
For a bipartite graph G = (V1, V2, E), a subset of pairwise nonadjacent edges
{(u1, v1), (u2, v2), · · · , (uk, vk)} is a perfect elimination ordering, if each (ui, vi)
is bisimplicial in G after removing {u1, v1, u2, v2, · · · , ui−1, vi−1}, and there is no
edge in G after removing {u1, v1, u2, v2, · · · , uk, vk}. A perfect elimination bipar-
tite graph has a perfect elimination ordering [3,2]. A hypergraph H = (V, E) has
the Helly property, if for every subset E ′ ⊆ E , if each pair of e1, e2 in E ′ has a
nonempty intersection, then all the e’s in E ′ have a nonempty intersection.

For a graph G = (V,E), its tree decomposition is a tree T = (B,F ), with each
vertex in B labeled by a subset of V , called bag, such that (1) each edge in E
is contained in at least one bag; (2) for each vertex u in V , all bags containing
u induce a subtree of T . The maximum size of bags minus one is the width of
the tree decomposition. The minimum width over all tree decompositions of a
graph is the treewidth of the graph [9,12]. The following Lemma is easy to prove
by definition of treewidth [9].

Lemma 1. Adding a new pendent vertex to a graph will not change its treewidth.

A feedback vertex set is a subset of vertices whose removal renders the graph
cycle-free. The minimum feedback vertex set problem is to decide whether a
given graph has a feedback vertex set of size no more than a given integer [8].
The minimum size of feedback vertex sets is also called a decycling number.

3 Comparison Results

In this section, we make a thorough comparison on perfect elimination bipartite
graphs, tree convex bipartite graphs, circular convex bipartite graphs, chordal
bipartite graphs, and convex bipartite graphs, by showing the nonemptyness of
each region in their Venn diagram, see Figure 1.

Fig. 1. Venn diagram of five restricted bipartite graph classes and graphs in each region
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We use the following trick to deal with perfect elimination bipartite graphs.
For a non-perfect elimination bipartite graph, we usually can add one pendent
vertex or many pendent vertices to make it a perfect elimination bipartite graph,
while to keep its other properties invariant.

Theorem 1. There is a perfect elimination and circular convex bipartite graph
G1 which is not a tree convex bipartite graph.

Proof. The graph G1 = (V1, V2, E), where V1 = {x, y, z, ua, ub, uc}, V2 = {a, b, c,
dx, dy, dz} and E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (x, dx), (y, dy), (z, dz),
(a, ua), (b, ub), (c, uc)}, is shown in Figure 2 (left).

Fig. 2. A perfect elimination and circular convex bipartite graph G1 which is not a
tree convex bipartite graph

G1 is a perfect elimination bipartite graph, since a perfect elimination ordering
of G1 is given by {(x, dx), (y, dy), (z, dz), (a, ua), (b, ub), (c, uc)}.

G1 is a circular convex bipartite graph, since a circular ordering R on V1 is
given by x ≺ ua ≺ y ≺ ub ≺ z ≺ uc ≺ x, as shown in Figure 2 (middle), such
that the neighborhood of each vertex in V2 induces a circular arc under R.

If G1 is a tree convex bipartite graph with a tree associated on V1, the hyper-
graph H = (V1, E) is a hypertree, where E = {N(d)|d ∈ V2}. Then H = (V1, E)
has the Helly property and the line graph L(H) = (E ,F) is chordal, where
F = {(N(d1), N(d2))|N(d1) ∩ N(d2) �= ∅} (Theorem 1.3.1, page 9, [2]). How-
ever, H = (V1, E) is not Helly, since N(a), N(b), N(c) are pairwise intersect, but
N(a) ∩N(b) ∩N(c) = ∅. This can be seen with the help of the line graph L(H)
shown in Figure 2 (right). The same holds for V2, due to the symmetry of G1.
Therefore, G1 is not a tree convex bipartite graph. ��

Theorem 2. There is a chordal bipartite graph G2 which is not a circular convex
bipartite graph.

Proof. The graph G2 = (V1, V2, E), where V1 = {x, y, z, u1, u2, u3}, V2 = {a0, a1,
a2, a3} and E = {(x, a1), (a1, u1), (u1, a0), (y, a2), (a2, u2), (u2, a0), (z, a3),
(a3, u3), (u3, a0)}, is shown in Figure 3 (left).

There is no cycle in G2 at all, so G2 is a chordal bipartite graph.
Since N(a0) = {u1, u2, u3}, u1, u2 and u3 must be consecutive in any circular

ordering on V1 for G2 to be circular convex bipartite. The same reasoning applies
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Fig. 3. A chordal bipartite graph G2 which is not a circular convex bipartite graph

to N(ai) for i = 1, 2, 3. So x and u1, y and u2, z and u3 respectively must
be consecutive in any circular ordering, say R1, on V1, as shown in Figure 3
(middle). Due to the symmetry in G2, without loss of generality, we can assume
that x ≺ u1 ≺ u2 ≺ u3 ≺ z in R1. Then the only possible place for y is at
between y and z, but in this case, N(a2) = {y, u2} is not a circular arc, since
none of x, u1, u2, z is in N(a2). Thus, y can not be inserted into R1 and G2 is
not circular convex bipartite with a circular ordering on V1. A similar reasoning
also applies to V2, as shown in Figure 3 (right). Thus, G2 is not a circular convex
bipartite graph. ��

Theorem 3. There is a circular convex bipartite graph G3 which is neither a
perfect elimination bipartite graph nor a tree convex bipartite graph.

Proof. The graph G3 = (V1, V2, E), where V1 = {x, y, z}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x)}, is shown in Figure 4 (left).

G3 is a circular convex bipartite graph, since a circular ordering R on V1 can
be defined by x ≺ y ≺ z ≺ x, as shown in Figure 4 (right).

Fig. 4. A circular convex bipartite graph G3 which is neither a perfect elimination
bipartite graph nor a tree convex bipartite graph

G3 is not a perfect elimination bipartite graph, since in any perfect elimination
ordering of G3, the first edge must be bisimplicial in G3, but each edge of G3 is
not bisimplicial in G3. For example, consider an edge (x, a). We have N(x) =
{a, c} and N(a) = {x, y}. Since there is no edge (c, y) in E, N(x) ∪ N(a) does
not induce a biclique in G3. Thus the edge (x, a) is not bisimplicial. The same
holds for other five edges in E due to the symmetry of G3.
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G3 is not a tree convex bipartite graph, since V1 has only three vertices, any
tree on V1 is a path, say x − y − z. But then, the neighborhood of c, which is
NG3(c) = {x, z}, does not induce a subtree. Same for V2 by symmetry. ��

Theorem 4. There is a circular convex and tree convex bipartite graph G4 which
is not a perfect elimination bipartite graph.

Proof. The graph G4 = (V1, V2, E), where V1 = {x, y, z, u}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (u, a), (u, b), (u, c)}, is shown in Fig-
ure 5 (left).

Fig. 5. A circular convex and tree convex bipartite graph G4 which is not a perfect
elimination bipartite graph

G4 is a tree convex bipartite graph, since a tree T = (V1, F ) on V1 can be
defined by F = {(x, u), (y, u), (z, u)}, as shown in Figure 5 (right), such that for
each vertex in V2, its neighborhood induces a subtree in T .

G4 is a circular convex bipartite graph, since a circular ordering R on V2 can
be defined by a ≺ b ≺ c ≺ a, as shown in Figure 5 (right), such that for each
vertex in V2, its neighborhood induces a circular arc in R.

G4 is not a perfect elimination bipartite graph, similarly as G3. ��

Theorem 5. There is a tree convex bipartite graph G5 which is neither a perfect
elimination bipartite graph nor a circular convex bipartite graph.

Proof. The graph G5 = (V1, V2, E), where V1 = {x1, y1, z1, u1, x2, y2, z2, u2},
V2 = {a1, b1, c1, d, a2, b2, c2}, and E = {(x1, a1), (a1, y1), (y1, b1), (b1, z1), (z1, c1),
(c1, x1), (u1, a1), (u1, b1), (u1, c1), (u1, d), (d, u2), (x1, a1), (a1, y1), (y1, b1), (b1, z1),
(z1, c1), (c1, x1), (u1, a1), (u1, b1), (u1, c1)}, is shown in Figure 6 (left).

G5 is not a circular convex bipartite graph, since G5 is essentially two copies
of G4 linked by a vertex d. Though each copies of G4 has a circular ordering,
they can not be combined into a larger one for G5, as readers can check it.

G5 is not a perfect elimination bipartite graph, by the same reasoning as G4,
as well as the fact that the edges (u1, d) and (d, u1) are not bisimplicial.

G5 is a tree convex bipartite graph, since a tree T on V1 can be defined as
shown in Figure 6 (right), such that for each vertex in V2, its neighborhood
induces a subtree in T . ��



Restricted Bipartite Graphs: Comparison and Hardness Results 247

Fig. 6. A tree convex bipartite graph G5 which is neither a perfect elimination bipartite
graph nor a circular convex bipartite graph

Theorem 6. (1) There is a bipartite graph G0 which is neither a tree convex
bipartite graph, a circular convex bipartite graph, nor a perfect elimination bipar-
tite graph. (2) There is a perfect elimination bipartite graph G6 which is neither
a tree convex bipartite graph nor a circular convex bipartite graph.

Proof. (1) The graph G0 = (V1, V2, E) is shown in Figure 7 (left).

Fig. 7. A bipartite graph G0 which is neither a tree convex bipartite graph, a circular
convex bipartite graph, nor a perfect elimination bipartite graph, and a perfect elimi-
nation bipartite graph G6 which is neither a tree convex bipartite graph nor a circular
convex bipartite graph

G0 is not a circular convex bipartite graph, since G0 is essentially two copies of
G1 with a common edge (b, u). Though each copies of G1 has a circular ordering,
they can not be combined into a larger one for G0.

G0 is not a perfect elimination bipartite graph, by the same reasoning as G1,
as well as the fact that the edges (x, b) and (b, u) are not bisimplicial.

G0 is not a tree convex bipartite graph, since any tree on V1 must be a path
x−z−u−v−y, due to the degree two vertices a, d, e, c. But then N(b) = {x, y, u}
does not induce a subtree. The same holds for V2 due to symmetry.

(2) The graph G6 = (V3, V4, F ) is shown in Figure 7 (right).
G6 is neither a circular convex bipartite graph, nor a tree convex bipartite

graph, by exactly the same reasoning as for G0.
G6 is a perfect elimination bipartite graph, since a perfect elimination ordering

is given by {(f, x), (a, z), (d, u), (e, v), (c, y)}, as readers can check it. ��
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Theorem 7. There is a circular convex and tree convex and perfect elimination
bipartite graph G7 which is not a chordal bipartite graph.

Proof. The graph G7 = (V1, V2, E), where V1 = {x, y, z, u, w}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (u, a), (u, b), (u, c), (w, a)}, is shown
in Figure 8 (left).

Fig. 8. A circular convex and tree convex and perfect elimination bipartite graph G7

which is not a chordal bipartite graph

G7 is a perfect elimination bipartite graph, since a perfect elimination ordering
is given by {(w, a), (y, b), (z, c)}, as readers can check it.

G7 is a tree convex bipartite graph, since a tree T = (V1, F ) on V1 can be
defined by F = {(x, u), (y, u), (z, u), (w, u)}, as shown in Figure 8 (middle), such
that for each vertex in V2, its neighborhood induces a subtree in T .

G7 is a circular convex bipartite graph, since a circular ordering R on V2 can
be defined by a ≺ b ≺ c ≺ a, as shown in Figure 8 (right), such that for each
vertex in V2, its neighborhood induces a circular arc in R.

G7 is not a chordal bipartite graph, since the cycle x− a− y − b− z − c− x
of length six has no chord. ��

Theorem 8. There is a tree convex and perfect elimination bipartite graph G8

which is neither a chordal bipartite graph nor a circular convex bipartite graph.

Proof. The graph G8 = (V1, V2, E) is shown in Figure 9 (left).

Fig. 9. A tree convex and perfect elimination bipartite graph G8 which is neither a
chordal bipartite graph nor a circular convex bipartite graph

G8 is a perfect elimination bipartite graph, since a perfect elimination order-
ing is given by {(w1, a1), (y1, b1), (z1, c1), (w2, a2), (y2, b2), (z2, c2), (u1, d1)}, as
readers can check it.
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G8 is a tree convex bipartite graph, similarly as G5, see Figure 9 (right).
G8 is not a circular convex bipartite graph, similarly as G5.
G8 is not a chordal bipartite graph, since the cycle x1−a1−y1−b1−z1−c1−x1

of length six has no chord. ��

Theorem 9. There is a circular convex and chordal bipartite graph G9 which
is not a convex bipartite graph.

Proof. The graph G9 = (V1, V2, E), where V1 = {x, y, z, u, w}, V2 = {a, b, c}, and
E = {(x, a), (a, y), (y, b), (b, z), (z, c), (c, x), (u, a), (u, b), (u, c), (w, a)}, is shown
in Figure 10 (left).

Fig. 10. A circular convex and chordal bipartite graph G9 which is not a convex bi-
partite graph

G9 is a chordal bipartite graph, since each cycle of length at least six has a
chord, as readers can check it.

G9 is a circular convex bipartite graph, since a circular ordering R on V2 can
be defined by x ≺ u1 ≺ y ≺ z ≺ u2 ≺ x, as shown in Figure 10 (right), such that
for each vertex in V2, its neighborhood induces a circular arc in R.

G9 is not a convex bipartite graph, since G9 is a forbidden subgraph in
Tucker’s characterization of convex bipartite graphs [20]. ��

4 Hardness Results

In this section, we show the NP-completeness of treewidth and feedback vertex
set for perfect elimination bipartite graphs. These two problems are known to
be NP-complete for bipartite graphs. We use a simple reduction from bipartite
graphs to perfect elimination bipartite graphs, which keeps treewidth and decy-
cling number invariant. The reduction just adds a different pendent vertex for
each vertex in one side of the bipartite graph.

Theorem 10. Treewidth is NP-complete for perfect elimination bipartite
graphs.

Proof. Treewidth is well known in NP [1,9]. We reduce from Treewidth which
is NP-complete for bipartite graphs [9].
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Reduction 1.
Input: A bipartite graph G = (V1, V2, E) and a positive integer k, where

V1 = {x1, x2, . . . , xn}.
Output: A bipartite graph G′ = (V1, V

′
2 , E

′) and a positive integer k, where
V ′
2 = V2 ∪ {a1, a2, · · · , an} and E′ = E ∪ {(xk, ak)|k = 1, 2, · · · , n}.

Fig. 11. An example of Reduction 1

Clearly, G′ is bipartite and is computable from G in polynomial time. An
example of G and G′ is shown in Figure 11.

The graph G′ is a perfect elimination bipartite graph, since a perfect elimi-
nation ordering of G′ is given by {(x1, a1), (x2, a2), · · ·, (xn, an)}. Indeed, these
edges are pairwise nonadjacent. Each edge in them has a degree one endpoint
bi, thus are bisimplicial. These edges contain all the vertices in V1, no edge in
G′ will be left after removing these edges and their endpoints.

By repeatedly applying Lemma 1 in the construction of G′ from G, G has
treewidth k if and only if G′ has treewidth k. ��

Theorem 11. Feedback vertex set is NP-complete for perfect elimination bi-
partite graphs.

Proof. Feedback vertex set problem is well known in NP [8]. We reduce from
feedback vertex set which is NP-complete for bipartite graphs [23]. The reduc-
tion is exact the same as Reduction 1 in proof of Theorem 10. The correctness
of this reduction is shown as follows.

First, for any feedback vertex set D′ of G′, there is a feedback vertex set D′′

of G′, such that D′′ only contains vertices in V1 ∪ V2 and D′′ is not larger than
D′. Indeed, if there is a vertex ai in D′, then we can replace ai by xi, since ai is
a pendent vertex not on any cycle.

Second, for any D ⊆ V1 ∪ V2, D is a feedback vertex set in G if and only if it
is a feedback vertex set in G′. Therefore, G has a feedback vertex set of size at
most k if and only if G′ has a feedback vertex set of size at most k. ��

5 Conclusions

We have made a thorough comparison for perfect elimination bipartite graphs,
chordal bipartite graphs, convex bipartite graphs, tree convex bipartite graphs,
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and circular convex bipartite graphs, showing the nonemptyness of each region
in their Venn diagram (Figure 1), thus ruling out any further inclusion among
them. We also show the NP-completeness of treewidth and feedback vertex set
for perfect elimination bipartite graphs.

A trick we used to obtain these results is that, for a bipartite graph, we usually
can add one pendent vertex or many pendent vertices to make it a perfect elimina-
tion bipartite graph, while to keep its other properties invariant. This trick may be
useful to obtain further results for perfect elimination bipartite graphs.

The complexity of feedback vertex set for restricted bipartite graphs is shown
in Figure 12. The complexity of treewidth for triad convex bipartite graphs or
circular convex bipartite graphs is unknown. We conjecture that treewidth is also
tractable for these two classes of bipartite graphs, and thus the same picture as
Figure 12 also holds for treewidth.

Fig. 12. The known inclusion among some restricted bipartite graphs and complexity
classification of feedback vertex set for these bipartite graphs

A set system (U,S) contains a universe set U and a family S of subsets of
U . A set system (U,S) can be represented by a bipartite graph (U,S, E), where
E = {(x, Y )|x ∈ U, Y ∈ S}. When the bipartite graphs are restricted, we also get
the corresponding restricted set systems. Our separation results for the restricted
bipartite graphs are also applicable to the restricted set systems. Recently, some
complexity results on set cover, set packing and hitting set for tree convex,
circular convex, tree-like and circular-like set systems are obtained in [16]. We
can also define perfect elimination set systems and chordal set systems, and the
complexity results for them is largely unknown.
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Abstract. From recent research on optimizing artificial neural networks
(ANNs), quantum-inspired evolutionary algorithm (QEA) was proved to
be an effective method to design an ANN with few connections and high
classifications. Quantum-inspired evolutionary neural network (QENN)
is a kind of evolving neural networks. Similar to other evolutionary al-
gorithms, it is important to control the iteration of QENN, otherwise it
will waste a lot of time when QENN has been convergent. This paper
proposes an appropriate termination criterion to control the iteration
of QENN. The proposed termination criterion is based on the probabil-
ity of the best solution. Experiments about pattern classification on iris
have been done to demonstrate the effectiveness and applicability of the
termination criterion. The results show that the termination criterion
proposed in this paper could control the iteration of QENN effectively
and save a mass of computing time by decreasing the number of gener-
ations of QENN.

Keywords: Q-bit representation, quantum-inspired evolutionary algo-
rithms (QEA), quantum-inspired evolutionary neural network (QENN),
termination criterion, convergence.

1 Introduction

Artificial neural networks (ANNs) has been proved to be a useful mathematical
tool in machine learning [4]. A neural network is very good at learning using
some learning algorithms such as genetic algorithm (GA) and back propagation
(BP). ANNs trained using learning algorithms are limited to search for a suitable
set of weights in a prior fixed network topology. So it is very important to design
a suitable network structure for an ANN when it is used for a given task [20].
A fixed structure of overall connectivity between neurons may not provide the
optimal performance within a given training period [12]. Moreover, a small ANN
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may not provide good performance due to its limited information processing
capability. On the other hand, a large ANN tend to overfit the training data and
cost a mass of time to accomplish a learning task.

Constructive algorithms and destructive algorithms have been used to obtain
the network structure. Constructive algorithms start with the smallest possible
network and gradually add neurons or connections [13]. Destructive algorithms
start with the largest possible network and gradually delete unnecessary neurons
or connections [15].

The design of a network structure can also be formulated into a stochastic
search problem [19]. Evolutionary algorithms (EAs) were employed to obtain
the solution due to the non-differentiability of the search for the optimal net-
work structure [8]. In addition, as indicated in [9], it is a multimodal problem
to design the structure of an ANN so that constructive algorithms or destruc-
tive algorithms are susceptible to being trapped at structural local optima [1].
However, EA is a global search problem so that it is widely used to design the
structure of ANNs in recent years [17]. Leung et al. [10] used an improved ge-
netic algorithm to tune the structure and parameters simultaneously. Tsai et al.
[18] presented a hybrid Taguchi-genetic algorithm to solve the problem of tuning
the structure and the connection weights for ANNs. Yao et al. [21] proposed an
evolutionary system named EPNet to evolve neural networks.

As indicated in [11], Lu et al. proposed quantum-inspired evolutionary algo-
rithm (QEA) to search the optimal structure of ANNs due to the permutation
problems existing in traditional evolving neural networks [3], [16], as well as the
rapid convergence and global search capability of QEA. Unlike most previous
evolutionary algorithms, quantum bit representation is used in QEA to codify
the network. As a result, the connectivity bits do not indicate the actual links
but the probability of the existence of the connections.

However, regarding the research of Lu et al. there is no termination crite-
rion in his evolutionary algorithms. The maximum number of generations of
quantum-inspired evolutionary neural network (QENN) is simply set to 2000.
If the evolutionary algorithm has been convergent before the number of genera-
tions reaches 2000, the subsequent computing would not be effective. Therefore
it would cost a mass of time to run a quantum-inspired evolutionary algorithm
if we just simply set the maximum number of generations to a large value. As
indicated above, it is important to design an appropriate termination criterion
to control the iteration of QENN automatically.

This paper proposed a termination criterion for QENN based on the prob-
ability of the best solution. QEA starts with a global search and changes au-
tomatically into a local search because of its inherent probabilistic mechanism.
Along with the evolution of QENN, the probability of the solutions with better
fitness increases gradually and the probability of the best solution converges to
1 eventually. Considering all above, the probability of the best solution could
be used as an effective termination criterion for QENN. Experiments about pat-
tern classification on iris have been done to demonstrate the effectiveness and
applicability of the termination criterion. The results show that the termination
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criterion proposed in this paper could control the iteration of QENN effectively
and save a mass of computing time by decreasing the number of generations of
QENN.

This paper is organized as follows. Section 2 reviews the previous work on QEA
and QENN. Section 3 proposes the termination criterion for QENN. Section 4
shows the experimental results of the proposed termination criterion. Finally,
Section 5 summarizes this paper.

2 Preliminaries

In this section, QEA proposed in [5], [6] and QENN proposed in [11] will be
described. The rapid convergence and global search capability make QEA an
effective algorithm for optimal problems. So far, QEA has been effectively used
in optimal problems [2], [7], [22]. QEA is a branch of study on evolutionary
algorithms. Though QEA is characterized by certain principles of quantum me-
chanics, it is an evolutionary algorithm for a classical computer and it just adopts
the idea of probabilistic representation of quantum bit.

2.1 Representation

In evolutionary algorithms, a number of representations can be used to encode
the solutions to individuals. QEA uses a novel Q-bit representation which uses
probability to present binary information. A Q-bit is defined as the smallest unit
of information in QEA, which is defined with a pair of numbers (α, β) as[

α
β

]
(1)

where 0 ≤ |α| ≤ 1, 0 ≤ |β| ≤ 1, |α|2 + |β|2 = 1, |α|2 is the probability that the
Q-bit will be observed to be 1 and |β|2 is the probability that the Q-bit will be
observed to be 0. A Q-bit is in a linear superposition of the two states.

A Q-bit individual containing a string of q Q-bits can be defined as[
α1 α2 ... αq

β1 β2 ... βq

]
(2)

where 0 ≤ |αi| ≤ 1, 0 ≤ |βi| ≤ 1, |αi|2 + |βi|2 = 1, i = 1, 2, ..., q. Since |αi|2 +
|βi|2 = 1, a Q-bit individual can be simplified as[

α1 α2 ... αq

]
(3)

Q-bit representation has the advantage that it is able to represent any linear
superposition of states probabilistically. For instance, a three-Q-bit individual
such as [

1√
2

1
2

√
3
2

1√
2

√
3
2

1
2

]
(4)
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can be represented as

√
3

4
√
2
|000〉+ 3

4
√
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4
√
2
|010〉+
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3

4
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2
|011〉+
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3

4
√
2
|100〉+ 3

4
√
2
|101〉+ 1

4
√
2
|110〉+

√
3

4
√
2
|111〉 . (5)

The above result means that the probabilities that the three-Q-bit individual
will be observed to be the state of 000, 001, 010, 011, 100, 101, 110 and 111 are
3/32, 9/32, 1/32, 3/32, 3/32, 9/32, 1/32, and 3/32 respectively.

2.2 QENN

Quantum-inspired evolutionary neural network (QENN) is based on the theory
of QEA and ANNs. QENN utilizes QEA to design the structure and connec-
tion weights of ANNs. As indicated in [11], the basic network considered in this
paper is a generalized multilayer perceptron (GMLP) network. QEA utilizes
Q-bit to represent the probabilities of various network connectivity and connec-
tion weights. In QENN, network connectivity is represented by a quantum bit
individual as

Qc =
[
α1 α2 ... αcmax

]
(6)

where αi, i = 1, 2, ..., cmax, is a quantum bit and cmax is the maximum number
of connections. Among the cmax maximum number of connections, some connec-
tions may be present and some may be absent. In the structure design, Qc is
observed to generate a binary string bc, where 1 indicates the presence of a con-
nection and 0 indicates the absence of a connection. If a connection is observed
to be present, then we need to determine the weight of this connection.

In QENN, connection weight is determined by a quantum bit individual. A
quantum bit individual

Qwi =
[
αi,1 αi,2 ... αi,k

]
(7)

is used to determine the weight of the i-th connection, where i = 1, 2, ..., cmax, k
is a parameter chosen by designer to divide the weight space into 2k subspaces.
Qwi is used to represent the probability of the subspaces that render good weight
values. For instance, if we set k to be 3 and Qwi is observed to be 011, then the
third subspace is chosen to generate the weight value of the i-th connection.
The specific realization associated with the i-th connection of the weighting is
governed by a normal random number generator with mean μi,j and variance

(σi,j)
2, N (μi,j , σi,j), where i = 1, 2, ..., cmax, j = 1, 2, ..., 2k.

Similar to other evolutionary algorithms, QENN is characterized by popu-
lation dynamics. The population is divided into G structure subpopulations
and each subpopulation contains L identical structure individuals. Each sub-
population searches for L optimal connection weight individuals under the same
structure, that means L individuals in a subpopulation share the same Qc .
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In this paper, QENN is used to take the task of pattern recognition. So the
percentage of incorrectly classified patterns is used as the fitness function of
QEA. In every generation, rotation operator is adopted to update Qc and Qwi

by comparing the fitness value in the current generation to the stored best fitness
value as indicated in [11]. If the fitness value in the current generation is better
than the stored fitness value, then it will be stored instead of the best fitness
value stored in the past. The detail for QENN could be found in [11].

3 Termination Criterion

In this section, the termination criterion for QENN based on probability of
the best solution will be proposed. Evolutionary algorithms always need many
iterations to render a good fitness value. In most instances, a large fixed value
is chosen to be the maximum number of generations of EAs. In QENN, this
may cost a mass of computing time when QENN has been convergent. So it
is important to control the iteration of QENN automatically with an effective
termination criterion.

As analyzed in [6], QEA starts with a global search and changes automatically
into a local search because of its inherent probabilistic mechanism, which leads to
a good balance between exploration and exploitation. Along with the evolution
of QENN, the probability of the solutions with better fitness increases gradually.
Eventually, the probability of the best solution converges to 1.

To explain the reason for the convergence of the probability of the best solu-
tion, the best solution could be considered as an attractor [14]. The exploration of
the search space is driven by attractors corresponding to the best solution found
so far. If a solution is searched to be the best solution, then this solution starts
to attract the entire population. As long as no better solution is found, all the
Q-individuals converge towards this best solution, that means rotation operator
makes each Q-bit (α, β) converge to the corresponding binary bit in the best so-
lution. If the value of the i-th binary bit in the best solution takes 1, the rotation
operator makes |αi|2 convergent to 1. On the other hand, the rotation operator
makes |βi|2 convergent to 1. The probability of the best solution prob(b) is calcu-
lated by the multiplication of the probabilities of all the Q-bits in the Q-bit indi-
vidual. For example, consider b = 0101, then the probability of b can be obtained
by prob(b) = |β1|2|α2|2|β3|2|α4|2. When rotation operator makes all the Q-bits in
the Q-bit individual convergent to 1, prob(b) is also convergent to 1.

As indicated above, the probability of the best solution converges to 1 even-
tually. When the probability of the best solution has been convergent to 1, the
quantum-individuals become unable to produce solutions different from the at-
tractor and the subsequent computing would not be effective.

Due to the inherent probabilistic mechanism of QEA, the probability of the
best solution can be employed as a termination criterion. In [6], the probability
of the best solution b as
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prob(b) =
1

n

n∑
i=1

(

q∏
j=1

Pij) > γ0 (8)

can be designed as the termination criterion for QEA, where q is the number
of Q-bits of a Q-bit individual, n is the number of individuals in a population
and Pij is the probability for the j -th bit of the i-th individual to be observed
to be the j -th bit of the best solution b. The latter part,

∏q
j=1 Pij gives the

probability for the i-th Q-bit individual to be observed to be the best solution
and then the average value of

∏q
j=1 Pij in a population is calculated to give the

value of prob(b). The value of Pij is calculated as follows:

Pij =

{
|αij |2, if bj = 1
|βij |2, if bj = 0

(9)

where bj is the j -th bit of the stored best solution b, |αij |2 is the probability
that the j -th Q-bit of the i-th Q-bit individual will be found in the 1 state and
|βij |2 is the probability that the j -th Q-bit of the i-th Q-bit individual will be
found in the 0 state.

In QENN, since the solution s = {Qc, Qw1, Qw2, ..., Qwcmax}, that means the
solution s represented by Q-bit is composed of Qc and Qwj, j = 1, 2, ..., cmax,
the probability of the best solution for QENN should be adjusted to

prob(s) =
1

n

n∑
i=1

[

cmax∏
j=1

Pij •
∏
j∈E

(

k∏
l=1

P
′
ijl)] > γ0 (10)

where cmax is the maximum number of connections, k is a parameter chosen
by designer to divide the weight space into 2k subspaces, E is the set of the
connections which are observed to be present, pij is the probability for the j -th
bit of Q-bit individual Qc in the i-th solution to be observed to be the j -th bit

of the best solution bc and Pijl

′
is the probability for the l -th bit of the j -th

connection Qwj in the i-th solution to be observed to be the l -th bit of the best
solution bwj.

As the probability of the best solution prob (s) converges to 1 eventually, it
is appropriate to set the value of γ0 to 0.99, that means the Q-bit individuals
become nearly unable to produce solutions different from the best solution found
so far.

4 Experimental Results

In this section, experiments about pattern classification on iris have been done
to demonstrate the effectiveness of the termination criterion based on the prob-
ability of the best solution prob (s). The experiment data is from the University
of California Irvine Machine Learning Repository.

In this experiment, the population is divided into 3 structure populations and
each subpopulation includes 30 identical structure individuals. Each subpopula-
tion searches for 30 optimal connection weights under the same structure.



The Research on Controlling the Iteration of QEA for ANNs 259

One hundred samples of iris are chosen randomly to train QENN and modify
the structure and weights of QENN. There are 3 types of iris to be classified
among the experimental samples. The number of attributes is 4, all of which
are real values. So the number of input nodes of GMLP is 4 and the number
of output nodes of GMLP is 3. With the number of hidden nodes of GMLP
nh = 2, 4, Fig. 1 shows the variation of the mean error rate and the best error
rate in a population about classification of iris as generation T advances.
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Fig. 1. Variation of best error rate and mean error rate in a population. (a) best error
rate(nh = 2) (b) mean error rate(nh = 2) (c) best error rate(nh = 4) (d) mean error
rate(nh = 4).

From Fig. 1, as generation T advances, both the mean error rate and the best
error rate in a population decrease. When the generation T reaches a certain
value, the error rate will not decrease and be stable near a fixed value. This
means QENN has been convergent and the subsequent computing will not be
effective. Therefore, it is necessary to control the iteration of QENN.

With the number of hidden nodes of GMLP nh = 2, 4, Fig. 2 shows the
variation of the probability of the best solution prob(s) as generation T advances.
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Fig. 2. Variation of the probability of the best solution prob(s) (a)nh = 2 (b)nh = 2

Comparing with the results of Fig. 1, the probability of the best solution
increases along with the decrease of error rate. When QENN has been convergent,
the value of prob(s) will be stable near a fixed value. Therefore, prob(s) could be
used as the termination criterion by setting a appropriate value to the threshold
γ0. For instance, setting the value of γ0 to 0.99, Table 1 shows the experimental
results for the termination criterion prob(s) > γ0 with nh = 2, 4.

Table 1. Comparison of QENN with termination criterion prob(s) > γ0 and Tmax =
2000 (γ0 = 0.99, nh = 2, 4)

Hidden Nodes Termination Criterion Error Rate(%) Iteration

nh = 2
prob(s) > γ0 0.03 132
Tmax = 2000 0.03 2000

nh = 4
prob(s) > γ0 0.02 198
Tmax = 2000 0.02 2000

As we can see, QENN with the termination criterion prob(s) > γ0 can obtain
the same error rate to the error rate of QENN with the termination criterion
Tmax = 2000, but the iteration is much smaller. Therefore, we can conclude that
the termination criterion prob(s) > γ0 is effective for QENN.

5 Conclusion

This paper proposes an effective termination criterion for QENN. The termina-
tion criterion is based on the probability of the best solution. Along with the
evolution of QENN, the probability of the solutions with better fitness increases
gradually. Eventually, the probability of the best solution converges to 1.

The experimental results demonstrate the convergence of QENN, the conver-
gence of the probability of the best solution and the effectiveness of the termina-
tion criterion prob(s) > γ0. The termination criterion prob(s) > γ0 could give the
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information about the convergence of QENN accurately. QENN can be stopped
when prob(s) has been convergent with the termination criterion prob(s) > γ0
and there is no need to set a large number to be the maximum generation of
QENN.

The study of termination criterion for QENN can be useful in automatic
controlling and save a mass of computing time by decreasing the number of
generations of QENN.
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Abstract. Motivated by the large applicability as well as the hardness
of P3-convexity, we study new complexity aspects of such convexity re-
stricted to graphs with bounded maximum degree. More specifically, we
are interested in identifying either a minimum P3-geodetic set or a min-
imum P3-hull set of such graphs, from which the whole vertex set of G
is obtained either after one or sufficiently many iterations, respectively.
Each iteration adds to a set S all vertices of V (G) \ S with at least two
neighbors in S. We prove that: (i) a minimum P3-hull set of a graph G

can be found in polynomial time when δ(G) ≥ n(G)
c

(for some constant
c); (ii) deciding if the size of a minimum P3-hull set of a graph is at
most k remains NP-complete even on planar graphs with maximum de-
gree four; (iii) a minimum P3-hull set of a cubic graph can be found in
polynomial time; (iv) a minimum P3-hull set can be found in polynomial
time in graphs with minimum feedback vertex set of bounded size and no
vertex of degree two; (v) deciding if the size of a minimum P3-geodetic
set of a planar graph with maximum degree three is at most k remains
NP-complete.

Keywords: P3-convexity, P3-hull set, P3-geodetic set, planar graphs,
bounded degree, NP-hardness.

1 Introduction

Let G = (V,E) be a graph. For U ⊆ V , let the interval I[U ] of U in G be the set
U∪{u ∈ V (G)\U | |NG(u)∩U | ≥ 2}. A set S of vertices of G is P3-geodetic if I[S]
contains all vertices of G. The P3-geodetic number gP3(G) of a graph G is defined
as the minimum cardinality of a P3-geodetic set. The decision problem related
to determining the P3-geodetic number is known to be NP-complete for general
graphs, and coincides with the well-studied 2-domination number [10,8,11,12,13].

A P3-hull set U of G is a set of vertices such that:

– U0 = U

– Uk = I[Uk−1], for k ≥ 1.
– ∃ k ≥ 0 | Uk = V (G).

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 263–274, 2014.
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We define HG(S) ⊆ V (G) as I[S]k+1 where the non-negative integer k is such
that I[S]k+1 = I[S]k, k ≥ 0. The cardinality of a minimum P3-hull set of G is
the P3-hull number of G, denoted by hp3(G). Again, the decision problem related
to determining the P3-hull number of a graph is still a well known NP-complete
problem [4].

According to [5], as one of the most elementary models of the spreading of
a property within a network – like sharing an idea or disseminating a virus –
one can consider a graph G, a set U of vertices of G that initially possesses the
property, and an iterative process whereby new vertices u are added to U when-
ever sufficiently many neighbors of u are already in U . The simplest non-trivial
choice leads to the irreversible 2-threshold processes by Dreyer and Roberts [6].
Similar models were studied in various contexts, such as statistical physics, social
networks, marketing, and distributed computing under different names such as
bootstrap percolation, influence dynamics, local majority processes, irreversible
dynamic monopolies, catastrophic fault patterns, and many others [1,2,3,4,5,6].

In the next sections, we analyze the complexity of these problems when some
parameters related to the maximum and minimum degree of a graph are known.
In the following subsection we review some results on planar satisfiability prob-
lems. In Section 2 we present some results on finding a minimum P3-hull set of
graphs with bounded degree. Finally, in Section 3 we analyze complexity aspects
of finding a minimum P3-geodetic set on planar graphs with bounded degree.

1.1 Planar SAT-am3

SAT-am3 [9]
Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set X =
{x1, x2, . . . , xn} of boolean variables, such that each clause contains at most
three literals, each variable appears at most three times, and each literal occurs
at most twice.
Question: Is there a truth assignment to the variables in X that satisfies F?

SAT-am3 is an NP-complete problem [9]. In [9] the problem was not defined
with the restriction of each literal occurs at most twice, but without loss of gen-
erality, if a literal l occurs three times, the clauses containing l can be considered
satisfied and removed from the formula F to be analyzed. Another variant of
SAT is described below.
Planar 3-SAT [9]
Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set
X = {x1, x2, . . . , xn} of boolean variables, where each clause contains at
most three literals, and the bipartite graph HF = (V,E) such that V =
{wc1 , wc2 , . . . , wcm} ∪ {vx1 , vx2 , . . . , vxn} and E contains exactly those pairs
(wci , vxj ) such that either xj or ¬xj belongs to the clause Ci, is planar.
Question: Is there a truth assignment to the variables in X that satisfies F?

Note that not every instance of SAT-am3 is an instance of Planar 3-SAT.
For example, F = (¬x1+x2+x3)(x2+¬x3+¬x5)(x1+¬x2+x4)(x3+¬x4)(¬x1+



On P3-Convexity of Graphs with Bounded Degree 265

x5) is non-planar because it contains a subdivision of K3,3. However, it is well
known [9,14] that Planar 3-SAT is also an NP-complete problem.

At this point, we describe the intersection of these problems.

Planar SAT-am3

Instance: A set F = {C1, C2, . . . , Cm} of clauses, built on a finite set
X = {x1, x2, . . . , xn} of boolean variables, where each clause contains at
most three literals, each variable appears at most three times, each lit-
eral occurs at most twice, and the bipartite graph HF = (V,E) such that
V = {wc1 , wc2 , . . . , wcm} ∪ {vx1 , vx2 , . . . , vxn} and E contains exactly those
pairs (wci , vxj ) such that either xj or ¬xj belongs to the clause Ci, is planar.
Question: Is there a truth assignment to the variables in X that satisfies F?

Lemma 1. Planar SAT-am3 is NP-complete.

Proof. It is easy to see that the problem is in NP. To prove the hardness, we
perform a reduction from Planar 3-SAT. Consider a general Planar 3-SAT

expression F in which xi appears ki times. Assign F ′ = F , and for each xi in
F ′ replace the first occurrence of xi by x1

i , the second by x2
i , and so on, where

x1
i , x

2
i , . . . , x

ki

i are new variables. Add (¬x1
i , x

2
i ), (¬x2

i , x
3
i ), . . . , (¬xki

i , x1
i ) to F ′.

Clearly, F ′ is satisfiable if and only if F is satisfiable.
By Kuratowski’s theorem a finite graph is planar if and only if it does not

contain a subgraph that is a subdivision of K5 or K3,3. To show that HF ′ is
planar, just observe that given a planar embedding of the bipartite graph corre-
sponding to F , one can obtain a planar embedding of the graph corresponding
to F ′ by replacing some vertices u of degree k with a cycle C of order k and a
matching of k edges between V (C) and the neighbors of u. It is easy to see that
the constructed graph has a planar embedding. �

2 P3-Hull Set

In this section we consider both search and decision problems on P3-hull sets.

P3-Hull Set

Instance: A graph G.
Goal: Find a P3-hull set of G with minimum cardinality.

P3-Hull Number

Instance: A graph G; an integer k.
Goal: Decide if G has a P3-hull set with cardinality at most k.

Note that P3-Hull Number is clearly in NP. Moreover, it is easy to see that
if P3-Hull Number is NP-complete then P3-Hull Set is NP-hard.

Let n(G) be the number of vertices of G, NG(x) the neighborhood of a vertex
x in G, dG(x) = |NG(x)| the degree of vertex x in G, and δ(G) and Δ(G) the
minimum and maximum degree of a vertex in G, respectively.
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Lemma 2. Let k be a positive integer. If G is a graph, then

Δk(G) := max

{∣∣∣∣∣ ⋂
x∈U

NG(x)

∣∣∣∣∣ | U ∈
(
V (G)

k

)}
≥ n(G)

(
δ(G)
k

)(
n(G)
k

) .

Proof. Let R =
{
(u, U) : u ∈ V (G), U ∈

(
V (G)

k

)
, u ∈

⋂
x∈U NG(x)

}
. Since for

every vertex v of G there are
(
dG(v)

k

)
≥
(
δ(G)
k

)
pairs (u, U) in R with u = v,

we have |R| ≥ n(G)
(
δ(G)
k

)
. Conversely, by the definition of Δk(G), for every set

V ∈
(
V (G)

k

)
, there are at most Δk(G) pairs (u, U) in R with U = V , which

implies |R| ≤ Δk(G)
(
n(G)
k

)
. �

Theorem 3. Let c be a positive integer.
If G is a graph with δ(G) ≥ n(G)

c , then

hP3(G) ≤ 2

⎡
⎢⎢⎢ log(2c)

log
(

2c2

2c2−1

)
⎤
⎥⎥⎥+ 2c3.

Proof. In order to construct a small P3-hull set of G we describe an inductive
construction of a sequence G1, . . . , Gk of induced subgraphs of G such that

– Gi = G−HG(Si−1) for a set Si−1 of at most 2(i− 1) vertices of G,

– n(Gi) ≤ n(G)
(
1− 1

2c2

)i−1, and

– δ(Gi) ≥ n(Gi)
c

for i ∈ [k].
Let G1 = G and S0 = ∅.
Now let i be such that Gi and Si−1 are defined. If Gi is complete or n(Gi) <

2c3, then terminate the construction of the sequence and set k to i. Since

hP3(G) ≤ |Sk−1|+ hP3(Gk) ≤ 2(k − 1) + 2c3,

it suffices to bound k in order to complete the proof.
Therefore, we may assume that Gi is not complete and that n(Gi) ≥ 2c3. By

Lemma 2, there are two vertices ui and vi of Gi with at least

n(Gi)

(
δ(Gi)

2

)(
n(Gi)

2

) ≥ n(Gi)

(n(Gi)

c
2

)(
n(Gi)

2

) =
n(Gi)(n(Gi)− c)

c2(n(Gi)− 1)
≥ n(Gi)

2c2
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common neighbors. Let Si = Si−1 ∪{ui, vi} and Gi+1 = G−HG(Si). We obtain

n(Gi+1) = n(G)− |HG(Si)|
≤ n(G)− |HG(Si−1) ∪HGi({ui, vi})|
≤ n(G)− |HG(Si−1)| − |HGi({ui, vi})|
= n(Gi)− |HGi({ui, vi})|

≤ n(Gi)−
n(Gi)

2c2

= n(Gi)

(
1− 1

2c2

)

≤ n(G)

(
1− 1

2c2

)i

.

Since Gi+1 = G−HG(Si), we have δ(Gi+1) ≥ δ(G)− 1 ≥ n(G)
c − 1. Therefore,

δ(Gi+1)

n(Gi+1)
≥

n(G)
c − 1

n(Gi)
(
1− 1

2c2

) ≥ n(Gi)
c − 1

n(Gi)
(
1− 1

2c2

) ≥ 1

c
.

Since the minimum degree of all graphs Gi in the sequence is at least δ − 1, the
value of k is less than or equal to the smallest integer r with

n(G)

(
1− 1

2c2

)r−1

≤ n(G)

c
− 1.

Since n(G)
c − 1 ≥ n(G)

2c , we obtain

k ≤

⎡
⎢⎢⎢ log(2c)

log
(

2c2

2c2−1

)
⎤
⎥⎥⎥+ 1,

which completes the proof. �

Corollary 4. A minimum P3-hull set of a graph G with δ(G) ≥ n(G)
c (for some

constant c) can be found in polynomial time.

Proof. The proof follows immediately from Theorem 3. �

Theorem 5. P3-Hull Number remains NP-complete on planar graphs with
maximum degree four.

Proof. To prove that deciding whether the P3-hull number of a graph G is less
than or equal k is NP-complete, we perform a reduction from Planar SAT-

am3, proved to be NP-complete in Lemma 1. Here cross edges are meant in the
usual sense of a planar graph: edges crossing other edges in a specific embedding
of a graph in the plane.

Given an instance F of Planar SAT-am3, we construct an instance G of
P3-Hull Set as follows:
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– For each variable xi of F , create a gadget Gxi composed of 62 vertices as
illustrated in Figure 1. Note that Gxi is composed of two subgadgets gxi and
gx̄i , which represent the literals xi and x̄i, respectively.

a1xi
a2xi

a3xi

a4xi

a5xi

a6xi

a7xi

a8xi

a9xi
a10xi

a1x̄i
a2x̄i

a3x̄i

a4x̄i

a5x̄i

a6x̄i

a7x̄i

a8x̄i

a9x̄i a10x̄i

gx̄igxi

Fig. 1. Gadget Gxi

– For each clause Cj of F , create a gadget Gcj composed
of the cycle b1cj , b2cj , b3cj , b4cj , b5cj , b6cj , b7cj , b8cj plus the
vertices b9cj , b10cj , b11cj , b12cj , b13cj , b14cj , b15cj , b16cj and edges
(b1cj , b

9
cj), (b

2
cj , b

10
cj ), (b

3
cj , b

11
cj ), (b

4
cj , b

12
cj ), (b

5
cj , b

13
cj ), (b

6
cj , b

14
cj ), (b

7
cj , b

15
cj ), (b

8
cj , b

16
cj ).

Figure 2 illustrates a gadget Gcj .

b1cj

b2cj

b3cj

b4cj

b5cj

b6cj

b7cj

b8cj

Fig. 2. Gadget Gcj

– If the literal xi occurs twice in F , then create the vertices f1
xi

, f2
xi

, and add
edges (f1

xi
, a7xi

), (f2
xi
, a8xi

). Otherwise, create only f1
xi

and add (f1
xi
, a7xi

).
– If the literal x̄i occurs twice in F , then create the vertices f1

x̄i
, f2

x̄i
, and add

edges (f1
x̄i
, a7x̄i

), (f2
x̄i
, a8x̄i

). Otherwise, create only f1
x̄i

and add (f1
x̄i
, a7x̄i

).
– For each clause Cj do:
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1. if xi is the first literal of Cj , then: if Cj contains the first occurrence of
xi then add edges (a7xi

, b1cj), (a
9
xi
, b2cj); else add edges (a10xi

, b1cj ), (a
8
xi
, b2cj).

2. if xi is the second literal of Cj , then: if Cj contains the first occurrence of
xi then add edges (a7xi

, b5cj), (a
9
xi
, b6cj); else add edges (a10xi

, b5cj ), (a
8
xi
, b6cj).

3. if xi is the third literal of Cj , then: if Cj contains the first occurrence of
xi then add edges (a7xi

, b7cj), (a
9
xi
, b8cj); else add edges (a10xi

, b7cj ), (a
8
xi
, b8cj).

If this step generates cross edges, remove the newly created edges, and
repeat this step replacing b7cj and b8cj by b3cj and b4cj , respectively. This op-
eration keeps the graph planar, as one can check by verifying all possible
configurations.

4. if x̄i is the first literal of Cj , then: if Cj contains the first occurrence of
x̄i then add edges (a7x̄i

, b2cj), (a
9
x̄i
, b1cj); else add edges (a10x̄i

, b2cj ), (a
8
x̄i
, b1cj).

5. if x̄i is the second literal of Cj , then: if Cj contains the first occurrence of
x̄i then add edges (a7x̄i

, b6cj), (a
9
x̄i
, b5cj); else add edges (a10x̄i

, b6cj ), (a
8
x̄i
, b5cj).

6. if x̄i is the third literal of Cj , then: if Cj contains the first occurrence of
x̄i then add edges (a7x̄i

, b8cj), (a
9
x̄i
, b7cj); else add edges (a10x̄i

, b8cj ), (a
8
x̄i
, b7cj).

If this step generates cross edges, remove the newly created edges, and re-
peat this step replacing b7cj and b8cj by b3cj and b4cj , respectively. As above,
this operation keeps the graph planar, as one can check by verifying all
possible configurations.

Let G be the graph obtained by the construction above from an instance F
of Planar SAT-am3. At this point, we will prove that F is satisfiable if and
only if G has a hull set of size 8m+23n, where m is the number of clauses, and
n is the number of variables of F .

If F is satisfiable, then we can obtain a P3-hull set S of G by first adding all
the pendant vertices of G to S. Note that G has 8m+22n pendant vertices. Let
A be a truth assignment of F . If xi = true in A we add a2xi

to S, else we add a2x̄i

to S. As A is a truth assignment of F , each gadget Gcj will be contaminated,
i.e. in HG(S), and consequently all vertices of G will be contaminated. Hence S
is a P3-hull set of size 8m+ 23n.

Conversely, if G has a P3-hull set S of size 8m + 23n, S contains 8m + 22n
pendant vertices and n non-pendant vertices of G. As we can observe in each
gadget Gxi of G, there is a subgraph Bxi such that every vertex v of Bxi is not a
pendant vertex and either it is adjacent to only one leaf and has no non-pendant
neighbor outside Bxi , or v has only one neighbor outside Bxi . Figure 3 illustrates
a gadget Gxi and its subgraph Bxi . Consequently, each subgraph Bxi must have
exactly one vertex in S, which is not a pendant vertex. Otherwise either S is not
a P3-hull set or S has size greater than 8m+23n. At this point we can construct
an assignment A of F by setting xi = true if and only if S∩V (gxi)∩V (Bxi) �= ∅.
By construction, we can see that A is a truth assignment of F . �

A feedback vertex set of a graph is a set of vertices whose removal leaves a
graph without cycles. In other words, each feedback vertex set contains at least
one vertex of any cycle in the graph.

Lemma 6. Let G be a cubic graph. S ⊆ V (G) is a P3-hull set of G if and only
if S is also a feedback vertex set of G.
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Fig. 3. Gadget Gxi and its subgraph Bxi inside the rectangle. The white vertices are
pendant vertices in G and are not contained in Bxi .

Proof. Let G be a cubic graph and S be a P3-hull set of G. If G[V \ S] has
a cycle C, then each vertex v ∈ C has at most one neighbor outside C, and
consequently C is not in the hull of S, which is a contradiction because S is a
P3-hull set of G.

Conversely, let B be a feedback vertex set of G. As G[V \ B] is a forest and
G is cubic, all pendant vertices of G[V \ B] are in HG(B); by removing these
pendant vertices of G[V \B], we obtain a forest T where each leaf of T has two
neighbors in HG(B). Applying this step recursively, we can see that all vertices
of G[V \B] are in HG(B). �

Proposition 1. [15] A minimum feedback vertex set of a graph G with maxi-
mum degree at most three can be found in polynomial time.

Corollary 7. A minimum P3-hull set of a cubic graph can be found in polyno-
mial time.
Proof. The proof follows immediately from Lemma 6 and Proposition 1. �

Theorem 8. Let F be the class of graphs with no vertex of degree two and with
a minimum feedback vertex set of size bounded by a constant c. Then P3-Hull

Set on F can be solved in polynomial time.

Proof. Let G ∈ F . As G has a minimum feedback vertex set of size bounded by
a constant c, we can find a minimum feedback vertex set B of G in polynomial
time. Let L be the set of pendant vertices in G, and let T = G\{B∪L}. Since G
has no vertex of degree two, each leaf of T has at least two neighbors in {B∪L}
and just as in the proof of Lemma 6, {B ∪ L} is a hull set of G. As L is in any
hull set of G, it is sufficient to examine all subsets of vertices in V (G) \L of size
at most c to find a minimum P3-hull set of G. �
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3 P3-Geodetic Set

Now we consider the following decision problem:

P3-Geodetic Number

Instance: A graph G; an integer k.
Goal: Decide if G has a P3-geodetic set with cardinality at most k.

Note that P3-Geodetic Number is clearly in NP.
As Dominating Set is NP-complete even restricted to planar graphs with

maximum degree three [9], it is easy to see that P3-geodetic Number problem
remains NP-complete on planar graphs with maximum degree four. Just take an
instance G of such restricted Dominating Set problem and construct a graph
G′ by adding a new vertex wv and a new edge (v, wv) for each vertex v of G.
Note that G has a dominating set of size k if and only if G′ has a P3-geodetic
set of size n+ k. As G is a planar graph with maximum degree 3, G′ is a planar
graph with maximum degree 4.

As P3-Geodetic Number is NP-complete on planar graphs with maximum
degree four, and trivially solvable in polynomial time on graphs with maximum
degree two, it is natural to ask about the complexity of P3-Geodetic Number on
planar graphs with maximum degree 3.

Theorem 9. P3-Geodetic Number remains NP-complete on planar graphs
with maximum degree three.

Proof. Deciding whether the P3-geodetic number of a graph G is less than or
equal to k is clearly a problem in NP. To prove the NP-hardness we perform
a reduction from Planar SAT-am3, proved to be NP-complete in Lemma 1.
Given an instance F of Planar SAT-am3 we construct an instance G of P3-

Geodetic Set as follows:

– for each variable xi do: create in G a gadget gxi composed of a cycle
f1
xi
, t1xi

, a1xi
, a2xi

, f2
xi
, t2xi

, a3xi
, a4xi

;
– for each clause Ci containing at most two literals do: create in G a gadget

gci composed of the vertices c1i , c2i and edge (c1i , c
2
i );

– for each clause Cj containing exactly three literals do: create in G
a gadget gcj composed of the vertices c1j , c

2
j , c

3
j , l

1
j , l

2
j and the edges

(c1j , c
2
j ), (c

1
j , c

3
j), (c

1
j , l

1
j ), (c

3
j , l

2
j );

– for each clause Cj of F do:
1. add an edge (c2j , t

p
xi
) if xi is the first or second literal of Cj and it is the

p-th occurrency of xi (1 ≤ p ≤ 2);
2. add an edge (c2j , f

p
xi
) if ¬xi is the first or second literal of Cj and it is

the p-th occurrency of ¬xi (1 ≤ p ≤ 2);
3. add an edge (c3j , t

p
xi
) if xi is the third literal of Cj and it is the p-th

occurrency of xi (1 ≤ p ≤ 2);
4. add an edge (c3j , f

p
xi
) if ¬xi is the third literal of Cj and it is the p-th

occurrency of ¬xi (1 ≤ p ≤ 2).
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At this point, we show that given an instance F of SAT-am3, where n is the
number of variables, m1 the number of clauses with at most two literals, and m2

the number of clauses with three literals, by the construction above we obtain
a graph G such that: F is satisfiable if and only if G has a P3-geodetic set S of
size k, where k = 4n+m1 + 3m2.

(a) (b) (c) (d)

(e) (f) (g) (h)

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

f1
xi

a4xi
a4xi

a4xi
a4xi

a4xi
a4xi

a4xi
a4xi

a3xi
a3xi

a3xi
a3xi

a3xi
a3xi

a3xi
a3xi

t2xi
t2xi

t2xi
t2xi

t2xi
t2xi

t2xi
t2xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

f2
xi

a2xi
a2xi

a2xi
a2xi

a2xi
a2xi

a2xi
a2xi

a1xi
a1xi

a1xi
a1xi

a1xi
a1xi

a1xi
a1xi

t1xi
t1xi

t1xi
t1xi

t1xi
t1xi

t1xi
t1xi

Fig. 4. (a)− (d) Choices of vertices in SA that imply in at least 5 vertices to be added
to SA; thicker edges mean that one of its endpoints must be added to SA; (e) − (h)
Choices of vertices in SA that imply in exactly 4 vertices to be added to SA

Let F be a satisfiable formula and A be a truth assignment of F . We obtain
a P3-geodetic set SA of G from A as follows: (i) every vertex with degree one is
added to SA; (ii) if xi = true in A then t1xi

, t2xi
, a2xi

, a4xi
are added to SA; (iii) if

xi = f alse in A then f1
xi
, f2

xi
, a1xi

, a3xi
are added to SA; (iv) for each clause Ci

with three literals, if c3i has two neighbors in SA then c2i is added to SA, otherwise
c1i is added to SA. As A is a truth assignment of F , each gadget gci of G has at
least one neighbor in SA ∩ {

⋃n
1 V (gxi)}; consequently, SA is a P3-geodetic set of

G of size k = 4n+m1 + 3m2.
Conversely, Let SA be a P3-geodetic set of G of size k = 4n+m1 + 3m2. We

construct a truth assignment A for the variables x1, x2, . . . , xn that satisfies all
the clauses in F as follows. Any P3-geodetic set of G contains: (i) at least one
vertex of each gadget gci if Ci has at most two literals; (ii) at least three vertices
of each gadget gci if Ci has three literals; (iii) at least four vertices of each gadget
gxi . As SA has size k, each gadget gxi has exactly four vertices in SA, and at
most two of these vertices has degree three in G: either t1xi

and t2xi
}, or f1

xi
and

f2
xi
}. See Figure 4. At this point, we can construct a truth assignment A of F by

assigning xi = true if and only if t1xi
∈ SA or t2xi

∈ SA and t2xi
has degree three

in G. By (i) and (ii), each gadget gci must have at least one neighbor in SA,
otherwise either SA would not be a P3-geodetic set or we would have |SA| > k.
Consequently, by the construction of G and A, if SA is a P3-geodetic set of G of
size k then A is a truth assignment of F .
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Figure 5 illustrates a boolean formula F and the graph G obtained from F
by the construction above. A possible P3-geodetic set SA is colored red.

x1 x2 x3

c1 c4 c5c2 c3

f1
x1

a4x1
a3x1

t2x1

f2
x1

a2x1
a1x1

t1x1

f1
x2

a4x2
a3x2

t2x2

f2
x2

a2x2
a1x2

t1x2

f1
x3

a4x3
a3x3

t2x3

f2
x3

a2x3
a1x3

t1x3

c11

c21

c12

c22

c13

c23

c14

c24

c34

l14

l24

c15

c25

Fig. 5. (a) Satisfiable boolean formula F = (x1)(x2)(x1+¬x2)(¬x1+¬x2+¬x3)(¬x3);
(b) Graph G constructed from F

It is easy to see that G has maximum degree three. To show that G is planar,
we can split G in two subgraphs Gx = {

⋃n
1 gxi} and Gc = {

⋃m
1 gcj}. Note that

Gx and Gc are both planar graphs. By contracting each graph gxi and each
gadget gcj of G into a single vertex, we obtain the bipartite graph HF which by
assumption is planar. Hence, G is also a planar graph. �
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Abstract. We study a game based on a model for the spread of influence
through social networks. In game theory, a Nash-equilibrium is a strategy
profile in which each player’s strategy is optimized with respect to her
opponents’ strategies. Here we focus on a specific two player case of the
game. We show that there always exists a Nash-equilibrium for paths,
cycles, trees, and Cartesian grids. We use the centroid of trees to find
a Nash-equilibrium for a tree with a novel approach, which is simpler
compared to previous works. We also explore the existence of Nash-
equilibriums for uni-cyclic graphs, and offer some open problems.

Keywords: Competitive information diffusion, Nash-equilibriums, Net-
work game theory, Social networks.

1 Introduction

Social networks play an important role in society, and are actively studied in
a number of different disciplines, including mathematics. Recent studies have
concentrated on interactions and influence in a social network. Such studies
can lead to better techniques for viral marketing. In viral marketing, different
techniques are combined with the knowledge about the social network to achieve
marketing objectives in a way which is analogous to the spread of viruses, where
contagion occurs through the links of the network. Many of these studies try to
find a model for the spread of an idea or innovation through a social network.
Usually these models use a graph to show the structure of a network, in which
every individual in the network is denoted by a vertex, and two vertices are
adjacent if there exists a relation or link between them in the corresponding
network.

In a very well studied point of view (look at [6] and [3]), the propagation
process is modelled in a way that usually each node or vertex has two status,
either active or inactive. The process starts by targeting (or setting active) a
small subset of the nodes in the social network with the hope of getting a large
number of the individuals at the end who become active, i.e., affected by the
influence. These models are basically involved with optimization techniques. On
the other hand, there are some other studies looking at the propagation process
as a competition among the individuals in the network, see [5]. There exist also
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some Voronoi game models involving a game among the parties or agents out
of the network with representatives inside the network, where the objective is
achieving the largest number of the users (see [4] and [7]).

In 2009, Alon et al [1], introduced a new model for the competitive diffusion
process in social networks. Their approach was a novel way of modelling the
spread of influence as a game, where the aim of this game is to influence users in
the network through “infection” with a particular brand, spreading through the
links of the network. In other words, suppose that we have a set of firms that
want to advertise their products. Initially they target a small group of people,
which they hope will extend into a larger group of society. Any individual, who
has learned about a product brand from one of these firms first, either directly
or through a social link, will be biased in favour of that brand. However, if a
node is getting the influence from different products, she becomes confused and
we cancel her out of the game. The gain of each firm is the total number of users
that, at the end of the diffusion process, are biased towards its brand.

In the language of mathematics, we can model this competitive propagation
process as a game on an undirected finite graph, in which our users form the
vertex set of the graph, and the product of each firm is denoted by a distinct
colour. A game Γ = 〈G,N〉 is induced by a graph G, representing the underlying
social network, and a set of N players corresponding to the set of agents (we
identify each player with a number i, 1 ≤ i ≤ N). The strategy space of each
player is the set of vertices V of G. That is, each player i, 1 ≤ i ≤ N selects
a single node that is coloured in colour i at round 0, and every other vertex is
uncoloured. If two or more agents select the same vertex at round 0, then, that
vertex becomes gray, and those players automatically leave the game. If St is
the set of the coloured vertices at round t ≥ 0, then at round t+1, every player
i can colour an uncoloured vertex v in the neighbourhood of St by the following
rule: If v has coloured neighbours only in colour i, then v gets colour i. If v has
coloured neighbours with different colours, then it becomes gray. The players
continue until no one can colour any uncoloured vertex. At the end, the pay-off
of the i-th player is the number of the vertices in G which have colour i. Note
that, in this game, after choosing the strategies of the players, every thing in the
process is deterministic.

As an example, let G be a graph as shown in Figure 1, and take N = 2. If the
first player with colour 1, and the second player with colour 2, choose the two

Fig. 1.
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vertices with the circles around them at the beginning, then the pay-off of them
will be the number of the vertices which are indexed by 1 and 2 in the figure,
respectively. As we can see in Figure 1, there are four vertices that become gray
by the rules of the game, and three vertices which are not reachable by any
player and therefore, remain uncoloured at the end.

Note that, throughout this game, it is as if we delete all the gray vertices,
so the metric of the graph is changing within the rounds of the game. This is
unlike the Voronoi games [4], in which the gain of each agent is the number
of individuals whose distance to the agent representative is less than the other
agents.

In real networks finding a kind of stable situation in which every agent is
satisfied is called a Nash-equilibrium. This is often of more interest than finding
the winner of the game. A Nash-equilibrium is a strategy profile or a vector of
strategies in the Cartesian product of the strategy sets of all players, such that
the strategy of each player in such a vector is the best against the strategies
of the others. In other words, in a Nash-equilibrium each player, by choosing
that specific strategy, has maximized her pay-off with respect to the strategy
of the other players. That is, no player can gain more by changing only her
own strategy unilaterally. For further information about game theory concepts
we refer the reader to [2]. Alon et al [1] in their paper, proved the existence of
Nash-equilibriums for the game on graphs of diameter 2, and gave an example of
a graph with diameter more than 2 which does not admit a Nash-equilibrium in
the two-player case of the game. However, Takehara et al [10] provided a counter
example with a graph of diameter 2 which does not admit a Nash-equilibrium,
and presented a restatement of the theorem (about graphs with diameter at
most 2) in [1] by putting some restrictions on the graph structure. Recently,
Small and Mason [8] considered the existence of Nash-equilibriums for the two
player game on trees, and also for the ILT model of online social networks [9],
with focus on utility functions.

In this paper we will consider the special two player case of the above game
for different families of graphs. However, we take a novel approach based on the
graph properties of these families. In the second section, we prove the existence
of Nash-equilibriums for trees, paths, cycles, and we consider the game for uni-
cyclic graphs. Our proof for trees is much simpler and shorter compared to
previous works [8]. In section 3, we show that Cartesian grids always admit a
Nash-equilibrium, and we end by suggesting some open problems. In the paper
we assume that the graphs are connected. We denote the vertex set and the edge
set of a graph G by V = V (G) and E = E(G), respectively. For two vertices
like u, v ∈ G, we call the length of the shortest path between u and v in G the
distance between u and v, and we denote it by d(u, v). If S is a subset of the
vertices in G, by G[S] we mean the subgraph induced by S. We denote a path
and a cycle on n vertices by Pn and Cn, respectively. For two graphs G and H ,
we show the Cartesian product of G and H by G�H . We refer the reader to [11]
for graph-theoretic notation and terminology.
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2 Trees, Paths, Cycles, and Uni-Cyclic Graphs

In this section, we consider some simple facts about the game, and use them
to find Nash-equilibriums for different known families of graphs. The following
definition help us to have a simpler language to describe the obtained results.

Assume that we are playing the game on a graph G, and, u and v are two
distinct vertices of G. Suppose that in some round of the game there is a shortest
path P : u, v1, . . . , vn−1, v, and the vertices u and v have been coloured by two
different players, such that no other vertex of P has been coloured yet. Then, we
call path P a blocked path induced by the vertices u and v, or simply, a blocked
path if min{d(vi, u), d(vi, v)} < d(vi, w), for every 1 ≤ i ≤ n − 1, and for all
vertices w (w �= u, v) which have been coloured so far throughout the game.

We need the following lemma to find a better understanding of the dynamic
of a path between a pair of vertices with different colours throughout the game.
We omit the proof, which follows immediately from the definition.

Lemma 1. Suppose that we have a game on graph G. If P is a blocked path of
length n induced by vertices v1 and v2 in G, by the end of the game, each player
wins the first �(n + 1)/2 nearest vertices in path P , and in the case that the
length of P is even, one vertex in the middle becomes gray.

A vertex v of a graph G is called a cut vertex if removing v from G results in
a graph which is not connected. An edge uv is a cut edge if deletion of uv from
G is a disconnected graph. The following lemma is quite useful for some of the
results as we will see later on.

Lemma 2. Assume that graph G = G1 ∪ G2 is the union of two induced sub-
graphs G1 and G2 such that, for some cut vertex like v, G1 ∩ G2 = {v}. Then,
any possible Nash-equilibrium of the two player game on G consists of either two
vertices in G1 or two vertices in G2.

Proof. Assume that {u1, u2} form a Nash-equilibrium such that u1 ∈ G1 − G2

and u2 ∈ G2−G1. Then, each player changing her strategy to v can increase her
pay-off. Because, this way, she can reach on the vertices in the other side earlier
than before.

We now state and prove our first result on the competitive diffusion game for
paths.

Theorem 1. In a two-player game on a path of length n, the set of possible
Nash-equilibriums is determined as below.

(i) If n is odd, then the two adjacent vertices in the middle form the only
possible Nash-equilibrium, and the equilibrium pay-offs are equal to (n+ 1)/2.

(ii) If n is even, then any two vertices in the middle (i.e., we have two pos-
sibilities, the central vertex and one of its neighbours) form a Nash-equilibrium,
and the equilibrium pay-offs are both equal to n/2.
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Proof. With a simple discussion using Lemma 1, we can show that if vertex v
is the strategy of her opponent, then the best strategy for any of the players
is to choose a neighbour of v which separates v from a larger number of the
vertices in P . So in a possible Nash-equilibrium, the strategies of the players
must be adjacent. However, if the players choose two adjacent vertices as their
strategies which are not selected as in (i) or (ii), then the player who is closer
to one of the end points can improve her pay-off by changing her strategy to
another neighbour of her opponent. So, such a case is not a Nash-equilibrium.
Finally, if they both have taken their strategies as in (i) or (ii), then no one can
improve her pay-off by changing her strategy. Therefore, (i) and (ii) form the
only possible Nash-equilibriums of this game.

Theorem 2. In a two player game on cycle Cn of length n we have the following
statements.

(i) If n is odd, then every two vertices on Cn selected by the players as their
strategies, form a Nash-equilibrium, and the pay-offs are equal to (n− 1)/2.

(ii) If n is even, then two vertices on Cn form a Nash-equilibrium if and only
if they are of odd distance, and the equilibrium pay-offs are equal to n/2.

Proof. When we have a two player game on a cycle Cn, the strategies of the play-
ers divide the cycle into two blocked paths. If n is odd, then one of the blocked
paths is always of odd length and the other one is of even length. Obviously, by
Lemma 1, every player wins (n− 1)/2 vertices, and one vertex in the middle of
the even path becomes gray. Since this happens for any selection of the vertices,
any two vertices form a Nash-equilibrium when n is odd.

If n is even, then the two blocked paths are both even or odd. If they are both
of odd length, then by Lemma 1, each player wins exactly half of the vertices
on Cn, and no one can improve this. If the blocked paths are both even, then
every player wins (n/2)−1, and one of the vertices in each blocked path becomes
gray. Thus, each player can improve her pay-off by changing her strategy to an
adjacent vertex. Hence, two vertices of Cn form a Nash-equilibrium if and only
if they are of odd distance.

A maximal sub-tree which contains a vertex v of a tree T as a leaf is called
a branch of T at v. The weight of a vertex v of T , denoted by wt(v) is the
maximum number of vertices in a branch at v (not including v). A vertex u is
a centroid vertex of T if it has the minimum weight among all vertices. The
centroid of T is the set of all centroid vertices of T .

Theorem 3. [12] If C = C(T ) is the centroid of a tree T of order n, then we
have,

(i) C consists of either a single vertex or two adjacent vertices.
(ii) If C = {c1, c2}, then wt(c1) = wt(c2) = n/2.
(iii) C = {c} if and only if, wt(c) ≤ (n− 1)/2.

Note that, according to the above theorem, in both possible cases for the centroid
of a tree T , if v �∈ C(T ), then wt(v) > n/2.
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The following theorem, using the centroid of a tree shows that there exists a
Nash-equilibrium for any tree.

Theorem 4. In a two-player game on a tree T of order n with centroid C, we
have the following statements.

(i) If C = {c1, c2}, then C is the unique Nash-equilibrium, and the equilibrium
pay-offs are equal to n/2.

(ii) If C = {c}, then {c, v} is an equilibrium, in which v is a neighbour of c in
a branch with maximum weight attached at c, and any equilibrium for this game
consists of such two vertices.

Proof. Assume that v1 and v2 are the strategies of the players, and g1 and g2
are their pay-offs, respectively. Since there exists a unique path between any
two vertices in a tree, then we conclude that the gain of v1 is a subset of a
branch attached at v2 like B2 which contains this unique path. Thus, we have
g1 ≤ |B2| ≤ wt(v2). Similarly, g2 ≤ wt(v1).

Now, if v1 and v2 are not adjacent, then the path between v1 and v2 is a
blocked path of length more than one and therefore, by Lemma 1, either every
player wins half of the vertices on it, or there is a gray vertex in the middle of
this path which no one gains. Thus, in such a case, we have the strict inequalities
g1 < wt(v2) and g2 < wt(v1).

On the other hand, we know that always one of the branches attached at
v1 (similarly v2) has the maximum weight, and if the second player chooses
the neighbour of v1 on such a branch, then she gains exactly wt(v1) vertices.
Similarly, the first player can gain wt(v2). Hence, for the first player we have
g1 ≤ wt(v2), and the equality achieved if and only if she chooses a vertex adjacent
to v2 from a maximum branch attached at v2 (we have a similar result for the
second player). In other words, fixing the strategy of a player on a vertex like v,
the best strategy for the other player is to select a neighbour of v on a maximum
branch attached at v. Therefore, in a possible Nash-equilibrium v1 and v2 must
be adjacent.

Now, assume that v1 and v2 are adjacent, and for example (without loss of
generality), g1 = wt(v2). We know g1+ g2 ≤ n. Also, by Theorem 3, if v1 and v2
are not in C then, wt(v1) >

n
2 , and wt(v2) >

n
2 . Consequently, g2 < n

2 < wt(v1),
and therefore, the second player can move to a vertex adjacent to v1 which
achieves the maximum weight and increases her pay-off. Hence, such a case is
not a Nash-equilibrium. Therefore, in a possible Nash-equilibrium at least one
of the players’ strategies must be in C. Now, by the above discussion and by
Theorem 3, we can easily see that, the best strategy for the other player is to
choose the strategy in (i) or in (ii), depending on the structure of C.

Suppose that G is a uni-cyclic graph, that is, G has only one cycle C. We can
easily see that, G − C is a forest, such that each tree component of this for-
est is adjacent to exactly one vertex on C. For each vertex v ∈ C, if there
are t = d(v) − 2 different tree components in G − C that are connected to v,
we denote the union of each of these trees together with v (which is like adding a
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leaf to a tree and making a new tree) by Tiv, for 1 ≤ i ≤ t; that is, all Tivs share
v.

Suppose that we have a two-player game on a uni-cyclic graph G with cycle C.
By the above definition, we can assume that every vertex v on C has a weight

wtC(v) := | ∪d(v)−2
i=1 Tiv|. As we will see, sometimes we play the game on the

weighted cycle C (instead of G) by the regular rules. The only difference here is
that, the gain of each player after taking vertex v is increased by the weight of
v. In such cases, we denote C by CW (when we are playing the game only on C
with weighted vertices).

We use the above notations for the results on uni-cyclic graphs. We use the
following lemma, which is an immediate result of Theorem 3, to prove the next
theorem (we omit the proof here).

Lemma 3. Assume that T is a tree with centroid C. Then, for any vertex v
which is not in C the maximum branch attached at v is the one that contains C
(which is the only branch attached at v with weight more than n

2 ).

In general, we have two possibilities for a uni-cyclic graph G with cycle C; either
there is a vertex v on C with |Tiv| ≥ n

2 + 1, for some i, 1 ≤ i ≤ d(v) − 2, or
|Tiv| ≤ n

2 for all v ∈ C, and 1 ≤ i ≤ d(v)− 2. So, we have the following theorem.

Theorem 5. Suppose that G is a uni-cyclic graph with cycle C. If there is a
vertex v on C with |Tiv| ≥ n

2 + 1, for some 1 ≤ i ≤ d(v)− 2, then there exists a
Nash-equilibrium by playing on Tiv. Otherwise, if there exists a Nash-equilibrium
for this game, then it must consist of a set of two vertices either on CW or on
a Tiv, for some v ∈ C and 1 ≤ i ≤ d(v)− 2.

Proof. If there is a vertex v on C with |Tiv| ≥ n
2 + 1, for some i, then the

players’ strategies must be somewhere on Tiv. Because, first, if no one selected
her strategy on Tiv, then the player with the smaller gain by moving to v can
improve her pay-off (because this way she wins more than half of the vertices in
G). So, in a possible Nash-equilibrium, at least one of the players must choose
her strategy on a vertex in Tiv. Moreover, since v is a cut vertex, by Lemma 2,
both of them should choose their equilibrium strategies in Tiv.

Now, we show that in such a case, we always have a Nash-equilibrium. In fact,
in this case, we can replace G− Tiv by a path P consisting of |G− Tiv| vertices.
If we take T = Tiv ∪ P (obviously, T is a tree) and C(T ) to be the centroid of
T , then for the neighbour of v on P , called u, we have,

wtT (u) = |Tiv| ≥
n

2
+ 1 >

n

2
.

Thus, by Lemma 3, the centroid of T is in Tiv. Moreover, can easily see that,
playing in a Nash-equilibrium of T is like playing in a Nash-equilibrium of G.
Because, no one can increase her pay-off unilaterally. Therefore, by Theorem 4,
we know that T always has a Nash-equilibrium.

Now, assume that for every v ∈ C and each 1 ≤ i ≤ d(v) − 2, |Tiv| ≤ n
2 ,

and there exists a Nash-equilibrium for this game. If the equilibrium vertices
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both are not included simultaneously in any Tiv, for a vertex v on C, and some
1 ≤ i ≤ d(v) − 2, then, since every vertex in C of weight greater than one is a
cut vertex, by Lemma 2, the strategies must be selected on CW .

If for every vertex v ∈ C, wtC(v) ≤ n
2 , then the following lemma could be helpful.

Lemma 4. Assume that G is a uni-cyclic graph with weighted cycle CW such
that wt(v) ≤ n

2 for all v ∈ C. Then, in a two player game on CW with Nash-
equilibrium {u, v} we have,

(i) either {u, v} is a Nash-equilibrium for the regular game on G, or
(ii) one of the neighbours of u (or v) together with v (or u) form a Nash-

equilibrium for G.

Proof. Assume that u and v are the strategies of the first and the second player
in a Nash-equilibrium for the game on CW . Also, suppose that gx denotes the
pay-off of a player who takes a vertex like x as her strategy. By definition, we
know that no one can increase her pay-off by changing her strategy to another
vertex on CW . So, we have gu ≥ gz, for any z ∈ CW . Now, we consider the
changes in the pay-off of the first player after moving to any vertex like w on a
tree attached at a vertex like z on C, with w �= z. We can easily see that, if the
first player changes her strategy to vertex w �= z, then gw < gz. Because, this
way she gains the vertices on CW at a later time (d(w, v) > d(z, v)). Therefore,
she loses at least one of the vertices that she was able to take by choosing
z. Thus, we have, gu ≥ gz > gw. Hence, the only way for the first player to
increase her pay-off is to move to a vertex on Tiv, for some 1 ≤ i ≤ d(v) − 2.

Now, we can take a path P of length |G − ∪d(v)−2
i=1 Tiv| and let T be the tree

obtained from connecting P to ∪d(v)−2
i=1 Tiv via v. We can see that, finding the

best strategy with respect to v among the vertices in ∪d(v)−2
i=1 Tiv in the game

on G, is equivalent to finding such a strategy in the game on T . By proof of
Theorem 4, in a game on a tree always the best strategy against an opponent is
to play in her neighbourhood. So, if for any neighbour of v, like w ∈ Tiv, gw > gu
and gw is the maximum over such neighbours of v, then the best strategy for
the first player (against v) is to move to w. Moreover, in this case, {w, v} forms
a Nash-equilibrium for G. Because, in one side, w is the best strategy against v,
and in the other side, the second player, moving to a vertex z �= w in Tiv, will
gain gz < |Tiv| ≤ n

2 ≤ |G − Tiv| = gv. Also, moving to a vertex in G − Tiv, she
will lose some of the vertices (by getting further with respect to her opponent).
Thus, v is also the best strategy against w.

However, if for every neighbour of v, like w, gw ≤ gu, then, u is the best
strategy against v in G. We can do the same discussion for the second player,
and conclude that, either u together with one of its neighbours form a Nash-
equilibrium for G, or otherwise, v is the best strategy against u. Therefore, {u, v}
forms a Nash-equilibrium for G.
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Fig. 2.

In reverse, if we have a Nash-equilibrium for G on cycle C, then it is also a
Nash-equilibrium for CW . But, if we find a Nash-equilibrium for G such that
one of the strategies chosen by the players is out of C, then this case does not
necessarily help to find a Nash-equilibrium for CW . In Figure 2 we see a uni-
cyclic graph G, in which {u, v} form a Nash-equilibrium (nobody can increase
her pay-off moving to another vertex). But, if we try to play the game on the
weighted cycle CW , then the only possible Nash-equilibrium is {u′, v′}, which
has no intersection with {u, v} and is obtained independently.

As a consequence of Lemma 4, if we find a Nash-equilibrium for the game on
CW , then we can find a Nash-equilibrium for the game on G. This conclusion
shows the importance of the following theorem as the last result of this section.
We omit the proof here which is a long technical one, and will be published in a
future paper.

Theorem 6. In a two player game on a uni-cyclic graph G with cycle C (or
weighted cycle CW ) of lengths 3, 4, and 5 always there exists a Nash-equilibrium.

The uni-cyclic graph G in Figure 3 is an example of a weighted 6-cycle that does
not admit any Nash-equilibrium. First, the weight of each tree attached at a
vertex on the cycle C is less than half of the whole number of the vertices. Hence,
using Lemma 2, we can easily consider all different possibilities to conclude that
there can not be any Nash-equilibrium in which one of the players chooses a
strategy out of C. So, by Theorem 5, it is enough to consider the game on CW .
Now, we have the following bimatrix as the pay-off matrix (see [2]) of the players
in CW (note that it is a symmetric game and the columns are corresponding to
vertices v1, v2, v3, v4, v5, and v6, as well as the rows, respectively):

Fig. 3.



284 E. Roshanbin

⎡
⎢⎢⎢⎢⎢⎢⎣

(0, 0) (21∗, 15) (14, 10) (19, 17∗) (16, 8) (25∗, 11)
(15, 21∗) (0, 0) (19, 17) (16, 8) (25∗, 11) (14, 10)
(10, 14) (17, 19) (0, 0) (25∗, 11) (14, 10) (15, 21∗)
(17∗, 19) (8, 16) (11, 25∗) (0, 0) (15, 21) (10, 14)
(8, 16) (11, 25∗) (10, 14) (21, 15) (0, 0) (17, 19)
(11, 25∗) (10, 14) (21∗, 15) (14, 10) (19, 17) (0, 0)

⎤
⎥⎥⎥⎥⎥⎥⎦

From game theory (see [2]), we know that a possible Nash-equilibrium for such
a game is determined by an entry of this matrix, in which the first component is
the largest in the same column and the second component is the largest in the
row. Here, for each column and each row we determine such components with
a star. As we can see, there is no entry with a star on both components. Thus,
there is no Nash-equilibrium for this game.

As another example, assume that G is a uni-cyclic graph with trees of equal
order attached at the vertices of the cycle. Then, the two-player game on G is
like playing on a weighted cycle with equal weight on all vertices. So, we can
easily see that the set of Nash-equilibriums is determined exactly as for a regular
cycle. The only difference is that here the pay-off of the players is a multiple (a
constant multiple, which is equal to the weight of the vertices on C) of the pay-off
in the regular game on a cycle without weights.

3 Cartesian Grids

In this section we investigate the existence of Nash-equilibriums for the Cartesian
grids. In graph theory, a grid (or Cartesian grid) is the Cartesian product of two
paths. If G = Pn�Pm, then we call such a grid a m × n grid [11]. We call a
subgraph of G which is also a grid by itself, a subgrid of G. If A and B are two
vertices of a grid G, then GAB is the maximal subgrid of G which contains A
and B as the corner points and consists of all the shortest paths between A and
B in G.

We need the following concepts to reach the result on grids. Assume that G
is a graph and v is a vertex of G. Then, the eccentricity of v is defined to be
max{d(v, u) : u ∈ G}. The center of G is the set of the vertices in G which have
the minimum eccentricity [11]. We have the following fact about the center of a
grid, which is quite easy to prove only using the definition.

Theorem 7. Assume that G is a m × n grid with center C, in which m and
n are positive integers. Then, depending on the parity of m and n, we have the
following possibilities for C.

(i) If m and n are odd, then C consists of a single point in the middle.
(ii) If one of m and n is odd and the other one is even, then C consists of

two adjacent vertices in the middle.
(iii) If m and n are even, then C consists of a 1× 1 subgrid in the middle.
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Using the center of a grid, we can always find a Nash-equilibrium for the two
player competitive diffusion game on grids.

Theorem 8. Assume that we have a two player game on a m × n grid G, in
which m and n are positive integers, and m ≤ n. Let C be the center of G. Then,

(i) If m and n are odd, then the single vertex in C = {c} together with one
of the neighbours of c like v which is placed in the same row as c, form a Nash-
equilibrium.

(ii) If one of m and n is odd and the other one is even, then the two vertices
in C = {c1, c2} form the unique Nash-equilibrium.

(iii) If m and n are even, then any pair of adjacent vertices in C form a
Nash-equilibrium.

Proof. Assume that A and B are the strategies of the players, with g1 and g2 as
their pay-offs, respectively. Then, there is a vertical as well as a horizontal line

Fig. 4.

which passes through point A in the grid plane, and forms part of the perimeter
of some rectangles created by A (in total, there are at most four possible such
rectangles as we see in Figure 4, depending on the position ofA). We observe that
B is always inside of one of those rectangular regions created by A. Now, if GAB

is a square, then the distance between A and B is even. Thus, by Lemma 1, there
must be some gray vertices appeared on the diagonal points of GAB through out
the game, and obviously, one of the players by changing her position and making
these gray vertices vanish can gain more. So, this can not be a Nash-equilibrium.

If GAB is not a square, then B is further with respect to one of these rectangles
like RAi than the others. Thus, assuming that B′ is the closest point of RAi with
respect to B, for any point like x on the perimeter of RAi, we have,

d(x,A) ≤ d(x,B′) + d(B′, B) = d(x,B).

Therefore, through the rounds of the game, the first player (choosing A) gets x
before the second player. Thus, the first player wins at least all the vertices in
RAi. Hence, in a possible Nash-equilibrium we have,

g2 ≤ mn− |RAi| ≤ mn−min{|RAj| : RAj is a rectangle created by A}. (1)
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But, this bound can be achieved only when B is the neighbour of A opposite
to the smallest rectangle created by A. Otherwise, the first player wins all the
vertices in the smallest rectangle created by A, plus at least the neighbour of
A opposite to this rectangle. Thus, the best strategy for the second player is to
achieve this bound as discussed. Similarly, we can consider the rectangles created
by B, and again we have,

g1 ≤ mn− |RBi| ≤ mn−min{|RBj | : RBj is a rectangle created by B}, (2)

which can be achieved only when A is the neighbour of B opposite to the smallest
rectangle created by B. Hence, in a possible Nash-equilibrium, the strategies of
the players should be adjacent. If the players do not choose their strategies as
in (i), (ii), or (iii), then using the above discussion and inequities (1) and (2),
we can see that one of the players can increase her pay-off. Thus, such a case is
not a Nash-equilibrium.

Now, assume that players choose their strategies like in (i), (ii), or (iii). Then,
no one can increase her pay-off, since no one can enlarge the smallest rectangle
created by her strategy. Therefore, (i), (ii), and (iii) form the Nash-equilibriums
of this game.

Although for the two player game on grids there exists a Nash-equilibrium,
it seems that for the three player case the existence of Nash-equilibriums is
not certain. For example, discussing around different possibilities, we can easily
see that for the three player game on P2�Pn, or P3�Pn, there is no Nash-
equilibrium. In general, we have the following conjecture.

Conjecture 1. There exist no Nash-equilibrium for a three player game on a
Cartesian grid.

Another family of graphs that we often consider for a graph theoretic problem
are bipartite graphs. We can simply discuss that for a complete bipartite graph,
a Nash-equilibrium is to choose a vertex as the strategy of the first player from
the first part and a vertex for the second player from the second part. This way,
each player wins all the vertices in the opposite part except for the strategy of
her opponent. But, finding a Nash-equilibrium for an arbitrary bipartite graph
in general seems challenging.

Acknowledgments. I would like to sincerely thank my supervisors Anthony
Bonato and Jeannette Janssen for their support and encouragement, and for
opening new directions for this research project.
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Abstract. We show that any instance I of the Feedback Vertex Set

problem in undirected planar graphs can be reduced to an equivalent
instance I ′ such that (i) the size of the instance and the size of the
minimum feedback vertex set do not increase, (ii) and the size of the
minimum feedback vertex set in I ′ is at least 1

29
of the number of vertices

in I ′. This implies a 29k kernel for this problem with parameter k being
the size of the feedback vertex set. Our result improves the previous
results of 97k and 112k.

Keywords: Kernelization, Feedback Vertex Set, Planar Graphs.

1 Introduction

A feedback vertex set of a directed or undirected graph is a subset of vertices
intersecting all cycles in the graph. The Feedback Vertex Set problem asks
us to find a feedback vertex set of minimum size in a given directed or undirected
graph. This problem has applications in operating system, computer architecture
communities, database system, rank aggregation and so on [18,16].

It is known that Feedback Vertex Set is NP-hard even in undirected
planar graphs [12]. Due to the importance of this problem, Feedback Vertex

Set has been extensively studied in exact and parameterized algorithms. Exact
algorithms with running time better than the trivial bound of 2n have been
developed recently for both of Feedback Vertex Set in undirected graphs
(UFVS) and Feedback Vertex Set in directed graphs (DFVS) [10,14,15],
where n stands for the number of vertices in the graph. The running time bound
for UFVS has been improved to 1.7266nnO(1) [18] but the best result for DFVS is
still 1.9977nnO(1) by Razgon [15]. As for parameterized algorithms, we consider
the parameterized problems with parameter k being the size of the feedback
vertex set. Let k-UFVS (resp. k-DFVS) denote the problem of checking whether
or not a given undirected (resp. directed) graph has a feedback vertex set of size
at most k. A parameterized problem is fixed-parameter tractable (FPT) if it can
be solved in f(k)poly(n) time, where poly(n) is an arbitrary polynomial function
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and f(k) is an arbitrary computable function. There is a long list of contributions
to fast FPT algorithms for k-UFVS [13,9,7,6]. Now it can be solved in 3.83knO(1)

time [6]. Whether k-DFVS is FPT or not had been a big open problem in
parameterized algorithms for many years. Finally it was solved affirmatively
by Chen et. al. [8].

Kernelization is one of the most active topics in parameterized algorithms. In
this area, we aim to find a polynomial-time algorithm that reduces any instance
(I, k) of a parameterized problem to an instance (I ′, k′) of this problem such that
k′ ≤ k and the size of I ′ is bounded by a computable function g(k′) of k′, where
(I ′, k′) is called a kernel of this problem and g(k′) is called the size of the kernel.
We are interested in finding kernels of polynomial size. Whether or not k-DFVS
has a polynomial kernel is still an open problem. As for k-UFVS, there is a long
list of contributions to kernelizations. The first polynomial kernel for k-UFVS in
general graphs was developed in [5], which was improved to a cubic kernel [4].
The current best result is the 4k2 kernel by Thomassé [17]. Linear kernels have
been obtained for k-UFVS in some graph classes, such as bounded-genus graphs
and H-minor free graphs [2,11]. For k-UFVS in planar graphs, Bodlaender and
Pennikx [3] gave the first linear kernel of size 112k, which was improved to 97k
by Abu-Khzam and Khuzam [1]. In this paper, we gave a kernel of size 29k,
greatly improving previous results. In fact, all reduction rules in our algorithm
are parameter-independent. It means that even if the parameter k is not part of
the input, our algorithm can still reduce an instance I to an equivalent instance
I ′ such that the size of I ′ is at most 29 times of the size of the solution to I ′.

2 Preliminaries

Let G = (V,E) be an undirected graph with possible parallel edges and self-
loops. The vertex set and edge set of a graph G′ are denoted by V (G′) and E(G′)
respectively. If there is at least one edge between two vertices, we say that the
two vertices are adjacent. For two adjacent vertices, any one is a neighbor of the
other one. For a vertex subset or a subgraph V ′, the set of vertices in V \V ′ (or
V \V (V ′) for a subgraph V ′) adjacent to at least one vertex in V ′ is denoted by
N(V ′). Furthermore, we use NH(V ′) to denote the set N(V ′) ∩H for a vertex
subset H (or N(V ′) ∩ V (H) for a subgraph H). We may denote a singleton set
{a} by a. For a vertex v, the degree of v is defined to be d(v) = |N(v)| and the
number of edges incident on v is denoted by e(v). Then e(v) ≥ d(v) since the
graph may contain parallel edges. A degree-2 vertex is called a strong degree-2
vertex if there are parallel edges between it and any of the two neighbors of it. A
vertex is called non-trivial if it is a strong degree-2 vertex or a vertex of degree
≥ 3. We use (A,B,E) to denote a bipartite graph with edges between two vertex
sets A and B.

The subgraph induced by a vertex subset V ′ ⊆ V is denoted by G[V ′]. A
path v1v2 · · · vr in the graph is called an induced path if there is exactly one
edge between vertices vi and vi+1 for i ∈ {1, 2, · · · , r − 1} and no edge between
vertices vi1 and vi2 with |i1 − i2| ≥ 2. Note that we do not allow parallel edges
in induced paths.
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A graph without any cycle is called a forest. A tree is a connected graph
without any cycle. In a forest, a degree-1 vertex is called a leaf-vertex, a vertex
of degree ≥ 2 is called an inner-vertex, and a vertex of degree ≥ 3 is called
a branch-vertex. A path in a tree is called a branch if it is a maximal path
not containing any branch-vertex. Then after deleting all branch-vertices from
a tree, each component is a branch of the tree. A branch is called a leaf-branch
if it contains at least one leaf-vertex as its endpoint and a branch is called an
inner-branch if all of its vertices are degree-2 vertices in the tree.

Contracting a vertex subset or a subgraph V ′ means deleting V ′, introducing
a new vertex v, for any vertex u ∈ V \ V ′ (or u ∈ V \ V (V ′) for a subgraph V ′)
adding x edges between v and u if there are x edges between V ′ and u before
deleting V ′, and adding a self-loop incident on v if there is a cycle in the induced
graph G[V ′] (or subgraph V ′). Contracting an edge means contracting the two
endpoints of it. In our algorithm, we assume that the initial graph is a connected
graph, because if the graph has more than one component we can simply take
each component as the input to solve it.

2.1 Some Properties of Planar Graphs

Here we give some properties of planar graphs. One of them will be used to get
a bound of the vertex number in our analysis and one of them will be used to
show that after executing each of our operations on a planar graph the resulting
graph is still a planar graph.

The famous Euler’s formula gives a relation among the number of vertices,
the number of edges and the number of faces of a planar graph. Let f be the
number of faces of a planar graph G = (V,E). It holds that

|V | − |E|+ f = 2.

This formula can be used to get some upper bound of the edge number in a
planar graph. For a planar graph, each edge belongs to 2 faces and each face
contains at least 3 edges. For a bipartite planar graph, each edge belongs to 2
faces and each face contains at least 4 edges (since the bipartite graph has no
odd cycle). Then by Euler’s formula, we can get

Proposition 1. For any planar graph, it holds that

|E| ≤ 3|V | − 6 (1)

and, for any bipartite planar graph, it holds that

|E| ≤ 2|V | − 4. (2)

It is also easy to observe the following.

Proposition 2. After applying any one of the following operations on a planar
graph, the resulting graph is still planar
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(i) deleting a vertex or an edge,
(ii) contracting an edge,
(iii) adding an edge between two adjacent vertices or two neighbors of a degree-2
or degree-3 vertex, and
(iv) adding a degree-2 vertex adjacent to a pair of adjacent vertices.

3 Reduction Rules

Since that all the reduction operations in the paper are parameter-independent,
we do not include the parameter when we discuss our reduction operations.
A reduction rule is a procedure that takes a planar graph G as the input and
outputs a planar graph G′ and a set S0 ⊆ V such that for any minimum feedback
vertex set S′ of G′, the union S0 ∪ S′ is a minimum feedback vertex set of G.
In what follows, when introducing a reduction rule, we assume that all previous
reduction rules cannot be applied on the current instance anymore.

It is easy to observe the following reduction rules to deal with vertices having
self-loops and some vertices of degree at most 2 in the graph (except strong
degree-2 vertices).

Rule 1. If there is a cycle contains only one vertex (a self-loop incident on the
vertex), delete the vertex from the graph and put it to S0.

Rule 2. For a degree-1 vertex v,
(i) delete v from the graph if there is only one edge between v and its unique
neighbor, and
(ii) delete v and its unique neighbor u and put u to S0 if there are parallel edges
between v and u.

Rule 3. For a degree-2 vertex v with two neighbors u1 and u2,
(i) delete v and add an edge between u1 and u2 if there are only two edges incident
on v, and
(ii) delete v and ui1 and put ui1 to S0 if there are parallel edges between v and
ui1 but only one edge between v and ui2 , where {i1, i2} = {1, 2}.

Note that after applying the above reduction rules all the vertices in the graph
are non-trivial vertices. This property will be used in our analysis. In order to
get a kernel of the problem, we need to reduce some local structures where a
large number of vertices are only adjacent to a few vertices. Next, we will design
some rules for this kind of local structures.

Lemma 1. Let G = (V,E) be a graph such that all above reduction rules can
not be applied anymore. If there is a vertex subset V ′ ⊂ V such that |V ′| ≥ 3,
the induced graph G[V ′] has no cycle, and |N(V ′)| ≤ 2, then there is a minimum
feedback vertex set of G containing all vertices in N(V ′).

Proof. We know that |N(V ′)| = 2 (because if |N(V ′)| = 1 then either Rule 2
or Rule 3 can be applied on any leaf-vertex in G[V ′]). Let N(V ′) = {w1, w2}.
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There is no degree-0 vertex in G[V ′], any degree-1 vertex in G[V ′] is adjacent to
both of w1 and w2 in G, and any degree-2 vertex in G[V ′] is adjacent to at least
one of w1 and w2 in G.

If there are at least three degree-1 vertices a1, a2 and a3 in G[V ′], then
any minimum feedback vertex set S of G contains at least two vertices in
{a1, a2, a3, w1, w2}. Note that after deleting w1 and w2 from G, no vertex in V ′

is contained in a cycle. We know that {w1, w2} intersects any cycle containing at
least one vertex in V ′ ∪ {w1, w2}. Thus, S′ = S \ {a1, a2, a3, w1, w2} ∪ {w1, w2}
is still a minimum feedback vertex set of G. If there are at most two degree-1
vertices in G[V ′], then G[V ′] can only be a path P . There are at least three
vertices in P since |V ′| ≥ 3. Any no-endpoint vertex in P is adjacent to at least
one vertex in {w1, w2} in G. It is easy to see that we need at least two vertices to
intersect all cycles in the subgraph G[V ′ ∪ {w1, w2}]. Then any minimum feed-
back vertex set S of G contains at least two vertices in V ′ ∪ {w1, w2}. If S does
not contain both of w1 and w2, then we replace the vertices in (V ′∪{w1, w2})∩S
with {w1, w2} in S to get another minimum feedback vertex set of G. So there
is always a minimum feedback vertex set containing both vertices in N(V ′). ��

This lemma can be used to get reduction rules to deal with some vertex-cuts
of size at most 2. However, our algorithm only uses a very special case where
|V ′| = 3.

Rule 4. Let P = v1v2v3 be an induced path in G such that |N(P )| ≤ 2. Delete
N(P ) from the graph and put all vertices in N(P ) to S0. (See Figure 1 (a))

Fig. 1. Illustrations for Rules 4 and 5

The next three rules are also used to deal with some induced paths with small
number of neighbors.
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Rule 5. Let v0v1v2v3 be an induced path in G where each vertex in V ′ =
{v1, v2, v3} is a non-trivial vertex and |N(V ′)| = 3. Let N(V ′) = {v0, w1, w2}
and V ′′ = {v1, v2, v3, w1, w2}.
(i) If the size of the minimum feedback vertex set of the induced subgraph G[V ′′]
is at least 2, delete w1 and w2, and put the two vertices to S0; and
(ii) If the size of the minimum feedback vertex set of the induced subgraph G[V ′′]
is 1, add a new edge between w1 and w2, and contract edge v2v3 into a single
vertex v2. (See Figure 1 for an illustration)

Proof. Each vertex in V ′ is adjacent to at least one vertex in {w1, w2} and v3 is
adjacent to both of w1 and w2, because any vertex in V ′ is non-trivial and none
of v2 and v3 can be adjacent to v0.

(i): When the size of the minimum feedback vertex set of G[V ′′] is at least
2, any minimum feedback vertex set S of G contains at least two vertices in
V ′′. However, w1 and w2 intersect all cycles containing some vertex in V ′′. Then
S\V ′′∪{w1, w2} is still a minimum feedback vertex set of G. There is a minimum
feedback vertex set containing w1 and w2 and then we can include them to the
solution set directly.

(ii): When the size of the minimum feedback set of G[V ′′] is 1, the vertex
intersecting all cycles in G[V ′′] can only be v2 or v3. For this case, there are no
parallel edges between v3 and a neighbor of it. Let G′ be the resulting graph
after executing the operation in (ii) on G and S′ be a minimum feedback vertex
set of G′. We show that S′ is also a minimum feedback vertex set of G.

First, we show that S′ is a feedback vertex set of G. Case 1. v2 ∈ S′: Note there
are no parallel edges incident on v3 in G. The two graphs G \ {v2} and G′ \ {v2}
are almost the same except the degree-2 vertex v3 in G \ {v2} is replaced with
an edge in G′ \{v2}. Then there is no cycle in G\S′ if there is no cycle in G\S′.
Case 2. v2 �∈ S′: Now S′ contains at least two vertices in {w1, w2, v1}. Assume
to the contrary that there is a cycle C in G \S′. The cycle C must contain some
edges in the induced subgraph G[V ′′]. Furthermore, C is contained in G[V ′′],
because if C also contains an edge not in G[V ′′] then C should pass through
at least two vertices in {w1, w2, v1} in G \ S′. Then the cycle C is either v2wi0

or v2v3wi0 , where wi0 ∈ {w1, w2}. Both cases imply a cycle v2wi0 in G′ \ S′, a
contradiction. So S′ is a feedback vertex set of G.

To show that S′ is also a minimum feedback vertex set of G, we only need to
prove that the size of a minimum feedback vertex of G is not greater than the
size of a minimum feedback vertex of G′. Let S be a minimum feedback vertex
set in G. If S contains only one vertex v∗ in V ′′, then v∗ can only be v2 or v3.
For this case, we can see that S \ {v∗} ∪ {v2} is a feedback vertex set of G′. If
S contains at least two vertices in V ′′, then S′ = S \ V ′′ ∪ {w1, w2} is still a
minimum feedback vertex set of G. Furthermore, S′ is also a feedback vertex set
of G′. Thus, the size of a minimum feedback vertex of G′ will not be larger than
the size of a minimum feedback vertex of G. ��
The next two rules are firstly used in [1] to get a kernel for the problem. We also
need to use them. Figure 2 gives illustrations for these two rules.



294 M. Xiao

1v 2v
0v

3v

w

4v

1v 2v
0v

3v
4v

1v 2v0v 3v 4v 5v 6v 7v

2w

1w

1v 2v0v 3v 4v 5v 6v 7v

2w

Fig. 2. Illustrations for Rules 6 and 7

Rule 6. Let v0v1v2v3v4 be an induced path in G where v1, v2 and v3 are three
degree-3 vertices having a common neighbor w. Delete w from the graph and put
w to S0.

To prove the correctness of this reduction rule, we only need to show that there
is at least one minimum feedback vertex set of G containing w. Let S be a
minimum feedback vertex set of G not containing w. Since w is not in S, we
know that at least two vertices vi1 and vi2 in {v1, v2, v3} are in S. It is easy to
see that any cycle that contains at least one of vi1 and vi2 also contains at least
one of w and v1. Then S′ = S \{vi1 , vi2}∪{w, v1} is a minimum feedback vertex
set of G containing w.

Rule 7. Let v0v1v2v3v4v5v6v7 be an induced path in G where each vertex in V ′ =
{v1, v2, v3, v4, v5, v6} is a vertex of degree ≥ 3 and |N(V ′)| = 4. Let N(V ′) =
{v0, v7, w1, w2}. Assume that |NV ′(w1)| ≥ |NV ′(w2)|. Delete w1 from the graph
and put w1 to S0.

We can verify that there is a minimum feedback vertex set of G containing w1

in the above rule. We omit the full proof here since it can be obtained in [1].
Our algorithm takes a planar graph as the input, iteratively execute the above

reduction rules in order until none of them can be applied anymore, and then
return the resulting planar graph. It is easy to verify that after executing each
of our reduction rules the resulting graph is still planar by Proposition 2. The
algorithm runs in polynomial time, since each reduction rule can be applied
in polynomial time and reduces at least one vertex in the graph. We are only
interested in the size of the resulting graph, so we omit a more detailed analysis
of the complexity of the algorithm. In fact, all of our reduction rules can be
applied in general graphs. We only analyze a kernel for planar graphs. We call
a graph reduced if none of the above reduction rules can be applied.
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4 The Analysis

In this section, we assume that G is a reduced planar graph. Let S be an arbitrary
feedback vertex set of G, k = |S| and n = |V (G)|. We will prove that n ≤
29k − 57.

Let F be the remaining graph after deleting the solution set S from the graph
G, i.e., F = G[V \ S]. Then F is a forest. Note that each degree-1 vertex in F is
adjacent to at least 2 vertices in S in G and each degree-2 vertex in F is adjacent
to at least one vertex in S in G since all vertices in G are non-trivial. We analyze
the number of vertices in the forest F . Assume that F has l leaf-vertices and c
connected components.

Lemma 2. It holds that

l ≤ 2k + 2c− 4. (3)

Proof. For each component of F that is not a single edge, we contract all
inner-vertices in it into a single inner-vertex. For each component of F that is
a single edge e, we introduce a degree-2 vertex adjacent to the two endpoints
of e and deleting e. Then the new added vertex will become an inner vertex in
this component. Let F ′ be the resulting forest. Then F ′ has c inner-vertices. We
consider the bipartite graph H = (A = L,B = I ∪ S,E), where L is the set
of leaf-vertices in F ′ and I is the set of inner-vertices in F ′. There is an edge
between a ∈ L and b ∈ I in H if there is an edge between a and b in F ′. There
is an edge between a ∈ L and s ∈ S in H if there is an edge between a and s in
G. The bipartite graph H is still a planar graph since it can be obtained from
G by contracting some edges, deleting some edges or adding a degree-2 vertex
adjacent to two endpoints of an edge. By (2), the number of edges in H is at
most 2|V (H)| − 4 ≤ 2(l + c + k) − 4. On the other hand, each vertex a ∈ L is
adjacent to at least two vertices in S (since G has only no-trivial vertices and
then each leaf-vertex in F is adjacent to at least two vertices in S) and adjacent
to one inner-vertex in I. Then there are at least 3|L| edges between L and I ∪S.
We get 3l ≤ 2(l+ c+ k)− 4, which is (3). ��

Lemma 3. The number of branch-vertices in F is at most l−2c and the number
of inner-branches in F is at most l− 3c.

Proof. Assume that the c trees in F have l1, l2, · · · , lc leaf-vertices respectively.
It is easy to see that a tree with li leaf-vertices has at most li−2 branch-vertices
and at most li − 3 inner-branches. Then F has at most

∑c
i=1(li − 2) = l − 2c

branch-vertices and at most
∑c

i=1(li − 3) = l − 3c inner-branches. ��

A sub-path P of a branch is good if |NS(P )| ≥ 3, i.e., a good sub-path is adjacent
to at least 3 vertices in S. We use the following method to partition each branch
of F into several sub-paths, called chains, such that each vertex in the branch
is contained in exactly one of the sub-paths. Let Q = v1v2 · · · vq be a branch,
where we assume that vq is a leaf-vertex in F if Q is a leaf-branch.
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If Q is not a good path, we take Q as a single chain. Otherwise we
partition Q into chains P1 = v1v2 · · · vi1 , P2 = vi1+1vi1+2 · · · vi2 , · · · , Pr =
vir−1+1vir−1+2 · · · vq such that for any chain Pj = vij−1+1vij−1+2 · · · vij , either
(i) Pj is good and vij−1+1vij−1+2 · · · vij−1 is not good or (ii) Pj is not good and
it holds ij = q.

bad inner-chain

leaf-chain

good inner-chain

branch-vertex

Fig. 3. Partitioning each branch in a tree into chains

We fix such a partition P of F and analyze the number of vertices in it. See
Figure 3 for an illustration for the partition. We can see that each vertex of
degree ≤ 2 in F is contained in a chain. A chain is good if it is a good path and
bad otherwise. A chain is called a leaf-chain if it contains at least one leaf-vertex
in F and an inner-chain if it does not contain any leaf-vertex in F . We will
analyze the size and number of the chains. According to the way we partition a
branch into chains, we know that

Lemma 4. The number of bad inner-chains in P is at most l− 3c and each bad
inner-chain contains at most 5 vertices.

Proof. In the partition P of F , each inner-branch can contain at most one bad
inner-chain and each leaf-branch can not contain any bad inner-chain. Then we
know that the number of bad inner-chains in P is bounded by the number of
inner-branches in F . By Lemma 3, the number of inner-branches in F is at
most l − 3c, which implies the first claim in the lemma. Next, we consider the
second claim. Assume to the contrary that a bad inner-chain P contains at least
6 vertices. Since G is a reduced graph and all vertices in it are non-trivial, we
know that each vertex in the bad inner-chain P is adjacent to at least one vertex
in S. Then the condition of either Rule 6 or Rule 7 will hold, which implies a
contradiction. ��

Lemma 5. The number of bad leaf-chains in P is at most 2k+2c− 4 and each
bad leaf-chain contains at most 2 vertices.

Proof. Since each leaf-chain contains at least one leaf-vertex, we know that the
number of bad leaf-chains in P is bounded by the number of leaf-vertices in F .
By Lemma 2, the number of leaves in F is at most 2k+ 2c− 4. We get the first
claim. For the second claim, we can see that if a bad leaf-chain contains at least
3 vertices, then either Rule 4 or Rule 5 can be applied. ��
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Lemma 6. The number of good chains in P is at most 2k − 4 and each good
chain contains at most 6 vertices.

Proof. We consider a bipartite planar graph H = (A,B,E), where the number
of vertices in A equals to the number of good chains in P , each vertex a ∈ A
is corresponding a good chain Qa in P , and B = S. The edge set E is defined
by this: there is an edge between vertices a ∈ A and s ∈ B if and only if there
is an edge between s and a vertex in Qa. Note that H can be obtained from
G by contracting all edges in good chains and then deleting some vertices and
edges. By Proposition 2, we know that H is still a planar graph. According to
the definition of good chains, we know that each vertex a ∈ A is adjacent to at
least 3 vertices in B. Then there are at least 3|A| edges between A and B. By
(2), we have that 3|A| ≤ 2(|A|+ |B|)− 4 = 2|A|+ 2k − 4. Then we get

|A| ≤ 2k − 4.

For the second claim, we first assume to the contrary that a good chain Q
contains at least 7 vertices. We look at the sub-path Q′ containing only the first
6 vertices in Q. According to the definition of chains, we know that Q′ should be
a bad path. Then either Rule 6 or Rule 7 can be applied on Q′, a contradiction
to the fact that the graph is a reduced graph. ��

Lemma 7. The number of vertices in F is at most 28k − 57.

Proof. Let n2 denote the number of degree-1 and degree-2 vertices in F and n3

denote the number of vertices of degree ≥ 3, which are branch-vertices in F .
Then n3 ≤ l− 2c by Lemma 3. Each vertex of degree ≤ 2 is contained in a chain
in P . Each chain is either a good chain or a bad chain. Each bad chain is either
a bad inner-chain or a bad leaf-chains. By Lemma 4, Lemma 5 and Lemma 6,
we get

|V (F )| = n2 + n3

≤ n2 + (l − 2c)
≤ 5(l − 3c) + 2(2k + 2c− 4) + 6(2k − 4) + (l − 2c)
= 6l+ 16k − 13c− 32
≤ 6(2k + 2c− 4) + 16k − 13c− 32 by(3)
= 28k − c− 56
≤ 28k − 57.

��
The number of vertices in G is |V (F )|+ |S| ≤ 28k−57+k = 29k−57. Therefore,
we obtain the following theorem

Theorem 1. Let G be a planar graph such that none of the above reduction
rules can be applied on it. Then the size of a minimum feedback vertex set of G

is more than |V (G)|
29 .
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Abstract. A discrete space-filling curve provides a linear traversal or
indexing of a multi-dimensional grid space. This paper presents an ana-
lytical study of the clustering performance of the 3-dimensional Hilbert
curve family. The underlying measure is the mean number of clusters over
all identically shaped cubic subgrids. We derive an exact formula for the
statistics for the Hilbert curve family, and have verified all exact formu-
las (intermediate and final) involved in the derivations in the analytical
study with computer programs over various grid- and subgrid-orders.

Keywords: space-filling curve, Hilbert curve, z-order curve, clustering.

1 Preliminaries

Discrete space-filling curves have many applications in databases, parallel com-
putation, algorithms, in which linearization techniques of multi-dimensional ar-
rays or grids are needed. Sample applications include heuristics for Hamiltonian
traversals, multi-dimensional space-filling indexing methods, image compression,
and dynamic unstructured mesh partitioning.

For a positive integer n, denote [n] = {1, 2, . . . , n}. An m-dimensional (dis-
crete) space-filling curve of length nm is a bijective mapping C : [nm] → [n]m,
thus providing a linear indexing/traversal or total ordering of the grid points in
[n]m. An m-dimensional grid is said to be of order k if it has side-length n = 2k;
a space-filling curve has order k if its codomain is a grid of order k. The gener-
ation of a sequence of multi-dimensional space-filling curves of successive orders
usually follows a recursive framework (on the dimensionality and order), which
results in a few classical families, such as Gray-coded curves, Hilbert curves,
Peano curves, and z-order curves (see, for examples, [1] and [6]).

Denote by Hm
k and Zm

k an m-dimensional Hilbert and z-order, respectively,
space-filling curve of order k. Figure 1 illustrates the recursive constructions of
Hm

k and Zm
k for m = 2 and k = 1, 2, and m = 3 and k = 1.

We measure the applicability of a family of space-filling curves based on their
common structural characteristics, which are informally described as follows.

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 299–311, 2014.
c© Springer International Publishing Switzerland 2014
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(f)(e)(d)(c)(a) (b)

Fig. 1. Recursive constructions of Hilbert and z-order curves of higher order (respec-
tively, Hm

k and Zm
k ) by interconnecting symmetric subcurves, via reflection and/or

rotation, of lower order (respectively, Hm
k−1 and Zm

k−1) along an order-1 subcurve (re-
spectively, Hm

1 and Zm
1 ): (a) H2

1 ; (b) H
2
2 ; (c) H

3
1 ; (d) Z

2
1 ; (e) Z

2
2 ; (f) Z

3
1

Clustering performance measures the distribution of continuous runs of grid
points (clusters) over identically shaped subspaces of [n]m, which can be char-
acterized by the mean number of clusters and the average inter-cluster distance
(in [nm]) within a subspace. The studies of clustering and inter-clustering per-
formances for space-filling curves are motivated by the applicability of multi-
dimensional space-filling indexing methods, in which an m-dimensional data
space is mapped onto a 1-dimensional data space (external storage structure) by
adopting a 1-dimensional indexing method based on an m-dimensional space-
filling curve. Locality preservation reflects proximity between the grid points of
[n]m, that is, close-by points in [n]m are mapped to close-by indices/numbers in
[nm], or vice versa.

For an m-dimensional space-filling curve C : [nm] → [n]m and a subgrid G
of [n]m, a cluster of G induced by C is a maximal (contiguous) subinterval I of
[nm] such that C(I) ⊆ G. We can partition and order C−1(G) into a disjoint
union of clusters. An inter-cluster gap of G is a subinterval of [nm] delimited
by two consecutive clusters of G, and the corresponding inter-cluster distance is
the length of the inter-cluster gap. Empirical and analytical studies of clustering
and inter-clustering performances of various low-dimensional space-filling curves
have been reported in the literature (see [6] and [2] for details). Generally, the
Hilbert and z-order curve families exhibit good performance in this respect. A
few locality measures have been proposed and analyzed for space-filling curves
in the literature (see for example studies in [4], [1], and [3]).

Moon, Jagadish, Faloutsos, and Saltz [6] prove that in a sufficiently large m-
dimensional Hm

k -structural grid space, the asymptotic mean number of clusters
over all rectilinear polyhedral queries with common surface area Sm,k approaches
1
2
Sm,k

m as k approaches ∞. They also extend the work by Jagadish [5] to obtain
an exact formula for the mean number of clusters over all rectangular 2q×2q sub-
grids of an H2

k -structural grid space. Xu and Tirthapura [7] generalize the above
asymptotic mean number of clusters over all rectilinear polyhedral queries with
common surface area from m-dimensional Hilbert curves to arbitrary continuous
space-filling curves. Note that rectangular queries with common volume yield the
optimal asymptotic mean number of clusters for a continuous space-filling curve.
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(a) (b)

z−axis

y−axis

x−axis

(c)

Fig. 2. The canonical 3-dimensional-Hilbert curves of orders 1 and 2: (a) coordinate
system; (b) canonical H3

1 ; (c) canonical H
3
2

Note that we present the skeletons for proving the main results for the Hilbert
curve family without lengthy details in the abstract. The computation of the
mean-clustering statistics proceeds to establishing many systems of recurrences
and their closed-form solutions over three geometric regions of 3-dimensional
Hilbert curves (boundary face-, edge-, and vertex-regions). Closed-form solutions
for most systems of recurrences in our study are computed via the mathematical
and analytical software Maple. Complete results: proofs, derivations, closed-form
solutions, and exact formulas, and verifying computer programs for the Hilbert
curve family are available from the authors.

2 Clustering Performance of Hilbert Curve Family

For a mathematical formalism of discrete Hilbert curves that facilitates combi-
natorial studies of multi-dimensional Hilbert indexing, see [1] for details. One of
the salient characteristics of Hilbert curves is their “self-similarity” — a Hilbert
curve can be generated by interconnecting identical subcurves via reflection and
rotation (see Figure 2 for an example curve in the 3-dimensional case). For m-
dimensional Hilbert curves, this self-similar structural property guides us to de-
compose Hm

k into 2m identical Hm
k−1-subcurves (via reflection and/or rotation),

which are amalgamated together by an Hm
1 -curve. For m = 2, the “orientation”

of H2
k uniquely determines those of the four H2

k−1-subcurves and thus only one
H2

k exists modulo symmetry, whereas for m = 3, there are 1536 structurally
different 3-dimensional Hilbert curves [1].

Our study is based on the canonical H3
k -curve whose recursive construction

(on order k) employs a canonical H3
1 depicted in Figure 2(b) as the basis and for

the amalgamating H3
1 -curve. Figure 2(c) illustrates the recursive construction of

the canonical 3-dimensional order-2 Hilbert curve H3
2 .

Remark 1. For most self-similar m-dimensional order-k space-filling curve Cm
k

indexing the grid [2k]m, we can view Cm
k as a Cm

k−q-curve interconnecting 2
m(k−q)

number of Cm
q -subcurves for all q ∈ [k].

Remark 1 above motivates our analytical study of clustering performances to be
based on query subgrids of size 2q × 2q × 2q.
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For a canonical 3-dimensional order-k Hilbert curveH3
k , let Sq(H3

k) denote the
total number of clusters over all 2q×2q×2q query subgrids of the H3

k -structural
grid space [2k]3.

Remark 2. For an m-dimensional space-filling curve C : [nm] → [n]m and a
subgrid G of [n]m, the number of clusters within G is 1

2 of the number of edges
of C cut by G.

For a canonical 3-dimensional order-k Hilbert curve H3
k , Eq(H3

k) denote the total
number of edge-cuts by all 2q×2q×2q query subgrids. As suggested by Remark 2,
it suffices to compute Eq(H3

k ), which yields Sq(H3
k) (=

1
2Eq(H3

k)) and the mean
number of clusters over all 2q × 2q × 2q query subgrids.

We express Eq(H3
k ) from three sources of edge-cut contribution as follows:

1. The H3
k -structural grid space [2k]3 has (2k)3−1 edges (of H3

k), each of which
is cut by two opposite boundary faces (of face-size (2q)2) of a 2q × 2q × 2q

query grid — not subject to any boundary-constraint of the grid space [2k]3;
therefore, the inclusion of all 2q × 2q × 2q unconstrained query grids results
in the edge-cut contribution of (23k − 1)2 · 22q,

2. The contribution in item 1 should exclude the total number of edge-cuts by
all 2q × 2q × 2q constrained query grids that overlap with some boundary
(faces, edges, vertices) of the grid space [2k]3 — denoted by εq(H

3
k), and

3. An additive adjustment of “+2” for the entrance and exit edge-cuts of H3
k .

Thus, we have:
Eq(H

3
k) = (23k − 1)2 · 22q − εq(H

3
k) + 2.

With respect to the canonical orientation of H3
k shown in Figure 2(a) and (b),

we cover the 3-dimensional order-k grid space with three orthogonal systems of
2k layers with normal vectors: z-, y-, and x-axes, respectively: for each α ∈ [2k],

L
(xy)
k,α = {v ∈ [2k]3 | z-coordinate of v is α} L

(xz)
k,α = {v ∈ [2k]3 | y-coordinate of v is α}

L
(yz)
k,α = {v ∈ [2k]3 | x-coordinate of v is α}
We label the left-, right-, bottom-, top-, front-, and back-side boundary faces

of a canonical H3
k (see Figure 3(b)) by L,R,B,T,F, and F′, respectively. Denote

by SF = {L,R,B,T,F}, and by ΛΓ
k,λ the Γ -side boundary face-region of λ

layers, where Γ ∈ SF , i.e., ΛL
k,λ, Λ

R
k,λ, Λ

B
k,λ, Λ

T
k,λ, Λ

F
k,λ the left-, right-, bottom-,

top-, front-side λ-layer boundary face-regions, respectively (note that ΛF′
k,λ is a

reflexive ΛF
k,λ with z-axis as their common normal vector and any computation

on ΛF′
k,λ will be treated as on ΛF

k,λ):

ΛL
k,λ = ∪λ

β=1L
(xz)
k,β ΛR

k,λ = ∪2k

β=2k−λ+1L
(xz)
k,β ΛB

k,λ = ∪λ
α=1L

(yz)
k,α

ΛT
k,λ = ∪2k

α=2k−λ+1L
(yz)
k,α ΛF

k,λ = ∪λ
γ=1L

(xy)
k,γ ΛF′

k,λ = ∪2k

γ=2k−λ+1L
(xy)
k,γ

The intersection of two (respectively, three) adjacent boundary face-regions
results in a boundary edge-region (respectively, a boundary vertex-region). Ac-
cordingly, the underlying constraint required for a query grid refers to simulta-
neously overlapping with the two (respectively, three) boundary faces.
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Fig. 3. For a canonical H3
k : (a) coordinate system; (b) labelings of faces; (c) labelings

of edges and vertices

For computing the total number of edge-cuts in εq(H
3
k ) by all 2q×2q×2q query

grids G (constrained to overlapping with a boundary face, that is, G ∩ H3
k ⊆

ΛΓ
k,2q−1 for some Γ ∈ SF ), we apply the inclusion-exclusion principle to the

membership of the constrained query grid G in successive boundary face-, edge-,
and vertex-regions. A uniform approach in computing the number of edge-cuts
by all 2q×2q×2q constrained query grids in the three types of boundary regions
employ the following strategy:

1. Invoke Remark 1 that expresses a canonical H3
k as a H3

k−q-curve intercon-

necting 23(k−q) number of H3
q -subcurves, each of which is isomorphic to a

canonical H3
q via reflection and/or rotation;

2. Complete the underlying boundary region of 2q − 1 layers to one of 2q lay-
ers, and the completed boundary region is saturated with canonical H3

q -
subcurves from different oriented classes — each of which is characterized
by the (simultaneous) boundary face(s) of its member-H3

q -subcurves embed-
ded as subface(s) of the boundary face(s) of the underlying boundary region,
and compute the cardinality of each of these oriented classes; and

3. Compute two sets of statistics of edge-cut contribution due to all 2q×2q×2q

constrained query grids: (1) for each oriented class in item 2, the edge-set
of its representative canonical H3

q -subcurve, and (2) the set of all intercon-
necting edges for adjacent canonical H3

q -subcurves in the boundary region.

2.1 Edge-Cuts of H3
q -Subcurves in Boundary Face-Regions

For each Γ -side (2q−1)-layer boundary face-region ΛΓ
k,2q−1, where Γ ∈ {L,R,B,

T,F,F′(= F)} (F′-side treated as F-side), its completion ΛΓ
k,2q is saturated with

canonical H3
q -subcurves, which are categorized into five (face) oriented classes

QΓ,Γ ′
k,q , where Γ ′ ∈ SF (QΓ,F′

k,q treated as QΓ,F
k,q ), such that the Γ ′-side oriented

class consists of all the canonical Γ ′-side H3
q -subcurves whose Γ ′-side face is

embedded as a subface of the Γ -side boundary face.
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For each Γ ∈ SF , denote by ηΓk,q the set (ηΓ,Γ
′

k,q )Γ ′∈SF of statistics, where ηΓ,Γ
′

k,q

is the cardinality of the Γ ′-side oriented class QΓ,Γ ′
k,q within the completed Γ -side

boundary face-region ΛΓ
k,2q of a canonicalH3

k , i.e., η
Γ,Γ ′
k,q = |QΓ,Γ ′

k,q |; and denote by

ηtotalk,q the set (ηtotal,Γ
′

k,q )Γ ′∈SF of statistics, where ηtotal,Γ
′

k,q is the summation of car-

dinalities of all Γ ′-side oriented classesQΓ,Γ ′
q in all (six) completed Γ -side bound-

ary face-regions of a canonical H3
k , i.e., η

total,Γ ′
k,q =

∑
Γ∈{L,R,B,T,F,F′(=F)} η

Γ,Γ ′
k,q

(F′-side treated as F-side).
For each Γ ∈ SF , we develop a system of recurrences (in k) for ηΓk,q =

(ηΓ,Γ
′

k,q )Γ ′∈SF and solve for its closed-form solution.

Lemma 1. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, and for every Γ ′ ∈ SF ,

ηL,Γ ′
k,q = 2ηB,Γ ′

k−1,q + 2ηF,Γ ′
k−1,q ηR,Γ ′

k,q = 2ηL,Γ ′
k−1,q + 2ηF,Γ ′

k−1,q ηB,Γ ′
k,q = 2ηT,Γ ′

k−1,q + 2ηF,Γ ′
k−1,q

ηT,Γ ′
k,q = 4ηR,Γ ′

k−1,q ηF,Γ ′
k,q = 2ηB,Γ ′

k−1,q + ηF,Γ ′
k−1,q + ηL,Γ ′

k−1,q ηΓ,Γ ′
q,q =

{
1 if Γ = Γ ′

0 if Γ �= Γ ′

The closed-form solution for the system of recurrences (ηΓ,Γ
′

k,q )Γ,Γ ′∈SF is employed

to yield one for ηtotalk,q = (ηtotal,Γ
′

k,q )Γ ′∈SF .

The two sets of statistics obtained in Lemma 1 allow us to focus on computing

the edge-cut contribution from a representative canonical H3
q of QΓ,Γ ′

k,q for all
Γ, Γ ′ ∈ SF , which are in turn inferred by the following three sets of statistics
when considering the edge-cut contribution from the x-, y-, and z-oriented edges
in a canonical H3

q , by all 2q×2q×2q Γ -side constrained query grids (overlapping
with the Γ -side boundary face of the H3

q ).

For an axis-orientation α ∈ {x, y, z}, denote Πq = (Πq,α)α∈{x,y,z} where Πq,α

is the number of all α-oriented edges in a canonical H3
q . For all α ∈ {x, y, z} and

Γ ∈ SF , denote Dq = (DΓ
q,α)α∈{x,y,z},Γ∈SF where DΓ

q,α is the total number of
the α-oriented edge-cuts of a canonical H3

q by all 2q× 2q× 2q Γ -side constrained
query grids (overlapping with the Γ -side boundary face of the H3

q ), and the

completion of Dq, Dq = (D
Γ

q,α)α∈{x,y,z},Γ∈SF , where D
Γ

q,α is the total number
of the α-oriented edge-cuts of a canonical H3

q by all 2q × 2q × 2q Γ -side query
grids overlapping or abutting with the Γ -side boundary face of the H3

q .

Lemma 2. For a canonical H3
q , the following system of recurrences (in q) for

Πq = (Πq,α)α∈{x,y,z}:

Πq,x =

{
2Πq−1,x + 4Πq−1,y + 2Πq−1,z + 4 if q > 1
4 if q = 1

Πq,y =

{
2Πq−1,y + 4Πq−1,z + 2Πq−1,x + 2 if q > 1
2 if q = 1

Πq,z =

{
2Πq−1,z + 4Πq−1,x + 2Πq−1,y + 1 if q > 1
1 if q = 1

has a closed-form solution.
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Lemma 3. For a canonical H3
q , the following system of recurrences (in q) for

Dq = (D
Γ

q,α)α∈{x,y,z},Γ∈SF :

D
L
q,x = 2(D

B
q−1,z +D

F
q−1,y + 2q−1Πq−1,z +D

R
q−1,x + 2q−1Πq−1,y +D

F
q−1,y + 2q + 1)

D
L
q,z = 2(D

B
q−1,y +D

F
q−1,x + 2q−1Πq−1,y +D

R
q−1,z + 2q−1Πq−1,x +D

F
q−1,x) + 1

D
R
q,x = (2q + 1)Πq,x −D

L
q,x D

R
q,z = (2q + 1)Πq,y −D

L
q,y

D
B
q,y = 2(D

F
q−1,x +D

T
q−1,y + 2q−1Πq−1,x +D

L
q−1,z + 2q−1Πq−1,y +D

L
q−1,z + 2q−1)

D
B
q,z = 2(D

F
q−1,y +D

T
q−1,z + 2q−1Πq−1,y +D

L
q−1,x + 2q−1Πq−1,z +D

L
q−1,x) + 2q−1 + 1

D
T
q,y = (2q + 1)Πq,y −D

B
q,y D

T
q,z = (2q + 1)Πq,z −D

B
q,z

D
F
q,x = (2q + 1)Πq,x/2 — reflexive D

F
q,y = (2q + 1)Πq,y/2 — reflexive

has a closed-form solution. For all α ∈ {x, y, z} and Γ ∈ SF , DΓ
q,α = D

Γ

q,α−Πq,α,

and the closed-form solutions for Πq and Dq yield one for Dq.

For each Γ ∈ SF , the Γ -side (2q − 1)-layer boundary face-region ΛΓ
k,2q−1 con-

sists of some edges of H3
k−q-curve that interconnects 23(k−q) number of H3

q -

subcurves in ΛΓ
k,2q . Observe that the end-vertices of an interconnecting edge

are vertices (where three adjacent boundary faces intersect) of the two adjacent
H3

q -subcurves, hence the interconnecting edge lies in the outermost layer of the
boundary face-region. Note that the edge-cut contribution of an interconnecting
edge in ΛΓ

k,2q−1 is 2 · 2q by all 2q × 2q × 2q query subgrids contained in H3
k and

2((2q)2 − 2q) by all 2q × 2q × 2q constrained query grids overlapping with the
Γ -side boundary face.

Denote by η̃k,q the set (η̃Γk,q)Γ∈SF of statistics, where η̃Γk,q is the number of all

interconnecting edges in the Γ -side (2q − 1)-layer boundary face-region ΛΓ
k,2q−1.

Lemma 4. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, the following system of recurrences

(in k) for η̃k,q = (η̃Γk,q)Γ∈SF :

η̃L
k,q = 2η̃F

k−1,q + 2η̃B
k−1,q + 2 η̃R

k,q = 2η̃F
k−1,q + 2η̃L

k−1,q + 3 η̃B
k,q = 2η̃F

k−1,q + 2η̃T
k−1,q

η̃T
k,q = 4η̃R

k−1,q η̃F
k,q = η̃F

k−1,q + η̃L
k−1,q + 2η̃B

k−1,q + 3
η̃L
q+1,q = 2 η̃R

q+1,q = 3 η̃B
q+1,q = 0

η̃T
q+1,q = 0 η̃F

q+1,q = 3

has a closed-form solution.

Theorem 1. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, the number of edge-cuts in all bound-

ary face-regions of the H3
k by 2q × 2q × 2q constrained query grids overlapping

with some boundary face(s) is:
∑

Γ ′∈SF

ηtotal,Γ ′
k,q

(
(DΓ ′

q,α +DΓ ′
q,β)2

q · 2 +Πq,γ2
2q
)
+

∑
Γ∈SF

η̃Γ
k,q(2

2q+1 − 2q+1)

= 3 · 22k+3q+1 − 22k+2q+2 − 117

35
· 22k−q−1 − 93

5
· 22k−3 − 3 · 22q+1 + 3 · 2q+1

+ many lower-order terms.
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2.2 Edge-Cuts of H3
q -Subcurves in Boundary Edge-Regions

We label an edge by its two incident boundary faces (their intersection), that
is, an edge formed by Γ - and Γ ′-side boundary faces is labeled by ΓΓ ′ ∈
{BF,BL,BR,FL,FT,FR,LT,RT} as illustrated in Figure 3(c). Denote by SE =
{BF,BL,BR,FL,FT,FR,LT,RT}.

The derivation of the edge-cut contribution by all 2q × 2q × 2q constrained
query grids overlapping with an edge (at least two boundary faces) is more
complicated. The added complexity comes from two sources: (1) Most underlying
geometrical entities and their associated statistics are characterized by edges
ΓΓ ′ ∈ SE (rather than by faces Γ ∈ SF ), and (2) When considering the edge-
cut contribution from a representative canonical H3

q of an oriented class (in
a boundary edge-region of H3

k) by a constrained query grid overlapping with
a boundary edge of the H3

q , a finer categorization of edge-cuts based on the
parallelity/orthogonality of the edge-cutting face of a query grid versus the edge-
forming boundary faces of the H3

q is employed with additional sets of statistics.

For each XX ′ ∈ SE , denote by η̂XX′
k,q the set (η̂XX′,Y Y ′

k,q )Y Y ′∈SE of statis-

tics, where η̂XX′,Y Y ′
k,q is the number of all canonical H3

q -subcurves whose Y Y ′-
edge is embedded as a subedge of the XX ′-edge of the H3

k , and by η̂totalk,q

the set (η̂total,Y Y ′
k,q )Y Y ′∈SE of statistics, where η̂total,Y Y ′

k,q =
∑

XX′∈SE η̂
XX′,Y Y ′
k,q .

We develop a system of recurrences (in k) for the set of statistics η̂XX′
k,q =

(η̂XX′,Y Y ′
k,q )Y Y ′∈SE and solve for its closed-form solution.

Lemma 5. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, and for every Y Y ′ ∈ SE ,

η̂FL,Y Y ′
k,q = η̂BL,Y Y ′

k−1,q + η̂BF,Y Y ′
q η̂FT,Y Y ′

k,q = 2η̂BR,Y Y ′
k−1,q η̂FR,Y Y ′

k,q = η̂FL,Y Y ′
k−1,q + η̂BF,Y Y ′

k−1,q

η̂BF,Y Y ′
k,q = η̂FL,Y Y ′

k−1,q + η̂FT,Y Y ′
k−1,q η̂BR,Y Y ′

k,q = 2η̂RT,Y Y ′
k−1,q η̂RT,Y Y ′

k,q = 2η̂FR,Y Y ′
k−1,q

η̂LT,Y Y ′
k,q = 2η̂FR,Y Y ′

k−1,q η̂BL,Y Y ′
k,q = 2η̂BF,Y Y ′

k−1,q η̂XX′,Y Y ′
q,q =

{
1 if XX ′ = Y Y ′

0 if XX ′ �= Y Y ′

The closed-form solution for the system of recurrences (η̂XX′,Y Y ′
k,q )XX′,Y Y ′∈SE is

employed to yield one for η̂totalk,q = (η̂total,Y Y ′
k,q )Y Y ′∈SE .

Consider the edge-cut contribution from a representative canonical H3
q of an

oriented class in a boundary edge-region ofH3
k by a 2q×2q×2q constrained query

grid G overlapping with a boundary ΓΓ ′-edge of the H3
q , where ΓΓ ′ ∈ SE . Edge-

cuts of H3
q by four boundary faces of G are grouped into three categories based

on the parallelity/orthogonality of the boundary faces of G: (1) Two parallel
boundary faces of G orthogonal to both Γ - and Γ ′-side boundary faces of the
H3

q (that is, the ΓΓ ′-edge is the common normal vector of the two parallel
boundary faces of G), (2) One boundary face of G parallel and orthogonal to
the Γ - and Γ ′-side boundary faces respectively, and (3) One boundary face of
G parallel and orthogonal to the Γ ′- and Γ -side boundary faces respectively.
The number of edge-cuts of categories 2 and 3 is computed via the statistics
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Dq = (DΓ
q,α)α∈{x,y,z},Γ∈SF . For the edge-cuts of category 1, we consider the

following two sets of statistics.
Denote Eq = (EΓΓ ′

q )ΓΓ ′∈SE where EΓΓ ′
q is the total number of the edge-cuts

of a canonical H3
q by all the parallel boundary faces with ΓΓ ′-edge as their com-

mon normal vector of 2q × 2q × 2q constrained query grids overlapping with the

boundary ΓΓ ′-edge of the H3
q , and the completion of Eq, Eq = (E

ΓΓ ′

q )ΓΓ ′∈SE

where E
ΓΓ ′

q is the total number of the edge-cuts of a canonicalH3
q by all the par-

allel boundary faces with ΓΓ ′-edge as their common normal vector of 2q×2q×2q

query grids overlapping or abutting with the boundary ΓΓ ′-edge of the H3
q .

Lemma 6. For a canonical H3
q , the following system of recurrences (in q) for

Eq = (E
ΓΓ ′

q )ΓΓ ′∈SE :

E
BF
q = 2E

BL
q−1 + E

FL
q−1 +E

FR
q−1 + 2E

FT
q−1 + 2E

LT
q−1 + 2q−1(D

F
q−1,1 + 2D

F
q−1,2 +D

L
q−1,1

+2D
L
q−1,3 +D

R
q−1,1 +D

T
q−1,2) + (Πq−1,1 +Πq−1,2)2

2q−2 + 22q−1 + 2q−1

E
BL
q = 2E

BF
q−1 + 4E

FL
q−1 + 2E

RT
q−1 + 2q−1(2D

B
q−1,2 + 2D

F
q−1,2 + 2D

L
q−1,1 + 2D

R
q−1,3)

+(2Πq−1,2)2
2q−2 + 2q−1

E
BR
q = 4E

FL
q−1 + 2E

FT
q−1 + 2E

LT
q−1 + 2q−1(2D

L
q−1,1 + 2D

L
q−1,3 + 2D

T
q−1,2 + 2D

T
q−1,3)

+(2Πq−1,3)2
2q−2 + 22q−1 + 2q

E
FL
q = E

BL
q−1 + E

BR
q−1 + 2E

BF
q−1 + 2E

FR
q−1 + 2E

FT
q−1 + 2q−1(D

B
q−1,2 +D

B
q−1,3 + 2D

F
q−1,2

+D
L
q−1,3 +D

R
q−1,1 +D

R
q−1,3 +D

T
q−1,2) + (Πq−1,2 +Πq−1,3)2

2q−2 + 22q + 2q+1 + 1

E
FR
q = 2E

BF
q−1 + 2E

FL
q−1 + 2E

FT
q−1 + E

LT
q−1 + E

RT
q−1 + 2q−1(D

B
q−1,2 + 2D

F
q−1,1 + 2D

F
q−1,2

+D
L
q−1,1 +D

T
q−1,2 +D

T
q−1,3) + (Πq−1,1 +Πq−1,2)2

2q−2 + 22q + 2q+1 + 1

E
FT
q = 2E

BF
q−1 + 2E

BR
q−1 + E

FL
q−1 + E

FR
q−1 + 2E

RT
q−1 + 2q−1(D

B
q−1,2 + 2D

B
q−1,3 +D

F
q−1,1

+2D
R
q−1,3 + 2D

T
q−1,3) + (2Πq−1,3)2

2q−2 + 22q−1 + 3 · 2q−1 + 1

E
LT
q = 2E

BF
q−1 + 2E

FR
q−1 + 4E

FR
q−1 + 2q−1(4D

F
q−1,1 + 2D

F
q−1,2 + 2D

R
q−1,1)

+(2Πq−1,1)2
2q−2 + 2q−1

E
RT
q = 2E

BL
q−1 + 4E

FR
q−1 + 2E

FT
q−1 + 2q−1(2D

B
q−1,3 + 4D

F
q−1,1 + 2D

R
q−1,1)

+(2Πq−1,1)2
2q−2 + 22q−1

E
ΓΓ ′
0 = 0 for every ΓΓ ′ ∈ SE

has a closed-form solution. For Eq = (EΓΓ ′
q )ΓΓ ′∈SE ,

EFL
q = E

FL
q −D

F
q,x −D

L
q,x +Πq,x EFT

q = E
FT
q −D

F
q,y −D

T
q,y +Πq,y

EFR
q = E

FR
q −D

F
q,x −D

R
q,x +Πq,x EBF

q = E
BF
q −D

B
q,y −D

F
q,y +Πq,y

EBR
q = E

BR
q −D

B
q,z −D

R
q,z +Πq,z ERT

q = E
RT
q −D

R
q,z −D

T
q,z +Πq,z

ELT
q = E

LT
q −D

L
q,z −D

T
q,z +Πq,z EBL

q = E
BL
q −D

B
q,z −D

L
q,z +Πq,z

and the closed-form solutions for Πq, Dq, and Eq yield one for Eq.

Analogous to the case of the boundary face-regions, an interconnecting edge
of two adjacent canonical H3

q -subcurves in a boundary edge-region lies in the
outermost layer of the boundary edge-region; that is, all such interconnecting
edges correspond to the edges of an amalgamating H3

k−q-curve that are in the
outermost layers of the boundary edge-regions. The edge-cut contribution of an
interconnecting edge is 2(2q − 1)2 by all 2q × 2q × 2q constrained query grids
overlapping with a boundary edge-region.
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Denote by η̌k,q the set (η̌ΓΓ ′
k,q )ΓΓ ′∈SE of statistics, where η̌ΓΓ ′

k,q is the number
of all interconnecting edges in the boundary ΓΓ ′-edge-region.

Lemma 7. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, the following system of recurrences

(in k) for η̌k,q = (η̌ΓΓ ′
k,q )ΓΓ ′∈SE :

η̌FL
k,q = η̌BL

k−1,q + η̌BF
k−1,q + 1 η̌FT

k,q = 2η̌BR
k−1,q η̌FR

k,q = η̌FL
k−1,q + η̌BF

k−1,q + 1
η̌BF
k,q = η̌FL

k−1,q + η̌FT
k−1,q η̌BR

k,q = 2η̌RT
k−1,q η̌RT

k,q = 2η̌FR
k−1,q

η̌LT
k,q = 2η̌FR

k−1,q η̌BL
k,q = 2η̌BF

k−1,q η̌ΓΓ ′
q,q = 0 for every ΓΓ ′ ∈ SE

has a closed-form solution.

Theorem 2. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, the number of edge-cuts in all bound-

ary edge-regions of the H3
k by 2q × 2q × 2q constrained query grids overlapping

with some boundary edge(s) is:∑
ΓΓ ′∈SE

(η̂total,ΓΓ ′
k,q (2EΓΓ ′

q + 2qDΓ
q,α + 2qDΓ ′

q,α))

(where α is the axis-orientation parallel to both Γand Γ ′)

+
∑

ΓΓ ′∈{BF,BF,BL,BR,FL,FL,FR,FR,FT,FT,LT,RT}
η̌ΓΓ ′
k−q (2

q − 1)22

= 3 · 2k+4q+1 − 2k+3q+3 + 2k+2q+1 − 271

77
· 2k+q − 947

231
· 2k+1 +

27

77
· 2k−q+4

− 5

11
· 2k+1q − 3 · 22q+1 + 3 · 2q+2 − 6 + many lower-order terms.

2.3 Edge-Cuts of H3
q -Subcurves in Boundary Vertex-Regions

Note that we consider k > q only. Denote by c1,k, c2,k, c3,k, c4,k (see Figure 3(c))
the four differently oriented vertices (traversal order of the interconnecting H3

1 -
curve) of a canonical H3

k , and by ci,k,q the H3
q embedded in the i-th vertex of

a canonical H3
k , where i ∈ {1, 2, 3, 4}. Note that ci,k,k = ci,k. By zooming in

the vertices of a canonical H3
k , observe that (when k > q): c1,k,q = c1,k−1,q,

c2,k,q = c4,k−1,q, c3,k,q = c4,k−1,q, and c4,k,q = c2,k−1,q. Hence, the vertices in a
canonical H3

k are: two c1,q, two c2,q, two c4,q, and two c2,q if k− q is even or two
c4,q otherwise.

Consider the edge-cut contribution from a representative canonical H3
q of an

oriented class in a boundary vertex-region ofH3
k by a 2q×2q×q constrained query

grid G overlapping with a boundary vertex of the H3
k . The edge-cut contribution

of an edge within the boundary vertex-region is 1 — by one (edge-)orthogonal
boundary face of G.

Denote by Δ the operator for the total number of edge-cuts in a bound-
ary vertex-region (operand) by all identically shaped 2q × 2q × 2q constrained
query grids overlapping with the boundary vertex. The total number of edge-cuts
within the eight boundary vertex-regions by all identically shaped 2q × 2q × 2q

constrained query grids is:{
2Δ(c1,q,q) + 2Δ(c2,q,q) + 4Δ(c4,q,q) if k − q is even,
2Δ(c1,q,q) + 4Δ(c2,q,q) + 2Δ(c4,q,q) otherwise.



Clustering Performance of 3-Dimensional Hilbert Curves 309

Lemma 8. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, the number of edge-cuts within a

boundary vertex-region by all identically shaped 2q × 2q × 2q constrained query
grids overlapping with the boundary vertex is as follows:

Δ(c1,q,q) = EFL
q + EBF

q +EBL
q Δ(c2,q,q) = EFL

q + EFT
q +ELT

q

Δ(c3,q,q) = EFR
q + EFT

q + ERT
q Δ(c4,q,q) = EFR

q + EBF
q + EBR

q

Theorem 3. For a canonical H3
k structured as an H3

k−q-curve interconnecting

23(k−q) number of canonical H3
q -subcurves, the number of edge-cuts in all bound-

ary vertex-regions of the H3
k by 2q × 2q × 2q constrained query grids overlapping

with some boundary vertex is:{
2Δ(c1,q,q) + 2Δ(c2,q,q) + 4Δ(c4,q,q) if k − q is even
2Δ(c1,q,q) + 4Δ(c2,q,q) + 2Δ(c4,q,q) otherwise

=

{
4EFL

q + 4EFR
q + 6EBF

q + 2EFT
q + 2EBL

q + 2ELT
q + 4EBR

q if k − q is even
6EFL

q + 2EFR
q + 4EBF

q + 4EFT
q + 2EBL

q + 4ELT
q + 2EBR

q otherwise

= 4EFL
q + 2EFR

q + 4EBF
q + 2EFT

q + 2EBL
q + 2ELT

q + 2EBR
q

+(1 + (−1)k−q+1)(EFR
q + EBF

q + EBR
q ) + (1 + (−1)k−q)(EFL

q + EFT
q + ELT

q )

= 25q+1 − 24q+2 + 23q+1 − 69

7
· 22q−2 +

11

7
· 22q−2(−1)k−q − 1

21
· 2q−2 − q · 2q

+
11

7
· 2q(−1)k−q+1 − 2 + many lower-order terms.

3 Total and Mean Numbers of Clusters for Canonical
H3

k-Curves, and Verification

The results in Section 2 yield the total number of edge-cuts in all boundary
(face-, edge-, or vertex-)regions of a canonical H3

k by 2q × 2q × 2q constrained
query grids overlapping with some boundary (faces, edges, or vertices) of the
grid space [2k]3:

εq(H
3
k) = number of edge-cuts in Theorem 1− number of edge-cuts in Theorem 2

+ number of edge-cuts in Theorem 3.

Hence, an exact formula for the total number of the edge-cuts of a canonical
H3

k by all 2q × 2q × 2q query subgrids is obtained via:

Eq(H
3
k) = (23k − 1)2 · 22q − εq(H

3
k) + 2

= 23k+2q+1 − 3 · 22k+3q+1 + 22k+2q+2 +
117

35
· 22k−q−1 +

93

5
· 22k−3 + 3 · 2k+4q+1

−2k+3q+3 + 2k+2q+1 − 271

77
· 2k+q − 947

231
· 2k+1 +

27

77
· 2k−q+4 − 5

11
· 2k+1q − 25q+1

+24q+2 − 23q+1 +
13

7
· 22q−2 − 11

7
· 22q−2(−1)k−q + q2q +

505

21
· 2q−2

−11

7
· 2q(−1)k−q+1 − 2 + many lower-order terms.
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By Remark 2, an exact formula for the total number of clusters over all 2q ×
2q × 2q query subgrids of a canonical H3

k -curve is obtained via:

Sk(H
3
k) =

1

2
Eq(H

3
k),

and that for the mean number of clusters over all 2q × 2q × 2q query subgrids of
a canonical H3

k -curve is obtained via:

Sq(H
3
k)

(2k − 2q + 1)3
(=

Eq(H
3
k)

2(2k − 2q + 1)3
).

We have verified all the exact formulas (intermediate and final) involved in the
derivations in the analytical study with computer programs over various grid-
and subgrid-orders: k ∈ {3, 4, . . . , 10} and q ∈ {2, 3, . . . , k}.

4 Conclusion

Our analytical study of clustering performance of the 3-dimensional order-k con-
tinuous Hilbert curve family is based on the mean-clustering statistics — the
mean number of clusters over all subgrids of size 2q × 2q × 2q. For sufficiently
large k (& q), the mean number of clusters is approximated via:

Sq(H
3
k)

(2k − 2q + 1)3
≈ 23k+2q+1

2(2k − 2q + 1)3
≈ 22q ,

which is consistent with the asymptotic results in [6] and [7]: 1
2
Sm,k

m = 1
2
6(2q)2

3 =
22q. Our work in progress includes: (1) the completion of the mean-clustering
analytical study for the discontinuous z-order curve family — the exact results al-
low us to compare the relative performances of Hilbert and z-order curve families
with respect to the measure, and (2) the formulation of a multi-dimensional ran-
dom walk to study the clustering performance of continuous multi-dimensional
space-filling curves (such as Hilbert curves) and obtain a closed-form approxima-
tion to the mean-clustering statistics for the Hilbert curve family — which may
shed some light on if the random walk may furnish an effective model to develop
approximations to clustering and locality statistics for space-filling curves.
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Abstract. Broadcasting is a basic problem of communication in usual
networks. Many papers have investigated the construction of minimum
broadcast networks, the cheapest possible network architecture (having
the fewest communication lines), in which broadcasting can be accom-
plished as fast as theoretically possible from any vertex. Other papers
considered the problem of determining the minimum broadcast time of
a given vertex in an arbitrary network. In this paper, for given n we con-
struct optimal networks on n vertices which we define to be the product
of the broadcast time and the number of edges of the network. On the
way we start the study of an interesting problem, the problem of mini-
mum time broadcasting in networks with given number of vertices and
edges.

Keywords: Broadcast, minimum broadcast graph, optimal networks.

1 Introduction

Computer networks have become essential in several aspects of modern society.
The performance of information dissemination in networks often determines their
overall efficiency. One of the fundamental information dissemination problems
is broadcasting. Broadcasting is a process in which a single message is sent
from one member of a network to all other members. Inefficient broadcasting
could degrade the performance of a network seriously. Therefore, it is of major
interest to improve the performance of a network by using efficient broadcasting
algorithm.

Broadcasting is an information dissemination problem in a connected net-
work, in which one node, called the originator, must distribute a message to all
other nodes by placing a series of calls along the communication lines of the net-
work. Once informed, the informed nodes aid the originator in distributing the
message. This is assumed to take place in discrete time units. The broadcasting
is to be completed as quickly as possible, subject to the following constraints:

– Each call involves only one informed node and one of its uninformed neigh-
bors.

– Each call requires one unit of time.
– A node can participate in only one call per unit of time.
– In one unit of time, many calls can be performed in parallel.

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 312–322, 2014.
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Formally, any network can be modelled as a connected graph G = (V,E),
where V is the set of vertices (or nodes) and E is the set of edges (or communi-
cation lines).

Given a vertex u as the originator, we define the broadcast time of vertex u,
t(u), as the minimum number of time units required to complete broadcasting
from vertex u. Note that for any vertex u in a connected graph G on n vertices,
t(u) ≥ 	logn
, since during each time unit the number of informed vertices can
at most double. All logarithms in this paper are base 2.

The broadcast time t(G) of the graph G is defined as max{t(u)|u ∈ V }.
Another obvious lower bound on the broadcast time of a vertex in graph G is
the diameter of graph G, t(u) ≥ D(G), where D(G) is the diameter of G.

G is called a broadcast graph or broadcast network if t(G) = 	logn
. The
broadcast function B(n) is the minimum number of edges in any broadcast
graph (network) on n vertices. A minimum broadcast graph or mbg is a broad-
cast graph on n vertices with only B(n) edges. Therefore, an mbg is the cheapest
possible broadcast network architecture (having the fewest possible edges), in
which broadcasting can be accomplished as fast as theoretically possible from
any originator vertex.

The problem of determining t(u) for a vertex u in an arbitrary graph is
NP -complete [19]. The problem remains NP -complete even for 3-regular pla-
nar graphs [25]. Research in [5] has showed that the broadcast time cannot be
approximated within a factor 3.

The literature on this subject can be divided primarily into two major areas:
one on designing approximation algorithms and heuristics to determine t(u) for
a vertex u in an arbitrary graph, the other on designing minimum broadcast
graphs. For the first problem several approximation algorithms with a polylog-
arithmic ratio are suggested in [5], [26], [6]. The best approximation algorithm
is presented in [5]. The second problem is also very difficult. The values of B(n)
and constructions of mbgs are known only for some small values of n, n ≤ 63,
n = 2p [8] and n = 2p − 2 [4], [20].

Since mbgs seem to be extremely difficult to construct, a long sequence of
papers presented techniques to construct broadcast graphs, and to obtain upper
bounds on B(n) (see [1], [3], [4], [8], [11], [12], [13], [15], [18], [20], [22] and [23]).

To guarantee minimum time broadcasting we have to design dense graphs. For
example, the minimum time broadcasting in a graph on n = 2p vertices requires
at least degree logn = p for every vertex. Thus, B(2p) = p2p−1. However,
B(2p + 1) ≤ 2p+1 (see for example [13]). So, the density of broadcast graphs
depend on the value of n.

In many applications the broadcast time can be relaxed which will allow to
use sparser graphs. This may decrease the overall cost of the network. In this
paper we will consider the problem of optimizing the total cost of the network
which is defined to be the product of the broadcast time and the number of
edges of the network.

The two main parameters in communication networks are the broadcast time
of the network and its total number of links. The problem of minimizing both
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parameters at the same time, of course, are contradictory tasks. The sparse net-
works have small number of communication lines but a larger broadcast time
while dense networks may have relatively small broadcast time but are costly
because of many communication lines. The choice of using sparse or dense net-
works depends on the network applications and also on the upper bound on
the broadcast time. In this paper, we consider the problem of minimizing the
product of the broadcast time and the number of edges of the network.

In many network applications, all communication links of the network should
be active during the entire communication process. For such applications, the
total cost of the network is defined as the product of the number of edges and
the broadcast time of the network. Using our notation total cost = m× t(G) for
network G with m edges and broadcast time t(G). In this paper we construct
networks on n vertices with near optimal cost for any n.

To study this problem we will consider broadcasting in graphs with fixed
number of vertices and edges. The latter problem is interesting problem of its
own which was not studied in the literature.

The paper is organized as follows. In section 2 we give an upper bound on the
minimum broadcast time for any graph with fixed number of vertices and edges.
In section 3 for any n we present networks on n vertices with small broadcast
time and show that these graphs have near optimal cost.

2 Gm,n Graphs with Minimum Broadcast Time

In this section we consider the problem of finding the minimum possible broad-
cast time of any graph from a class of graphs with given Number of vertices and
edges.

In our construction of networks with optimal cost we will use some classes of
graphs that are known for their good broadcasting properties. Below we give the
definitions of these classes of graphs.

Definition 1. The binomial tree Bk of dimension k has 2k vertices and can be
constructed recursively. The tree B0 is a single vertex which is its root. The tree
Bk+1 is obtained from two copies of Bk by connecting their roots. Each of the
two roots can be the root of Bk+1.

It is easy to see that the broadcast time of Bk originated at the root is equal to
k. Fig. 1 illustrates B4.

Definition 2. ([1], [2]) Knödel graph on n vertices (where n is even), denoted
KG(n), is KG(n) = (V,E) where V = {0, 1, . . . , n − 1} and (x, y) ∈ E iff
x+ y ≡ 2k − 1 (mod n) for k = 1, 2, ..., �logn.

The Knödel graph is well known for its good communication and graph theoretic
properties. See [9], [1], [2], [16], [17]. It is proved ([22], [1]) that KG(n) is a
broadcast graph on n vertices for any even n, and so t(KG(n)) = 	logn
. Fig.
2 presents KG(20).
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B4

Fig. 1. Binomial tree B4
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Fig. 2. KG(20) with broadcast time 5

Definition 3. Let Gm,n be the class of all connected simple graphs with n ver-

tices and m edges, for some n− 1 ≤ m ≤ n(n−1)
2 . Let τ(Gm,n) be the minimum

broadcast time over all graphs from Gm,n.

First, we consider the problem of determining τ(Gm,n), and we give lower and
upper bounds on τ(Gm,n).

Lemma 1. τ(Gm,n) is monotonically decreasing as a function of m.

Proof. If τ(Gm,n) = t(G) for some graph G with n vertices and m edges, then we
construct a graph H by adding one edge (which is not in G) to the set of edges
of G. Then graph H belongs to the set Gm+1,n. Since G is a spanning subgraph
of H then broadcasting in H will be completed no later than broadcasting in G.
Thus, t(G) ≥ t(H) and τ(Gm,n) = t(G) ≥ t(H) ≥ τ(Gm+1,n).

The monotonicity of τ(Gm,n) as function of n is a difficult problem. For example,

when n = 2k then τ(Gm,n) = k and this is achieved only for m ≥ n log n
2 , but
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when n = 2k−1 + 1 then τ(Gn,m) = k is achieved for m < 3n (see for example
[13]). In particular, τ(G2k+log 3,2k+1) = k but τ(G2k+log 3,2k) = k + 1. So, if we
fix m and decrease n then the value of τ(Gm,n) increases. However if we do the
same comparison picking n = 2k + 2k−1 for fixed m = 2n and decrease n up
to the value 2k + 1 then τ(Gm,n) will decrease or stay the same. This is due to
the fact that the broadcast function B(n) is increasing as a function of n where
2k + 1 ≤ n ≤ 2k + 2k−1 ([14]).

Therefore, the question of the monotonicity of τ(Gm,n) as a function of n
heavily depends on n being a power of 2 or how far it is from a power of 2. This
also makes the problem of finding the exact value of τ(Gm,n) for all m from

interval n − 1 ≤ m ≤ n�log n�
2 extremely difficult. So, in the text below we will

try to accurately estimate the value of τ(Gm,n) for large values of n and m.
The two boundary cases should be considered here are m = n − 1 and m =

n�log n�
2 . The first boundary case follows from Lemma 1 and the fact that any

connected simple graph on n vertices contains at least n− 1 edges. It is obvious
that τ(Gm,n) ≤ τ(Gn−1,n) for all m ≥ n. The second boundary follows from the
well known upper bound on B(n) for all n. In [7] the author presents a recursive
construction of broadcast graphs (graphs which have broadcast time 	logn
)
for all n and proves the following upper bound, B(n) ≤ n�logn�

2 . This actually

means that for any n there is a broadcast graphG with at most n�logn�
2 edges and

t(G) = 	logn
. Thus, using our notation τ(Gm,n) = τ(Gn�log n�/2, n) = 	logn

for all m ≥ n	logn
/2 since the broadcast time of any graph on n vertices is
lower bounded by 	logn
. Then we get the following bounds, τ(Gn�log n�/2, n) ≤
τ(Gm,n) ≤ τ(Gn−1,n).

Topt

h h

Bp
1 Bp

1

Fig. 3. Optimal tree Topt

In [21] and [23] the authors present the construction of optimal trees Topt (in
[21] it is called minimal broadcast trees), the trees on n vertices with minimum
possible broadcast time. Fig. 3 illustrates the general structure of the optimal
tree. It is proved in [21] that for all n > 8 the optimal tree has the structure
presented in Fig. 3. In particular, Bp

1 is a subtree of binomial tree Bp containing
only the vertices at distance at most h from the root of Bp. The exact values of p
and h are calculated by complicated combinatorial arguments, but for large n it
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is proved that the optimal tree on n vertices has broadcast time logn/ log
√
5+1
2 ,

t(Topt) = logn/ log
√
5+1
2 ≈ 1.43 logn.

Figure 4 illustrates the optimal tree on 22 vertices with broadcast time 7.
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Fig. 4. The optimal tree on 22 vertices with broadcast time 7

The above result on optimal trees actually gives τ(Gn−1,n) = logn/ log
√
5+1
2

≈ 1.43 logn for large values of n.
From our discussion above we actually have lower and upper bounds on

τ(Gm,n).

Lemma 2. 	logn
 ≤ τ(Gm,n) ≤ logn/ log
√
5+1
2 ≈ 1.43 logn for large n.

Below we will give upper bounds on τ(Gm,n) for some m, where n− 1 ≤ m ≤
n�log n�

2 .

Lemma 3. τ(Gn,n) ≤ logn/ log
√
5+1
2 − ( 1

log
√

5+1
2

− 1) ≈ 1.43 logn − 0.43 for

large n.

Proof. Consider two copies of the optimal tree Topt on n/2 vertices (assuming n
is even). Connect the two central vertices of these optimal trees with 2 additional
edges (see Fig. 5). The obtained graph G clearly has n vertices and n edges. The
broadcast procedure in G is exactly the same as the broadcast procedure in
the optimal tree except when the two central vertices of one optimal tree are
informed they both send the message to the other central vertices of the second
optimal tree. Then the broadcasting in all four subtrees will follow the broadcast
procedure as in the optimal tree T on n/2 vertices. Thus, broadcasting in graph
G takes one additional time unit compared to Topt. Therefore, τ(Gn,n) ≤ t(G) =

τ(Gn/2−1,n/2) + 1 = log n
2 / log

√
5+1
2 + 1 = logn/ log

√
5+1
2 − ( 1

log
√

5+1
2

− 1).

Before turning to the general case we give a tight upper bound on τ(Gn+1,n).
Fig. 5 presents graph H from Gn+1,n with t(H) ≈ 1.43 logn − 1.72 for large
n. The construction and the broadcast procedure in graph H is the same as in
Lemma 3, except we replace the 4-cycle (which is a minimum broadcast graph
on 4 vertices) with a minimum broadcast graph on 7 vertices presented in [8].
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T ′ T ′

T ′ T ′

Topt

Topt

Fig. 5. The graph with n vertices and n edges from Lemma 3

Lemma 4. τ(Gn+1,n) ≤ logn/ log
√
5+1
2 − ( log 3.5

log
√

5+1
2

− 2) ≈ 1.43 logn− 1.72 for

large n.

Proof. The proof is essentially the same as of Lemma 3, except we use 7 copies
of only one subtree of the optimal tree on n/3.5 vertices. The broadcast proce-
dure is also the same except it will take 3 time units for any central vertex to
inform all the other central vertices of the minimum broadcast graph on 7 ver-

tices. Thus, τ(Gn+1,n) ≤ t(G) = τ(Gn/3.5−1,n/3.5) + 2 = log n
3.5/ log

√
5+1
2 + 2 =

logn/ log
√
5+1
2 − ( log 3.5

log
√

5+1
2

− 2) ≈ 1.43 logn− 1.72.

The results of the last two Lemmas can be generalized by replacing the 4-cycle
or the minimum broadcast graph on 7 vertices with any minimum broadcast
graph. We will use such a construction in section 3 to give a tight upper bound
on the networks with optimal cost.

T ′

T ′ T ′

T ′

T ′T ′

T ′

Fig. 6. The graph with n vertices and n+ 1 edges from Lemma 4
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Several papers considered time-relaxed broadcast graphs (see [14] for exam-
ple). r-relaxed broadcast graph is a graph on n vertices with broadcast time at
most 	logn
 + r. Minimum r-relaxed broadcast graph is a r-relaxed broadcast
graph with minimum possible number of edges, denoted by Br(n). The best up-
per bound on Br(n) for general n is presented in [14]. They construct r-relaxed
broadcast graphs on n vertices from B�log n�, the binomial tree of dimension
	logn
, by first deleting 2�logn� − n farthest leaves from B�log n� and then con-
necting the root of B�log n� with the vertices at distance d for all d ≡ i( mod r)
from the root for each 0 ≤ i ≤ r − 1. Graph G constructed above has at most
n+ n/r edges and broadcast time 	logn
+ r.

Lemma 5. τ(Gn+n/r,n) ≤ 	logn
+ r for any 1 ≤ r ≤ log n/ log
√
5+1
2 .

3 Networks with Optimal Cost

In this section we will design networks with near optimal cost for any n.
Recall that the total cost of the broadcast network (graph) is the product

of its broadcast time and the number of edges. Denote the cost of a network
on n vertices with minimum possible cost by c(n). Following the notation from
section 2, the optimal (minimum) cost of a network on n vertices will be c(n) =

min{m× τ(Gm,n) : n− 1 ≤ m ≤ n(n−1)
2 }.

Lemma 6. c(n) ≥ n logn+Ω(n).

Proof. Note that since τ(Gm,n) ≥ 	logn
 and m ≥ n−1 then c(n) ≥ 	logn
(n−
1) = n	logn
 − 	logn
. However, as mentioned above, when m = n − 1 then
τ(Gm,n) ≈ 1.43 logn which gives the total cost of 1.43 logn(n − 1) > n logn
for large n. For all other values of m, m = n + a, where a ≥ 0 and τ(Gm,n) =
	logn
+c, where c ≥ 0. Thus, c(n) = n	logn
+cn+a	logn
+ac ≥ n logn+Ω(n)
for large n.

The main result of this section is a construction of a graph on n vertices with
c(n) = n logn + Θ(n log logn), thus, giving an asymptotic optimal value of the
minimum cost of any network on n vertices.

From the above and discussion in section 2 it follows that an optimal network
on n vertices should have broadcast time close to 	logn
. Moreover, to achieve the
lower bound from Lemma 6, cmust be a constant and a logn = O(n). This would
be possible to claim if there exist a c-relaxed broadcast graph (with broadcast time
	logn
+ r), where c is a constant, with n+ n/ logn edges, Bc(n) ≤ n+ n/ logn.
However, there is no such c-relaxed broadcast graph construction known.

The best know r-relaxed broadcast graph constructions are presented in [14].
We used this construction in Lemma 5 and denoted it by G. Recall that G has
n+r edges and t(G) = logn+r. So, the cost of G will be (n+n/r)(logn+r). The
last expression is minimized for r =

√
logn, and the cost of G will be at least

(n+n/
√
logn)(logn+

√
logn) = n logn+2n

√
logn+n = n logn+Θ(n

√
logn).
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Now we will construct another graph with slightly smaller cost. From Lemma
6 it follows that the leading term cannot be smaller than n logn, but we will
improve the second term.

Our construction of Gm,n graphs with “good” broadcast time is a combination
of Knödel graph KG(k) on k vertices and the optimal broadcast tree T ′ on n/k
vertices (see Fig.7).

We construct graph H = (V,E) on n vertices and m = n − k + k log k
2 edges

as follows. Consider the graph obtained from k copies of the optimal tree T ′ on
n
k vertices where the roots of the trees form a Knödel graph on k vertices (see
Fig. 7).

Theorem 1. For any n there exists a graph on n vertices with c(n) ≤ n logn+
Θ(n log(logn)) for large values of n.

Proof. Consider graph H described above, which is a combination of the Knödel
graph and binomial tree. To broadcast from a farthest leaf in subtree T ′ (which
is a subtree of a binomial tree) we first send the message to the root of the
same subtree T ′ via shortest path then the root vertex broadcasts the message
in the Knödel graph on k vertices in log k time units. Now, after this second
phase all the k vertices of the Knödel graph are informed. Then every vertex
of the Knödel graph broadcasts the message optimally within each subtree T ′

of a binomial tree. It is clear that the first and the third phases of the above
broadcast scheme is equivalent to the minimum time broadcast scheme in the
optimal tree on 2n/k vertices. So, the broadcast time of phases 1 and 3 of the
above broadcast scheme will be 1.43 log n

k for large n. Thus, the total broadcast
time of H will be t(H) = 1.43 log n

k + log k for large values of n.

The number of edges of graph H is k log k
2 +k(nk −1) = k log k

2 +n−k. Thus, the

cost of graphH , c(n) = (1.43 log n
k +log k)(k log k

2 +n−k). We pick k = n
log2 n

. So,

we obtain c(n) = (1.43 log n
k+log k)(k log k

2 +n−k) ≤ (logn+0.43 log(log2 n))(n+
n

2 logn + n
log2 n

) ≈ n logn+ 0.86n log(logn) +Θ(n).

T ′
T ′

T ′

KG(k)

Fig. 7. The structure of the network with near optimal cost
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Note that we can make slight improvement by picking k = n
logs n for some 1 <

s < 2. Then the coefficient of the second term of the bound from Theorem 1 will
be decreased by almost a factor of two. However, the minimum value of function
c(n) from above is still n logn + Θ(n log(logn)). The gap between the lower
bound from Lemma 6 and the upper bound from Theorem 1 is small. To close
the gap one has to construct a graph on n vertices, with at most n + n/ logn
edges and the broadcast time logn+ c, for some constant c. Another direction,
is of course to improve the lower bound.
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Abstract. In general, document representation and ranking are depen-
dent on context. In this work, we introduce the notion of optimal context,
i.e. a context which gives the best ranking. We develop an algorithm to
compute this optimal context and we show that it has an effect of query
reformulation. Our approach gives substantial improvements in retrieval
performance over known models.

Keywords: optimal context, relevance feedback, vector space model.

1 Introduction

Information Retrieval (IR) deals with the retrieval of all and only the documents
which contain information relevant to any information need expressed by any
user’s query. A system matching that definition exists in principle. In practice
a system is unable to answer any query with all and only relevant information
because of the unsolvable task of understanding both the relevant information
enclosed in documents and the information need expressed through any query
submitted by any user.

To refine the IR process, it is required to apply the Relevance Feedback (RF)
technique. It has been shown that RF is an effective strategy in IR [10].

The RF has been used in several IR models: the vector space model [5,11],
the probabilistic model [2,10], the language model [3], and the bayesian network
retrieval model [1]. Most of the proposed approaches consist of adding new terms
to the initial query and re-weighting original terms [12].

The Latent Semantic Indexing (LSI) [4] foundation is based on the assumption
that there are many semantic relations between terms (synonymy, polysemy...),
whereas capturing these relations by using semantic resources such as ontologies
is complex, an alternative statistical solution could be taken into account by
Singular Value Decomposition (SVD). This method results on a new vector space
basis with a lower dimension than the original one (all indexing terms), and in
which each component is a linear combination of the indexing terms.

Recently, [6] gives a new RF method using a vector space basis change. The
authors develop an algorithm to compute a basis in which the relevant document
are gathered and the irrelevant ones are kept away from the relevant documents.

Q. Gu, P. Hell, and B. Yang (Eds.): AAIM 2014, LNCS 8546, pp. 323–330, 2014.
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Since information needs evolve with many variables like user, place, and time,
relevance is context-dependent. Therefore, IR is also context-dependent which
represents the high complexity of IR. The mechanism by which contextual infor-
mation are handled are often rule- based or statistical. Rule-based approaches
were common in user-modeling approaches where rules may express contex-
tual variables such as search experience or knowledge. Currently, statistical ap-
proaches based on data mining are far more common and there is a growing
theoretical strand to modeling context, e.g. [8].

According to [7], a context is modeled by a basis and its evolution is modeled
by linear transformations1 from one base to another. The basic idea is that,
first, a vector is generated by a basis just as an information object is generated
within a context. Second, every vector can be generated by different bases in
our approach and belongs to infinite subspaces; this is consistent with the fact
that every information object is generated within different contexts. Finally and
as a corollary, the subspace spanned by a basis contains all those vectors that
describe information objects in the same context: In this subspace, the vectors
are related to each other by a linear combination. In particular, RF is an example
of context change [7]. This paper completes the papers [8,7].

In this paper the Vector Space Model (VSM) is adopted as an infrastructure.
It is introduced in [14] and [13]. A recent reconsideration of the geometry under-
lying IR, and indirectly of the VSM, was done in [9]. In VSM, documents and
queries are modeled as elements of a vector space. This vector space is generated
by a set of basis vectors that correspond to the index terms. Each document can
be represented as a linear combination of these term vectors. One can find a nice
and short introduction of VSM in [7, Section 3].

The determinant of a triangular matrix is the product of the diagonal el-
ements, its inverse is a triangular matrix and the product of two triangular
matrices is a triangular matrix too. These facts assure that the manipulation of
triangular matrices is performed within the space of triangular matrices, thus
providing advantages at computational level when modeling contexts and de-
scribing context changes [7].

In general, document representation and ranking are dependent on context.
In fact, if T1 and T2 are two context matrices which, respectively, generate doc-
uments d1 and d2 with the same coefficients a, and if a query is generated by an
arbitrary context matrix U with coefficients b, then aT .(T T

1 .U).b �= aT .(T T
2 .U).b.

From the set of contexts, there exists one that provides the best document rank-
ing. This context is called the optimal context. In this paper we give an algorithm
to compute this optimal context.

This paper is organized as follows. In Sections 2 we compute an optimal
context. In Section 3 some experiments are reported to explore some of the
potential of the proposed approach. Section 4 concludes.

1 A base vector models a document or query descriptor. The semantics of a document
or query descriptor depends on context. A base can be derived from a context.
Therefore, a base of a vector space is the construct to model context. Also, change
of context can be modeled by linear transformations from one base to another.
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2 Optimal Context

In general, the vector x of the document x authored in its own context is gen-
erated by the base T . The latter is in its turn not necessarily equal to the base
U that generates, say a query y, or another document. Therefore, x is repre-
sented by x = T.a whereas y is represented by y = U.b where a and b are
the coefficients used to combine the base vectors of T and U , respectively. If
relevance is estimated by the usual inner product, documents are ranked by
xT .y = (T.a)T .(U.b) = aT .(T T .U).b.

2.1 Scenario

Let R be the set of relevant documents and S be the set of irrelevant documents.
The optimal context C is a context which gives the best ranking that maximizes
the inner product between query vector and relevant document vectors and min-
imizes the inner product between query vector and irrelevant document vectors.
Then this optimal context maximizes the sum of inner product between query
vector and relevant document vectors and minimizes the sum of inner product
between query vector and irrelevant document vectors. Therefore, the optimal
context maximises the quotient of the sum of inner product between query vec-
tor and relevant document vectors by the sum of inner product between query
vector and irrelevant document vectors. So

C′ = arg max
B∈Tn(R)

∑
d∈R

dT .BT .q = arg max
B∈Tn(R)

(
∑
d∈R

d)T .BT .q (1)

and

C′′ = arg min
B∈Tn(R)

∑
d∈S

dT .BT .q = arg min
B∈Tn(R)

(
∑
d∈S

d)T .BT .q (2)

which implies that, the optimal context satisfies

C = arg max
B∈Tn(R)

(
∑
d∈R

d)T .BT .q

(
∑
d∈S

d)T .BT .q
(3)

where Tn(R) is the set of invertible upper triangular matrix of order n.

2.2 Compute of Optimal Context

In this section we attempt to solve equation 3 which leads to the optimal context
we look for.
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Necessary Condition. If B is a solution of equation 3, then for all 1 ≤ i ≤
j ≤ n we have

∂

(
∑
d∈R

d)T .BT .q

(
∑
d∈S

d)T .BT .q

∂bij
= 0 (4)

A solution of equation 4 is called a critical point. Equation 4 implies:

∂((
∑
d∈R

d)T .BT .q)

∂bij
.(
∑
d∈S

d)T .BT .q −
∂((

∑
d∈S

d)T .BT .q)

∂bij
.(
∑
d∈R

d)T .BT .q = 0 (5)

that is

(
∑
d∈R

d)T .(
∂B

∂bij
)T .q.(

∑
d∈S

d)T .BT .q −
∑
d∈S

d)T .(
∂B

∂bij
)T .q.(

∑
d∈R

d)T .BT .q = 0 (6)

where

B =

⎛
⎜⎜⎜⎝
b11 b12 . . . b1n
0 b22 . . . b2n
...

. . .
. . .

...
0 . . . 0 bnn

⎞
⎟⎟⎟⎠

The matrix
∂B

∂bij
is:

∂B

∂bij
=

j

i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 0 . . . 0
...
. . .

...
...
...
. . .

...
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0
0 . . . 0 0 0 . . . 0
...
. . .

...
...
...
. . .

...
0 . . . 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Sufficient Condition (Second Derivative Test). The Hessian matrix is a
square matrix of second-order partial derivatives of a function. It describes the
local curvature of a function of many variables. If the Hessian matrix is negative
definite2 at a critical point x, then it attains a local maximum at x. In this case
the function is locally concave.

2 Its eigenvalues are negative.
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To apply the second derivative test it suffices to compute the eigenvalues of
the Hessian matrix of the function

f =

(
∑
d∈R

d)T .BT .q

(
∑
d∈S

d)T .BT .q
(7)

The second-order partial derivatives are: for all 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ n

∂2

(
∑

d∈R

d)T .BT .q

(
∑

d∈S

d)T .BT .q

∂bkl∂bij
=

∂

(
∑

d∈R

d)T .(
∂B

∂bij
)T .q.(

∑

d∈S

d)T .BT .q − (
∑

d∈S

d)T .(
∂B

∂bij
)T .q.(

∑

d∈R

d)T .BT .q

((
∑

d∈S

d)T .BT .q)2

∂bkl

(8)

and so the second-order partial derivatives at a critical point are:

∂2

(
∑
d∈R

d)T .BT .q

(
∑
d∈S

d)T .BT .q

∂bij
2 = 0 (9)

∂
2

(
∑

d∈R

d)
T

.B
T

.q

(
∑

d∈S

d)
T

.B
T

.q

∂bkl∂bij

=

2((
∑

d∈R

d)
T

.(
∂B

∂bij

)
T

.q.(
∑

d∈S

d)
T

.(
∂B

∂bkl

)
T

.q − (
∑

d∈S

d)
T

.(
∂B

∂bij

)
T

.q.(
∑

d∈R

d)
T

.(
∂B

∂bkl

)
T

.q)

((
∑

d∈S

d)
T

.B
T

.q)
2

(10)

The Hessian matrix is a symmetric square matrix of order n2, and so it will have
n2 eigenvalues.

A solution C of equation 3 satisfies the following two conditions:

– The first-order partial derivatives of the function f are equal to 0.
– The eigenvalues of the Hessian matrix of the function f are negative.

2.3 Optimal Query

In the vector space model, the score of a document d vs. a query q is often
expressed by the inner product: RSV (d, q) = dT .q

If now the document and the query are generated by the optimal context
matrix C, this score becomes:

RSV (d, q) = (C.d)T .C.q = dT .CT .C.q

This score represents the score of the document d, in the original basis, vs.
the query q′ = CT .C.q. Hence the optimal context has an effect of query refor-
mulation: q′ is the optimal query.
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3 Experiments

In this section we give the different experiments and results obtained to evaluate
our approach.

3.1 Environnement

The test collection TREC-8 is used in this study. The initial ranking of docu-
ments (Baseline Model) were weighted by the BM25 formula proposed in [15].

The experiments consist to re-rank the results of the Baseline Model.
For our approach the reformulated query is

Qnew = CT .C.Qint (11)

Where C is the optimal context matrix.
For the Rocchio model, the reformulated query is

Qnew = α.Qint + β.
1

|R|
∑
d∈R

d+ γ.
1

|S|
∑
d∈S

d

– The initial query Qint is made from the short topic description, and using it
the top 1000 documents are retrieved from the collections (weighted α = 1).

– R is the set of top ranking 30 documents, assumed to be relevant (weighted
β = 0.75).

– S is the set of retrieved documents 501 − 1000, assumed to be irrelevant
(weighted γ = −0.5).

For our approach and the Rocchio model, the retrieved documents are ranked
by the inner product done by:

RSV (Qnew, d) = QT
new.d (12)

3.2 Results

Table 1 compares the performance of the Rocchio Model (RM) [11], the IRiX
model [8], and our approach : Optimal Context Model (ICM). The performance
measures are Precision at 5 (P@5), Precision at 10 (P@10) and Precision at 15
(P@15).

Table 1. Retrieval Performance Comparison

RM IRiX ICM ΔRM ΔIRiX

P@5 0.41 0.348 0.43 4.9% 23.6%

P@10 0.44 0.292 0.46 4.5% 57.5%

P@15 0.4 0.276 0.41 2.5% 48.55%
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3.3 Analysis

We see that our approach gives improvements in P@5, P@10 and P@15 over the
RM model and the IRiX model3. At 10 feedback documents, our model and the
Rocchio model have the better precision. On a related experiment, we observe
that our approach improves Rocchio model by 6% with respect to the Mean
Average Precision (MAP). These preliminary results suggest that the optimal
context can improve retrieval performance of RF.

4 Conclusion

In this paper we define and compute an optimal context. This context guaran-
tees an optimal representation of documents, that is the relevant documents are
gathered and the irrelevant ones are kept away from the relevant documents. On
the other hand, the optimal context has an effect of query reformulation. Dif-
ferent Experiments and results show that our approach provides better results
than the other ones.

Because the concavity of a function induces the existence and the unique-
ness of the maximum, in practice, we use the second derivative test to find the
maximum of the function f (equation 7).

This paper proposes an algorithm to separate relevant and non-relevant doc-
uments.
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Abstract. This paper studies the initial emission permits auction prob-
lem from the perspective of government’ activities. In the traditional
auction models, the basic assumption is that the government, i.e., the
auctioneer, only pursues the maximum economic revenue. In this paper,
we consider a hybrid auction-bargaining model, which gives new insights
on how the government’s economic and social goals effect the equilibrium
strategies. For this model, we find a symmetric bidding strategy equilib-
rium for the firms in a sealed bid auction form, which is closely related to
the classical results in the auction. Our most important finding is that,
compared with the classical auction mechanism, the final trading price is
based on not only firm’s bidding strategy, but also the application qual-
ity of emission permits in the energy consumption market. The results
also show that this auction-bargaining mechanism can alleviate distor-
tion by excessive allowance in initial emission permits auction market
and promote the social goals in both auction market and consumption
market.

Keywords: emission permits, auction-bargaining, equilibrium.

1 Introduction

There is increasingly broad recognition that greenhouse gas emissions are con-
tributing to changes to earth’s climate. Emissions trading schemes (ETS) that
CO2 reductions are carried costly, are an important part of the policy response
to this problem. The high potential costs of controlling pollutants by emission
trading have led to growing interest in economic instruments. One critical is-
sue in designing a tradable emission permit system is how the initial emission
permits are distributed.

There are two different approaches existing in the initial emission permits
schemes: the grandfathered approach and the auction approach, where the two
mainly differ in the costs levied on the producers. Since Montgomery (1972) [1]
showed that as long as permits markets were competitive, the initial emission
permits allocation schemes might be irrelevant for emission abatement. There
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has been an ongoing debate about these two means. Most studies recognize an
auction is preferred to grandfathering[2]. The reason is that auction allows re-
duced tax distortions, provides more flexibility in distribution of costs, provides
greater incentives for innovation, and reduces the need for politically contentious
arguments over the allocation of rents. Many important considerations are rel-
evant to the implemented auction design. Firstly, there are a variety of auction
formats, i.e., a sealed bid, a descending bid, an ascending bid or an ascending
clock auction. Secondly, the pricing rule can be uniform, discriminatory or based
on the Ausubel-Vickrey principle[3]. For example, the US Environmental Protec-
tion Agency (EPA) auctions for SO2 permits are in the sealed bid discriminatory
price format[4]. Cramton and Kerr [5] explained that when no bidder had sig-
nificant market power, uniform pricing was nearly as efficient as Vickrey pricing
and that among sealed bid auctions, a uniform price auction was probably the
best. Betz [6] also proposed an ascending clock auction based on the policy frame
work and theoretical as well as experimental findings in the literature, and this
auction was later applied by the Australian government. There is broad consen-
sus among economists specializing in auction design that a pay-as-bid auction is
not best suited for emissions permits. Even in an idealized perfect competition
setting in which all bidders lack market power, the pay-as-bid auction need not
lead to an efficient or even an approximately efficient distribution of emission
permits[7]. Moreover, many researches study which factors can be used to guide
the successful auction design of emission permits[8]. These factors include the
ability of the auction to elicit bids that reflect actual valuations by bidders[9], and
restricting bidder opportunities for acting strategically in a conclusion way[10].

The above literature is based on the same assumption that the government
aims at maximizing the profit to achieve the energy abatement goal. In some
situations, a simple emission permits auction’s efficiency can be very close to
that of the optimal mechanism. Thus, it may be optimal for the government to
employ a simple auction to reap most of the efficiency with low implementa-
tion costs[11]. However, in many countries there are such situations that grand-
fathered permits together with auction are more prevalent attributing to its
political acceptability. These hybrid forms are perceived to potentially distort
inter-firm competitiveness relations in initial emission permits auction market
and lead to a lower equilibrium price[12]. There is a significant gap between
the governments expected pay-off with a simple emission permits auction and
that under the optimal mechanisms. Under such circumstances, the government
may search for an intermediate solution to balance between economic goals and
environmental goals. This paper introduces a novel hybrid auction mechanism,
i.e., auction-bargaining mechanism to bridge the gap. Our proposed approach
includes a sealed bid auction, followed by bargaining on payments to ensure that
the emission permits transaction will finish.

This paper is also related to the work of [7] and [12], where they consider
that the government can reach an environmental goal in an economically efficient
way. Their discussion is based on the assumption that the total auctioning quan-
tities of emission permits are exogenous to the auction models. In this paper, this
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assumption is relaxed and the self implement of energy goal in auction market is
not available. Our attention will be focussed on not only the auction revenue in
emission permits auctionmarket, but also a further complication, one that will fig-
ure extensively in the application of emission permits in the energy consumption
market(see Fig.1). This complication is that the winning firms should produce
goods by emission permits at an acceptable level of quality, which is also called
the quality threshold. This is particularly the case when a government agency is
auctioning emission permits on behalf of the public. In the second phase, the gov-
ernment bargains with the chosen firm over the final price of the emission permits.
The outcome of bargaining results in the final trading price that is based on the
government’s preference to economic revenue or social reward. It concludes that
one of quality threshold, i.e., mandatory green standard in energy consumption
market, impacts on the final trading price. Our chief finding is that the hybrid
auction-bargaining generates alleviated impact on price violations in the emission
permits auction market and promote the environmental goals.

 
Fig. 1. The two markets included in the government’s policy discussion

2 The Model

We next discuss our model and then proceed with the analysis. For the initial
emission permits auction problem, we establish a two-stage dynamic game model,
in which there are two main participants, i.e., government and firms. The time
line of the game is as follows. In the auction stage, the government announces
the mandatory green standard ε, and determines the temporary winner(s) based
on the auction rules in the first stage. After receiving the invitation, the firms
submit their bids according to their own abilities.

We will make a number of simplifications in order to compare various factors
with equilibrium strategies in the hybrid auction-bargaining mechanism. The
major ones, which we will hope to relax in later work, are that the maximum
number of bidders is two and that these begin from the same position: thus we
restrict ourselves to a symmetric case. It is supposed that the risk neutral firm
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i (i=1,2) wants to buy some units k of emission permits for its production as
in [13]. Since emission permits are homogeneous goods, the auctioning number
of permits always does not influence the bidding strategies. For simplicity, we
assume that k = 1. In order to allow for analytical solutions, the firm’s quadratic
abatement costs are assumed to be ci

2 ε
2, in which ci is the cost coefficient of each

firm i(see details in [14]). Here, ci is the private information only known by each
firm and is uniformly distributed over [0, c]. Thus, firm i’s net profit is given by

ui = gi −
ci
2
ε2 − bi = vi − bi (1)

where gi is the profit received by firm i from production based on purchased
emission permits and bi ( bi ∈ [0, b̄]) is firm i’s bid. To keep the model simple, it
also assumes that gi is uniformly distributed over [0, g]. In this paper, we take
the same assumption as [9] that each firm is truthfully to present his bid. Thus
firm i’s valuation vi of auctioning emission permits satisfies vi = gi − ci

2 ε
2.

Different from previous literature, in this paper, the government not only con-
siders the aspect of the revenue in the emission permits auction market, but also
focuses on controlling the emission abatement in the energy consumption market.
For example, there are environment instrument of mandatory green standard,
which is to ensure a politically planned deployment of renewable energy tech-
nologies under liberalised market conditions[15]. Therefore, the benefit of the
government UG can be defined as

UG = αR+ (1 − α)ε. (2)

where R denotes the economic revenue in emission permits auction market, α
(α ∈ [0, 1]) is the coefficient of weight, representing the government’s preference
to these two objects. Note that ε as the quality threshold in the energy consump-
tion market, which can directly bring environmental benefit. Of course, quality
threshold has many dimensions. For the environmental governance problem, the
government knows exactly what it wants, and can obtain perfect information
on the quality achieved, then including quality considerations within an auc-
tion is relatively straightforward. Thus, we denote the quality threshold by the
mandatory green standard denoted by ε, one kind of climate policies, which can
reach lower emissions and develop future renewable industries. Thus, the specific
function of ε is not necessary for our two-stage model.

3 Auction Stage

The two-stage game can be solved by backward induction. We look for a sub-
game perfect Nash equilibrium (SPNE), defined by a set of strategies for the firms
and the government. Firstly, we analyze the bidding strategies bi of firm i (i =
1, 2, · · · , n) in the auction under the condition of announced mandatory green
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standard ε by the government. According to the assumptions about ci and gi,
we can compute the distribution function Fi(vi) of firm i’s valuation as follows.

Fi(vi) =

⎧⎪⎪⎨
⎪⎪⎩

vi
ḡ + ε2c̄

4ḡ , 0 ≤ vi ≤ ḡ − ε2 c̄
2

1− (vi−ḡ)2

ε2ḡc̄ , ḡ − ε2c̄
2 < vi ≤ ḡ

1, ḡ < vi

(3)

Notice that each firms’ valuation about the auctioning emission permits is
relative to mandatory green standard ε. With the increase of ε, the valuation of
emission permits of each firm decreases.

Let the bidding strategy of firm i be βi, where βi(·) is the function of firm
i’s valuation vi. If the cost information is the firm’s private information and
all the firms are all symmetric, the firms have the symmetric behaviors. Thus
this assumption is available and do not influence our results. We achieve that
βi(0) = 0 and βi(g) = b. Thus, the firm i’s valuation function is β−1

i , i.e.,
the inverse functions of βi. Set β−1

i = φi(b). When firm i chooses b as its the
equilibrium bidding strategy, φi(b) is the valuation of the auctioning emission
permits.

Lemma 1. When firm i chooses b as its the equilibrium bidding strategy, the
probability of its success is

Prob(firm i wins) =
∏

F−i(φ−i(b)) (4)

Proof. These are n firms strictly compete for the auction stage. If firm i wins
the game, the other firms denoted by −i lose it. Thus, when the bidding strategy
of firm i is b , the probability of its success can be denoted by

Prob(firm i wins) = Prob(β1(v1) < b) · Prob(β2(v2) < b) · · ·Prob(βn(vn) < b)

= F1(φ1(b)) · · ·Fi−1(φi−1(b)) · Fi+1(φi+1(b)) · · ·Fn(φn(b))

=
∏

F−i(φ−i(b))

(5)

Theorem 1. The equilibrium bidding strategies b∗1 and b∗2 for firm 1 and firm 2
respectively are solutions of the following inverse bidding functions.⎧⎨

⎩ b∗1 = {b|b+ H2(b)
h2(b)

− φ1(b) = 0}

b∗2 = {b|b+ H1(b)
h1(b)

− φ2(b) = 0}
(6)

Proof. The first firm’s expect profit π1 is denoted by

π1(v1, b) = Prob(firm 1 wins)[v1 − b] + Prob(firm 1 loses) ∗ 0
= Prob(firm 1 wins)[v1 − b]

= F2(φ2(b))[v1 − b]

(7)
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In this paper we assume that the collusion behavior which will damage the
benefit of the government is not available. Thus, the optimal bidding strategy
b∗ must satisfy the condition as follows.

b∗ ∈ argmax{F2(φ2(b))[v1 − b]} (8)

Setting ∂π1(v1, b)/∂b = 0, we find that

∂π1(v1, b)

∂b
= F

′
2(φ2(b))[v1 − b]− F2(φ2(b)) = 0 (9)

For simplicity, it assumes that Hi(b) ≡ Fi(φi(b)) and hi(b) ≡ H
′
i(b). Solving

the Eq.(9), we can attain the first firm’s valuation function, i.e., inverse bidding
function, as follows.

φ1(b) = b+
H2(b)

h2(b)
(10)

As the same discuss as the first firm, the second firm’s inverse bidding function
is that

φ2(b) = b+
H1(b)

h1(b)
(11)

In Fig.2, notice that the firm i’s valuation will decrease with ε or ci. If the
firm estimates the emission permits will bring it more benefit, it would like
to pay more for the emission. Otherwise, if the firm costs a lot to reach the
announced quality threshold ε, it would like to pay less for the emission permits.
Furthermore, we analyze the relation between gi and valuation. We have that
∂F
∂gi

< 0. Therefore, the bidding strategy of the firms for the emission permits
will increase with the firm’s except benefit and decrease with the mandatory
green standard.

4 Bargaining Stage

In this stage, we discuss the final trading price based on the government’s equilib-
rium strategy, i.e., the equilibrium mandatory green standard ε∗. It assumes that
the equilibrium trading price of the emission permits is P . Suppose that the dis-
tribution function of auctioning price p is G(p) and its density function is g(p). In
the emission permits auction, if there are only two firms, then P = max(b1, b2),
where b1 and b2 are independent from each other. Thus, G(p) can be expressed
by G(p) = Prob(P ≤ p) = Prob{max(b1, b2) ≤ p} = F1(φ1(p))F2(φ2(p)).

Lemma 2. In the bargaining stage, the final trading price p∗ is

p∗ = argmax{α(b−
∫ b

0

G(p)dp) + (1− α)(1 − c̄2ε4

16g2
)ε} (12)
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Fig. 2. Firm’s valuation distribution as a function of c̄ and ε when gi is set as ḡ

Proof. When one of two firms wins the auction game, the government can
achieve the expected revenue ER from the auctioning activity in the emission
permits auction market. ER is given by

ER =

∫ b

0

pg(p)dp = pG(p)|b0 −
∫ b

0

G(p)dp = b−
∫ b

0

G(p)dp (13)

Except for the revenue from the auctioning activity, the government also pay
attention to the reward from the mandatory emission standard, i.e., the reward
of climate policies.

According to Eq.(3), if there is no firms participating into game, then

Prob(vi ≤ 0) = ε2 c̄
16g2 . Moreover, if there is at least one participant in the auction,

then the probability of this case is 1 − Prob(v1 ≤ 0)Prob(v2 ≤ 0) = 1 − c̄2ε4

16g2 .
Therefore, the mandatory emission standard ε can bring the expected reward
denoted by MR for the government as follows.

MR = (1 − c̄2ε4

16g2
)ε (14)

Furthermore, the expected benefit of the government can be achieved as follows.

UG = α(b −
∫ b

0

G(p)dp) + (1 − α)(1− c̄2ε4

16g2
)ε (15)

Theorem 2. When α = 0, the government’s equilibrium strategy about green

standard is ε∗ = 4

√
16g2

5c̄2
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Proof. In order to maximize the government’s benefit function, we take the
derivative of Eq.(15) as follows.

∂UG

∂ε
= α(b

′
(ε)−G(b(ε))b

′
(ε))− (1− α)(1 − 5c̄2ε4

16g2
) (16)

Set α = 0. It means that the key concern of the government is to set mandatary
green standard rate for social goals, and has little idea of the revenue of the
auction. Thus, the government’s equilibrium strategy about green standard is
the optimal solution of Eq.(16).

Theorem 3. When α = 1, the government’s equilibrium strategy about green
standard is ε∗ = 0.

Proof. In the situation of α = 1, the key concern of the government is the auction
revenue of the emission permits auction. Since the higher green standard ε, the
lower bidding price the firm will submit. Based on Eq.(16), for b

′
(ε) ≤ 0, the

derivative ∂UG

∂ε = b̄
′
(ε)[1−G(b

′
(ε))] ≤ 0. Thus, when ε∗ = 0, the government can

get the maximum of expect revenue. The constraint of green standard becomes
the incredible threat, so the valuation price of the firms will fully depend on the
expect revenue of the emission permit auction, i.e., vi = gi. The same result also
can be found in [7], when only considering the government’s economic goals.

Theorem 4. When 0 < α < 1, the government’s equilibrium strategy about
green standard is ε∗, which is the solution of

ε∗ = {ε|b(ε)−
∫ b

0

G(p)dp+ ε− c̄2ε5

16g2
= 0} (17)

Proof. Based on Eq.(15), we can get the optimal mandatory green standard ε∗.
This means that the increasing of the government’s total benefit is generated
by economic revenue and social reward. The optimal point is that the increase
of economic revenue is equal to the reduction of social reward. After designing
the weight of the economic revenue and that of social reward about mandatory
green standard, the government achieves its equilibrium strategy as follows.

∂U∗
G

∂α
= (b(ε)−

∫ b

0

G(p)dp) + (ε − c̄2ε5

16g2
) = 0 (18)

The derivative ∂U∗
G/∂α determines the optimal green standard ε∗. We need to

choose the optimal α∗ in Eq.(18) and then achieve ε∗. Notice that in the process
of α increase from 0 to 1, the goal of choosing the weight is to achieve the target
that the government both focus on maximizing the revenue and setting the green
standard.

Corollary 1. If there is no bargaining stage, the final trading price of emission
permits is only based on the private information of ci. A lower equilibrium price
always exists (see detail in [11]).
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Corollary 2. If there are two stages, the optimal bidding strategy b∗i in the
auction stage and the optimal mandatory green standard ε∗ in the bargaining
stage constitute a subgame perfect Nash equilibrium.

5 Conclusion

For initial emission permits auction problem, this paper introduces a hybrid
form, auction-bargaining mechanism, into the traditional emission permits auc-
tion market. We highlight the strategic interaction between the government’s
economic actions and social actions in the auction-bargaining model, which can
explain how the government’s economic and social goals effect the equilibrium
strategies. We also find that mandatory green standard will be the equilibrium
strategy in some circumstances. It concludes that this hybrid mechanism can
alleviate distortion by excessive allowance in initial emission permits auction
market. This result can be applied to a more general question regarding the
choice between economic goals and social goals. We make a number of simplifi-
cations, e.g., the number of bidders and the distribution form, and future studies
can relax these assumptions.
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