
Adrian-Horia Dediu
Carlos Martín-Vide
Bianca Truthe (Eds.)

 123

LN
BI

 8
54

2

First International Conference, AlCoB 2014
Tarragona, Spain, July 1–3, 2014
Proceedings

Algorithms for
Computational Biology

Lecture Notes in Bioinformatics 8542

Subseries of Lecture Notes in Computer Science

LNBI Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

LNBI Editorial Board

Alberto Apostolico
Georgia Institute of Technology, Atlanta, GA, USA

Søren Brunak
Technical University of Denmark Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics
Dresden, Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research
Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA

Adrian-Horia Dediu Carlos Martín-Vide
Bianca Truthe (Eds.)

Algorithms for
Computational Biology
First International Conference, AlCoB 2014
Tarragona, Spain, July 1-3, 2014
Proceedings

13

Volume Editors

Adrian-Horia Dediu
Rovira i Virgili University, Research Group on Mathematical Linguistics
Avinguda Catalunya, 35, 43002 Tarragona, Spain
E-mail: adrian.dediu@urv.cat

Carlos Martín-Vide
Rovira i Virgili University, Research Group on Mathematical Linguistics
Avinguda Catalunya, 35, 43002 Tarragona, Spain
E-mail: carlos.martin@urv.cat

Bianca Truthe
Justus-Liebig-Universität, Fachbereich 07, Institut für Informatik
Arndtstraße 2, 35392 Gießen, Germany
E-mail: bianca.truthe@informatik.uni-giessen.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-07952-3 e-ISBN 978-3-319-07953-0
DOI 10.1007/978-3-319-07953-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014940380

LNCS Sublibrary: SL 8 – Bioinformatics

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the papers that were presented at the First Interna-
tional Conference on Algorithms for Computational Biology (AlCoB 2014), held
in Tarragona, Spain, during July 1–3, 2014.

The scope of AlCoB includes topics of either theoretical or applied interest,
namely:

– Exact sequence analysis
– Approximate sequence analysis
– Pairwise sequence alignment
– Multiple sequence alignment
– Sequence assembly
– Genome rearrangement
– Regulatory motif finding
– Phylogeny reconstruction
– Phylogeny comparison
– Structure prediction
– Proteomics: molecular pathways, interaction networks, etc.
– Transcriptomics: splicing variants, isoform inference and quantification, dif-

ferential analysis, etc.
– Next-generation sequencing: population genomics, metagenomics, metatran-

scriptomics, etc.
– Microbiome analysis
– Systems biology

AlCoB 2014 received 39 submissions. Most papers were reviewed by three and
some by two Program Committee members. There were also several external
referees consulted; we acknowledge all the reviewers in the next section. After
a thorough and vivid discussion phase, the committee decided to accept 20 pa-
pers (which represents an acceptance rate of 51.28%). The conference program
also included two invited talks and one invited tutorial. Part of the success in
the management of this number of submissions is due to the excellent facilities
provided by the EasyChair conference management system.

We would like to thank all invited speakers and authors for their contri-
butions, the Program Committee and the reviewers for their cooperation, and
Springer for its very professional publishing work.

April 2014 Adrian-Horia Dediu
Carlos Mart́ın-Vide

Bianca Truthe

Organization

AlCoB 2014 was organized by the Research Group on Mathematical Linguistics –
GRLMC, from Rovira i Virgili University, Tarragona.

Program Committee

Tatsuya Akutsu Kyoto University, Japan
Amihood Amir Bar-Ilan University, Ramat-Gan, Israel
Alberto Apostolico Georgia Institute of Technology, Atlanta, USA
Joel Bader Johns Hopkins University, Baltimore, USA
Pierre Baldi University of California, Irvine, USA
Serafim Batzoglou Stanford University, USA
Bonnie Berger Massachusetts Institute of Technology,

Cambridge, USA
Francis Y.L. Chin University of Hong Kong, Hong Kong
Benny Chor Tel Aviv University, Israel
Keith A. Crandall George Washington University,

Washington DC, USA
Bhaskar DasGupta University of Illinois, Chicago, USA
Joaqúın Dopazo Pŕıncipe Felipe Research Center,

Valencia, Spain
Liliana Florea Johns Hopkins University, Baltimore, USA
Olivier Gascuel LIRMM-CNRS, Montpellier, France
David Gilbert Brunel University, Uxbridge, UK
Gaston H. Gonnet ETH Zürich, Switzerland
Roderic Guigó Center for Genomic Regulation, Barcelona,

Spain
Dan Gusfield University of California, Davis, USA
Vasant Honavar Pennsylvania State University, University Park,

USA
Sorin Istrail Brown University, Providence, USA
Tao Jiang University of California, Riverside, USA
Inge Jonassen University of Bergen, Norway
Anders Krogh University of Copenhagen, Denmark
Giovanni Manzini University of Eastern Piedmont, Alessandria,

Italy
Carlos Mart́ın-Vide (Chair) Rovira i Virgili University, Tarragona, Spain
Satoru Miyano University of Tokyo, Japan
Burkhard Morgenstern University of Göttingen, Germany

VIII Organization

Shinichi Morishita University of Tokyo, Japan
Cédric Notredame Center for Genomic Regulation, Barcelona,

Spain
Graziano Pesole National Research Council, Bari, Italy
Mark Ragan University of Queensland, Brisbane, Australia
Timothy Ravasi King Abdullah University of Science and

Technology, Thuwal, Saudi Arabia
Allen G. Rodrigo Duke University, Durham, USA
Steven Salzberg Johns Hopkins University, Baltimore, USA
David Sankoff University of Ottawa, Canada
Thomas Schiex INRA Toulouse, France
João Carlos Setubal University of São Paulo, Brazil
Steven Skiena Stony Brook University, USA
Peter F. Stadler University of Leipzig, Germany
Wing-Kin Sung National University of Singapore, Singapore
Alfonso Valencia Spanish National Cancer Research Centre,

Madrid, Spain
Jacques van Helden University of Aix-Marseille, France
Arndt von Haeseler Center for Integrative Bioinformatics Vienna,

Austria
Lusheng Wang City University of Hong Kong, Hong Kong
Limsoon Wong National University of Singapore, Singapore
Xiaohui Xie University of California, Irvine, USA
Dong Xu University of Missouri, Columbia, USA
Zohar Yakhini Agilent Laboratories, Santa Clara, USA
Alex Zelikovsky Georgia State University, Atlanta, USA
Michael Q. Zhang University of Texas, Dallas, USA

External Reviewers

Artyomenko, Alexander
Chateau, Annie
De Givry, Simon
Doi, Koichiro
Ehsani, Sepehr
Gonnet, Pedro
Hamelryck, Thomas
Hermelin, Danny
Katsirelos, George
Kifer, Ilona
Kim, Daehwan
Kurowski, Krzysztof

Leibovich, Limor
Leung, Henry
Mandric, Igor
Park, Hee-Won
Puglisi, Simon J.
Sheridan, Paul
Srihari, Sriganesh
Swenson, Krister M.
Wang, Yi
Wood, Derrick
Zagrovic, Bojan
Zheng, Chunfang

Organization IX

Organizing Committee

Adrian-Horia Dediu, Tarragona
Carlos Mart́ın-Vide, Tarragona (Chair)
Bianca Truthe, Gießen
Lilica Voicu, Tarragona

Table of Contents

Invited Talks

Comparative Genomics Approaches to Identifying Functionally Related
Genes . 1

Michael Y. Galperin and Eugene V. Koonin

Regular Papers

A Greedy Algorithm for Hierarchical Complete Linkage Clustering 25
Ernst Althaus, Andreas Hildebrandt, and
Anna Katharina Hildebrandt

Vester’s Sensitivity Model for Genetic Networks with Time-Discrete
Dynamics . 35

Liana Amaya Moreno, Ozlem Defterli, Armin Fügenschuh, and
Gerhard-Wilhelm Weber

Complexity and Polynomial-Time Approximation Algorithms around
the Scaffolding Problem . 47

Annie Chateau and Rodolphe Giroudeau

Heuristics for the Sorting by Length-Weighted Inversions Problem on
Signed Permutations . 59

Thiago da Silva Arruda, Ulisses Dias, and Zanoni Dias

On Low Treewidth Graphs and Supertrees . 71
Alexander Grigoriev, Steven Kelk, and Nela Lekić

On Optimal Read Trimming in Next Generation Sequencing and Its
Complexity . 83

Ivo Hedtke, Ioana Lemnian, Matthias Müller-Hannemann, and
Ivo Grosse

On the Implementation of Quantitative Model Refinement 95
Bogdan Iancu, Diana-Elena Gratie, Sepinoud Azimi, and Ion Petre

HapMonster: A Statistically Unified Approach for Variant Calling and
Haplotyping Based on Phase-Informative Reads . 107

Kaname Kojima, Naoki Nariai, Takahiro Mimori,
Yumi Yamaguchi-Kabata, Yukuto Sato, Yosuke Kawai, and
Masao Nagasaki

XII Table of Contents

Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints
from Raw NGS Reads . 119

Claire Lemaitre, Liviu Ciortuz, and Pierre Peterlongo

Modeling the Geometry of the Endoplasmic Reticulum Network 131
Laurent Lemarchand, Reinhardt Euler, Congping Lin, and
Imogen Sparkes

On Sorting of Signed Permutations by Prefix and Suffix Reversals and
Transpositions . 146

Carla Negri Lintzmayer and Zanoni Dias

On the Diameter of Rearrangement Problems . 158
Carla Negri Lintzmayer and Zanoni Dias

Efficiently Enumerating All Connected Induced Subgraphs of a Large
Molecular Network . 171

Sean Maxwell, Mark R. Chance, and Mehmet Koyutürk

On Algorithmic Complexity of Biomolecular Sequence Assembly
Problem . 183

Giuseppe Narzisi, Bud Mishra, and Michael C. Schatz

A Closed-Form Solution for Transcription Factor Activity Estimation
Using Network Component Analysis . 196

Amina Noor, Aitzaz Ahmad, Bilal Wajid, Erchin Serpedin,
Mohamed Nounou, and Hazem Nounou

SVEM: A Structural Variant Estimation Method Using Multi-mapped
Reads on Breakpoints . 208

Tomohiko Ohtsuki, Naoki Nariai, Kaname Kojima,
Takahiro Mimori, Yukuto Sato, Yosuke Kawai,
Yumi Yamaguchi-Kabata, Testuo Shibuya, and
Masao Nagasaki

Analysis and Classification of Constrained DNA Elements with N-gram
Graphs and Genomic Signatures . 220

Dimitris Polychronopoulos, Anastasia Krithara,
Christoforos Nikolaou, Giorgos Paliouras, Yannis Almirantis, and
George Giannakopoulos

Inference of Boolean Networks from Gene Interaction Graphs Using a
SAT Solver . 235

David A. Rosenblueth, Stalin Muñoz, Miguel Carrillo, and
Eugenio Azpeitia

Table of Contents XIII

RRCA: Ultra-Fast Multiple In-species Genome Alignments 247
Sebastian Wandelt and Ulf Leser

Exact Protein Structure Classification Using the Maximum Contact
Map Overlap Metric . 262

Inken Wohlers, Mathilde Le Boudic-Jamin, Hristo Djidjev,
Gunnar W. Klau, and Rumen Andonov

Author Index . 275

A.-H. Dediu, C. Martín-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 1–24, 2014.
© Springer International Publishing Switzerland 2014

Comparative Genomics Approaches to Identifying
Functionally Related Genes*

Michael Y. Galperin and Eugene V. Koonin

National Center for Biotechnology Information, National Library of Medicine
National Institutes of Health, Bethesda, Maryland, USA
{galperin,koonin}@ncbi.nlm.nih.gov

Abstract. The rapid progress in genome sequencing makes it possible to ad-
dress fundamental problems of biology and achieve critical insights into the
functioning of the live cells and entire organisms. However, the widening gap
between the rapidly accumulating sequence data and our ability to properly an-
notate these data constitutes a major problem that slows down the progress of
genome biology. This paper discusses the notion of “function” as it relates to
computational biology, lists the most common ways of assigning function to the
new genes, particularly those that specifically rely on comparative genome
analysis, and briefly reviews the drawbacks of the current algorithms for semi-
automated high-throughput functional annotation of genomes.

Keywords: genome annotation, genomic context, gene neighborhood, operon,
functional genomics, orthology databases.

1 Introduction

Next year will mark the 20th anniversary of the sequencing of the first complete ge-
nome of a cellular organism, the bacterium Haemophilus influenzae [1]. Many bac-
terial and eukaryotic genomes followed shortly after that, including the first human
genome in 2001 [2]. These events led to a revolution in the genome sequencing tech-
nologies, which sharply decreased the sequencing costs and dramatically changed the
way we do science. It is now often cheaper to isolate the DNA from some obscure
environmental sample and do the sequencing than to perform a standard biochemical
or biophysical experiment.

The rapid progress in technology has led to a largely unexpected conundrum where
the sequencing data are being accumulated at such a fast pace that the ability of the
biologists to perform any sensible data analysis inevitably falls behind. As a result,
most published research typically addresses only a relatively small number of specific
problems that prompted generation of the respective data set, and most sequence data
remain underutilized by the researchers. The growing schism between data generation

* The article is a work of the United States Government; Title 17 U.S.C 105 provides that

copyright protection is not available for any work of the United States government in the
United States.

2 M.Y. Galperin and E.V. Koonin

and the use of these data makes post-genomic sequence analysis a particularly prom-
ising avenue of research, offering computational biologists ample amounts of raw
sequence data that could be used to answer a variety of important questions. The onus
therefore shifts to the researcher’s ability to ask the right questions and to extract from
the databases the right data sets to answer these questions.

One of the most common stumbling blocks in converting the raw sequence data to
scientific - or biotechnological - findings is the insufficient level of understanding the
functions of numerous genes even in the best-studied genomes, such as the bacteria
Escherichia coli and Bacillus subtilis, or the yeast Saccharomyces cerevisiae. Even for
Escherichia coli K-12, the workhorse of molecular biology and arguably the best-
studied organism in the world, the EcoGene database1 shows that 1336 genes out of
the current list of 4141 still have the ‘y’ designation, indicating that their functions
remain uncharacterized [3]. Further, for products of many other genes, only a general
function (e.g., ‘cell division protein’, stress-induced protein’) is known at this time.
For less-studied organisms, the fraction of uncharacterized genes can be much higher,
with virtually all of their genes are being assigned their functions solely based on the
sequence similarity to the genes in other organisms. Thus, comparing different ge-
nomes and transferring functional annotation of genes (proteins) from better studied
organisms to their orthologs from lesser studied organisms has become the key
process in the efforts to provide functional annotation of newly sequenced genomes
and use this information to achieve a better understanding of the physiology of the
respective organisms.

The goal of this presentation is to a) define the notion of “biological function” as it
relates to computational biology, b) describe the most popular ways of assigning func-
tion to predicted genes (open reading frames), particularly those that specifically rely on
comparative genome analysis, and c) discuss the challenges and drawbacks of the cur-
rent algorithms for semi-automated high-throughput functional annotation of genomes.

2 What Is the Gene “Function”?

While it is only natural to think of the live cell as a perfectly designed system where
every part has its own well-defined role (the “function”), in reality, cell components
participate in a complex network of interactions and often have more than one role.
Most enzymes can work with a group of related substrates instead of a single one
(have group specificity) and catalyze various side reactions. The function of the gene
is typically defined as the role that its protein product plays in situ, i.e. the live cell.
As a result, a protein that hydrolyzes a natural substrate, e.g. a phosphorylated sugar
into sugar and phosphate moieties, will be usually called a phosphatase, even if this
protein is more active with a non-natural artificial substrate, such as a sugar phospho-
nate. Sometimes, however, the name is derived from an easily measurable side activi-
ty whereas the genuine native function might not even be known. Thus, the enzymes
that catalyzed reduction of certain dyes - and whose activity could be easily measured

1 http://www.ecogene.org/

 Comparative Genomics Approaches to Identifying Functionally Related Genes 3

by changes in color - has been referred to as diaphorase for more 20 years before its
activity as NAD(P)H:acceptor oxidoreductase has been established and it became
clear that there exists a whole family of such enzymes.

In biology, gene (protein) function is usually defined historically, based on the first
description of the properties of the respective mutant or the biochemical activity of
the purified protein. For essential genes, where mutations are lethal or conditionally
lethal, the function can be defined as something that the gene product needs to do to
sustain the cell growth. Operationally, for lethal mutations, the cause of cell death is
assumed to be the “function” of the gene in question. For non-essential genes, muta-
tion phenotypes can be quite complicated and, accordingly, the descriptions of “func-
tion” may be quite long and fuzzy, and not necessarily physiologically relevant, i.e.
reflecting their core functions. For example, studies of the sporulation process in the
hay bacterium Bacillus subtilis, a popular model organism, have been used to define
functions for hundreds of genes. As a result, certain bacterial genes are being referred
to as “sporulation” genes, even though the respective organisms, e.g., cyanobacteria,
are unable to sporulate [4,5].

This problem becomes particularly severe for high-throughput enzyme assays,
which can be used to define general biochemical activities of the products of pre-
viously uncharacterized genes, but are often unable to identify the natural substrates
for the respective enzymes or the biochemical pathway involving these enzymes [6,7].
A proper definition of the protein function should probably combine characterization
of its biochemical activity, if any (i.e. the nature of the catalyzed reaction and the
range of utilized substrates and products) with the description of the biological
process (e.g. a metabolic or signaling pathway) that involves this protein. For poorly
studied organisms, such information is obviously unavailable and every overly specif-
ic assignment should be taken with a grain of salt. We have previously discussed cer-
tain functional assignments that, despite being supported by reasonably high similari-
ty scores, do not pass even the cursory “sanity check”. Examples include bacterial and
archaeal “head morphogenesis protein“, “mitochondrial benzodiazepine receptor”,
“centromere protein”, and many others [8,9].

In the course of evolution, homologous genes may adopt new functions, sometimes
quite distinct from their ‘original’ ones. There are several excellent databases that
collect such data. The FunShift database2 at the Stockholm University [10] documents
functional shifts between different subfamilies within a single protein domain family.
The PANTHER3 database at SRI International in Menlo Park, California, shows such
functional shifts on the phylogenetic trees [11], whereas the Structure-Function
Linkage Database4 at the University of California, San Francisco, analyzes structural
and functional details for functionally diverse enzymes that belong to the same
superfamilies [12].

A further complication is the phenomenon of so-called “moonlighting proteins”
that perform one function in one environment, such as cytoplasm, and an entirely

2 http://funshift.sbc.su.se/
3 http://www.pantherdb.org/
4 http://sfld.rbvi.ucsf.edu/

4 M.Y. Galperin and E.V. Koonin

different function in a different environment, such as, for example, when secreted
outside the cell [13]. Some of such cases are captured in MultitaskProtDB, a database
of multitasking proteins5 at the Universitat Autònoma de Barcelona in Barcelona,
Spain [14]. While the number of such moonlighting proteins appears to be relatively
small, that might be due to the fact that such cases are not easy to recognize.

To summarize, the biological notion of ‘function’ is rather fuzzy, which usually
leave sufficient wiggle room for functional annotations to be reasonably close to the
reality. However, finding proper balance between overly generic (non-specific) and
overly specific functional annotation is a complex task that does not have easy algo-
rithmic solutions. Simply copying the functional annotation of the closest homolog in
the database or the closest characterized homolog is hardly an appropriate solution, as
it leads to numerous problems, from propagation of errors to generation of annota-
tions that cannot pass the sanity check.

3 Homology-Based Functional Assignments

3.1 Annotation by Similarity

The simplest and the most straightforward way to assign function to a newly sequence
gene (protein) is to find a similar gene (protein) with an experimentally characterized
function. Every day, numerous researchers use the BLAST program on the NCBI web
site to perform sequence comparisons and use them to annotate new genes (proteins)
based on the functional information from previously characterized genes. There are
also other sequence comparisons algorithms; some of them will be mentioned below.

It is important to remember, however, BLAST and other sequence comparisons al-
gorithms measure the degree of sequences similarity, not functional similarity. In
other words, such algorithms evaluate the probability that the given sequences are
related solely by chance, i.e. the probability that the given sequences are evolutionari-
ly unrelated. When that value is sufficiently low, e.g. less than one per million, this
result can be interpreted as evidence of an evolutionary relationship of those se-
quences, i.e. their common descent from the same ancestral gene. However, at lower
similarity levels, i.e. higher E (expectation) values, the probability that the respective
proteins have the same function and, therefore, that transfer of functional information
from already known genes (proteins) to the new one is justified, becomes progressive-
ly lower. Furthermore, because of the intrinsic diversity of biological sequences, there
can be no a priori estimate as to which E-value still allows transfer of functional
information and which E-value does not.

A potential way out of this conundrum lies in the development of databases of or-
thologous proteins or, more precisely, orthologous groups of proteins [15]. In its orig-
inal implementation in the COG database, the algorithm for identification of orthologs
across diverse bacteria and archaea relied on the triangles of genome-specific bidirec-
tional best hits with no cut-off by E-value [15]. Subsequent algorithms preserved the
need for bidirectional best hits but included certain cut-offs to eliminate spurious hits.

5 http://wallace.uab.es/multitask/

 Comparative Genomics Approaches to Identifying Functionally Related Genes 5

There is now a wide variety of ortholog databases that use various tool to infer orthol-
ogy and are geared towards various uses, including functional annotation of genomes
[15-23].

3.2 Family/Superfamily Annotation

Despite the best efforts on sequence analysis, a substantial fraction of proteins show
only a limited similarity to their experimentally characterized counterparts. In many
cases, the similarity is limited to the common sequence motifs and/or to the predicted
structural features. In such cases, direct transfer of functional information from is
hardly justified. Instead, a much more productive way would be replacing a specific -
and most likely inaccurate - annotation of the new protein with a family-based annota-
tion, stressing the general conserved features of the family members but avoiding
unnecessary specifics (or, rather, leaving them for the future). We have previously
discussed the inherent fuzziness of the functional annotation for the members of the
ATP-grasp, alkaline phosphatase, all-alpha NTP-PPase, and other superfamilies
[24-27], as well as for transcriptional regulators and membrane transporters [8].

Finally, there are numerous protein families whose functions remain totally
enigmatic. Such proteins have been referred to as “hypothetical”, “conserved
hypothetical”, “uncharacterized” or even “putative uncharacterized” [28]). Families of
such proteins include Domains of Unknown Function (DUFs) in Pfam, and
Uncharacterized Protein Families (UPFs) in UniProt [28,29]. These lists are quite
valuable for genome annotation, because clarification of the functions of any of their
members immediately allows functional assignments for all other members of that
family. From the computational standpoint, the software should allow sufficient
flexibility in protein names, so that an amended functional assignment could be
quickly propagated to the members of a given protein family without the need for any
major revamp of the system. In fact, the continuing process of biological research
means that changes in gene (protein) functional annotation are bound to be a constant
factor in genomic databases for the foreseeable future.

4 Using Genome Comparisons for Predicting Protein Functions

While sequence similarity searches remain by far the most popular tool for identifying
the functions of unknown proteins and RNA, in many cases such searches do not
yield satisfactory functional annotation, as no functional assignment can be made with
any degree of confidence. For such cases, there are several computational approaches
that go beyond sequence comparison. Instead, such methods rely on “genomic con-
text”, i.e. common properties that are shared by unrelated (non-homologous) proteins
that perform the same or related functions. Examples of such proteins include differ-
ent subunits of the same complex enzyme, components of the same signaling path-
way, alternative enzymes that catalyze the same biochemical reaction, and many
others. In order for such non-homologous but functionally related protein pairs to
work in concert, they need to be present in the same organism at the same time, they
might also physically interact. Accordingly, identification of functionally associated

6 M.Y. Galperin and E.V. Koonin

pairs of proteins relies on their joint presence and absence in a certain set of genomes
(phylogenetic co-occurrence) and their co-expression, as judged by the presence of
common regulatory sites, conservation of their location next to each other in multiple
genomes, and/or gene fusions [8,30,31].

These approaches have two important traits: they take advantage of the availability
of multiple complete genomes and they treat them as genomes rather than just sets of
individual genes. Accordingly, these approaches rely on the same basic premise - that
organization of the genetic information in each particular genome is meaningful, in
the sense that it reflects a long history of mutations, gene duplications, gene re-
arrangements, gene function divergence, gene acquisition and loss that has produced
organisms that are uniquely adapted to their environment and are capable of regulat-
ing their metabolism in accordance with the environmental conditions. Further, some
of these approaches, as the analysis of gene co-expression, gene neighborhoods and
protein domain fusions, do not require knowledge of complete genome sequences and
therefore can benefit from the enormous amount of sequence data available in the
unfinished genomes and metagenomes. This dramatically increases sensitivity and
robustness of these approaches, making them indispensable tools in the functional
analysis of uncharacterized genes.

The principles and methods of genome context-based functional annotation have
been described in detail in numerous publications [8,30-43]. Here we briefly describe
the general principles of these approaches and discuss their principal caveats. We also
discuss the limitations of applying these tools to infer sensible functional association.
It is important to note that all these approaches critically depend on the number of
available genome sequences and their diversity. Therefore, recent progress in genome
sequencing that leads to the constantly growing number of available genomes, even if
incomplete, gradually increases the specificity of all these methods, effectively im-
proving the signal-to-noise ratio. In addition, functional links can be deduced from the
results of several high-throughput experimental techniques, such as gene co-
expression obtained using microarrays or deep RNA sequencing and various protein-
protein interaction data. All this makes genomic context-based methods increasingly
powerful in providing valuable clues to inferring gene (protein) function.

4.1 Phylogenetic Profiling

General Approach. The number of genes that are encoded in all known genomes is
extremely small, less than a hundred, and functions of all of them are already known.
Most of these genes encode ribosomal proteins or subunits of several key enzymes of
DNA replication, tRNA aminoacylation, and central metabolism [44]. All other genes
are present in some genomes and absent in the others. When comparing the distribu-
tion of two genes across multiple genomes, one can come with the following general
patterns. First, the genes typically co-occur, i.e. certain genomes carry both these
genes while other genomes do not have either of them. In such cases, functional asso-
ciation of the two genes becomes very likely, which makes this method a potentially
powerful tool for inferring protein function [15,34,38,45]. However, as mentioned
above, this functional association is quite fuzzy in biological terms and may be used

 Comparative Genomics Approaches to Identifying Functionally Related Genes 7

only for a very general functional annotation. In other cases, the genes are rarely
found together, most genome carry either one or the other, resulting in complementa-
ry phylogenetic patterns. Such cases may arise from a specific kind of functional as-
sociation, the one where the respective gene actually have the same (or closely
related) functions, such that the organism only needs either of them. Such cases, re-
ferred to as non-orthologous gene displacement [46], are not very common but, when
found, could be used for very specific functional annotation [31].

Algorithmic Aspects. The overall approach is quite straightforward: compile a matrix
of presence (1) or absence (0) of the given genes in as many genomes as possible and
calculate the numbers of (1,1), (1,0), (0,1) and (0,0) combinations. Then compare the
fraction of (1,1) cases [as well as the combined fraction of (1,1) and (0,0) cases] with
the fraction of other two and evaluate the probability that the difference, if any, arises
simply by chance. If that probability is sufficiently low, the pair can be marked as
likely to have a functional interaction. For non-orthologous gene displacement, vice
versa, the (0,1) and (1,0) cases should be far more common than (1,1) ones.

Unfortunately, this approach has several important caveats. First of all, it relies on
recognition of the “same gene” in many distinct genomes, i.e. runs into all the prob-
lems described above. Different genes evolve with different rates, and even function-
ally related genes may accumulate mutations, insertions and deletions at dramatically
different pace. As a result, two homologous genes in two different genomes might be
very similar (e.g. with E-value of 1x10-10), whereas their partners in the same ge-
nomes would show only borderline similarity (e.g. E-value of 1x10-3). Selecting an
overly strict cut-off for similarity scores would throw away distant homologs of the
given gene and might artificially inflate the fraction of (1,0) cases. On the other hand,
selecting an overly permissive cut-off would result in an inflated fraction of (1,1)
cases, which would decrease the specificity of the method, highlighting spurious gene
pairs as functionally related. To avoid this conundrum, one could specifically look for
pairs of orthologs in diverse genomes, which would alleviate most of the problems
arising from differences in evolutionary rates. However, this would mean either
adding an entirely new layer of computation or relying on the external sources of
orthology data, which might have their own problems. For example, some orthology
databases, like OMA browser6 emphasize one-to-one correspondence between ortho-
logous genes and are therefore might be sensitive to lineage-specific gene duplication
events [17]. We believe that by defining orthologous groups, as opposed to single
orthologs, the COG approach offers the best balance of specificity and sensitivity.
However, the COG database covers only 63 genomes and has not been updated since
2003.

Another potential problem of phylogenetic profiling is taxonomic depth. With
hundreds of Escherichia coli genomes already in the database, most E. coli gene pairs
are already found in hundreds of genomes and are missing in numerous other

6 http://omabrowser.org

8 M.Y. Galperin and E.V. Koonin

genomes. While this ensures predominance of (1,1)+(0,0) cases, that does not mean
that such genes necessarily interact. Thus gene pairs that are found in phylogenetical-
ly distant organisms (e.g. in members of different phyla) should score much higher
than those found only at very short phylogenetic distances. It also makes sense to
ignore closely related genomes, e.g. by collapsing at the level of genus or even a
family. On the other hand, horizontal gene transfer between organisms that inhabit the
same environment can result in groups of unrelated genes being co-transferred across
large phylogenetic distances, e.g. from hyperthermophilic bacteria to hyperthermo-
philic archaea or vice versa. As a result, assigning too much value to the rare sightings
of the same genes in phylogenetically distinct organisms might be dangerous and
counterproductive.

For the rare genes that are found in relatively few genomes, the above factors com-
bine making phylogenetic profiling particularly unreliable. Thus, when the number of
(1,1) is small and the number of (0,0) is large, there is a decent chance that the (1,1)
cases are not indicative of a functional relationship.

One more potential problem of phylogenetic profiling is the reliance of the method
on the correct identification of all the ORFs in the genome. In practice, automatically
annotated genomes often miss short ORFs, those with less than 70-80 codons, and
sometimes even longer ones [45]. In addition, ORFs with frameshifts typically get
omitted from the protein set, even when these frameshifts s result from sequencing
errors, so that the genome encodes a fully functional protein. In some cases, supposed
frameshifts create stop codons between separate protein domains and therefore do not
result in the loss of function but such proteins still get removed from the respective
proteomes. We have previously described how deviations from conserved phyloge-
netic patterns could be used for improving genome annotation [45], but that required
manual intervention. When used semi-automatically on a genome scale, phylogenetic
profiling, particularly for short ORFs could be very sensitive to the annotation errors.

Practical Aspects. At this time, there is no universally accepted way to score the
results of phylogenetic profiling. As a result, this approach is still widely used but
typically on an ad hoc basis: biologists typically use co-occurrence of certain genes as
additional evidence of their involvement in the same process or a pathway. There are
databases that could be used to extract phylogenetic profiles from the genome data,
the best and most widely used being the STRING database7, maintained by Peer Bork
and coworkers at the European Molecular biology Laboratory in Heidelberg, Germa-
ny [43]. STRING allows the user to select a gene from a variety of complete genomes
and search for genes with the same or similar phylogenetic profiles. This tool is very
useful for genome annotation, particularly if combined with other options offered
by the same database (see below). FunCoup database8 at the Stockholm University
specifically targets eukaryotic genes and, like STRING, presents various kinds of
functional coupling information, including phylogenetic profiles [47].

7 http://string.embl.de
8 http://funcoup.sbc.su.se/

 Comparative Genomics Approaches to Identifying Functionally Related Genes 9

4.2 Genomic Neighborhood

General Approach. Co-expression of proteins belonging to the same metabolic or
signaling pathway is typically achieved thorough co-regulation of the transcription of
the respective genes by the same transcriptional regulators. This could be detected by
identifying common regulatory sites, although the specificity of such prediction is
typically limited and they need to be verified by direct experimentation. In bacteria,
co-expressed genes are often located next to each other, forming operons that are
transcribed as a single multigenic mRNA. On the other hand, due to the constant
events of gene translocation within the genome, as well as gene acquisition through
horizontal gene transfer and gene loss, the overall gene order is not conserved even
among relatively close relatives that belong to the same genus, and is typically wiped
out at the level of the bacterial family. Thus, conserved gene neighborhoods in phyloge-
netically distinct organisms are relatively rare [48] and analysis of gene may provide
important functional clues [36,37]. Therefore, bacterial genome analysis offers an easy
way of inferring functional connections by simply looking at the genes that are consis-
tently adjacent to the studied gene in multiple genomes. This approach could even be
used for analyzing eukaryotic genes through finding bacterial orthologs of the given
eukaryotic gene, followed by an analysis of their genome neighborhoods [49].

Algorithmic Aspects. The general approach to the identification of functionally
linked genes through the analysis of their genomic context includes the following
steps. First, for a given gene from the given organism, one needs to identify the ‘same
gene’ (or, more precisely, orthologs of this gene) in all available genomes and, at the
next step, define other genes that belong to the same operons and therefore are co-
expressed. However, genetic studies have revealed co-regulated divergent operons
(running in both directions from a common regulatory site), as well as convergent
ones. That is why, in practice, the direction of the genes is usually ignored and the
algorithm simply selects a certain number of their neighbors (just the nearest neigh-
bors or two, three, or more adjacent genes) on one or both sides in all these genomes.
These neighboring genes then need be classified into conserved groups of the same
function and ranked by the frequency of their occurrence in these neighborhoods. The
genes that show a statistically significant association with the orthologs of the given
gene may be expected to have a functional connection to this gene.

Obviously, this approach is subject to the same caveats as phylogenetic profiling,
and also additional ones. First, again, the definition of the ‘same gene’ in various
genomes has to rely on sequence comparisons and is subject to all the limitations
discussed above. The availability of predefined clusters of orthologs helps but, again,
means either extra computation or reliance on an external source of information that
the user cannot control. This method, however, requires identification of orthologs not
just for the initial query gene but also for the genes that abut its orthologs in all
studied genomes. This calls for a far more complex computation and/or far more
extensive use of orthology databases.

The other two problems of phylogenetic profiling, the taxonomic depth and the po-
tential effect of horizontal gene transfer, also apply to the analysis of the genomic

10 M.Y. Galperin and E.V. Koonin

neighborhood. The high incidence of the same genome neighborhood in numerous
closely related genomes is likely to make it difficult to find relatively rare cases where
the neighbors might be different. On the other hand, such rare associations could re-
flect cases of horizontal gene transfer and assigning too much weight to them might
be misleading.

One more problem complicating the analysis of the genomic neighborhoods is a
rapid increase in the amount of the necessary computation with the expansion of the
search field. The chance of finding non-trivial gene associations obviously increases
when one looks not just at the nearest neighbor(s) but, say, at three, four or five genes
on each side from the analyzed one. However, the need to keep track of the identified
neighbors and all their orthologs makes the task increasingly complex.

Practical Aspects. There are several different tools for analyzing conserved gene
neighborhoods. A popular tool included in the SEED database9, [50] tags the selected
gene and displays conserved genes found in the vicinity of its orthologs (‘pinned
CDSs’), scoring them by the E-value of the BLAST hit. The user is given the option
of choosing the size of the analyzed region (in kilobases), the number of genomes to
display, and E-values for selecting the genes to show and to color the same way. This
tool is most convenient for analyzing gene neighborhoods among closely related ge-
nomes; expanding it to the members of different phyla may be complicated. Another
tool is available in the KEGG database, part of the KEGG Orthology10 system [23].
Instead of BLAST E-values, as in SEED, this tool relies on the precomputed lists of
orthologs and displays the members of KEGG orthologous groups located in the ge-
nome in the vicinity of the given gene. The most popular tool for studying gene
neighborhoods is probably the one at the STRING11 database [43]. It also relies on
precomputed lists of orthologs and displays them over the entire phylogenetic tree.
Thus, each tool has its own advantages, and by combining two or more of them, it
becomes possible to analyze the gene neighborhoods in much detail and over large
phylogenetic distances. Future progress in developing such tools would require creat-
ing more comprehensive ortholog databases and improvement of the phylogenetic
profiling methods that would allow investigating genome neighborhoods in selected
parts of the tree of life.

4.3 Gene Coexpression

General Approach. Strictly speaking, gene colocalization does not always imply
coexpression. In fact, adjacent but divergently oriented genes could be part of an ‘ei-
ther one or another’ regulatory system. The availability of genome sequences gave
rise to genomic microarrays, which allowed simultaneous identification of all genes
that are coexpressed in response to a specific environmental signal or in such condi-
tions as nutritional or osmotic stress. Such data have been very useful for the specific

9 http://theseed.org/

10 http://www.kegg.jp/kegg/ko.html
11 http://string.embl.de

 Comparative Genomics Approaches to Identifying Functionally Related Genes 11

conditions that they studied but microarray experiments were generally costly and
narrowly targeted. Obviously, it would be very attractive to deduce gene coexpression
straight from the DNA sequence, by identifying conserved transcriptional regulatory
sites in front of the genes that might not even be located in the same genome neigh-
borhood. There have been numerous attempts to predict transcription regulatory sites
ab initio on the genome scale. Unfortunately, this task is quite complex and the sig-
nal-to-noise ratio is usually pretty low. A much more successful approach has been
based on utilizing information about known - experimentally determined - transcrip-
tional regulatory sites and scanning the genomes for additional instances of the same
or similar sites. In the past, the sequences of regulatory sites had to be determined
experimentally by DNA fingerprinting. More recently, such information has started
pouring in from deep sequencing data. As a result, transcriptional profiling with prob-
abilistic models of the likely regulatory sites has become a very promising approach
to look for coexpressed genes.

Algorithmic Aspects. The typical approach includes the following steps: compiling a
list of known coexpressed genes, creating a multiple alignment of the upstream regu-
latory sites, converting this alignment into either a frequency profile or a hidden Mar-
kov model, and using this profile or HMM to look for (additional) highly-scoring
sites, preferably in the intergenic regions. In a large series of papers from Gelfand and
colleagues, this approach has been used in combination with the information derived
from protein sequences, such as the presence of orthologs in several different
genomes [51-57], see [58,59] for review.

Practical Aspects. At this time, there are several tools for gene coexpression profil-
ing, including Gibbs Motif Sampler [60,61] and RegPredict [62]. The first one, Gibbs
Motif Sampler, is being run at the servers at the Wadsworth Center in Albany, New
York12, and at Brown University in Providence, Rhode Island13 [63,64]. In addition,
several versions of this software are available for downloading14. RegPredict15 is a
web service of the Lawrence Berkeley National Laboratory in Berkeley, California. It
is closely associated with RegPrecise16 and RegTransBase17, two manually curated
databases of transcriptional regulation in prokaryotes [65,66].

4.4 Protein Domain Fusions

General Approach. In some cases, adjacent genes are not just coexpressed, they may
lose the stop codon that terminates the first polypeptide chain. Such cases (as well as
certain gene recombination events) lead to the formation of fused genes, where a sin-

12 http://bayesweb.wadsworth.org/cgi-bin/gibbs.8.pl?data_type=DNA
13 http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html
14 http://mcmc-jags.sourceforge.net/
15 http://regpredict.lbl.gov/
16 http://regprecise.lbl.gov
17 http://regtransbase.lbl.gov

12 M.Y. Galperin and E.V. Koonin

gle protein consists of two or more different domains. While each domain has its own
function, the fusion would be viable - and maintained in the course of evolution - only
when its components are functionally linked, e.g. by participating in the same path-
way or a common regulatory mechanism. Therefore, identification of fused genes
offers a convenient way to deduce functional association, which is why it has been
referred to as the “Rosetta stone” approach [32,67]. Obviously, protein domain fu-
sions are only helpful when they combine a previously uncharacterized domain with a
domain of known function [68]. Fusions of already characterized domains are being
studied by numerous researchers for a variety of purposes but not for functional as-
signments, whereas fusions of uncharacterized domains are interesting but hardly ever
contribute to functional analysis.

Algorithmic Aspects. Detection of gene fusions is usually performed at the protein
level, through the analysis of multidomain proteins that combine on a single polypep-
tide chain two or protein domains that are usually found separately (widespread do-
main fusions, e.g. of pyrimidine biosynthesis enzymes in eukaryotes, are trivial and
rarely yield new insights). The search algorithm would largely depend on whether the
analyzed gene product contains an already known protein domain. If so, the analysis
could be performed using the established databases of protein domains, such as
Pfam18 at the Wellcome Trust Sanger Institute or InterPro19 at the European Bioin-
formatics Institute, both in Hinxon, UK, or the NCBI’s Conserved Domain Database20
databases [29,69,70]. Each of these databases allows listing all domain architectures
that involve the given domain.

If, however, the analyzed gene product does not contain any protein domains that
are listed in public domain databases, the only applicable way seems to be using
BLAST (or PSI-BLAST, or HMMer) to find all instances of the new domain, sort the
search output by length looking for the longest database hits, and then analyze those
hits one-by-one to see if they contain any - known or new - conserved domains.

Analysis of meaningful protein fusions is relatively robust and is subject to few ca-
veats. The most important of those is the existence of so-called “promiscuous” do-
mains that associate with a wide variety of distinct proteins and do not allow any
functional inferences. Another potential issue is limiting the depth of the similarity
search. Tell-tale fusions of the given protein are often found only after several itera-
tions of PSI-BLAST or JackHMMer, and the degree of sequence conservation might
be fairly low. Then there is no guarantee that such domains retain the same or even
marginally similar functions, particularly when fused to different partners. Thus,
finding protein fusions among distant homologs makes it difficult to draw any
unequivocal conclusions.

18 http://pfam.sanger.ac.uk
19 http://www.ebi.ac.uk/interpro/
20 http://www.ncbi.nlm.nih.gov/cdd

 Comparative Genomics Approaches to Identifying Functionally Related Genes 13

Practical Aspects. The information on protein domain fusions is available in several
databases, including FusionDB21 at the Institut de Microbiologie de la Méditerranée in
Marseille, France [71]. Still, it appears that in bacteria, a significant fraction of fused
genes are fusions with the signal-transducing phosphoacceptor REC domain, DNA-
binding helix-turn-helix domain, and other promiscuous domains. While it is interest-
ing to see the variety of known protein domains that are fused with REC and therefore
fall under the control of the two-component signal transduction [72] or can be found
in transcriptional regulators (helix-turn-helix domain fusions), such cases do not ad-
vance the cause of functional annotation. Likewise, in eukaryotes, many domain fu-
sions involve SH2, SH3, and other regulatory domains [73], giving no clue as to what
specific activity is being regulated. On the other hand, domain fusion maps are al-
ready available for numerous domains of unknown function, DUFs in Pfam [29].
Thus, even a minor advance in understanding the function of a previously uncharacte-
rized domain - or, say, availability of its 3D structure - can be quickly propagated to
all proteins that contain this domain.

4.5 Protein-Protein Interactions

General Approach. Obviously, protein domain fusions capture only a relatively
small fraction of protein-protein interactions. Some additional information on such
interactions can be extracted from protein crystal structures that sometimes contain
distinct protein domains and show their mutual orientation and the mode(s) of domain
interactions. Such data are stored in a variety of public databases, including iPfam22,
3did23, DIMA24, DOMINE25 [74-77], and many others. However, most information on
protein-protein interactions comes from experimental data. These data are being col-
lected - and often ranked by reliability - in several aggregator databases, such as Bio-
GRID26, BindingMOAD27, DIP28, HitPredict29, IntAct30, MINT31 [78-84], and many
others. A selected list of such databases can be found in the Nucleic Acids Research
online Molecular Biology Database Collection web site32 [85]. Unfortunately, all
experimental methods for detecting protein-protein interactions are known to bring a
substantial number of false-positives. The situation has become so bad that there is
even a database of known non-interacting proteins, Negatome33 [86], designed to

21 http://igs-server.cnrs-mrs.fr/FusionDB/
22 http://ipfam.sanger.ac.uk/
23 http://3did.irbbarcelona.org
24 http://webclu.bio.wzw.tum.de/dima
25 http://domine.utdallas.edu/
26 http://www.thebiogrid.org/
27 http://www.BindingMOAD.org
28 http://dip.doe-mbi.ucla.edu/
29 http://hintdb.hgc.jp/htp/
30 http://www.ebi.ac.uk/intact/
31 http://mint.bio.uniroma2.it/mint/
32 http://www.oxfordjournals.org/nar/database/subcat/6/26
33 http://mips.helmholtz-muenchen.de/proj/ppi/negatome

14 M.Y. Galperin and E.V. Koonin

serve as a tool for estimating false-positive rates in protein-protein interactions expe-
riments and tools. Accordingly, scanning the available databases for the information
on protein-protein interactions is a good way to get potential clues on the function(s)
of the given protein but the reliability of such clues is typically pretty low.

Practical Aspects. It generally makes sense to query the available databases not just
for protein-protein interactions of the given protein but also its orthologs from other,
related genomes. Some protein-protein interactions databases rank the results by re-
liability; incorporating these scores is generally a good idea. However, it should be
noted that all those databases feed on a relatively limited number of original studies.
Therefore, merely finding certain interaction in several different databases should not
be used as evidence of a high-confidence interaction.

5 Combining Disparate Data into a Single Annotation

With the exception of a relatively small number of well-known and straightforward
cases, functional annotations of new genes (proteins) are inherently fuzzy. One of the
reasons for that is that these gene annotations are expected to be as specific and as
reliable as possible. These two demands are somewhat contradictory: a very general
but mostly useless annotation (e.g. a “metal-binding protein”) could be made with a
high degree of confidence, whereas a more specific - and more useful - annotation
might not be that well-grounded and totally reliable.

The International Nucleotide Sequence Database Collaboration34, which includes
NCBI’s GenBank35, the EBI’s European Nucleotide Archive36, and the DNA Data
Bank of Japan37, uses a simple schema with two evidence qualifiers, /experiment and
/inference38, which replaced the previously used qualifiers, ‘experimental’ and ‘non-
experimental’. These two qualifiers come with controlled vocabularies39 that specify,
respectively, experimental or non-experimental evidence that supports the feature
assignment38. These evidence codes are increasingly being used to justify functional
assignments of the open reading frames in the newly sequenced genomes. As a result,
it becomes much easier for the outside user to trace to the origin of the specific anno-
tation and decide whether it is trustworthy.

It is important to note, however, that while the INSDC guidelines require the anno-
tator to specify the evidence in the “/inference="similar to DNA sequence:
INSD:AY411252.1" format38, they impose no limits on the degree of similarity that is
acceptable in that annotation. As a result, certain technically acceptable annotations
may be based on extremely low similarity levels or even on previous annotations that
themselves were non-experimental and highly unreliable. There have been several

34 http://www.insdc.org/
35 http://www.ncbi.nlm.nih.gov/genbank/
36 http://www.ebi.ac.uk/ena
37 http://www.ddbj.nig.ac.jp/
38 http://www.ncbi.nlm.nih.gov/genbank/evidence
39 http://www.insdc.org/documents

 Comparative Genomics Approaches to Identifying Functionally Related Genes 15

attempts to develop a common set of standard operating procedures for genome anno-
tation [87], one such list is available online40, although most links there are no longer
functional. The NCBI maintains its own Prokaryotic Genome Annotation Pipeline41
and Eukaryotic Genome Annotation Pipeline42 projects that include certain annotation
standards43,44 designed to improve the annotation quality.

Still, there is a clear need for new computationally sound pipelines that would
comb through all sorts of disparate clues discussed in the previous sections in order to
a) provide the best possible annotations and b) not just list the annotation sources but
also evaluate the reliability of these annotations.

For protein annotation, the UniProt web site45 contains a variety of useful docu-
ments, including a constantly updated list of protein naming guidelines46. The key
question is, of course, “Annotation propagation: when to cut, copy and paste?” as
formulated in [88]. Several years ago we have come up with an annotation schema
that included the following seven categories [89]:

1. Exact biochemical function, based on high similarity to experimentally characte-
rized closely related homolog

2. Well defined biochemical function, unknown specificity
3. General biochemical function, based on family/superfamily assignment and/or a

conserved sequence motif
4. General biological function derived from the domain organization, genome con-

text (e.g., operons), experimental (e.g., protein-protein interactions), and/or struc-
tural genomics data (e.g., similarities to proteins with known 3D structures)

5. Certain functional insights derived from the above data
6. Widely conserved protein, expressed under certain growth condition(s)
7. Organism- or genus-specific protein, expressed under certain growth condi-

tion(s).

For the first two of the above categories, the best guidance can be found on the
web site of the HAMAP project47, which includes a set of manually created annota-
tion rules48 that specify the proper annotations for specific family members [90]. For
the third, and particularly for the remaining categories, the decision should probably
be made by a human annotator. Therefore, it is extremely important to provide that
human annotator with the proper tools that simplify his/her work. In practical terms,
that would mean bringing together the results of all the analyses that have been dis-
cussed above and ranking the results by their relevance and predictive value. The
resulting report would probably be pretty long and confusing. As an example, the

40 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196215/table/T1/
41 http://www.ncbi.nlm.nih.gov/genome/annotation_prok
42 http://www.ncbi.nlm.nih.gov/books/NBK169439/
43 http://www.ncbi.nlm.nih.gov/genome/annotation_prok/standards
44 http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
45 http://www.uniprot.org/docs/
46 http://www.uniprot.org/docs/proknameprot
47 http://hamap.expasy.org/
48 http://hamap.expasy.org/rules.html

16 M.Y. Galperin and E.V. Koonin

report for the Vibrio cholerae protein VC2772 (RefSeq entry NP_232398, UniProt
accession number Q9KNG7) would probably look like the following:

1. TIGRFAM04285, Nucleoid occlusion protein. Query coverage: 199/293 aa; target
coverage 198/255 aa; bit score: 223.5; E-value: 1.3e-71. Family description:
Nucleoid occlusion protein, a close homolog to ParB chromosome partitioning
proteins including Spo0J in Bacillus subtilis. Confidence: High

2. SwissProt BLAST hit P26497|SP0J_BACSU, Stage 0 sporulation protein J;
Query coverage: 288/293 aa; target coverage 275/282 aa; identities: 106/292; po-
sitives: 168/292; gaps: 21/292; bit score: 171; E-value: 3e-55; Confidence: High

3. PDB BLAST hit 1VZ0, Chromosome Segregation Protein Spo0j From Thermus
Thermophilus. Query coverage: 231/293 aa; target coverage 211/230 aa; identi-
ties: 98/232; positives: 149/232; gaps: 22/232; bit score: 170; E-value: 1e-55;
Confidence: High

4. TIGRFAM00180, ParB/RepB/Spo0J family partition protein. Query coverage:
179/293 aa; target coverage 186/187 aa; bit score: 177.5; E-value: 1.2e-54; Family
description: Chromosomal and plasmid partition proteins related to ParB, includ-
ing Spo0J, RepB, and SopB. Confidence: High

5. COG1475, Spo0J. Query coverage: 230/293 aa; target coverage 229/240 aa; bit
score: 156.2; E-value: 1.1e-45; Family description: Stage 0 sporulation protein J
(antagonist of Soj) containing ParB-like nuclease domain. Confidence: High

6. SUPERFAMILY SSF109709, KorB DNA-binding domain-like. Query coverage:
109/293 aa; Region: 122-230; E-value: 1.3e-33. Confidence: High

7. Pfam PF02195, ParBc. Query coverage: 89/293 aa; target coverage 88/90 aa; bit
score: 109; E-value: 1.3e-29; Family description: ParB-like nuclease domain.
Confidence: High

8. SUPERFAMILY SSF110849, ParB/Sulfiredoxin. Query coverage: 92/293 aa;
Region: 41-132; E-value: 3.4e-28. Confidence: High

9. SwissProt BLAST hit P77174|YBDM_ECOLI, Uncharacterized protein YbdM.
Query coverage: 136/293 aa; target coverage 140/209 aa; bit score: 39.3; E-value:
2e-8; Confidence: Medium

10. SwissProt BLAST hit P76068|YNAK_ECOLI, Uncharacterized protein YnaK.
Query coverage: 63/293 aa; target coverage 69/87 aa; bit score: 30.4; E-value: 2e-
6; Confidence: Medium

11. PDB: 1VZ0, chromosome segregation protein Spo0J from Thermus thermophilus.
12. PubMed: 15228524, Leonard,T.A., Butler,P.J. and Lowe,J. Structural analysis of

the chromosome segregation protein Spo0J from Thermus thermophilus. Mol. Mi-
crobiol. 53 (2), 419-432 (2004)

13. STRING Genome neighbors: VC_2773, ParA family protein (257 aa), score:
0.995; VC_2061, ParA family protein (258 aa), score: 0.932; gidA, tRNA uridine
5-carboxymethylaminomethyl modification enzyme GidA (631 aa), score: 0.877;
gidB, 16S rRNA methyltransferase GidB; specifically methylates the N7 position
of guanosine (210 aa), score: 0.862; ftsK, putative cell division protein FtsK;
DNA motor protein (960 aa), score: 0.823; VC_A1115, ParA family protein
(407 aa), score: 0.764.

 Comparative Genomics Approaches to Identifying Functionally Related Genes 17

14. STRING Domain fusions: None
15. STRING Coexpression data: atpB, F0F1 ATP synthase subunit A, key component

of the proton channel
16. Protein-protein interactions: ParA, a Walker-type ATPase with non-specific

DNA-binding activity.

Looking at all these data, the annotator would realize that VC2772 is a DNA-
binding protein that also interacts with ParA protein and participates in chromosome
partitioning during cell division. Based on that, the tentative annotation would proba-
bly be as follows: Chromosome segregation protein Spo0J, contains ParB-like nuc-
lease domain. Please note that automatic transfer of the annotation of the best data-
base hit, Stage 0 sporulation protein Spo0J, would be an unforgivable mistake be-
cause, unlike B. subtilis, Vibrio cholerae does not form spores. This example shows
some of the caveats in annotating new proteins, even those with reasonably well cha-
racterized homologs. However, there is always a hope that in the future it would be
possible to create a comprehensive set of rules (expanding those already available in
HAMAP48) that would allow a largely automated assignment of functions to a great
majority of proteins encoded in any bacterial or eukaryotic genome.

6 Conclusions

In conclusion, improved functional annotation is the only feasible way to extracting
information from genomic sequences and gaining a better understanding of the
processes in the live cell. For numerous uncultured organisms, as well as for metage-
nomes, computational analysis is the only way to go. In most part, improved func-
tional assignments would depend on the experimental characterization of the remain-
ing unknown genes. Several recent discoveries, including the CRISPR-Cas system
and the c-di-GMP, c-di-AMP-and c-di-GAMP-mediated cellular signaling in bacteria
and eukaryotes, show that there could still be major gaps in our understanding of the
key processes even in the relatively well-studied cells.

That said, improved algorithms for functional annotation would play a major role
in generating viable hypotheses and guiding the experimental research. For many
widespread uncharacterized proteins with sufficiently wide phylogenetic representa-
tion, simultaneous application of all the tools described above can be expected to
generate a number of leads that would either point out the likely function or at least
suggest specific experiments that would eventually allow doing so. That would indeed
be an invaluable contribution of comparative genomics to genome biology and biolo-
gy as a whole. Exactly this approach lies at the heart of the COMputational BRidge to
EXperiments (COMBREX49) project, which aims at obtaining the best possible com-
putational predictions and subjecting them to experimental verification [91,92]. This
and other similar projects have a bright future, as only through combined efforts of
computational, structural, and experimental biologists would it be possible to achieve
a better understanding of gene function on the genome scale.

49 http://combrex.bu.edu/

18 M.Y. Galperin and E.V. Koonin

Acknowledgements. This study was supported by the Intramural Research Program
of the National Library of Medicine at the U.S. National Institutes of Health.

References

1. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage,
A.R., Bult, C.J., Tomb, J.-F., Dougherty, B.A., Merrick, J.M., McKenney, K., Sutton,
G.G., FitzHugh, W., Fields, C., Gocayne, J.D., Scott, J., Shirley, R., Liu, L.-I., Glodek, A.,
Kelley, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T., Hedblom, E., Cotton, M.D.,
Utterback, T.R., Hanna, M.C., Nguyen, D., Saudek, D.M., Brandon, R.C., Fine, L.D.,
Frichtman, J.L., Fuhrmann, J.L., Geoghagen, N.S.M., Gnehm, C.L., McDonald, L.A.,
Small, K.V., Fraser, C.M., Smith, H.O., Venter, J.C.: Whole-genome random sequencing
and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995)

2. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K.,
Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A.,
Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J.,
Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R.,
Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A.,
Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee,
C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin,
R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M.,
Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A.,
Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier,
L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T.,
Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L.,
Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton,
S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T.,
Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M.,
Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C.,
Rives, C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L.,
Weinstock, G.M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T.,
Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin,
W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith,
D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J.,
Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang,
J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel,
N.A., Abola, A.P., Proctor, M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J.,
Cox, D.R., Olson, M.V., Kaul, R., Shimizu, N., Kawasaki, K., Minoshima, S., Evans,
G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser, J., Lehrach, H.,
Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer,
K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Bir-
ney, E., Bork, P., Brown, D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp,
M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J., Gilbert,
J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W.,
Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P.,
Koonin, E.V., Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T.,
Moran, J.V., Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G.,
Smit, A.F., Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L.,

 Comparative Genomics Approaches to Identifying Functionally Related Genes 19

Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H., Yang, S.P., Yeh, R.F.,
Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A.,
Morgan, M.J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J.:
Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

3. Zhou, J., Rudd, K.E.: EcoGene 3.0. Nucleic Acids Res. 41, D613–D624 (2013)
4. Rigden, D.J., Galperin, M.Y.: Sequence analysis of GerM and SpoVS, uncharacterized

bacterial ’sporulation’ proteins with widespread phylogenetic distribution. Bioinformat-
ics 24, 1793–1797 (2008)

5. Galperin, M.Y., Mekhedov, S.L., Puigbo, P., Smirnov, S., Wolf, Y.I., Rigden, D.J.:
Genomic determinants of sporulation in Bacilli and Clostridia: Towards the minimal set of
sporulation-specific genes. Environ. Microbiol. 14, 2870–2890 (2012)

6. Kuznetsova, E., Proudfoot, M., Sanders, S.A., Reinking, J., Savchenko, A., Arrowsmith,
C.H., Edwards, A.M., Yakunin, A.F.: Enzyme genomics: Application of general enzymatic
screens to discover new enzymes. FEMS Microbiol. Rev. 29, 263–279 (2005)

7. Kuznetsova, E., Proudfoot, M., Gonzalez, C.F., Brown, G., Omelchenko, M.V., Borozan,
I., Carmel, L., Wolf, Y.I., Mori, H., Savchenko, A.V., Arrowsmith, C.H., Koonin, E.V.,
Edwards, A.M., Yakunin, A.F.: Genome-wide analysis of substrate specificities of the
Escherichia coli haloacid dehalogenase-like phosphatase family. J. Biol. Chem. 281,
36149–36161 (2006)

8. Koonin, E.V., Galperin, M.Y.: Sequence - Evolution - Function. Computational
Approaches in Comparative Genomics. Kluwer, Boston (2003)

9. Galperin, M.Y., Koonin, E.V.: From complete genome sequence to ‘complete’ understand-
ing? Trends Biotechnol. 28, 398–406 (2010)

10. Abhiman, S., Sonnhammer, E.L.: FunShift: A database of function shift analysis on pro-
tein subfamilies. Nucleic Acids Res. 33, D197–D200 (2005)

11. Mi, H., Muruganujan, A., Thomas, P.D.: PANTHER in 2013: Modeling the evolution of
gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Ac-
ids Res. 41, D377–D386 (2013)

12. Akiva, E., Brown, S., Almonacid, D.E., Barber, A.E., Custer, A.F., Hicks, M.A., Huang,
C.C., Lauck, F., Mashiyama, S.T., Meng, E.C., Mischel, D., Morris, J.H., Ojha, S.,
Schnoes, A.M., Stryke, D., Yunes, J.M., Ferrin, T.E., Holliday, G.L., Babbitt, P.C.: The
Structure-Function Linkage Database. Nucleic Acids Res. 42, D521–D530 (2014)

13. Copley, S.D.: Moonlighting is mainstream: Paradigm adjustment required. Bioessays 34,
578–588 (2012)

14. Hernandez, S., Ferragut, G., Amela, I., Perez-Pons, J., Pinol, J., Mozo-Villarias, A.,
Cedano, J., Querol, E.: MultitaskProtDB: A database of multitasking proteins. Nucleic Ac-
ids Res. 42, D517–D520 (2014)

15. Tatusov, R.L., Koonin, E.V., Lipman, D.J.: A genomic perspective on protein families.
Science 278, 631–637 (1997)

16. Tatusov, R.L., Galperin, M.Y., Natale, D.A., Koonin, E.V.: The COG database: A tool for
genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36
(2000)

17. Altenhoff, A.M., Schneider, A., Gonnet, G.H., Dessimoz, C.: OMA 2011: Orthology infe-
rence among 1000 complete genomes. Nucleic Acids Res. 39, D289–D294 (2011)

18. Fischer, S., Brunk, B.P., Chen, F., Gao, X., Harb, O.S., Iodice, J.B., Shanmugam, D.,
Roos, D.S., Stoeckert, C.J.: Using OrthoMCL to assign proteins to OrthoMCL-DB groups
or to cluster proteomes into new ortholog groups. Curr. Protoc. Bioinformatics ch. 6, unit 6
12 , 11–19 (2011)

20 M.Y. Galperin and E.V. Koonin

19. Waterhouse, R.M., Tegenfeldt, F., Li, J., Zdobnov, E.M., Kriventseva, E.V.: OrthoDB: A
hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 41,
D358–D365 (2013)

20. Powell, S., Forslund, K., Szklarczyk, D., Trachana, K., Roth, A., Huerta-Cepas, J.,
Gabaldon, T., Rattei, T., Creevey, C., Kuhn, M., Jensen, L.J., von Mering, C., Bork, P.:
eggnog v4.0: Nested orthology inference across 3686 organisms. Nucleic Acids Res. 42,
231–239 (2014)

21. Datta, R.S., Meacham, C., Samad, B., Neyer, C., Sjolander, K.: Berkeley PHOG: Phylo-
Facts orthology group prediction web server. Nucleic Acids Res. 37, W84–W89 (2009)

22. Ostlund, G., Schmitt, T., Forslund, K., Kostler, T., Messina, D.N., Roopra, S., Frings, O.,
Sonnhammer, E.L.: InParanoid 7: New algorithms and tools for eukaryotic orthology anal-
ysis. Nucleic Acids Res 38, D196–D203 (2010)

23. Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: Data, in-
formation, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids
Res. 42, D199–D205 (2014)

24. Galperin, M.Y., Koonin, E.V.: A diverse superfamily of enzymes with ATP-dependent
carboxylate-amine/thiol ligase activity. Protein Sci. 6, 2639–2643 (1997)

25. Galperin, M.Y., Bairoch, A., Koonin, E.V.: A superfamily of metalloenzymes unifies
phosphopentomutase and cofactor- independent phosphoglycerate mutase with alkaline
phosphatases and sulfatases. Protein Sci. 7, 1829–1835 (1998)

26. Moroz, O.V., Murzin, A.G., Makarova, K.S., Koonin, E.V., Wilson, K.S., Galperin, M.Y.:
Dimeric dUTPases, HisE, and MazG belong to a new superfamily of all-alpha NTP pyrophos-
phohydrolases with potential “house-cleaning” functions. J. Mol. Biol. 347, 243–255 (2005)

27. Galperin, M.Y., Koonin, E.V.: Divergence and convergence in enzyme evolution. J. Biol.
Chem. 287, 21–28 (2012)

28. The UniProt Consortium: Activities at the Universal Protein Resource (UniProt). Nucleic
Acids Res. 42, D191–D198 (2014)

29. Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A.,
Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E.L., Tate, J., Punta, M.: Pfam: The
protein families database. Nucleic Acids Res. 42, D222–D230 (2014)

30. Huynen, M.A., Snel, B.: Gene and context: Integrative approaches to genome analysis.
Adv. Protein Chem. 54, 345–379 (2000)

31. Galperin, M.Y., Koonin, E.V.: Who’s your neighbor? New computational approaches for
functional genomics. Nat. Biotechnol. 18, 609–613 (2000)

32. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detect-
ing protein function and protein-protein interactions from genome sequences. Science 285,
751–753 (1999)

33. Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeates, T.O., Eisenberg, D.: A combined
algorithm for genome-wide prediction of protein function. Nature 402, 83–86 (1999)

34. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning
protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc.
Natl. Acad. Sci. USA 96, 4285–4288 (1999)

35. Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., de
Crecy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E.D., Gerdes, S.,
Glass, E.M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N.,
Krause, L., Kubal, M., Larsen, N., Linke, B., McHardy, A.C., Meyer, F., Neuweger, H.,
Olsen, G., Olson, R., Osterman, A., Portnoy, V., Pusch, G.D., Rodionov, D.A., Ruckert,
C., Steiner, J., Stevens, R., Thiele, I., Vassieva, O., Ye, Y., Zagnitko, O., Vonstein, V.: The
subsystems approach to genome annotation and its use in the project to annotate 1000 ge-
nomes. Nucleic Acids Res. 33, 5691–5702 (2005)

 Comparative Genomics Approaches to Identifying Functionally Related Genes 21

36. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of contiguity
on the chromosome to predict functional coupling. Silico Biol. 1 (1998)

37. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of gene clus-
ters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896–2901 (1999)

38. Gaasterland, T., Ragan, M.A.: Microbial genescapes: Phyletic and functional patterns of
ORF distribution among prokaryotes. Microb. Comp. Genomics 3, 199–217 (1998)

39. Rogozin, I.B., Makarova, K.S., Murvai, J., Czabarka, E., Wolf, Y.I., Tatusov, R.L.,
Szekely, L.A., Koonin, E.V.: Connected gene neighborhoods in prokaryotic genomes.
Nucleic Acids Res. 30, 2212–2223 (2002)

40. Rogozin, I.B., Makarova, K.S., Wolf, Y.I., Koonin, E.V.: Computational approaches for
the analysis of gene neighbourhoods in prokaryotic genomes. Brief Bioinform. 5, 131–149
(2004)

41. Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S., Koonin, E.V.: Genome alignment, evolution
of prokaryotic genome organization, and prediction of gene function using genomic con-
text. Genome Res. 11, 356–372 (2001)

42. Yanai, I., Mellor, J.C., DeLisi, C.: Identifying functional links between genes using con-
served chromosomal proximity. Trends Genet. 18, 176–179 (2002)

43. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J.,
Minguez, P., Bork, P., von Mering, C., Jensen, L.J.: STRING v9.1: Protein-protein interac-
tion networks, with increased coverage and integration. Nucleic Acids Res. 41, 808–815
(2013)

44. Koonin, E.V., Wolf, Y.I.: Genomics of bacteria and archaea: The emerging dynamic view
of the prokaryotic world. Nucleic Acids Res. 36, 6688–6719 (2008)

45. Natale, D.A., Galperin, M.Y., Tatusov, R.L., Koonin, E.V.: Using the COG database to
improve gene recognition in complete genomes. Genetica 108, 9–17 (2000)

46. Koonin, E.V., Mushegian, A.R., Bork, P.: Non-orthologous gene displacement. Trends
Genet. 12, 334–336 (1996)

47. Schmitt, T., Ogris, C., Sonnhammer, E.L.: FunCoup 3.0: Database of genome-wide
functional coupling networks. Nucleic Acids Res. 42, 380–388 (2014)

48. Koonin, E.V., Galperin, M.Y.: Prokaryotic genomes: The emerging paradigm of genome-
based microbiology. Curr. Opin. Genet. Dev. 7, 757–763 (1997)

49. Osterman, A., Overbeek, R.: Missing genes in metabolic pathways: A comparative genom-
ics approach. Curr. Opin. Chem. Biol. 7, 238–251 (2003)

50. Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A.,
Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A.R., Xia, F., Stevens, R.: The
SEED and the Rapid Annotation of microbial genomes using Subsystems Technology
(RAST). Nucleic Acids Res. 42, D206–D214 (2014)

51. Rodionov, D.A., Mironov, A.A., Gelfand, M.S.: Transcriptional regulation of pentose uti-
lisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol. Lett. 205,
305–314 (2001)

52. Rodionov, D.A., Vitreschak, A.G., Mironov, A.A., Gelfand, M.S.: Comparative genomics
of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J. Biol.
Chem. 277, 48949–48959 (2002)

53. Mironov, A.A., Koonin, E.V., Roytberg, M.A., Gelfand, M.S.: Computer analysis of tran-
scription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids
Res. 27, 2981–2989 (1999)

54. Gelfand, M.S., Koonin, E.V., Mironov, A.A.: Prediction of transcription regulatory sites in
Archaea by a comparative genomic approach. Nucleic Acids Res. 28, 695–705 (2000)

22 M.Y. Galperin and E.V. Koonin

55. Gelfand, M.S.: Recognition of regulatory sites by genomic comparison. Res. Micro-
biol. 150, 755–771 (1999)

56. Rodionov, D.A., Novichkov, P.S., Stavrovskaya, E.D., Rodionova, I.A., Li, X., Kazanov,
M.D., Ravcheev, D.A., Gerasimova, A.V., Kazakov, A.E., Kovaleva, G.Y., Permina, E.A.,
Laikova, O.N., Overbeek, R., Romine, M.F., Fredrickson, J.K., Arkin, A.P., Dubchak, I.,
Osterman, A.L., Gelfand, M.S.: Comparative genomic reconstruction of transcriptional
networks controlling central metabolism in the Shewanella genus. BMC Genom-
ics 12(suppl. 1), S3 (2011)

57. Rodionov, D.A., Dubchak, I.L., Arkin, A.P., Alm, E.J., Gelfand, M.S.: Dissimilatory
metabolism of nitrogen oxides in bacteria: Comparative reconstruction of transcriptional
networks. PLoS Comput. Biol. 1, e55 (2005)

58. Tsoy, O.V., Pyatnitskiy, M.A., Kazanov, M.D., Gelfand, M.S.: Evolution of transcriptional
regulation in closely related bacteria. BMC Evol. Biol. 12, 200 (2012)

59. Gelfand, M.S.: Evolution of transcriptional regulatory networks in microbial genomes.
Curr. Opin. Struct. Biol. 16, 420–429 (2006)

60. Thompson, W., Rouchka, E.C., Lawrence, C.E.: Gibbs Recursive Sampler: Finding tran-
scription factor binding sites. Nucleic Acids Res. 31, 3580–3585 (2003)

61. Thompson, W., McCue, L.A., Lawrence, C.E.: Using the Gibbs motif sampler to find con-
served domains in DNA and protein sequences. Curr. Protoc. Bioinformatics ch. 2, unit 2 8
(2005)

62. Novichkov, P.S., Rodionov, D.A., Stavrovskaya, E.D., Novichkova, E.S., Kazakov, A.E.,
Gelfand, M.S., Arkin, A.P., Mironov, A.A., Dubchak, I.: RegPredict: An integrated system
for regulon inference in prokaryotes by comparative genomics approach. Nucleic Acids
Res. 38, W299–W307 (2010)

63. Thompson, W.A., Newberg, L.A., Conlan, S., McCue, L.A., Lawrence, C.E.: The Gibbs
Centroid Sampler. Nucleic Acids Res. 35, W232–W237 (2007)

64. Newberg, L.A., Thompson, W.A., Conlan, S., Smith, T.M., McCue, L.A., Lawrence, C.E.:
A phylogenetic Gibbs sampler that yields centroid solutions for cis-regulatory site predic-
tion. Bioinformatics 23, 1718–1727 (2007)

65. Novichkov, P.S., Kazakov, A.E., Ravcheev, D.A., Leyn, S.A., Kovaleva, G.Y., Sutormin,
R.A., Kazanov, M.D., Riehl, W., Arkin, A.P., Dubchak, I., Rodionov, D.A.: RegPrecise
3.0–a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC
Genomics 14, 745 (2013)

66. Cipriano, M.J., Novichkov, P.N., Kazakov, A.E., Rodionov, D.A., Arkin, A.P., Gelfand,
M.S., Dubchak, I.: RegTransBase–a database of regulatory sequences and interactions
based on literature: A resource for investigating transcriptional regulation in prokaryotes.
BMC Genomics 14, 213 (2013)

67. Enright, A.J., Illopoulos, I., Kyrpides, N.C., Ouzounis, C.A.: Protein interaction maps for
complete genomes based on gene fusion events. Nature 402, 86–90 (1999)

68. Doolittle, R.F.: Do you dig my groove? Nat. Genet. 23, 6–8 (1999)
69. Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T.,

Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett, M., Das, U., Daugherty,
L., Duquenne, L., Finn, R.D., Fraser, M., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly,
E., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall,
J., McMenamin, C., Mi, H., Mutowo-Muellenet, P., Mulder, N., Natale, D., Orengo, C.,
Pesseat, S., Punta, M., Quinn, A.F., Rivoire, C., Sangrador-Vegas, A., Selengut, J.D.,
Sigrist, C.J., Scheremetjew, M., Tate, J., Thimmajanarthanan, M., Thomas, P.D., Wu,
C.H., Yeats, C., Yong, S.Y.: InterPro in 2011: New developments in the family and do-
main prediction database. Nucleic Acids Res. 40, D306–D312 (2012)

 Comparative Genomics Approaches to Identifying Functionally Related Genes 23

70. Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M.K., Geer, L.Y., Geer, R.C.,
Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Lu, S., Marchler, G.H.,
Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., Bryant, S.H.: CDD: Conserved do-
mains and protein three-dimensional structure. Nucleic Acids Res. 41, D348–D352 (2013)

71. Suhre, K., Claverie, J.M.: FusionDB: A database for in-depth analysis of prokaryotic gene
fusion events. Nucleic Acids Res. 32, D273–D276 (2004)

72. Galperin, M.Y.: Diversity of structure and function of response regulator output domains.
Curr. Opin. Microbiol. 13, 150–159 (2010)

73. Basu, M.K., Carmel, L., Rogozin, I.B., Koonin, E.V.: Evolution of protein domain promis-
cuity in eukaryotes. Genome Res. 18, 449–461 (2008)

74. Mosca, R., Ceol, A., Stein, A., Olivella, R., Aloy, P.: 3did: A catalog of domain-based in-
teractions of known three-dimensional structure. Nucleic Acids Res. 42, D374–D379
(2014)

75. Finn, R.D., Miller, B.L., Clements, J., Bateman, A.: iPfam: A database of protein
family and domain interactions found in the Protein Data Bank. Nucleic Acids Res. 42,
D364–D373 (2014)

76. Raghavachari, B., Tasneem, A., Przytycka, T.M., Jothi, R.: DOMINE: A database of pro-
tein domain interactions. Nucleic Acids Res. 36, D656–D661 (2008)

77. Luo, Q., Pagel, P., Vilne, B., Frishman, D.: DIMA 3.0: Domain Interaction Map. Nucleic
Acids Res. 39, D724–D729 (2011)

78. Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F.,
Palma, A., Nardozza, A.P., Santonico, E., Castagnoli, L., Cesareni, G.: MINT, the molecu-
lar interaction database: 2012 update. Nucleic Acids Res. 40, D857–D861 (2012)

79. Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury,
M., Dumousseau, M., Feuermann, M., Hinz, U., Jandrasits, C., Jimenez, R.C., Khadake, J.,
Mahadevan, U., Masson, P., Pedruzzi, I., Pfeiffenberger, E., Porras, P., Raghunath, A.,
Roechert, B., Orchard, S., Hermjakob, H.: The IntAct molecular interaction database in
2012. Nucleic Acids Res. 40, D841–D846 (2012)

80. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F.,
Campbell, N.H., Chavali, G., Chen, C., Del-Torn, N., Duesbury, M., Dumousseau, M.,
Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan, S., Jimenez, R., Khadake, J., Lagreid,
A., Licata, L., Lovering, R.C., Meldal, B., Melidoni, A.N., Milagros, M., Peluso, D.,
Perfetto, L., Porras, P., Raghunath, A., Ricard-Blum, S., Roechert, B., Stutz, A., Tognolli,
M., van Roey, K., Cesareni, G., Hermjakob, H.: The MIntAct project–IntAct as a common
curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42,
D358–D363 (2014)

81. Patil, A., Nakai, K., Nakamura, H.: HitPredict: A database of quality assessed protein-
protein interactions in nine species. Nucleic Acids Res. 39, D744–D749 (2011)

82. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The Data-
base of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)

83. Benson, M.L., Smith, R.D., Khazanov, N.A., Dimcheff, B., Beaver, J., Dresslar, P.,
Nerothin, J., Carlson, H.A.: Binding MOAD, a high-quality protein-ligand database.
Nucleic Acids Res. 36, D674–D678 (2008)

84. Chatr-Aryamontri, A., Breitkreutz, B.J., Heinicke, S., Boucher, L., Winter, A., Stark, C.,
Nixon, J., Ramage, L., Kolas, N., O’Donnell, L., Reguly, T., Breitkreutz, A., Sellam, A.,
Chen, D., Chang, C., Rust, J., Livstone, M., Oughtred, R., Dolinski, K., Tyers, M.: The Bi-
oGRID interaction database: 2013 update. Nucleic Acids Res. 41, D816–D823 (2013)

24 M.Y. Galperin and E.V. Koonin

85. Fernandez-Suarez, X.M., Rigden, D.J., Galperin, M.Y.: The 2014 Nucleic Acids Research
Database Issue and an updated NAR online Molecular Biology Database Collection.
Nucleic Acids Res. 42, D1–D6 (2014)

86. Blohm, P., Frishman, G., Smialowski, P., Goebels, F., Wachinger, B., Ruepp, A.,
Frishman, D.: Negatome 2.0: A database of non-interacting proteins derived by literature
mining, manual annotation and protein structure analysis. Nucleic Acids Res. 42,
D396–D400 (2014)

87. Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira,
C.D., Kyrpides, N., Madupu, R., Markowitz, V., Tatusova, T., Thomson, N., White, O.:
Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic
annotation. OMICS 12, 137–141 (2008)

88. Glasner, J.D., Plunkett, G., Anderson, B.D., Baumler, D.J., Biehl, B.S., Burland, V.,
Cabot, E.L., Darling, A.E., Mau, B., Neeno-Eckwall, E.C., Pot, D., Qiu, Y., Rissman, A.I.,
Worzella, S., Zaremba, S., Fedorko, J., Hampton, T., Liss, P., Rusch, M., Shaker, M.,
Shaull, L., Shetty, P., Thotakura, S., Whitmore, J., Blattner, F.R., Greene, J.M., Perna,
N.T.: Enteropathogen Resource Integration Center (ERIC): bioinformatics support for re-
search on biodefense-relevant enterobacteria. Nucleic Acids Res. 36, D519–D523 (2008)

89. Kolker, E., Picone, A.F., Galperin, M.Y., Romine, M.F., Higdon, R., Makarova, K.S.,
Kolker, N., Anderson, G.A., Qiu, X., Auberry, K.J., Babnigg, G., Beliaev, A.S., Edlefsen,
P., Elias, D.A., Gorby, Y.A., Holzman, T., Klappenbach, J.A., Konstantinidis, K.T., Land,
M.L., Lipton, M.S., McCue, L.A., Monroe, M., Pasa-Tolic, L., Pinchuk, G., Purvine, S.,
Serres, M.H., Tsapin, S., Zakrajsek, B.A., Zhu, W., Zhou, J., Larimer, F.W., Lawrence,
C.E., Riley, M., Collart, F.R., Yates, J.R., Smith, R.D., Giometti, C.S., Nealson, K.H.,
Fredrickson, J.K., Tiedje, J.M.: Global profiling of Shewanella oneidensis MR-1: Expres-
sion of hypothetical genes and improved functional annotations. Proc. Natl. Acad. Sci.
USA 102, 2099–2104 (2005)

90. Pedruzzi, I., Rivoire, C., Auchincloss, A.H., Coudert, E., Keller, G., de Castro, E., Baratin,
D., Cuche, B.A., Bougueleret, L., Poux, S., Redaschi, N., Xenarios, I., Bridge, A.:
HAMAP in 2013, new developments in the protein family classification and annotation
system. Nucleic Acids Res 41, D584–D589 (2013)

91. Roberts, R.J., Chang, Y.C., Hu, Z., Rachlin, J.N., Anton, B.P., Pokrzywa, R.M., Choi,
H.P., Faller, L.L., Guleria, J., Housman, G., Klitgord, N., Mazumdar, V., McGettrick,
M.G., Osmani, L., Swaminathan, R., Tao, K.R., Letovsky, S., Vitkup, D., Segre, D.,
Salzberg, S.L., Delisi, C., Steffen, M., Kasif, S.: COMBREX: A project to accelerate the
functional annotation of prokaryotic genomes. Nucleic Acids Res. 39, D11–D14 (2011)

92. Anton, B.P., Chang, Y.C., Brown, P., Choi, H.P., Faller, L.L., Guleria, J., Hu, Z., Klitgord,
N., Levy-Moonshine, A., Maksad, A., Mazumdar, V., McGettrick, M., Osmani, L.,
Pokrzywa, R., Rachlin, J., Swaminathan, R., Allen, B., Housman, G., Monahan, C.,
Rochussen, K., Tao, K., Bhagwat, A.S., Brenner, S.E., Columbus, L., de Crecy-Lagard, V.,
Ferguson, D., Fomenkov, A., Gadda, G., Morgan, R.D., Osterman, A.L., Rodionov, D.A.,
Rodionova, I.A., Rudd, K.E., Soll, D., Spain, J., Xu, S.Y., Bateman, A., Blumenthal, R.M.,
Bollinger, J.M., Chang, W.S., Ferrer, M., Friedberg, I., Galperin, M.Y., Gobeill, J., Haft,
D., Hunt, J., Karp, P., Klimke, W., Krebs, C., Macelis, D., Madupu, R., Martin, M.J.,
Miller, J.H., O’Donovan, C., Palsson, B., Ruch, P., Setterdahl, A., Sutton, G., Tate, J.,
Yakunin, A., Tchigvintsev, D., Plata, G., Hu, J., Greiner, R., Horn, D., Sjolander, K.,
Salzberg, S.L., Vitkup, D., Letovsky, S., Segre, D., DeLisi, C., Roberts, R.J., Steffen, M.,
Kasif, S.: The COMBREX project: Design, methodology, and initial results. PLoS
Biol. 11, e1001638 (2013)

A Greedy Algorithm for Hierarchical Complete
Linkage Clustering

Ernst Althaus1, Andreas Hildebrandt1, and Anna Katharina Hildebrandt2

1 Institut für Informatik, Johannes Gutenberg-Universität, Mainz, Germany
{ernst.althaus,andreas.hildebrandt}@uni-mainz.de

2 Max-Planck Institute for Informatics, Saarbrücken, Germany
anhild@mpi-klsb.mpg.de

Abstract. We are interested in the greedy method to compute an hier-
archical complete linkage clustering. There are two known methods for
this problem, one having a running time of O(n3) with a space require-
ment of O(n) and one having a running time of O(n2 logn) with a space
requirement of Θ(n2), where n is the number of points to be clustered.
Both methods are not capable to handle large point sets. In this paper,
we give an algorithm with a space requirement of O(n) which is able to
cluster one million points in a day on current commodity hardware.

Keywords: bioinformatics, algorithm-engineering, clustering, unsuper-
vised machine learning.

1 Introduction

A recurring task in Bioinformatics is the separation of data points into individual
clusters, which are supposed to represent distinct ’species’ or ’classes’ of highly
similar input instances. These clusters can then recursively be interpreted as the
input to a further clustering round, where clusters are merged into clusters of
clusters. Repeating this process until only a single cluster remains leads to a
hierarchy of clusters which can be effectively represented in a tree. The appli-
cations of these so-called hierarchical clustering schemes in practice are far too
numerous to mention. In the Life Sciences alone, clustering is routinely used in,
e.g., protein docking [8,11], MD simulations [18,12], analysis of gene expression
data[7,17,19], genomics [1,3,13], protein folding[15,2], and many other fields.

It is possible to handle this enormous breadth of application scenarios, since
the details of the application domain can be easily abstracted away: most cluster-
ing algorithms do not need to consume the original input data, but rather only
require the computation of a distance or a similarity measure on the individual
input points, which we call d, and an induced measure of distance or similarity
of clusters, which we call D. In this sense, clustering tries to combine points of
small distance (high similarity) and to separate those of large distance (small
similarity). A popular strategy for hierarchical clustering thus looks as follows:
start by setting the set of leaves of the cluster tree to the set of initial input
points. In each step, choose the least dissimilar (the most similar) pair of nodes,

A.-H. Dediu, C. Martín-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 25–34, 2014.
c© Springer International Publishing Switzerland 2014

26 E. Althaus, A. Hildebrandt, and A.K. Hildebrandt

mark them as completed, and link them to a common parent. Iterating until
only a single cluster remains leads to the complete clustering tree. Please note
that in some applications, computing the whole tree is not required. Instead,
the user specifies an application-specific threshold on the inter-cluster distances
or similarities. The computation is then terminated if no pair of clusters can be
found with a similarity higher or a dissimilarity lower than the given threshold.

In this iterative hierarchical clustering scenario, two cluster distance measures
are particularly popular: in single-linkage clustering, we choose to merge that
pair of clusters in each step which has the closest pair of points, i.e., we want to
minimize

D(c1, c2) := minx∈c1,y∈c2d(x, y),

where c1 and c2 are two clusters, given as sets of points, and d is the given
distance measure on individual points.

Single-linkage clustering allows for highly efficient algorithms, such as the clas-
sic SLINK-algorithm [16], but the structure of the resulting clusters is unsuitable
for many applications: Single linkage clustering often leads to long chains of clus-
ters which have large diameters.

In complete linkage clustering, on the other hand, we define the distance
between two clusters through the distance of the pair of points with the greatest
separation, i.e.,

D(c1, c2) := maxx∈c1,y∈c2d(x, y)

Complete linkage avoids the building-up of long cluster chains that are often
problematic in single linkage clustering. More importantly, it offers a very desir-
able guarantee: if we terminate the clustering at a given distance threshold ε (or
extract the clusters for this threshold from the cluster tree), we find that

∀c ∈ Clusters(ε) : d(x, y) ≤ ε ∀x, y ∈ c

Hence, complete linkage clustering allows to separate the input set into a set
of clusters such that all pairwise distances within all clusters are smaller than a
given threshold.

In the following, we use n to denote the number of points to be clustered.
While this property is obviously of great relevance in many applications, a

runtime of O(n2 logn) can only be achieved if Θ(n2) memory is available[5],
which cannot be provided in big data scenarios. In this case, the only known
method is a naive implementation of complete linkage, which has a runtime of
O(n3) with a space complexity of O(n).

Notice that these algorithms have the following two guarantees. Given the
clustering for a threshold ε

1. No two points within a cluster have distance more than ε
2. No two clusters have (complete linkage) distance of less than ε.

A Greedy Algorithm for Hierarchical Complete Linkage Clustering 27

For the use in big data applications, typical approaches use one of two pos-
sible simplifications. First, the clustering methodology can be exchanged into
some procedure that leads to a more efficient implementation, such as average
linking[14] or Ward clustering[4]. These methods, however, do no longer guaran-
tee that each pair of distances is smaller than the given threshold. Alternatively,
it is possible to keep the distance measure of complete linkage clustering, but
exchange the clustering algorithm to a more efficient scheme. Classically, this
has been realized in the well-known CLINK-approach[6], which has a runtime
of O(n2), a memory requirement of O(n). While this algorithm still guarantees
that two data points in a cluster have distance at most the threshold, it can
produce clusters whose distance is below the threshold. Furthermore, the result
of this algorithm strongly depends on the order in which the input points are
processed. In practice, CLINK typically generates many more clusters than the
iterative complete linkage algorithm described above. As one of the main use
cases for clustering is data reduction, this deficiency renders CLINK unsuitable
for many applications in practice.

In this paper, we describe an alternative implementation of the complete link-
age clustering algorithm that is equivalent to the naive algorithm, but which is
more efficient in practice, so that we can cluster point sets of one million points
within a day.

2 Algorithm and Its Implementation

2.1 The Basic Idea

As stated above, the basic algorithm is described easily: as long as there are
at least two clusters, join two clusters with the smallest distance. As stated in
the introduction, we are interested in complete linkage, i.e. the distance of two
clusters is the largest distance of any two points in the clusters. We consider
two variants: either we compute the complete hierarchy or we are compute the
clusters only as long as their diameter is below a given threshold.

The naive implementation requires O(n3) time and O(n) space.
This can easily be improved to use onlyO(n2 logn) time using a priority-queue

to store the distances from a cluster to all others (see e.g. [5]). The update works
as follows. Assume we join clusters i and j. For a cluster k different from i and
j, the distance to the new cluster is the maximum of the distances to i and j.
Hence for all clusters different from i and j, we have two deletions and one insert
to the priority-queue. For the new cluster, we compute the distance to a point
k as the maximum of the distances to i and j and build a new priority-queue of
size at most n. All operations can be performed in O(n logn) in total.

The main problem for our application is the space requirement of Θ(n2),
which we can not afford as we consider millions of input points. To overcome
this problem, we modify the priority-queue to store only the s nearest neighbors
of a cluster (see Algorithm 1). Hence, our algorithm only requires linear space.

28 E. Althaus, A. Hildebrandt, and A.K. Hildebrandt

For a cluster k different from i and j, the update is similar to the case of
priority queues of size n: if distances to i and j are stored, we keep the larger
one, otherwise the distances are deleted. This takes time O(s).

If a priority-queue becomes empty, we refill it with s elements by computing
the distances to all other clusters. We archive a running time of O(cn+ s log s),
by first computing the maximal distance of a point of the cluster to all other
points and then using a variant of quick-sort to find and sort the s smallest
elements (we only recurse for the pivots of rank at most s in quick-sort).

For the new cluster, we iterate over the priority-queues of i and j and keep all
clusters that are stored in both queues (with the larger distance value). We use
an initialized array of size 2n (the maximal index of a cluster) to store all clusters
with their respective distances in queue i. Then we iterate over all clusters stored
in queue j using the array to decide in O(1), whether a cluster was stored in
queue i. Finally, we again iterate over the clusters in i to restore the original
state of the array. All the steps have a running time of O(s).

Again, if the queue is empty, we refill it with s elements.
Although the worst-case running time is O(n3), as for the naive algorithm,

we observed a running time of roughly O(n2) (see Section 4). This is as typically
only a few of the priority-queues have stored one of the two clusters joined and
hence lose a member.

Data: n points
Result: a hierarchical clustering tree
make each point a leaf of the clustering tree numbered 1 . . . n;
for each point create and fill a bounded priority queue;
for i = 1 . . . n do

iterate over the queues to find the smallest distance, say (j, k);
create a new cluster (named n+ i) and make it the parent of j and k;
merge queues of j and k and use their space for queue for n+ i;
forall the other queues � do

remove the smaller of j and k from � (if at least one exists);
if queue � gets empty then

fill queue �;
end

end
end

Algorithm 1. The Basic Algorithm. Notice that the initial filling of the
queues can be done in parallel, as well as the updates of the queues (n+ i
and all others) in the main iteration

2.2 Some Details

As our priority-queues only store a small number of clusters, we use a simple
sorted array to realize them. Furthermore, we use the array of i (or j) to store

A Greedy Algorithm for Hierarchical Complete Linkage Clustering 29

the priority queue of the new cluster to neither allocate nor free memory. We
experimented with using only one of the two arrays and with using both, giving
us the possibility to store more (i.e. s times the number of points in the clus-
ter) nearest neighbors. Notice that in order to use a priority-queue with better
asymptotic running time, we would need a further data-structure to store which
clusters are in the queue and provide references to them.

Assuming further that the input points are members of a low-dimensional
Euclidean space, we can store the points in a grid, to easily obtain candidates
for the nearest neighbors. In our application, distances can be lower bounded by
a three dimensional Euclidean space, which allows us to use a grid in our setting,
too. In Section 4, we show the effect for different thresholds for the diameter.

If a distance stored in a priority queue is larger than the threshold, we do
not have to recompute distances if the queue gets empty. Hence we mark the
queue as closed. If two queues that are closed are merged, the resulting queue
is marked closed too. Notice that if one of the two queues is closed, we know
that only the distances stored in the closed queue are relevant when merging the
queue to the other. We can use this information to compute only the relevant
distances in the merged queue, but we have not implemented this idea, as we
observed that this does not happen too often.

Parallelization is done trivially. In the first phase, all priority-queues can be
filled in parallel and the workload is nontrivial and approximately the same for
each queue. In the second phase, all priority-queues are to be updated, which has
negligible workload if the queue remains non-empty and which has high workload
otherwise (O(cn) for a cluster containing c points). Hence, partitioning the work
over the individual cores is nontrivial. Nevertheless, our current implementation
only uses the default partitioner of the Intel R© Threading Building Blocks1.

3 Sketch of Our Main Application

Many protein-protein docking algorithms work by first generating a large number
of potential docking poses that keep the internal molecular conformation fixed or
almost fixed. These candidate docking poses are then further refined by allowing
some flexibility on the conformation. As this second step is computationally
very expensive, it can typically not be performed for all potential candidates.
Furthermore, many of these poses will be very similar, as there is an attraction to
regions of low energy value. Hence, these docking poses are often first clustered
to reduce their number and make the second step computationally feasible.

Often the root mean square deviation of two candidate poses is used as the
measure of distance, which is defined as the sum of the squared Euclidean dis-
tances of the two positions of the atoms in the two poses. Hence, for proteins
with k atoms, we are considering a 3k dimensional Euclidean space. In [11], we
showed how the root mean square deviation between two candidate poses due
to rigid transformations can be computed in constant time after some prepro-
cessing and describe our application in more detail. The instances considered in
1 https://www.threadingbuildingblocks.org/

https://www.threadingbuildingblocks.org/

30 E. Althaus, A. Hildebrandt, and A.K. Hildebrandt

the next section were generated from a global docking run of two monomeric
subunits of hexameric hemocyanin (PDB Id 1HCY) using RosettaDock [9].

4 Experiments

All experiments were executed on a server with two six-core processors (Intel R©

Core
TM

i7–970 at 3,2 GHz) with 12 GB RAM.
Our implementation is written in C++ using Intel R© Threading Building

Blocks for the parallelization.
We are not aware of any alternative algorithm that can handle instances whose

distance matrix does not fit into main memory and which builds a clustering tree
with the guarantee that the clustering for each threshold has the two properties
stated in the beginning, namely, that the distance within the clusters are at
most the threshold and there are no two clusters with distance less than the
threshold. To compute a clustering for a given threshold, algorithms are orders
of magnitudes faster and we therefore do not compare these algorithms to ours.

As we compute exactly the same clustering tree as the algorithms described
in the introduction, we do not consider the quality of the clustering tree.

To evaluate the different parameters of the algorithm, we experimented with
a rather small inputs of 100.000 points either distributed uniformly at random
in the unit-cube in three-dimensional Euclidean space or from our application.
To compute averages and standard deviations, we made ten independent runs in
each setting. As the standard deviations for the random instances are very small,
we do not give the numbers in the tables. Only when measuring the running-time
dependency of the input size, did we increase the size of the point set.

In Figure 1, we show the time that the algorithm needs in order to make a
certain number of unions. In order to join the first two points into a cluster,
all pairs of distances have to be computed. Afterwards, the necessary distances
are stored in the small priority queues and the joins were performed quite fast.
When the small priority queues get empty, we have to refill them which increases
the average time for a join of two clusters. Although, the number of refills of the
priority queues does not increase more in the last iterations, the re-computation
of distances becomes expensive, as we have to compute the distance of each
node in a cluster to all other nodes. Therefore the time per iteration increases.
Furthermore, the parallelization is less effective at this time (partially due to our
native implementation). Especially the very last iterations are quite expensive.
For large instances and the parallel version of our implementation, doing the
last 1.000 joins takes about twice as long as for the first 1.000 joins (although
all pairs of distances are computed). Notice that once all distances fit into main
memory, we can use the known algorithm which would take basically the time
needed to compute all pairs of distances of the remaining clusters, which can be
performed by computing all pairs of distances of the input points once.

A Greedy Algorithm for Hierarchical Complete Linkage Clustering 31

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

m
in

ut
es

 o
f r

un
ni

ng
 ti

m
e

thousands of joins

serial/growing/time
parallel/time

serial/growing/re lls
serial/constant/re lls
serial/constant/time

Fig. 1. We show the running time (in minutes) required to make n joins (in thousands)
and the number of refills of the priority queues (in thousands) for different versions
of our program: using growing chunks or not and using parallelization or not. The
instance has 100.000 points and is from our application

Notice that the naive algorithms recomputes all pairs of distances in each
iteration and hence would basically need n times the time of the first iteration
of our algorithm. For the instance with 100.000 points, this is roughly 200 hours
for the serial version and 20 hours for the parallel version.For the instance with
1.000.000 points, this is roughly 10 years for the serial version and one year for
the parallel version.

Furthermore, we show the effect of our naive parallelization in Figure 1. Par-
allelization pays off, especially in the first phase when all pairs of distances are
computed. The effect of the parallelization is hampered by the trivial paralleliza-
tion and the therefore resulting communication overhead. With our machine, we
save a factor of 2-3 with our naive parallelization.

We evaluated the influence of the size of the priority queue on the running
time and the space requirement (see Table 1). If the queue is very small, we
have to recompute distances very often, if it is large, its maintenance becomes
expensive. A good trade-off is rather small (around 16) and hence the total
space requirement is very low (approximately 32.7 Mb for clustering one million
random points). Notice that the total running time for the growing priority is
somewhat smaller. A more careful analysis shows that the gain is only in the
very last iterations (see Figure 1). Hence it remains unclear which version is to
be preferred, if the last iterations are done with by storing all pairs of distances.

Notice that the running time for the instances from our application is about
four times as large as for a random instance. This is mainly due to the more
expensive distance computation. Furthermore, we observed that the number of
distance computations is slightly larger for the benchmarks from the application.

32 E. Althaus, A. Hildebrandt, and A.K. Hildebrandt

Table 1. We show the running time (min.seconds) and the number of distance evalu-
ations (in billion) together with the respective standard deviation for different sizes of
the priority queue, either having constant size queues or having size growing linearly
with the number of points in the cluster. Furthermore, we show the space requirement
(in megabyte) of our algorithm. The first table are random instances with 100.000
points whereas the instances for the second table came from our application.

size of the queue 1 2 4 8 16 32 64
constant size priority queues

time (min) 92.8 67.1 51.3 39.4 33.5 32.0 35.1
distance eval. (billion) 393 276 201 146 111 86 69

growing priority queues
time (min) 63.4 36.9 27.0 26.9 24.8 43.6 50.5
distance eval. (billion) 183 127 144 72 50 46 44
memory usage 21.8 22.7 24.6 27.3 32.7 45.2 71.0

size of the queue 1 4 8 16 32 64
constant size priority queues

time (min) 283 ± 93 163 ± 47 134 ± 30 119 ± 21 105 ± 21 106 ± 12
distance eval (billion) 424 ± 6.5 214 ± 3.2 159 ± 2.9 125 ± 2.8 101 ± 4.1 82 ± 2.1

growing priority queues
time (min) 126 ± 34 101 ± 17 92 ± 15 89 ± 6 81 ± 8 88 ± 8
distance eval (billion) 121 ± 2.2 88 ± 1.8 77 ± 3.1 67 ± 1.6 54 ± 4.1 50 ± 2.2
memory usage 164 167 169 175 187 213

Table 2. We show the running time (min.seconds) for different distance thresholds
once using the grid and once without the grid. The first table shows the numbers
for random instances with 100.000 points whereas the second shows the numbers for
instances of our application. In the second table the threshold is scaled such that the
centers of the molecules are in the unit cube.

threshold 0.5 0.25 0.1 0.05
random with grid 63.15 30.37 12.26 9.23
random without grid 21.53 21.28 19.32 14.33
biological with grid 221 ± 23 59.5 ± 5.1 13.6 ± 2.3 5.6 ± 1.6
biological without grid 65.5 ± 8.2 40.7 ± 7.1 20.3 ± 5.4 11.4 ± 1.8

Storing the points in a grid only pays off, if a large fraction of the distance-
computations can be saved, as shown in Table 2 (for an instance with 100.000
points, only if about 1% of the distances computations remain). The reason is the
much worse cache-efficiency. Considering larger instances, the cells of the grid
will contain more points and hence the cache-efficiency becomes better. The size
of the grid plays only a minor role.

In Figure 2 we show the increase of running time with the number of points.
The observed running time for both versions is around n2.

A Greedy Algorithm for Hierarchical Complete Linkage Clustering 33

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 200 300 400 500 600 700 800 900 1000

ho
ur

s
of

 ru
nn

in
g

tim
e

thousands points

serial/random
parallel/random

49n^2
24n^2

serial/application
parallel/application

Fig. 2. We show the running time (in hours) required to cluster n points (in thousands)
for the serial and parallel version of our program using growing queues. Furthermore,
we show 49n2 and 24n2 as a reference

5 Conclusion

Complete-linkage clustering is an important tool with many applications in di-
verse fields of data mining. Classically, implementers can choose between two
different strategies which trade off running time against memory. In big data
scenarios, one of these is typically far too slow, while the other requires far too
much space. In this work, we have presented a simple albeit effective scheme
to reduce the running time of a space efficient implementation of complete-
linkage clustering. The algorithm can easily be parallelized on shared-memory
machines. Our experiments demonstrate that, in real-world scenarios, our al-
gorithm indeed leads to greatly improved running-times while only mildly in-
creasing memory usage. The algorithm will be integrated into the next major
release of the open-source BALL library [10], where it will be used in docking-
and structure prediction scenarios. In future work, we want to improve the algo-
rithm, e.g. by productively use more memory, by a better parallelization or by
a better engineering of the algorithm as indicated in the paper.

References

1. Bao, E., Jiang, T., Kaloshian, I., Girke, T.: Seed: Efficient clustering of next-
generation sequences. Bioinformatics 27(18), 2502–2509 (2011),
http://bioinformatics.oxfordjournals.org/content/27/18/2502.abstract

2. Bu, D., Li, S.C., Li, M.: Clustering 100,000 protein structure decoys in min-
utes. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(3),
765–773 (2012)

3. Chong, Z., Ruan, J., Wu, C.I.: Rainbow: An integrated tool for efficient clus-
tering and assembling rad-seq reads. Bioinformatics 28(21), 2732–2737 (2012),
http://bioinformatics.oxfordjournals.org/content/28/21/2732.abstract

http://bioinformatics.oxfordjournals.org/content/27/18/2502.abstract
http://bioinformatics.oxfordjournals.org/content/28/21/2732.abstract

34 E. Althaus, A. Hildebrandt, and A.K. Hildebrandt

4. Cormack, R.: A review of classification. Journal of the Royal Statistical Society,
Series A 134(3), 321–367 (1971)

5. Day, W.H., Edelsbrunner, H.: Efficient algorithms for agglomerative hierarchical
clustering methods. Journal of Classification 1, 1–24 (1984)

6. Defays, D.: An efficient algorithm for a complete link method. Computer Jour-
nal 20, 364–366 (1977)

7. Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression
data. Bioinformatics 21(suppl. 1), i159–i168 (2005),
http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i159.
abstract

8. Feliu, E., Oliva, B.: How different from random are docking predictions when
ranked by scoring functions? Proteins: Structure, Function, and Bioinformat-
ics 78(16), 3376–3385 (2010)

9. Gray, J., Moughan, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C.,
Baker, D.: Protein-protein docking with simultaneous optimization of rigid-body
displacement and side-chain conformations. J. Mol. Biol. 331(1), 281–299 (2003)

10. Hildebrandt, A., Dehof, A.K., Rurainski, A., Bertsch, A., Schumann, M., Toussaint,
N., Moll, A., Stockel, D., Nickels, S., Mueller, S., Lenhof, H.P., Kohlbacher, O.:
BALL - Biochemical Algorithms Library 1.3. BMC Bioinformatics 11(1), 531 (2010)

11. Hildebrandt, A.K., Diezen, M., Lengauer, T., Lenhof, H.P., Althaus, E.,
Hildebrandt, A.: Efficient computation of root mean square deviations under rigid
transformations (submitted)

12. Jamroz, M., Kolinski, A.: Clusco: Clustering and comparison of protein models.
BMC Bioinformatics 14(1), 62 (2013)

13. Miele, V., Penel, S., Duret, L.: Ultra-fast sequence clustering from similarity net-
works with silix. BMC Bioinformatics 12(1), 116 (2011),
http://www.biomedcentral.com/1471-2105/12/116

14. Murtagh, F.: Complexities of hierarchic clustering algorithms: The state of the art.
Computational Statistics Quarterly 1, 101–113 (1984)

15. Shortle, D., Simons, K.T., Baker, D.: Clustering of low-energy conformations near
the native structures of small proteins. Proceedings of the National Academy
of Sciences 95(19), 11158–11162 (1998), http://www.pnas.org/content/95/19/
11158.abstract

16. Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal 16(1), 30–34 (1973)

17. Sivriver, J., Habib, N., Friedman, N.: An integrative clustering and modeling algo-
rithm for dynamical gene expression data. Bioinformatics 27(13), i392–i400 (2011),
http://bioinformatics.oxfordjournals.org/content/27/13/i392.abstract

18. Torda, A.E., van Gunsteren, W.F.: Algorithms for clustering molecular dynamics
configurations. J. Comput. Chem. 15(12), 1331–1340 (1994),
http://dx.doi.org/10.1002/jcc.540151203

19. Wang, Y., Xu, M., Wang, Z., Tao, M., Zhu, J., Wang, L., Li, R., Berceli, S.A., Wu,
R.: How to cluster gene expression dynamics in response to environmental signals.
Briefings in Bioinformatics 13(2), 162–174 (2012),
http://bib.oxfordjournals.org/content/13/2/162.abstract

http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i159.abstract
http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i159.abstract
http://www.biomedcentral.com/1471-2105/12/116
http://www.pnas.org/content/95/19/11158.abstract
http://www.pnas.org/content/95/19/11158.abstract
http://bioinformatics.oxfordjournals.org/content/27/13/i392.abstract
http://dx.doi.org/10.1002/jcc.540151203
http://bib.oxfordjournals.org/content/13/2/162.abstract

Vester’s Sensitivity Model for Genetic Networks

with Time-Discrete Dynamics

Liana Amaya Moreno1, Ozlem Defterli2, Armin Fügenschuh1,
and Gerhard-Wilhelm Weber3

1 Department of Mechanical Engineering
University of the Federal Armed Forces Hamburg
Holstenhofweg 85, 22043 Hamburg, Germany

2 Department of Mathematics and Computer Science
Faculty of Art and Sciences, Çankaya University

06810 Ankara, Turkey
3 Institute of Applied Mathematics, Middle East Technical University

06531 Ankara, Turkey

Abstract. We propose a new method to explore the characteristics of
genetic networks whose dynamics are described by a linear discrete dy-
namical model xt+1 = Axt. The gene expression data xt is given for
various time points and the matrix A of interactions among the genes is
unknown. First we formulate and solve a parameter estimation problem
by linear programming in order to obtain the entries of the matrix A.
We then use ideas from Vester’s Sensitivity Model, more precisely, the
Impact Matrix, and the determination of the Systemic Roles, to under-
stand the interactions among the genes and their role in the system. The
method identifies prominent outliers, that is, the most active, reactive,
buffering and critical genes in the network. Numerical examples for dif-
ferent datasets containing mRNA transcript levels during the cell cycle
of budding yeast are presented.

Keywords: Linear Programming, Parameter Estimation, Discrete Dy-
namical System, Sensitivity Analysis, Genetic Networks, Operational
Research, Systems Biology.

1 Introduction

The recent availability of big amounts of gene expression data has enhanced the
study of genetic networks, which is a challenging and promising topic. The main
goal of these studies is to understand and estimate the dynamical interrelations
among the genes in the network. Several approaches were developed in the recent
years to model the regulatory interactions. They differ by the mathematical tech-
niques that came to application: modeling by graphs, Bayesian networks, Boolean
networks, discrete and continuous dynamical systems (or systems of ordinary dif-
ferential equations). For more information we refer to Jong [14], Bansal et al. [17],
or Ay et al. [1], for instance, and the references therein. Furthermore, suitable

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 35–46, 2014.
c© Springer International Publishing Switzerland 2014

36 L. Amaya Moreno et al.

mathematical tools for the understanding of the networks are constantly broad-
ening the spectrum of possibilities to study such systems, see Weber [11], Defterli
et al. [19] and [20], Defterli [18], Weber [12], Yee et al. [16], Jong et al. [15].

In this present work, we use a discrete linear model to describe the dynamics
of the network. We assume that the expression level of any gene at a certain
point in time is the result of the weighted sum of the expression level of all the
other genes at the previous point in time only [7], with respect to a given time
discretization. Denote by G := {1, . . . , n} the set of genes and by T the finite
set of time steps. The set T ′ contains all but the last time step of T . Then

xt+1,i =
∑
j∈G

ai,jxt,j , ∀ i ∈ G, t ∈ T ′, (1)

where xt = (xt,1, xt,2, . . . , xt,n)
� ∈ Rn is a vector with the expression level of

the genes in G at time step t. Here, A = (ai,j) ∈ Rn×n is a matrix, where the
influence coefficient ai,j represents the ability of gene j to regulate gene i. To
solve such models, linear regression has frequently been used, see for example
Zhang et al. [22], Someren et al. [6], Someren et al. [7], or Bansal et al. [17]. These
methods are facing the problem that there is usually much more genes than time
steps, which leads to non-unique (or multiple) possible solutions. However, these
methods do not allow for a control on the obtained solution. In our method,
we compute the matrix A by means of linear programming. We minimize the
L1-norm of the matrix A, in order to get the simplest matrix that can explain
the system’s dynamical behavior (cf. Occam’s razor).

Our core question is, is there more information that can be retrieved from
analyzing the matrix A? We try to gain insights into the behavior of the indi-
vidual genes and their role in the system as a total. In the economical literature,
we found a method called Sensitivity Model (or Paper Computer), proposed by
Vester and von Hesler in 1980 [9] (usually referred to as Vester’s model). Vester’s
model has its background in the area of network thinking, combining elements
from system dynamics, fuzzy logic and bio-cybernetics. It is important to clarify
that in spite of the name, the model has nothing to do with the concept of sensi-
tivity analysis associated with optimization problems. The main purpose of this
model is to provide a system dynamic modeling tool capable of handling and
analyzing complex systems by setting out the inner structures, hence enabling
further interventions (control/regulation) on the system. Cole [3], Wolf et al.
[5], and Neumann et al. [10] present some of the most common areas of use of
Vester’s model. Nevertheless, the model has a context-independent structure, so
that it can be applied to new areas, as we demonstrate in this work.

In the context of genetic networks we want to understand the regulatory
interactions from a systemic point of view. Hereto, we adapt Vester’s ideas to
characterize the genes by analyzing them based on their relations and their effect
on the system as whole. We aim to obtain information about the structure and
the functioning of the genetic network.

Vester’s Sensitivity Model for Genetic Networks 37

2 The Method

Our method consists of two steps. In the first step, we compute the matrix A of
the discrete dynamical system, using linear programming. In the second step, we
analyze A to derive dynamical properties of the genes involved in the network,
using Vester’s Sensitivity Model.

2.1 Linear Programming

We consider a linear model that describes the interactions among the genes
according to equation (1). Our objective then is to estimate the entries of A.
For this, we use a dataset containing measured gene expression data xt, within
a finite time horizon of discrete time steps t ∈ T . The parameter xt,i contains
gene expression data for gene i ∈ G at time step t ∈ T . The entries of the matrix
A are decision variables ai,j ∈ R. The auxiliary variables a+i,j and a−i,j are used
to linearize the nonlinear matrix norm ‖ · ‖1.

We intend to find a matrix A that describes the dynamics of the network,
therefore explaining the interaction among the genes. Applying the principle of
parsimony, of all the possible matrices that can be used for this, we want to
find one with the “simplest structure”, that is, a matrix whose entires are the
smallest possible in absolute value. This could result in the estimation of a sparse
matrix, which according to [22] should be the case for regulatory systems. With
this in mind, we want to minimize the following objective function:

‖A‖1 =
∑
i,j∈G

∣∣ai,j∣∣ = ∑
i,j∈G

(
a+i,j + a−i,j

)
. (2)

We linearize the expression |ai,j | by

ai,j = a+i,j − a−i,j , ∀ i, j ∈ G. (3)

Equation (1) gives already the first constraint of the linear model, providing the
relation between gene expression data subsequent in time,

xt+1,i =
∑
j∈G

ai,j · xt,j , ∀ i ∈ G, t ∈ T ′. (4)

Moreover, we impose a certain condition on the structure of the matrix A, i.e.,
the diagonal must be zero. This is necessary to apply Vester’s method, where
this setting is required for the Impact Matrix (see below for a more detailed
explanation). For our application, it translates to the fact that a gene cannot
influence itself. Hence

ai,i = 0, ∀ i ∈ G. (5)

Summing it up, the linear programming model then is as follows:

min (2), subject to (3), (4), (5). (6)

38 L. Amaya Moreno et al.

2.2 Vester’s Sensitivity Model

Vester’s Sensitivity Model for an analysis of dynamical systems is described by
a recursive structure of 9 steps altogether, see Vester [8]. In the following, we
briefly describe the principal steps proposed by Vester in his model that are also
relevant to our method.

Initially one has to describe the system, that means, express it in terms of
the key elements (or variables) that are the most relevant. (In our application
that means to select a set of genes G that should be studied as a system.)
In general, this results in a reduction of the complexity providing a much more
compact (practical) representation of the system. Next, the relations between the
selected representative variables are studied in order to determine the magnitude
of the influences among them. These influences are of great importance since they
determine the behavior of the system. (In our application, this step is practically
carried out by solving the linear program (6).)

Our motivation to use Vester’s Sensitivity Model in the context of genetic net-
works arose from the formulation of the linear programming model. Not knowing
the matrix A at the beginning means that we have no information about the
interaction among the genes, consequently the inner structure of the network
is unknown for us. Furthermore, even if we estimate such a matrix, we need to
achieve certain level of knowledge regarding the structure. Only then we would
be able to understand how the system works, this means, understand its behavior
and understand what causes the system to behave as it does. Vester’s Sensitivity
Model states that these questions can be answered by analyzing the Systemic
Role that the variables, in our case the genes, have. In turn, the Systemic Role is
determined by the Indices of Influence, they summarize the information about
the magnitude and the character of the interactions among the genes, and are
calculated from the Impact Matrix. In this way, we can interpret the results form
the linear programming model and achieve our initial objective, that is, to gain
insights into the biological processes in genetic network.

The Impact Matrix is the matrix that contains the information of all the in-
teractions among the variables in the system. The entries of this matrix reflect
the influence of the variable i on the variable j. They are calculated by measur-
ing the (pairwise) effect on the variables when the others change, therefore the
name Impact Matrix. It is important to remark that variables do not influence
themselves, therefore entires along the diagonal are not meaningful. A scale form
0 to 3 was initially proposed by [8] for measuring the effect of one variable in
one another answering to the question: If the variable x changes, how does the
variables y change?

This scaling does not distinguish between positive and negative influences,
that is, only the magnitude of the influence irrespective of the sign is measured.
With these values the Impact Matrix is built and the following indicators (AS
and PS) and the Indices of Influence (Q and P) are calculated for each variable:

– Active Sum (AS): the sum along rows, indicates how large is the effect of
the variable on the others.

Vester’s Sensitivity Model for Genetic Networks 39

– Passive Sum (PS): the sum along columns, indicates how sensitive is the
variable, how does it react to changes in the system.

– Quotient (Q): the ratio AS/PS.
– Product (P): the product AS*PS.

The quotient Q, determines how dominant or influenceable a variable is. The
larger/smaller the quotient is, the more active/reactive character the variable
has, respectively. On the other hand, the product P determines how participa-
tive a variable is. The larger/smaller the product, the more critical/buffering it
is. Hence, the character of each variable is determined by the pair (Q, P). Highly
active variables will be located in the upper left corner of the System Role plot,
a plot whose axes are PS and AS. Highly reactive variables will be located in
the lower right corner of the same plot. Analogously, highly critical and buffer-
ing variables will be found in the upper right and lower left corner, respectively.
The rest of the variables (genes) will be located in the area in between these
four locations. In other words, the variables are characterized by their domi-
nance/influenceability, and by how participative they actually are, revealing the
potential of each of them.

To conclude, let us point out what we use from Vester’s Sensitivity Model in
our proposed method, and how it is used. In first place, we regard the genetic
network as the complex system to study, where the variables are the genes in
the datasets and the interactions among them are the influence coefficients ai,j
to estimate. That means, we use the estimated matrix A as Impact Matrix. This
leads to a different scaling with respect to the one proposed in [8], some other
scalings can also be found in [13,3]. Moreover, since the influence coefficients
come from the solution of a linear programming problem without any constraint
on the sign of the decision variables, it is possible that some entries in the matrix
are negative. Vester’s Impact Matrix has only positive entries and therefore we
work with the absolute value of the estimated matrix A, without affecting the
forthcoming analysis, given that the Impact Matrix has information only about
the magnitude of the interactions, and not about their sign. We then calculate
the indicatorsAS, PS and the Indices of Influence Q, P. Afterwards, we identify
the most active, reactive, critical and buffering genes in the network, and thus
determine their Systemic Role. Finally, the corresponding interpretation of their
role is briefly discussed.

3 Data

Datasets containing mRNA transcript levels during the cell cycle of budding
yeast are considered here, Cho et al. [21], Zhang [22]. The data was collected
at 17 time points taken by 10 minute (min.) intervals covering nearly two full
cell cycles and containing 5 phases (Early G1, Late G1, S, G2 and M). The
complete yeast cell cycle dataset has 6220 genes [21] and shows fluctuation of
their expression levels during the 17 time points. Cho et al. [21] identified from
this dataset 416 genes based on their peak times and grouped them into the five
cell cycle phases. Finally a subset of 384 genes was classified into only one phase

40 L. Amaya Moreno et al.

(some genes peak at more than one phase during the cell cycle, see Yeung et al.
[16]). Yet a smaller subset with 23 genes was chosen in [18] and studied to analyze
and anticipate the time discrete dynamics of the corresponding subnetwork. The
genes of this subnetwork cover all the cell cycle phases.

We use the initial network with 384 genes form [21] and also the subnetwork
with 23 genes as in [18]. The data is normalized across each cell cycle.

3.1 Data Analysis

Correlation analysis has been widely used in the study of gene environment
networks with the aim of exploring gene expression data and thus providing
insights into regulatory mechanism. Moreover, clustering techniques make use
of correlation coefficients to define similarity measures and therefore discover
patters in groups of genes with similar expression level data [16], Bendor et
al. [2], Someren et al. [7]. It is not in the scope of this work to carry out a
correlation analysis of the genes in the mentioned datasets, nevertheless we use
a correlation analysis to explore their features to have a clear picture of what
can be expected. Figure 1 depicts the correlation coefficients between the genes
in the two different datasets. The genes were sorted by phase. As expected, for
the majority of the genes in the same cycle phase, high correlation coefficients
are observed. The black dashed lines show the grouping by phase. Genes in the
same group not only peak in the same cycle phase, but their dynamics along
the whole time horizon is also similar (see Figure 2), which was observed for
both datasets. Given that the dynamics in each phase is similar, we took the
mean expression level as a representative for all the genes in the same phase and
plotted it for the different representatives along the time horizon, see Figure 3.
On the other hand, if we calculate the correlation coefficients of the 17 time
points where the data was collected, see Figure 4, a periodic behavior is observed.
This behavior is not surprising since the time horizon covers almost 2 cell cycles
[21], meaning that the expression level of each gene has two observable peaks,
each one happening in the phase it was classified into, see Figure 3. It is clear that

Fig. 1. Gene correlation matrix 23 (left) and 384 (right)

Vester’s Sensitivity Model for Genetic Networks 41

Fig. 2. Genes peaking in Early G1 for the dataset with 23 genes and in M for the
dataset with 384 genes

Fig. 3. Mean value for the expression level of genes in each phase; 23 genes (left) and
384 genes (right)

Fig. 4. Time-point correlation matrix; 23 genes (left) and 384 genes (right)

42 L. Amaya Moreno et al.

there is high linear dependency among the vector expression level at the time
points (correlation coefficients close to zero are very seldom), which indicates
that a linear model might give a good enough approximation of the dynamics of
the system.

4 Computational Results

We solved the linear programming problem (6) for the selected datasets using
AMPL as modeling language and CPLEX 12.5 Optimizer as solver. The resulting
matrix A is shown in Figure 5. For the first dataset, the number of nonzeros is
368, for the second dataset it is 6144. For the latter, solution times below a few
minutes are currently needed, hence our method could be applicable for bigger
datasets with many more genes and time steps.

Fig. 5. Nonzero entries in the Impact Matrix ; 23 genes (left) and 384 genes (right)

For each one of the genes we compute the values AS, PS, Q and P. We plot
all the genes in the Systemic Role plot, where each gene is represented by a two
dimensional point with coordinates (AS,PS). Furthermore, we color the genes
according to the phase they belong to, in order to check whether there is a rela-
tion between the role of a gene and the phase it peaked in. Figure 6 shows that
there is no evidence supporting that such relation exists, that means, irrespec-
tive of the phase they belong to, they have different roles. In other words, our
method provides additional information that cannot be gained by a correlation
analysis. Figure 7 reassures this position, here we selected one gene, marked with
an asterisk (*), and colored the rest of the genes according to the correlation
coefficient to this gene. Also here no clusters were observed indicating that such
relation in fact exists.

Now we want to draw the attention to the Systemic Roles of the genes, high-
lighting the prominent outliers in the network in order to understand what their
character reveals. Let us start stating that for the 23 dataset a clear configura-
tion for the roles can be observed. The relatively most active gene belongs to

Vester’s Sensitivity Model for Genetic Networks 43

Fig. 6. Systemic Role plot colored by phase; 23 genes (left) and 384 genes (right)

the M phase and is YDR146c. It regulates many other genes and is regulated
just by few. Being a transcription factor [21], it influences the other genes by
contributing to specific biochemical processes. As for the interpretation of its
role, we can say it is a dominant gene. It could be used as lever; if changes were
to happen to its gene expression level, significant changes could be produced on
the other genes and therefore the cell cycle could present alterations. This is the
prototype of gene that can be used to trigger some desired effect.

Fig. 7. Systemic Role plot colored by correlation coefficient to the gene marked with
asterisk (*); 23 genes (left) and 384 genes (right)

Gene YPR120c belongs to the Late G1 phase. It emerges as the most reactive
gene, which means that its expression level is highly sensitive to alterations in
the expression level of other genes, but the cell cycle would not change much
with changes in its expression level. Such kind of genes are consider to have a
damping function, since the effects will not propagate in the system, in spite of
being highly sensitive. Its function is as cell cycle regulator [21], this might be the

44 L. Amaya Moreno et al.

reason behind its highly reactive character. This gene needs a lot of information
from the system, i.e., from other genes and therefore is influenced by relatively
many.

As the most critical we observe gene YLR274w belonging to the Early G1
phase. It has highly regulator capabilities but at the same time is highly reg-
ulated, which makes it a “risky” gene and difficult to control. This goes in
accordance with its function in the cell cycle as DNA replicator [21].

Finally the most buffering gene turned out to be YGR109c, it also belongs
to the Late G1 phase. This gene is the one with the lowest “activity” in the
system (inert element), it does not regulate nor is regulated by others. Such
genes, could be regarded as “stable”, since their state is the one changing the
least through the time horizon. If we compare it with gene YPR120c acting both
as cycle regulators [21], we can say that the regulatory function of the first one
is relatively smaller. In turn it does not use much information from the other
genes and thus it is more difficult to change its expression level.

In general we can say that the network as a whole has a buffering character,
most of the genes tend to be located in the lower left corner which correspond to
the buffering part of the Systemic Role plot. Moreover, if we describe the system
with just one point in this plot, taking for example the mean value, this point
would be closest to the buffering corner than to any other corner in the plane.

A similar analysis can be made for the dataset with 384 genes as for the most
active, reactive, buffering and critical genes. Both, the pattern in the Impact
Matrix and the fact that the matrix is more sparse than the one in the 23 case,
explain the accumulation of genes near to the Active Sum axis. The pattern
(vertical lines) suggest that the genes are more reactive, in the sense that there
are relatively more genes with low passive sum than in the first dataset.

5 Conclusions and Future Work

We introduced a new method for exploring structural features of genetic networks
with linear time-discrete dynamics of the form xt+1 = Axt, where A is a matrix
of influence coefficients. We solved a parameter estimation problem by linear
programming in order to obtain a matrix A that describes the dynamics of the
network and has the minimum L1 norm possible for two different datasets (with
gene expression data given at various time points). Features of the datasets
were investigated using correlation analysis. Afterwards we used some of the
central ideas of the Sensitivity Model proposed by Vester [8] to understand the
interactions among the genes in the network and characterize each one of them
according to their role in the system. More precisely, we let the estimated matrix
A be the Impact Matrix that explains the influences among the variables (genes)
in the system (genetic network). We then proceeded to calculate the Indices
of Influence Q and P, which reflect the active/reactive and critical/buffering
character of the genes. No evidence of a relation between the Systemic Role of
the genes and their phase group nor the correlation coefficient corresponding to
a specific gene was observed. Finally, and with the aim understanding what the

Vester’s Sensitivity Model for Genetic Networks 45

Systemic role concept brings into play, we identified the most active, reactive,
critical and buffering genes in the network and analyzed the interpretation given
by the Vester’s Sensitivity Model to such elements, i.e., as levers (active), risk
factors (critical), measuring sensors (reactive) and inert elements (buffering).

In our future studies, we will extend this method in different ways. On one
hand we would like to make use of genetic network features to make a more
realistic estimation of the matrix A. Furthermore, will use different models to
describe the dynamics of the network such as piecewise linear differential equa-
tions, also known as hybrid systems, and later on, stochastic hybrid systems
with jumps (cf. Temoçin et al. [4]). It would also be interesting to consider dif-
ferent types of norms during estimation process. With respect to the ideas used
form Vester, one could think of developing a more accurate definition of roles
considering more extensively the possible combinations of the indexes Q and
P, in such a way that more specific features of genetic networks are taken into
account.

Acknowledgments. We are grateful to Prof. Dr.-Ing. Wolfram Funk for
partially funding our conference participation.

References

1. Ay, A., Arnosti, D.N., Steegenga, W.T., Sijbers, A.M., Dechering, K.J., Reinders,
M.J.T.: Mathematical Modeling of Gene Expression: A Guide for the Perplexed
Biologist. Crit. Rev. Biochem. Mol. Biol. 46(2), 137–151 (2011)

2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Com-
putational Biology 6(3-4) (1999)

3. Cole, A.: The Influence Matrix Methodology: A Technical Report. LC0506/175,
Foundation for Research, Science and Technology, FRST (2006)

4. Temocçin, B.Z., Weber, G.W.: Optimal Control of Stochastic Hybrid System
with Jumps: A Numerical Approximation. Computational and Applied Mathe-
matics 259, 443–451 (2014)

5. Wolf, C., Person, F., Jelse, K.: A Logistic Analysis with the Sensitivity Model
Prof. Vester. Tech. Rep. B2048, IVL Swedish Environmental Research Institute
Ltd (2012)

6. van Someren, E.P., Vaes, B.L.T., Steegenga, W.T., Sijbers, A.M., Dechering, K.J.,
Reinders, M.J.T.: Least Absolute Regression Network Analysis of the Murine Os-
teoblast Differentiation Network. Bioinformatics 22(4), 477–484 (2006)

7. van Someren, E.P., Wessels, L.F.A., Reinders, M.J.T.: Linear Modeling of Genetic
Networks from Experimental Data. In: Proc. Int. Conf. Intell. Syst. Mol. Biol.,
vol. 8, pp. 355–366 (2000)

8. Vester, F.: Die Kunst vernetzt zu denken. Ideen und Werkzeuge fuer einen neuen
Umgang mit Komplexitaet. Deutsche Verlags-Anstalt GmbH Stuttgart (1999)

9. Vester, F., von Hesler, A.: Sensitivitaetsmodell. Bundesminister d. Innern, Bonn
(1980)

10. Neumann, G., Düring, D.: Methodology to Understand the Role of Knowledge
Management in Logistic Companies. LogForum 4(5) (2008)

46 L. Amaya Moreno et al.

11. Weber, G.W., Kropat, E., Akteke-Öztürk, B., Görgülü, Z.K., Guo, D.: A Survey
on OR and Mathematical Methods Applied on Gene-Environment Networks. CE-
JOR 17, 315–341 (2009)

12. Weber, G.W., Defterli, O., Kropat, E.: Qualitative Simulation of Genetic Regula-
tory Networks Using Piecewise-Linear Models. European Journal of Operational
Research 211(1), 1–14 (2011)

13. Bossel, H.: System, Dynamik, Simulation. Modellbildung, Analyse und Simulation
komplexer Systeme. Books on Demand GmbH Norderstedt/Germany (2004)

14. de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Computational Biology 9(1), 67–107 (2002)

15. de Jong, H., Gouzé, L.J., Page, C., Sari, T., Geiselmann, J.: Qualitative Simula-
tion of Genetic Regulatory Networks Using Piecewise-Linear Models. Bulletin of
Mathematical Biology 66, 301–340 (2004)

16. Yeung, K.Y., Ruzzo, W.L.: An Empirical Study on Principal Component Analysis
for Clustering Gene Expression Data. Tech. Rep. UWCSE20001103, Department
of Computer Science & Engineering University of Washington (2000)

17. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to Infer
Gene Networks from Expression Profiles. Molecular Systems Biology 3(78) (2007)

18. Defterli, O.: Modern Mathematical Methods in Modeling and Dynamics of Regu-
latory Systems of Gene-Environment Networks. Ph.D. thesis, Graduate School of
Natural Sciences, Department of Mathematics, Middle East Technical University
(August 2011)

19. Defterli, O., Fügenschuh, A., Weber, G.W.: New Discretization and Optimization
Techniques with Results in the Dynamics of Gene-Environment Networks. In: 3rd
Global Conference on Power Control & Optimization (February 2010)

20. Defterli, O., Fügenschuh, A., Weber, G.W.: Modern Tools for the Time-Discrete
Dynamics and Optimization of Gene-Environment Networks. Commun. Nonlinear
Sci. Numer. Simulat. 16, 4768–4779 (2011)

21. Cho, R.J., Campell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wolfsberg,
T.G., Gabrielian, L.A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A Genome-
Wide Transcriptional Analysis of the Mitotic Cell Cycles. Molecular Cell 2, 65–73
(1998)

22. Zhang, S.Q., Ching, W.K., Tsing, N.K., Leung, H.Y., Guo, D.: A New Multiple Re-
gression Approach for the Construction of Genetic Regulatory Networks. Artificial
Intelligence in Medicine 48(2-3), 153–160 (2010)

Complexity and Polynomial-Time Approximation
Algorithms around the Scaffolding Problem

Annie Chateau1,2 and Rodolphe Giroudeau1

1 LIRMM - CNRS UMR 5506 - 161 rue Ada 34090 Montpellier, France
2 Institut de Biologie Computationnelle

95 rue de la Galéra 34000 Montpellier, France
{annie.chateau,rodolphe.giroudeau}@lirmm.fr

Abstract. We explore in this paper some complexity issues inspired by
the contig scaffolding problem in bioinformatics. We focus on the fol-
lowing problem: given an undirected graph with no loop, and a perfect
matching on this graph, find a set of cycles and paths covering every ver-
tex of the graph, with edges alternatively in the matching and outside
the matching, and satisfying a given constraint on the numbers of cycles
and paths. We show that this problem is NP-complete, even in bipar-
tite graphs. We also exhibit non-approximability and polynomial-time
approximation results, in the optimization versions of the problem.

Keywords: Complexity, Polynomial-Time Approximation, Scaffolding.

1 Introduction

We investigate the complexity of a problem inspired by a problem from bioinfor-
matics, namely the contig scaffolding problem. When a new genome is sequenced,
it is not possible, due to technological issues, to read the whole sequence directly
from the DNA molecule. Instead, the sequence is built through different steps,
each of them presenting algorithmic challenges. We focus here on the contig scaf-
folding step, which consists, given a set of sequences of various lengths called
contigs, to infer the order and the orientation of the contigs along the genome,
using a set of possibly inconsistent pairing information. First described in [10], it
was presented as a problem of path merging in a particular kind of graphs, and
was stated as NP-complete. Further studies describe different types of heuristics
and computational approaches ([4,5,9]), or compare the accuracy of the exact
approach to the heuristics ([7]), but none of them further investigate the com-
plexity aspects of the problem, especially in terms of approximation. We focus
here on this latter aspect.

A more general framework was recently proposed in [2], where the problem
is presented as the resolution of consecutive ones property problem on matrices
encoding hypergraphs. The authors include multiplicity ranges on the contigs,
meaning that a contig may be repeated in the scaffolds, and propose interesting
approximation results in the case where there are no constraint on the number of
paths and cycles. This approach can use phylogenetic information, instead of the

A.-H. Dediu, C. Martín-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 47–58, 2014.
c© Springer International Publishing Switzerland 2014

48 A. Chateau and R. Giroudeau

classical use of paired fragments. Also recently, several types of information have
been mixed to infer scaffolds from the assembly data, for instance in [1], where the
chromatin structure of the chromosomes has been added to the classical mate-
pair information to complete the human, mouse and drosophila genomes. This
general trend highlights the need of flexible tools to efficiently solve ’scaffolding
like’ problems.

Here we propose an alternative formalization of the problem, which is inspired
by a generalization of the very well known Traveling Salesman Problem. This
model is more general than the one proposed in [10], and allows to integrate
the desired structure of the genome (number of circular or linear chromosomes).
This is a preliminary work intended to be completed and extended to several
directions, by the introduction of the multiplicities of the contigs, and the use of
several kinds of information sources (multi-criteria). We expose the first, simple,
problem and its optimization versions. One of them is directly relative to the
scaffolding problem, but we also try to enlarge this context.

A very huge literature has been provided concerning the Traveling Salesman
Problem and its variants. We refer the reader to [13] for an overview on the
domain. Concerning the more general problem of finding a cover with a fixed
number of vertex disjoint cycles and paths, the papers especially focus on feasi-
bility criteria, like sufficient conditions, typically on the degrees of the vertices,
for the graph to admit such a cover (see, for instance, [3]). The cases where the
numbers of paths and cycles are not fixed define a wide range of possibilities. In-
deed, finding an optimal cover by disjoint cycles is a polynomial problem, when
the number of cycles is not fixed ([15]). On the contrary, finding an optimal
cover by disjoint paths with at least two edges is NP-complete ([14]). Also, the
problem to infer the number of cycles of a cycle cover, known as cycle packing,
has been already studied: finding the minimal number of cycles which are neces-
sary to cover a graph is NP-complete ([11]). Anyway, concerning the problem of
finding, and optimizing, a spanning subgraph with a fixed number of cycles and
paths, this is to our knowledge the first study of this kind of problem in terms
of complexity and approximability.

In this article, we study a variation of the scaffolding problem in the framework
of classical complexity. Our contribution is summarized in Table 1.

This article is organized as follows: the next section is devoted to formal
description of the Scaffold problems. In Section 3 and 4 we pay attention to
computational complexity and non-approximability results whereas in Section
5 we design a polynomial-time approximation algorithm for the maximization
problem.

2 Formal Description of the Problems

In what follows, we consider G = (V,E) a undirected graph with an even number
n of vertices and without self loops. We suppose that there exists a perfect
matching in G, denoted by M∗. Let w : E → IN be a weight function on the
edges. In the bioinformatic context, edges in M∗ represent the contigs, and the

Complexity and Polynomial-Time Approximation of Scaffolding 49

Table 1. Synthetic complexity/approximation results for Scaffold problems. Notice
that all complexity results can be extended to the bipartite case.

Problems Complexity Approximability
Decision Ref. Min Ref. Max Ref.

(σp, σc)−SP NP-C Th. 2 Inapprox. Th. 4 Ratio 3 Th. 9
(σp, σc)−SP with lp ≥ 2 and lc = 6 NP-C Th. 3 Inapprox. Th. 4 Ratio 3 Th. 9

(0, 1)−SP NP-C Th. 2 Inapprox. Th. 4 Ratio 2 Th. 10

other edges figure the contiguity information given by the mate-pairs, or any
other kind of information.

In order to model the genomic structure by fixed numbers of linear chromo-
somes (paths) and circular ones (cycles), the class of considered problems are
parameterized by two integers, respectively denoted by σp and σc.

Definition 1. In the following, an alternating-cycle (resp. alternating-path) in
G, relatively to a perfect matching1 M∗ of G, is a cycle (resp. a path) such that
its edges alternatively belong to M∗ or not.

Notice that an alternating-cycle has necessarily an even number of vertices. The
class of the (σp, σc)−Scaffold and Min/Max−(σp, σc)−Scaffold Prob-

lems are defined as follows:
(σp, σc)−Scaffold Problem (SP):
Instance: Let G = (V,E) be a graph with 2n vertices. Let M∗ be a
perfect matching of G, and (σp, σc) ∈ IN× IN\{(0, 0)}.
Question: Does it exist a vertex disjoint collection of exactly σp

alternating-paths and σc alternating-cycles, covering the vertices of G?

Min/Max-(σp, σc)−Scaffold Problem:
Instance: Let G = (V,E,w) be a graph with 2n vertices. Let M∗ be a
perfect matching of G, and (σp, σc) ∈ IN× IN\{(0, 0)}.
Question: Find a vertex disjoint collection of exactly σp alternating-
paths and σc alternating-cycles, covering the vertices of G, and of mini-
mal (resp. maximal) total weight.

In the case where the weight on the edges represents, for instance, the number
of mate-pairs that support the contiguity of two contigs, in their relative orien-
tation, the Max−(σp, σc)−Scaffold Problem corresponds to the problem of
finding an order and an orientation of the contigs with maximal support, and
forming exactly σp linear chromosomes and σc circular chromosomes.

3 Computational Complexity

We explore in this section the complexity of (σp, σc)−SP (decision problem). We
show that the problem remains NP−complete, even in bipartite graphs. In this
paragraph, we use a reduction from the Hamiltonian Circuit Problem ([8]).
1 Represented for instance by a list of n edges {2i, 2i+ 1}.

50 A. Chateau and R. Giroudeau

Hamiltonian Circuit Problem (HC):
Instance: G = (V,A)
Question: Does G contain a Hamiltonian circuit?

The reduction relies on the following polynomial transformation, illustrated
by Figure 1:

Transformation 1. Let G = (V,A) an instance of the HC problem. We con-
sider the following graph G′ = ({ui, i ∈ {1, 2, 3, 4}, u ∈ V }, E):

– ∀u ∈ V , we consider the path of length four P4,u = u1 − u2 − u3 − u4, (the
set of all paths of length four is denoted by P4 = ∪u∈V P4,u),

– ∀(u, v) ∈ A, we add an edge {u4, v1} in E.

We consider the perfect matching M∗ on G′, consisting in the edges of the kind
{u1, u2} and {u3, u4}, ∀u ∈ V .

a

b

c

d

a1 a2 a3 a4

b1
b2
b3
b4

c1c2c3c4

d1
d2

d3

d4

P4,b

∈ M∗

Fig. 1. Transformation of an instance of HC (left) to an instance of (σp, σc)−SP by
Transformation 1 (right). Stronger edges belong to the perfect matching.

Notice that the graph G′ is bipartite: the first set of the partition is constituted
by vertices ui, i ∈ {2, 4}, ∀u ∈ V and the second by the other vertices.

Theorem 2. The problem (σp, σc)−SP is NP−complete, even if the graph is
bipartite.

Proof. The problem is clearly in NP . Let G = (V,A) an instance of the HC

problem, and G′ the graph produced by Transformation 1. Notice that G′ is a
bipartite graph by construction. We consider (σp + σc) copies of G′, denoted by
G′

1, . . . G
′
σp+σc

. If σp = 0, then we connect sequentially the copies of G′ with one
edge, joining two inner vertices of one path P4 respectively in G′

i and G′
i+1. If

σp ≥ 1, we connect all the copies to a single vertex v, and add a vertex v′, and an
edge {v, v′} ∈M∗ (See Figure 2). If σc = 0, we use reduction from the Directed

Hamiltonian Path (DHP) instead of the HC in the following discussion. In
any case, the instance of (σp, σc)−SP produced from G is a bipartite graph.

Complexity and Polynomial-Time Approximation of Scaffolding 51

• We suppose that there exists a solution of (σp, σc)−SP. It is easy to see that
in σc copies of G′, we have a alternating Hamiltonian cycle. We consider one
of them, giving an Hamiltonian cycle in G′, denoted by C′. By construction,
C′ contains all edges of P4 since this is the only way to cover the vertices u2

and u3. Notice that the incoming and outcoming edges of a path p ∈ P4, and
{u2, u3}, do not belong to M∗. On the contrary, all edges of type {u1, u2}
and {u3, u4} belong to M∗. Therefore, by compressing all paths of type
P4, ∀u ∈ V in C′ and considering an arc {u, v} if {u4, v1} ∈ C′ (resp. {v, u}
if {u1, v4} ∈ C′), we obtain a positive solution for the HC.

• Conversely, let C be an Hamiltonian Circuit in G, it is easy to construct a
feasible solution for the (σp, σc)−SP in the transformed graph, by consid-
ering C′ = M∗ ∪ {{u2, u3}, ∀u ∈ V } ∪ {{v4, u1} with an arc (v, u) ∈ C} in
σc of the copies, taking the same without one edge not belonging to M∗ in
(σp − 1) other copies, and in the remaining copy, connecting v to the inner
circuit to form a path (see Figure 2).

vv

C
as

e
w

he
re

σ
p
≥

1

C
as

e
w

he
re

σ
p
=

0

v′

∈ M∗

P4-path

G′
1

G′
1

G′
σp+σc

G′
σc

G′
σc−1

e

e
e

e

G′
σp

G′
σp+1

zoom
zoom

P4-path ∈ G′
σc−1

P4-path ∈ G′
σc

. . .

. . .

. . .

Fig. 2. Construction of an instance (σp, σc)−SP based on Transformation 1

In order to explore the cases where the length of the cycles and paths are also
fixed, we considered the following particular case: the length of the σp paths,
denoted by lp is at least 2, and the length of the σp cycles is 6. Thus we now
consider a reduction from the Partition into triangles [8].

Partition into triangles:
Instance: G = (V,E), with |V | = 3q, q ∈ IN
Question: Can the vertices of G be partitioned into q disjoint sets
V1, V2, . . . , Vq, each containing exactly three vertices, such that for each
Vi = {ui, vi, wi}, 1 ≤ i ≤ q, all three of the edges {ui, vi}, {ui, wi},
{wi, vi} belong to E?

Again, we define polynomial-time transformations from an instance of Par-
tition into triangles (PT) to an instance of (σp, σc)−SP with lp ≥ 2 and
lc = 6 (see Figure 3), and (σp, σc)−SP with lp ≥ 2 and lc = 12, for bipartite
graphs respectively (see Figure 4).

52 A. Chateau and R. Giroudeau

Transformation 2. Let G = (V,E) be an instance of Partition into Trian-

gles. We consider the graph G′ = (V ′ = V0∪V1∪V2, E
′ = E0∪E1∪E2∪E3∪E4):

– We consider two copies of G denoted by G0 = (V0, E0) and G1 = (V1, E1)
with vertices respectively denoted by x0 and x1 for x ∈ V .

– ∀x ∈ V , {x0, x1} ∈ E2.
– ∀{x, y} ∈ E, {x0, y1} ∈ E3 and {x1, y0} ∈ E3.
– Lastly, we add σp paths of length lp from σp vertices of G1 denoted by x1

j −
x2
j − . . . − x

lp
j . We denote by V2 and E4 respectively the set of vertices and

the set of edges of these paths.

The perfect matching M∗ consists in the edges of E2 and the edges of the form
{x2i

j , x2i+1
j } in the additional paths.

a

b

cd a0

a1a2a3

b0

b1 b2 b3

c0

c1

d0

d1

Description of
the set of edges
E0
E1
E2
E3
E4

Fig. 3. Transformation 2

a

b

cd a0

a1
a2

a3

b0

b1
b2

b3

c0

c1

d0

d1 ab0

ab1

bc0

bc1

ac0

ac1

da0

da1

Description of
the set of edges
E1
E2
E3

Fig. 4. Transformation 3

Transformation 3. Let G = (V,E) be an instance of Partition into Tri-

angles. We consider the graph G′ = (V ′ = V0 ∪ V1 ∪ V2, E
′ = E1 ∪ E2 ∪E3):

– For each vertex x ∈ V , we add two vertices, denoted by x0 and x1, in V ′.
This set of vertices is denoted by V0.

– For each edge {x, y} ∈ E, we add two vertices xy0 and xy1. This set of
vertices is denoted by V1.

– ∀x ∈ V , {x0
i , x

1
i } ∈ E1, and for all {x, y} ∈ E, {xy0, xy1} ∈ E1.

– ∀{x, y} ∈ E, {x0, xy1}, {xy1, y0}, {x1, xy0} and {xy0, y1} belong to E2.
– Lastly, we add σp paths of length lp from σp vertices of G1 denoted by x1

j −
x2
j − . . . − x

lp
j . We denote by V2 and E3 respectively the set of vertices and

the set of edges of these paths.

The perfect matching consists in the edges of E1 and the edges of the form
{x2i

j , x2i+1
j } in the additional paths.

Theorem 3. The (σp, σc)−SP with lp ≥ 2 and lc = 6 (resp. (σp, σc)−SP with
lp ≥ 2 and lc = 12 in a bipartite graph) is NP−complete.

Proof. The problem is clearly in NP . Let G = (V,E) be an instance of Parti-
tion into Triangles. We consider the graph G′ obtained from G by Trans-
formation 2.

Complexity and Polynomial-Time Approximation of Scaffolding 53

• We suppose that there exists a positive solution for the (σp, σc)−SP with
lp ≥ 2 and lc = 6 in the graph G′ i.e. all vertices are covered by either
a alternating-cycle of length six or by a alternating-path of length lp. The
paths are obviously the paths V2. Thus the alternating-cycles are covering
G′ restricted to G0∪G1∪E2∪E3. Any cycle is of size six, and contains three
edges of E2 alternating with three edges of either E0, E1 or E3. The edges
of E2 correspond to vertices in the original graph G, and two such edges can
be connected by an edge of E0, E1 or E3 if and only if there is an edge in
the original graph between the corresponding vertices. Thus, a alternating-
cycle of size six corresponds to a triangle in G. Then, the solution of the
(σp, σc)−SP with lp ≥ 2 and lc = 6 in the graph G′ defines a partition into
triangles in G.

• Conversely, we suppose that it exists in G a partition into triangles, let us
construct a positive solution for the (σp, σc)−SP with lp ≥ 2 and lc = 6
in the graph G′. The alternating-paths are given by the additional paths
described above, and for a triangle {x, y, z}, we consider the alternating-cycle
of length six {x0, y0, y1, z0, z1, x1, x0}. It is clear that all alternating-cycles
and the alternating-paths cover the vertices of G′.

Concerning the bipartite case, using the same argument as previously on the
graph obtained by Transformation 3, it is clear that the alternating-cycles of size
12 in G′ are necessarily of the form (a0, ab1, ab0, b1, b0, bc1, bc0, c1, c0, ca1, ca0,
a1, a0).

Clearly, all previous problems remain NP−complete in the optimization ver-
sion, even in complete graphs.

4 Inapproximability Results for Min−(σp, σc)−SP

Theorem 4. The problem Min−(0, 1)−SP (resp. Min−(1, 0)−SP) is non-ap-
proximable, unless P = NP, even if the graph is bipartite.

Proof. We use a similar proof to the proof of non-approximability for the TSP in
[12]. We suppose that there exists a polynomial-time approximation algorithm A
for this problem, with approximation ratio ρ > 0. Let G = (V,E) be an instance
of HC with order n. We build an instance of Min−(0, 1)−SP in the following
way:

– We use the adaptation of Transformation 1 to transform the graph G into
a graph G′, like in the Proof of Theorem 2. We add all missing edges of the
kind {u1, v4} for any u, v ∈ V . Let G′′ = (V ′′, E′′) be the graph resulting of
the transformation. Notice that G′′ is bipartite, since the vertices u1 and v4
belong to different sets of the bipartition described in Transformation 1.

– The distance d(vi, vj) on an edge (vi, vj) ∈ E′′ is defined as follows:

d(vi, vj) =

⎧⎨
⎩

1 if {vi, vj} ∈ E
0 if {vi, vj} ∈ P4

ρ× n for every other edge ∈ E′′

54 A. Chateau and R. Giroudeau

Clearly, considering the weight of the solution S given by Algorithm A gives
a polynomial-time decision algorithm for the HC: G has an Hamiltonian circuit
if and only if w(S) ≤ ρ× n.

Corollary 5. The problem Min−(σp, σc)−SP is non-approximable, unless P =
NP, even if the graph is bipartite.

Due to the lack of place, the proof is omitted, but it relies on the ideas of
proofs of Theorem 2 and Theorem 4.

5 A Polynomial-Time Approximation Algorithm for
Max−(σp, σc)−SP

In this section, we focus on the maximization version of the problem. In what
follows, we consider only complete graphs or order 2n, and that the sufficient
and necessary condition n ≥ σp+2σc to the existence of a solution in a complete
graph holds. Moreover, we suppose that the weights are non-negative. Notice
that this latter condition is reached if the weight of an edge represents a number
of mate-pairs. We describe in this case a polynomial-time algorithm and prove
its approximation ratio.

Let M∗ be the initial perfect matching in the graph. We compute a maximum
weight matching of maximum cardinality in G\M∗, for which there exists an
algorithm running in O(n3) [6]. We obtain a cycle cover of maximal weight,
with alternating-cycles (see Figure 6). We note SM∗∗ = {C1 . . . Ch} the set of
alternating-cycles in this cycle cover. We define a polynomial-time algorithm
which transforms this cover into a solution of the Max−(σp, σc)−SP. First, we
determine a set of edges that we can remove in order to build the required cycles
and paths.

Definition 6. For each cycle Ci, ∀i ∈ {1, . . . , h}, we note ti = |Ci\M∗|. We
define removable sets of edges for Ci the following way:

– If ti is even, then we take alternatively one of every two consecutive edges
from Ci\M∗, such as to alternate edges belonging to this set and edges that
do not, on the cycle. There are two such sets.

– If ti is odd, then we take two consecutive edges from Ci\M∗, called twin
edges, and do the same as previous, starting from these edges. Thus, there
are exactly ti such sets.

For each cycle Ci, we define a minimal removable set of edges, noted Ri, as a
removable set of edges of Ci with minimal total weight. In the case where ti is
odd, we denote by e∗i the twin edge of Ri of minimal weight (see Figure 5).

Lemma 7. For each cycle Ci, i ∈ {1, . . . , h}, with |Ci\M∗| = ti, and a minimal
removable set of edges Ri of Ci, we have: w(Ri) ≤ w(Ci\(M∗ ∪ Ri)) (resp.
w(Ri) ≤ w(Ci\(M∗ ∪ Ri)) + w(e∗i)) if ti is even (resp. odd). In any case, we
have w(Ri) ≤ 2.w(Ci\(M∗ ∪Ri)).

Complexity and Polynomial-Time Approximation of Scaffolding 55

ei1 and ei2 are twin edges such that w(ei1) ≤ w(ei2)

edge from M∗∗ edge from M∗

ei1 = e∗i

ei2

CiCi
t i

ev
en

t i
od

d

Fig. 5. Removable set of edges in the cycles of SM∗∗ . The removable sets are figured
by circled edges.

Proof. If ti is even, then by Definition 6 it is clear that w(Ri) ≤ w(Ci\(M∗∪Ri)).
We suppose now that ti is odd. The set of edges R′

i = {e∗i } ∪ (Ci\(M∗ ∪Ri))
also defines a removable set of edges. By minimality of Ri, we get the second
inequality.

The third inequality is trivial in the case where ti is even. Now, we suppose
that ti is odd. It is sufficient to show that w(e∗i) ≤ w(Ci\(M∗ ∪ Ri)). Suppose
that w(e∗i) > w(Ci\(M∗ ∪ Ri)). Let ei1 and ei2 be the twin edges of Ri with
ei1 = e∗i . Clearly, w(ei2) ≥ w(e∗i) > w(Ci\(M∗ ∪ Ri)). By hypothesis, w(Ri) ≥
w(ei2) + w(e∗i) > w(Ci\(M∗ ∪Ri)) + w(e∗i) ≥ w(Ri), which is not possible.

Algorithm 1. Maximal cycle cover algorithm for Max−(σp, σc)−SP
M∗∗ ← A maximal weight perfect matching for G\M∗;
SM∗∗ ← M∗∗ ∪M∗;
h ← the number of cycles in SM∗∗ ;
for cycle Ci ∈ SM∗∗ do

Ri ← A minimal removable edges set of Ci;
end
R ← ⋃h

i=1 Ri;
Remove the edges of R from the cycles;
Build σc cycles by cycling σc paths of length four and, if needed, by using two
paths of length two;
Build the σp paths by merging, if needed, the remaining paths;

Lemma 8. Algorithm 1 gives a feasible solution.

Proof. We consider the number of cycles and paths that we can build from
Ci by removing edges in Ri and merge back the pieces. It can be any pair
(x, y) ∈ IN × IN\{(0, 0)} where x is the number of cycles, and y the number of
paths, satisfying y ≤ −2x+ ti.

This property is additive, meaning that if we consider two cycles of sizes ti
and tj , we can realize any pair (x, y) ∈ IN × IN\{(0, 0)} where x is the number
of cycles, and y the number of paths, satisfying y ≤ −2x+ ti + tj .

56 A. Chateau and R. Giroudeau

Thus, if we consider the whole set of cycles, we can realize any pair (x, y) ∈
IN × IN\{(0, 0)} where x is the number of cycles, and y the number of paths,
satisfying y ≤ −2x +

∑h
i=1 ti. Since

∑h
i=1 ti =

∑h
i=1 |Ci\M∗| = |M∗|, and

|M∗| = n ≥ σp+2σc, we have: σp ≤ −2σc+
∑h

i=1 ti. Consequently, it is possible
to realize a solution by removing only edges belonging to R and recombining the
remaining pieces.

Theorem 9. The Algorithm 1 provides a solution for the Max−(σp, σc)−SP in
complete graphs with non-negative weights, with an approximation ratio of three
and a time complexity O(n3). The bound is tight.

Proof. Algorithm 1 finishes with σp paths and σc cycles, by construction of
the sets Ri. It runs in time complexity O(n3), which is the initial cycle cover
computation complexity. The other operations can be executed in O(n2).

We denote by Sopt an optimal solution for the Max−(σp, σc)−SP, and SH

the solution given by the heuristic described above.
We have w(SM∗∗) =

∑h
i=1 w(Ci) =

∑h
i=1(w(Ci\Ri) + w(Ri)). Using Lemma

7, we know that w(Ri) ≤ 2.w(Ci\Ri) and so w(SM∗∗) ≤ 3.
∑h

i=1 w(Ci\Ri).
Since Sopt also gives a matching of G\M∗, we have w(Sopt) ≤ w(SM∗∗) ≤
3.

∑h
i=1 w(Ci\Ri). Finally, since ∀i ∈ {1 . . . h}, Ci\Ri ⊂ SH , we have w(Sopt) ≤

3.w(SH). Moreover, the bound is tight, consider the graph on Figure 6.

11

10

1

0

3
2

5

47

6

9

8

1

e4, 1

1

1

1

e6, 1

e1, 1

1

e5, 1

1

e3, 1

e2, 1

Not appearing edges are edges of weight 0.
We suppose that σp = 0 and σc = 3. Sup-
pose that the maximum weighted match-
ing of maximum cardinality algorithm pro-
duces the two cycles C1 = (0, 1, 2, 3, 4, 5)
and C2 = (6, 7, 8, 9, 10, 11) (dotted edges),
of total weight six. By taking R1 = {e1, e2}
and R2 = {e5, e6}, the re-merging opera-
tion would give a solution of weight two:
{(0, 1, 5, 4), (7, 6, 11, 10), (2, 3, 8, 9)}. But an
optimal solution to the problem, also of
weight six, would be obtained with the
dashed edges.

Fig. 6. The bound of three is tight for Algorithm 1

The approximation ratio could be improved in the TSP-like problem.

Theorem 10. There exists a polynomial-time approximation algorithm for the
Max−(0, 1)−SP in complete graphs with non-negative weights, with an approx-
imation ratio of two and a time complexity O(n3). The bound is tight.

Proof. Let SM∗∗ = {C1, . . . , Ch} be the alternating-cycles given by the maxi-
mum weight matching of maximal cardinality algorithm. For each i ∈ {1 . . . h},

Complexity and Polynomial-Time Approximation of Scaffolding 57

let ei be an edge of minimal weight in Ci\M . We remove all the edges ei, and
connect the cycles in order to obtain only one cycle, by arbitrary edges. As the
same way as previously Sopt (resp. SH) designs an optimal solution (resp. the
heuristic described above) for the Max−(0, 1)−SP.

We have w(SM∗∗) =
∑h

i=1 w(Ci) =
∑h

i=1(w(Ci\{ei}) + w(ei)).
Since ei is an edge of minimal weight in Ci, which counts at least two edges

outside M∗, we have w(ei) ≤ w(Ci\{ei}). Then: w(SM∗∗) ≤ 2.
∑h

i=1 w(Ci\{ei}).
Furthermore, since Sopt also gives a matching of G\M∗, we have w(Sopt) ≤

w(SM∗∗) ≤ 2.
∑h

i=1 w(Ci\{ei}). Finally, since ∀i ∈ {1 . . . h}, Ci\{ei} ⊂ SH , we
obtain w(Sopt) ≤ 2.w(SH). Moreover, the bound is tight, consider the graph on
Figure 7.

1

0

3

2

5

47

6

1

1

1

1

1

11

1

Not appearing edges are edges of weight 0.
Suppose that the weighted matching of max-
imum cardinality algorithm produces the two
cycles with dotted edges. One optimal solu-
tion of the Max−(0, 1)−SP in this graph is
given by the dashed edges. Both solutions
have weight four. But the solution produced
by the heuristic has weight only two.

Fig. 7. The bound of two is tight for the Max−(0, 1)−SP

6 Conclusion

In this article, we investigate problems inspired by the contig scaffolding problem
in bioinformatics, from the point of view of complexity and approximation algo-
rithms with guaranteed performance ratio. In such a context, we propose some
negative results in term of complexity (NP -completeness/non-approximability)
and we design efficient polynomial-time approximation algorithms.

From a combinatorial point of view, further interesting questions would be
to compare the computation time of several exact methods, on randomly gen-
erated and real instances, and to continue the exploration of the approximation
algorithms for the maximization problem.

From a bioinformatic point of view, several perspectives have to be explored.
First, we have to improve the relevance of the problem by considering a relaxed
version: indeed, our complete graphs allow weight equal to 0, which have no
meaning for the scaffolding problem. Then, we have to consider now the following
problem, trying to find a cover of maximal weight, by at least σp paths and at
most σc cycles not containing weights equal to 0, such that the structure of
the given solution is as close as possible to the desired structure. Furthermore,
we have now to extend the model to take into account the multiplicities of the
repeated contigs, and possibly mix multiple sources of information and thus,
multi-criteria. Finally, we intend to verify on simulated data and real data, if a
good approximation ratio improves the biological quality of the results.

58 A. Chateau and R. Giroudeau

Acknowledgments. This work was supported by the Institut de Biologie Com-
putationnelle (IBC) and Défi MASTODONS SePhHaDe from CNRS.

References

1. Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., Shendure, J.:
Chromosome-scale scaffolding of de novo genome assemblies based on chromatin
interactions. Nature Biotechnology, 1119–1125 (November 2013)

2. Chauve, C., Patterson, M., Rajaraman, A.: Hypergraph covering problems moti-
vated by genome assembly questions. In: Lecroq, T., Mouchard, L. (eds.) IWOCA
2013. LNCS, vol. 8288, pp. 428–432. Springer, Heidelberg (2013)

3. Chiba, S., Fujita, S.: Covering vertices by a specified number of disjoint cycles,
edges and isolated vertices. Discrete Mathematics 313(3), 269–277 (2013)

4. Dayarian, A., Michael, T.P., Sengupta, A.M.: SOPRA: scaffolding algorithm for
paired reads via statistical optimization. BMC Bioinformatics 11, 345 (2010)

5. Donmez, N., Brudno, M.: SCARPA: scaffolding reads with practical algorithms.
Bioinformatics 29(4), 428–434 (2013)

6. Gabow, H.N.: An efficient implementation of Edmonds’ algorithm for maximum
matching on graphs. Journal of the ACM 23(2), 221–234 (1976)

7. Gao, S., Sung, W., Nagarajan, N.: Opera: reconstructing optimal genomic scaf-
folds with high-throughput paired-end sequences. Journal of Computational Biol-
ogy 18(11), 1681–1691 (2011)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

9. Gritsenko, A.A., Nijkamp, J.F., Reinders, M.J., Ridder, D.D.: GRASS: a generic
algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics,
1429–1437 (2012)

10. Huson, D.H., Reinert, K., Myers, E.W.: The greedy path-merging algorithm for
contig scaffolding. Journal of ACM 49(5), 603–615 (2002)

11. Krivelevich, M., Nutov, Z., Salavatipour, M.R., Yuster, J.V., Yuster, R.: Approx-
imation algorithms and hardness results for cycle packing problems. ACM Trans-
action on Algorithms 3(4) (November 2007)

12. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of
ACM 23(3), 555–565 (1976), http://doi.acm.org/10.1145/321958.321975

13. Shmoys, D.B., Lenstra, J.K., Kan, A.H.G.R., Lawler, E.L.: The Traveling Salesman
Problem: a guided tour of combinatorial optimization. John Wiley & Sons (1985)

14. Steiner, G.: On the k-path partition of graphs. Theoretical Computer Science 290,
2147–2155 (2003)

15. Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canadian Jour-
nal of Mathematics 6, 347–352 (1954)

http://www.lirmm.fr/mastodons
http://doi.acm.org/10.1145/321958.321975

Heuristics for the Sorting by Length-Weighted

Inversions Problem on Signed Permutations

Thiago da Silva Arruda, Ulisses Dias, and Zanoni Dias

University of Campinas, Institute of Computing
Av Albert Einstein, 1251, Campinas/SP - Brazil

{thiago.arruda@students.,udias@,zanoni@}ic.unicamp.br

Abstract. Genome Rearrangement is a field that addresses the prob-
lem of finding the minimum number of global operations that transform
a given genome into another. In this work, we deal with inversion events,
which occur when a segment of DNA sequence in the genome is re-
versed. In our model, each inversion costs the number of elements in the
reversed segment. We present a new heuristic for this problem and we
show that our method outperforms a previous approach. Our method
uses the metaheuristic called Greedy Randomized Adaptive Search Pro-
cedure (GRASP) that has been routinely used to find solutions for combi-
natorial optimization problems. In essence, we implemented an iterative
process in which each iteration receives a feasible solution whose neigh-
borhood is investigated for a better solution. We use as initial solution
a sequence of inversions of minimum length when each inversion costs
one unit, which is a problem that already has several polynomial time
algorithms. In almost every case, we were able to improve that initial
solution by providing a less-costly sequence of inversions.

Keywords: Genome rearrangement, length-weighted inversion, GRASP.

1 Introduction

Genome comparison among closely related species has revealed that organisms
share large blocks of DNA sequence and that the ordering of these blocks may
change across species. The main explanation for the variability in chromosome
structure is that genomes undergo large scale mutational events, also called re-
arrangements, during the evolutionary process. A genome rearrangement event
called inversion occurs when a segment of DNA sequence in the genome is re-
versed. In bacteria, inversions have long been recognized as one of the most
frequently observed rearrangements.

Darling, Miklós and Ragan [9] studied eight Yersinia genomes and found that
inversions are shorter than expected under a neutral model. The understanding
that short inversions are preferred is not entirely new. Previous results suggested
that the sequence of operations that most likely happened during the evolution
may not involve the movement of many long sequences [7]. Sankoff [17] found
evidence that the frequency of short segment inversions is high in the evolution

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 59–70, 2014.
c© Springer International Publishing Switzerland 2014

60 T.S. Arruda, U. Dias, and Z. Dias

of microbial genomes, whereas it seems less prevalent in plants and animals.
Lefebvre et al. [15] and Sankoff et al. [18] found a large excess of short inversions,
specially those involving a single gene, which contrasted with the null hypothesis
that the two endpoints of an inversion occur by random and independently.

While a large body of literature exists on mathematical problems related to
the computation of the inversion distance between two genomes, these works
generally do not take into account the length of the reversed segments, i.e., each
inversion costs one unit. The first polynomial time algorithm was presented by
Hannenhalli and Pevzner [13] and other algorithms were later devised in order
to simplify it or to improve its running time [5, 6].

Few algorithms consider the number of elements in each inversion. In 2002,
Ajana et al. [2] developed a randomized heuristic that allows the user to choose a
secondary criterion to be used with the Hannenhalli and Pevzner [13] algorithm.
In other words, Hannenhalli and Pevzner algorithm can generate many equally
optimal solutions, so the Ajana et al. algorithm selects, at random, one of the
shortest allowable inversions at each step.

In 2004, Swidan et al. [19] created a length-sensitive model where the cost of
reversing a subsequence of length l is given by the function f(l) = lα, for α ≥ 0.
For α = 1, we do not know any NP-hardness proof and there is no evidence that
a polynomial algorithm can be devised. Swidan et al. were able to guarantee the
approximation ratio O(lg n). We work on this problem and we show a method
that finds better solutions in most of the cases.

In a previous work, we presented a greedy algorithm for the sorting by length-
weighted inversion problem when gene orientation is not taken into account [3].
Here, we deal with a more biologically relevant problem since we are considering
both orientation and length of each inversion.

Our method uses the metaheuristic introduced by Feo and Resende [10] called
Greedy Randomized Adaptive Search Procedure (GRASP), which has been rou-
tinely used to find solutions for combinatorial optimization problems [1,8,11,14,
16]. The reader is referred to the review written by Festa and Resende [12] for a
more detailed discussion about GRASP.

In essence, GRASP searches for good solutions as an iterative process. Each
iteration uses an initial solution s in a discrete set of feasible solutions S, and
its neighborhood is investigated until a local minimum is found. Our approach
follows this model and also implements other basic components of GRASP as
described by Feo and Resende [10].

The rest of this paper is organized as follows. Section 2 is a brief introduction
to the problem. It provides the concepts and definitions used throughout the text.
Section 3 presents our search procedure. The section is self-contained, and we
assume no previous knowledge about the concepts of GRASP. Section 4 analyses
the model using a practical approach. We base our analysis on the improvement
that was achieved by our model when an optimum solution for the sorting by
inversions problem is used as initial solution.

Sorting by Length-Weighted Inversions Problem 61

2 Definitions

We represent a pair of single-chromosome genomes by permutations of integer
numbers, where each number represents a block of DNA sequence shared between
the two genomes, and the signs represent gene orientation. Let n be the number
of conserved blocks, we assume that one of the genomes is represented by the
identity permutation ι = (1 2 . . . n) and the other genome is represented by the
permutation π = (π1 π2 . . . πn), for πi ∈ I, 0 < |πi| ≤ n and i
= j ↔ |πi|
= |πj |.

The following functions can be applied to identify any element i in π.

Definition 1. Position: p(π, i) = k ⇔ |πk| = i, p(π, i) ∈ {1, 2, . . . , n}.

Definition 2. Sign: s(π, i) =

{
1, if πi < 0.
0, if πi > 0.

Given a permutation π, we extend it with two elements π0 = 0 and πn+1 =
n + 1. The extended permutation is still denoted π. A pair of elements πi and
πi+1, with 0 ≤ i ≤ n, is a breakpoint if πi+1 − πi
= 1. The identity permutation
ι is the only permutation with no breakpoints.

Sometimes it is useful to treat permutations as functions such that π(i) =
πi and π(−i) = −π(i). The composition of two permutations π and σ is the
permutation πσ = (πσ(1) πσ(2) . . . πσ(n)). We can see the composition as the
relabeling of elements in π according to elements in σ. Note that ι is the neutral
element such that πι = ιπ = π. We define π−1 as the permutation such that
ππ−1 = π−1π = ι. The inverse permutation is the function such that π−1

π(i) = i.

An inversion ρ(i, j) is a rearrangement event that reverses the order and the
signs of a consecutive section of a genome: πρ(i, j) = (π1 . . . πi−1 −πj . . . − πi

πj+1 . . . πn), such that 1 ≤ i ≤ j ≤ n.
The inversion distance d(π) between an arbitrary genome π and the identity

ι is the minimum number t of operations ρ1, ρ2, . . . ρt such that πρ1ρ2 . . . ρt = ι.
The length-weighted inversion distance dlw(π) between π and ι is a mini-

mization problem written as “dlw(π) = min
∑t′

k=1 cost(ρk)”, where cost is an
objective function given by cost(ρ(i, j)) = j − i + 1 and πρ1ρ2 . . . ρt′ = ι. For
this problem we have t′ ≥ d(π).

Let us consider the permutation π = (+2 +1 -5 -4 -3). Three inversions are
enough to sort π, as πρ(2, 5)ρ(1, 4)ρ(1, 5) = ι, which implies d(π) = 3. The cost
for this sequence is cost(ρ(2, 5)) + cost(ρ(1, 4)) + cost(ρ(1, 5)) = 4 + 4 + 5 = 13.
The length-weighted inversion problem aims to decrease the overall cost, so we
allow the number of inversions to increase if that helps us achive our goal. For
instance, the sequence πρ(1, 2)ρ(3, 5)ρ(1, 1)ρ(2, 2) has 4 inversions and costs 7.

3 The Meta-heuristic

Our heuristic is an iterative process in which each iteration starts from a feasible
solution whose neighborhood is investigated for a better solution. If a better
solution is found, it is kept as the current solution and used in the next iteration.
Below we state the main points of our heuristic.

62 T.S. Arruda, U. Dias, and Z. Dias

1. An initial solution is choosen and it impacts on the quality of the final
solution.

2. Let s be a solution, we set how different from s another solution s′ should
be in order to be considered in the same neighborhood as s. Our definition
for neighborhood is given in Section 3.1.

3. We implemented a method to build a new solution in the neighborhood of s.
The main aspects of our method are described in Section 3.2 and an auxiliary
function is presented in Section 3.3.

3.1 Neighborhood

Let S be a discrete set of feasible solutions for the sorting by length-weighted
inversions problem, we represent each solution s ∈ S as a sequence of permu-
tations that starts with π and ends with ι. Each permutation in the sequence
differs from the previous one by one inversion.

Definition 3. A solution s ∈ S is a sequence of permutations s =< s0, s1,
. . . , sm > such that sk = sk−1ρk, 1 ≤ k ≤ m, s0 = π and sm = ι.

Definition 4. Let s =< s0, s1, . . . , sm > be a solution in S, we define sub(s, p, q)
as the subsequence sub(s, p, q) =< sp, sp+1, . . . , sq >, for 0 ≤ p ≤ q ≤ m.

The neighborhood N(s) is a set of solutions. We define an element s′ ∈ N(s)
as follows.

Definition 5. A solution s′ =< s′0, s
′
1, . . . , s

′
m′ > is in N(s) iff sub(s, 0, p) =

sub(s′, 0, p′) and sub(s, q,m) = sub(s′, q′,m′), for 0 ≤ p < q ≤ m and 0 ≤ p′ <
q′ ≤ m′.

Observe that N(s) has a wide number of elements. In fact, by this definition,
any solution s′ is in N(s) since we can assign p = 0 and q = m. In order to
make this definition useful, we need to further constrain the values that might
be assigned to p and q. Therefore, we propose a new definition for neighborhood
that we represent by Nf(s), where f is how far p and q are from each other.

Definition 6. Let f be a natural number, a solution s′ =< s′0, s
′
1, . . . , s

′
m′ > is

in the neighborhood Nf(s) iff sub(s, 0, p) = sub(s′, 0, p′), sub(s, q,m) = sub(s′, q′,
m′) and q − p + 1 = f , for 0 ≤ p < q ≤ m and 0 ≤ p′ < q′ ≤ m′. We say that
the subsequence sub(s, p, q) is a frame of size f .

3.2 Local Search

Let s =< s0, s1, . . . , sm > be a solution in S and sub(s, p, q) be a frame, the
sequence of inversions that transform sp into sq is the same that would be used
to transform s−1

q sp into ι. That is because we can relabel the entire frame us-
ing composition in order to create the sequence < s−1

q sp, s
−1
q sp+1, . . . , s

−1
q sq >,

where s−1
q sq = ι. Therefore, we conclude that creating a new sequence for the

Sorting by Length-Weighted Inversions Problem 63

window sub(s, p, q) is equivalent to sorting the instance s−1
q sp by length-weighted

inversion. For conciseness, in Section 3.3 we will talk of solving the sorting by
length-weighted inversion problem where we mean creating a new frame to re-
place sub(s, p, q).

Let sub(s, p, q) be a frame we want to replace such that q− p+1 = f , we find
a solution for the permutation s−1

q sp and this solution can be easily transformed
back into a sub-sequence going from sp to sq. If this new sub-sequence costs less
than sub(s, p, q), we replace the frame sub(s, p, q) for the new sub-sequence in
order to create a new solution s′ ∈ Nf (s).

We have m− f + 1 different frames of size f in s, and some frames are more
likely to be improved than others, so we created a method where the frame that
will be improved must be selected in a two-step process.

1. We calculate the cost for each frame sub(s, p, q) =< sp, sp+1, . . . , sq > by
summing the cost of each inversion ρk such that sk = sk−1ρk, p < k ≤ q.
Then we select a limited number of high-cost frames defined as a parameter
named frame limit. The frames that were not selected will be discarded.

2. The frame must be selected by a random process called roulette wheel selec-
tion mechanism, which is very common in Genetic Algorithm techniques [4].
The pseudocode is presented in Algorithm 1. The variable Elements receives
a list of frames selected in item 1. Let costs be an array with the cost of each
frame in variable Elements and min be the index of the lowest cost, the
score for each frame is given by score[i] ← costs[i] − costs[min] + 1. After
that, a random number R is generated in the range defined by the sum of
all costs. Finally, we select the first frame in the array such that when all
previous scores are added it gives us at least R.

Algorithm 1. selectByRouletteWheel

Data: Elements,Scores
sum scores ← sum(Scores)
R ← random(1, sum scores)
k ← 0
curSum ← 0
while curSum < R do

curSum ← curSum + score[k]
k ← k + 1

end while
return Elements[k]

After selecting the frame, we use the algorithm described in Section 3.3 in hope
of finding an improvement. Then, we repeat the process again a limited number
of times that should be set beforehand. As reasonable, the more iterations, the
better the answer provided in the end. A tradeoff between solution quality and
computational time is necessary.

64 T.S. Arruda, U. Dias, and Z. Dias

3.3 Building Solutions

Here, we present a greedy randomized approach to find a solution for any permu-
tation π. Starting from a sequence of permutations that has only π as element, we
construct a solution one element at a time. Each step gathers a set of candidate
inversions that can be used to extend the partial solution.

Each candidate inversion is ranked based on its likelyhood of producing se-
quences of short length inversions. In other words, we estimate the benefit of
each inversion. We assess the benefit based on two aspects of a permutation:
number of oriented pairs (nop(π)) [6] and entropy (ent(π)).

Definition 7. An oriented pair (πi, πj) is a pair of consecutive integer |πi| =
|πj | ± 1 with opposite signs.

The concept of oriented pair was used by Bergeron [6] to define an algorithm
to the sorting by inversions problem. The inversion induced by an oriented pair
(πi, πj) is ρ(i, j− 1), if πi + πj = 1, and ρ(i+1, j), if πi + πj = −1. The induced
inversion guarantees that πi and πj will be placed side by side and that they
will not be a breakpoint.

The Bergeron’s algorithm is based on using induced inversions that maximize
the number of oriented pairs in the next permutation, which is possible as long
as π has negative elements. If π has only positive elements, then we have the
so-called “hurdle” as defined by Hannenhalli and Pevzner [13], which is a config-
uration with no oriented pair, nop(π) = 0. In these cases, we use the operations
“hurdle cutting” and “hurdle merging” as proposed by Bergeron [6].

The second important aspect for assessing the benefit of an inversion is the
entropy. In essence, entropy is the computation of how far each element is from
its final position plus a penalty for negative elements.

Definition 8. Entropy: ent(π) =
n∑

i=1

|i− p(π, i)|+
n∑

i=1

s(π, i)

We have ent(π) = 0 if, and only if, π = ι. Therefore, we should pick inver-
sions that decrease the entropy. We should also pick inversions that increase the
number of oriented pairs following the line of reasoning introduced by Bergeron.
In this case, the ratio enop(π) = ent(π)/nop(π) joins both concepts together.
Next we introduce two functions for calculating the benefit of an inversion. One
function uses the entropy ent and the other uses both entropy and number of
oriented pairs as defined by enop.

Definition 9. Let ρ be an inversion, we define its benefit in two different ways:

δ1(π, ρ) =
ent(π)−ent(πρ)

cost(ρ)

δ2(π, ρ) =
enop(π)−enop(πρ)

cost(ρ)

Both benefit functions have the desirable property that if we keep applying
positive benefit inversions on π, we will eventually reach the identity permuta-
tion. However, we have found some permutations such that no positive benefit
inversion is possible. Thus, we decided to consider only the inversions that are

Sorting by Length-Weighted Inversions Problem 65

induced by an oriented pair when π has negative elements, so we guarantee that
at least one breakpoint will be removed. When π has no negative elements, as
we explained earlier, the operations “hurdle cutting” and “hurdle merging” [6]
are used.

When we have inversions induced by oriented pairs available, the inversion
that will be used in order to extend the partial solution must be approved in a
two-step process.

1. We calculate the benefit of each inversion ρ induced by an oriented pair,
then we select a limited number of inversions having the highest benefits.
The exact number of inversions moving to the second phase is defined as a
parameter named inversion limit. The inversions that were not selected
will be discarded.

2. The inversions that were not discarded in item 1 must also be selected by
the roulette wheel mechanism described in Algorithm 1. Each permutation
has a selection likelihood proportional to its benefit. The variable Elements

receives a list of inversions selected in the previous step and the variable
Scores receives the benefit of each inversion.

Since we have two functions to calculate the benefit of an inversion (δ1 and
δ2), we run the entire process once for each function and we choose the final
solution as the one that has the minimum cost.

4 Experimental Results

We have implemented our heuristic in C++. We use the program GRIMM [21] to
find the optimum solution for the sorting by inversions problem, which is then
used as initial solution. Below we set the parameters that were mentioned in
Section 3. Using these parameters, the time spent processing each permutation
is shown in Table 1.

1. The frame size f plays a very important role and the best outcome is achieved
if we change f at runtime. In our experiments, we loop f through the se-
quence < 14, 12, . . . , 4 >. We run our method 150 times for each value of f .
Overall, our method will run 900 iteration steps.

2. In Section 3.2 we mentioned the parameter frame limit. This parameter
is set as a fraction of the available frames. In our experiments, we allowed
75% of the best ranked frames to move to the second phase. We tried several
values for frame limit like 25%, 50% and 75%. Our final conclusion is that
75% is the value that leads to the best results.

3. In Section 3.3 we mentioned the parameter inversion limit. This parame-
ter is fixed no matter the number of inversions available. In our experiments,
we allowed only 5 of the best ranked inversions to move to the second phase.
We tried several values for inversion limit like 3, 5, 10, 15 and 20. Our
final conclusion is that 5 is the value that leads to the best results

66 T.S. Arruda, U. Dias, and Z. Dias

Table 1. Average time (in seconds) to process each permutation of a given size

Size 10 15 20 25 30 35 40 45 50 55

Time 0.6 1.5 3.1 5.1 7.3 9.9 12.2 14.5 16.6 21.7

Size 60 65 70 75 80 85 90 95 100
Time 25.1 27.7 32.1 32.1 27.5 29.3 31.2 32.8 34.4

To find the theoretical time complexity of our implementation, we compute
the complexity of each part:

1. We use GRIMM to obtain an initial solution and it runs in O(n4).

2. The number of iterations is a parameter and we will use l to refer to it.

3. In order to select a frame we need O(m log(m)) time, where m is the number
of permutations in the initial solution. Recall that the first step to select a
frame consists of choosing a limited number of high-cost frames, which we
achieve by sorting the frame list. Therefore, the stated complexity follows.
Since m = O(n), we have that this step runs in O(n log(n)).

4. We need O(fn2) to build a new solution to replace the frame. Each step we
gather O(n) inversions induced by oriented pairs and we need O(n) time to
compute the benefit for each one of them. Besides, the new frame will have
a size proportional to f . Therefore, the stated complexity follows.

Our final complexity is O(Initial Solution+ Iterations ∗ (Search Frame+
Improve Frame)), which gives us O(n4 + l(n log(n) + fn2)). After some sim-
plifications, we conclude that our implementation runs in O(n4 + fln2). This
complexity can be reduced to O(fln2) if we use the algorithm proposed by Tan-
nier and Sagot [20] to obtain the initial solution, which runs in O(n

√
n logn).

The main quality measure used in our experiments is the difference in cost
between the sequence produced by our implementation and the initial solution
produced by GRIMM.

For n in the set {10, 15, . . . , 100}, we generated 1000 random permutations
and ran our implementation on them. Figure 1 shows how often our approach
improves the initial solution. We were able to improve it in 94.0% of the test
cases. When we consider only larger permutations such that n ≥ 50, we notice
that 99.3% of the initial solutions were improved.

The colors in Figure 1 represent frame sizes and, therefore, bars show us
which size was responsible for the first improvement in the initial solution. As
an example, for n = 100 we were able to improve 99.8% of the initial solutions.
In 94.4% of the cases the first improvement occured when f = 14 and in 4.4%
of the cases the first improvement occured when f = 12.

Figure 2 shows the percentage of improvement on average obtained by using
our method. Let Sinitial be the initial solution and Sfinal be the final solution
produced by our greedy randomized approach, we define improvement as the
difference in cost between Sinitial and Sfinal divided by the cost of Sinitial, in

Sorting by Length-Weighted Inversions Problem 67

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100N
um

be
r o

f I
m

pr
ov

ed
 In

iti
al

 S
ol

ut
io

ns

Permutation size

14
12
10

8
6
4

Fig. 1. This graph reports the percentage of times our heuristic improved the initial
solution. Overall, the initial solution was improved in 94.0% of the cases. If we consider
only larger permutations such that n ≥ 50, we observe that 99.3% of the initial solutions
were improved. In our graph, colors represent frame sizes and colored bars show us
which frame size was responsible for the first improvement in the initial solution.

0%

3%

6%

9%

12%

15%

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
ge

 Im
pr

ov
em

en
t

Permutation size

14
12
10

8
6
4

Fig. 2. This graph shows the percentage of improvement obtained by using our method.
We observe that our solutions cost around 12.6% less than the initial solution. Colors
represent frame sizes and colored bars show us which frame size was responsible for
the improvement on average.

other words, % of improvement = 100 ∗ cost(Sinitial)−cost(Sfinal)
cost(Sinitial)

. We observe

that our solutions cost around 12.6% less than the initial solution.
We continue our analysis by comparing our results against a previous algo-

rithm for the sorting by length-weighted inversion problem developed by Swidan
et al. [19]. They created a length-sensitive model where the cost of reversing a
subsequence of length l is given by the function f(l) = lα, for α ≥ 0. They were
able to guarantee the approximation ratio O(lg n) when α = 1, which is the same
cost function we use in this paper. Our analysis shows that our method found
solutions that cost less than those provided by Swidan et al. in 97.5% of the
cases. When we consider only larger permutations such that n ≥ 50, we notice
that in 99.9% of the cases our solutions cost less than those provided by Swidan
et al.

68 T.S. Arruda, U. Dias, and Z. Dias

In Figure 3, the Y-axis represents an average of the costs for the dataset
of 1000 permutations of each size in the set {10, 15, . . . , 100} and the X-axis
represents permutation size. The label Swidan represents the algorithm proposed
by Swidan et al. [19]. As we can see, Swidan is outperformed by both GRIMM and
our approach (labelled as GRASP). On average, our solutions cost 23.3% less than
the solutions provided by Swidan.

0

200

400

600

800

1000

1200

1400

1600

1800

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
os

t

Permutation Size

Swidan
GRASP

GRIMM

Fig. 3. This graph shows a comparative analysis among three algorithms. The Y-axis
represents the average cost and the X-axis represents the permutation size. The label
Swidan represents the algorithm proposed by Swidan et al. [19]. GRIMM is an optimum
solution for the sorting by inversions problem when each inversion costs one unit [21].
GRASP represents our approach presented in this paper.

0

50

100

150

200

250

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 N
um

be
r o

f I
nv

er
si

on
s

Permutation Size

Swidan
GRASP

GRIMM

Fig. 4. This graph shows the average number of inversions of solutions provided by
each of the three algorithms used in our analysis. The Y-axis represents average number
of inversions and X-axis represents permutation size. The labels for the algorithms are
the same used in Figure 3.

In Figure 4 we show the number of inversions used by each approach. Swidan
returns results with a lot of inversions, which is reasonable since they are not
trying to minimize how many inversions are being used. GRIMM represents the
optimum value in the graph, since it is an algorithm developed for the sorting
by inversion problem.

Sorting by Length-Weighted Inversions Problem 69

We observe that our approach (labelled as GRASP) increases in only 1.8% the
number of inversions provided by GRIMM. This is a desirable property because we
do not want our solution to be far away from the most parsimonious solutions.
The same analysis for Swidan shows that it provides solutions that have on
average 97.6% more inversions than GRIMM.

5 Conclusions

In this paper we presented a greedy randomized search procedure for the problem
of finding a sequence of inversions that has the minimum length-weighted cost.

Our model has some parameters that can be easily set and tuned. The pa-
rameters impact the time spent processing the results and the solution quality.
We have a dataset of 19,000 instances, so we decided to set the parameters in
order to make the heuristic run faster. That setting was able to outperform a
previous approach and significantly improve the initial solution.

We were able to improve the initial solution in most of the cases during our
experiments. The larger the size of the permutation, the easier it is to improve
the initial solution. For permutations of size greater or equal to 50, we improved
the initial solution in more than 99.3% of the cases. In addition, our solutions cost
12.6% less than the initial solution and 23.3% less than the previous algorithm.

We analysed the number of inversions provided by our heuristic and we showed
that our solutions are still close to the most parsimonious scenarios. Indeed, our
solutions have on average 1.8% more inversions than the minimum number. A
similar analysis showed that the previous algorithm has on average 97.6% more
inversions than the minimum number.

Acknowledgments. This work was made possible by a Postdoctoral Fellowship
from FAPESP to UD (number 2012/01584-3) and by project fundings from
CNPq to ZD (numbers 477692/2012-5 and 483370/2013-4). The authors also
thank the Center for Computational Engineering and Sciences at Unicamp for
financial support through the FAPESP/CEPID Grant 2013/08293-7. FAPESP
and CNPq are Brazilian research funding agencies.

References

1. Aiex, R.M., Binato, S., Resende, M.G.C.: Parallel grasp with path-relinking for job
shop scheduling. Parallel Computing 29, 2003 (2002)

2. Ajana, Y., Lefebvre, J.F., Tillier, E.R.M., El-Mabrouk, N.: Exploring the set of
all minimal sequences of reversals - an application to test the replication-directed
reversal hypothesis. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452,
pp. 300–315. Springer, Heidelberg (2002)

3. Arruda, T.S., Dias, U., Dias, Z.: Heuristics for the sorting by length-weighted inver-
sion problem. In: Proceedings of the International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics, pp. 498–507. ACM (2013)

70 T.S. Arruda, U. Dias, and Z. Dias

4. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, Oxford
(1996)

5. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing in-
version distance between signed permutations with an experimental study. Journal
of Computational Biology 8(5), 483–491 (2001)

6. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory.
Discrete Applied Mathematics 146, 134–145 (2005)

7. Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement.
Gene 172(1), C11–C17 (1996)

8. Cano, R.G., Kunigami, G., Souza, C.C., Rezende, P.J.: A hybrid grasp heuris-
tic to construct effective drawings of proportional symbol maps. Computers and
Operations Research 40(5), 1435–1447 (2013)

9. Darling, A.E., Miklós, I., Ragan, M.A.: Dynamics of genome rearrangement in
bacterial populations. PLoS Genetics 4(7), 1000128 (2008)

10. Feo, T., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal
of Global Optimization 6(2), 109–133 (1995)

11. Feo, T.A., Pardalos, M.: A greedy randomized adaptive search procedure for the
2-partition problem. Operations Research (1994)

12. Festa, P., Resende, M.: Grasp: basic components and enhancements. Telecommu-
nication Systems 46(3), 253–271 (2011)

13. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial al-
gorithm for sorting signed permutations by reversals. Journal of the ACM 46(1),
1–27 (1999)

14. Laguna, M., Mart́ı, R.: Grasp and path relinking for 2-layer straight line crossing
minimization. INFORMS Journal on Computing 11, 44–52 (1999)

15. Lefebvre, J.F., El-Mabrouk, N., Tillier, E., Sankoff, D.: Detection and validation
of single gene inversions. Bioinformatics 19, i190–i196 (2003)

16. Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid grasp with perturbations for the
steiner problem in graphs. INFORMS Journal on Computing 14, 200–202 (2001)

17. Sankoff, D.: Short inversions and conserved gene cluster. Bioinformatics 18(10),
1305–1308 (2002)

18. Sankoff, D., Lefebvre, J.F., Tillier, E., Maler, A., El-Mabrouk, N.: The distribution
of inversion lengths in bacteria. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS
(LNBI), vol. 3388, pp. 97–108. Springer, Heidelberg (2005)

19. Swidan, F., Bender, M., Ge, D., He, S., Hu, H., Pinter, R.: Sorting by length-
weighted reversals: Dealing with signs and circularity. In: Sahinalp, S.C., Muthukr-
ishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 32–46. Springer,
Heidelberg (2004)

20. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp,
S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp.
1–13. Springer, Heidelberg (2004)

21. Tesler, G.: Grimm: genome rearrangements web server. Bioinformatics 18(3),
492–493 (2002), http://bioinformatics.oxfordjournals.org/content/18/3/

492.abstract

http://bioinformatics.oxfordjournals.org/content/18/3/492.abstract
http://bioinformatics.oxfordjournals.org/content/18/3/492.abstract

On Low Treewidth Graphs and Supertrees

Alexander Grigoriev1, Steven Kelk2, and Nela Lekić2

1 Department of Quantitative Economics
2 Department of Knowledge Engineering (DKE)

Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
{a.grigoriev,steven.kelk,nela.lekic}@maastrichtuniversity.nl

Abstract. Compatibility of unrooted phylogenetic trees is a well stud-
ied problem in phylogenetics. It asks to determine whether for a set of k
input trees T1, ..., Tk there exists a larger tree (called a supertree) that
contains the topologies of all k input trees. When any such supertree
exists we call the instance compatible and otherwise incompatible. It
is known that the problem is NP-hard and FPT, although a construc-
tive FPT algorithm is not known. It has been shown that whenever the
treewidth of an auxiliary structure known as the display graph is strictly
larger than the number of input trees, the instance is incompatible. Here
we show that whenever the treewidth of the display graph is at most
2, the instance is compatible. Furthermore, we give a polynomial-time
algorithm to construct a supertree in this case. Finally, we demonstrate
both compatible and incompatible instances that have display graphs
with treewidth 3, highlighting that the treewidth of the display graph is
(on its own) not sufficient to determine compatibility.

Keywords: Phylogenetic tree, unrooted compatibility, supertree,
display graph, treewidth.

1 Introduction

One of the central challenges within computational evolutionary biology is to
infer the evolutionary history of a set of contemporary species (or more generally,
taxa) X using only the genotype of the contemporary species. This evolutionary
history is usually modeled as a phylogenetic tree, essentially a tree in which the
leaves are bijectively labeled by the elements of X and the internal nodes of the
tree represent (hypothetical) ancestors [11].

There is already an extensive literature available on the extent to which dif-
ferent optimization criteria on the space of phylogenetic trees (e.g. likelihood,
parsimony) are able to identify the “true” evolutionary history. In any case it
is well-known that most of these problems are NP-hard, and this intractability
is a serious obstacle when constructing phylogenetic trees for large numbers of
taxa. This has been one of the motivations behind supertree methods [2]. Here
the goal is to first construct phylogenetic trees for small (overlapping) subsets
of X and then to puzzle the partial trees together into a single tree on X that

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 71–82, 2014.
c© Springer International Publishing Switzerland 2014

72 A. Grigoriev, S. Kelk, and N. Lekić

contains all the topologies of the partial trees, in which case we say the partial
trees are compatible, or to conclude that no such tree exists.

The computational complexity landscape of the compatibility problem is un-
even. In the case that all the partial trees are rooted (i.e. in which the flow
of evolution is assumed to be away from a designated root, towards the taxa)
the problem is polynomial-time solvable, using the algorithm of Aho [1]. How-
ever, in the case of unrooted trees the problem is NP-hard, even when all the
partial trees have at most 4 taxa [12]. Nevertheless, due to the fact that many
tree-building algorithms actually construct unrooted trees, and because of the
risk of distorting the underlying phylogenetic signal through a poor choice of
root location, it remains attractive to try and solve this NP-hard variant of the
problem directly.

In this article we approach the unrooted compatibility problem from a graph-
theoretical angle. There is a recent trend in this direction, which to a large extent
can be traced back to a seminal paper of Bryant and Lagergren [4]. They ob-
served that there is a relationship between the compatibility question and the
treewidth of an auxiliary graph known as the display graph. The display graph
is obtained by identifying the taxa of the input trees, and treewidth is an in-
tensely well-studied parameter in the algorithmic graph theory literature (see
e.g. [3]). Low (or bounded) treewidth often facilitates algorithmic tractability,
and given that it is a measure of “distance from being a tree”, it is tempting to
try and exploit this tractability in questions pertaining to phylogenetic compat-
iblity and incongruence. Bryant and Largergren observed that for k unrooted
trees to be compatible, it is necessary (but not sufficient) that the display graph
has treewidth at most k. The upper bound on the treewidth that this condition
generates, subsequently makes it possible to formulate and answer the compat-
ibility question in a computationally efficient way. However, this efficiency is
purely theoretical in nature, obtained via the indirect route of monadic second
order logic [5], and it remains a challenge to succinctly characterize phylogenetic
compatibility. Since Bryant and Largergren various other authors have picked
up this thread (e.g. [9]), with particular attention for triangulation-based ap-
proaches (see e.g. [13,10,14]) although the question remains: what exactly is the
role of treewidth in compatibility?

Here we take a step forward in understanding the link between treewidth
and compatibility. We prove that if the display graph of a set of unrooted binary
trees has treewidth at most 2, then the input trees are compatible, and this holds
for any number of input trees. In other words, it is not necessary to look deeper
into the structure of the display graph, compatibility is immediately guaranteed.
The proof of this, based on graph separators and graph minors, is surprisingly
involved. Moreover, we describe a simple polynomial-time algorithm to construct
a supertree for the input trees, when this condition holds. We also show that
in some sense this result is “best possible”: we show how to construct both
compatible and incompatible instances that have display graphs of treewidth 3,
for any number of trees. This confirms that the treewidth of the display graph

On Low Treewidth Graphs and Supertrees 73

cannot, on its own, fully capture phylogenetic compatibility, and that auxiliary
information is indeed necessary if we are to obtain a complete characterization.

2 Preliminaries

Let X be a finite set. An unrooted phylogenetic X-tree is a tree whose leaves are
bijectively labeled by the elements of set X . It is called binary when all its inner
nodes (nonleaf nodes) are of degree 3. An unrooted binary phylogenetic tree on
four leaves is called a quartet. In the remainder of the article we focus almost
exclusively on unrooted binary trees, often writing simply trees or X-trees for
short.

We call elements of X taxa or leaves. For some X-tree T and some subset
X ′ ⊆ X we denote by T (X ′) the subtree of T induced by X ′ and by T |X ′ the
tree obtained from T (X ′) by suppressing vertices of degree 2. Furthermore, we
say a tree S displays a tree T if T can be obtained from a subgraph of S by
suppressing vertices of degree two.

Given a set X a split is defined as a bipartition of X . If we label the compo-
nents of the partition by A and B, then we can denote the split by A|B. Note
that each edge of an X-tree naturally induces a split. If A|B is a split induced
by an edge of a tree T , then we say that T contains split A|B. We use ab|cd to
denote the quartet in which taxa a and b are on one side of the internal edge
and c and d are on the other. We write ab|cd ∈ T if T displays ab|cd.

Given a set T of k trees T1, ..., Tk we wish to know if there exists a single tree
S that displays Ti for all i ∈ {1, ...k}. A tree that displays all the input trees,
if such a tree exists, is called a supertree. When a supertree does exist we call
the instance compatible, otherwise incompatible. A supertree is not necessarily
unique. To see when such a tree is unique and many more details on this topic
we refer the reader to [7] or [11].

The display graph D(T) of a set of trees T is the graph obtained from the
disjoint union of trees in T by identifying vertices with the same taxon labels.
Note that D(T) can be disconnected if and only if the trees in T can be bipar-
titioned into two sets T1, T2 such that X(T1)∩X(T2) = ∅, where X(T) refers to
the set of taxa of T . In such a case T permits a supertree if and only if both
T1 and T2 do. Hence for the remainder of the article we focus on the case when
D(T) is connected.

Before we can start discussing our result we need a few graph theoretic defi-
nitions. Let G = (V,E) be an undirected graph. For any two subsets of vertices
A,B ⊆ V and any Z ⊆ V we say Z separates sets A and B in G if every path
in G that starts at some vertex u ∈ A and ends at some vertex v ∈ B contains a
vertex from Z. Such a set Z is called an (A,B)-separator, or simply a separator.
A graph M is a minor of a graph G if M can be obtained from a subgraph of
G by contracting edges.

The treewidth of a graph G, denoted tw(G), has a somewhat technical defini-
tion. We give it here for completeness although for the main result it is sufficient
to note that trees have treewidth 1, and that graphs with treewidth at most 2

74 A. Grigoriev, S. Kelk, and N. Lekić

are exactly those graphs that do not have a K4-minor (where K4 is the complete
graph on 4 vertices). We will also use the well-known fact that if M is a minor
of G, tw(M) ≤ tw(G).

Let G be a graph, T a tree and (Bt)t∈T a family of subsets of V (G), also
called bags, indexed by vertices of T . We say T is a tree-decomposition of G if
the following conditions are satisfied:

(T1) V (G) = ∪t∈TBt;
(T2) for every edge e ∈ G these exists a bag Bt in T such that both endpoints

of e lie in Bt;
(T3) Bu ∩Bv ⊆ Bw whenever vertices u, v, w of T are such that w is on a path

from u to v in T .

The width of a tree-decomposition is the size of its largest bag minus one. The
treewidth of a graph G, also denoted tw(G), is the minimum width over all
possible tree-decompositions of G.

For remaining graph theory terminology we refer to standard texts such as [6].

3 Main Results

Lemma 1. [8, Corollary 1]. Let T1 and T2 be two unrooted phylogenetic trees
on the same set of taxa X. Then T1 and T2 are compatible if and only if there
do not exist four taxa a, b, c, d ⊆ X such that ab|cd ∈ T1 and ac|bd ∈ T2.

Lemma 2. Let D be the display graph of the two quartets ab|cd and ac|bd. Then
D has K4 as a minor. Hence, tw(D) ≥ 3.

Proof. Let Q1 = ab|cd and Q2 = ac|bd. Both Q1 and Q2 have exactly two inner
nodes, denote them u, v and w, z respectively. Then it is immediate to see that
vertices u, v, w, z of D form a K4 minor (obtained by suppressing leaves a, b, c, d
which all have degree 2 in D).

Theorem 3. Let T1 and T2 be two unrooted phylogenetic trees. Let D be the dis-
play graph of T1 and T2. Then T1 and T2 are compatible if and only if tw(D) ≤ 2.

Proof. Let T1 and T2 be two trees on taxa sets X and X ′ respectively. Let
X∗ = X ∩X ′. Then T1 and T2 are compatible if and only if T1|X∗ and T2|X∗

are compatible [11]. Thus we only have to consider two trees T1 and T2 on
the same set of taxa X . Let D(T1, T2) be their display graph. Suppose for
the sake of contradiction that tw(D(T1, T2)) ≤ 2 while T1 and T2 are incom-
patible. From Lemma 1, T1 and T2 contain incompatible quartets Q1 and Q2

(w.l.o.g. let Ti display Qi) and since Qi is displayed in Ti, it is also displayed
in D(T1, T2), so D(Q1, Q2) is a minor of D(T1, T2). Since D(Q1, Q2) is a minor
of G, and using Lemma 2, tw(G) ≥ tw(D(Q1, Q2)) ≥ 3, contradicting the fact
that tw(D(T1, T2)) ≤ 2. This compleA wtes our proof in one direction; for the
other see [4].

On Low Treewidth Graphs and Supertrees 75

In the following main theorem we emphasize that the trees in T do not need
to be on the same set of taxa, but that for this proof the input trees do need to
be binary.

Theorem 4. Let T be a set of k binary unrooted phylogenetic trees T1, ..., Tk

and let D be their display graph. If tw(D) ≤ 2, then T1, ..., Tk are compatible, in
which case a supertree can be constructed in polynomial time.

Proof. We give a constructive proof in which we will build a supertree S for
T . The idea is to find an appropriate separator of D and to reduce the problem
into smaller instances of the same problem i.e. an induction proof. The induction
will be on the cardinality of X = ∪Ti∈T X(Ti). For the base case observe that
an instance with |X | ≤ 3 is trivially compatible.

Before we start the construction we apply a number of operations on D that
are safe to do, in the sense that they preserve (in)compatibility of the instance
and do not cause the treewidth of D to rise. We remove any taxon that has
degree 1 in D and contract any inner vertex that has degree 2 in D. This clearly
affects neither the compatibility nor the treewidth. Furthermore, for every tree
Ti with i ∈ {1, ...k} that has fewer than 4 leaves, we exclude it from the display
graph. Such a tree carries no topological information and thus does not change
the compatibility, while removing something from a graph cannot increase its
treewidth. The cleaning up procedure means that we apply all these operations
on D repeatedly until we cannot apply them anymore. In other words, we can
assume D to have treewidth exactly 2, that all inner vertices of D have degree
3, that all taxa have degree at least 2 and that no tree has fewer than 4 taxa.

Consider a planar embedding of the display graph D(T). This exists and
can be found in polynomial time because D(T) has treewidth at most 2. The
boundary of a face F of D(T), denoted B(F), is the set of edges and vertices
that are incident to the interior of the face. We say that two distinct faces F1, F2

are minimally adjacent if the following three conditions hold: (1) F1 and F2 are
adjacent; (2) B(F1)∩B(F2) is isomorphic to a path containing at least one edge;
(3) the internal vertices of the path B(F1) ∩ B(F2) all have degree 2 in D(T),
and the two endpoints of the path each have degree 3 or higher in D(T). Due to
space considerations we omit the proof, but it can be shown that if the treewidth
of D is 2 we can always find two such faces, neither equal to the outer face, in
polynomial time.

Let F1 and F2 be two minimally adjacent faces of D, neither equal to the
outer face. Denote by p(u, v) the path B(F1)∩B(F2) they share. (After locating
F1 and F2 this path can easily be found in polynomial time). By definition u and
v must have degree at least 3 in D. Also, by minimal adjacency of F1 and F2

and due to cleaning up, none of the interior nodes of p(u, v) can be internal tree
nodes. Moreover, since we removed all trees on fewer than four taxa, at most
one leaf can appear as an interior node of the path. Such a leaf can only exist
if both u and v are inner nodes of some trees. Now, u and v can either be both
leaves, both inner nodes or one of them a leaf another an inner node. These are
the three cases we have to consider.

76 A. Grigoriev, S. Kelk, and N. Lekić

Case(i) is when both u and v are leaves. We claim this cannot happen. In
this case, path p(u, v) must be an edge. But if it is an edge it is connecting two
leaves and will have already been removed during cleaning up.

Case(ii) is when u is a leaf and v is an inner node. Again we have that path
p(u, v) must be an edge (u, v) which both faces share. Let x, respectively y, be
any vertex other than u or v on the boundary of F1, respectively F2. See Figure
1(a). We claim that any path between x and y must contain either u or v. In
particular, suppose there exists a path p(x, y) such that u, v /∈ p(x, y). Let x′ and
y′ be vertices on p(x, y) such that the subpath p(x′, y′) is the shortest subpath of
p(x, y) with the property that both of its endpoints are on the boundaries of F1

and F2, respectively. See Figure 1(a). Then D contains a K4 minor formed by
vertices u, v, x′ and y′. This is a contradiction on D having treewidth 2. So we
have that any path between x and y passes through either u or v. Thus {u, v}
is a separator of D.

u

vx
yx'

y'
F1 F2

uS

X1

X2

D

(a) (b)

S'

Fig. 1. (a) Two minimally adjacent faces F1 and F2 in D. The vertices u, v, x′, y′ induce
a K4 minor. (b) A supertree as constructed in case (ii).

Removing u and v from the vertex set of D disconnects it and divides the
set of taxa into two sets X1 and X2, such that X = X1 ∪ X2 ∪ {u}. We claim
that supertree S as shown in Figure 1(b), where S′ is a supertree of T1, ..., Tk

restricted to taxa set X \ {u}, displays all k input trees T1, ..., Tk. To prove this
we have to show two things. One, that the supertree S′ exists (and that it has
an edge corresponding to split X1|X2) and two, that all quartets in T1, ..., Tk are
also in S. (The latter is sufficient because a set of unrooted trees is compatible
if and only if the set of quartets displayed by the trees is compatible).

To prove the first claim let X ′ := X \ {u} and notice that by induction the
instance T1, ..., Tk|X ′ is compatible and thus has a supertree. We now claim that
there exists some supertree of T1, ..., Tk|X ′, call it S′, which contains split X1|X2.
First of all notice that (a restriction of) X1|X2 must be a split in every input
tree restricted to X ′. To see this we show that there does not exist a quartet
ab|cd with a, c ∈ X1 and b, d ∈ X2 in any of the input trees (prior to removal
of u and v). Suppose such a quartet did exist in some tree. Then there would
exist edge-disjoint paths p(a, b) and p(c, d) in D, where the interior nodes of

On Low Treewidth Graphs and Supertrees 77

these paths are internal tree nodes. Since removing u and v from D disconnects
it (such that X1 and X2 are subsequently in separate components), it must be
that those paths had to use either u or v. Since u is a taxon it cannot be used for
this purpose. So both paths had to use inner vertex v. However, this contradicts
the edge-disjointness of the two paths. Hence quartet ab|cd cannot be displayed
by any tree.

We conclude from this that in each Ti|X ′ there exists an edge e that induces
a split A|B, such that A ⊆ X1 and B ⊆ X2. Furthermore both X1 and X2 must
contain at least one taxon each. (This follows because edge (u, v) belongs to some
input tree T , and walking from u to v along the boundary of F1 whilst avoiding
edge (u, v) necessitates entering and leaving T via its taxa, which in turn means
that some taxon not equal to u must exist on the part of the boundary of F1

not shared by F2. The same argument holds for F2.) As such, in each Ti|X ′

it is possible to contract (the subtree induced by) X1 and/or X2 into a single
“meta-taxon”.

Let T ∗ (respectively, T ∗∗) be the set of trees obtained by taking the trees on
X ′ and contracting all theX2 (respectively,X1) taxa into a single meta-taxonW2

(respectively,W1). Note that contracting in this way cannot increase the treewidth
of D and that 1 ≤ |Xi| < |X | for i ∈ {1, 2}. Hence, by induction supertrees of T ∗

and T ∗∗ exist. Finally, construct supertreeS′ with splitX1|X2 from two supertrees
for T ∗ and T ∗∗ by adding an edge betweenW1 andW2 and afterwards suppressing
W1 and W2. (The function of W1 and W2 was precisely to ensure that we would
know how to glue the two separately constructed supertrees together).

To see the second claim note that since S′ is a supertree of T1, ..., Tk restricted
X \ {u} we only have to show that quartets of T1, ..., Tk that contain taxon u
are displayed by S. So w.l.o.g. let a ∈ X1, b, c ∈ X2. Then if quartet au|bc is
displayed by some input tree T it is also clearly displayed by the supertree S. We
claim quartets ub|ac or uc|ab cannot exist in any of the input trees. These two
quartets are the same up to relabeling so let’s consider quartet ub|ac induced
by some tree T sitting inside D. Then p(u, b) and p(a, c) are edge-disjoint and
contain no taxa. As argued before p(a, c) must pass through v. But since (u, v)
is an edge it follows that it must belong to the same tree T , and therefore v
also lies on the path p(u, b). But then it is not possible that T displays ub|ac,
contradiction.

Case(iii) is when both u and v are inner nodes. We could have that p(u, v) is an
edge, in which case u and v are inner nodes of the same tree, or we could have
that p(u, v) contains a single taxon t. Note that in the latter case u and v are
inner nodes of two different trees and taxon t must have degree 2 in D due to
the minimal adjacency of F1 and F2. The argument for {u, v} being a separator
of D goes through in this case as well regardless of p(u, v) being an edge or a
path containing a single taxon t. We again denote by X1 and X2 the two sets
of taxa that emerge from splitting D by removing u and v (and t if it exists on
(u, v)).

78 A. Grigoriev, S. Kelk, and N. Lekić

(a) (b)

t

X1

X2
S'

e2''e1''
X1 X2

S(X1) S(X2)

u1

v1

u2

v2

Fig. 2. (a) A supertree constructed in case (iii) when there exists a taxon t on the
common boundary of the two faces. (b) Construction of a supertree in case (iii) when
the common boundary of the two faces is a single edge.

Subcase 1. Consider first the subcase when some taxon t ∈ p(u, v). As before
we have to show that there exists some S′, a supertree of T1, ..., Tk restricted to
X ′ := X \{t} with split X1|X2, and that the supertree S as shown in Figure 2(a)
displays all quartets induced by T1, ..., Tk. The proof for this case is almost iden-
tical to that of case (ii) modulo some minor differences. Due to space limitations
we omit the proof.

Subcase 2. The last thing to consider is the subcase when (u, v) is an edge while
both u and v are inner nodes (necessarily of the same tree T). Let X1 and X2 be
two disjoint sets of taxa that result from splitting D after removing u and v. We
claim that |X1| ≥ 2 and |X2| ≥ 2. This follows directly from u, v ∈ T : any cycle
that links them together must leave the tree T via some taxon a and re-enter it
via a (necessarily different) taxon b. Since u and v belong to both faces F1 and
F2 it follows that the boundaries of these two faces must each contain (at least)
two taxa. The two taxa on the boundary of (w.l.o.g) F1 are still in the same
connected component after deletion of {u, v}, but are not in the same connected
component as the taxa from the boundary of F2, so |X1| ≥ 2 and |X2| ≥ 2.

Now we claim that the tree shown in Figure 2(b) is a supertree of T1, ..., Tk.
Let’s first explain what that image means. Note that apart from the tree T in
which the internal edge e = (u, v) can be found, all other trees have taxa sets
either completely contained inside X1 or completely contained inside X2. This
is the case because otherwise there would be a path from some element in X1 to
some element in X2, contradicting the fact that {u, v} is a separator. The idea
is to cut T into two parts, one on X1, one on X2, recursively build supertrees of
T1, ..., Tk|X1 and T1, ..., Tk|X2 and join them as indicated in the figure.

Now, consider the display graphD. Suppose we delete the edge e = (u, v) ∈ T ,
and replace it with two edges e1 = (u1, v1) and e2 = (u2, v2) (where ui and vi
are u and v duplicated). Because {u, v} is a separator, this creates two disjoint
display graphs, one on X1 and one on X2. These are minors of the original
display graph so have treewidth at most 2, and they are smaller instances of the
problem. So by induction supertrees of these smaller instances exist. Let S(X1)
be a supertree on X1 and S(X2) be a supertree on X2. All trees except T will

On Low Treewidth Graphs and Supertrees 79

be displayed by the disjoint union of S(X1) and S(X2), because only T has taxa
from both X1 and X2. What is left to explain is how to glue S(X1) and S(X2)
into a supertree S such that S displays T as well.

Note that S(Xi) contains an image of edge ei. The image need not be an edge
in S(Xi), it could also be a path, whose endpoint we denote by ui and vi in
Figure 2(b). Take any edge on path p(ui, vi), call it e′i, and subdivide it twice
to create two adjacent degree-2 vertices; let e′′i be the edge between them. Now,
by identifying e′′1 and e′′2 we ensure that we get a supertree that displays (all the
quartets in) T , as well as all the other trees.

This completes the case analysis. Polynomial time is achieved because all
relevant operations (recognizing whether a graph has treewidth at most 2, finding
a planar embedding, finding two minimally adjacent faces, finding the separator
{u, v}, and all the various tree manipulation operations) can easily be performed
in (low-order) polynomial time.

We now give a summary of the algorithm implicitly described in the above
proof. Given k input phylogenetic trees, construct their display graph D and
clean it up. We start by verifying in polynomial time that the treewidth of D
is at most 2. Let F1 and F2 be any two minimally adjacent faces of D (if two
such faces do not exist, then the instance is trivially compatible). By definition
of minimal adjacency we know that the intersection of borders of the two faces
must be isomorphic to a path p(u, v) containing at least one edge. Denote by X1

and X2 are two sets of taxa obtained from separating D by removing {u, v}.
We saw that we can w.l.o.g. assume v to be an inner node. If u is a leaf, then

we construct a supertree S as shown in figure 1(b) and recursively solve two
smaller instances with input trees Ti|X1 and Ti|X2 for i ∈ {1, ..., k}. (Note that
in the actual algorithm we also add an extra “meta-taxon” into each of the two
smaller instances which tells us where to graft the two solutions back together).
Otherwise, u is an inner node. In this case, path p(u, v) can either contain a
taxon t or be an edge. When it contains a taxon t a supertree S is given in figure
2(a) and we recursively solve two smaller instances with input trees Ti|X1 and
Ti|X2 for i ∈ {1, ..., k} (note that in this case the two taxa sets X1 and X2 are
obtained after removing {u, v, t} from D). When u is an inner node and p(u, v)
is an edge, then we construct a supertree as in figure 2(b) and recursively solve
two smaller instances Ti|X1 and Ti|X2 for i ∈ {1, ..., k}. We continue until the
instance is trivially compatible.

4 Beyond Treewidth 2

Two incompatible quartets induce a display graph with treewidth 3, so treewidth
3 cannot guarantee compatibility. However, it is natural to ask whether treewidth
3 guarantees compatibility if the number of input trees becomes sufficiently large.
Unfortunately, the answer to that question is no. Namely, for any number of trees
there exists a compatible instance with tw(D) = 3 and an incompatible instance

80 A. Grigoriev, S. Kelk, and N. Lekić

with tw(D) = 3, as we now demonstrate. Figure 3 shows the display graph
of k trees with leaves denoted as black dots and vertices of K4 minors with
red dots (note that some leaves, for example z, can also be a vertex of a K4

minor). Note that vertices a, b, c, z form a K4 minor in D(T1, T2, T3), vertices
b, c, d, q form a K4 minor in D(T2, T3, T4), vertices d, e, f, s form a K4 minor in
D(T4, T5, T6) and so on. Now note that all thoseK4 minors are attached together
by a sequence of series and parallel compositions inside D(T1, ..., Tk). So we can
conclude that the treewidth of the display graph of k trees as shown in figure 3
is 3. (Equivalently, we can describe a tree decomposition in which all bags have
size at most 4). Compatibility of this instance can be verified without too much
difficulty (details omitted).

Now we need to show the same for an incompatible instance. In Figure 4 trees
T1, T2, T3 are incompatible, thus the whole instance is incompatible. Further-
more, trees T4, ..., Tk are chosen to be the same as in Figure 3, so are compatible
and tw(D(T4, ..., Tk)) = 3. We have verified that tw(D(T1, T2, T3)) = 3. Since
D(T1, T2, T3) and D(T4, ..., Tk) are attached in series to form D(T1, ..., Tk) we
conclude tw(D(T1, ..., Tk)) = 3.

It is not difficult to generalize these constructions for any treewidth higher
than 3, and any number of trees.

Fig. 3. Display graph of an instance with k input trees. Red (larger) vertices are inner
nodes while black (smaller) vertices are leaves. The treewidth of D is 3 and the instance
is compatible.

Fig. 4. Display graph of an instance with k input trees. The treewidth of D is 3 and
the instance is incompatible.

On Low Treewidth Graphs and Supertrees 81

Fig. 5. The green (respectively, red) area shows which combinations of (number of
input trees, treewidth of display graph) are always compatible (respectively, incompat-
ible). The grey area indicates that both compatible and incompatible instances exist
for this combination of parameters.

5 Conclusion

Figure 5 summarizes our results. The red area is due to result of Bryant and
Lagergren which proves that that any instance on k trees whose display graph
has treewidth strictly greater than k must be incompatible. The green area is due
to our result. What we are left with is the grey area in which (as demonstrated
by the constructions in the previous section) we cannot conclude anything about
compatibility of the instances based only on treewidth of the display graph and
the number of trees, at least not with the current results. An obvious open
question is whether existing characterizations (such as legal triangulations [13])
can be specialized to yield simple and efficient combinatorial algorithms in the
case of treewidth 3 or higher.

Acknowledgements. Nela Lekić was supported by an NWO Vrije Competitie
grant.

References

1. Aho, A., Sagiv, Y., Szymanski, T., Ullman, J.: Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions. SIAM
Journal on Computing 10(3), 405–421 (1981)

2. Bininda-Emonds, O.: Phylogenetic Supertrees: Combining Information to Reveal
the Tree of Life. Kluwer Academic Publishers (2004)

3. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Information and Computation 208(3), 259–275 (2010)

4. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT.
Theoretical Computer Science 351(3), 296–302 (2006)

5. Courcelle, B.: he monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation 85(1), 12–75 (1990)

82 A. Grigoriev, S. Kelk, and N. Lekić

6. Diestel, R.: Graph Theory. Springer-Verlag Berlin and Heidelberg GmbH & Com-
pany KG (2000)

7. Dress, A., Huber, K.T., Koolen, J.: Basic Phylogenetic Combinatorics. Cambridge
University Press (2012)

8. Ganapathy, G., Warnow, T.J.: Approximating the complement of the maximum
compatible subset of leaves of k trees. In: Jansen, K., Leonardi, S., Vazirani, V.V.
(eds.) APPROX 2002. LNCS, vol. 2462, pp. 122–134. Springer, Heidelberg (2002)

9. Grünewald, S., Humphries, P.J., Semple, C.: Quartet compatibility and the quartet
graph. Electronic Journal of Combinatorics 15(1) (2008)

10. Gysel, R., Stevens, K., Gusfield, D.: Reducing problems in unrooted tree compat-
ibility to restricted triangulations of intersection graphs. In: Raphael, B., Tang, J.
(eds.) WABI 2012. LNCS, vol. 7534, pp. 93–105. Springer, Heidelberg (2012)

11. Semple, C., Steel, M.: Phylogenetics. Oxford University Press (2003)
12. Steel, M.: The complexity of reconstructing trees from qualitative characters and

subtrees. Journal of Classification 9(1), 91–116 (1992), doi:10.1007/BF02618470
13. Vakati, S., Fernández-Baca, D.: Graph triangulations and the compatibility of un-

rooted phylogenetic trees. Applied Mathematics Letters 24(5), 719–723 (2011)
14. Vakati, S., Fernández-Baca, D.: Characterizing compatibility and agreement of

unrooted trees via cuts in graphs. CoRR abs/1307.7828 (2013)

On Optimal Read Trimming in Next Generation

Sequencing and Its Complexity

Ivo Hedtke1,2, Ioana Lemnian2, Matthias Müller-Hannemann2,
and Ivo Grosse2,3

1 Department of Mathematics and Computer Science, Osnabrück University
Albrechtstrasse 28, 49076 Osnabrück, Germany

ivo.hedtke@uni-osnabrueck.de
2 Institute of Computer Science, Martin-Luther-University Halle-Wittenberg

Von-Seckendorff-Platz 1, 06120 Halle, Germany
{lemnian,muellerh,grosse}@informatik.uni-halle.de

3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Deutscher Platz 5e, 04103 Leipzig, Germany

Abstract. Read trimming is a fundamental first step of the analysis of
next generation sequencing (NGS) data. Traditionally, read trimming is
performed heuristically, and algorithmic work in this area has been ne-
glected. Here, we address this topic and formulate three constrained op-
timization problems for block-based trimming, i.e., truncating the same
low-quality positions at both ends for all reads and removing low-quality
truncated reads. We find that the three problems are NP-hard. However,
the non-random distribution of quality scores in NGS data sets makes
it tempting to speculate that quality constraints for read positions are
typically satisfied by fulfilling quality constraints for reads. Based on
this speculation, we propose three relaxed problems and develop effi-
cient polynomial-time algorithms for them. We find that (i) the omitted
constraints are indeed almost always satisfied and (ii) the algorithms for
the relaxed problems typically yield a higher number of untrimmed bases
than traditional heuristics.

Keywords: Next Generation Sequencing, Trimming,NP-completeness,
Polynomial-Time Algorithms.

1 Introduction

Next generation sequencing (NGS) technologies are of increasing importance in
the life sciences and have enabled scientists to perform a plethora of studies
that would otherwise be impossible [9]. Despite continuous improvements of
sequencing technologies over the last decade, the resulting reads contain and
will continue to contain sequencing errors. Hence, besides preprocessing steps
like adapter and duplicate removal, eliminating low-quality bases plays a crucial
role for downstream NGS data analyses, and different approaches have been
proposed for truncating low-quality positions and removing low-quality reads [3].

Window-based approaches treat all reads independently of each other, simply
scan a window of a given size over each read, and retain those windows whose

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 83–94, 2014.
c© Springer International Publishing Switzerland 2014

84 I. Hedtke et al.

quality lies above a given threshold [13]. Block-based approaches, in contrast, do
not treat all reads independently of each other, but truncate a certain number
of positions at both ends of each read and subsequently remove those truncated
reads whose quality falls below a given threshold [1].

Both of these approaches have their strengths and weaknesses, and both of
them are widely used in practice, so we refrain from advocating one approach
over the other. However, from an algorithmic perspective the optimization prob-
lem imposed by window-based approaches is trivial, whereas the optimization
problem imposed by block-based approaches is not, so we focus on the latter.

In this work, we formulate three constrained optimization problems corre-
sponding to popular variants of block-based trimming (Section 2). We study
their computational complexity and find that all of them are NP-hard (Sec-
tion 3). Hence, we propose three relaxed problems by omitting one set of con-
straints from each of the three hard problems, and we present polynomial-time
algorithms for their solution (Section 4). We find by empirical studies that these
algorithms typically yield a higher number of “surviving bases” than traditional
heuristics for block-based trimming (Section 5).

2 Problems and Notation

In this section we introduce the used notation and formulate block-based trim-
ming as a constrained optimization problem.

The goal of block-based trimming is to (i) truncate low-quality positions at
both ends of the reads and to (ii) remove low-quality reads. Traditionally, block-
based trimming is done heuristically by performing steps (i) and (ii) sequentially
using tools such as FastX [8], PRINSEQ [12], or NGS QC toolkit [11]. For step
(i) we need a scalar measure for the quality of each position across all N reads
of a given NGS data set. Examples for popular quality measures are the mean
quality, the median quality, or any other percentile of the quality distribution.
Likewise, we need a scalar measure for the quality of each read for step (ii), and
it is common practice to use the same quality measure for both steps.

Based on a chosen quality measure Q and a chosen threshold T for that
quality measure, we can define steps (i) and (ii) as follows. In step (i), flag
all positions whose quality Q exceeds threshold T , select the longest interval
of flagged positions, and truncate the leftover positions at the 5’ ends and 3’
ends of all reads, yielding a set of N truncated reads. In step (ii), select all
truncated reads whose quality Q exceeds threshold T , and remove all remaining
reads. Obviously, performing steps (i) and (ii) sequentially may yield suboptimal
trimming results compared to a hypothetical trimming approach that performs
both steps simultaneously.

With the goal of developing such a trimming approach that provably yields
optimal trimming results, we formulate the following constrained optimization
problem. Consider trimmed data sets of Ñ truncated reads of length L̃ = r−
+1
ranging from position
 to position r, consider the column constraints (i) that
the L̃ column qualities Q exceed threshold T at all L̃ positions, and consider

On Optimal Read Trimming in NGS and Its Complexity 85

the row constraints (ii) that the Ñ row qualities Q exceed threshold T for all of
the Ñ truncated reads. We now formulate the problem of optimal block-based
trimming as the constrained optimization problem to find that trimmed data
set – out of all trimmed data sets that satisfy the column constraints (i) and the
row constraints (ii) – that maximizes Ñ × L̃, the number of remaining bases of
the trimmed data set.

In order to address this constrained optimization problem, we translate it in
several ways into problems on integer or binary grids. The quality sequences
corresponding to the reads are the rows of the grid, while the columns represent
the positions, so the size of the grid equals the number of sequenced bases. The
integer grid corresponds to the PHRED-scores [5,6] of the reads. By applying a
threshold T they can be transformed into a binary grid where each cell encodes
whether the quality score of that particular base is greater than or equal to
threshold T . In the positive case, the cell entry is one, otherwise zero.

We can now formulate the constrained optimization problem as follows: Given
a binary grid G or a grid M of positive integers with N rows and L columns,
find the biggest block B (size(B) := #rows(B) ×#columns(B)) specified by a
left border
B and a right border rB of contiguous columns and a set of selected
rows R ⊆ {1, . . . , N} of G or M where
zr-zc-zeros: each row of B contains at most zr zeros and the selected rows

contain at most zc zeros per column.
pr-pc-percent: each row of B contains at most pr percent zero entries and the

selected rows contain at most pc percent zero entries per column.
mr-mc-mean: each row of B has a mean value ofmr or higher and each column

in B has a mean value of mc or higher.

Notation. We call a block B ⊆ G that fulfills the zr-zc-zeros property zr-zc-
zeros feasible or simply feasible, and we use the same notion for pr-pc-percent
and mr-mc-mean.

3 Complexity

In this section we investigate the computational complexity of the three problems
zr-zc-zeros, pr-pc-percent, and mr-mc-mean. We show that the corresponding
decision versions are NP-complete. Obviously, all three problems are in NP .

Theorem 1. Deciding whether zr-zc-zeros has a solution B with size(B) ≥ k is
NP-complete.

Proof. We give a reduction fromRestricted ExactCoverBy 3-Sets (RXC3)
([7, Appendix A]): Given a set X = {1, . . . , 3q} and a collection C of 3-element
subsets of X such that each element in X appears in exactly three subsets of C.
Does C contain an exact cover for X , i.e., a subcollection C′ ⊆ C such that every
element of X occurs in exactly one member of C′?

Given an arbitrary instance (X, C) of RXC3 we construct in polynomial time an
instance (G, zr, zc) of the corresponding decision problem of zr-zc-zeros as follows.

86 I. Hedtke et al.

We identify the elements of X with the columns of a grid G′. Hence, we choose
L′ := 3q. There are N ′ := 3q sets Ci ∈ C. We define corresponding grid rows by
setting

G′[i][j] :=

{
0 if j ∈ Ci,

1 otherwise.

The grid G ∈ {0, 1}3q×9q is defined by sticking three copies of G′ ∈ {0, 1}3q×3q

together: G := [G′, G′, G′]. Thus, N := 3q and L := 9q. Finally, we set zr := 9,
zc := 1, and k := 9q2. It is now easy to see that G contains a zr-zc-zeros feasible
block of size k if and only if C contains an exact cover for X .

An exact cover C′ = {Ci1 , . . . , Ciq} ⊆ C ofX has |C′| = q sets. Each set contains
three elements. Thus, the rows i1, . . . , iq in G′ have 3 zeros per row. We set B′ :=
{G′[ij] : 1 ≤ j ≤ q}. Because every x ∈ X occurs in exactly one set of C′, each
column of B′ has 1 zero. It follows that B := {G[ij] : 1 ≤ j ≤ q} is a feasible
9-1-zeros block in G of size 3qL′ = qL = 9q2 = k.

Let now be B a feasible 9-1-zeros block of size k of greater. If B has q rows
G[b1], . . . , G[bq] it has width L (otherwise its size is smaller than k) which gives us
an exact cover {Cb1 , . . . , Cbq} ofX . Now assume that B has q+1 or more rows. A
block of size k has at least 3q = k/N columns (min{width}=area/max{height}),
which means that it contains all columns of G′ (maybe a cyclic shift). But each
selection of q+1 (or more) rows of all columns of G′ contains at least one column
with 2 zeros (or more). Thus, B is not 9-1-zeros feasible, a contradiction. ��

Theorem 2. Deciding whether pr-pc-percent has a solution B with size(B) ≥ k
is NP-complete.

Proof. Given an arbitrary instance of RXC3 we construct in polynomial time
an instance (G, pr, pc) of the corresponding decision problem of pr-pc-percent as
follows. Let G′ be defined as in the proof of Theorem 1. We set G :=

[
G′ G′ G′
1 1 1

]
∈

{0, 1}6q×9q, where 1 is a 3q×3q matrix of 1’s. Thus, N := 6q and L := 9q. Finally,
we set pr :=

1
q , pc := 1

4q , and k := 36q2. It is now easy to see that G contains
a pr-pc-percent feasible block of size k if and only if C contains an exact cover
for X .

Let Ci1 , . . . , Ciq be an exact cover of X . As in the proof of Theorem 1, the
rows G[i1], . . . , G[iq], G[3q+1], . . . , G[6q] are pr-pc-percent feasible: Each row has
width 9q and contains at most 9 zeros. Each column has height 4q and contains
1 zero. This gives us a feasible 1

q -
1
4q -percent block of size 4q9q = 36q2.

Let now be B a feasible 1
q -

1
4q -percent block of size k of greater. Such a block

has at least 6q = k/N columns, so it contains all columns of G′. Assume that B
has more than 4q rows. Because it contains all columns of G′ there is a column
with at least 2 zeros, which is only feasible for height 8q > N , a contradiction.
Thus, B has 4q rows and 9q columns. B contains exactly q of the rows G[1],
. . . , G[3q] (otherwise a column contains 2 or more zeros). Thus B = {G[b1], . . . ,
G[bq], G[3q+1], . . . , G[6q]}, which gives us an exact cover Cb1 , . . . , Cbq of X . ��

Theorem 3. Deciding whether mr-mc-mean has a solution B with size(B) ≥ k
is NP-complete.

On Optimal Read Trimming in NGS and Its Complexity 87

Proof. Given an arbitrary instance of RXC3 we construct in polynomial time
an instance (M,mr,mc) of the corresponding decision problem of mr-mc-mean
as follows. We set mr := q−1

q , mc := 4q−1
4q , k := 36q2 and use G as defined

in the proof of Theorem 2 as our M . It is now easy to see that M contains
a mr-mc-mean feasible block of size k if and only if C contains an exact cover
for X .

Let Ci1 , . . . , Ciq be an exact cover of X . The rows M [i1], . . . ,M [iq],M [3q+1],
. . . ,M [6q] have mean value (9q− 9)/9q or higher and the selected columns have
mean value (4q − 1)/4q. So we have a feasible block of size 4q9q = 36q2.

Let now be B a feasible q−1
q - 4q−1

4q -mean block of size k or greater. As in the

proof of Theorem 2, B contains all columns of G′. If B has more than 4q rows
it contains at least one column with 2 (or more) zeros. Such a column with
height h has mean value h−2

h and is therefore only feasible if h−2
h ≥ 4q−1

4q , i.e.,
h ≥ 8q > N , a contradiction. The rest follows as in the proof of Theorem 2. ��

4 Polynomial-Time Algorithms for Relaxations of the
Problems

The hardness of the three problems zr-zc-zeros, pr-pc-percent, and mr-mc-mean
originates from the request of simultaneously satisfying the column and row
constraints. In this section we investigate the three relaxed problems in which
the column constraints are omitted, and present polynomial-time algorithms for
solving them.

We define the relaxed problems z-zeros as z-∞-zeros, p-percent as p-100-
percent, and m-mean as m-0-mean. These problems have in common that, if
B
and rB are known, the row set R can be constructed with a linear sweep over the
grid in O(LN) time by checking whether the columns
B, . . . , rB of the current
row fulfill the row constraint. Hence, we only focus on how to find
B and rB .

Lemma 4. Let cP (
, r) be the number of rows g of the grid such that g[
..r]
fulfills the given row constraint of problem P . If cP (
, r) is given for all
 and r,
we can compute size(B),
B and rB in O(L2) time.

Proof. It is easy to see that size(B) = max�≤r[(r −
 + 1)cP (
, r)]. The borders

B and rB can be computed as the arguments of the equation above. ��

Notation. A row-block without zeros is called 1-row-block or 0-zeros feasible.
A row-block with at most z zeros is called 1-row-block with at most z zeros or
z-zeros feasible. We use corresponding notions for p-percent and m-mean.

Solving 0-zeros and z-zeros in O(LN + L2). The following simple, but crucial
observation makes it possible to solve 0-zeros and z-zeros in linear time plus a
post-processing step.

Observation 1. i) Let g[
..r] be a 1-row-block. For
 ≤
′ ≤ r′ ≤ r the subset
g[
′..r′] is a 1-block, too. ii) Let g[
..r] be z-zeros feasible. For
 ≤
′ ≤ r′ ≤ r the
subset g[
′..r′] is z-zeros feasible, too.

88 I. Hedtke et al.

We set c := c0-zeros as defined in Lemma 4. Hence, c(
, r) is the number of
rows g in G such that g[
..r] is a 1-row-block. Updating c (for each 1-row-block
g[x..y]: c(x, y)++) for a given row g needs O(L2) time in the worst-case (namely
if g = 11..1). Therefore, we use an auxiliary matrix cT to count inclusion maximal
1-row-blocks in O(L) time per row. Later we use Observation 1 to compute c
from cT in O(L2) time. The whole process is given in Alg. 1.

The start and end positions of all inclusion maximal 1-row-block in a row g
can be identified in linear time with two pointers that sweep over g. For each
pair of start and end positions s and e we update cT (s, e) := cT (s, e) + 1.

To compute c from cT we use c(
, r) =
∑

x≤�,r≤y cT (x, y) by definition of cT .
It follows that c(
, r) = c(
, r + 1) +

∑
x≤� cT (x, r). So we can compute c from

right to left and from top to bottom in O(L2) time and O(L) space with Alg. 2.

Algorithm 1. 0-zeros

foreach row g in G do //O(N)
foreach start s and end e of an incl.
max. 1-row-block in g do //O(L)

cT (s, e)++

compute c with Alg. 2 //O(L2)
compute �B , rB of B via Lem. 4 //O(L2)
construct R as described above //O(LN)

Algorithm 2. compute c from cT

colSum := [0, . . . , 0]
for i = 1, . . . , L do //O(L)

colSum(L)+= cT (i, L)
c(i, L) = colSum(L)
for j = L− 1, . . . , i do //O(L)

colSum(j)+= cT (i, j)
c(i, j) = colSum(j) + c(i, j + 1)

Theorem 5. 0-zeros can be solved in O(LN + L2) time and O(L2) space. ��

We set cz := cz-zeros as defined in Lemma 4. Hence, cz(
, r) is the number
of feasible z-zeros row-blocks g[
..r]. The same approach as above can not be
used to solve z-zeros: If we would define cTz as the number of inclusion maximal
feasible z-zeros row-blocks, Alg. 2 fails to compute cz. Example (with z = 1):

G = 0 1 0 cTz =
[
0 1 0
0 1
0

]
correct cz =

[
1 1 0
1 1
1

]
cz from Alg. 2 =

[
1 1 0
2 1
1

]
Instead we do as follows: We define cCz(
, r) as the number of rows g in G such
that g[
..r] is the largest feasible z-zeros row-block with fixed right border r,
i.e., for all rows count in cCz(
, r) the block g[(
−1)..r] is not z-zeros feasible. In
other words, for fixed r we search the leftmost
 such that g[
..r] is feasible. In the
example above we counted g[2..2] two times, because it is a subset of the inclusion
maximal blocks g[1..2] and g[2..3]. With the new definition, g[2..2] is only counted
in one entry cCz(·, 2). This solves the problem of overlapping feasible z-zeros
row-blocks. It follows from the definition of cCz that cz(
, r) =

∑
x≤� cCz(x, r).

Hence, we can compute cz from cCz via partial column sums in O(L2) time.
Next we address the question how to compute cCz . Assume we know the

borders (
1, r1), (
2, r2), . . . of all inclusion maximal z-zeros row-blocks in the
current row g. For a given right border 1 ≤ y ≤ L we search for the smallest ri
such that y ∈ {
i, . . . , ri}. It follows that g[
i..y] is feasible and g[(
i−1)..y] is
infeasible (otherwise there would be a rj < ri such that g[(
i−1)..y] ⊆ g[
j..rj]
and y ∈ {
j, . . . , rj}, a contradiction to the choice of ri). Hence, we can update

On Optimal Read Trimming in NGS and Its Complexity 89

cCz(
i, y)++. This can be done with a linear sweep over all y, so we get a runtime
of O(L) per row of G.

Finally, we address how to compute (
1, r1), (
2, r2), . . . With the auxiliary
arrays posZ , leftB and rightB we store the positions of all zeros, the left border
and the right border of each 1-row-block in the current row g. Example (left):

1 2 3 4 5 6 7 8 9

g = [1, 1, 0, 1, 1, 0, 1, 0, 0]

leftB = [1, 1, , 4, 4, , 7, ,]

rightB = [2, 2, , 5, 5, , 7, ,]

posZ = [3, 6, 8, 9]

Algorithm 3.
i and ri for z-zeros

for i = 1, . . . , |posZ | − z + 1 do //O(L)
�i := posZ [i], ri := posZ [i+ z − 1]
// Are there 1’s left or right of g[�i..ri]?
if g[�i − 1] == 1 then �i := leftB [�i − 1] if
g[ri + 1] == 1 then ri := rightB [ri + 1]

If |posZ | ≤ z we can select the whole row: cCz(1, L)++. Otherwise, {posZ i, . . .,
posZ i+z−1} for i = 1, . . . , |posZ | − z + 1 are the possible positions for z ze-
ros in such a row-block. For each set of zeros g[posZ i..posZ i+z−1] is z-zeros
feasible. Two of the zeros occur at the borders g[posZ i] and g[posZ i+z−1]. If
g[posZ i−1] = 1, there is an adjoined 1-row-block that we can add. Its left bor-
der is leftB [posZ i−1]. We do the same for the rightmost zero g[posZ i+z−1]. The
process is shown in Alg. 3.

The example below (left side) illustrates the definition of cCz .

G := 1 1 0 1 1 0 1 0 0 , z := 1

cCz = cz =⎡
⎢⎢⎣

1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0
0 0 0 0
0 1 0
0 0
1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 0 0
1 1 0 0
1 1 0
1 0
1

⎤
⎥⎥⎦

Algorithm 4. z-zeros

foreach row in G do //O(N)
compute posZ , leftB , rightB //O(L)
compute all (�i, ri) with Alg. 3 //O(L)
foreach y = 1, . . . , L do //O(L)

as described above: cCz(·, y)++

compute cz via partial column sums //O(L2)
compute �B, rB, B and R as in Alg. 1

The whole process to solve the z-zeros problem is given in Alg. 4.

Theorem 6. z-zeros can be solved in O(LN + L2) time and O(L2) space. ��

Solving p-percent and m-mean in O(L2N). Note that Observation 1 only holds
for the z-zeros problem. We set cp := cp-percent as defined in Lemma 4. Thus,
cp(
, r) is the number of feasible p-percent row-blocks g[
..r]. In the same way
we define cm := cm-mean.

Lemma 7. p-percent and m-mean can be solved in O(L2N) time and O(L2)
space.

Proof. Use Alg. 5 resp. Alg. 6 to compute cp resp. cm. Compute
B and rB via
Lemma 4 and construct R as described at the beginning of the section. ��

In the sequel, we refer to the approach of this section as optimized block trim-
ming. All algorithms have been implemented in C++. The code can be freely ob-
tained from http://github.com/hedtke/SequenceTrimming for scientific use.
In practice, the code achieves excellent runtimes close to the speed of reading
data from disk for z-zeros, and still very good ones for the two other problems.

http://github.com/hedtke/SequenceTrimming

90 I. Hedtke et al.

Algorithm 5. compute cp

foreach row g in G do //O(N)
for i = 1, . . . , L do //O(L)

zeros := 0
for j = i, . . . , L do //O(L)

if g[j] == 0 then zeros++ if
zeros
j−i+1

≤ p then cp(i, j)++

Algorithm 6. compute cm

foreach row g in M do //O(N)
for i = 1, . . . , L do //O(L)

mean := 0
for j = i, . . . , L do //O(L)

mean := (j−i)mean+g[j]
j−i+1

if mean ≥ m then cm(i, j)++

5 Case Studies

Data. For comparing optimized block trimming to traditional stepwise trim-
ming, we use data sets SRR1030717 and SRR985867 from NCBI GEO [4] with
sample accession number GSM1267149 and GSM1231194, respectively. Data set
SRR1030717 contains about 87 million Illumina single-end reads with a length
of 97 bp, and data set SRR985867 published in [2] contains about 21 million
Illumina single-end reads with a length of 50 bp. In both cases, we convert the
SRA files into FASTQ files using fastq-dump.2.3.4 from the SRA Toolkit [10].

Per position quality after trimming. The NP-hard problems zr-zc-zeros, pr-pc-
percent, and mr-mc-mean presented in Section 2 impose both column and row
constraints, whereas the easy problems z-zeros, p-percent, andm-mean presented
in Section 4 omit the column constraints. The quality distributions of NGS data
sets intuitively suggests that the column constraints could be satisfied automat-
ically for many quality measures Q and many thresholds T , without imposing
them, by satisfying the row constraints. To test this intuition, we perform trim-
ming of data sets SRR1030717 and SRR985867 by the p-percent algorithm using
different quality measures Q and thresholds T . Specifically, we choose five per-
centiles ranging from 75% to 95% as quality measures Q and six thresholds T
ranging from 20 to 30, and we plot the column quality for each of the columns
of the trimmed data set for each of the 30 combinations of Q and T .

Figure 1 shows the results for the two data sets and the two percentiles 75%
and 95%. The plots for the other percentiles (80%, 85%, and 90%) are similar. In
the 75% percentile case, the column quality after trimming is way above 75% for
both data sets, all positions, and all quality thresholds T . In the more stringent
95% percentile case, the column quality after trimming is above 95% for both
data sets and most – but not all – positions and quality thresholds. Here, we
find that for thresholds 20, 22, 24, and 26 the column constraint is satisfied for
all positions, but for thresholds 28 and 30 there are a few columns, at the ends
of the trimmed reads, for which the column constraint is violated.

Comparison of stepwise and optimized trimming. We compare the traditional
stepwise trimming method and the optimal block trimming by calculating the
number of remaining bases after trimming. As example we use the p-percent
algorithm. In Figure 2, we show the number of bases that remain after trimming
for different quality measures Q and different quality thresholds T . Of course,

On Optimal Read Trimming in NGS and Its Complexity 91

0 20 40 60 80

90
92

94
96

98
10

0
SRR1030717: 75% percentile

position

pe
rc

en
ta

ge
 o

f h
ig

h−
qu

al
ity

 b
as

es

20
22
24
26
28
30

0 10 20 30 40 50

90
92

94
96

98
10

0

SRR985867: 75% percentile

position
pe

rc
en

ta
ge

 o
f h

ig
h−

qu
al

ity
 b

as
es

20
22
24
26
28
30

0 20 40 60 80

94
95

96
97

98
99

10
0

SRR1030717: 95% percentile

position

pe
rc

en
ta

ge
 o

f h
ig

h−
qu

al
ity

 b
as

es

20
22
24
26
28
30

0 10 20 30 40 50

94
95

96
97

98
99

10
0

SRR985867: 95% percentile

position

pe
rc

en
ta

ge
 o

f h
ig

h−
qu

al
ity

 b
as

es

20
22
24
26
28
30

Fig. 1. Quality after optimal block trimming using p-percent. For the two data sets
SRR1030717 (left) and SRR985867 (right) we plot the percentage of high-quality bases
per position, i.e., column in the grid, after trimming. As parameters we use p=0.25 resp.
p=0.05, which corresponds to the 75% resp. 95% percentile, and quality thresholds from
20 to 30. A base with quality score greater than or equal to the quality threshold is
called high-quality base.

optimal trimming can never be worse than the traditional approach. We find that
the number of remaining bases after optimal trimming is often greater than that
of traditional stepwise trimming for all combinations of Q and T . Especially for
high percentile values and high quality thresholds, the difference in the number
of retained bases becomes surprisingly high. This indicates that previous studies
using traditional stepwise trimming have discarded a considerable amount of
bases that could have been retained.

The increase in the number of untrimmed bases stems from the increase
in retained positions. This is a consequence of the used objective function
“max[size(B)]”, where adding a column is more favorable due to the fact that

92 I. Hedtke et al.

20 22 24 26 28 30

0e
+0

0
2e

+0
9

4e
+0

9
6e

+0
9

8e
+0

9

SRR1030717: stepwise vs. optimized block trimming

quality threshold

nu
m

be
r

of
 b

as
es

●●

● 75%
80%
85%
90%
95%

20 22 24 26 28 30

2e
+0

8
4e

+0
8

6e
+0

8
8e

+0
8

SRR985867: stepwise vs. optimized block trimming

quality threshold
nu

m
be

r
of

 b
as

es

●●

● 75%
80%
85%
90%
95%

Fig. 2. Comparison of the number of remaining bases after stepwise and optimal block
trimming. For the two data sets SRR1030717 (left) and SRR985867 (right) we plot
the number of remaining bases depending on the quality threshold. The color resp.
symbols of the lines encode the used percentile values. The continuous lines starting
with a filled symbol show the results using optimal block trimming, while the dashed
lines starting with a non-filled symbol show the results using stepwise trimming. The
remaining number of bases after stepwise trimming for the 95% percentile of the dataset
SRR985867 equals zero for all quality thresholds and is therefore not plotted.

L � N . This behavior can be changed by using other objective functions as
described in the next section.

6 Applications

Trade-off between optimal solution and number of lost reads. The optimal so-
lution for trimming as computed by p-percent maximizes the number of bases
remaining after trimming, but this does not ensure that a high percentage of
reads is kept. One can imagine examples where only 50% or less are kept in the
optimal solution, which might be unacceptable for practical applications.

We solved the simplified problems by computing the matrices c and cz resp.
cp and cm. Given these matrices, we can ask for an optimal solution that keeps
a given percentage of reads. That is, we allow the user to impose as constraint
the minimal percentage of reads to be kept after trimming. Figure 3 shows the
number of bases in the optimal solution for a given minimal percentage of reads
to be kept in the solution. The plot was made with quality threshold 30 and for
percentage values ranging from 75% to 95%. A single scan over the input suffices
to compute the auxiliary matrices from which the trade-off curves are derived.
This enables the user to play with the input parameters of each of the optimized
block trimming methods and to get immediate feedback about the properties of
the optimal solution without rereading a single bit of the input file. Hence, our
methods can also serve as a decision support tool.

On Optimal Read Trimming in NGS and Its Complexity 93

65 70 75 80 85 90 95

0e
+0

0
2e

+0
9

4e
+0

9
6e

+0
9

SRR1030717: trade−off

minimum percentage of reads to keep

nu
m

be
r

of
 b

as
es

●

● 75%
80%
85%
90%
95%

65 70 75 80 85 90 95

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

8e
+0

8

SRR985867: trade−off

minimum percentage of reads to keep

nu
m

be
r

of
 b

as
es

●

● 75%
80%
85%
90%
95%

Fig. 3. Trade-off between the remaining number of bases and the minimal percentage
of reads that have to be kept after trimming. For both data sets we have used p-percent
for different percentile values and a quality threshold of 30.

Choosing an objective function. The calculation of optimal solutions is based on
the auxiliary matrices c, cz, cp, and cm, respectively. So far, an optimal solution
was simply a block fulfilling the desired quality properties withmaximal number of
bases, i. e., the objective was “width”× “# selected rows” or expressed in terms of
thematrix (r−
+1)·c(
, r).However, as soon as the auxiliarymatrix, say c, is avail-
able, it is possible to optimize any objective function f of the form f(
, r, c�r) with
f : {1..L} × {1..L} × {1..N} → R. Even additional constraints are possible. The
choice of an appropriate objective function is non-trivial and clearly depends on
the downstream analysis, the read length, the read coverage, etc. Our algorithms
allow the user to change the objective function and play with different parameters
without expensive recomputations. For example, if we want a minimal read length
after trimming of 50 bases, keep at least 80% of the reads, and weigh the number
of selected rows logarithmicaly, this can be expressed as

max (r −
+ 1) · log c(
, r)
s.t. r −
+ 1 ≥ 50 and c(
, r) ≥ 0.8 ·N.

7 Conclusions

Read trimming is a fundamental first step of the analysis of NGS data, but there
is surprisingly little literature on best practices or algorithmic aspects of read
trimming. In this paper, we formalized the problem of block-based trimming, a
popular trimming approach by which (i) low-quality positions at both ends of
each read are truncated and (ii) truncated reads with low quality are removed.
We analyzed the computational complexity of the three resulting constrained
optimization problems, and we found all of them to be NP-hard.

The distribution of quality scores in NGS data sets suggested the idea of
relaxing the three optimization problems by omitting the column constraint.

94 I. Hedtke et al.

We developed polynomial-time algorithms for solving the three relaxed prob-
lems and implemented them in C++. We found by empirical studies that the
column constraint is satisfied at all positions, without imposing it explicitly, by
satisfying the row constraints for almost all of the tested combinations of qual-
ity measures Q and quality thresholds T . Only for a combination of high-quality
percentiles and high-quality thresholds the column constraint was not satisfied
at all positions. However, even in these cases there were only few positions at
which the column constraint was violated, and these positions were located pre-
dominantly at the ends of the trimmed reads.

We found that the number of bases resulting from optimal trimming is often
greater than that resulting from stepwise trimming. The difference in the number
of retained bases became quite large for high percentile values and high-quality
thresholds, indicating that a significant number of bases was possibly lost by step-
wise trimming in previous studies. Our methods enable the user to evaluate a
whole range of possible trimming settings simultaneously. We finally remark that
the related problems of paired-end trimming can be solved with similar methods,
e.g., the corresponding z-zeros problem can be solved in O(L2N+L4) time.

Acknowledgements. We thank Claus Weinholdt for valuable discussions and
DFG (grant no. GR 3526/2) for financial support.

References
1. Bardet, A.F., He, Q., Zeitlinger, J., Stark, A.: A computational pipeline for com-

parative ChIP-seq analyses. Nature Protocols 7(1), 45–61 (2012)
2. Bhargava, V., Head, S.R., Ordoukhanian, P., Mercola, M., Subramaniam, S.: Techni-

cal variations in low-inputRNA-seqmethodologies. ScientificReports 4(3678) (2014)
3. Del Fabbro, C., Scalabrin, S., Morgante, M., Giorgi, F.: An extensive evaluation

of read trimming effects on Illumina NGS data analysis. PLoS ONE 8(12), e85024
(2013)

4. Edgar, R., Domrachev, M., Lash, A.: Gene Expression Omnibus: NCBI gene ex-
pression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210
(2002), http://www.ncbi.nlm.nih.gov/geo

5. Ewing, B., Hillier, L., Wendl, M., Green, P.: Base-calling of automated sequencer
traces using phred. I. Accuracy assessment. Genome Research 8(3), 175–185 (1998)

6. Ewing, B., Green, P.: Base-calling of automated sequencer traces using phred. II.
Error probabilities. Genome Research 8(3), 186–194 (1998)

7. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

8. Hannon Lab: FASTX Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/
9. Koboldt,D., Steinberg,K.,Larson,D.,Wilson,R.,Mardis,E.R.:Thenext-generation

sequencing revolution and its impact on genomics. Cell 155(1), 27–38 (2013),
http://www.sciencedirect.com/science/article/pii/S0092867413011410

10. NCBI – SRA Toolkit, http://eutils.ncbi.nih.gov/Traces/sra/?view=software
11. Patel, R.K., Jain, M.: NGS QC Toolkit: A toolkit for quality control of next gen-

eration sequencing data. PLoS ONE 7(2), e30619+ (2012)
12. Schmieder, R., Edwards, R.: Quality control and preprocessing of metagenomic

datasets. Bioinformatics 27(6), 863–864 (2011)
13. UC Davis Bioinformatics Core: sickle - Windowed Adaptive Trimming for fastq

files using quality, http://hannonlab.cshl.edu/fastx_toolkit/

http://www.ncbi.nlm.nih.gov/geo
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.sciencedirect.com/science/article/pii/S0092867413011410
http://eutils.ncbi.nih.gov/Traces/sra/?view=software
http://hannonlab.cshl.edu/fastx_toolkit/

On the Implementation
of Quantitative Model Refinement

Bogdan Iancu1,2,3, Diana-Elena Gratie1,2,3, Sepinoud Azimi1,2,3, and Ion Petre1,2,3

1 Computational Biomodeling Laboratory
2 Turku Centre for Computer Science

3 Department of IT, Åbo Akademi University
Joukahainengatan 3-5, 20520 Åbo, Finland

{biancu,dgratie,sazimi,ipetre}@abo.fi

Abstract. The iterative process of adding details to a model while preserving its
numerical behavior is called quantitative model refinement, and it has been previ-
ously discussed for ODE-based models and for kappa-based models. In this paper,
we investigate and compare this approach in three different modeling frameworks:
rule-based modeling, Petri nets and guarded command languages. As case study
we use a model for the eukaryotic heat shock response that we refine to include
the acetylation of the heat shock factor. We discuss how to perform the refinement
in each of these frameworks in order to avoid the combinatorial state explosion of
the refined model. We conclude that Bionetgen (and rule-based modeling in gen-
eral) is well-suited for a compact representation of the refined model, Petri nets
offer a good solution through the use of colors, while the PRISM refined model
may be much larger than the basic model.

Keywords: Quantitative model refinement, heat shock response, acetylation, rule-
based modeling, Petri nets, model checking.

1 Introduction

Systems biology aims to holistically characterize highly complex biological systems. A
hierarchical system-level representation is very adequate in this context. Formal frame-
works turn out to be fundamental in the effort of understanding the behavior of such
complex systems, see [21,12]. The abstractions that lie at the core of these formalisms
need to be refined to incorporate more details.

We focus in this paper on the implementation of model refinement. Within the model
development process, we examine data refinement through three different frameworks
– rule-based modeling, Petri nets and guarded command languages – and discuss their
capabilities for the efficient construction of a refined model. For rule-based modeling
we used the Bionetgen framework and RuleBender, for Petri nets we chose Snoopy and
Charlie as modeling tools, while for modeling with guarded command languages we
used PRISM. Data refinement, as described in [3] and [10], assumes the replacement of
one species in the model with several of its variants, called subspecies. This type of re-
finement is adequate for representing post-translational modifications of proteins, e.g.,
acetylation, phosphorylation, etc. Given a protein P, one can indicate its state regarding

A.-H. Dediu, C. Martı́n-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 95–106, 2014.
c© Springer International Publishing Switzerland 2014

96 B. Iancu et al.

post-translational modifications by replacing it with its variants. This substitution also
implies a refinement of all complexes involving protein P and of all reactions involv-
ing either P or any such complex, see [10]. This might induce a combinatorial state
explosion of the refined model, as in the case of ODE-based models, see [10]. The
main question we are answering is whether one can avoid this problem in the other
three frameworks we investigate in this paper and build a compact representation of the
refined model.

We consider as a case study for our analysis the heat shock response mechanism, as
described in [20] and [10]. Throughout the paper, the model in [20] will be referred to
as the basic heat shock response model, while the model in [10] will be referred to as
the refined model.

All models developed in this paper are available for download at [11]. Due to space
restrictions, some of the details of this work were omitted. For full details, we refer the
reader to [6].

2 The Heat Shock Response (HSR)

The eukaryotic heat shock response is a highly conserved bio-regulatory network that
controls cellular function impairment produced by protein misfolding as a result of high
temperatures. Elevated temperatures have proteotoxic effects on proteins, inducing pro-
tein misfolding and leading to the formation of large aggregates that thereafter trigger
apoptosis (controlled cell death). Cell survival is promoted by a defense mechanism,
which consists in restoring protein homeostasis by augmenting the level of molecular
chaperones, see [22].

We consider the basic molecular model for the eukaryotic heat shock response pro-
posed in [20]. Heat shock proteins (hsp’s) play a key role in the heat shock response
mechanism by chaperoning the misfolded proteins (mfp’s). Due to their affinity to mfp’s,
hsp’s form hsp:mfp complexes and help the misfolded proteins refold. The heat shock
response is regulated by the transactivation of the hsp-encoding genes. In eukaryotes,
some specific proteins, called heat shock factors (hsf’s), promote gene transcription. In
the absence of environmental stressors, heat shock factors are predominantly found in
a monomeric state, extensively bound to heat shock proteins. Raising the temperature
causes the correctly folded proteins (prot) to misfold and hsp:hsf complexes to break
down. This switches on the heat shock response by releasing hsf’s, which quickly reach
a DNA binding competent state, see [20,23].

Heat stress induces dimerization (hsf2) and, subsequently, trimerization (hsf3) of
hsf’s, enabling the binding of the hsf trimers to the promoter site of the hsp-encoding
gene, called heat shock element (hse). Subsequently, DNA binding triggers the tran-
scription and translation of the hsp-encoding gene, inducing hsp synthesis, see [20,22].
Once the level of heat shock proteins is sufficiently elevated for the cell to withstand
thermal stress, hsp synthesis is turned off. Heat shock proteins sequestrate heat shock
factors and break hsf dimers and trimers, constituting hsp:hsf complexes. The explicit
molecular reactions constituting the model can be found in [20].

The numerical setup of the basic model (in terms of initial concentrations and kinetic
constants) can be found in [20]. Acetylation has been shown to have an extensive influ-

On the Implementation of Quantitative Model Refinement 97

ence in regulating the heat shock response, we refer the reader to [24]. To this end, we
consider the acetylation of heat shock factors implemented through data refinement.

3 Quantitative Model Refinement

Quantitative model refinement was investigated in [19,4] regarding rule based modeling
and applied to two ampler ODE-based models in [18,10].

3.1 Quantitative Model Refinement

A reaction-based model can be refined to incorporate more information regarding its
reactants and/or reactions. There are two types of refinement, either of the data (data
refinement) or of the reactions (process refinement). In this study, we focus on the first
refinement type. Considering that one’s interest lies especially on data, a species in a
model could be refined by replacing it with several of its subspecies, a routine called
data refinement. When the interest is focused on reactions, the model can be refined by
replacing a collective reaction, accounting for a specific process, by a set of reactions
depicting the transitional steps of the process. The last type of refinement is called
process refinement, see [10].

The notion of quantitative model refinement has been previously addressed in sys-
tems biology in the context of rule based modelling, see [19,4,7,5]. The rule based mod-
elling framework embodies the concept of data refinement, as previously introduced,
implementing agent resolution as a fundamental constituent, [7]. The key refinement
method in this context is rule refinement, an approach that requires the refinement of the
set of rules ensuring the preservation of the dynamic behavior of the system, see [19].

We present here the quantitative model refinement of reaction models following
the discussion in [10]. Consider a model M, comprising a number m of species Σ =
{A1,A2, . . . ,Am} and n of reactions ri, 1≤ i≤ n, as follows:

ri : Si,1A1 + Si,2A2 + . . .+ Si,mAm
ki−→ S′i,1A1 + S′i,2A2 + . . .+ S′i,mAm,

where Si,1, . . . ,Si,m,S′i,1, . . . ,S
′
i,m ≥ 0 are the stoichiometric coefficients of ri and ki ≥ 0

is the kinetic rate constant of ri. We discuss here a continuous, mass-action formulation
of the model based on ODEs. For some details on this approach we refer to [14].

Model M can be refined to distinguish between various subspecies of any species in
the model, for example, A1. The distinction between the subspecies is very often drawn
by post-translational modifications such as acetylation, phosphorylation, sumoylation,
etc. All previously mentioned subspecies of A1 take part in all reactions A1 engaged
in, conceivably obeying a different kinetic setup. Given model M and species A1, sub-
stituting subspecies B1, . . . ,Bl for species A1 in M leads to attaining a new model MR,
comprising species {A′2,A′3, . . . ,A′m}∪{B1, . . . ,Bl}, for some l ≥ 2, where variables A′i,
2≤ i≤m from MR, coincide with Ai from model M and B1, . . . ,Bl substitute for species
A1 in MR. Furthermore, each reaction ri of M is replaced in the new model MR by all
possible reactions ri, j of the following form:

98 B. Iancu et al.

ri, j : (T j
i,1B1 + . . .+T j

i,lBl)+ Si,2A′2 + . . .+ Si,mA′m
ki, j−→

(T ′ ji,1B1 + . . .+T ′ ji,lBl)+ S′i,2A′2 + . . .+ S′i,mA′m,

where ki, j is the kinetic rate constant of ri, j and (T j
i,1, . . . ,T

j
i,l ,T

′ j
i,1, . . . ,T

′ j
i,l) are all possi-

ble nonnegative integers so that T j
i,1+ . . .+T j

i,l = Si,1 and T ′ ji,1+ . . .+T ′ ji,l = S′i,1. Model
MR is said to be a data refinement of model M on variable A1 if and only if the following
conditions are fulfilled:

[Ai](t) = [A′i](t), (1)

[A1](t) = [B1](t)+ . . .+[Bl](t), (2)

for all 2 ≤ i ≤ m, t ≥ 0. Fulfilling these conditions depends on the numerical setup of
model MR, i.e., on the kinetic constants of its reactions (both those adopted from the
basic model, as well as those newly introduced in the construction) and on the initial
concentrations of its species.

3.2 Adding the Acetylation Details to the HSR Model through Data Refinement

We start from the basic model of the heat shock response, introduced in [20], where no
post-translational modification of hsf is taken into account, and we refine all species and
complexes that involve hsf taking into consideration one acetylation site for every hsf
molecule. We follow here the discussion in [10]. The aim is to refine the basic model and
preserve its numerical properties. For hsf2, hsf3, hsf3:hse and hsp:hsf, the refinement
is performed conforming to the number of hsf constituents respectively. This leads to
the following data refinements: hsf→ {rhsf, rhsf(1)}; hsf2→ {rhsf2, rhsf2(1), rhsf2(2)};
hsp:hsf → {rhsp: rhsf, rhsp: rhsf(1)}; hsf3 → {rhsf3, rhsf3(1), rhsf3(2), rhsf3(3)}; hsf3 :
hse→ {rhsf3: rhse, rhsf3(1): rhse, rhsf3(2): rhse, rhsf3(3): rhse}. The refinement based on
the above data refinements involves substantial changes in the list of reactions. For ex-
ample, the reversible reaction of dimerization 2hsf� hsf2 in the basic model is replaced
by three reactions as follows: 2 rhsf � rhsf2; rhsf+ rhsf(1) � rhsf2

(1); 2rhsf(1) �
rhsf2

(2).
The refined model of [10] consists of 20 species and 55 irreversible reactions, com-

pared to 10 species and 17 irreversible reactions in the basic model of [20].

4 Quantitative Refinement in Rule-Based Models

4.1 A RuleBender Implementation of the Basic HSR Model

This section focuses on the RuleBender implementation of the basic heat shock re-
sponse model, as introduced in Section 2. We model all reactions to follow the principle
of mass action. Conforming to the implementation presented here, Bionetgen source
code comprises a set of twelve rules, which generate a total number of seventeen irre-
versible reactions. Due to the symmetry that some of the species exhibit, the collision
frequency (e.g. in our case dimerization, trimerization, etc) and the existence of multi-
ple paths from substrates to products in some reactions (e.g. for the heat shock response

On the Implementation of Quantitative Model Refinement 99

model, the unbinding of trimers), kinetic rate constants for those specific reactions are
multiplied in Bionetgen by diverse symmetry and/or statistical factors, see [2]. For ex-
ample, the collision frequency of two different types of reactants A and B, A+B, is
twice that of identical types of reactants A+A. Another example concerns the multi-
ple reaction paths from reactants to products, which may generate statistical factors.
Preserving the fit of the heat shock response model attained in [20] required a multipli-
cation of some rate constants by the inverse of the aforementioned factors respectively.

RuleBender generates during the process of model development a contact map which
depicts the connectivity between the molecules. The contact map for the basic model of
the heat shock response is shown in Figure 1.

Fig. 1. The RuleBender generated contact map for the basic model of the heat shock response. It
depicts the possible interconnections among the model’s species.

One can notice in Figure 1 that hsf’s have been represented as having 4 sites (s, s,
u, v). The two s sites are involved in the generation of dimers and trimers. The other
two sites, u and v, are used to illustrate the process of DNA binding/unbinding and hsf
sequestratation/dimer (trimer) dissipation. Trimers are considered to be circular struc-
tures, each of the ‘s’ site of one hsf being bound to the ‘s’ sites of the consequent hsf’s,
no two hsf’s having both sites ‘s’ bound to the same partner. The promoter, hse, has
been represented as having three identical sites (a, a, a), so as to be connected to the
trimer in such a way that the symmetry is not affected. Heat shock proteins are modeled
to have two sites ‘p’ and ‘q’, used for the modelling of unbinding of dimers and trimers
and for the sequestration of misfolded proteins. The model takes into account a species
called Prot, which has a site with two possible states, one of which accounts for mis-
folded proteins ‘m’ and another one ‘f’, that accounts for folded proteins. A “dummy”
component, called Trash, has been introduced to help encode the degradation of heat
shock proteins.

The contact map in Figure 1 illustrates the connectivity between the species in the
model. The link between the ‘s’ sites of the hsf molecule denotes the formation of
dimers and trimers through the agency of these sites. Once trimers are formed, they

100 B. Iancu et al.

can bind to the heat shock element (hse), the connection being illustrated by three links
connecting hsf trimers to the heat shock element (one can notice three ‘a’ sites the heat
shock element component exhibits). The middle connector encodes for a number of re-
actions, such as: DNA unbinding, HSP synthesis and breaking of dimers and trimers.
The link between the site ‘v’ of the hsf component and the site ‘p’ of the hsp com-
ponent illustrates hsf sequestration. The link between the hsp component and the prot
component encodes the following reactions: protein misfolding, protein refolding and
mfp sequestration. By linking the component Trash to the hsp component, we encoded
for the degradation of hsp’s.

We chose a deterministic simulation for the basic model. The simulation results for
DNA binding for a temperature of 42◦C showed that RuleBender prediction are in ac-
cordance with the results reported in [20].

4.2 A RuleBender Implementation of the Acetylation-Refined HSR Model

We focus in this section on the acetylation-refinement of the heat shock response, as
described in [10]. There are several changes to do in Rulebender to refine the basic
model so as to include the acetylation of hsf’s. The syntax of the rules remains, in
this case, unchanged, since all reactions, in this model, take place regardless of the
acetylation status of the molecules. We brought changes in the definition of hsf’s, by
introducing one acetylation site, ‘w’, which can be either acetylated or not, and in the
initial concentrations of the molecules. The initial concentrations were set conforming
to [10].

As expected from the refinement conditions, the simulation of the refined model for
a temperature of 42◦C showed that the Rulebender prediction for the refined model and
the one for the basic model are the same.

5 Quantitative Refinement in Petri Net Models

5.1 A Petri Net for the Basic HSR Model

A standard Petri net model for the heat shock response was previously reported in [1].
We focus here on a Snoopy continuous Petri net implementation of the basic heat shock
response model, shown in Figure 2. The network has 10 places and 17 transitions, en-
coding the 10 species and 17 irreversible reactions in the basic model definition of [20].
Verifying the model required the analysis of several properties. For instance, the model
is covered by T-invariants; also, the P-invariants reported by Charlie encode all mass
conservation relations reported in the ODE-based model of [20]. Moreover, all places
except HSP are covered by P-invariants, which means that they are bounded. The three
mass conservation relations yield three constants (accounting for the total amount of
HSF, HSE and protein molecules in the system, respectively), that have been used in
the PRISM implementation of the model.

5.2 Petri Nets for the Acetylation-Refined HSR Model

For the refined heat shock response that includes two types of hsf’s (acetylated and non-
acetylated [10]), we chose an implementation based on colored continuous Petri nets.

On the Implementation of Quantitative Model Refinement 101

HSF

HSF2 HSF3

HSEHSF3HSE

HSP

HSP

HSPHSF

HSPHSF

MFP

HSP:MFP

PROT

dimerization fw

trimerization fw

DNAbinding bw

HSFseq bw

dimer dissipation

trimer dissipation

DNAunbinding

degradation

MFPseq fw

Prot refolding

Protein misfolding

MFPseq bw

HSFseq fw

DNAbinding fw

HSPformation

dimerization bw

trimerization bw

2

2

2

2

Fig. 2. Snoopy implementation of the basic heat shock response model. The text next to a place
(transition) denotes the identifier of that particular place (transition). Arc multiplicities greater
than 1 are included in the picture. The dashed gray circles are logical places (they may appear
several times, but they represent the same species).

There are several ways of reasoning about refined species within this framework. For
example, the dimer of a protein with a site that can be acetylated (1) or non-acetylated
(0) can be either seen as an entity with 0, 1, or 2 acetylated sites, or as a compound where
the order of the acetylated sites counts (i.e. (0,0), (0,1), (1,0), (1,1)). Depending on the
approach one takes, the colored representation will have different color sets, different
number of transitions and different kinetic constants.

We modeled the refined heat shock response using two approaches: one focused on
keeping the structure of the basic model intact, with the same transitions and kinetic
constants (we call this model transition-focused). This is the most compact representa-
tion. The other approach aimed to minimize the number of colors used in the model (we
call this model color-focused). This approach uses as few colors as possible, at the cost
of a complicated representation, with many conditions in a transition, and also introduc-
ing new transitions in the colored representation. Due to space limitations, we present
here only the color-focused model. A more detailed description of both approaches can
be found in [6].

102 B. Iancu et al.

Several choices had to be made during the modeling process. We detail the modeling
options for the dimerization and trimerization of acetylated and non-acetylated hsf’s.
There are three types of dimers that can be formed: non-acetylated (hsf2(0)), single-
acetylated (hsf2(1)) and double-acetylated dimer (hsf2(2)). One way of modeling the
dimers is using a color set with three colors of type int (0, 1, and 2 denoting the number
of acetylated sites). Another approach is using a cartesian product {0,1}×{0,1}. When
modeling hsf trimers, one could consider, for example, one of the following three color
sets: a color set Tri= {0,1,2,3}, a compound color set Compound= {0,1} ×{0,1,2},
or a compound set Trimer = {0,1}×{0,1}×{0,1}. For the color-focused refinement,
we chose the simple integer color sets.

All reactions involving the decomposition of complexes containing hsf’s required
additional transitions. For example, the trimer dissipation reaction hsf3+hsp→ hsp :
hsf+2hsf is split into three transitions. One covers the case when all hsf’s in the trimer
have the same acetylation value (i.e. hsf3 has color 0 or 3). In this case, there is no
distinction between which hsf binds to hsp and which two hsf’s become unbound, and
the kinetic constant for this transition is the same as the corresponding one in the basic
model. When hsf3 has color 1 or 2, there are two binding possibilities: hsp binds to
either a non-acetylated hsf, or to an acetylated hsf. For the two transitions representing
these possibilities, the kinetic constant is half of the corresponding one in the basic
model (following the reasoning explained in [10]).

When simulating a colored Petri net, Snoopy first unfolds it, in other words it creates
an equivalent Petri net. Each place instance (each color) will correspond to a place in the
unfolded net, and each transition instance (each binding) will correspond to a transition
in the unfolded net; for details on colored Petri nets unfolding, see [17]. The color-
focused refined model has 10 places and 25 transitions, and its corresponding flattened
Petri net has 20 places and 56 transitions. This representation, although more complex
than the transition-focused one, encodes a smaller flattened network. Both the transition-
and color-based refinements have been compared with the basic model predictions, and
they are all equivalent (data not shown).

6 Quantitative Refinement in PRISM Models

6.1 A PRISM Implementation of the Basic HSR Model

We implemented the basic heat shock response as a CTMC model that defines all pos-
sible guards (in this case reactions) within a single module. The PRISM model con-
sists of 10 variables, each of them corresponding to one of the reactants in the model,
and 17 guards representing the 17 irreversible reactions of the system. The values for
upper bounds of the variables are taken from our Petri net model’s P-invariants and
mass-conservation relations. Upper bounds are used both for allocating memory and
in the guarded commands. For example the guard corresponding to dna binding is
expressed as follows: hsf3 >= 1∧ hse >= 1∧ hsf3:hse <= N − 1 → hsf3 ∗hse∗k5 :
(hsf3

′ = hsf3−1)∧ (hse′ = hse−1)∧ (hsf3:hse′ = hsf3:hse+1), where N represents
the upper bound for hse in the system.

It is noteworthy to mention that the PRISM model could be obtained from the Petri
net model via some format manipulations in Snoopy. However, we decided to write the

On the Implementation of Quantitative Model Refinement 103

model from the very beginning in order to be able to compare the modeling effort in
each chosen framework.

6.2 A PRISM Implementation of the Acetylation-Refined HSR Model

The approach we took in Sections 4 and 5 to implement the acetylation-refined heat
shock response model was through a compact representation of the acetylated species.
Whereas colors of the places and arc expressions were employed to represent the refine-
ment in the Petri net model, in modeling with RuleBender the solution was to introduce
a new acetylation site for every hsf molecule. Both methods used structured data types
for the species, thus concealing the complexity of the model in a compact representation.
In PRISM this requires a method to represent the acetylation details in the definition of
hsf, i.e. a composite data type. Since PRISM currently supports only simple data type
(e.g. integer, boolean) variables in the model, such a definition is not possible. Alterna-
tively, we implemented the acetylation-refined model through introducing new variables
describing all possible acetylation configurations of hsf and hsf complexes. This was
similar to the ODE-based approach to quantitative model refinement discussed in [10].

The refined heat shock response model is built based on the refinements given in
Section 3.2 by refining all reactants and complexes involving hsf. In this approach, the
strategy is to replace each guard involving any refined reactant by the guards consider-
ing all possible refined reactions.

One could also use parallel modules to implement the refinement but this approach
would not help reducing the complexity of the model.

The complete PRISM implementation of the refinement is not listed here due to
space limitations. The numerical setup of this model is based on [10].

6.3 Model Checking of the HSR Models

According to [15], the maximum number of states that PRISM can handle for CTMCs
is 1010. In both our models (basic and refined version of the heat shock response), the
number of all possible states in the system exceeds this limit. This is a known problem
for biological systems in PRISM, see [8]. Several studies have addressed this issue, see
e.g., [9,16,8]. One of the investigated approaches is approximate verification of proba-
bilistic systems, where a Monte-Carlo algorithm is used to approximate the probability
of a temporal formula to be true, see [9]. We used this method to verify the desired prop-
erties of the heat shock response model. In this approach a large number of stochastic
paths is sampled for the model and based on the defined properties, the result for each
run is obtained. The information produced in this way gives an approximate result for
the probability that the desired property holds for the model.

We are interested in verifying two properties discussed in [20]. The properties are:
(i) the validity of three mass-conservation relations and (ii) the level of DNA binding
eventually returns to the basal values, both at 37◦C and at 42◦C.

In order to check the mass conservation properties, we used the G operator which
checks if the property remains true at all states along the path. The three properties we
were interested in are listed as follows:

104 B. Iancu et al.

– p =? [G hsf+2hsf2+3hsf3+3hsf3:hse+hsp:hsf = hsfconst],
– p =? [G hse+hsf3:hse= hseconst],
– p =? [G prot+mfp+hsp:mfp= protconst],

where hsfconst ,hseconst and protconst represent the total amounts of hsf,hse and prot
respectively. These properties check if the mass-conservation relations, corresponding
to the level of hsf,hse and prot, are valid in all the states. In each case, the value of p
was confirmed to be one, which was to be expected, with confidence level 95%, i.e. the
mass conservation laws are respected in the model.

For the second property, we verified in PRISM that for time points larger than 14400,
the value of hsf3:hse reactants returns to their initial value. We formulated the following
property: p =? [F >= 14400 hsf3:hse = 3]. The probability value calculated by
PRISM was one for this property as well, with confidence level 95%.

We also checked if the model confirms the experimental data of [13] on DNA binding.
One approach could be to run the simulation for many times and plot the average run.
Due to the memory issues of the PRISM, we were not able to follow this approach.
Since we are using a stochastic model, our second approach was to check the probability
of having a data point within the interval [0.9 ·d,1.1 ·d] in the time period [0.9 · t,1.1 · t],
where d is the experimental data point at time t. The confidence interval for all the
properties and the number of simulations were 95% and 150 respectively. We interpret
the high values we obtained as a result as a confirmation that the two PRISM models
are in accordance with the experimental data of [13].

7 Discussion

We focused in this paper on analyzing the capability of three different frameworks to
implement the concept of quantitative model refinement: rule based modelling (with
Bionetgen), Petri nets (with Snoopy) and guarded command languages (with PRISM).
Handling the combinatorial explosion due to accounting for a post-translational modifi-
cation throughout our refinement proved to be fundamentally different in the approaches
we considered. These modeling methods are not restricted to the analysis of our case
study solely, but their applicability extends to other reaction-based models. Rule-based
modelling tackles the complexity of refinement through a compact model representa-
tion based on a partial presentation of the details of the model species, leading to more
effective model construction and analysis techniques. Colored Petri nets integrate pro-
grammability by including data types (color sets) as an intrinsic property of places. The
color set assignation reflects on the structure of the network, affecting the dimensions
of the corresponding flattened network. PRISM model checker promotes a low level
implementation of data structures and it does not allow the modeler to introduce more
complex data structures.

Our study shows that some modeling frameworks are more suitable for model refine-
ment than others, with respect to the compactness of the representation of the refined
model. A key ingredient for this is the spectrum of internal data structures supported
by the modeling framework. Data structures may encapsulate a large amount of infor-
mation, and their effective manipulation can substantially reduce the complexity of a

On the Implementation of Quantitative Model Refinement 105

model’s representation. RuleBender provides data structures suitable for modeling bio-
logical systems: species, sites, links, partial description of species, rendering a straight-
forward refinement procedure with a very compact representation. In contrast, Petri
nets are not primarily a biology-focused framework. Colored Petri nets introduce pro-
grammability in this modeling formalism, incorporating data types into the places of
the network. New data types can be implemented based on primitive built-in types and
composition rules. In refining a Petri net model, one has to define the appropriate data
structures, and associate a biological meaning to each of them. The modeling choices
affect both the compactness of the representation and the complexity of the correspond-
ing flattened Petri net model. PRISM on the other hand only supports primitive data
types. This translates into an explicit detailing of all elements of the refined model.

Our study shows that quantitative model refinement is a potentially viable approach
to building a large biomodel. The approach can be used together with a multitude of
modeling paradigms, allowing the modeler to increase the level of details of the model,
while preserving its numerical behavior. Moreover, on any level of detail one can switch
from a modeling paradigm to another, taking full advantage of the various analysis
tools made possible in different model formulations, in terms of fast simulations, model
checking or compact model representation. While our case-study shows the potential of
the quantitative model refinement approach to model building, its scalability remains to
be tested on a larger case study.

Acknowledgement. This research was partially supported by Academy of Finland un-
der project 267915.

The authors thank Monika Heiner for her help with issues related to Snoopy and Char-
lie, James Faeder and Leonard Harris for advice on the Bionetgen implementation of
the heat shock response, and Adam Smith for technical support regarding RuleBender.

References

1. Back, R., Ishdorj, T., Petre, I.: A petri net formalization of heat shock response model. In:
Petre, I., Rozenberg, G. (eds.) Workshop on Natural Computing and Graph Transformations,
pp. 19–28 (2008)

2. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph theory for of biochemical net-
works. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions
on Computational Systems Biology VII. LNB, vol. 4230, pp. 89–106. Springer, Heidelberg
(2006)

3. Czeizler, E., Rogojin, V., Petre, I.: The phosphorylation of the heat shock factor as a mod-
ulator for the heat shock response. In: Proceedings of the 9th International Conference on
Computational Methods in Systems Biology, pp. 9–23. ACM (2011)

4. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling and model
perturbation. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Sys-
tems Biology XI. LNCS, vol. 5750, pp. 116–137. Springer, Heidelberg (2009)

5. Faeder, J., Blinov, M., Goldstein, B., Hlavacek, W.: Rule-based modeling of biochemical
networks. Complexity 10(4), 22–41 (2005)

6. Gratie, D., Iancu, B., Azimi, S., Petre, I.: Quantitative model refinement in four different
frameworks, with applications to the heat shock response. Tech. Rep. 1067, TUCS (2013)

106 B. Iancu et al.

7. Harmer, R.: Rule-based modelling and tunable resolution. EPTCS 9, 65–72 (2009)
8. Heath, J.K., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model

checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNB, vol. 4210,
pp. 32–47. Springer, Heidelberg (2006)

9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: Prism: A tool for automatic verifi-
cation of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

10. Iancu, B., Czeizler, E., Czeizler, E., Petre, I.: Quantitative refinement of reaction models.
IJUC 8(5-6), 529–550 (2012)

11. Iancu, B., Gratie, D., Azimi, S., Petre, I.: Computational modeling of the eu-
karyotic heat shock response: The bionetgen implementation, the petri net imple-
mentation and the prism implementation (2013), http://combio.abo.fi/research/
computational-modeling-of-the-eukaryotic-heat-shock-response/

12. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)
13. Kline, M., Morimoto, R.: Repression of the heat shock factor 1 transcriptional activation

domain is modulated by constitutive phosphorylation. Molecular and cellular biology 17(4),
2107–2115 (1997)

14. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems biology in practice:
Concepts, implementation and application. Wiley-Vch (2005)

15. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the probabilistic model
checker prism. Electronic Notes in Theoretical Computer Science 153(2), 5–31 (2006)

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time
systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591.
Springer, Heidelberg (2011)

17. Liu, F., Heiner, M., Yang, M.: An efficient method for unfolding colored petri nets. In:
Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A. (eds.) Proceedings
of the Winter Simulation Conference, vol. 295. Winter Simulation Conference (2012)

18. Mizera, A., Czeizler, E., Petre, I.: Self-assembly models of variable resolution. In: Priami,
C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS,
vol. 7625, pp. 181–203. Springer, Heidelberg (2012)

19. Murphy, E., Danos, V., Feret, J., Krivine, J., Harmer, R.: Rule Based Modelling and Model
Refinement. In: Elements of Computational Systems Biology, pp. 83–114. Wiley Book Series
on Bioinformatics, John Wiley & Sons, Inc. (2010)

20. Petre, I., Mizera, A., Hyder, C., Meinander, A., Mikhailov, A., Morimoto, R., Sistonen, L.,
Eriksson, J., Back, R.: A simple mass-action model for the eukaryotic heat shock response
and its mathematical validation. Natural Computing 10(1), 595–612 (2011)

21. Raman, K., Chandra, N.: Systems biology. Resonance 15(2), 131–153 (2010)
22. Rieger, T., Morimoto, R., Hatzimanikatis, V.: Mathematical modeling of the eukaryotic heat-

shock response: Dynamics of the hsp70 promoter. Biophysical Journal 88(3), 1646–1658
(2005)

23. Shi, Y., Mosser, D., Morimoto, R.: Molecular chaperones as hsf1-specific transcriptional
repressors. Genes & Development 12(5), 654–666 (1998)

24. Westerheide, S., Anckar, J., Stevens Jr., S., Sistonen, L., Morimoto, R.: Stress-inducible
regulation of heat shock factor 1 by the deacetylase sirt1. Science Signalling 323(5917),
1063–1066 (2009)

http://combio.abo.fi/research/computational-modeling-of-the-eukaryotic-heat-shock-response/
http://combio.abo.fi/research/computational-modeling-of-the-eukaryotic-heat-shock-response/

HapMonster: A Statistically Unified Approach

for Variant Calling and Haplotyping
Based on Phase-Informative Reads

Kaname Kojima�, Naoki Nariai, Takahiro Mimori, Yumi Yamaguchi-Kabata,
Yukuto Sato, Yosuke Kawai, and Masao Nagasaki�

Department of Integrative Genomics,
Tohoku Medical Megabank Organization, Tohoku University

2-1 Seiryo-machi, Aoba-ku, Sendai-shi, Miyagi 980-8573, Japan
{kojima,nariai,mimori,yamaguchi,yuksato,kawai,nagasaki}

@megabank.tohoku.ac.jp,

http://nagasakilab.csml.org/en/

Abstract. Haplotype phasing is essential for identifying disease-causing
variants with phase-dependent interactions as well as for the coalescent-
based inference of demographic history. One of approaches for estimating
haplotypes is to use phase-informative reads, which span multiple het-
erozygous variant positions. Although the quality of estimated variants
is crucial in haplotype phasing, accurate variant calling is still challeng-
ing due to errors on sequencing and read mapping. Since some of such
errors can be corrected by considering haplotype phasing, simultaneous
estimation of variants and haplotypes is important. Thus, we propose
a statistically unified approach for variant calling and haplotype phas-
ing named HapMonster, where haplotype phasing information is used
for improving the accuracy of variant calling and the improved variant
calls are used for more accurate haplotype phasing. From the compari-
son with other existing methods on simulation and real sequencing data,
we confirm the effectiveness of HapMonster in both variant calling and
haplotype phasing.

Keywords: Next generation sequencing, variant call, haplotype phasing.

1 Introduction

Next generation sequencing (NGS) technologies enables the detection of novel
rare variants in genome wide scale. For rare variant association studies, variants
are often grouped in exon or gene level, and effects of multiple variants and
phase-dependent interactions such as compound heterozygosity and cis-effect are
considered for the analysis [2]. Thus, haplotype phasing is essential for identifying
association between rare variants and disease phenotypes. In addition, haplotype
phasing information is required for the coalescent-based inference of demographic
history [7].

� Corresponding authors.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 107–118, 2014.
c© Springer International Publishing Switzerland 2014

http://nagasakilab.csml.org/en/

108 K. Kojima et al.

Haplotype phasing is usually estimated by two types of approaches. One ap-
proach is based on linkage disequilibrium between variant sites and estimates
haplotype phasing probabilistically [3,4,11]. Although this type of approach pro-
vides accurate phasing results for common variants, it requires genotyping re-
sults for multiple samples and its accuracy for low-frequency variants or variants
around recombination hot spots tends to be low. Another approach is to use
phase-informative reads that span multiple heterozygous variant positions. Due
to the current length of NGS reads, the range size of the estimated haplotypes
is limited. However, since length of sequence reads is growing rapidly, the rate of
heterozygous sites that can be phased by phase-informative reads is increasing,
and hence this type of approach is considered as a promising ways for phasing
low-frequency variants.

Although the quality of estimated variants is essential for haplotype phas-
ing, accurate variant calling is still challenging especially for regions with in-
sufficient read coverage or regions containing errors on sequencing and read
mapping. Since variant calling on such regions can be improved by using hap-
lotype phasing information [12], considering both variant calling and haplotype
phasing simultaneously is important. However, SNP sites are treated indepen-
dently on most of the variant callers such as Unified Genotyper in GATK and
BCFtools [5,10], and haplotype phasing is considered separately from the variant
calling. Thus, we propose a new variant calling and haplotyping method based on
phase-informative reads named HapMonster. HapMonster simultaneously per-
forms variant calling and haplotype phasing based on phase-informative reads
by unifying these procedures in a statistical model. Under the model, haplotype
phasing information can be used for improving the accuracy of variant calling
and the improved variant calls are used for more accurate haplotype phasing. In
the performance evaluation, we applied HapMonster and other existing meth-
ods to simulation and real sequencing datasets with various read coverages, and
confirmed that HapMonster provides the best results in both variant calling and
haplotype phasing, compared to other methods.

2 Methods

HapMonster takes mapped sequence reads to a reference genome in the SAM/
BAM format as input data and estimates variants and phased haplotypes. The
model of our approach is comprised of allele likelihood model and haplotype
selection model. Allele likelihood model calculates the likelihood of an allele
given mapped reads at a position, where errors on sequencing and read mapping
are considered. Haplotype selection model represents the assignment of sequence
reads to one of two haplotypes. In the following sections, we describe the details
of our model and procedures for parameter estimation and inference of genotypes
and haplotypes.

2.1 Modeling

Allele Likelihood Model. Let Ri be the ith read in a SAM/BAM file. Ri

contains its mapping quality score in Phred scale MAPQi, strings for bases

Statistically Unified Approach for Variant Calling and Haplotyping 109

aligned to position k in the reference genome rki , and vectors of base quality
scores in Phred scale for the aligned bases bqki . Note that rki is usually one
nucleotide such as ‘T’, but it can be a string with more than one nucleotide for
representing insertion, e.g., a string ‘TGC’ represents an insertion ‘GC’ right
after a base ‘T’. Deletion is represented by setting rki to a null string. By using
these notations, an allele likelihood for A at position k is given by

P (rki |A, bqki) =
1∑

bki =0

1∑
mk

i =0

P (rki |A, bki)I(m
k
i =1)Pmis(r

k
i)

I(mk
i =0)P (mk

i)P (bki |bqki),

where mk
i is a binary variable that takes one if the alignment of rki is correct

and zero otherwise. bki is a vector of binary variables and each element that
takes one if the corresponding base in rki is correct and zero otherwise. I(·) is
an indicator function that returns one if a condition in its argument is true,
and zero otherwise. As with rki , A is one nucleotide or a string with nucleotides.
The term P (rki |A, bki) is the probability of read generation for the correct read
alignment, and we represent the probability as:

P (rki |A, bki) = Indel(A, rki)

min(|A|,|rki |)∏
l=1

P (rki [l]|A[l], bki [l]),

where A[l] is the lth nucleotide of A, rki [l] is the lth nucleotide of rki , b
k
i [l] is the

lth value of bki , and function Indel represents read skipping errors and insertion
errors. | · | takes a string or set as its argument and returns length for string
or size for set. We represent function Indel by using read skip error rate δ and
insertion error rate ι as:

Indel(A, rki) = δI(|A|>|rki |)(1 − δ)I(|A|≤|rki |)ιI(|A|<|rki |)(1− ι)I(|A|≥|rki |).

In our study, both δ and ι are set to 0.001. P (rki [l]|A[l], bki [l]) models base sub-
stitution error on each base and is given by:

P (rki [l]|A[l], bki [l]) =

⎧⎨
⎩

1 rki [l] = A[l] & bki [l] = 1
1/3 rki [l]
= A[l] & bki [l] = 0
0 otherwise

.

Pmis(r
k
i) represents the probability of read generation for misaligned reads. We

consider that reads representing indels, i.e., read with 0 length or more than one
nucleotides are generated more probably than reads with one nucleotide in the
misalignment, and design Pmis(r

k
i) as:

Pmis(r
k
i) =

{
1/Nmis |rki | = 1

pmis/Nmis otherwise
, pmis ≥ 1,

where Nmis is the normalization factor given by
∑

A∈Ak
1I(|A|=1)p

I(|A|	=1)
mis . Here,

Ak is a set of possible alleles at position k and is given by {‘A’, ‘T’, ‘G’, ‘C’} and

110 K. Kojima et al.

null string, which is for deletion. In addition, if there exist reads with nucleotides
more than one aligned at position k, the corresponding sequences are added Ak.
Here, we set pmis to 1.0, i.e., we assume that the read is generated from possible
alleles uniformly. P (bki |bqki) is factorized as

∏
l P (bki [l]|bqki [l]), and each term is

given by a binomial distribution with parameter 1− 10−bqki [l]/10:

P (bki [l]|bqki [l]) =
[
1− 10−bqki [l]/10

]I(bki [l]=1) [
10−bqki [l]/10

]I(bki [l]=0)

.

P (mk
i) is given by a binomial distribution with parameter pmk

i
. We also give a

Beta distribution with parameter αm(1−10−MAPQi/10) and αm10−MAPQi/10 as
a prior distribution of pmk

i
. Thus, pmk

i
is updated by considering both probability

for alignment reliability of read rki from the model and mapping quality score
MAPQi. We set prior strength αm to five.

Haplotype Selection Model. Given a genotype (A1
k, A

2
k) at position k, haplo-

type selection part selects an allele, from which each read is generated, by using
a binary variable hk

i in the following manner:∏
i∈Ik

P (rki |A1
k, bq

k
i)

I(hk
i =1)P (rki |A2

k, bq
k
i)

I(hk
i =2)P (hk

i),

where Ik is a set of indexes of reads that span position k. In position-independent
variant callers, equally probable condition for haplotype selection is considered,
i.e., P (hk

i = 1) and P (hk
i = 2) are 0.5. Here, instead of P (hi), we consider a

conditional probability P (hk
i |zk) given by:

P (hk
i |zk) =

⎧⎨
⎩

phi hk
i = 1 & zk = 1

1− phi h
k
i = 2 & zk = 1

0.5 zk = 0
, (1)

where phi is a rate for the assignment of read Ri to a haplotype and zk is a
binary variable that represents the zygosity at position k and takes value one for
heterozygote and zero for homozygote. For paired-end read data, phi is shared
by each read pair. To represent zygosity with zk, we introduce a conditional
probability P (zk|A1

k, A
2
k) that is given by:

P (zk|A1
k, A

2
k) =

⎧⎪⎪⎨
⎪⎪⎩

1.0
A1

k = A2
k & zk = 0
or

A1
k
= A2

k & zk = 1
0 otherwise

.

The role of zk is to filter out highly probably homozygous positions from data for
read assignment via Equation (1), and hence only highly probably heterozygous
positions are used for haplotyping. phi represents one of two chromosomes from
which read Ri comes. Since each read comes from one of two homologous chro-
mosomes equally probably in an ideal condition, we represent this property by

Statistically Unified Approach for Variant Calling and Haplotyping 111

setting P (
∑

i∈Ik
phi) to N (

∑
i∈Ik

phi ; |Ik|/2, L̄|Ik|/4), where N represents nor-

mal distribution and L̄ is the average read length.
∑

i∈Ik
phi is considered as the

number of reads from the same chromosome at position k. Since
∑

i∈Ik
phi is a

continuous value, normal approximation of a binomial distribution with param-
eter 0.5 is employed. Although the mean and variance of the normal distribution
approximating a binomial distribution with parameter 0.5 are respectively |Ik|/2
and |Ik|/4, we set the variance to L̄|Ik|/4 to normalize the effect with the average
read length.

Potential Functions between Positions. If two heterozygous positions are
spanned by several reads, their estimated alleles and haplotype should be concor-
dant with all the spanning reads. However, due to the errors on sequencing and
mapping, the contradiction on haplotyping sometimes occurs between spanning
reads, which causes the difficulty in estimating haplotypes. We consider that
pair of alleles in a haplotype supported by more spanning reads is more reliable
and introduce the following potential function between alleles in heterozygous
positions: ψk,k′ (Ak, Ak′) = nAk,Ak′ + αh, where nAk,Ak′ is the number of reads
that span k and k′ and contain alleles Ak and Ak′ at the corresponding positions.
αh is a hyperparamter and set to 1.5 in our study. Potential functions are con-
sidered only for pairs of positions that are heterozygous with high probability.
The criterion for adding potential functions is described in the next section.

2.2 Parameter Estimation

We use the EM algorithm for model parameters pmk
i
and phi . Since the pro-

posed model contains loop structures, it needs high time complexity to calculate
the exact marginal probabilities required in E-step of the EM algorithm. Thus,
we instead calculate approximated marginal probabilities with the loopy belief
propagation [13]. In M-step, parameters pmk

i
and phi are updated by using the

marginal probabilities calculated in E-step. Before starting the EM algorithm, we
calculate marginal probabilities of zk to select positions with P (zk = 1) > 0.98
as positions for adding potential functions. For each selected position, potential
functions are added with at most five other neighboring selected positions in
both upstream and downstream directions.

2.3 Variant Calling and Haplotype Inference

For genotype inference at position k, a configuration of latent variables A1
k and

A2
k that maximizes their marginal probability is searched. We use the loopy

belief propagation to calculate the approximated marginal probability of A1
k and

A2
k and then obtain the configuration maximizing the marginal probability. To

reduce false positive variants, we calculate a lod score given by the log ratio of the
marginal probability of estimated genotype and that of homozygous genotype
for reference allele, and filter out the variants with lod scores less than 10.

112 K. Kojima et al.

From variant calling results, we construct a graph structure comprised of se-
quence termed a sequence graph. In sequence graph, all the sequence reads are
represented as vertices, and if two sequence reads are spanning the same het-
erozygous variant position, they are connected with an edge. Each mate pair
is also connected with an edge. Connected components of the read connection
graph are detected with breadth-first search, and then heterozygous variants
spanned by reads in the same components are considered as the same phased
region. To save the memory space, we divide genome sequences into ranges with
predetermined length and call variants separately on each range although over-
lapping is considered for neighboring ranges. The range size and overlapping
region size are set to 2,500,000 bp and 1,000 bp, respectively. Since sequence
graphs from neighboring ranges can be connected by merging vertices for se-
quence reads spanning overlapping regions in the ranges, phased regions can
span several ranges.

3 Results

3.1 Simulation Analysis

We synthetically generated diploid genome sequences of chromosome 21 for a
CEU individual NA12286 according to the variant calling and phasing results
released in November 23, 2010 by the 1000 Genomes Project [14]. The number
of variants is 50,090. From the diploid genome sequences, we generated paired-
end sequence reads and put 0.1% base substitution errors. Base quality scores
for bases were set to Q30, which corresponds to 0.1% error. We generated three
types of data sets with the following conditions:

– Read length is 100 bp, and insert size is normally distributed with mean 500
bp and standard deviation 50 bp.

– Read length is 300 bp, and insert size is normally distributed with mean
1,500 bp and standard deviation 50 bp.

– Read length is 500 bp, and insert size is normally distributed with mean
2,500 bp and standard deviation 50 bp.

A BAM file for the dataset was obtained by mapping the sequence reads to
the reference genome (GRCh37) for chromosome 21 with BWA-MEM [8]. In or-
der to evaluate the performance of HapMonster with various read coverages, we
downsampled the BAM file to 5×, 10×, 20×, and 40× with Picard Downsam-
pleSam (http://picard.sourceforge.net/). Downsampled BAM files were re-
aligned with GATK Indel Realigner.

Performance on Variant Calling. For the comparison with existing methods,
we applied Unified Genotyper implemented in GATK, BCFtools with SAMtools
mpileup [10], and Linkage Method [12] to the datasets with their default options.
Like HapMonster, Linkage Method simultaneously estimates variants and hap-
lotype phasing. Table 1 summarizes the performance of genotype concordance

http://picard.sourceforge.net/

Statistically Unified Approach for Variant Calling and Haplotyping 113

on HapMonster and other three methods. Only if an estimated genotype and
true genotype at a position are the same and not homozygous for the reference
allele, the estimated genotype is counted as a true positive. In addition, only if
the estimated genotype is not homozygous for the reference allele and is different
from the true genotype, it is counted as a false positive. Recall and precision are

respectively given by TP
the number of trues

and TP
TP+FP, where TP is the num-

ber of true positives and FP is the number of false positives. F-score is given by

the harmonic mean of recall and precision as
2×recall×precision
recall+precision

, and provides

the overall performance of recall and precision by capturing a trade-off between
them. These are valued between zero and one, and the larger value is better.

In the all conditions, HapMonster gave the best results in the both recall and F-
score. For precision, HapMonster was better than other methods for datasets with
read coverage of 5× and 10×. BCFtools was the best in precision for the datasets
with read coverage of 20× and 40×, and HapMonster was the second best.

Table 1. Comparison on genotype concordance of HapMonster, Unified Genotyper
(UG), BCFtools, and Linkage Method (LM) for simulation datasets with read length
of 100 bp, 300 bp, and 500 bp. The best result in each condition is in bold.

Cov. Method
100 bp 300 bp 500 bp

Recall Precision F-score Recall Precision F-score Recall Precision F-score

5×
HapMonster 0.7469 0.9492 0.8360 0.7513 0.9496 0.8389 0.7523 0.9517 0.8403

UG 0.6403 0.9413 0.7622 0.6460 0.9422 0.7665 0.6434 0.9438 0.7652
BCFtools 0.7379 0.9249 0.8209 0.7491 0.9264 0.8284 0.7522 0.9276 0.8307

LM 0.6142 0.7034 0.6558 0.6329 0.7537 0.6881 0.5192 0.7556 0.6155

10×
HapMonster 0.9490 0.9912 0.9696 0.9540 0.9925 0.9729 0.9533 0.9918 0.9722

UG 0.9103 0.9911 0.9490 0.9141 0.9918 0.9514 0.9124 0.9908 0.9500
BCFtools 0.9347 0.9912 0.9621 0.9428 0.9924 0.9669 0.9427 0.9910 0.9662

LM 0.8528 0.9160 0.8833 0.8959 0.9416 0.9182 0.8975 0.9453 0.9208

20×
HapMonster 0.9911 0.9967 0.9939 0.9925 0.9974 0.9949 0.9921 0.9973 0.9947

UG 0.9905 0.9963 0.9934 0.9916 0.9964 0.9940 0.9914 0.9966 0.9940
BCFtools 0.9850 0.9987 0.9918 0.9867 0.9991 0.9929 0.9867 0.9992 0.9929

LM 0.9046 0.9473 0.9254 0.9816 0.9906 0.9861 0.9786 0.9896 0.9841

40×
HapMonster 0.9953 0.9963 0.9958 0.9958 0.9971 0.9965 0.9959 0.9971 0.9965

UG 0.9947 0.9963 0.9955 0.9958 0.9967 0.9963 0.9958 0.9967 0.9963
BCFtools 0.9892 0.9988 0.9940 0.9900 0.9993 0.9947 0.9900 0.9994 0.9947

LM 0.8729 0.9259 0.8986 0.9939 0.9960 0.9949 0.9939 0.9962 0.9951

Performance on Haplotype Phasing. We evaluate the performance on hap-
lotype phasing based on concordance between estimated haplotypes and haplo-
typing of true heterozygous variants. Let vi and si be the ith true heterozygous
variant and the position for vi, respectively. We denote an estimated genotype
at position si by gsi and also denote a genotype whose allele ordering is reversed
from gsi by ḡsi . Bi is the ID of the estimated phased region spanning position si,
and Di is a tertiary variable that takes 1 if gsi = vi holds, −1 if ḡsi = vi holds,
and 0 otherwise. Since genotyping results to be phased are different between
methods, we define the following switching cost by using the above notations:

|V|∑
i=1

[I(Di = 0) + I(Di
= 0)I(Bi
= Bpi) + 2I(Di
= 0)I(Di
= Dpi)I(Bi = Bpi)] ,

114 K. Kojima et al.

where V is a set of true heterozygous variants and pi is the index of previously
correctly estimated variant, e.g., if genotype of vi−3 is correctly estimated and
those of vi−2 and vi−1 are not, pi is i − 3. The interpretation of the switching
cost is as follows. If the estimated genotype is different from the true variant, the
cost is increased by one with the first term. If the estimated genotype is correct
but the estimated phased region is not spanned between positions si and spi ,
the cost is increased by one with the second term as si and spi are not phased.
Finally, if the estimated haplotype is not correct between si and spi , the cost
is increased by two with the third term. Since a strategy for extending phased
region even for uncertain case gets reward by chance for the penalty less than two
in the third term, the penalty for the third term is set to two. No penalization
is applied only if both the estimated genotype and estimated phase relationship
between positions si and spi are correct.

In addition to Linkage Method, we used Read Backed Phasing (RBP)
approach implemented in GATK and HapCompass [1] as existing haplotype
phasing methods based on phase-informative reads. Variant calls from Unified
Genotyper were used as input variant data of RBP and HapCompass. Switching
costs of HapMonster and other methods are summarized in Fig. 1. The hap-
lotyping results of HapMonster are smaller switching costs than those of other
methods for all the conditions. In the results of all the methods, switching costs
are smaller for the results from the dataset of the higher read coverage and longer
read length data.

3.2 Real Data Analysis

For real human sequencing data, we used 100 bp paired-end sequencing data of
NA12878, one of samples analyzed in the 1000 Genomes Project. The data was
sequenced on Illumina HiSeq 2000 with read coverage of 45× and average insert
size of 300 bp. Sequence reads were mapped to the reference genome (GRCh37)
with BWA [9], and the mapped dataset was downsampled to 5×, 10×, 20×, and
40× with Picard DownsampleSam. These downsampled datasets were realigned
with GATK Indel Realigner, and their base quality scores were recalibrated with
GATK Base Quality Score Recalibration.

Performance on Variant Calling. We evaluate the performance by assessing
the concordance of estimated variants from these variant callers for datasets
with various read coverages with SNP array genotyping results from Illumina
OMNI 2.5 BeadChip. The number of SNP sites designed in the array for chr21
is 32,076, and 10,579 variants are contained in the sites. We also assessed the
concordance with the variant calling result in the 1000 Genomes Project, which
contain 52,454 genotyping results including 39,691 variants.

Statistically Unified Approach for Variant Calling and Haplotyping 115

40
x

20
x

10
x

5x LM
RBP
HapCompass
HapMonster

Switching cost

10
0

bp

0 10000 20000 30000 36000

40
x

20
x

10
x

5x

Switching cost

30
0

bp

0 10000 20000 30000 36000

40
x

20
x

10
x

5x

Switching cost

50
0

bp

0 10000 20000 30000 36000

Fig. 1. Switching costs of HapMonster, HapCompass, Read Backed Phasing (RBP),
and Linkage Method (LM) for simulation datasets with read length of 100 bp, 300 bp,
and 500 bp. The smaller switching cost is better.

Table 2 summarizes the performance of genotype concordance on HapMon-
ster and three existing methods for NA12878 from the real datasets with read

coverages of 5×, 10×, 20×, and 40×. Accuracy is given by TP+TN
TP+FP+TN+FN,

where TN is the number of true negatives and FN is the number of false nega-
tives. HapMonster showed the best results in recall, F-score, and accuracy for all
the read coverages. In precision, HapMonster provided the best results for the
datasets with 5× on the agreement with the SNP array genotyping results and
for the datasets with 5× and 10× on the agreement with the genotyping results
in the 1000 Genomes Project. For other cases, the results of BCFtools were the
best, and those of HapMonster were the second best.

Performance on Haplotype Phasing. We prepared phased variant calling re-
sults as follows: i) Heterozygous sites for NA12878 were phased with SHAPEIT2
using the phased haplotypes for the Phase1 integrated variant calls released in
September, 17, 2013 as the reference panel. ii) Heterozygous sites not in the ref-
erence panel were phased by using variant calls of NA12878’s parents, NA12891
and NA12892. Switching costs of HapMonster, HapCompass, Read Backed Phas-
ing (RBP), and Linkage Method (LM) are summarized in Fig. 2. Variant calls

116 K. Kojima et al.

Table 2. Genotype concordance of HapMonster, Unified Genotyper (UG), BCFtools,
and Linkage Method (LM) with OMNI2.5 genotyping results (OMNI2.5) and variant
calls in the 1000 Genomes Project (1KGP). The best result in each condition is in bold.

Cov. Method
OMNI2.5 1KGP

Recall Precision F-score Accuracy Recall Precision F-score Accuracy

5×
HapMonster 0.7028 0.9492 0.8076 0.9013 0.7337 0.9550 0.8298 0.7984

UG 0.6773 0.9444 0.7889 0.8930 0.7102 0.9500 0.8128 0.7806
BCFtools 0.6717 0.9439 0.7849 0.8914 0.6960 0.9471 0.8023 0.7699

LM 0.5636 0.7446 0.6416 0.8535 0.6014 0.7690 0.6750 0.6981

10×
HapMonster 0.9112 0.9891 0.9486 0.9698 0.9412 0.9928 0.9663 0.9554

UG 0.8854 0.9875 0.9337 0.9612 0.9184 0.9922 0.9539 0.9381
BCFtools 0.8754 0.9900 0.9292 0.9583 0.8972 0.9924 0.9424 0.9222

LM 0.7944 0.8964 0.8423 0.9285 0.8229 0.9078 0.8633 0.8658

20×
HapMonster 0.9618 0.9942 0.9778 0.9864 0.9902 0.9978 0.9940 0.9925

UG 0.9579 0.9917 0.9745 0.9846 0.9885 0.9977 0.9931 0.9912
BCFtools 0.9466 0.9963 0.9708 0.9818 0.9692 0.9981 0.9834 0.9767

LM 0.8810 0.9391 0.9091 0.9560 0.8978 0.9480 0.9222 0.9225

40×
HapMonster 0.9663 0.9956 0.9808 0.9880 0.9951 0.9981 0.9966 0.9961

UG 0.9644 0.9904 0.9772 0.9859 0.9948 0.9981 0.9964 0.9959
BCFtools 0.9569 0.9971 0.9766 0.9852 0.9796 0.9987 0.9891 0.9846

LM 0.8553 0.9199 0.8864 0.9461 0.8764 0.9373 0.9058 0.9062

40
x

20
x

10
x

5x LM
RBP
HapCompass
HapMonster

Switching cost

0 10000 20000 27500

Fig. 2. Switching costs of HapMonster, HapCompass, Read Backed Phasing (RBP),
and Linkage Method (LM) for real sequencing datasets. The smaller switching cost is
better.

from Unified Genotyper were used for input variant data of HapCompass and
RBP. For all the dataset, switching costs of HapMonster are smaller than those
of other methods. In the results of all the methods, switching costs are smaller
for the results from the dataset of the higher read coverage.

3.3 Required Computational Resource

The computational time and memory usage of HapMonster, Unified Genotyper
(UG), BCFtools, Read Backed Phasing (RBP), HapCompass, and Linkage
Method (LM) for the simulation datasets with read length of 500 bp and real
datasets are summarized in Table 3. HapMonster is implemented in Java. All the
computation was performed on Intel Xeon CPU E5-2670 processors with a single
thread. The computational time of HapMonster is similar to that of BCFtools,
and slightly more than that of Unified Genotyper. Although Read Backed Phas-
ing and HapCompass are very fast on the simulation datasets, they are slower
than HapMonster on the real datasets. HapMonster requires more memory space

Statistically Unified Approach for Variant Calling and Haplotyping 117

Table 3. Running time and memory usage for HapMonster, Unified Genotyper (UG),
BCFtools, Read Backed Phasing (RBP), HapCompass, and Linkage Method (LM) for
(a) simulation datasets with read length of 500 bp and (b) real sequencing datasets.

(a) Simulation datasets (b) Real datasets

Cov. Method
Running Memory
Time Usage

5×

HapMonster 2.6 [min] 2.1 [GB]
UG 4.0 [min] 0.9 [GB]

BCFtools 3.5 [min] 0.1 [GB]
RBP 0.5 [min] 1.0 [GB]

HapCompass 0.1 [min] 1.4 [GB]
LM 29.8 [min] 1.6 [GB]

10×

HapMonster 3.1 [min] 2.3 [GB]
UG 5.0 [min] 0.9 [GB]

BCFtools 5.9 [min] 0.1 [GB]
RBP 1.0 [min] 1.0 [GB]

HapCompass 0.3 [min] 1.7 [GB]
LM 56.8 [min] 5.6 [GB]

20×

HapMonster 4.8 [min] 2.8 [GB]
UG 6.8 [min] 0.9 [GB]

BCFtools 10.8 [min] 0.1 [GB]
RBP 2.3 [min] 1.0 [GB]

HapCompass 0.6 [min] 1.8 [GB]
LM 129.7 [min] 9.6 [GB]

40×

HapMonster 13.2 [min] 4.5 [GB]
UG 10.0 [min] 0.9 [GB]

BCFtools 20.5 [min] 0.1 [GB]
RBP 3.9 [min] 1.0 [GB]

HapCompass 1.0 [min] 2.0 [GB]
LM 396.6 [min] 27.9 [GB]

Cov. Method
Running Memory
Time Usage

5×

HapMonster 5.6 [min] 1.5 [GB]
UG 4.6 [min] 0.9 [GB]

BCFtools 4.0 [min] 0.1 [GB]
RBP 18.7 [min] 1.0 [GB]

HapCompass 27.9 [min] 1.8 [GB]
LM 21.6 [min] 5.6 [GB]

10×

HapMonster 8.4 [min] 2.1 [GB]
UG 5.9 [min] 0.9 [GB]

BCFtools 7.4 [min] 0.1 [GB]
RBP 40.7 [min] 1.0 [GB]

HapCompass 281.3 [min] 1.8 [GB]
LM 108.3 [min] 6.2 [GB]

20×

HapMonster 13.2 [min] 4.0 [GB]
UG 8.1 [min] 0.9 [GB]

BCFtools 14.4 [min] 0.1 [GB]
RBP 72.4 [min] 1.0 [GB]

HapCompass 419.5 [min] 2.6 [GB]
LM 154.9 [min] 20.8 [GB]

40×

HapMonster 26.0 [min] 5.8 [GB]
UG 12.8 [min] 0.9 [GB]

BCFtools 30.4 [min] 0.1 [GB]
RBP 130.4 [min] 1.0 [GB]

HapCompass 529.1 [min] 3.1 [GB]
LM 633.6 [min] 85.5 [GB]

than other methods other than Linkage Method. However, the required memory
space is less than 6GB, and hence it can work currently available laptop PCs.

4 Conclusions

HapMonster is a statistically unified model for variant calling and haplotyping
by using phase-informative reads. By considering variant calling and haplotyp-
ing simultaneously, phased information improved the accuracy of variant calling,
and the accurately estimated variants support the reliable haplotyping synergis-
tically. The model structure of HapMonster is similar to that of our previous
work, a variant caller considering pedigree information and phase-informative
reads [6]. However, due to the consideration of potential functions between het-
erozygous positions, the performance of HapMonster on haplotype phasing be-
comes much higher than that of the previous work.

By using the simulation sequencing datasets with various read length and
real human NGS datasets, we confirmed the effectiveness of our method from
the comparison with Unified Genotyper, BCFtools, and Linkage Method for vari-
ant calling and with Linkage Method, Read Backed Phasing, and HapCompass
for haplotype phasing. We also showed that HapMonster was more effective for
datasets with longer reads, especially in haplotype phasing. Although HapMon-
ster considers only phase-informative reads for haplotype phasing, use of linkage

118 K. Kojima et al.

disequilibrium is a promising way for the further improvement on accurate hap-
lotype phasing. We would like to consider such an extension in future work.

Acknowledgements. This work was supported (in part) by MEXT Tohoku
Medical Megabank Project. All computational resources were provided by the
ToMMo phase0 cluster computer.

References

1. Aguiar, D., Istrail, S.: Haplotype assembly in polyploid genomes and identical by
descent shared tracts. Bioinformatics 29(13), i352–i360 (2013)

2. Bansal, V., Libiger, O., Torkamani, A., Schork, N.J.: Statistical analysis strate-
gies for association studies involving rare variants. Nature Reviews Genetics 11,
773–785 (2010)

3. Browning, R., Browning, B.L.: Rapid and accurate haplotype phasing and miss-
ing data inference for whole genome association studies using localized haplotype
clustering. Ametican Journal of Human Genetics 81, 1084–1097 (2007)

4. Delaneau, O., Marchini, J., Zagury, J.F.: A linear complexity phasing method for
thousands of genomes. Nature Methods 9(2), 179–181 (2011)

5. DePristo, M.A., et al.: A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nature Genetics 43, 491–498 (2011)

6. Kojima, K., Nariai, N., Mimori, T., Takahashi, M., Yamaguchi-Kabata, Y., Sato,
Y., Nagasaki, M.: A statistical variant calling approach from pedigree informa-
tion and local haplotyping with phase informative reads. Bioinformatics 29(22),
2835–2843 (2013)

7. Kuhner, M.K.: Coalescent genealogy samplers: Windows into population history.
Trends in Ecology and Evolution 24(2), 86–93 (2009)

8. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arXiv:1303.3997 (2013)

9. Li, H., Durbin, R.: Fast and accurate short-read alignment with Burrows-Wheeler
Transform. Bioinformatics 25(14), 1754–1760 (2009)

10. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Research 18(11), 1851–1858 (2008)

11. Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R.: MaCH: Using sequence
and genotype data to estimate haplotypes and unobserved genotypes. Genetic Epi-
demiology 34(8), 816–834 (2010)

12. Sasaki, E., Sugino, R.P., Innan, H.: The linkage method: a novel approach for SNP
detection and haplotype reconstruction from a single diploid individual using next
generation sequence data. Molecular Biology and Evolution (9), 2187–2196 (2013)

13. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information
Theory 51(7), 2282–2312 (2005)

14. 1000 Genomes Project Consortium, Abecasis, G.R., Altshuler, D., Auton, A.,
Brooks, L.D., Durbin, R.M., Gibbs, R.A., Hurles, M.E., McVean, G.A.: A map
of human genome variation from population-scale sequencing. Nature, 467(7319),
1061–1073 (2010)

Mapping-Free and Assembly-Free Discovery

of Inversion Breakpoints from Raw NGS Reads

Claire Lemaitre1, Liviu Ciortuz1,2, and Pierre Peterlongo1

1 INRIA/IRISA/GenScale, Campus de Beaulieu, 35042 Rennes cedex, France
{claire.lemaitre,pierre.peterlongo}@inria.fr

2 Faculty of Computer Science Iasi, Romania
ciortuz@info.uaic.ro

Abstract. We propose a formal model and an algorithm for detecting
inversion breakpoints without a reference genome, directly from raw NGS
data. This model is characterized by a fixed size topological pattern in the
de Bruijn Graph. We describe precisely the possible sources of false pos-
itives and false negatives and we additionally propose a sequence-based
filter giving a good trade-off between precision and recall of the method.
We implemented these ideas in a prototype called TakeABreak. Ap-
plied on simulated inversions in genomes of various complexity (from E.
coli to a human chromosome dataset), TakeABreak provided promising
results with a low memory footprint and a small computational time.

Keywords: structural variant, NGS, reference-free, de Bruijn graph.

1 Introduction

Structural variation is an important source of variations in genomes, that can
be involved in phenotypic variations, inherited diseases, evolution and specia-
tion. The extent of structural variations in populations has been only recently
acknowledged, thanks mainly to next generation sequencing (NGS). In fact, by
sequencing the genomes of several human individuals, one can find more DNA in-
volved in structural variations than in single nucleotide polymorphism (SNP) [8].
However, due to the small size of the reads these variants are much more difficult
to identify than SNPs. Most methods proposed so far rely on mapping the reads
on a reference genome. The main approach calls structural variant breakpoints
when mapped read pairs show discordant mappings with respect to expected
insert-size and orientation of the reads [7]. Due mainly to repetitions in com-
plex genomes and mapping errors, these methods suffer from high false positive
rates and a small overlap between predictions obtained by different methods [1].
Noteworthy, copy number variations seem to have focussed most attention and
efforts, whereas balanced structural variants such as inversions have been less
investigated [8], suggesting that the latter are even more difficult to detect in
short read data.

All these approaches rely on a reference genome and on a first mapping step.
This is a strong limitation when dealing with organisms with no available refer-
ence genome or one of poor quality or too distantly related. On the other hand,

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 119–130, 2014.
c© Springer International Publishing Switzerland 2014

120 C. Lemaitre, L. Ciortuz, and P. Peterlongo

one can also perform full de novo assembly of re-sequenced genomes and com-
pare the resulting assemblies [6], however de novo assembly remains a difficult
and resource intensive task and this could be reduced by targeting directly in-
version variants. The problem we address is therefore: can we identify inversion
signatures directly in raw NGS reads without the need of any reference genome
nor full assembly of the reads? Several methods have been developed recently for
calling biological events of interest directly from raw unassembled reads, by tar-
geting specific patterns in assembly graphs. Some of them are dedicated to detect
SNPs or small indels [10,9,13] or alternative slicing events in RNA-seq data [11].
Cortex var [4] claims to detect any variant generating a bubble pattern, but does
not target specifically inversions or other balanced structural variants.

Themain contribution of this paper is an analysis and a formalmodeling of topo-
logical patterns generated by inversions in the de Bruijn Graph. Additionally, we
propose an algorithm detecting such inversion patterns. This algorithmwas imple-
mented in a tool calledTakeABreak that was used as a proof of concept and that
can be downloaded from http://colibread.inria.fr/TakeABreak/. Applying
this tool on simulateddatasets showed that i) thedescribedmodel detectswithhigh
recall and precision inversion breakpoints ii) approximate repeats present in com-
plex genomes only slightly decrease performances iii) time and memory are very
limited.

2 Inversion Pattern in the de Bruijn Graph

2.1 Preliminaries

Given a sequence s on the DNA alphabet Σ = {A,C,G, T }, we use the concept of
k-mers that are words of length k in s. We denote by←−s the reverse-complement
of sequence s, for instance with s = TTGC, ←−s = GCAA.

de Bruijn Graph. The approach we propose is based on the use of a de Bruijn
Graph. Given a set of sequences such as reads in the assembly framework, a de
Bruijn Graph is a directed graph where the set of vertices corresponds to the
k-mers from the sequences, and a directed edge connects a source k-mer a to a
target k-mer b if the k−1 suffix of a is equal to the k−1 prefix of b. Usually, in the
genome assembly framework [14], a de Bruijn Graph node stores explicitly a k-
mer and implicitly its reverse complement. Thus there are two ways of traversing
a node: either reading the explicit k-mer or reading the implicit one; we denote
this notion by the state of the node: explicit or implicit. In this context, each
edge is labeled by the states of its source and target nodes. In the following n→

ω

denotes the node storing explicitly or implicitly ω, in the state such that reading
n→
ω provides the k-mer ω. Respectively, n←

ω denotes the same node in the state
such that reading n←

ω provides the k-mer ←−ω .
Given two nodes n→

start and n→
stop, we say that a path of length l exists from

node n→
start to node n→

stop, iif node n→
stop can be reached using l nodes from node

n→
start and for any traversed node, it should be entered and left in the same state

(i.e. explicit or implicit). Let k-path denote a path of length k.

http://colibread.inria.fr/TakeABreak/

Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 121

Fig. 1. Sequences aIb and a
←−
I b, showing the four particular k-mers a, u, v and b at

the breakpoints

Inversion. Given a fixed k value and a set of input sequences, we define an

inversion as a sequence I of length larger or equal to k such that aIb and a
←−
I b

occur both at least once, each in any of the input sequences, with a and b being
two k-mers. We call u (resp. v) the prefix (resp. suffix) of length k of I. Our

inversion model imposes a
=←−b and u
=←−v . Figure 1 proposes a graphical repre-
sentation of an inversion. We call the breakpoints of the inversion, the junctions
between the inverted segment and the non-inverted parts. Such a rearrangement
generates therefore two breakpoints in each sequence.

2.2 Inversion Pattern

An inversion, such as shown in Figure 1, generates a particular motif in the de
Bruijn Graph. The only differences in terms of k-mers between both sequences,
with and without the inversion, involve the breakpoints of the inversion: only
the k− 1 k-mers spanning each breakpoints differentiate the two sequences. The
breakpoints at the left of the inverted segments are then characterized by a
fork in the de Bruijn Graph, which is defined by a common node n→

a that
branches to two distinct k-paths that end respectively in n→

u and n←
v . Similarly,

the other two breakpoints (at the right) are characterized by two k-paths starting
from n←

u and n→
v that join in n→

b . These two forks, being connected by two
common nodes (corresponding to the k-mers u and v respectively, and their
reverse complements), lead to a particular motif in the de Bruijn Graph, that
we call the inversion pattern, as exemplified in Figure 2.

It is important to note that the definition of the inversion pattern imposes

conditions on the four k-mers a, u, v, b. First, a
= ←−
b and u
= ←−v for the two

distinct forks to exist. Second the node n→
a must be branching, that is the first

nucleotide of u must be different from the first nucleotide of ←−v .
One major advantage of this motif is that it can be traversed by 4 k-paths in

the de Bruijn Graph: one from n→
a to n→

u ; one from n←
u to n→

b , one from n←
b to

n←
v ; one from n→

v to n←
a . Being composed of only fixed length paths, finding the

presence of such motif in a de Bruijn Graph is rapid and rather simple.
Notice that this motif presents some drawbacks. First, it detects the presence

of inversion breakpoints but it does not provide the inversion itself. As second
drawback, the motif is perfectly symmetrical: starting from node n←

b , or n←
u or

n→
v leads to the discovery of the same inversion. As presented Section 3.2, we

propose a way to output only once each inversion breakpoints. Finally, such a
motif may witness approximate repeats instead of inversions (see Section 3.4).

122 C. Lemaitre, L. Ciortuz, and P. Peterlongo

Fig. 2. Schematic example of the inversion pattern generated by sequences aIb (the

blue path) and a
←−
I b (the red path) in a de Bruijn Graph with k = 4. Nodes are

represented as two-stage boxes, with the upper part in black showing the explicit k-
mer and the lower part, in grey, the implicit one. DNA k-mers are not represented,
instead the node content shows proportion of full or junction of the four main k-mers
a, u, v, b and their reverse complements. For sake of simplicity and without loss of
generality, we consider that all k-mers of au, vb, a←−v and ←−u b are explicitly stored.
The state of a node traversed by edges entering and leaving its upper (resp. lower)
part is explicit (resp. implicit). The green paths represent the paths enumerated by
TakeABreak algorithm. The dashed green path is only checked, once the nodes nv

and nb are found.

3 Algorithm for Inversion Pattern Detection

3.1 Main Algorithm

This section describes an algorithm for efficient detection of the inversion pattern
from an already constructed de Bruijn Graph.

A “naive” algorithm for detecting the inversion pattern would be to check for
each possible starting k-mer a a k-path from n→

a to n→
u , then from n←

u to n→
b ,

then from n←
b to n←

v and then from n→
v to n←

α and finally checking that a = α.
This approach would lead to the construction of 4k-paths from n→

a leading to a
combinatorial explosion in complex genomes.

We propose an algorithm whose longest walked paths are of length 2k, then
strongly limiting the search space. The main idea is to start from any branching
node (a node having more than one outgoing edge) n→

a , to detect all nodes
reachable by a k-path, storing them in several sets Nα depending on the first
letter α of these nodes. The second main step is then to detect any node n→

b

(
←−
b
= a) such that there exist a k-path from n←

u to n→
b and a k-path from

n←
b to n←

v , with n←
u ∈ Nα and n←

v ∈ Nβ and α
= β. In such case the pair of
sequences au and vb is output. Algorithm 1 proposes a high level presentation
of our algorithm.

3.2 Canonical Representation of Occurrences

The inversion pattern presents some symmetries. In most cases (see Section 3.3),
the inversion pattern generated by an inversion will be detected by our algorithm
as four distinct occurrences each starting from one of the four main nodes: n→

a ,
n←
u , n←

b and n→
v . The output of the algorithm 1 is a pair of words au and vb

Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 123

1. Input: A list of branching nodes and a de Bruijn Graph of all input reads.
2. Provides: A set of pairs of inversion breakpoint sequences
3. for each branching node n→

a do
4. Compute all paths of length k starting from n→

a

5. Store all reached nodes starting with letter α in Nα (α ∈ {A,C,G, T})
6. for each α ∈ {A,C,G} do
7. for each n→

u ∈ Nα do
8. Compute all paths of length k from n←

u

9. Store all reached nodes in B
10. for each n→

b ∈ B do
11. for each n←

v ∈ ∪Nβ>α do
12. if a path of length k exists from n←

b to node n←
v then

13. Output (au, vb)

Algorithm 1. Main algorithm to detect the inversion pattern

depending both on the starting node n→
a and the order of detection between

n→
u and n←

v . To avoid outputting several times the same inversion, we define
its canonical representation as the smallest 2-words output in lexicographical

order among the eight possible rearrangements: (au, vb), (a←−v ,←−u b), (←−u←−a ,
←−
b←−v),

(←−u b, a←−v), (vb, au), (v←−a ,
←−
b u), (

←−
b←−v ,←−u←−a), (

←−
b u, v←−a). Only the canonical rep-

resentation is reported and only once.

3.3 Presence of Small Inverted Repeats at the Breakpoints

If an inversion contains an inverted repeat of size larger or equal to k − 1 at its
breakpoints, this inversion will not generate the inversion pattern since it does
not generate new k-mers nor new paths in the de Bruijn Graph with respect to

the non inverted sequence. This is the case for instance if a =
←−
b or u =←−v .

In the case of an inverted repeat whose length is smaller than k − 1, such
inversion still generates the inversion pattern, however the latter is not be fully
symmetrical. Suppose there is an inverted repeat of size x < k − 1 at the break-
points or overlapping the breakpoints. As the first node n→

a must be branching,
it imposes that the repeated sequence is included in k-mer a and considered out-
side the inverted segment (note that even with the full sequences at hand, we can
not decide if the inversion includes the repetition entirely, partially or not at all).

The suffix of size x of a is then equal to the prefix of size x of
←−
b . It implies also

that there are no more k−1 distinct k-mers at each breakpoint that differentiate
the two sequences, but k−1−x k-mers. Therefore the two forks of the inversion
pattern, represented in Figure 2, are shortened. In this case, the nodes n←

u and
n→
v reached after k-paths are not necessarily branching and can not constitute

starting k-mers in other occurrences of the inversion pattern. Instead k-mers at
the end of (k − x)-paths in the fork constitute the other starting k-mers.

In fact, such an inversion will still be detected as 4 occurrences but the sets of
k-mers a, u, v and b will be different depending on the starting k-mer. Starting
from inside (n←

u or n→
v) or outside (n→

a or n←
b) the inverted segment I will

124 C. Lemaitre, L. Ciortuz, and P. Peterlongo

Fig. 3. Example of an inversion with small inverted repeats (red arrows) at the break-
points. Breakpoint sequences au, vb (resp. a′u′, v′b′) are obtained starting from nodes
n→
a or n←

b (resp. n←
u′ or n→

v). The unique canonical representative is represented by the
two grey bottom lines.

generate two distinct sets of 2k words overlapping on 2k − x characters. To
avoid duplicating once again artificially the number of occurrences, the output
of the algorithm truncates the k-mers u and←−v such that all starting k-mers give
the same sets of words (here of size 2k−x) and a unique canonical representative
can be computed for each of the four occurrences (Figure 3).

3.4 Distinguishing Inversions from Approximate Repeats

Some approximate repeats may generate the inversion pattern in the de Bruijn
Graph and are thus a source of false positives. Consider for instance that a given
sequence au has at least four approximate copies in the sequence, such that au,
au′, a′u and a′u′ with u′ � u (at least the first letter is different) and a′ � a
(at least one substitution or indel anywhere in a). In this situation, without loss

of generality, calling
←−
b = a′ and ←−v = u′, the four paths au, vb(=

←−−
a′u′), a←−v (=

au′), and ←−u b(=
←−
a′u) exist and mimics the inversion pattern. More generally,

high similarity between a and
←−
b and between u and ←−v is characteristic of an

approximate repeat.
In order to distinguish inversions from false positives due to approximate

repeats, we filter out occurrences of the inversion model where a and
←−
b and

where u and ←−v have a Longest Common Subsequence (LCS) size higher than a
given threshold. As an optimization, we try to detect earlier cases where a and←−
b are too similar during the k-path search from n←

u to n→
b . During this step,

we forbid paths that go back on the previous path towards first node n→
a , since

the longer we take the former path, the more similar will be k-mers a and
←−
b .

However, to permit the detection of inversions with small inverted repeats at the
breakpoints, we tolerate to go back on the former path for a given maximum
number of nodes (this parameter is usually fixed to 8).

Additionally, it is well known that high copy number repeats with approximate
copies are an important source of complexity generating highly branching sub-
parts in the de Bruijn Graph. Searching for inversions in such complex part of
the graph presents two main drawbacks. First, as previously mentioned, it is a
source of false positives, and second, it generates a possible huge number of k-
paths whose enumeration can be highly time consuming. To overcome these two
drawbacks we stop the inversion pattern detection from a node na as soon as the
product of the cardinality of the two largest sets Nα is bigger than a limit (called

Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 125

LCT for Local Complexity Threshold). This product is a lower approximation of
the minimal number of couples of k-paths that are to be enumerated from the
starting na. Similarly, we apply the same strategy once a set of nodes B (see
Algorithm 1 line 9) is detected from a node n→

u : if the cardinality of B times the
cardinality of the largest set Nα is larger than LCT , then the exploration from
node n→

u stops. This last product reflects another lower bound of the number of
paths to be checked. Note that this approach highly limits both false positives
and computational time, while having a limited impact on recall, as shown in
results Section 4.2.

3.5 TakeABreak Implementation

We implemented the proposed algorithm in a prototype called TakeABreak.
It takes as input one or several sets of sequences in fasta or fastq format. Its
main parameters are the k-mer size k; max sim ∈ [0, 100] the maximal similarity

authorized between a and
←−
b and between u and←−v , expressed as a percentage of

k-mer size; and LCT : the Local Complexity Threshold (see Section 3.4). Prior to
the inversion pattern detection phase, the de Bruijn Graph is constructed using
the Minia data structure [2,12]. This graph is constructed using only k-mers
having at least 3 occurrences in order to discard sequencing errors. This is a
very common parameter used for de Bruijn Graph-based assembly. The second
phase implements algorithm 1. The output is a fasta file containing, for each
detected inversion, its breakpoint sequences. These are the 2k− 2 (or 2k− x− 2
in the case of an inverted repetition of size x) words centered on the canonical
representation (au, vb). By removing the two extreme nucleotides, it ensures that
the output paths are made of the k-mers that overlap the breakpoints and that
must be specific to each sequence.

TakeABreak was implemented in C++ with the GATB library [3], provid-
ing notably the Minia data structure, and it can be downloaded from
http://colibread.inria.fr/TakeABreak/.

4 Results

To evaluate the ability of TakeABreak to detect inversions in reads, we gen-
erated artificial read datasets. First, non-overlapping inversions of varying sizes
were simulated in a copy of a real genome. Then we simulated the sequencing
processing on both genomes, the original one and the one with artificial inver-
sions. Finally both read sets were given as input to TakeABreak. To classify
the results of TakeABreak as true positive or false positive, we first generated
for each simulated inversion its canonical representation of breakpoints such as
described in sections 3.2 and 3.3 and then called a prediction of TakeABreak
as true positive if it is exactly present in this set of true breakpoints. Finally,
recall and precision were computed as follows: recall as the number of true pos-
itives over the number of simulated inversions, and precision as the number of
true positives over the number of predictions.

http://colibread.inria.fr/TakeABreak/

126 C. Lemaitre, L. Ciortuz, and P. Peterlongo

In more details, inversions were simulated as follows. Each inversion was put
sequentially. For each inversion, its first breakpoint is chosen uniformly along the
sequence, then its size is sampled uniformly in a given interval (here [k− 1000]),
finally if it does not overlap and is sufficiently far from a formerly placed inversion
(the min distance was fixed to k nucleotides) the inversion is kept and its sequence
is reversed-complemented. To simulate reads, 100 bp reads are sampled uniformly
along the genome, sequencing errors are put also uniformly with 1 % rate, the
depth of coverage was fixed to 40x for each genome.

4.1 Results on a Bacterial Genome

TakeABreak was first evaluated on a simple and small dataset based on the
bacterial E. coli K12 genome, in which 1000 random inversions were simulated.
TakeABreak was applied on this simulated dataset with default parameters
(k = 31, max sim = 80%, LCT = 100). On this simple dataset, TakeABreak
proved to be highly efficient to detect inversion breakpoints, since it predicted
the 1000 true positive inversions, leading to a 100% recall for 100% precision
(see Table 1). Cortex var bubble caller [4] was run on the same data and failed
to detect any of the simulated inversions.

Table 1. Precision and recall results for TakeABreak on simulated datasets. The first
part of the table presents results obtained with default parameters (k = 31, max sim =
80%, LCT = 100), the second part shows the decrease of precision when relaxing
filtering parameters (k = 31, max sim = 100, LCT = 10000). # FP indicates the
amounts of false positives.

Recall (%) Precision (%) # FP

E. coli genome - default parameters 100.00 100.00 0
C. elegans genome - default parameters 96.00 99.07 9
Human chromosome 22 - default parameters 87.60 92.50 71

C. elegans genome - relaxed parameters 99.60 0.37 271,374
Human chromosome 22 - relaxed parameters 93.50 0.06 1,442,760

4.2 Results on More Complex Genomes

Bacterial genomes are small and contain few repeats, leading to rather simple
de Bruijn Graph and few false positives of the inversion pattern. To evaluate
TakeABreak on more complex genomes, we simulated inversions in eukaryotic
genomes and chromosomes, first in the full C. elegans genome (∼ 100 Mbp) and
second in human chromosome 22 (∼ 35 Mbp without N bases). As expected (see
Section 3.4), precision and recall decrease when the repeat content of the genome
increases, as shown in Table 1. However, this effect is greatly limited by the use
of filtering parametersmax sim and LCT , since relaxing these parameters leads
to millions of false positives (see Table 1).

Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 127

Note that these parameters have to be fixed carefully as they can also affect
the recall, as shown in Figure 4 where precision and recall results are represented
for varying values of max sim and LCT . This figure shows that both parame-
ters are useful to decrease the false positive rate and that the proposed default
parameters offer a good trade-off between precision and recall.

Fig. 4. Effect of the filtering parameters, max sim (a) and LCT (b), on precision
and recall values for the C. elegans (open symbols) and human chromosome 22 (solid
symbols) datasets. Vertical dashed lines represent the default parameters.

4.3 Time and Memory Performances

These tests were performed with 2.3 GHz Intel Core i7 processors, with 8GB
RAM. Table 2 shows time and memory performances of the prototype TakeA-
Break for the different datasets. Time and memory increase with the complexity
of the datasets. Even if the human chromosome dataset is smaller than the C.
elegans one, the computational time is much larger for human. This shows that
the complexity of the graph is not solely linked to the size of the genome, but
also to its repeat content, with human chromosome 22 high copy number repeats
generating sub-parts of the graph with high density of branching nodes and
imbricated patterns of inversions.

Nevertheless, as presented Table 2, TakeABreak scales up to complex and
large datasets. The highest memory consumption is reached during the de Bruijn
Graph construction and is limited to 1GB, allowing TakeABreak to be exe-
cuted on a standard desktop (note that the full human genome would need 6GB
of memory [12]). The graph construction time is limited to at most 20 minutes
for the most complex dataset we used. The time needed for enumerating all
inversion patterns is sensitive to genome complexity (from 1 second for E. coli
to one hour and a half for human chromosome 22) and still remains acceptable.
Moreover, in addition to dramatically improving the precision (see Section 4.2),
we can notice that the default filters highly reduce the computational time (e.g.
from 7h40 without filters to 1h30 with filters on the human dataset).

128 C. Lemaitre, L. Ciortuz, and P. Peterlongo

Table 2. Time and memory performances of TakeABreak on simulated datasets with
default parameters. For each dataset we indicated the number of reads and the total
number of nucleotides it contains. Time values given in parenthesis are those obtained
while relaxing the filter parameters (bottom part of Table 1).

Time (s) Memory
Graph

construction
Inversion
detection

Graph
construction

Inversion
detection

E. coli genome
(3.7M reads 370 Mbp)

24 1 1GB 3MB

C. elegans genome
(80M reads, 8 Gbp)

78
935

(7408)
1GB 53MB

Human chromosome 22
(28M reads 2.8 Gbp)

1205
5412

(27554)
1GB 153MB

5 Discussion and Conclusion

In this work, we formalized for the first time the topological pattern generated
by the inversion of a DNA segment in the de Bruijn Graph representing both
sequences, with and without the inversion.

We also proposed a first analysis of what kind of variant or sequence feature
can or can not generate this pattern. The pattern involves only the 2k sequences
around the breakpoints of the inversion (k being the k-mer size of the de Bruijn
Graph). Therefore the size of the inversion does not limit the existence of the
pattern as long as it is greater than k. The pattern is based on four k-mers at
each side of the breakpoints that must be identical between both sequences with
and without the inversion. As a consequence, the breakpoint regions must not
contain any substitution or indel at distance less than k from both breakpoints,
that is as if the inversion was generated by perfect blunt-ended double strand
breaks. Finally, another feature that can prevent an inversion from generating
this pattern is the presence of an inverted repeat of size ≥ k − 1 at each break-
points since all breakpoint sequences will follow the same paths in the de Bruijn
Graph.

On the other hand, we showed that the pattern can be generated by other
sequence features than inversions. First, some approximate repeats with appro-
priate combinations of differences can easily generate this pattern, these are
considered as false positive or noise since they do not differentiate the compared
genomes. If in small bacterial genomes, this situation is quite rare, our tests
show that in more complex genomes this can dramatically increases the num-
ber of false positive calls, explaining why we added a sequence-based filter to
this topology-based pattern. Indeed, with high copy number repeats, such as
transposable elements in eukaryotic genomes, such combinations of at least two
differences in repeats of size 2k is very likely to happen. Another variant that
can generate the inversion pattern is the reciprocal translocation, since it has
also two breakpoints per sequence (with and without the translocation) with
the same combinations of four k-mers. We consider this as another advantage

Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 129

of this pattern, because, in this case, this is also a structural variant that can
differentiates genomes and has therefore a potential biological interest.

In this work, we also proposed and implemented an efficient algorithm to
enumerate all inversion patterns in a de Bruijn Graph, together with powerful
filtering strategies to avoid false positives due to approximate repeats. The tests
we performed on simulated data prove that this approach enables to recover al-
most all simulated inversions quite rapidly. The power of this pattern lies mainly
in its fixed size. Contrary to structural variants with only one breakpoint, such
as insertions and deletions, it is not necessary to traverse in the graph the full
inverted segment to detect the presence of the inversion. In fact, insertions and
deletions generate bubble patterns that can only be detected by traversing the
full inserted or deleted sequence [4,11], this strongly limits the size of detectable
events (at least in complex genomes) and increases the computational time. In-
versions too could be detected as bubbles but Cortex var did not detect them,
even the smallest ones, probably because it requires bubbles not to contain any
branching node while such nodes are inherent of inversion patterns, as shown in
this paper.

The tests and simulations we performed were meant to demonstrate the va-
lidity of our pattern and of our algorithm, we are aware that they can still be
improved to better fit actual genome re-sequencing data. Indeed, only inversions
were simulated without any other polymorphism that could impact the break-
points. Inversions were put following a uniform distribution, whereas rearrange-
ment distribution is likely not random and some rearrangements can be linked
for instance to repeated sequences. Finally, only perfect blunt-ended breakpoints
were simulated which may not reflect all molecular mechanisms of such events
(for instance, non-homologous end joining is known to generate small indels at
the very breakpoint). For all these reasons, recall values we obtained are likely
to be over-estimated with respect to real inversions. However, our promising re-
sults on such simulated inversions open the way to further improvements of the
model.

First, the model could largely be improved by additionally including SNP or
small indel detection models such as [13]. Thus both SNP and inversion detec-
tion would not suffer from each other. This would improve recall for events that
lie close to each other and could be used as preliminary step of the assembly
process. Second, the breakpoint detection algorithm could be coupled with a
third party local assembly or gap-filling tool, such as MindTheGap [5], to get
the sequence of the inverted segment and not only its breakpoints. Finally, other
biological variants can benefit from this approach. As already mentioned, recip-
rocal translocations can be detected by the proposed model as is. Additionally,
the model could be extended to the detection of other rearrangements that have
more than two breakpoints, such as transpositions that generate a three-fork
model, thus showing high similarity with the model proposed in this paper.

Acknowledgments. The authors warmly thank Erwan Drezen and Guillaume
Rizk for implementation support and Marie-France Sagot for interesting dis-
cussions. This work was supported by the Région Bretagne SAD-MIRAGE

130 C. Lemaitre, L. Ciortuz, and P. Peterlongo

project and by the ANR (French National Research Agency), ANR-12-BS02-
0008 Colib’read project and ANR-12-EMMA- 0019-01 GATB project.

References

1. Alkan, C., Coe, B.P., Eichler, E.E.: Genome structural variation discovery and
genotyping. Nat Rev. Genet. 12, 363–376 (2011)

2. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. Algorithms for Molecular Biology 8, 22 (2013)

3. Drezen, E., et al.: The Genome Assembly and Analysis Tool Box,
http://gatb.inria.fr/ (Manuscript in Prep. 2014)

4. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de bruijn graphs. Nature Genetics 44, 226–232
(2012)

5. Lemaitre, C., et al.: MindTheGap Software, http://mindthegap.genouest.org/
(Manuscript in Prep. 2014)

6. Li, Y., Zheng, H., Luo, R., Wu, H., Zhu, H., Li, R., et al.: Structural variation in
two human genomes mapped at single-nucleotide resolution by whole genome de
novo assembly. Nat. Biotechnol. 29, 723–730 (2011)

7. Medvedev, P., Stanciu, M., Brudno, M.: Computational methods for discovering
structural variation with next-generation sequencing. Nat Methods 6, S13–S20
(2009)

8. Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E.: 1000 Genomes Project: Map-
ping copy number variation by population-scale genome sequencing. Nature 470,
59–65 (2011)

9. Nordström, K.J.V., Albani, M.C., James, G.V., et al.: Mutation identification by
direct comparison of whole-genome sequencing data from mutant and wild-type
individuals using k-mers. Nature Biotechnology 31, 325–330 (2013)

10. Peterlongo, P., Schnel, N., Pisanti, N., Sagot, M.-F., Lacroix, V.: Identifying sNPs
without a reference genome by comparing raw reads. In: Chavez, E., Lonardi, S.
(eds.) SPIRE 2010. LNCS, vol. 6393, pp. 147–158. Springer, Heidelberg (2010)

11. Sacomoto, G.A., Kielbassa, J., Chikhi, R., Uricaru, R., et al.: Kissplice: de-novo
calling alternative splicing events from rna-seq data. BMC Bioinformatics 13, S5
(2012)

12. Salikhov, K., Sacomoto, G., Kucherov, G.: Using Cascading Bloom Filters to Im-
prove the Memory Usage for de Brujin Graphs. In: Darling, A., Stoye, J. (eds.)
WABI 2013. LNCS, vol. 8126, pp. 364–376. Springer, Heidelberg (2013)

13. Uricaru, R., et al.: discoSnp Software, http://colibread.inria.fr/discosnp/

(Manuscript in Prep. 2014)
14. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using

de bruijn graphs. Genome Research 18, 821–829 (2008)

http://gatb.inria.fr/
http://mindthegap.genouest.org/
http://colibread.inria.fr/discosnp/

Modeling the Geometry

of the Endoplasmic Reticulum Network

Laurent Lemarchand1, Reinhardt Euler1, Congping Lin2, and Imogen Sparkes3

1 Lab-STICC UMR 6285, UBO-Université Européenne de Bretagne, Brest, France
{Laurent.Lemarchand,Reinhardt.Euler}@univ-brest.fr

2 Mathematics, University of Exeter, UK
c.lin@exeter.ac.uk

3 Biosciences, University of Exeter, UK
I.Sparkes@exeter.ac.uk

Abstract. We have studied the network geometry of the endoplasmic
reticulum by means of graph theoretical and integer programming mod-
els. The purpose is to represent this structure as close as possible by
a class of finite, undirected and connected graphs the nodes of which
have to be either of degree three or at most of degree three. We deter-
mine plane graphs of minimal total edge length satisfying degree and
angle constraints, and we show that the optimal graphs are close to
the ER network geometry. Basically, two procedures are formulated to
solve the optimization problem: a binary linear program, that iteratively
constructs an optimal solution, and a linear program, that iteratively
exploits additional cutting planes from different families to accelerate
the solution process. All formulations have been implemented and tested
on a series of real-life and randomly generated cases. The cutting plane
approach turns out to be particularly efficient for the real-life testcases,
since it outperforms the pure integer programming approach by a factor
of at least 10.

Keywords: endoplasmic reticulum, plane graph, 0-1 programming, sep-
aration procedure.

1 Problem

The endoplasmic reticulum (ER) is a membrane-bound organelle that forms a
highly complicated interconnected network of tubules and flattened sacs (known
as cisternae) [10,6]. As the cortical ER in plant cells occupies a very thin, almost
two-dimensional, layer of cytoplasm beneath the plasma membrane, our study
of the ER network will be based on 2D approximations of the ER network in
Tobacco leaf epidermal cells. Figure 1 (a) shows an instance of live cell images
of an ER network [13]. Transition between tubules and cisternae can be highly
dynamic and tubules can also dynamically change their polygonal network [10].
The dynamic ER shape is suggested to be adaptable to the cells requirements
for ER function; for example, ER cisternae may be the preferred site of protein
translocation while tubules might be the preferred site for ER vesicle budding.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 131–145, 2014.
c© Springer International Publishing Switzerland 2014

132 L. Lemarchand et al.

As an expanding number of proteins have been identified that mediate the gen-
eration and shape of the ER network, the stage is now set for investigations into
the mechanisms regulating ER morphology within the cell. To be able to carry
out such investigations, better tools are required to quantify the morphology and
dynamic rearrangements that the ER undergoes. It is important to consider that
whilst the proteins and stresses on the system driving formation and changes in
the remodelling may differ between eukaryotic systems, the network geometry of
the ER appears to be fairly well conserved in terms of it consisting of a polygonal
network of interconnected tubules and cisternae. Therefore, the problem consid-
ered here has universal appeal towards understanding the constraints placed on
ER network formation in all systems.

(a) (b) (c)

Fig. 1. Illustration of the ER network and abstracted geometric graphs. (a) shows
a static ER network, where rectangle regions highlight a region with no ER cister-
nae. (b)-(c) show zoomed local networks in the rectangle region and corresponding
abstracted geometric graphs from two images. The abstracted graphs are obtained
using the image processing method introduced in [11], where markers ’+’ and ’o’ repre-
sent persistent and non-persistent nodes, respectively, and lines represent edges (only
the largest connected components in the chosen rectangle regions are considered, and
tubules extending outside the chosen region are not included in the abstracted graphs).
The experimental ER images are taken from [13] (www.plantcell.org, Copyright Amer-
ican Society of Plant Biologists).

A quantitative analysis [11] of the ER network in tobacco leaf epidermal cells
suggests that it is a perturbed Euclidean Steiner network between terminals,
where terminals are persistent nodes (static elements of tubules) and degree-1
nodes. A Euclidean Steiner network is a locally minimal network, i.e., a network
in which any local perturbation of non-terminal nodes would increase the total
length of the network [11]. This is analogous to Steiner trees in Euclidean space
[8] in which the non-terminals (called Steiner points) have degree 3. Note that
local optima such as Euclidean Steiner networks might not give a unique net-
work topology, which is essential for modelling its dynamics. In this paper, we
reanalyze live cell confocal microscopy data of native ER networks from [13] in
an attempt to understand whether there is an optimization principle governing
the network shape beyond local minimization. For quantitative analysis, we ab-
stract ER networks into geometric graphs using the image processing method
from [11]; examples of abstracted graphs are shown in Figure 1 (b,c).

Modeling the Geometry of the Endoplasmic Reticulum Network 133

The ER membrane surface, serving as a transport network, is intuitively sus-
pected to be a minimal film [12]. Due to the existence of cycles commonly ob-
served in networks, minimal spanning trees do not sufficiently explain the shape
of the ER network. Also, ER tubules generate 3-way junctions when branch-
ing and angles at these degree-3 nodes follow a normal distribution with mean
around 120o [11]. Here, we include a degree constraint and an angle constraint
for the nodes while minimizing total edge-length, and we test whether the op-
timal graph under these constraints could mimic the ER network geometry. To
test the optimal solutions from our model, we quantitatively compare them to
the abstracted ER networks from a tobacco leaf epidermal cell.

2 Model

We construct two models: one basic model with only degree constraints and one
full model with both degree and angle constraints.

Basic Modelization Given a set of nodes V (corresponding to all the nodes in
an abstracted ER network), a subset Vb of V (corresponding to the degree-3
branching nodes in the network), the problem is to find an undirected connected
plane graph, whose nodes in Vb have degree 3, those outside Vb have degree at
most 3, and which minimizes the sum of the Euclidean distances associated with
the connecting edges.

Full Modelization A full model is the basic model with an additional angle
constraint. More precisely, for a branching node u ∈ Vb, and its neighbours
v1, v2, v3, we add the constraint that any two angles at the node u formed from
edges uvi(i = 1, 2, 3) have a sum no less than θ where θ is a given angle around
180o. The idea comes from the concern of force balance acting on the branching
node. For each degree-3 branching node (tubule junction), as modeled in [11],
each of the three ER filaments is assumed to apply a membrane tension force on
this tubule junction. Thus, it is unlikely that the tension forces are in the same
direction of a half plane, i.e., the sum of two angles of the branching node is less
than 180o. This angle constraint means that none of two angles of a branching
node form a sum less than θ ≈ 180o in the optimal solution.

3 Problem Formulation and Resolution

Given the complete edge-weighted graph G = (V,E,w) and a set Vb ⊆ V , the
basic problem BP can be formulated as follows:

minimize
∑

xuv∈E

wuvxuv (1)

134 L. Lemarchand et al.

subject to

1 ≤
∑
v 	=u

xuv ≤ 3∀u ∈ V \ Vb, (2)

∑
v 	=u

xuv = 3∀u ∈ Vb, (3)

δ(W) ≥ 1∀W ⊂ V, |W | ≥ 2 (4)

xuv + xwz ≤ 1∀u, v, w, z ∈ V, edges uv and wz cross (5)

xuv + xuw + xuz ≤ 2∀u ∈ Vb, v, w, z ∈ V, angle(vuw) + angle(wuz) < φ (6)

xuv ∈ {0, 1},∀uv ∈ E. (7)

We are looking for a minimum-weight, connected and plane, spanning sub-
graph of G, where:

– (1) the objective function represents the total Euclidean distance of the
connecting subgraph;

– (2) and (3) represent the constraints on nodes including degree-3 nodes;
– (4) ensures the connectivity of the resulting subgraph, where

δ(W) =
∑

i∈W,j /∈W

xij

– Angle equations (6) are set with a degree of φ = 180o. u is a branching node,
and v, w, z are its neighbours in a solution;

– xuv and xvu represent the same variable, and xuv = 1 iff edge uv is selected
in the solution.

We remark that the complexity status of our problem still seems to be open.
The particular case of finding a minimum-weight 3-regular connected spanning
subgraph of G is known to be NP-hard [3]. Moreover and throughout our calcu-
lations, we have observed only few solutions containing a pair of crossing edges.
Therefore, instead of adding constraints (5) at start, we check after each itera-
tion whether two edges cross, in case of which the corresponding constraint (5)
is added on the fly.

Similar incompatibility constraints are added for the angle restrictions of the
full model.

3.1 Binary Linear Programming Resolution

Problem BP is solved using the CPLEX MIPS solver as follows. The initial 0−1
programming problem is solved without connectivity constraints (4). Cuts are
added iteratively in order to discard connected components which cover only
a subset of the nodes. More precisely, if W ⊂ V , with 1 < |W | < |V |, is the
node set of a connected component obtained as a result, we add the following
constraint to BP:

δ(W) ≥ 1. (8)

Modeling the Geometry of the Endoplasmic Reticulum Network 135

This process is repeated until the resulting graph is connected. As described
above, a plane embedding is checked for at each iteration.

3.2 Linear Programming Formulation

Let RP denote the linear relaxation of BP, i.e., the linear program obtained
by replacing the constraints (7) by 0 ≤ xuv ≤ 1 ∀uv ∈ E. Relaxing BP to RP
allows to replace the IP-solver by an LP-one, but we are now faced with the
possibility of fractional optimal solutions.

Three types of search algorithms have been used to ”cut off” such fractional
solutions, leading to 4 different separation procedures.

The first one (2-cut procedure) is based on a min-cut algorithm. If an s−t-cut
leads to a cut value < 1, the connectivity constraint is violated. This situation
is detected using the Stoer-Wagner algorithm [14]. If V1, V2 is the corresponding
partition of V , we add the constraint

δ(V1) ≥ 1 (9)

The second one relies on a p-partition of the node set V , P = {V1, V2, ..., Vp}.
In this case we add the constraint

1

2

∑
δ(Vi) ≥ (p− 1) (10)

The problem is now to find a partition of V , whose inequality is violated by
the current optimal (and fractional) solution.

We have implemented 2 separation procedures for this type. The r-cut pro-
cedure is based on a recursive splitting of partitions using a min-cut algorithm,
whereas the k-cut procedure is a 1-edge-like contraction procedure.

– The r-cut procedure for multi-cuts is inspired by [1]. Given a p-partition, find
a minimum cut in each part of it. For the cut with minimum value among all
these min-cuts, break the associated component to obtain a (p+1)-partition.

– The k-cut procedure for multi-cuts goes as follows. The partition is induced
by the components of the graph G′ = (V,E′ = {e ∈ E|xe ≥ α}), with α ∈
]0..1] as given by the current optimal solution. Case α = 1 corresponds
to the component search of BP. This separation procedure is applied for
α = 0.8, 0.6, 0.4.

The third one is a b-cut procedure based on blossom inequalities arising from
Edmonds’ description of matching-polytopes [5]. For this we just recall that the
incidence vectors of u-capacitated b-matchings are the solutions of the following
constraints: ∑

e∈δ(i)

xe ≤ bi ∀i ∈ V, (11)

0 ≤ xe ≤ ue ∀e ∈ E, (12)

xe ∈ Z ∀e ∈ E, (13)

136 L. Lemarchand et al.

and if we let bi = 3 ∀i ∈ V and ue = 1 ∀e ∈ E, the following blossom inequalities

∑
e∈E(W)

xe +
∑
f∈F

xf ≤
⌊
3|W |+ |F |

2

⌋
, ∀W ⊂ V, F ⊂ δ(W) with 3|W |+ |F | odd

(14)

are valid for any solution of our basic problem.
The separation procedure presented in [9] is based on cut-trees. In our imple-

mentation we use Gusfield’s algorithm [7] for cut-tree computations, and we also
make use of the igraph C library [4].

The initial binary algorithm is thus split into two phases :

– Linear phase : Solve RP with an LP-solver, and add constraints for all dis-
connected components. When the obtained solution is connected but frac-
tional, find iteratively minimal cuts (2-cuts of value less than one, k-cuts or
b-cuts, whose corresponding inequality is currently violated) and add the
corresponding constraints.

– Binary phase : When no more efficient cuts are found, solve the resulting 0-1
programming problem with an MIPS solver.

According to the kind of linear constraints we add in the linear phase, this
leads to 5 versions of the mixed linear/binary algorithms:

– BP: the binary formulation,
– LP: the linear formulation,
– LPr: the linear formulation with recursive cuts,
– LPrk: the linear formulation with both recursive and parametric cuts.
– LPrkb: the linear formulation with recursive, parametric and blossom cuts.

4 Tests

All formulations have been implemented using the CPLEX API in C. A set
of 50 real-life testcases has been provided. Randomly generated testcases, with
distance values in the range [1..100] are also used for the tests, especially with a
large number of nodes. We look at the comparative results in terms of runtimes
for both the binary and the linear formulation as well as the different cutting
techniques for the basic problem solution. Random sets are used to evaluate
the behaviour of the different algorithms with respect to problem characteristics
such as nodes and percentage of branching nodes.

Finally, real-life testcases are used to evaluate the behaviour of the algorithms
in view of the different pieces of the model.

4.1 Runtimes for the Solution of the Basic Problem

We examine the runtimes of 5 different algorithms for solving the basic model: (1)
the binary formulation BP, (2) the linear formulation LP, (3) the linear formu-
lation with recursive cuts LPr, (4) the linear formulation with both recursive

Modeling the Geometry of the Endoplasmic Reticulum Network 137

Algorithm 1: General Algorithm. BP (solveBinary = True), LP
(solveBinary = False), LPr (solveBinary = False, checkRcuts = True),
LPrk (solveBinary = False, checkRcuts = True, checkKcuts = True)
and LPrkb (solveBinary = False, checkRcuts = True, checkKcuts =
True, checkBlossom = True) are derivated from this general algorithm

Data: a set of points V with a subset of branching nodes Vb, a set I of
incompatible edge pairs {e, e′}, a set of boolean variables

{solveBinary, checkP lan, check2cuts, checkRcuts, checkKcuts, checkBlossom}
Result: a connected plane subgraph

1 begin
2 graph G := (V,E), with E := V 2, wuv the Euclidean distance between u and

v
3 generate problem P with constraints (2) and (3)
4 add constraints (5) for all edge pairs in I
5 if solveBinary = True then
6 add constraints (7) to P
7 end
8 f := solve (P)
9 if Gf = (V, f) is connected and binary then

10 if checkP lan = True then
11 if checkP lanarity(f) = OK then goto 31
12 else add corresponding constraints (5)

13 end

14 end
15 if Gf = (V, f) is not connected then
16 compute component set W = {W1, ...,Wp}
17 add corresponding constraints (4)

18 end
19 if solveBinary = False then
20 if check2cuts = True then check and add corresponding constraints

(9)
21 if checkRcuts = True then check and add corresponding constraints

(10)
22 if checkKcuts = True then check and add corresponding constraints

(10)
23 if checkBlossom = True then check and add corresponding

constraints (14)
24 if no new constraint added then
25 add constraint (7) to P
26 solveBinary := True

27 end

28 end
29

30 goto 8

31 end

138 L. Lemarchand et al.

and parametric cuts LPrk with α = {0.4, 0.6, 0.8}, and finally (5) LPrkb, that is
LPrk plus the blossom-cut separation procedure.

We have generated a set of problems of increasing size (in number of nodes)
with distance values in the range [1..100] and with 30 % of branching nodes.
Problem sizes of Figure 2(a) are comparable to real-life testcases : the average
percentage of branching nodes is 27.54 %, and the number of nodes is in the
range [12..76] for the testcase set of Figure 3. We measure the average runtimes
of 10 trials for the different algorithms, according to problem size. Corresponding
results are presented in Figure 2 (a). Figure 2 (b) shows results for much larger
problems obtained with BP and, the most efficient procedure, LPrk.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

m
ea

n
ru

nt
im

e
(s

ec
s)

number of nodes

(a)

BP
LPrk

LP
LPr

LPrkb

 0

 10

 20

 30

 40

 50

 60

 70

 100 150 200 250 300 350 400 450 500

m
ea

n
ru

nt
im

e
(s

ec
s)

number of nodes

(b)

BP
LPrk

Fig. 2. (a) BP and LPx formulation runtimes for series of 10 random testcases with
distances in [10..100] and 30 % branching nodes. (b) BP and LPrk runtimes (and
standard error) on large testcase series with 45% of branching nodes.

For random testcases of Figure 2 (a), LPrk outperforms slightly the BP ap-
proach. Adding blossom inequalities in LPrkb is time-consuming but does not
improve the average results of LPrk. BP runtimes dramatically increase with
problem size.

For large instances (Figure 2 (b)), the efficiency of LPrk is clearly visible for
problems with up to 400 nodes, number which is much greater than that of
the real testcases. For more than 400 nodes this advantage disappears, because
the solver swaps into Binary programming mode rather early in relation to the
runtime of the whole optimization process. Time won in early steps does not lead
to significant improvements in cost for later steps. For those large cases, LPrk is
often faster, but suffers from a lack of stability, with some instances degrading
heavily the average performance, as shown by the large standard error of the
runtimes for this procedure.

Figure 3 shows the runtimes for the different real-life testcases (frames) and
the different procedures. The average runtimes are, respectively, 102.29 s, 98.96
s, 6.67 s, 0.33 s and 0.63 s for BP, LP, LPr, LPrk and LPrkb.

Figure 3 clearly shows that LPrk is very efficient for real-life testcases when
compared to other approaches for solving the basic problem. Its maximum

Modeling the Geometry of the Endoplasmic Reticulum Network 139

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

ru
nt

im
e

(s
ec

s)

frames

(a)

BP
LP

LPr
LPrk

LPrkb

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30 35 40 45 50

ru
nt

im
e

(s
ec

s)

frames

(b)

LPrk
LPrkb

Fig. 3. (a) BP and all LP formulation runtimes for real-life testcases. (b) LPrk and
LPrkb only.

runtime over the 50 cases is 5.58 s, compared to 9.68 s for LPrkb, 78 s for
LPr and two non-terminated cases for BP and LP.

Runtimes according to the number of branching nodes We have generated a set
of problems of increasing size (in number of nodes), and we have measured the
total runtimes of LPrk for different percentages of branching nodes within each
instance.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140 160

ru
nt

im
es

 in
 s

ec
on

ds

number of nodes

Problems with different percentages of branching nodes

 C30 - 30% b. nodes
C35 - 35% b. nodes
C45 - 45% b. nodes
C55 - 55% b. nodes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50 100 150 200 250 300 350 400 450 500

ru
nt

im
es

 in
 s

ec
on

ds

number of nodes

Large problems with 45% of branching nodes

 C45 - Cuts with 45% b. nodes

Fig. 4. Runtimes of LPrk according to the size of the problem and the number of
branching nodes. Distances are in the range [1..100].

As shown in Figure 4, the runtimes of LPrk depend heavily on the number
of branching nodes within the problem, that we recall to have a fixed degree of
3. For large size random problems, the algorithm behaves correctly provided the
percentage of branching nodes is above 40.

Conclusion The LPrk approach is very efficient for solving real-life problems
with the basic model, in comparison to other methods, especially BP. LPrk is
also the most efficient for a large part of the random problems, i.e., those with
up to 400 nodes. However, it gives bad runtimes for a few instances.

140 L. Lemarchand et al.

The percentage of branching nodes has a great influence on the runtimes
whatever the solution algorithm is. The higher this percentage, the better the
runtimes.

4.2 Runtimes of Real-Life Testcases with the Full Model

Figure 5 shows the runtimes for the 50 testcases and the full model (see
section 2) solved with both the BP and LPrk algorithms. As opposed to the
basic model, constraints on angles are added. Planarity problems arise only in
two cases. Thus, it is not necessary to check for a plane embedding at each it-
eration. Instead, it suffices to check it at the end, and the solution process is
restarted after the addition of appropriate constraints whenever needed.

With the LPrk solver, the full model is solved in 46.52 s on average compared
to 0.33 s on average for the basic model. One case is very costly and represents
half of the total runtime. If this case is removed, the average runtime is 21.75
s, which is 2 orders of magnitude more than the basic model runtime. With BP,
mean runtime was 96.92 s for the full model. In this series, one case (different
from the one already mentioned) was very time consuming again. If removed,
the mean runtime is 64.24 s, 3 times the average runtime for LPrk.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35 40 45 50

ru
nt

im
e

(s
ec

s)

frames

BP
LPrk

Fig. 5. For the full model, BP and LPrk runtimes for real-life testcases

These last results show that the complexity as induced by the model’s ad-
vanced constraints leads to a runtime explosion for the LPrk algorithm, although
the problem is still solvable with LPrk in reasonable time. BP runtimes remain
stable when taking into account the full model. But those runtimes are still more
than two times higher than those of the LPrk approach on average for the 50
frames testbench. Finally, notice that sometimes one of the algorithms behaves
well while the other spends a lot of time for solving a particular case.

In the next section, we show, however, that those additional constraints are
mandatory in order to obtain results that are close to real-life networks. That
means that the runtime aspect would be crucial if larger networks are to be
computed. Instead of relying on the MILP solver branch-and-bound algorithm

Modeling the Geometry of the Endoplasmic Reticulum Network 141

when cutting planes are not found anymore, we could exploit these cuts further
by embedding them into a branch-and-cut procedure. However, this implies the
development of a specific branching strategy. This could help improving the
runtimes, especially for those instances where the MILP solver is called early.

4.3 Real-Life Testcase Results and a Comparison with Actual
Topologies

We have implemented the proposed technique to find optimal graphs for N = 50
problem instances both for the basic model (with degree-3 constraints on nodes
Vb ⊂ V) and the full model (with angle constraints as illustrated in Section 2
in addition to the degree-3 constraints). The nodes are abstracted from native
ER networks in chosen regions with no cisternae using the image processing
method given in [11]. Figure 6 shows different optimal graphs for given sets of
nodes and degree-3 nodes together with the abstracted ER network. To quantify
the difference between these optimal graphs and the abstracted ER network we
may use the concepts of effective similarity, error correcting matching and angle
distribution.

We define an effective similarity s(G1, G2) between two graphs G1, G2 as the
average of two percentages: percentage of edges in G1 that do appear in G2

and percentage of edges in G2 that do appear in G1. This measurement can
be calculated via the adjacency matrices of the two graphs. The measurement
s(G1, G2) ranges from 0 to 1; it equals 0 if none of the edges coincides in the two
graphs and it equals 1 if the connecting structures between the two graphs are
the same. Note that the adjacency matrix AdjG is symmetric whenever G is.

As a complement, and in analogy to the notion of error correcting graph
matching [2], we define a normalized error correcting matching m(G1, G2) be-
tween two graphs G1, G2 over the same set of nodes as the ratio of the minimum
number of edit operations (edge addition and edge deletion) necessary to trans-
form one graph into the other, to the number of edges of the complete graph with
the same set of nodes. This measurement can be calculated via the adjacency
matrix as well. It also ranges from 0 (no correction needed) to 1.

Figure 6 illustrates an example of an ER network in comparison to different
optimal graphs (including minimal spanning tree, optimal graph from the basic
model and optimal graph from the full model). The optimal graphs from the full
model show a higher similarity and a lower error correcting matching. Moreover,
we show in Table 1 that overall the ER network is closer to an optimal graph
from the full model than that with/without degree constraints, and the θ in the
angle constraint would not lead to a significant difference in terms of similarity
and error correcting matching when compared to the ER network. In addition,
Figure 7 shows that the distribution of angles of degree-3 nodes in the model
with both degree and angle constraints is much closer to that of the abstracted
ER networks than that in the minimal spanning trees and in the optimal graphs
with only degree constraints. This suggests that beyond degree constraints, an-
gle constraints are necessary for understanding the principles governing the ER
network geometry.

142 L. Lemarchand et al.

(a)

20 40 60 80 100

120

140

160

180

200

220

20 40 60 80 100

120

140

160

180

200

220

(b)

20 40 60 80 100

120

140

160

180

200

220

(c)

20 40 60 80 100

120

140

160

180

200

220

(d)

Fig. 6. A comparison between: an abstracted ER network (a), a minimal spanning tree
(b), an optimal graph from the basic model (c), an optimal graph from the full model
with θ = 180o (d). Their total lengths are 627.8, 508.3, 558.0 and 602.3, respectively, in
units of pixel. The effective similarities of (b-d) with respect to the abstracted network
in (a) are 0.726, 0.812 and 0.938, respectively, while the normalized error correcting
matchings with respect to the abstracted network in (a) are 0.120, 0.012 and 0.004,
respectively. The underlying ER image in (a) is from the imaging data in [13].

Table 1. A comparison of optimal solutions G1 from different models with the ab-
stracted ER network G in terms of similarity s(G,G1) and matching m(G,G1). Data
indicate the mean±error of the mean (N=50). T tests show significant differences
on s(G,G1),m(G,G1) between the case where G1 is a minimal spanning tree and
the case where G1 is an optimal graph from the basic model (p < 0.0001 for both
measurements), and slight differences between the basic and the full model with
θ = 160 (p = 0.0058, p = 0.0136 for similarity and matching, respectively). One-
way ANOVE tests show no significant differences between graphs from the full model
(p = 0.1083, p = 0.0869 for similarity and matching, respectively).

N=50 MSP model basic model full model full model full model
(θ = 160o) (θ = 170o) (θ = 180o)

s(G,G1) 0.7376 ± 0.0015 0.9065 ± 0.0103 0.9185 ± 0.0092 0.9270 ± 0.0081 0.9271 ± 0.0084

m(G,G1) 0.2930 ± 0.0195 0.0106 ± 0.0011 0.0096 ± 0.0011 0.0087 ± 0.0010 0.0087 ± 0.0011

In addition, considering that the nodes abstracted from the ER network us-
ing the image processing method in [11] may have errors in their position, we
have analyzed the sensitivity of optimal solutions with respect to perturbations
of the node positions by randomly modifying one pixel among the 8 connected
neighbours. Note, that in the presence of angle constraints, optimal solutions
should change when a pair of nodes forming a sum of angles close to the critical
θ-value are perturbed. Figure 8 shows examples of optimal graphs with per-
turbed nodes together with those without such a perturbation. However, statis-
tical analysis on similarity and error correcting matching with the ER networks
for 10% perturbed nodes givesm(G,G1) = 0.9200±0.0029(N = 500), s(G,G1) =
0.0096±000039(N = 500). This indicates that there is no significant difference in
these measurements between optimal graphs with/without node perturbation.

Modeling the Geometry of the Endoplasmic Reticulum Network 143

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

θ

Pr
ob

ab
ili

ty
(a)

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

θ

Pr
ob

ab
ili

ty

(b)

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

θ

Pr
ob

ab
ili

ty

(c)

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

θ

Pr
ob

ab
ili

ty

(d)

Fig. 7. A comparison of angle distributions from an abstracted ER network (a), an
optimal graph from the basic model (b) and an optimal graph from the full model with
θ = 160o (c) and with θ = 180o (d). Observe, that the distributions in (c) and (d)
are much closer (with p-values of 0.863 and 0.975, respectively) to that in (b) (with
a p-value of 0.111) when compared to the distribution in (a). The p-values are the
asymptotic p-values for the null hypothesis that distribution in (b) ((c) and (d)) and
that in (a) are from the same distribution. Angles are taken from all 3 angles of degree-3
nodes in all 50 problem instances. The sample size is N = 1428 in each distribution.

(a)

80 100 120 140 160

120

140

160

180

200

220
80 100 120 140 160

120

140

160

180

200

220

(b)

80 100 120 140 160

120

140

160

180

200

220

(c)

80 100 120 140 160

120

140

160

180

200

220

(d)

Fig. 8. A comparison of graphs with perturbed node positions. (a) shows an abstracted
ER network. (b) shows the optimal graph from the full model with θ = 180o. (c) and (d)
show optimal graphs with perturbed node positions (shown as larger bold dots) from
the full model with θ = 180o. The underlying ER image in (a) is from the imaging
data in [13].

5 Discussion

In this article, a quantitative comparison between optimal graphs and the ER
network geometry suggests that the ER tubule network in the native state mini-
mizes the total tubule length between branching nodes and non-branching nodes.
The difference between an optimal graph and the corresponding ER network
might be that there are other principles behind the ER network geometry. For
instance, Figure 9 shows that the ER network contains a cycle while the optimal
graph for this instance does not have a cycle. We suspect this ER network to be
more robust in structure. Indeed, we have compared the number of cycles and
the natural connectivity for all 50 times points in the data set, and we show in
Figure 10 that both the number of cycles and the natural connectivity in the
abstracted ER networks are overall larger than in corresponding optimal graphs.
The natural connectivity λ(G) [15] is a measurement of structural robustness of
a graph G in terms of a weighted sum of numbers of closed walks. More precisely,

144 L. Lemarchand et al.

λ(G) = log(
∑∞

k=0
nk

k! /|V |), where nk is the number of closed walks of length k.
Another reason for cycles disappearing in an optimal solution might be due to
the choice of the region, where branching junctions in the global ER network
might only have one or two edges (branching junctions connecting with tubules
outside the chosen regions are not included in the abstracted graph) and thus
are not in the set of degree-3 nodes. To avoid this, one may wish to choose a non-
rectangle region where branching junctions are all of degree 3 in the abstracted
graph. However, these branching junctions might be connected with ER cister-
nae and thus techniques need to be developed to distinguish ER cisternae and
ER tubules.

40 60 80 100 120

140

160

180

200

40 60 80 100 120

140

160

180

200

Fig. 9. Left: an abstracted ER network. Right: the optimal graph from the full model
(θ = 180o). They only differ in one edge shown as a dotted line in the right panel. The
underlying ER image in the left panel is from the imaging data in [13].

10 20 30 40 50
0

2

4

6

8

Data set

cy

cl
e

10 20 30 40 50
0.75

0.8

0.85

0.9

Data set

N
at

ur
al

 c
on

ne
ct

iv
ity

Fig. 10. A comparison of the number of cycles (left) and natural connectivity (right)
between abstracted ER networks (circles) and optimal graphs (crossings) from the full
model with θ = 180o for each data set

The study of the optimal principles behind ER network geometry could, in the
future, allow predictions of network dynamics as a consequence of node move-
ment. This would require image processing methods to track the node movements
and one challenge for this is the dramatic dynamics of ER networks themselves
where nodes may appear and disappear. We leave these aspects for future study.

As to algorithmic efficiency, there should be place for improvement. Setting
V = Vb and omitting crossing and angle constraints leads to the minimum-
weight d-regular connected spanning subgraph problem with d = 3. For d = 2,
we encounter the traveling salesman problem, well-studied both for its polyhedral

Modeling the Geometry of the Endoplasmic Reticulum Network 145

structure and algorithmic aspects. A suitable transfer of this knowledge to our
case, combined with the modifications indicated at the end of section 4.2, could
considerably improve the efficiency of our method.

Acknowledgments. CL thanks grant BB/J009903/1 for support of the time.

References

1. Barahona, F.: On the k-cut problem. Oper. Res. Lett. 26, 99–105 (2000)
2. Bunke, H.: Error correcting graph matching: on the influence of the underlying

cost function. IEEE Trans. Pattern Anal. Mach. Intell. 21, 917–922 (1999)
3. Cheah, F., Corneil, D.: The complexity of regular subgraph recognition. Discrete

Appl. Math. 27, 59–68 (1990)
4. Csardi, G., Nepusz, T.: The igraph software package for complex network research.

Inter. Journal, Complex Systems, 1695 (2006), http://igraph.sf.net
5. Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. J. Res. Nat.

Bur. Standards 69B, 125–130 (1965)
6. Goyal, U., Blackstone, C.: Untangling the web: Mechanisms underlying ER network

formation. Biochim. Biophys. Acta 1833, 2492–2498 (2013)
7. Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM J.

Comput. 19(1), 143–155 (1990)
8. Hwang, F.K., Richards, D.S., Winter, P.: The steiner tree problem. Ann. Discrete

Math., 53 (1992)
9. Letchford, A., Reinelt, G., Theis, D.: Odd minimum cut sets and b-matchings

revisited. SIAM J. Discrete Math. 22(4), 1480–1487 (2008)
10. Levine, T., Rabouille, C.: Endoplasmic reticulum: one continuous network com-

partmentalized by extrinsic cues. Curr. Opin. Cell. Biol. 17, 362–368 (2005)
11. Lin, C., Ashwin, P., Sparkes, I.A., Zhang, Y.: Structure and dynamics of ER net-

works and perturbed euclidean steiner networks (2014) (in revision)
12. Sparkes, I.A., Hawes, C., Frigerio, L.: FrontiERs: movers and shapers of the higher

plant cortical endoplasmic reticulum. Curr. Opin. Plant. Biol. 14(6), 658–665
(2011)

13. Sparkes, I.A., Runions, J., Hawes, C., Griffing, L.: Movement and remodeling of
the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21,
3937–3949 (2009)

14. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44, 585–591 (1997)
15. Wu, J., Barahona, M., Tan, Y.J., Deng, H.Z.: Spectral measure of structural robust-

ness in complex networks. IEEE Trans. Syst., Man, Cybern.A, Syst., Humans 41,
1244–1252 (2011)

http://igraph.sf.net

On Sorting of Signed Permutations

by Prefix and Suffix Reversals and Transpositions

Carla Negri Lintzmayer and Zanoni Dias

Institute of Computing, University of Campinas (Unicamp)
Av. Albert Einstein, 1251, Campinas, São Paulo, Brazil

{carlanl,zanoni}@ic.unicamp.br

Abstract. A reversal inverts a segment and the signs of the elements
of this segment in a permutation. A transposition exchanges the posi-
tion of two consecutive segments. These are the most common kinds of
genome rearrangements. In this paper, we introduce the study of prefix
and suffix versions of these operations, that is, when only segments of
the beginning or of the end are involved, when considering signed permu-
tations. We gave asymptotic approximation algorithms of factor two for
three new problems: when prefix and suffix reversals are allowed, when
prefix reversals and prefix transpositions are allowed, and when prefix
and suffix reversals and prefix and suffix transpositions are allowed.

Keywords: sorting signed permutations, reversals, transpositions, pre-
fix operations, suffix operations.

1 Introduction

In Genome Rearrangements, chromosomes are usually represented as sequences
of segments which are shared by the genomes we are comparing. Generally, due
to the maximum parsimony, the minimum distance between two genomes is
considered to be a reasonable representation of the evolution distance between
them [3]. When we represent one of them as the identity, the comparison is
resumed in sorting the other and finding the events that occurred during the
transformation. In this paper we will consider the orientation of the segments in
the genomes, that is, we will represent them as signed permutations.

A reversal occurs when a segment of the permutation is inverted as well as the
signs of its elements. The problem of Sorting by Signed Reversals is polinomial,
as shown by Hannenhalli and Pevzner [7] when they presented a O(n4) algorithm.
Improvements were made and a O(n3/2

√
lgn) algorithm was introduced [13].

Another well studied problem is Sorting by Signed Prefix Reversals, or the
Burnt Pancake Flipping problem. It was introduced by Gates and Papadimi-
triou [5], whose concerns were in finding the maximum number needed to sort
any stack of pancakes of a given size n. They showed that this value lies between
3n
2 − 1 and 2n+3 but the best known lower and upper bounds are, respectively,
3n+3

2 and 2n− 6 [9,1]. The best known algorithm for this problem was given by
Cohen and Blum [2] and it is a 2-approximation.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 146–157, 2014.
c© Springer International Publishing Switzerland 2014

On Sorting of Signed Permutations by Prefix and Suffix Operations 147

Walter et al. [14] considered a variation in which transpositions are allowed
along with signed reversals and gave a 2-approximation algorithm. A transposi-
tion occurs when two consecutive segments of the permutation exchange position.
Gu et al. [6] considered a third event, the transreversal, which is a transposition
in which one of the segments are reversed, and also gave a 2-approximation algo-
rithm when the three are allowed. Lin and Xue [10] yet considered a fourth event
that they called revrev, which consists in a transposition where the two segments
are reversed. When considering the four events, they gave a 1.75-approximation
algorithm but the best approximation factor is 1.5 [8].

In this paper, we present approximation algorithms for three sorting problems
of signed permutations for which prefix and suffix versions of reversals and trans-
positions are allowed. Despite the Burnt Pancake Problem, to our knowledge
there are not considerations of prefix or suffix events for signed permutations in
the literature, specially when more than one rearrangement is allowed. We note
that for unsigned permutations, prefix reversals and prefix transpositions were
already considered together by Sharmin et al. [12], who gave a 3-approximation
algorithm, and prefix reversals, suffix reversals, prefix transpositions and suffix
transpositions were considered by Lintzmayer and Dias [11].

The rest of this paper is divided as follows. Section 2 presents some important
definitions. Sections 3 to 6 describe the algorithms we considered in this paper
while Section 7 shows the results.

2 Basic Definitions

We represent a genome as a signed permutation π = (π1 π2 . . . πn) where
πi ∈ {−n,−(n−1), . . . ,−1,+1,+2, . . . ,+n}, for 1 ≤ i ≤ n, represents a syntenic
block (a gene or a block of genes) and |πi|
= |πj | for all i
= j. It is common to
omit the plus sign. Two special permutations are the identity, ι = (1 2 . . . n),
and the reverse, η = (−n − (n − 1) . . . − 1). The composition between two
permutations π and σ is the permutation π · σ = (πσ1 πσ2 . . . πσn).

The extended permutation, which is also denoted as π, has two fixed elements
π0 = 0 and πn+1 = n + 1, always positive. From now on, a permutation will
always refer to its extended version, even if the extra elements are omitted.

A signed reversal ρ̄(i, j), 1 ≤ i ≤ j ≤ n, is a rearrangement that transforms
π into π · ρ̄(i, j) = (π1 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . . πn). A

signed prefix reversal ρ̄p(j) is a signed reversal ρ̄(1, j), 1 ≤ j ≤ n, while a signed
suffix reversal ρ̄s(i) is a signed reversal ρ̄(i, n), 1 ≤ i ≤ n.

A transposition τ(i, j, k), 1 ≤ i < j < k ≤ n + 1, is a rearrangement that
transforms π into π · τ(i, j, k) = (π1 . . . πi−1 πj πj−1 . . . πk−1 πi πi+1 . . . πj−1

πk . . . πn). A prefix transposition τp(j, k) is a transposition τ(1, j, k), 2 ≤ j <
k ≤ n + 1, while a suffix transposition τs(i, j) is a transposition τ(i, j, n + 1),
1 ≤ i < j ≤ n. Note that transpositions do not change the signs of the elements.
Therefore, when signed permutations are being used, transpositions can only be
considered in problems where reversals are also allowed.

A breakpoint for signed problems is a pair of consecutive elements (πi, πi+1) if
πi+1−πi
= 1. When prefix rearrangements are considered, 1 ≤ i ≤ n and (π0, π1)

148 C.N. Lintzmayer and Z. Dias

is never a breakpoint. In this case, ι is the only permutation without breakpoints.
When prefix and suffix rearrangements are considered, 1 ≤ i ≤ n− 1 and both
(π0, π1) and (πn, πn+1) are never breakpoints. In this case, ι and η are the only
permutations without breakpoints.

A strip is a subsequence of elements of π without breakpoints, except for its
extremities. For example, π = (3 4 −1 −2 −6 −5) has four strips: [3 4], [−1],
[−2] and [−6 − 5]. A strip is positive if its elements are positive and negative
otherwise. A singleton is a strip composed by one element.

Let β be the set of rearrangements allowed in a sorting problem. We denote
the number of breakpoints of a permutation π by bβ(π). A sequence or rear-
rangements β1, . . . , βk, for which βi ∈ β, 1 ≤ i ≤ k, is called sorting sequence
if π · β1 · · ·βk = ι. The minimum value of k needed to satisfy this equation is
called the sorting distance of π and it is represented by dβ(π).

We can now define the lower bounds for the sorting distance of the problems we
consider in this paper. Since the identity has the smallest number of breakpoints,
one can see that sorting a permutation is the same of reducing its number of
breakpoints. A prefix reversal ρ̄p(i) (resp. a suffix reversal ρ̄s(j)) can reduce the
number of breakpoints by at most one unit, because it separates elements [π0, π1]
and [πi, πi+1] (resp. [πj−1, πj] and [πn, πn+1]) but (π0, π1) (resp. (πn, πn+1)) is
never a breakpoint. This leads directly to the next lemma.

Lemma 1. For any permutation π, dρ̄p(π) ≥ bρ̄p(π) and dρ̄pρ̄s(π) ≥ bρ̄pρ̄s(π).

Moreover, a prefix transposition τp(i, j) (resp. a suffix transposition τs(i, j))
can reduce the number of breakpoints by at most two units, because it separates
[π0, π1], [πi−1, πi] and [πj−1, πj] (resp. [πi−1, πi], [πj−1, πj] and [πn, πn+1]) but
(π0, π1) (resp. (πn, πn+1)) is never a breakpoint. This leads to the next lemma.

Lemma 2. For any permutation π, dρ̄pτp(π) ≥ bρ̄pτp(π)/2 and dρ̄pτpρ̄sτs(π) ≥
bρ̄pτpρ̄sτs(π)/2.

3 Sorting by Signed Prefix Reversals

Cohen and Blum [2] described a 2-approximation algorithm for Sorting by Signed
Prefix Reversals (Sbspr), which is the best approximation so far for this problem
and will be called here 2-SPR. To achieve this, they showed how is always possible
to remove one breakpoint with at most two operations. In this section we describe
their algorithm somewhat different from their paper because we explicitly use
breakpoints and strips. Also, the algorithm that we describe is extended and
greedy in a sense, since it first tries to remove one breakpoint with one prefix
reversal. Therefore, 2-SPR considers three cases (only the first one is not explicitly
considered by Cohen and Blum [2]):

1. If there is a πj = −π1 + 1 in π, 2 ≤ j ≤ n + 1, then the reversal ρ̄p(j − 1)
removes one breakpoint;

2. If π has a positive element out of order, let πi = k be the greatest such
element:

On Sorting of Signed Permutations by Prefix and Suffix Operations 149

a. If there is a πj = −(k+1) such that i < j ≤ n, then π = (. k
−(k+1)) and the sequence ρ̄p(j) · ρ̄p(j−i) removes one breakpoint;

b. If there is a πj = −(k + 1) such that j ≤ i, then π = (.− (k + 1)
. k) and the sequence ρ̄p(i) · ρ̄p(i−j) removes one breakpoint;

c. If there is not a πj = −(k+1), then π = (. k k+1 k+2 . . . n)
and the sequence ρ̄p(i) · ρ̄p(k) removes one breakpoint.

3. If π does not have a positive element out of order:
a. If there is a πi = −(k + 1) and a πj = −k for some k ≥ 1 such that

i+1 < j, then π = (. − (k+1) −k) and the sequence
ρ̄p(i) · ρ̄p(j − 1) removes one breakpoint;

b. If there are not elements such as the described in the previous item, then π
is of the form (−p1 . . . −1︸ ︷︷ ︸

�1

−p2 . . . −(p1+1)︸ ︷︷ ︸
�2

. −t . . . −(px−1+1)︸ ︷︷ ︸
�x

t+1 t+2 . . . n) where x = bρ̄p(π) ≥ 2, and the sequence ρ̄p(t) · ρ̄p(t−
1)
· ρ̄p(t) · ρ̄p(t−
2) · . . . · ρ̄p(t) · ρ̄p(t−
bρ̄p (π)) of 2bρ̄p(π) prefix reversals

sorts it [4].

4 Sorting by Signed Prefix Reversals and Signed Suffix
Reversals

We developed an algorithm for Sorting by Signed Prefix Reversals and Signed
Suffix Reversals (Sbsprssr), which will be called 2-SPRSSR and it is based on
greedy removal of breakpoints. The idea of this algorithm is somewhat similar to
the idea of 2-SPR: it tries to remove one breakpoint with one operation; if this is
not possible, it tries to remove one breakpoint with two operations; if this is not
possible either, the permutation has a special form and there is a sequence to sort
it. The main difference is that we do not consider the greatest element because
there is no sense in talking about “elements that are out of order”, since one
suffix reversal would always remove them from their place. Therefore, 2-SPRSSR
considers five main cases:

1. If there is a πj=−π1+1 in π, 2≤j≤n, then ρ̄p(j−1) removes one breakpoint;
2. If there is a πi = −πn−1 in π, 1 ≤ i ≤ n−1, then ρ̄s(i+1) removes one

breakpoint;
3. If there are πi and πj such that:

a. πj = −πi−1, 1 ≤ i < j ≤ n, then ρ̄p(j) · ρ̄p(j− i) removes one breakpoint;
b. πj = πi+1, 0 ≤ i+1 < j ≤ n, then ρ̄p(i)·ρ̄p(j−1) removes one breakpoint.

4. If there are πi and πj such that:
a. πi = −πj + 1, 1 ≤ i < j ≤ n, then ρ̄s(i) · ρ̄s(n+ 1− (j − i)) removes one

breakpoint;
b. πi = πj−1, 0 ≤ i+1 < j ≤ n, then ρ̄s(j)· ρ̄s(i+1) removes one breakpoint.

This item is equivalent to item 3.b, therefore, only one of them needs to
be considered.

5. If it is not possible to remove one breakpoint as described in the previous
items, them π is of one of the three forms described in Lemma 3 and one
sequence of at most bρ̄pρ̄s(π) + 2 reversals, as described in Lemma 4, sorts π.

150 C.N. Lintzmayer and Z. Dias

Lemma 3. Let π be a signed permutation for which neither one nor two opera-
tions can remove one breakpoint. Then π is of one of the three forms:

1. η;
2. σ1 = (pbρ̄pρ̄s (π)

+1 . . . n︸ ︷︷ ︸
�bρ̄pρ̄s (π)+1

pbρ̄pρ̄s (π)−1+1 . . . pbρ̄pρ̄s (π)︸ ︷︷ ︸
�bρ̄pρ̄s (π)

. 1 . . . p1︸ ︷︷ ︸
�1

);

3. σ2 = (−p1 . . . −1︸ ︷︷ ︸
�1

−p2 . . . −(p1+1)︸ ︷︷ ︸
�2

. −n . . . −(pbρ̄pρ̄s (π)
+1)︸ ︷︷ ︸

�bρ̄pρ̄s (π)+1

).

where
i ≥ 1 for all 1 ≤ i ≤ bρ̄pρ̄s(π) + 1 and bρ̄pρ̄s(π) ≥ 1.

Proof. It is easy to see that when π = η the first four main cases of the algorithm
cannot turn it into the identity, since a reversal ρ̄p(n) is necessary and it is not
considered as a reversal that would remove a breakpoint. In fact, it does not
remove a breakpoint, because bρ̄pρ̄s(η) is already zero.

Let πi = k be any element of π. If πj = −(k + 1) exists and i < j, then
ρ̄p(j) · ρ̄p(j − i) remove one breakpoint. If j < i, then ρ̄s(j) · ρ̄s(n+ 1− (i− j))
remove one breakpoint. Something similar happens when −(k − 1) exists in π.
Therefore, the elements of π must all have the same sign.

Suppose that π only has positive elements. If bρ̄pρ̄s(π) = 1, is trivial to see
that π must be of the form of σ1. Now assume that every permutation with b−1
positive strips for which is not possible to remove one breakpoint with one or
two operations is of the form of σ1.

Let π be a permutation with b positive strips for which is not possible to
remove one breakpoint with one or two operations and let πj , 1 < j ≤ n, be the
first element of the last strip of π. Note that we must have πj = 1, otherwise, we
would have a πi = πj−1 for some i+1 < j, a contradiction, since ρ̄p(i) · ρ̄p(j−1)
could remove a breakpoint. Let π′ be a permutation built from π such that
π′
i = πi − πn for all 1 ≤ i ≤ j.
It is easy to see that π′ has b− 1 positive strips and it is almost immediate to

see that if it would be possible to remove one breakpoint from π′, then it would
also be possible to remove it from π. Therefore, π′ is of the form of σ1. Since π′

is π relabeled without the last strip, which has the element 1, it follows that π
is also of the form of σ1.

A similar demonstration can be made when π is formed only by negative
strips: it must be of the form of σ2. ��

Lemma 4. Let π be one of the signed permutations described in Lemma 3. Then
at most bρ̄pρ̄s(π) + 2 operations sort π.

Proof. If π = η, one prefix reversal ρ̄p(n) or one suffix reversal ρ̄s(1) suffices.
If π = σ1 and bρ̄pρ̄s(π) is an even number, then the bρ̄pρ̄s(π) + 1 reversals

ρ̄p(n−
1)·ρ̄s(
2+1)·ρ̄p(n−
3)·ρ̄s(
4+1)·. . .·ρ̄p(n−
bρ̄pρ̄s (π)−1)·ρ̄s(
bρ̄pρ̄s (π)
+1)·

ρ̄p(n−
bρ̄pρ̄s (π)+1) sort π, as we show next.

Let πk, 1 ≤ k ≤ bρ̄pρ̄s(π)/2, be the permutation we obtain after applying the
first 2k reversals of the sequence given above: ρ̄p(n−
1) · ρ̄s(
2 +1) · . . . · ρ̄p(n−

On Sorting of Signed Permutations by Prefix and Suffix Operations 151

2k−1) · ρ̄s(
2k + 1). Let b = bρ̄pρ̄s(π) and pb+1 = n, for simplicity. We will show
by induction on k that πk is of the form

(−p2k . . . − (p2k−1 + 1) − p2k−1 . . .− (p2k−2 + 1) − p1 . . . − 1︸ ︷︷ ︸
�2k+�2k−1+...+�1

pb + 1 . . . n︸ ︷︷ ︸
�b+1

. p2k+1 + 1 . . . p2k+2︸ ︷︷ ︸
�2k+2

p2k + 1 . . . p2k+1︸ ︷︷ ︸
�2k+1

)
.

It is easy to see that πk has this form when k = 1. Now, assume that πk−1 is
of this form, that is, πk−1 is equal to

(−p2k−2 . . . −(p2k−3+1) −p2k−3 . . .−(p2k−4+1) −p1 . . .−1︸ ︷︷ ︸
�2k−2+�2k−3+...+�1

pb + 1 . . . n︸ ︷︷ ︸
�b+1

. p2k−1 + 1 . . . p2k︸ ︷︷ ︸
�2k

p2k−2 + 1 . . . p2k−1︸ ︷︷ ︸
�2k−1

)
.

Since πk = πk−1 · ρ̄p(n−
2k−1) · ρ̄s(
2k + 1), the result follows.
Now, when k = b

2 , π
b/2 = (−pb . . .− (pb−1 +1) . . . − p1 . . . − 1 pb+1 . . . n)

and the last reversal of the sequence, ρ̄p(n−
b+1), sorts π
b/2.

If π = σ2 and bρ̄pρ̄s(π) is an even number, one must apply ρ̄p(n) to transform
it into σ1 and then apply the bρ̄pρ̄s(π) + 1 reversals given above.

If π = σ2 and bρ̄pρ̄s(π) is an odd number, then the bρ̄pρ̄s(π) + 1 reversals
ρ̄s(
1+1)· ρ̄p(n−
2)· ρ̄s(
3+1)· ρ̄p(n−
4)· . . . · ρ̄s(
bρ̄pρ̄s (π)

+1)· ρ̄p(n−
bρ̄pρ̄s (π)+1)
sort π. This can also be shown by a similar induction as the one done above.

If π = σ1 and bρ̄pρ̄s(π) is odd, one must apply ρ̄p(n) to transform it into σ2

and then apply the reversals above. ��

Although the sequences used to handle the permutations shown in Lemma 3
are half of the size used in Sbspr, sometimes the algorithm needs two reversals
to remove one breakpoint, which makes it an asymptotic 2-approximation.

Theorem 5. 2-SPRSSR is an approximation algorithm of asymptotic factor 2.

Proof. In the worst case, two operations will always be used to remove one
breakpoint and the reverse permutation will be reached. Therefore, the number
of prefix or suffix reversals used is at most 2bρ̄pρ̄s(π)+1. It follows from the lower
bound that 2-SPRSSR is an asymptotic 2-approximation algorithm. ��

5 Sorting by Signed Prefix Reversals and Prefix
Transpositions

We also developed an algorithm for Sorting by Signed Prefix Reversals and Prefix
Transpositions problem (Sbsprpt). It will be called 2-SPRPT and it also has a
greedy idea: first, it tries to remove two breakpoints with one prefix transposition;
if it is not possible, then it tries to remove one breakpoint with either one prefix
transposition or one prefix reversal.

152 C.N. Lintzmayer and Z. Dias

Let π
= ι and suppose that τp(i, j) is a prefix transposition that removes two
breakpoints from π. Since π · τp(i, j) = (πi . . . πj−1 π1 . . . πi−1 . . . πn), one
must have that πj−1 = π1 − 1 and πi−1 = πj − 1. In order to maintain our
approximation, we cannot have πi = 1.

Let π = (k+1 k+2 . . . k+(i−1) πi) with i ≥ 2 and πi
= k+i. There are
two possibilities to remove one breakpoint with one prefix transposition τp(i, j)
by increasing the first strip: (i) if its next element πj = k + i = πi−1 + 1 exists
in π; or (ii) if its previous element πj−1 = k = π1 − 1 exists in π.

Finally, to remove one breakpoint with one prefix reversal is identical to Sbspr:
if exists πj+1 = −π1 + 1, then ρ̄p(j) for 1 ≤ j ≤ n suffices.

Note that it is always possible to remove one breakpoint from π with these
last steps we described, because they always manage to increase the first strip
with its previous or next element, positive or negative.

The three main cases described above will be considered if and only if π1
= 1.
Whenever π1 = 1, the algorithm must send the first strip to the end of the
permutation, from where it will be removed when the element n is sent there,
as Lemma 6 shows. Because of this, π1 will be 1 again at most one more time,
which will allow the algorithm to keep removing one or two breakpoints until
the end of the sorting, as Lemmas 7 and 8 show. Theorem 9 shows how this
behavior guarantees the desired approximation factor.

Lemma 6. Let π be a signed permutation of the form π = (. πn−i 1 2 . . . i),
1 ≤ i < n. The last strip of π will be removed from there only when the element
n is sent to the end.

Proof. Since π1
= 1, the algorithm will first try to remove two breakpoints from
π with a transposition τp(i, j). Then, one must have πi = πj − 1. To remove
the last strip from the end with this transposition, one must have j = n + 1.
Therefore, πi−1 = n will be sent to the end. Next, it will try to remove one
breakpoint from π with a transposition τp(i, j) where πi is the last element of
the first strip of π. If it increases the first strip with its next element, then
πj = πi−1 + 1. To remove the last strip from the end, one must have j = n+ 1,
in which case πi−1 = n will be sent to the end. If it increases the first strip with
its previous element, then πj−1 = π1 − 1. To remove the last strip from the end,
πj−1 should be the last element of the last strip, that is, j = n+ 1. However, in
this case, the last strip would only be increasing its length. Finally, if a reversal
ρ̄p(j) removes one breakpoint, one must have πj+1 = −π1 + 1. To remove the
last strip from the end with this reversal, one must have j = n, in which case
π1 = −n and n is sent to the end of the permutation. ��

Lemma 7. Let π be a signed permutation of the form π = (. n 1 2 . . . i),
1 ≤ i < n. Then, the elements n and 1 will not be separated until π is sorted.
Therefore, it is always possible to keep removing one or two breakpoints.

Proof. We have that π1
= 1, so the algorithm will first try to remove two break-
points with τp(i, j). Since we explicitly deny that πi = 1 in this step, consider
πj = 1. We would have that πj−1 = n, but then π1 would have to be n+1, which

On Sorting of Signed Permutations by Prefix and Suffix Operations 153

is impossible. Now the algorithm will try to increase the first strip, which ends at
πi−1 with τp(i, j). If πi = 1, then the first strip ends at n and this transposition
would sort π and remove two breakpoints at once. If πj = 1, then either πi−1

would have to be 0 or π1 would have to be n + 1. Both cases are impossible.
Finally, the algorithm will try to perform ρ̄p(j) to remove one breakpoint. If
πj+1 = 1, then π1 would have to be 0. Hence, the algorithm will not separate
elements n and 1, unless it is one step from sorting the permutation. Except
for this case, π1 will always be different from 1 and the three main cases of the
algorithm can be used. ��

Lemma 8. During the sorting, π1 will be 1 at most twice.

Proof. When π1 = 1 and πn
= n, the first strip is sent to the end of the permu-
tation and it does not change the number of breakpoints. As Lemma 6 shows, it
will only be removed from there when n goes to the end. Since the main steps
of the algorithm are always trying to remove breakpoints, n will not be removed
from the end until π1 = 1 again. In this case, the number of breakpoints is
increased in one unit. However, the elements n and 1 are put together and the
algorithm does not separate them, as shown by Lemma 7. ��

Theorem 9. 2-SPRST is an asymptotic approximation algorithm of factor 2.

Proof. While π1
= 1, the algorithm always remove one or two breakpoints. In the
worst case, π1 = 1 twice and two extra operations are needed to move the first
strip as Lemma 8 shows (one of them creates one breakpoint but puts n and 1
together, which will guarantee that the last operation of the sorting removes two
breakpoints as Lemma 7 shows). Therefore, at most bρ̄pτp(π)+ 2 operations sort
any permutation. It follows from the lower bound that 2-SPRPT is an asymptotic
2-approximation algorithm. ��

6 Sorting by Signed Prefix Reversals, Prefix
Transpositions, Signed Suffix Reversals and Suffix
Transpositions

Finally, we developed an algorithm for the problem that allows all variations:
Sorting by Signed Prefix Reversals, Prefix Transpositions, Signed Suffix Rever-
sals and Suffix Transpositions (Sbsprptssrst), which we called 2-SPRPTSSRST.
It follows the same greedy idea of 2-SPRPT with the same restriction regard the
separation of elements n and 1, but it also does not allow that −1 and −n be
separated when they are together in this order. Thus, the main steps of this
algorithm are: (i) try to remove two breakpoints with one prefix or suffix trans-
position; (ii) try to remove one breakpoint with one prefix or suffix transposition;
and (iii) try to remove one breakpoint with one prefix or suffix reversal.

To remove two breakpoints with one prefix transposition τp(i, j), we also must
find πj−1 = π1 − 1 and πi−1 = πj − 1, but this time considering that 2 ≤ i <
j ≤ n. To remove two breakpoints with one suffix transposition τs(i, j), since

154 C.N. Lintzmayer and Z. Dias

π ·τs(i, j) = (π1 . . . πi−1 πj . . . πn πi . . . πj−1), one must have that πi = πn+1
and πj = πi−1 +1 also with 2 ≤ i < j ≤ n. For both cases, neither πi−1 = n and
πi = 1 nor πj−1 = −1 and πj = −n can happen.

The removal of one breakpoint with one prefix transposition τp(i, j) is almost
similar to what we explained in the previous section. Let π = (k + 1 k + 2 . . .
k + (i − 1) πi) with i ≥ 2 and πi
= k + i, there are two possibilities to
increase the first strip: (i) if its next element πj = k + i = πi−1 + 1, with j ≤ n,
exists in π; or (ii) if its previous element πj−1 = k = π1 − 1 exists in π. Neither
πi−1 = n and πi = 1 nor πj−1 = −1 and πj = −n can happen.

Let π = (. πj−1 k + 1 k + 2 . . . k + x) with x ≥ 1, j ≤ n and πj−1
= k.
There is also two possibilities to increase the last strip and remove one breakpoint
with one suffix transposition τs(i, j): (i) if its previous element πi−1 = πj−1 = k,
with i ≥ 2, exists in π; or (ii) if its next element πi = πn + 1 = k + x+ 1 exists
in π. Neither πi−1 = n and πi = 1 nor πj−1 = −1 and πj = −n can happen.

Finally, to remove one breakpoint with one prefix reversal ρ̄p(j), it suffices to
find a πj+1 = −π1 +1 where 1 ≤ j ≤ n− 1. To remove one breakpoint with one
suffix reversal ρ̄s(i), one must find a πi−1 = −πn − 1, with 2 ≤ i ≤ n.

When none of the options given above are available, the permutation is of
one of the forms described in Lemma 10 and we must perform either a reversal
to sort η or a prefix transposition to concatenate the first strip with the last
one. The later operation is the reason why the algorithm cannot separate the
elements n and 1 or −1 and −n, which will guarantee the approximation factor
of the algorithm, as Theorem 12 shows.

Lemma 10. Let π be a signed permutation for which is not possible to remove
at least one breakpoint with one operation. Then π is of one of the five forms:

1. η;
2. μ1 = (1 2 . . . k . . . − (k + 1) . . . − (i − 1) . . . i i+ 1 . . . n), that is,

π1 = 1, πn = n, and the elements that can increase the first and last strips
are negative (the relative position between them is irrelevant);

3. μ2 = (−n −(n−1) . . .− i . . . (i − 1) . . . (k + 1) . . . −k −(k−1) . . .−1),
that is, π1 = −n, πn = −1, and the elements that can increase the first and
last strips are positive (the relative position between them is irrelevant);

4. μ3 = (k + 1 k + 2 . . . n 1 2 . . . k);
5. μ4 = (−k − (k − 1) . . . − 1 −n − (n− 1) . . . − (k + 1)).

where 1 ≤ k and k + 1 < i ≤ n.

Proof. It is easy to see that when π = η, the first three main steps of the
algorithm cannot be performed. We must explicitly perform ρ̄p(n) to sort it.

When π = μ1, one must have π1 = 1 and πn = n. Thus, suppose π1 =

= 1,
disregard the value of πn. Either +(
− 1) or −(
− 1) must exist in π. Therefore,
a transposition or a reversal can be performed to remove one breakpoint, a
contradiction. Now, suppose πn =

= n, disregard the value of π1. Either
−(
+1) or +(
+1) must exist in π. Therefore, a reversal or a transposition can
be performed to remove one breakpoint, a contradiction. A very similar analysis

On Sorting of Signed Permutations by Prefix and Suffix Operations 155

can be done when π = μ2. Since π1 can only be 1 or −n and πn can only be n or
−1, μ1 and μ2 are the only possible forms that allow this. Also, if the elements
that can increase the first and the last strip were not of opposite signs regarding
the strips, a transposition that removes one breakpoint could be performed.

Is easy to see that, since the algorithm does not separate n and 1 or −1 and
−n, the cases when π = μ3 or π = μ4 cannot be dealt by the first three steps. ��

Lemma 11. Let π be a signed permutation as described in Lemma 10 such that
π
= η. Then, one transposition that concatenates the first strip with the last
one does not create new breakpoints and guarantees that the next operations will
always be able to remove at least one breakpoint.

Proof. Let π = μ1. To concatenate the strips, the transposition τp(k + 1, n+ 1)
suffices. Then, π′ = π ·τp(k+1, n+1) = (. . .−(k+1) . . .−(i−1) . . . i i + 1 . . . n
1 2 . . . k). When π = μ2, the transposition τp(n − i + 2, n + 1) suffices and
π′ = π · τp(n − i + 2, n + 1) = (. . . k + 1 . . . j − 1 . . . −k − (k − 1) . . . − 1

−n − (n− 1) . . . − i). In both cases, π′ is not of any form given in Lemma 10.
Therefore, is possible to remove at least one breakpoint with one operation.

Note that μ1 and μ2 will happen again when π1 = 1 and πn = n or when
π1 = −n and πn = −1. However, this only can happen if the algorithm separate
the elements n and 1 or −1 and −n, which is not allowed. On the other hand,
this separation will have to happen when π = μ3 and π = μ4. But at this point,
the algorithm will be performing its last or last but one operation. When π = μ3,
the concatenation of the strips will lead to ι. When π = μ4, the concatenation
will lead to η, which will be followed directly by a reversal that will sort it. ��

Theorem 12. 2-SPRPTSSRST is an asymptotic 2-approximation algorithm.

Proof. While π is not of the forms described in Lemma 10, it can remove at least
one breakpoint with one operation. Two extra operations that do not remove nor
create breakpoints may be needed: one to handle μ1 or μ2 and one to handle η
(after μ4 is reached or simply when η itself is reached). Therefore, 2-SPRPTSSRST
always sorts π with less than bρ̄pτpρ̄sτs(π)+2 operations. It follows from the lower
bound that it is an asymptotic algorithm of factor 2. ��

7 Results

We implemented all the algorithms we described in C language. They all have
complexity of O(n2) because they run while the permutation is not sorted (the
distance is proportional to the number of breakpoints, which is O(n)) and, in each
step, they search for a next operation to apply (the search and the operations are
O(n)). Nevertheless, we highlight that our goals in these tests are regarding the
approximation factors. The algorithms were executed under a set of 1,990,000
permutations: for each value of n, 10 ≤ n ≤ 1, 000 in intervals of 5, 10,000
arbitrary signed permutations only with singletons were generated. For each
permutation, an approximation factor was calculated by dividing the distance
given by the algorithm for the theoretical lower bound.

156 C.N. Lintzmayer and Z. Dias

Since all algorithms we developed are asymptotic, it is expected that some-
times the approximation factor is above 2. This happened only once for 2-SPRSSR
when n = 10. For 2-SPRPT, this happened on 0.41% of the permutations, only
when n ≤ 100. Besides, from this amount, 72.13% happened when n ≤ 20 while
98.65% happened when n ≤ 50. For 2-SPRPTSSRST, the factor was above 2 on
0.44% of the permutations, which happened only when n ≤ 105. From this
amount, 76.62% happened when n ≤ 20 while 99.35% happened when n ≤ 50.
Figure 1 shows how the average approximation factor of the 10,000 permutations
of size n changes when n grows for each problem.

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

permutation size

2-SPR
2-SPRSSR

2-SPRPT
2-SPRPTSSRST

Fig. 1. Average approximation factor of all algorithms when the permutation size grows

We notice that 2-SPR presents a stable average approximation factor that
is close to 1.5. In fact, for n ≥ 100, this factor is always below 1.507. The
maximum factor over all permutations tested is 2.000 and it happens when
n = 10. When n ≥ 100, this maximum factor does not exceed 1.700. On the
other hand, 2-SPRSSR shows a slight growth when n grows. Nevertheless, the
average approximation factor is very slow and does not exceed 1.381 for n ≥ 100.
For this algorithm, the maximum factor obtained is 2.111 and happens also when
n = 10. For n ≥ 100, the maximum factor does not exceed 1.661.

For 2-SPRPT and 2-SPRPTSSRST, the curves are similar in some sense and are
always decreasing. For the former, the average factor for n ≥ 100 is always below
1.828 while the maximum factor over all permutations is 2.400, also happening
when n = 10, followed by 2.267 when n = 15. For 2-SPRPTSSRST, the average
factor is below 1.799 when n ≥ 100. The maximum factor of all permutations is
2.444 and it happens when n = 10 followed by 2.286 when n = 15.

On Sorting of Signed Permutations by Prefix and Suffix Operations 157

Acknowledgements. This work was partially supported by São Paulo Re-
search Foundation - FAPESP (grants 2013/01172-0 and 2013/08293-7) and Na-
tional Counsel of Technological and Scientific Development - CNPq (grants
477692/2012-5 and 483370/2013-4).

References

1. Cibulka, J.: On Average and Highest Number of Flips in Pancake Sorting. Theo-
retical Computer Science 412(8-10), 822–834 (2011)

2. Cohen, D.S., Blum, M.: On the Problem of Sorting Burnt Pancakes. Discrete Ap-
plied Mathematics 61(2), 105–120 (1995)

3. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of
Genome Rearrangements. The MIT Press (2009)

4. Galvão, G.R.: Uma Ferramenta de Auditoria para Algoritmos de Rearranjo de
Genomas. Master’s thesis, University of Campinas, Institute of Computing, Camp-
inas, São Paulo, Brazil (2012) (in Portuguese)

5. Gates, W.H., Papadimitriou, C.H.: Bounds for Sorting by Prefix Reversal. Discrete
Mathematics 27(1), 47–57 (1979)

6. Gu, Q.P., Peng, S., Sudborough, I.H.: A 2-Approximation Algorithm for Genome
Rearrangements by Reversals and Transpositions. Theoretical Computer Sci-
ence 210(2), 327–339 (1999)

7. Hannenhalli, S., Pevzner, P.A.: Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals. Journal of the ACM 46(1),
1–27 (1999)

8. Hartman, T., Sharan, R.: A 1. 5-Approximation Algorithm for Sorting by Trans-
positions and Transreversals. Journal of Computer and System Sciences 70(3),
300–320 (2005)

9. Heydari, M.H., Sudborough, I.H.: On the Diameter of the Pancake Network. Jour-
nal of Algorithms 25(1), 67–94 (1997)

10. Lin, G.H., Xue, G.: Signed Genome Rearrangement by Reversals and Trans-
positions: Models and Approximations. Theoretical Computer Science 259(1-2),
513–531 (2001)

11. Lintzmayer, C.N., Dias, Z.: Sorting Permutations by Prefix and Suffix Versions of
Reversals and Transpositions. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS,
vol. 8392, pp. 671–682. Springer, Heidelberg (2014)

12. Sharmin, M., Yeasmin, R., Hasan, M., Rahman, A., Rahman, M.S.: Pancake Flip-
ping with Two Spatulas. In: International Symposium on Combinatorial Optimiza-
tion (ISCO 2010). Electronic Notes in Discrete Mathematics, vol. 36, pp. 231–238
(2010)

13. Tannier, E., Bergeron, A., Sagot, M.F.: Advances on Sorting by Reversals. Discrete
Applied Mathematics 155(6-7), 881–888 (2007)

14. Walter, M.E.M.T., Dias, Z., Meidanis, J.: Reversal and Transposition Distance
of Linear Chromosomes. In: Proceedings of the 5th International Symposium on
String Processing and Information Retrieval (SPIRE 1998), Santa Cruz, Bolivia,
pp. 96–102. IEEE Computer Society (1998)

On the Diameter of Rearrangement Problems

Carla Negri Lintzmayer and Zanoni Dias

Institute of Computing, University of Campinas (Unicamp)
Av. Albert Einstein, 1251, Campinas, São Paulo, Brazil

{carlanl,zanoni}@ic.unicamp.br

Abstract. When we consider the Genome Rearrangements area, the
problems of finding the distance of a permutation and finding the diam-
eter of all permutations of the same size are the most common studied.
In this paper, we considered problems for which no known results were
presented regarding their diameters. We present some families of permu-
tations whose distance is identical to the diameter for small sizes. They
allowed us to gave bounds for the diameters of the problems we consid-
ered, as well as conjectures regarding the exact value.

Keywords: Sorting permutations, diameter, reversals, transpositions,
prefix operations, suffix operations.

1 Introduction

Rearrangements are mutations that happen in big portions of the genomes, trans-
forming them. It is assumed that the minimum distance between two genomes,
that is, the minimum number of rearrangements needed to transform one into
another, represents the evolution distance between them. We can represent them
as permutations and assume that one is the identity, so that it is only needed to
sort the other to find the events that occurred during the transformation.

Therefore, interesting combinatorial problems have raised from the Genome
Rearrangements: given a permutation one wants to find its distance, that is,
the minimum number of rearrangements needed to sort it. In general, approx-
imation algorithms are developed. However, it is also common to find studies
regarding the diameter: what is the greatest distance between the distances of
all permutations of a size n? The last one is our interest in this paper.

Sorting by Reversals and Sorting by Transpositions are well studied NP-
hard [4,3] problems. For the former, Bafna and Pevzner [1] showed that the
diameter is n− 1. The latter still has an unknown diameter and the best lower
and upper bounds are, respectively,

⌊
n+1
2

⌋
+ 1, for n ≥ 1, and

⌊
2n−2

3

⌋
, for

n ≥ 9 [9,10]. On the contrary, Sorting by Signed Reversals is polinomial, as
shown by Hannenhalli and Pevzner [14]. It is known, therefore, that its diameter
is n+ 1 [11].

Walter et al. [21] considered the Sorting by Reversals and Transpositions and
the Sorting by Signed Reversals and Transpositions problems. They gave a lower
bound for the diameter of the latter, which is

⌊
n
2

⌋
+2, and conjectured that it

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 158–170, 2014.
c© Springer International Publishing Switzerland 2014

On the Diameter of Rearrangement Problems 159

is the exact value. We show that this is not true. To our knowledge, no results
regarding the diameter of the unsigned version is known.

Rearrangements that affect segments from the beginning of the genome are
prefix rearrangements. The Pancake Flipping problem, or Sorting by Prefix Re-
versals, was proved to be NP-hard recently [2]. It is interesting to notice that
the first computational results regarding this problem, given by Gates and Pa-
padimitrou [13], were about its diameter. They showed that it lies between 17n

16
and 5n+5

3 . The best known lower bound was improved eighteen years later to
15n
14 [15]. The best upper bound is 18n

11 +O(1) [5]. Sorting by Prefix Transpositions
remains open and its diameter, also unknown, lies between

⌊
3n+1

4

⌋
, for n ≥ 2,

and n − log 9
2
n [16,6]. Dias and Meidanis [8] conjectured that its exact value is

n −
⌊
n
4

⌋
for n ≥ 4. Sharmin et al. [20] introduced Sorting by Prefix Reversals

and Prefix Transpositions but no results regarding the diameter is known.
Another well studied problem is Sorting by Signed Prefix Reversals, intro-

duced by Gates and Papadimitriou [13]. They showed that the diameter lies
between 3n

2 − 1 and 2n + 3 but the best known lower and upper bounds are,
respectively, 3n+3

2 and 2n− 6 [15,7].
Lintzmayer and Dias [17,18] introduced new problems for which signed and

unsigned suffix rearrangements are allowed along with their prefix versions and
presented approximation algorithms but without results regarding the diameters.

In this paper we are interested in the problems of Sorting by Reversals and
Transpositions, Sorting by Prefix Reversals and Prefix Transpositions, Sorting
by Prefix Reversals and Suffix Reversals, Sorting by Prefix Reversals, Prefix
Transpositions, Suffix Reversals and Suffix Transpositions, and Sorting by Pre-
fix Transpositions and Suffix Transpositions. We considered both signed and
unsigned versions of all these problems, except for the last one.

This paper is divided as follows. Section 2 presents some definitions. Section 3
present some families of permutations and their distances, which will be used in
Section 4 to derive some bounds on the diameter of the cited problems. Section 5
concludes our work.

2 Definitions

An unsigned permutation π = (π1 π2 . . . πn) is a function over {1, 2, . . . , n}. A
signed permutation, also denoted as π, is a function over {−n,−(n−1), . . . ,−1, 1,
2, . . . , n} for which |πi|
= |πj | for all i
= j. We will always consider their extended
version, in which they have two fixed elements π0 = 0 and πn+1 = n+ 1.

We have four special permutations when considering signed and unsigned
permutations: the identity ιn = (1 2 . . . n), the reverse ηn = (n n − 1 . . . 1),
the signed reverse η̄n = (−n − (n − 1) . . . − 1), and the signed identity ῑn =
(−1 −2 . . . −n). Also, we have the inverse permutation π−1, for which π−1

πi
= i.

It satisfies π−1 ·π = ιn where ‘·’ represents a composition between permutations.
The permutation π · σ is (πσ1 πσ2 . . . πσn).

160 C.N. Lintzmayer and Z. Dias

A reversal ρ(i, j), 1 ≤ i < j ≤ n, is a rearrangement that transforms π into
π · ρ(i, j) = (π1 ... πi−1 πj πj−1 ... πi+1 πi πj+1 ... πn). A prefix reversal ρp(j) is

a reversal ρ(1, j), 1 < j ≤ n, while a suffix reversal ρs(i) is ρ(i, n), 1 ≤ i < n.
A signed reversal ρ̄(i, j), 1 ≤ i ≤ j ≤ n, is a rearrangement that transforms

π into π · ρ̄(i, j) = (π1 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . . πn). A

signed prefix reversal ρ̄p(j) is a signed reversal ρ̄(1, j), 1 ≤ j ≤ n, while a signed
suffix reversal ρ̄s(i) is a signed reversal ρ̄(i, n), 1 ≤ i ≤ n.

A transposition τ(i, j, k), 1 ≤ i < j < k ≤ n + 1, is a rearrangement that
transforms π into π · τ(i, j, k) = (π1 . . . πi−1 πj πj−1 . . . πk−1 πi πi+1 . . . πj−1

πk . . . πn). A prefix transposition τp(j, k) is a transposition τ(1, j, k), 2 ≤ j <
k ≤ n + 1, while a suffix transposition τs(i, j) is a transposition τ(i, j, n + 1),
1 ≤ i < j ≤ n. Note that transpositions do not change the signs of the elements.
Therefore, when signed permutations are being used, transpositions can only be
considered in problems where reversals are also allowed.

A reversal breakpoint is a pair of elements (πi, πi+1) of π such that |πi+1−πi|
=
1. Normally, 0 ≤ i ≤ n. For prefix reversal breakpoints, 1 ≤ i ≤ n and (π0, π1)
is never a breakpoint. For suffix reversal breakpoints, 0 ≤ i < n and (πn, πn+1)
is never a breakpoint. For prefix and suffix reversal breakpoints, 1 ≤ i < n
and neither (π0, π1) nor (πn, πn+1) are breakpoints. The identity is the only
permutation without breakpoints of the first three kinds. The identity and the
reverse are the only ones that do not have breakpoints of the last kind.

A transposition breakpoint or a signed reversal breakpoint is a pair of elements
(πi, πi+1) of π such that πi+1 − πi
= 1. Normally, 0 ≤ i ≤ n. For prefix transpo-
sition breakpoints or signed prefix reversal breakpoints, 1 ≤ i ≤ n and (π0, π1) is
never a breakpoint. For suffix transposition breakpoints or signed suffix reversal
breakpoints, 0 ≤ i < n and (πn, πn+1) is never a breakpoint. For prefix and suffix
transposition breakpoints or signed prefix and signed suffix reversal breakpoints,
1 ≤ i < n and neither (π0, π1) nor (πn, πn+1) are breakpoints. The identity per-
mutation is the only permutation without any kind of transposition breakpoints
and without any of the first three kinds of signed reversal breakpoints. The iden-
tity and the signed reverse are the only permutations without signed prefix and
signed suffix reversal breakpoints.

If variations of reversals are allowed, breakpoints of that kinds are considered.
For example, in Sorting by Prefix Reversals, Prefix Transpositions, Suffix Rever-
sals and Suffix Transpositions we use prefix and suffix reversal breakpoints. We
denote the number of breakpoints of a permutation π by bt(π), where t is the
type of breakpoint being considered.

Let β be the rearrangement or rearrangements allowed in a sorting problem.
We denote the minimum number of operations βi ∈ β needed to transform π into
ιn, that is, the minimum k for which π · β1 · · ·βk = ιn, by dβ(π). This number
is called the sorting distance of π. The permutations between π and ιn that
were generated during this transformation form the sorting sequence. Finally,
the greatest sorting distance between all the permutations of the same size n
regarding β is called diameter and it is denoted by Dβ(n).

On the Diameter of Rearrangement Problems 161

3 Families

Next we present families of permutations which will help us with our main results
and give some lemmas regarding their distance when considering the problems
we are interested in this paper.

π1n =

{
(2 4 6 . . . n−4 n n−2 n−1 n−3 n−5 . . . 1) if n is even
(2 4 6 . . . n−5 n−1 n−3 n n−2 n−4 . . . 1) if n is odd

(1)

Lemma 1. For n ≥ 4, dρτ (π
1
n) =

⌈
n
2

⌉
.

Proof. First note that dρτ (π
1
n) ≤

⌈
n
2

⌉
because of Alg. 1. Now, when n is even

there is not a transposition that removes three reversal breakpoints at once from

π1n . This happens because the odd numbers are completely separated from the
even numbers and one can demonstrate this by simple contradiction. However,
there are four ways to remove two breakpoints: placing any even i, 2 ≤ i ≤ n−4,
between i+1 and i− 1, placing any odd i, 1 ≤ i ≤ n− 5, between i− 1 and i+1,
reverting the segment n− 2, n− 1, or placing the segment 2, 4, 6, . . . , n− 4, n at
the end of the permutation, between 1 and n+ 1.

In any case, note that the separation mentioned above is kept and, again, there
is not a transposition that removes three breakpoints at once. If we follow this
idea, we can see that the maximum number of breakpoints that can be removed
at once is always two. Since removing three is never possible and removing one
would only increase the size of the sorting sequence, the algorithm is optimum.
A similar analysis can be done when n is odd. The only difference is that it is
possible to remove three breakpoints in the first step of the sorting, and it will
happen again at most one more time. ��

π2n =

{
(n−1 n−2 n n−4 n−6 . . . 2 n−3 n−5 . . . 1) if n is even
(n n−3 n−1 n−5 n−7 . . . 2 n−2 n−4 . . . 1) if n is odd

(2)

Lemma 2. For n ≥ 7,
⌈
n
2

⌉
≤ dρpτp(π

2
n) ≤

⌈
n
2

⌉
+ 1.

Proof. The lower bound is true because bρp(π
2
n) = n−1 when n is even, bρp(π

2
n) =

n when n is odd and dρpτp(π) ≥
⌈
bρp (π)

2

⌉
for any π [20]. The upper bound is

given by Alg. 2. ��

π3n = (+4 + 3 + 2 + 1 − 5 − 6 − 7 . . . − (n− 1) − n) (3)

Lemma 3. For n ≥ 5,
⌈
n
2

⌉
+ 1 ≤ dρ̄pτp(π

3
n) ≤ n+ 1.

Proof. First note that
⌈
n
2

⌉
is a valid lower bound, since bρ̄p(π

3
n)=n and dρ̄pτp(π)≥⌈

bρ̄p (π)

2

⌉
for any π [17]. However, this lower bound is not tight. If it was, when

162 C.N. Lintzmayer and Z. Dias

n is even the sorting should only have operations that remove two breakpoints.
But it is easy to see that this is not possible. When n is odd, the sorting would
need to have

⌈
n
2

⌉
−1 operations that remove two breakpoints at once and one

operation that removes one breakpoint. Removing two breakpoints at the first
operation is not possible and the only form of removing one is by placing 4 after
3. However, now it is not possible to remove two breakpoints either. Therefore,
the distance is at least

⌈
n
2

⌉
+1.

The upper bound is given by a simple algorithm that reverts the segment
+4,+3,+2,+1, reverts the whole permutation and then places each element in
its correct position. ��

π4n =

{
(n 1 n−2 n−4 n−6 . . . 4 2 n−3 n−5 n−7 . . . 3 n−1) if n is even
(n 1 n−2 n−4 n−6 . . . 5 3 n−3 n−5 n−7 . . . 2 n−1) if n is odd

(4)

Lemma 4. For n ≥ 8, n− 1 ≤ dρpρs(π
4
n) ≤ n.

Proof. The lower bound is true because bρpρs(π
4
n) = n−1 and dρpρs(π) ≥ bρpρs(π)

for any π [18]. The upper bound is true because of Alg. 3. ��

π5n = (−1nn −1n−1(n−1) −1n−2(n−2) . . . +2 −1) (5)

Lemma 5. For n ≥ 5, n ≤ dρ̄pρ̄s(π
5
n) ≤ n+

⌊
n−1
2

⌋
.

Proof. First note that n − 1 is a valid lower bound since bρ̄pρ̄s(π
5
n) = n − 1

and dρ̄p ρ̄s(π) ≥ bρ̄pρ̄s(π) for any π [17]. However, this lower bound is not tight,
because if it was, it would always be necessary to remove one signed prefix and

signed suffix reversal breakpoint. If n is even, then π5n = (+n −(n− 1) +(n− 2)
−(n − 3) . . . +2 −1) and it is easy to see that there is only one possibility to
remove one breakpoint at once, which will lead to π′ = (−n −(n − 1) +(n −
2) −(n − 3) . . . +2 −1). On the other hand, it is not possible to remove one

breakpoint with one operation from π′. If n is odd, then π5n = (−n +(n − 1)
−(n−2) +(n−3) . . . +2 −1), for which is not possible to remove one breakpoint
of this kind with one operation. Therefore, the distance is at least n.

The upper bound is given by Alg. 4. ��

π6n = ηn = (n n−1 n−2 . . . 2 1) (6)

Lemma 6. For n ≥ 3,
⌈
n−1
2

⌉
+ 1 ≤ dτpτs(π

6
n) ≤ n−

⌊
n
4

⌋
.

Proof. First note that
⌈
n−1
2

⌉
is a valid lower bound because bτpτs(π

6
n) = n − 1

and dτpτs(π) ≥
⌈
bτpτs (π)

2

⌉
for any π [18]. However, it is not tight and the distance

is at least
⌈
n−1
2

⌉
+1. Due to space restrictions this proof is omitted.

The upper bound is true because of the algorithm presented by Dias and
Meidanis [8] that sorts ηn using at most n−

⌊
n
4

⌋
prefix transpositions. ��

On the Diameter of Rearrangement Problems 163

Algorithm 1. An algorithm to sort π1n with reversals and transpositions

Input: π = π1n , n ≥ 4
if n mod 2 = 0 then

π ← π · ρ(π−1
n−2, π

−1
n−1);

for i ← n− 4 down to 2 by −2 do
π ← π · τ (π−1

i , π−1
n , π−1

i−1);

π ← π · ρ(1, n);
else

π ← π · τ (π−1
n−3, π

−1
n , π−1

n−4);
for i ← n− 5 down to 2 by −2 do

π ← π · τ (π−1
i , π−1

n−1, π
−1
i−1);

π ← π · τ (1, 3, n+ 1) · ρ(1, n− 2);

Algorithm 2. An algorithm to sort π2n with prefix reversals and prefix
transpositions

Input: π = π2n , n ≥ 7
if n mod 2 = 0 then

π ← π · ρp(2) · τp(5, π−1
n−3 + 1);

else
π ← π · τp(3, π−1

n−4) · τp(2, π−1
n);

while π1 �= 2 do
π ← π · τp(2, π−1

π1−1);

π ← π · τp(π−1
n + 1, n+ 1) · ρp(π−1

2) · ρp(2);

Algorithm 3. An algorithm to sort π4n with prefix reversals and suffix
reversals

Input: π = π4n , n ≥ 8
π ← π · ρp(n− 1) · ρp(n− 3) · ρs(2) · ρs(π−1

πn+1 + 1) · ρp(π−1
π1−1 − 1) · ρs(π−1

n);

while π1 �= 1 do
π ← π · ρp(π−1

π1+1 − 1);

164 C.N. Lintzmayer and Z. Dias

Algorithm 4. An algorithm to sort π5n with signed prefix reversals and
signed suffix reversals

Input: π = π5n , n ≥ 5
if n mod 2 = 0 then

π ← π · ρ̄p(1);
for i ← 3− (n mod 2) to n− 1 by 2 do

π ← π · ρ̄p(i) · ρ̄p(1);
π ← π · ρ̄p(n);
for i ← n− 1 down to 2 by −2 do

π ← π · ρ̄s(i);

π7n =

{
(n−1 n−3 n−5 . . . 5 3 6 8 10 . . . n 2 4 1) if n is even
(n n−2 n−4 . . . 5 3 6 8 10 . . . n−1 2 4 1) if n is odd

(7)

Lemma 7. For n ≥ 6,
⌈
n
2

⌉
≤ dρpτpρsτs(π

7
n) ≤

⌈
n
2

⌉
+ 1 if n is even and

dρpτpρsτs(π
7
n) =

⌈
n
2

⌉
+ 1 if n is odd.

Proof. First note that dρpτpρsτs(π
7
n) ≤

⌈
n
2

⌉
+ 1 because of Alg. 5. Also, we

have that dρpτpρsτs(π
7
n) ≥

⌈
n−1
2

⌉
because bρpρs(π

7
n) = n− 1 and dρpτpρsτs(π) ≥⌈

bρpρs (π)

2

⌉
for any π [18]. When n is odd, for the lower bound to be tight, the

sorting should only have operations that remove two breakpoints. There is only
one possibility of doing this in the first step. After that, there is also always
one possibility, which is placing the even number i which is in the first position
between the odd numbers i+ 1 and i− 1. This takes

⌈
n
2

⌉
− 3 + 1 moves, leaves

the permutation in the form (n n− 1 n− 2 . . . 7 6 5 3 2 4 1), and three more
operations are needed to sort it. ��

π8n = (−1 +2 −3 +4 . . . −(n− 1) +n) (8)

Lemma 8. For n ≥ 6 and n even, n
2 ≤ dρ̄pτpρ̄sτs(π

8
n) ≤ n.

Proof. The lower bound is true because bρ̄pρ̄s(π
8
n) = n − 1 and dρ̄pτpρ̄sτs(π) ≥⌈

bρ̄pρ̄s (π)

2

⌉
for any π [17]. The upper bound is true because of Alg. 6. ��

Lemma 9. For n ≥ 5 and n odd, n−1
2 ≤ dρ̄pτpρ̄sτs(π

5
n) ≤ n.

Proof. The lower bound is true because bρ̄pρ̄s(π
5
n) = n − 1 and dρ̄pτpρ̄sτs(π) ≥⌈

bρ̄pρ̄s (π)

2

⌉
for any π [17]. The upper bound is true because of Alg. 7. ��

On the Diameter of Rearrangement Problems 165

Algorithm 5. An algorithm to sort π7n with prefix reversals, prefix trans-
positions, suffix reversals, and suffix transpositions

Input: π = π7n , n ≥ 6
if n mod 2 = 0 then

while π1 �= 5 do
π ← π · τp(2, π−1

π1+1);

π ← π · τp(n− 1, n) · τp(3, 4) · τp(n− 1, n+ 1) · ρp(2);
else

π ← π · τp(π−1
3 , π−1

4) · τs(π−1
2 , π−1

n−2) · τp(2, π−1
1);

while π1 �= n− 1 do
π ← π · τp(2, π−1

π1−1);

π ← π · ρp(n− 1) · ρp(2);

Algorithm 6. An algorithm to sort π8n with signed prefix reversals, prefix
transpositions, signed suffix reversals, and suffix transpositions when n is
even

Input: π = π8n , n ≥ 8
for i ← 1 to n− 1 by 2 do

π ← π · ρ̄p(1) · τp(3, n+ 1);

Algorithm 7. An algorithm to sort π5n with signed prefix reversals, prefix
transpositions, signed suffix reversals, and suffix transpositions when n is
odd

Input: π = π5n , n ≥ 7
π ← π · τp(2, n+ 1) · ρ̄p(1) · τp(π−1

n−5, n+ 1);
for i ← n− 5 down to 4 do

π ← π · ρ̄p(1) · τp(3, n+ 1);

π ← π · ρ̄p(1);
π ← π · τp(π−1

n−3 + 1, n+ 1) · ρ̄p(n− 1) · τp(π−1
1 , n+ 1);

166 C.N. Lintzmayer and Z. Dias

4 Bounds

This section presents the bounds we found for the diameter of the problems we
are interested in this paper. Table 1 shows the known values for the diameter
of these problems and it was filled with the results given by the Rearrangement
Distance Database1 of Galvão and Dias [12].

For the problem of Sorting by Signed Reversals and Transpositions there were
previous results concerning the diameter. The values presented in Table 1 show
that the conjecture of Meidanis et al. [19] that Dρ̄τ (n) =

⌊
n
2

⌋
+ 2 is not true.

Besides that, Dρ̄τ (7) = 6 but dρ̄τ (ῑ7) = 5, Dρ̄τ (9) = 7 but dρ̄τ (ῑ9) = 6, and
Dρ̄τ (10) = 8 but dρ̄τ (¯ι10) = 7. Therefore, the other part of their conjecture,
which stated that Dρ̄τ (n) = dρ̄τ (ῑn), is also not true.

Table 1. Diameter values for each n [12]. A ‘-’ means the value is still unknown.

n Dρτ(n) Dρ̄τ(n) Dρpτp(n) Dρ̄pτp(n) Dτpτs(n) Dρpρs(n) Dρ̄pρ̄s(n) Dρpτpρsτs(n) Dρ̄pτpρ̄sτs(n)

1 0 1 0 1 0 0 1 0 1
2 1 2 1 3 1 1 3 1 2
3 1 3 2 4 2 2 4 1 3
4 2 4 2 5 3 3 6 2 4
5 3 4 3 6 3 4 7 3 5
6 3 5 4 7 4 5 8 4 6
7 4 6 5 8 5 7 10 5 7
8 4 6 5 8 6 8 11 5 7
9 5 7 6 9 6 9 13 6 8
10 5 8 7 10 7 10 14 6 9
11 6 - 7 - 8 11 - 7 -
12 6 - 8 - 8 12 - 7 -
13 7 - 9 - 9 13 - 8 -

Lemma 10. For n ≥ 4, Dρτ (n) ≥
⌈
n
2

⌉
and for n ≥ 9, Dρτ (n) ≤

⌊
2n−2

3

⌋
.

Proof. The lower bound is true because of family π1n , as Lemma 1 shows. The
upper bound is true because Dρτ (n) ≤ min{Dρ(n), Dτ (n)}, since dρτ (π) ≤
min{dρ(π), dτ (π)} for all π. This is true because any sorting sequence for Sorting
by Reversals or for Sorting by Transpositions is also valid for Sorting by Rever-
sals and Transpositions, but it is not necessarily optimum. ��

Lemma 11. For n ≥ 7, Dρpτp(n) ≥
⌈
n
2

⌉
and for n ≥ 1, Dρpτp(n) ≤ n− log 9

2
n.

Proof. The lower bound is true because of family π2n , as Lemma 2 shows. The
upper bound is true because Dρpτp(n) ≤ min{Dρp(n), Dτp(n)}, since dρpτp(π)
≤ min{dρp(π), dτp(π)} for any π. ��

Lemma 12. For n ≥ 5, Dρ̄pτp(n) ≥
⌈
n
2

⌉
+ 1 and for n ≥ 16, Dρ̄pτp(n) ≤

18n
11 +O(1).

1 Available at http://mirza.ic.unicamp.br:8080/bioinfo/index.jsf

http://mirza.ic.unicamp.br:8080/bioinfo/index.jsf

On the Diameter of Rearrangement Problems 167

Proof. The lower bound is true because of family π3n , as Lemma 3 shows. The
upper bound is true because Dρ̄pτp(n) ≤ Dρ̄p(n), since dρ̄pτp(π) ≤ dρ̄p(π) for any
π. Note that a sorting sequence for Sorting by Prefix Transpositions is not valid
for this problem, since it does not handle signs. ��

Lemma 13. For n ≥ 8, Dρpρs(n) ≥ n−1 and for n ≥ 1, Dρpρs(n) ≤ 18n
11 +O(1).

Proof. The lower bound is true because of family π4n , as Lemma 4 shows. The
upper bound is true because Dρpρs(n) ≤ Dρp(n), since dρpρs(π) ≤ dρp(π) for any
π. This is true because any sorting sequence for Sorting by Prefix Reversals is
valid for Sorting by Prefix Reversals and Suffix Reversals. ��

Lemma 14. For n ≥ 5, Dρ̄pρ̄s(n) ≥ n and for n ≥ 16, Dρ̄pρ̄s(n) ≤ 2n− 6.

Proof. The lower bound is true because of family π5n , as Lemma 5 shows. The
upper bound is true because Dρ̄pρ̄s(n) ≤ Dρ̄p(n), since dρ̄p ρ̄s(π) ≤ dρ̄p(π) for
any π. This is true because any sorting sequence for Sorting by Signed Prefix
Reversals is valid for Sorting by Signed Prefix Reversals and Suffix Reversals. ��

Lemma 15. For n ≥ 3,
⌈
n−1
2

⌉
+1 ≤ Dτpτs(n) ≤ n− log 9

2
n.

Proof. The lower bound is true because of family π6n , as Lemma 6 shows. The
upper bound is true becauseDτpτs(n)≤Dτp(n), since dτpτs(π)≤dτp(π) for any π.

��

Lemma 16. For n ≥ 6, Dρpτpρsτs(n) ≥
⌈
n
2

⌉
and for n ≥ 1, Dρpτpρsτs(n) ≤

n− log 9
2
n.

Proof. The lower bound is true because of family π7n , as Lemma 7 shows.
The upper bound is true because Dρpτpρsτs(n) ≤ min{Dρpρs(n) , Dτpτs(n)}
≤ min{Dρp(n) , Dτp(n)}, since dρpτpρsτs(π) ≤ min{dρpρs(π), dτpτs(π)} ≤ min
{dρp(π), dτp(π)} for any π. ��

Lemma 17. For n ≥ 7, Dρ̄pτpρ̄sτs(n) ≥
⌈
n−1
2

⌉
and for n ≥ 1, Dρ̄pτpρ̄sτs(n) ≤

n+ 1.

Proof. The lower bound is true because of families π8n and π5n , as Lemmas 8 and
9 show. The upper bound is true because Dρ̄pτpρ̄sτs(n) ≤ Dρ̄pρ̄s(n) ≤ Dρ̄p(n),
since dρ̄pτpρ̄sτs(π) ≤ dρ̄pρ̄s(π) ≤ dρ̄p(π) for any π. ��

By Table 1, we can see that

1. Dρτ (n) =
⌈
n
2

⌉
for 4 ≤ n ≤ 13;

2. Dρpρs(n) = n for 7 ≤ n ≤ 13;
3. Dρ̄pρ̄s(n) = n+

⌊
n−1
2

⌋
for 5 ≤ n ≤ 10; and

4. Dρpτpρsτs(n) =
⌈
n
2

⌉
+ 1 for 6 ≤ n ≤ 13.

It is also possible to validate that

168 C.N. Lintzmayer and Z. Dias

1. dρpρs(π
4
n) = n for 8 ≤ n ≤ 15;

2. dρ̄p ρ̄s(π
5
n) = n+

⌊
n−1
2

⌋
for 5 ≤ n ≤ 12; and

3. dρpτpρsτs(π
7
n) =

⌈
n
2

⌉
+ 1 for 6 ≤ n ≤ 15.

The next conjectures are directly based on the results shown above.

Conjecture 18. For n ≥ 4, Dρτ (n) = dρτ (π
1
n) =

⌈
n
2

⌉
.

Conjecture 19. For n ≥ 8, Dρpρs(n) = dρpρs(π
4
n) = n.

It is worth noticing that when n = 7, the only two permutations for which
dρpρs(π) = Dρpρs(7) = 7 are π = (7 3 5 2 6 4 1) and π = (7 4 2 6 3 5 1).

Conjecture 20. For n ≥ 5, Dρ̄pρ̄s(n) = dρ̄p ρ̄s(π
5
n) = n+

⌊
n−1
2

⌋
.

Conjecture 21. For n ≥ 6, Dρpτpρsτs(n) = dρpτpρsτs(π
7
n) =

⌈
n
2

⌉
+ 1.

For some problems, we found families whose distance match the known diam-
eters but we did not find algorithms to sort them with the required distances.
However, we also believe in the next conjectures due to the following:

1. Dρ̄pτp(n) = dρ̄pτp(π
3
n) for 2 ≤ n ≤ 10, and when n = 7 the only two

permutations for which dρ̄pτp(π) = Dρ̄pτp(7) = 8 are π = π37 and π =
(+3 +2 +1 −4−5 −6 −7);

2. Dτpτs(n) = dτpτs(π
6
n = ηn) for 1 ≤ n ≤ 12;

3. Dρ̄pτpρ̄sτs(n) = dρ̄pτpρ̄sτs(π
8
n) for n ∈ {8, 10} andDρ̄pτpρ̄sτs(n) = dρ̄pτpρ̄sτs(π

5
n)

for n ∈ {7, 9}.

Conjecture 22. For n ≥ 2, Dρ̄pτp(n) = dρ̄pτp(π
3
n).

Conjecture 23. For n ≥ 1, Dτpτs(n) = dτpτs(ηn) = n−
⌊
n
3

⌋
.

Conjecture 24. For n ≥ 8 and n even, Dρ̄pτpρ̄sτs(n) = dρ̄pτpρ̄sτs(π
8
n). For n ≥ 7

and n odd, Dρ̄pτpρ̄sτs(n) = dρ̄pτpρ̄sτs(π
5
n).

Table 2 summarizes these results. For each sorting problem, represented by
the allowed operations, it shows the lower and the upper bounds for the diameter
and the family whose distance, represented only by d, we conjectured to be equal
to the diameter, represented only by D.

5 Conclusion and Future Work

In this paper we presented results on the diameter of problems for which more
than one rearrangement is allowed. In special, we presented bounds for problems
where prefix and suffix rearrangements are allowed. For the nine problems we
considered, only one had previous results regarding its diameter.

We also gave some conjectures on the exact values of the diameters. We intend
to keep studying these problems and trying to prove these conjectures.

On the Diameter of Rearrangement Problems 169

Table 2. Summary of the results

Operations Lower bound Upper bound Family and conjectured diameter

ρ τ
⌈
n
2

⌉
, n ≥ 4

⌊
2n−2

3

⌋
, n ≥ 9 D(n) = d(π1n) =

⌈
n
2

⌉
, n ≥ 4

ρp τp
⌈
n
2

⌉
, n ≥ 7 n− log9/2 n, n ≥ 1 –

ρ̄p τp
⌈
n
2

⌉
+ 1, n ≥ 2 18n

11
+O(1), n ≥ 16 D(n) = d(π3n), n ≥ 2

ρp ρs n− 1, n ≥ 8 18n
11

+O(1), n ≥ 16 D(n) = d(π4n) = n, n ≥ 8

ρ̄p ρ̄s n, n ≥ 5 2n− 6, n ≥ 16 D(n) = d(π5n) = n+
⌊
n−1
2

⌋
, n ≥ 5

τp τs
⌈
n−1
2

⌉
+ 1, n ≥ 3 n− log9/2 n, n ≥ 1 D(n) = d(π6n), n ≥ 6

ρp τp ρs τs
⌈
n
2

⌉
, n ≥ 6 n− log9/2 n, n ≥ 1 D(n) = d(π7n) =

⌈
n
2

⌉
+ 1, n ≥ 6

ρ̄p τp ρ̄s τs
⌈
n−1
2

⌉
, n ≥ 7 n+ 1, n ≥ 1 D(n) =

⎧⎪⎨
⎪⎩

d(π8n) if n ≥ 8, n even

d(π5n) if n ≥ 7, n odd

Acknowledgements. This work was partially supported by São Paulo Re-
search Foundation - FAPESP (grants 2013/01172-0 and 2013/08293-7) and Na-
tional Counsel of Technological and Scientific Development - CNPq (grants
477692/2012-5 and 483370/2013-4).

References

1. Bafna, V., Pevzner, P.A.: Genome Rearrangements and Sorting by Reversals. In:
Proceedings of the 34th Annual Symposium on Foundations of Computer Science
(FOCS 1993), pp. 148–157 (1993)

2. Bulteau, L., Fertin, G., Rusu, I.: Pancake Flipping is Hard. In: Rovan, B., Sas-
sone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer,
Heidelberg (2012)

3. Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions is Difficult. SIAM Jour-
nal on Computing 26(3), 1148–1180 (2012)

4. Caprara, A.: Sorting Permutations by Reversals and Eulerian Cycle Decomposi-
tions. SIAM Journal on Discrete Mathematics 12(1), 91–110 (1999)

5. Chitturi, B., Fahle, W., Meng, Z., Morales, L., Shields, C.O., Sudborough, I.H.,
Voit, W.: An (18/11)n Upper Bound for Sorting by Prefix Reversals. Theoretical
Computer Science 410(36), 3372–3390 (2009)

6. Chitturi, B., Sudborough, I.H.: Bounding Prefix Transposition Distance for Strings
and Permutations. Theoretical Computer Science 421, 15–24 (2012)

7. Cibulka, J.: On Average and Highest Number of Flips in Pancake Sorting. Theo-
retical Computer Science 412(8-10), 822–834 (2011)

8. Dias, Z., Meidanis, J.: Sorting by Prefix Transpositions. In: Laender, A.H.F.,
Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg
(2002)

170 C.N. Lintzmayer and Z. Dias

9. Elias, I., Hartman, T.: A 1.375-Approximation Algorithm for Sorting by Transpo-
sitions. 375-Approximation Algorithm for Sorting by Transpositions 3(4), 369–379
(2006)

10. Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wastlund, J.: Sorting a
Bridge Hand. Discrete Mathematics 241(1-3), 289–300 (2001)

11. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of
Genome Rearrangements. In: Computational Molecular Biology. MIT Press (2009)

12. Galvão, G.R., Dias, Z.: Computing Rearrangement Distance of Every Permutation
in the Symmetric Group. In: Chu, W.C., Wong, W.E., Palakal, M.J., Hung, C.C.
(eds.) Proceedings of the 26th ACM Symposium on Applied Computing (SAC
22011), pp. 106–107. ACM (2011)

13. Gates, W.H., Papadimitriou, C.H.: Bounds for Sorting by Prefix Reversal. Discrete
Mathematics 27(1), 47–57 (1979)

14. Hannenhalli, S., Pevzner, P.A.: Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals. Journal of the ACM 46(1),
1–27 (1999)

15. Heydari, M.H., Sudborough, I.H.: On the Diameter of the Pancake Network. Jour-
nal of Algorithms 25(1), 67–94 (1997)

16. Labarre, A.: Edit Distances and Factorisations of Even Permutations. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 635–646. Springer, Hei-
delberg (2008)

17. Lintzmayer, C.N., Dias, Z.: On Sorting of Signed Permutations by Prefix and Suffix
Reversals and Transpositions. In: Dediu, A.H., Mart́ın-Vide, C., Truthe, B. (eds.)
Proceedings of the 1st International Conference on Algorithms for Computational
Biology (AlCoB 2014), Tarragona, Spain, pp. 1–12. Springer (2014)

18. Lintzmayer, C.N., Dias, Z.: Sorting Permutations by Prefix and Suffix Versions of
Reversals and Transpositions. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS,
vol. 8392, pp. 671–682. Springer, Heidelberg (2014)

19. Meidanis, J., Walter, M.M.T., Dias, Z.: A Lower Bound on the Reversal and Trans-
position Diameter. Journal of Computational Biology 9(5), 743–745 (2002)

20. Sharmin, M., Yeasmin, R., Hasan, M., Rahman, A., Rahman, M.S.: Pancake Flip-
ping with Two Spatulas. In: International Symposium on Combinatorial Optimiza-
tion (ISCO 2010). Electronic Notes in Discrete Mathematics, vol. 36, pp. 231–238
(2010)

21. Walter, M.E.M.T., Dias, Z., Meidanis, J.: Reversal and Transposition Distance
of Linear Chromosomes. In: Proceedings of the 5th International Symposium on
String Processing and Information Retrieval (SPIRE 1998), pp. 96–102. IEEE Com-
puter Society, Santa Cruz (1998)

Efficiently Enumerating All Connected Induced

Subgraphs of a Large Molecular Network

Sean Maxwell1, Mark R. Chance1, and Mehmet Koyutürk1,2

1 Center for Proteomics and Bioinformatics
2 Department of Electrical Engineering and Computer Science

Case Western Reserve University, Cleveland, Ohio, USA
{sean.maxwell,mark.chance,mxk331}@case.edu

Abstract. In systems biology, the solution space for a broad range of
problems is composed of sets of functionally associated biomolecules.
Since connectivity in molecular interaction networks is an indicator of
functional association, such sets can be identified from connected in-
duced subgraphs of molecular interaction networks. Applications typi-
cally quantify the relevance (e.g., modularity, conservation, disease
association) of connected subnetworks using an objective function and
use a search algorithm to identify sets of subnetworks that maximize
this objective function. Efficient enumeration of connected subgraphs of
a large graph is therefore useful for these applications, and many existing
search algorithms can be used for this purpose. However, there is a lack
of non-heuristic algorithms that minimize the total number of subgraphs
evaluated during the search for subgraphs that maximize the objective
function. Here, we propose and evaluate an algorithm that reduces the
computations necessary to enumerate subgraphs that maximize an ob-
jective function given a monotonically decreasing bounding function.

Keywords: connected subgraph enumeration, protein interaction net-
works, branch-and-bound algorithms.

1 Introduction

For many applications in systems biology, the connected induced subgraphs of
molecular interaction networks are of particular interest since they represent sets
of functionally associated biomolecules. For example, in the context of the sys-
tems biology of complex diseases, medical scientists are interested in identifying
“dysregulated protein subnetworks”, i.e., sets of proteins connected to each other
via protein-protein interactions that exhibit collective differential expression be-
tween different phenotypes [3,4,5,6]. Similarly, gene set enrichment analysis aims
to evaluate the statistical significance of the aggregate disease association of sets
of genes that are defined a priori, and the connected subgraphs of molecular net-
works provide excellent candidate gene sets since they are functionally related
through physical and functional interactions [15]. At the evolutionary scale, sets
of orthologous proteins that induce connected subgraphs on networks of differ-
ent species are shown to be useful in gaining insights into the conservation and
modularity of biological processes across diverse taxa [7,11,16].

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 171–182, 2014.
c© Springer International Publishing Switzerland 2014

172 S. Maxwell, M.R. Chance, and M. Koyutürk

In all of these applications, an objective function is defined to score any given
subnetwork in terms of its relevance to what is being sought by the application.
For example, in the identification of disease-associated subnetworks, connected
subnetworks that contain a large number of disease-associated gene products
are of interest. This scoring function may be computed based on the network
topology alone, or may also incorporate other data, such as gene expression [5],
genome-wide association [10], or sequence homology [11]. Then the problem is
abstracted as one of finding high-scoring (e.g., globally optimal, locally optimal,
or above a certain threshold) subnetworks according to this scoring function.

Due to computational considerations, most methods designed to tackle these
problems implement heuristic algorithms to search the space of connected in-
duced subgraphs of a network. However, it was shown that exhaustive search
may lead to the identification of more biologically relevant patterns as com-
pared to those identified by simple heuristics [4,16,18]. Furthermore, it is often
desirable to identify many high-scoring subnetworks as candidates to be further
evaluated for statistical significance, as opposed to identifying a single subnet-
work with maximum score.

The objective of this work is to develop efficient algorithms for enumerating
all sets of vertices that induce a connected subgraph in a large network. Our
main motivation is to facilitate effective exploration of the subnetwork space of
molecular interaction networks by enabling pruning of the search space in large
chunks. For this purpose, we focus on the case where the scoring function satisfies
a hereditary property. A hereditary property in a graph G = (V,E) is a property
such that if a set S ⊆ V of nodes satisfies the property, then all subsets S′ ⊆ S
also satisfy the property [2]. For example, being a clique is a hereditary property
because any induced subgraph of a clique is also a clique. The bounding functions
used by branch-and-bound algorithms also exploit hereditary properties. For the
purpose of finding all maximal cliques or finding all maximal vertex sets S ⊆ V
that “score” greater than a specified threshold, the hereditary property is useful
for pruning out the search space. This is because, if the property does not hold
for a vertex set S, then no superset of S needs to be evaluated.

Many well established algorithms exist to enumerate connected induced sub-
graphs, such as ReverseSearch [1] and Algorithm447 [8] which are both variations
of depth first search, and new algorithms such as ConSubG[12] are an area of
active research. For the purpose of exploiting a hereditary property to prune out
the search space, conventional depth first enumeration algorithms exhibit an
inherent drawback: These algorithms do not enumerate vertex sets in an order
that will allow evaluation of a vertex set after all of its subsets are evaluated.
In other words, if a connected induced subgraph S ⊆ V does not satisfy the
hereditary property, depth first enumeration methods are likely to needlessly
enumerate many S′ ⊃ S either before or after S is evaluated and rejected. We
refer to such redundant computations as “unnecessary rejections”.

Here, we propose an enumeration algorithm that introduces two novel tech-
niques to reduce the number of unnecessary rejections while searching for con-
nected induced subgraphs satisfying a hereditary property: 1) We use anchor

Efficiently Enumerating Connected Induced Subgraphs 173

vertices to seed the search, with a view to enabling easy tracking of the con-
nectedness of the set of vertices being enumerated. 2) We use a breadth-first
discovery, depth-first extension approach to enumerate sets of vertices, with a
view to enabling evaluation of most vertex sets before their supersets are enu-
merated.

We systematically evaluate the ability of the proposed algorithm in reducing
the number of unnecessary rejections and the resulting earnings in terms of
runtime. Our results show that the proposed method significantly reduces the
number of unnecessary rejections without introducing additional overhead into
the enumeration itself.

2 Methods

2.1 Problem Definition and Observations

Let G = (V,E) be an undirected graph. A set V ′ ⊆ V is said to be a connected
vertex set if the subgraph induced by V ′ is connected, i.e., if for every pair of
vertices {u, v} ∈ V ′, there is a path in G from u to v that goes only through
nodes in V ′. Throughout this work we refer to connected node sets as S where
it is implied that S ⊆ V and S induces a connected subgraph of G.

Let f : 2V → R be a function used to score vertex sets. For example, if we
are interested in identifying maximal cliques, then we can define f(S) = |S| if
S induces a clique, and 0 otherwise. If we are interested in identifying disease-
associated subnetworks such that the disease association of vertex v ∈ V is
quantified as σ(v), then we can define f(S) =

∑
v∈S σ(v)/

√
|S| [9].

We consider a problem setup where we are given a threshold t, and we are
interested in enumerating all connected node sets S ⊆ V such that f(S) ≥ t.
We assume that we are given a bounding function fb : 2V → R such that, for
any S′ ⊇ S, f(S′) ≤ fb(S). We say that node set S is rejected if fb(S) < t. The
bounding function is useful for pruning out the search space using a bottom-up
enumeration algorithm, since fb(S) < t implies f(S′) < t for all S′ ⊇ S, i.e.,
once S is evaluated and rejected, there is no need to generate and evaluate any
superset of S. In general terms, this problem can be viewed as one of generating
all maximal connected vertex sets that satisfy a given hereditary property.

In order to efficiently generate all maximal vertex sets that satisfy a hereditary
property, we need an algorithm to enumerate the solution space correctly and
efficiently. Any algorithm that solves this problem has to satisfy the following
criteria in order to be correct and optimal:

– Completeness: All connected vertex sets S in G for which f(S) ≥ t should
be generated and all generated vertex sets should be connected.

– No redundant subgraph generation: Each connected node set in G should be
generated exactly once.

– Optimal order of enumeration: If S′ and S are connected node sets and
S′ ⊂ S, then S′ should be generated before S so that if fb(S

′) < t we try to
avoid generating S.

174 S. Maxwell, M.R. Chance, and M. Koyutürk

The “completeness” criterion relates to the correctness of the algorithm while the
“no redundant subgraph generation” and “optimal order of enumeration” criteria
relate to efficiency. The “no redundant subgraph generation” criterion asserts
that each candidate solution in the solution space should be considered exactly
once since additional considerations will lead to redundant computation. The
“optimal order of enumeration” criterion, on the other hand, facilitates optimal
pruning of the search space by ensuring that all subsets of a connected node set
are considered before the node set itself is considered.

While depth-first enumeration approaches satisfy the first two criteria, they
lead to many unnecessary rejections because the depth-first order of enumeration
does not satisfy criterion three. Avoiding all unnecessary rejections likely requires
a breadth-first enumeration, but memory can be a limiting factor for breadth-
first approach. Here, we propose a more balanced approach that keeps the size
of the problem manageable while reducing the number of redundant rejections.

2.2 Anchor Vertices

We first observe that the “completeness” and “no redundant subgraph genera-
tion” criteria can be satisfied by selecting a single v ∈ V as an anchor vertex
and enumerating all subgraphs containing v before removing v from G. In this
way each v ∈ V is chosen as a starting point and all subgraphs containing it are
enumerated before v is removed from G. When V ≡ ∅ all subgraphs have been
enumerated. An example of enumerating connected induced subgraphs from an
anchor vertex is shown in Figure 1.

It is clear that, for some S′ ⊂ V , this process generates many S ⊃ S′ before
S′ itself, and thus it does not satisfy the criterion of “optimal order of enumera-
tion”. The number of these unnecessary rejections can be reduced using heuris-
tic choices for the anchor vertex based on measures of centrality (e.g., degree
or betweenness centrality). In this work, we rather focus on reducing unneces-
sary rejections within each search anchored at a given vertex. In the following,
we first describe our approach for reducing unnecessary rejections in the local
search comprised of the anchor vertex and its neighbors, and then generalize our
method to all connected induced subgraphs that contain the anchor vertex.

2.3 Efficient Enumeration of Spokes

Observe that, for a given anchor vertex v ∈ V , the neighbors of v can be treated
as a set because v and any combination of its neighbors induce a connected
subgraph of G. This collection of subgraphs (“spokes”) can be represented as a
binomial tree. A binomial tree is a data structure that can be used to enumerate
all subsets of a set [14]. Any node n of a binomial tree has children that are copies
of all branches rooted at siblings that precede n in the tree. The binomial tree
that enumerates all spokes around the anchor vertex has a root node r labeled
by the anchor vertex v and all descendants are labeled by neighbors of v. Since
all vertices labeling nodes in T are connected to the vertex labeling the root, the

Efficiently Enumerating Connected Induced Subgraphs 175

Fig. 1. Example illustrating the enumeration of all connected induced subgraphs of a
graph using anchor vertices. On the left is the graph as each vertex becomes the anchor
used for enumeration of all connected subgraphs that contain the anchor before it is
subsequently removed from G. On the right are the connected subgraphs generated
from each anchor vertex.

set of vertices that label each path from the root r of T to a node n represents
a connected subgraph of G.

A simple method that reduces unnecessary rejections using a binomial tree
based approach constructs the tree by adding each neighbor vertex to the root
as a new node n, and then adding copies of the branches rooted at each sibling of
n as children of n. Copying a branch terminates whenever the set S represented
by the path does not satisfy fb(S) ≥ t. The resulting local search is similar in
spirit to the set enumeration tree (SE-tree) search of Rymon [19]. However, our
approach is more closely related to the binomial tree because we construct an
explicit tree where the set is defined by the path from the root to a node in the
tree. It is important to note that depending on how rejections occur, T may no
longer meet the definition of a binomial tree so moving forward we will refer to
T as a local search tree. An example of constructing a local search tree is shown
in Figure 2.

The local search method can be extended to vertices beyond the direct neigh-
bors of the anchor vertex by following a path of T and treating the vertices that
label the path as an anchor set around which another local search tree is con-
structed as shown in Figure 3. This leverages the local search for each anchor set

176 S. Maxwell, M.R. Chance, and M. Koyutürk

X

Fig. 2. Creating the local search tree T . (A) The input graph G with the anchor vertex
A. (B) Exploring D with no previous branches yields the D branch. (C) Exploring C
with the previous D branch evaluates ACD which is rejected resulting in branches C
and D. (D) Exploring B with previous branches evaluates ABD and ABC (avoiding
ABCD which contains the previously rejected ACD).

but the information is not used globally. In order to use the information from
previous rejections globally we must modify our procedure as outlined in the
following section.

2.4 Efficient Enumeration of All Connected Subgraphs

With slight modification we can combine the local search tree strategy with a
conventional depth first approach to enumerate all subgraphs that contain the
anchor vertex. Rather than using neighbors to construct the tree, we use the
branches generated by depth first search through each neighbor to generate
the tree. The top level procedure performs the depth portion of the search and
it marks all neighbors as visited so they cannot be reached by continued depth
search. The search space of neighbors is explored by the procedure that builds
the local search tree from depth branches which we consider the breadth proce-
dure. The only modification required to ensure correctness is that the breadth
procedure stops cloning branches at nodes labeled by unvisited vertices adjacent
to the vertex labeling the node that is appending the branch. This method rep-
resents our solution to the general case and is formalized in the Breadth-first
Discovey, Depth-first Exploration (BDDE) algorithm. An example of the tree
constructed by BDDE is shown in Figure 4 (C). An example of why the stop
condition is necessary is show in Figure 4 (B).

2.5 Correctness

The following theorems are based on supporting lemmas in the supplemen-
tary materials1. Theorem 1 guarantees that our method satisfies the “complete-
ness” and “no redundant subgraph generation” criteria during exhaustive enu-
meration, i.e, when fb is satisfied by any S. Theorem 2 guarantees that our
method satisfies the “optimal order of enumeration” criterion during exhaustive
enumeration. Theorem 3 guarantees that our method satisfies the “complete-
ness” criterion when fb is selective.

1 http://statler.case.edu/smaxwell/alcob2014/supplement.pdf

http://statler.case.edu/smaxwell/alcob2014/supplement.pdf

Efficiently Enumerating Connected Induced Subgraphs 177

Fig. 3. Example illustrating the key idea of anchor sets. Initial tree T1 generated from
anchor vertex A in G (top) is extended by following path ACD in T1 and treating the
vertex set {ACD} as an anchor set. The anchor set can be isolated in G (bottom) the
same way as an anchor vertex and a new local search tree is constructed anchored at
ACD and appended to T1 resulting in T2. In this way all S ⊆ V that contain the anchor
vertex can be enumerated.

Theorem 1. Given an input graph G, an anchor vertex v ∈ V and a function
fb s.t. for any S, fb(S) ≥ t, BDDE uniquely enumerates all S ⊆ V containing
v.

Proof: By Lemma 4 we know that the set represented by any path P(nk) in T
induces a connected subgraph of G and by Lemma 5 we know that every path
in T represents a unique set. By Lemma 7 we know that all S ⊆ V containing
v are represented by a path P(nk) in T . Therefore, we can conclude that be-
cause BDDE enumerates all paths of T , BDDE uniquely enumerates all S ⊆ V
containing v. �

Theorem 2. Given an input graph G, an anchor vertex v ∈ V and a function
fb where fb(S) ≥ t for any S ⊆ V , BDDE enumerates all connected induced
subgraphs of G containing v in an order such that all S′ ⊂ S containing v are
enumerated before S.

178 S. Maxwell, M.R. Chance, and M. Koyutürk

(C)

Fig. 4. (A) Graph G with anchor vertex A highlighted. (B) The enumeration tree
generated by appending an un-pruned branch generated from S =AC to the branch
generated through S =AB which exhibits several redundant instances of G and E. (C)
The tree generated by pruning the branch generated through S =AC as it is added to
the branch generated through S =AB and subsequent children.

Proof: By Theorem 1 we know that all S ⊆ V containing v that induce a
connected subgraph of G are enumerated, and by Lemma 8 we know that any
S′ ⊂ S containing v must be generated before S. �

Theorem 3. Given an input graph G, an anchor vertex v and a function fb, if
fb(S

′) < t all S
⊃ S′ are still enumerated by BDDE.

Proof: We know by Theorem 1 that all S ⊆ V containing v are enumerated
by BDDE when no rejections occur, and by Lemma 9 we know that when a
rejection of S′ occurs it only eliminates S ⊃ S′. Therefore, we conclude that if
an S′ is rejected all S
⊃ S′ are still enumerated. �

3 Experimental Results

In order to systematically evaluate the performance of BDDE, we define a
problem with a simple objective function that allows investigation of the ef-
fect of various parameters on performance. For this purpose, we use real-world
networks to ensure that the network topology is practically relevant. We as-
sign positive weights to all vertices of each network from a Gaussian distribu-
tion with mean m and standard deviation ρ. We define the objective function
f(S) = 1/

∑
v∈S w(v), where w(v) denotes the weight of vertex v. Then, for a

given threshold t and a maximum subgraph size k, we search for all connected

Efficiently Enumerating Connected Induced Subgraphs 179

subgraphs S ⊆ V with |S| ≤ k and f(S) ≥ 1/t (note 1/t is used because we
want to enumerate all subgraphs with a total weight less than t).

Datasets. In the experiments reported in this section, we utilize two real-world
networks: 1) A citation network generated by Leskovec et al. [17] from the on-line
arXiv journal, which consists of 5,241 vertices and 28,958 edges. 2) The protein-
protein interaction (PPI) network obtained from the Human Protein Reference
Database (HPRD) [13], which consists of 9,455 vertices and 37,080 edges.

Results. For each network, we set m = 10 and generate ten instances each
for different values of ρ ranging from 1 to 9. On each instance, we perform
enumerative search using the proposed algorithm and a standard DFS-based
algorithm for t ranging from 5 to 50 for arXiv and 5 to 40 for HPRD. For each
combination of ρ and t, we report the average of the performance measures
across the ten randomized instances. The results for the HPRD network are
shown in Figure 5. The results for the arXiv network follow similar trends and
are available in the online supplemental materials.

Figure 5 shows the rejection rate for each algorithm. Here, rejection rate is
defined as the fraction of subgraphs S with f(S) < 1/t among all subgraphs
that are enumerated. The rejection rate for BDDE is consistently lower than
that of DFS though the relationship is more obvious at higher values of ρ. This
relationship between ρ and rejection rate is indeed expected, since pruning is
less effective when the weight distribution is more uniform across vertices. At
the extreme case, when ρ=0 (all vertices have equal weight), only the leaf nodes
of the enumeration tree are rejected and neither algorithm can take advantage
of the knowledge on smaller subgraphs to prune out larger subgraphs. But as ρ
grows, the enumeration tree becomes more imbalanced, and the benefit of the
order of generation implemented by BDDE becomes more apparent.

Our computational tests also show that the two algorithms have similar run-
times for smaller values of the threshold t (when larger subgraphs are less likely to
satisfy the objective criterion) and smaller values of ρ (when the vertex weights
are more uniform). However, for larger values of t and ρ, BDDE consistently
outperforms the DFS-based method. While runtime comparisons are largely im-
plementation dependent we find this is a positive outcome and include additional
figures and analysis in the supplementary material.

4 Conclusion

We have investigated the problem of reducing the number of subgraphs eval-
uated while enumerating all connected induced subgraphs S ⊆ V that satisfy
a hereditary property. Our proposed method displays a significant decrease in
total number of subgraphs evaluated during enumeration compared to a classi-
cal depth first branch and bound approach. In addition, Theorems 1, 2 and 3
provide proof of correctness that all connected induced subgraphs S that satisfy
fb(S) ≥ t are enumerated. However, due to the potential for our method to use
space exponential to the maximum size of S being enumerated, our method is
best suited to enumerating all |S| ≤ k from G where k is chosen appropriate to
the problem and the available memory.

180 S. Maxwell, M.R. Chance, and M. Koyutürk

Algorithm 1. The BDDE algorithm. Enumerates all S that contain anchor
vertex v and satisfy fb(S) ≥ t. Returns the root node of the enumeration tree
T . Entry point is DEPTH(∅,v,[]).
1: procedure BREADTH(S,n, U)
2: if vn ∈ U then
 Prune branch by stop condition
3: return null
4: end if
5:
6: S′ ← S ∪ vn
 Prune branch by bounding function
7: if fb(S

′) < t then
8: return null
9: end if
10:
11: n′ ← Υ (vn)
 Create a new tree node labeled by vn
12: for all {n∗ : nn∗ ∈ B} do
 Recursively copy child branches
13: n′′ ← BREADTH(S′, n∗, U)
14: if n′′ �= null then
15: B ← B ∪ n′n′′
 Append child branch
16: end if
17: end for
18: return n′

19: end procedure

20: procedure DEPTH(S, v, β)
21: S′ ← S ∪ v
22: if fb(S

′) < t then
23: return null
24: end if
25: n ← Υ (v)
26: β′ ← []
27: for i = 1 to |β| do
28: n′ ← BREADTH(S′, β[i], χn)
29: if n′ �= null then
30: B ← B ∪ nn′

31: push(β′, n′)
32: end if
33: end for
34: for all v ∈ χn do
 Note: Derive χn from S and v
35: n′ ← DEPTH(S′, v, β′)
36: if n′ �= null then
37: B ← B ∪ nn′

38: push(β′, n′)
39: end if
40: end for
41: return n
42: end procedure

Efficiently Enumerating Connected Induced Subgraphs 181

Fig. 5. Rejection rate analysis for enumerating all subgraphs up to size 4 satisfying
f(S) ≥ 1/t in the HPRD network. Each pane plots the average rejection rate (fraction
of subgraphs S with f(S) < 1/t among all subgraphs that are enumerated) for each
algorithm versus threshold 5 ≤ t ≤ 40 where the node scores were sampled from a
Gaussian distribution with mean m=10 and standard deviation 1 ≤ ρ ≤ 9.

Acknowledgements. We would like to thank Harold Connamacher for his
invaluable feedback on our method and related work. This work is supported
in part by the Case Comprehensive Cancer Center (Grant P30-CA-043703) and
US National Science Foundation (Grant CCF-0953195). This publication was
also made possible by the Clinical and Translational Science Collaborative of
Cleveland, UL1TR000439 from the National Center for Advancing Translational
Sciences (NCATS) component of the National Institutes of Health and NIH
roadmap for Medical Research. Its contents are solely the responsibility of the
authors and do not necessarily represent the official views of the NIH.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathe-
matics (1993)

2. Bollobas, B.: Hereditary properties of graphs asymptotic enumeration global struc-
ture and colouring. Documenta Mathematica, 333–342 (1998)

182 S. Maxwell, M.R. Chance, and M. Koyutürk

3. Chowdhury, S., Koyuturk, M.: Identification of coordinately dysregulated subnet-
works in complex phenotypes. In: Berger, B. (ed.) Pacific Symposium on Biocom-
puting, pp. 133–144 (2010)

4. Chowdhury, S., Nibbe, R., Chance, M., Koyuturk, M.: Subnetwork state func-
tions define dysregulated subnetworks in cancer. Journal of Computational Biol-
ogy 18(3), 263–281 (2011)

5. Chuang, H.Y., Lee, E., Yu-Tsueng, L.D., Ideker, T.: Network-based classification
of breast cancer metastasis. Molecular Systems Biology (2007)

6. Dao, P., Wang, K., Collins, C., Ester, M., Lapuk, A., Sahinalp1, S.C.: Optimally
discriminative subnetwork markers predict response to chemotherapy. Bioinformat-
ics (July 2011)

7. Flannick, J., Novak, A., Srinivasan, B., McAdams, H., Batzoglou, S.: Graemlin:
General and robust alignment of multiple large interaction networks. Genome Re-
search (2006)

8. Hopcroft, J., Tarjan, R.: Efficient algorithms for graph manipulation. Communi-
cations of the ACM 16(6) (1973)

9. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1),
S233–S240 (2002),
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.s233

10. Jia, P., Zheng, S., Long, J., Zheng, W., Zhao, Z.: dmGWAS: dense module search-
ing for genome-wide association studies in protein-protein interaction networks.
Bioinformatics 27(1), 95–102 (2011)

11. Kalaev, M., Smoot, M., Ideker, T., Sharan, R.: Networkblast: comparative analysis
of protein networks. Bioinformatics (2008)

12. Karakashian, S., Choueiry, B.Y., Hartke, S.G.: An algorithm for gener-
ating all connected subgraphs with k vertices of a graph (May 2013),
http://www.math.unl.edu/~shartke2/math/papers/k-subgraphs.pdf

13. Kesheva, P., et al.: Human protein reference database: 2009 update. Nucleic Acids
Research 37, 767–772 (2009)

14. Knuth, D.: The Art of Computer Programming, Combinatorial Algorithms Part
1, vol. 4. Addison-Wesley (2012)

15. Konga, B., Yanga, T., Chenb, L., Qin Kuanga, Y., Wen Gua, J., Xiaa, X., Chenga,
L., Hai Zhang, J.: Proteinprotein interaction network analysis and gene set enrich-
ment analysis in epilepsy patients with brain cancer. Journal of Clinical Neuro-
science (2013)

16. Koyutürk, M., Kim, Y., Subramaniam, S., Szpankowski, W., Grama, A.: Detecting
conserved interaction patterns in biological networks. Journal of Computational
Biology (2006)

17. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM Transactions on Knowledge Discovery from Data (2007)

18. Patel, V., Gokulrangan, G., Chowdhury, S., Chen, Y., Sloan, A., Koyutrk, M.,
Barnholtz-Sloan, J., Chance, M.: Network signatures of survival in glioblastoma
multiforme. PLOS Computational Biology 9 (2013)

19. Rymon, R.: Search through systematic set enumeration. Tech. rep., University of
Pennsylvania (August 1992)

http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.s233
http://www.math.unl.edu/~shartke2/math/papers/k-subgraphs.pdf

On Algorithmic Complexity

of Biomolecular Sequence Assembly Problem

Giuseppe Narzisi1, Bud Mishra1,2, and Michael C. Schatz1

1 Simons Center for Quantitative Biology
One Bungtown Road, Cold Spring Harbor Laboratory, NY, 11724, USA

2 Courant Institute of Mathematical Sciences, New York University
New York, NY, 10012, USA

{gnarzisi,mschatz}@cshl.edu, mishra@nyu.edu

Abstract. Because of its connection to the well-known NP-complete
shortest superstring combinatorial optimization problem, the Sequence
Assembly Problem (SAP) has been formulated in simple and sometimes
unrealistic string and graph-theoretic frameworks. This paper revisits
this problem by re-examining the relationship between the most com-
mon formulations of the SAP and their computational tractability under
different theoretical frameworks. For each formulation we show examples
of logically-consistent candidate solutions which are nevertheless unfea-
sible in the context of the underlying biological problem. This material
is hoped to be valuable to theoreticians as they develop new formula-
tions of SAP as well as of guidance to developers of new pipelines and
algorithms for sequence assembly and variant detection.

Keywords: Genome Assembly, Sequence Assembly Problem, Optimal-
ity, NP-complete Problem.

1 Introduction

The ability to sequence a genome and reconstruct its DNA sequence is changing
human genetics research [14]. Recent advances in DNA sequencing technology
have driven the cost of sequencing a complete human genome to below $1000 US1,
and the potential applications to biology and medicine have rekindled enormous
interest in several classical algorithmic problems at the core of genomics and
computational biology, especially the DNA sequence assembly problem (SAP).
Two decades back, in the context of the Human Genome Project, the problem
had received unprecedented scientific prominence: its computational complexity
and intractability were thought to have been well understood; various competi-
tive heuristics, thoroughly explored and the necessary software, properly imple-
mented and validated. However, recent studies on the experimental validation
of de novo assemblers, have highlighted several limitations [19,4,2].

The process of reducing/relating the problem of reconstructing the genome
sequence into a well-defined computer science problem is not straightforward: for

1 http://dx.doi.org/doi:10.1038/nature.2014.14530

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 183–195, 2014.
c© Springer International Publishing Switzerland 2014

http://dx.doi.org/doi:10.1038/nature.2014.14530

184 G. Narzisi, B. Mishra, and M.C. Schatz

instance, limited or incomplete knowledge of the original biological problem, can
lead to erroneous formulations. Consequently, a perfectly well-defined “optimal
solution” in the computational setting may turn out to be irrelevant, infeasible or
incorrect, when translated back to the original biological setting. The sequence
assembly problem is in fact a wicked2 problem: incomplete, contradictory, chang-
ing requirements (e.g., genome structure) lead to incomplete and biologically
incorrect formulations.

This paper carefully examines the most popular formulations for SAP over the
last 20 years. Each formulation is rigorously defined. Similarity and differences
among paradigms are explained, demonstrating a strong connection between the
different formalisms. More importantly, we present examples of logically consis-
tent solutions in each of this formulations which are intractable or unfeasible in
the context of biology.

2 The Dovetail-Path Framework

The dovetail-path framework was first introduced by Myers in [16]. The output of
a sequencing project consists of a set of reads F = {r1, r2, . . . , rN}, where each
read ri is a string over the alphabet Σ = {A,C,G, T }. Each read is associated
a pair of integers (si, ei), i ∈ [1, |F |] where si and ei are respectively the starting
and ending points of the read ri in the reconstructed string R (to be computed
by the assembler), such that 1 ≤ si, ei ≤ |R|. The order of si and ei encodes the
orientation of the read (whether ri was sampled from Watson or Crick strand of
the DNA molecule).

The overlaps between pairs of reads capture where the suffix of the first
matches the prefix of the second within some maximum error rate, and may
be computed using the Smith-Waterman algorithm [24] with match, mismatch
and gap penalty scores dependent on the error model of the sequencing technol-
ogy. Thanks to the high throughput of next-generation sequencing technology,
overlaps computed using exact-match are now adequately informative for short
reads, although emerging third-generation long read sequencing requires in-exact
matching algorithms [11,23]. The complete description of an overlap π is given
by specifying:

1. the substrings π.A[π.sA, π.eA] and π.B[π.sB , π.eB] of the two reads that are
involved in the overlap;

2. the offsets from the left-most and right-most positions of the reads π.Ahang

and π.Bhang ;

3. the relative directions of the two reads: Normal (N), Innie (I);

4. a binary predicate suffixπ(r) on a read r such that:

suffixπ(r) =

{
true iff suffix of r participates in the overlap π
false iff prefix of r participates in the overlap π

(1)

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 185

A π.sAAπ.e Aπ.e

Bπ.s π.eB Bπ.s π.eB

hangA
B hang

B

hangA
B hang

B

A A

Normal

π
Innie

.s

Fig. 1. Two possible overlaps (illustration): left overlap is normal (with both reads
pointing to the same direction) right overlap is innie (with both reads pointing against
each other); The suffix predicate for the left (normal) overlap is s.t. suffixπ(A) = true
and suffixπ(B) = false.

Figure 1 illustrates two possible overlaps. Because of the double-stranded
nature of the DNA molecule, each read can be sampled from either the Watson
or Crick strands and they have different orientation.

Definition 1 (Layout). The layout L associated to a set of reads F is defined
as:

LF = r1
π1� r2

π2� r3
π3� . . .

πN−1� rN (2)

Informally a layout is simply a sequence of reads with each neighboring read
pair connected by overlap relations. The previous definition assumes that there
are no containments3; without any loss of correctness or generality, contained
reads can be initially removed (in a preprocessing step) and then reintroduced
later after the layout has been created. Among all the possible layouts (possibly,
exponential in the number of reads), it is imperative to efficiently identify the
ones that are consistent according to the following definition:

Definition 2 (Consistency Property). A layout L is consistent if the fol-
lowing property holds for i = 2, . . . , N − 1:

πi−1� ri
πi� iff suffixπi−1

(ri)
= suffixπi
(ri) (3)

The consistency property imposes a directionality for traversing the sequence
of reads in the layout. The directionality of each internal read in the layout must
be preserved so that the left and right overlaps have opposite values for the suffix
predicate. Figure 2 shows an example of layout arising from 7 overlapping reads.

Appealing to parsimony, we are typically interested in a layout whose length
is minimal (although we will see that this assumption is biologically incorrect).
The following theorem shows the correlation between the length of a layout and
the sizes of its overlaps. Let us define the weight of a layout L to be the sum

2 A problem is wicked, if from its original formulation, one is led to a “correct” solution
that reveals the incorrectness, incompleteness or inconsistencies in the formulation
of the problem [22].

3 Reads that are proper subsequences of another read.

186 G. Narzisi, B. Mishra, and M.C. Schatz

B
C

D
E

F
G

A

sp sp sp sp sp spsp B C D E F GA

Fig. 2. Example of layout for a set of fragments F = {A,B,C,D,E, F, G} with se-
quence of overlaps πN

(A,B), π
I
(B,C), π

N
(C,D), π

I
(D,E), π

N
(E,F), π

N
(F,G)

of the lengths of its overlaps, weight(L) =
∑

π∈L length(π), then the following
theorem holds [25,26]:

Theorem 3 (Min-length reconstruction). A layout of maximum weight re-
sults in a reconstruction of minimum length.

3 Shortest Superstring Problem (SSP)

Researchers first approximated the shotgun sequence assembly problem as one of
finding the shortest common superstring of a set of sequences. This formulation
was encouraged by the results of the previous theorem and the growing body of
literature on efficient algorithms to solve the SSP .

Definition 4 (Shortest Superstring Problem). Given a set of strings S =
{r1, r2, . . . , rn} find the shortest string R (reconstruction) such that ∀i, ri is a
substring of R.

This formulation led to a simple theoretical abstraction, but by being obliv-
ious to how biological sequences are organized by evolution, it often yielded
biologically implausible and incorrect solutions. Its inability to correctly model
the assembly problem is owed to a multitude of reasons, but primarily because:

1. the shortest-superstring formulation does not account for possible errors aris-
ing during the process of sequencing the fragments,

2. it does not model fragment orientation (the sequence source can be one of
the two DNA strands), and

3. most importantly, it fails in the presence of repeats, as it encourages repeat-
induced compressions.

Elaborating on the last point it is of interest to consider Richard Karp’s
statement in 2003 [9]: The shortest superstring problem [is an] an elegant but
flawed abstraction: [since it defines assembly problem as finding] a shortest string

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 187

containing a set of given strings as substrings. Figure 3 shows an example of
the kind of errors that such formulation could lead to. Since strings contained
inside a repeat regions cannot be disambiguated, multiple copies of a repeat are
compressed into a single one.

CA

A

B

M
is

−
as

se
m

bl
y

C
or

re
ct

 A
ss

em
bl

y rm rm

l rB C

R2R1

rm

1R 2R

l

l l

Fig. 3. Example of compression: the two copies of repeat (R1 and R2) are compressed
into one leading to a shorter but misassembled sequence

Because of the theoretical computational intractability (NP-completeness [5])
of the SSP , most of the approaches for genome sequence assembly have resorted
to greedy and heuristic methods that, by definition, restrict themselves to near-
optimal solutions, where the “nearness” may be guaranteed within a multiplica-
tive competitiveness factor. The best known greedy algorithm for the SSP has
an approximation factor of 2 2

3 [1].

4 Graph-Theoretic Formulation

Differently from string-based approaches, graph-theoretic formulations convert
sequence assembly into solving specific problems for general graphs constructed
using the overlap information of the input set of reads. This mapping has the
advantage of allowing us to apply the large collection of algorithms and heuris-
tics that have been developed in graph theory for many decades. However, this
formulation still fails to completely cure the problems and limitations of the
SSP model, since it can produce mis-assembly errors (as shown later). In this
section we introduce the two most used graphical models for the sequence assem-
bly problem: string graph and De Bruijn graph. But before formally specifying
these graphs, we need to give a few basic definitions.

188 G. Narzisi, B. Mishra, and M.C. Schatz

4.1 Strings, Overlaps and Overlap Graph

Let x and y be two strings over the alphabet Σ. Let us denote the length of x by
|x|. The ith character of x is denoted by x[i]. If 1 ≤ i ≤ j ≤ |x|, we use x[i, j] to
denote the substring of x starting at position i and ending at position j. Given
two strings x and y over the alphabet Σ, we say that there is an overlap between
x and y, and we denote it with x � y, if there exists a suffix of x matching4 a
prefix of y. Let us denote with o(x, y) the length of the longest such match.

Definition 5 (Overlap Graph). Given a set of strings S = {r1, r2, . . . , rn}
and a minimum overlap threshold value k, the overlap-graph for S is a weighted
bidirected graph OGk = (V,E) where:

– V = S = {r1, r2, . . . , rn};
– E = {(ri, rj) : (ri � rj) ∧ o(ri, rj) ≥ k, ri, rj ∈ V };
– the weight of each edge (ri, rj) is w(ri, rj) = |sj | − o(ri, rj).

The overlap graph [16] represents all the relationships that can be inferred
between the strings in the set S. Note that |rj | − o(ri, rj) is the length of the
overhang5 for string rj , Since each vertex/string ri has an orientation, thus every
edge has two orientations, one with respect to each of its endpoints. Because the
graph is bidirectional, we need to describe how to explore the nodes of the graph
to generate the set of valid paths.

Definition 6 (Path validity). A path P = 〈r1
e1� r2

e2� r3
e3� . . .

em−1� rm〉 in
G is valid if ∀i, 2 ≤ i ≤ m− 1, ei−1 and ei have opposite directions at ri.

Note that this definition is equivalent to the consistency property for a layout.
In order to traverse a node in the graph we need that the entry edge and the
exit edge have opposite directions at the node. So we are allowed to enter a node
x even if the edge ei is pointing out of the node as long as we use an edge ej
with opposite direction to ei when we exit the node (see figure 4 for an example
of overlap graph).

Given any path P in the overlap graph, we associate a path-string to P that
consist of the concatenation of the strings according to the order in the path,
where only one copy of the overlap is kept. Clearly the weight of a path P is
given by the sum of the weights of its edges:

w(P) =
∑

(ri,rj)∈P

w(ri, rj) =
∑

(ri,rj)∈P

(|rj | − o(ri, rj)) (4)

Note that because of the weight function associated to the edges of the graph,
a path of minimum weight defines a path-string of minimum length.

4 The matching does not have to be perfect and it can be approximated allowing up
to ε percent error on real data.

5 A relaxation to an overlap, such that some small number of bases at the beginning
or end of the read are excluded from the overlap region, typically because of a high
error rate.

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 189

4.2 String Graph

The size of the overlap graph can be dramatically reduced by a sequence of
transformations whose goal is to eliminate edges that can be transitively inferred.

Definition 7 (transitively inferable edge). If x
e1� y

e2� z and x
e3� z are

mutually consistent overlaps among nodes x, y and z then the edge e3 is said
to be transitively inferable from the sequence of edges e1 and e2.

Informally the overlap between strings x and z is implied by the composi-
tion of the overlaps between x, y and z. It is important to note the edges must
be mutually consistent: entry edge and the exit edge must have opposite direc-
tions. The string graph is a particular graph where all the contained string and
transitively inferable edges are removed [17].

Definition 8 (String Graph). Given a set of strings S = {r1, r2, . . . , rn} and
a minimum overlap threshold value k, the string graph SGk for S is obtained
from the overlap graph OGk by removing contained strings (strings that are
substrings of other strings) and transitively inferable edges [17].

Such transformation can be computed in polynomial time using the algorithm
proposed by Myers in [17]. In order to correctly apply the transitivity reduction
step to the graph, it is important to first mark all transitively inferable edges and
then remove all marked edges in a distinct phase. This is because this process is
not Church-Rosser [3] and any arbitrary strategy would fail to remove some of
the transitively inferable edges. Equipped with the notion of string graph, the
sequence assembly problem can be formulated as follows:

Definition 9 (Sequence Assembly Problem). Given a set of fragment or
reads S = {r1, r2, . . . , rn} and a minimum overlap threshold k, the Sequence
Assembly Problem (SAP) is the problem of finding an Hamiltonian Path in the
string graph SGk for S such that its weight is minimum.

The problem is clearly a special case of the Traveling Salesman Problem (TSP)
with the following two differences: (1) instead a looking for a Hamiltonian cycle
we look for an Hamiltonian path; (2) we work with bi-directed graphs instead of
undirected or directed graphs. However, for circular genomes (such as plasmids
and bacterial genomes), the first difference does not apply anymore as we need
to find an Hamiltonian cycle as well.

Note that this formulation differs from the one presented in [18]. Specifically
Nagarajan and Pop define the sequence assembly problem as one of finding a
generalized Hamiltonian path (every node is visited at least once) of minimum
weight in the string graph of the reads. This is in accordance to the solution
proposed in [17] where they seek a cyclic tour. In such model each edge has
assigned a selection constraint c that says how many times the edge should
appear in the target solution: exact edge (c = 1), required edge (c ≥ 1) and
optional edge (c ≥ 0). Note that, even if we allow a read to be potentially used

190 G. Narzisi, B. Mishra, and M.C. Schatz

more than once, the appeal to parsimony (min weight) could compromise the
correctness of the layout.

Before discussing the complexity of this problem it is important to observe
that this graph-theoretical formulation suffers from the same kind of problems
of the shortest superstring approach. Figure 4 show an example of string graph
where all the possible Hamiltonian paths create mis-assembly error due to the
presence of a repeat. The compression error is due to the fact that repeats can
induce false positive transitively inferable edges. For example consider the reads
3, 7 and 8 in figure 4, we have that 7 � 3, 3 � 8 and 7 � 8, so the edge 7 � 8
is removed with the negative effect to merging together reads that belong to two
different copies of the repeat R2. In particular, after removal of the transitively
inferable edges, there is more than one path that traverses all the nodes and it
always produces mis-assembled layouts. Note that edge 2 � 6 cannot be removed
because, although there are edges 2 � 7 and 7 � 6, the directions at node 7 do
no match and so it cannot be traversed (the edges are not mutually consistent).

This example also shows another problem associated to this framework. Even
if it would be possible to efficiently compute the Hamiltonian path, the string
graph might have many different Hamiltonian paths (as in this example) of
minimum length and all these paths represent a possible reconstruction of the
genome. Additional information, such as mate-pairs, can sometimes be used to
help resolve this ambiguity, although since mate-pairs are generally at most 10
to 20kbp long, in general they do not fully resolve the ambiguity except for the
smallest genomes lacking any large repeats. The problem of finding a minimum
weight Hamiltonian path in a directed or undirected graph is known to be NP-
complete. Since directed graphs are special types of bidirected graphs, we have:

Theorem 10. The Sequence Assembly Problem is NP-complete.

4.3 De Bruijn Graph

In a de Bruijn graph the notions of nodes and edges are somehow inverted
compared to the overlap graph. A de Bruijn graph is formally defined as follows.

Definition 11 (De Bruijn Graph). Given a set of strings S = {r1, r2, . . . , rn}
and a minimum overlap threshold value k, the de Bruijn graph for S is a directed
graph BGk = (V,E) where:

– V = {d ∈ Σk | ∃i s.t. d is a substring of ri ∈ S};
– E = {(di, dj) : if the prefix of length k − 1 of di is a suffix of dj};

Informally the set of vertices of BGk is the set of k-mers for the set of input
strings S (the spectrum L), and the edges correspond to their perfect k − 1
overlap. Clearly every read ri ∈ S is translated into a path composed of (|ri|−k)
nodes. Let us call such a path a walk and define it w(ri). Also note that there is
no weight associated to the edges (the overlap weight is k − 1 for all the edges
and it can be omitted). Specifically, we create one node for each k-mer in the set
L and a directed edge from node x1 to node x2 if the k−1 suffix of x1 is a prefix

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 191

Layout generation

1 3

A A

R 1

B

2

A

7

6

5

4

8

3

7

4

6

58

2 3

7

4

6

58

2

1

2 4

53

6

A A A A

R 1 R 2

B B

7

8

1 1

Transitivity reduction

Graph construction

String−GraphOverlap−Graph

1

A

2

6

5

4

A A

7

8

M
is−

assem
bly 1

M
is−

assem
bly 2

R

B

1

T
rue layout

3

Fig. 4. Example of mis-assembly using a string graph: the removal of the transitively in-
ferable edges (in red) produces a string graph where every (Hamiltonian) paths through
all nodes creates mis-assemblies. The layouts for two of these paths are shown at the
bottom: the first one with compression and the second one with both compression and
inversion.

192 G. Narzisi, B. Mishra, and M.C. Schatz

of x2 and we label the edge with the remaining rightmost string in x2. Hence,
in this graph each edge corresponds to one of the k-mers and so the general
problem consists of finding a path that visits all the edges exactly once, namely,
an Eulerian path. The string S corresponding to a path in this graph can be
reconstructed by concatenating k-mer sequence of the first node, in order, with
all the labels of the edges in the path.

The de Bruijn Graph framework is currently the most popular approach for as-
sembling the shorter reads coming from next-generation sequencing technologies
such as Illumina [6,12]. Moreover, it is now becoming more and more impor-
tant to model the haplotyipic structure of DNA, specifically in the context of
detecting DNA mutations such as short insertions and deletions of bases (IN-
DELs). Recent works [21,13,8] demonstrate how sequence assembly approaches
are the most promising methods for this task. However, repetitive structures,
in particular near-perfect repeats, within genomes can produce artifacts in the
assembly graphs that mislead such methods to make false-positive calls. Figure
5 shows an example of a near-perfect repeat that can be misinterpreted as a
large deletion. The key observation is that the beginning of this sequence is a
nearly perfect 69bp repeat. There is just 1bp difference between the two copies
that are 15bp apart. The sequence is segmented as 19-C-49-A-14-19-T-49-G-21
where 19 and 49 are 19bp and 49bp perfect repeats, separated by a 15bp unique
sequence (A, C, T, G are the regular bases). Since the longest exact repeat is
49bp long, one would expect that using k-mer=55 should be large enough to
correctly assemble reads sampled from this sequence. However, if the sequencing
data also contains reads with sequence 19-C-49-G, it can be wrongly interpreted
as a long 84bp deletion of the A-14-19-T-49 segment when instead it is just a sin-
gle base change. Since the de Bruijn graph is constructed using perfect matches
of length k − 1 = 54 (no mismatches allowed), the only way to connect all the
55-mers from these two sequences is to construct a false bubble jumping form
the first copy of the near-perfect repeat to the second copy. When aligned to
the reference, the sequence associated to the branch will show a false-positive
deletion.

Fig. 5. Example of false bubble in a De Bruijn graph

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 193

Finally, it is important to note that in the de Bruijn framework, similarly to
the String Graph framework, the graph can have more then one Eulerian path
and choosing the correct one is not trivial. Indeed the number of valid paths
may be extremely large, and bounded only by the product of the factorial of the
degrees of the nodes times the number of potential spanning trees of the graph
[10]. Although an Eulerian path can be computed in polynomial time (using
the Hierholzer’s algorithm [7]), it might not represent a correct assembly of the
input reads (the path may not be read-coherent [17]). However, as mentioned
before, each read correspond to a particular walk in the de Bruijn graph, and any
walk that contains all the reads as subwalks (a superwalk) represents a possible
assembly of the reads. In this framework a parsimonious solution corresponds to
a superwalk of minimum length:

Definition 12 (Superwalk Problem). Given a set of reads S = {r1, . . . , rn}
find a minimum length superwalk in the De Bruijn graph BGk of S.

It can be shown that this problem is also NP-complete by reduction from the
Shortest Superstring Problem [15]:

Theorem 13. The Superwalk Problem is NP-complete.

5 Discussion

The process of abstracting a problem from its biological interpretation is a pow-
erful tool to better investigate a biological problem. However, as demonstrated
in this paper for the sequence assembly problem, it is very important to de-
velop (biologically) correct formulations. The shortest superstring formulation
was an elegant theoretical abstraction, but it was clearly oblivious to what bi-
ology needs to make a correct interpretation of genomic data. The subsequent
graph-theoretical formulations, although more powerful than the simpler SSP
model, still suffer from similar problems when dealing with repeat structures.
We have presented examples of many popularly accepted formulations that can
lead to miss-assembly errors. Although all the SAP formations presented in this
paper lead to computationally intractable problems (NP-complete), approxi-
mated solutions can be efficiently computed using graph search methods (BFS
vs DFS) often in combination with branch-and-bound method [20,21]. A better
understanding and modeling of the sequence composition (e.g., repeats) con-
tained within genomes has been one of the key factors to improve accuracy in
computational genomics, but much work needs to be done to achieve the goal
of an error-free reconstruction. Finally there is now the urgency to model the
haplotypic structure of the human genome which introduces another level of
complexity for example in the algorithms seeking to discover genetic mutations.

References

1. Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest superstring
problem. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp.
87–101. Springer, Heidelberg (1996)

194 G. Narzisi, B. Mishra, and M.C. Schatz

2. Bradnam, K., et al.: Assemblathon 2: evaluating de novo methods of genome as-
sembly in three vertebrate species. GigaScience 2(1), 10 (2013)

3. Church, A., Rosser, J.B.: Some properties of conversion. Transactions of the Amer-
ican Mathematical Society 39(3), 472–482 (1936)

4. Earl, D.A., et al.: Assemblathon 1: A competitive assessment of de novo short read
assembly methods. Genome Research (2011)

5. Gallant, J., Maier, D., Astorer, J.: On finding minimal length superstrings. Journal
of Computer and System Sciences 20(1), 50–58 (1980)

6. Gnerre, S., et al.: High-quality draft assemblies of mammalian genomes from
massively parallel sequence data. Proceedings of the National Academy of Sci-
ences 108(4), 1513–1518 (2011)

7. Hierholzer, C., Wiener, C.: Ueber die mglichkeit, einen linienzug ohne wiederholung
und ohne unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

8. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de bruijn graphs. Nature Genetics 44(2), 226–
232 (2012)

9. Karp, R.M.: The role of algorithmic research in computational genomics. In: Com-
putational Systems Bioinformatics Conf, p. 10. IEEE Computer Society (2003)

10. Kingsford, C., Schatz, M., Pop, M.: Assembly complexity of prokaryotic genomes
using short reads. BMC Bioinformatics 11(1), 21 (2010)

11. Koren, S., et al.: Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nature Biotechnology 30(7), 693–700 (2012)

12. Li, R., et al.: De novo assembly of human genomes with massively parallel short
read sequencing. Genome Research 20(2), 265–272 (2010)

13. Li, S., Li, R., Li, H., Lu, J., Li, Y., Bolund, L., Schierup, M., Wang, J.: Soapindel:
Efficient identification of indels from short paired reads. Genome Research (2012)

14. Mardis, E.R.: The impact of next-generation sequencing technology on genetics.
Trends in Genetics 24(3), 133–141 (2008)

15. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for
sequence assembly. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS
(LNBI), vol. 4645, pp. 289–301. Springer, Heidelberg (2007)

16. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.
Journal of Computational Biology 2, 275–290 (1995)

17. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl. 2),
ii79–ii85 (2005)

18. Nagarajan, N., Pop, M.: Parametric complexity of sequence assembly: theory
and applications to next generation sequencing. Journal of Computational Biol-
ogy 16(7), 897–908 (2009)

19. Narzisi, G., Mishra, B.: Comparing de novo genome assembly: The long and short
of it. PLoS ONE 6(4), e19175 (2011)

20. Narzisi, G., Mishra, B.: Scoring-and-unfolding trimmed tree assembler: concepts,
constructs and comparisons. Bioinformatics 27(2), 153–160 (2011)

21. Narzisi, G., O’Rawe, J.A., Iossifov, I.: ha Lee, Y., Wang, Z., Wu, Y., Lyon, G.J.,
Wigler, M., Schatz, M.C.: Accurate detection of de novo and transmitted indels
within exome-capture data using micro-assembly. bioRxiv (2013)

22. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy
Sciences 4, 155–169 (1973)

23. Roberts, R., Carneiro, M., Schatz, M.: The advantages of smrt sequencing. Genome
Biology 14(7), 405 (2013)

24. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 195

25. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing short-
est common superstrings. Theor. Comput. Sci. 57(1), 131–145 (1988)

26. Turner, J.S.: Approximation algorithms for the shortest common superstring prob-
lem. Inf. Comput. 83(1), 1–20 (1989)

A Closed-Form Solution for Transcription Factor

Activity Estimation Using Network Component
Analysis

Amina Noor1, Aitzaz Ahmad2, Bilal Wajid1, Erchin Serpedin1,
Mohamed Nounou3, and Hazem Nounou4

1 Department of Electrical and Computer Engineering, Texas A&M University
College Station, TX, 77840 USA

2 Corporate Research & Development
Qualcomm Technologies Inc., San Diego, CA 92121, USA

3 Department of Chemical Engineering, Texas A&M University at Qatar
Doha, Qatar

4 Department of Electrical Engineering, Texas A&M University at Qatar
Doha, Qatar

Abstract. Non-iterative network component analysis (NINCA), pro-
posed by Jacklin at.al, employs convex optimization methods to esti-
mate the transcription factor control strengths and transcription factor
activities. While NINCA provides good estimation accuracy and higher
consistency, the costly optimization routine used therein renders a high
computational complexity. This correspondence presents a closed form
solution to estimate the connectivity matrix which is tens of times faster,
and provides similar accuracy and consistency, thus making the closed
form NINCA (CFNINCA) algorithm useful for large data sets encoun-
tered in practice. The proposed solution is assessed for accuracy and
consistency using synthetic and yeast cell cycle data sets by comparing
with the existing state-of-the-art algorithms. The robustness of the algo-
rithm to the possible inaccuracies in prior information is also analyzed
and it is observed that CFNINCA and NINCA are much more robust to
erroneous prior information as compared to FastNCA.

Keywords: Gene Regulatory Network, transcription factor activity, con-
vex optimization.

1 Introduction

Transcription regulation is an important biological process which governs the
transcription and translation of genes using transcription factors (TFs). The
binding of TFs to genes causes them to express themselves, and these expression
levels are measured using the DNA microarray technology or RNA-Seq. These
well-established methods quantify the expression levels in the form of gene ex-
pression data, which are widely used in the inference of gene regulatory networks
[1,2,3,4]. TF activities (TFAs), defined as the concentration of the subpopula-
tion with DNA binding ability, are hard to measure experimentally, owing to the

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 196–207, 2014.
c© Springer International Publishing Switzerland 2014

A Closed-Form Solution for Network Component Analysis 197

change in correlation between TFs and TFAs at the post-transcriptional stage
[5,6]. This necessitates the use of computational methods for their estimation.

The gene regulatory network which captures the interactions between the
genes and TFs is mathematically modeled as [7]

X = AS + Γ , (1)

where X (N ×K) denotes the gene expression data matrix, A (N ×M) stands
for the control strength matrix between genes and TFs, S (M × K) indicates
the TFAs and Γ , representing the modeling errors, is assumed Gaussian noise.
Genes are known to interact nonlinearly and in a dynamic fashion. However, the
variation of the TFAs is much slower than that of gene expression. The log-linear
model in 1, therefore, provides a good approximation [8].

The estimation of A and S from the gene expression data matrix X has been
performed using principal component analysis (PCA) [9] and independent com-
ponent analysis (ICA) [10]. These algorithms assume properties of orthogonality
and independence, respectively, which do not conform to the biological signals.
To model gene networks more accurately, prior information about the connec-
tivity matrix available from the ChIP-chip data should be incorporated in the
system model [11,7]. Towards this end, network component analysis (NCA) was
proposed by [7] which can be formulated as:

min
A,S

||X−AS||2F s.t. A(I) = 0 , (2)

where ||.||F denotes the Frobenius norm and I stands for the set of indices corre-
sponding to the entries ofA that are known to be zero a-priori. This optimization
problem yields a unique solution up to a scaling ambiguity provided that cer-
tain conditions, referred to as NCA criteria, are met. These conditions are as
follows: (i) matrix A has full column rank, (ii) matrix S has full row rank, and
(iii) removing a node from the regulatory layer and the corresponding entries of
matrices A and X should still result into a full column-rank matrix A.

NCA problem was first solved in [7] by performing alternating least squares
(ALS). Since a high dimensional matrix is optimized at each step, this method
entails prohibitive computational complexity. ROBNCA was proposed in [12]
which significantly reduces the complexity and provides an additional advantage
of being robust to the outliers in datasets. NCA has been successfully applied
to gene network inference problems in various scenarios [13,14,15]. FastNCA,
which was proposed for the first time in [8], reduces the complexity and it yields
a very efficient solution to the gene regulatory network reconstruction problem.
However, shows poor consistency in the estimation of TFAs [16]. To counter
this problem, a convex optimization based non-iterative method: NINCA was
proposed in [16]. NINCA estimates the signals with higher consistency even in
the presence of high correlation. However, this algorithm estimates the connec-
tivity matrix A by resorting to a costly optimization routine, and the resulting
high computational complexity may limit its usefulness for large data sets en-
countered in practice. In order to alleviate the computational load, this corre-
spondence presents a closed-form solution to the optimization problem, herein

198 A. Noor et al.

correspondence referred to as Closed-Form NINCA (CFNICA), exhibiting a sig-
nificantly reduced complexity. Simulations are performed over synthetic as well
as real data to test the performance of the proposed CFNICA solution. It is
observed that the CFNICA solution for the estimation of connectivity matrix A
presents the same superior estimation performance as that offered by NINCA
and leads to a significant reduction in computational complexity.

2 CFNINCA: NINCA with Closed Form Solutions

CFNINCA is a two step algorithm which first estimates the matrix A and once
it is available, the problem of estimating S is reduced to a simple least-squares
algorithm. The following subsections explain the estimation of the two matrices.

2.1 Estimating Connectivity Matrix A

First, the estimation of A is performed by making use of the gene expression
data X and the available prior connectivity information [16]. This step is accom-
plished by separating the signal and noise subspaces from X. The kth column
of the system model in (1) is expressed as

xk = Ask + γk k = 1, 2, ...,K . (3)

Defining Rs = E{sksTk }, the autocovariance of gene expression data vector is
expressed as

Rx = E{xkx
T
k } = ARsA

T + σ2
γI . (4)

Since the matrix ARsA
T is positive semi-definite and symmetric, it can be

factored using the eigenvalue decomposition in terms of a unitary matrix U ,
whose columns represent the eigenvectors of A, and a diagonal matrix Λ as
follows:

Rx = U(Λ + σ2
γ)U

T . (5)

The matrix U can be further partitioned into Us and U0, which consist of the
first M dominant eigenvectors corresponding to the M largest eigenvalues and
spanning the signal subspace and the remaining N −M eigenvectors spanning
the noise subspace, respectively. Since the matrices A and Rs are full rank, by
virtue of NCA criterion, we obtain

UT
0 ARsA

T = 0 ⇒ UT
0 A = 0. (6)

The subspace separation does not result into a unique solution. However, it was
shown in [16] given the a-priori information about the connectivity matrix, the
constrained subspace solution for

UT
0 A = 0, A(I) = 0 (7)

A Closed-Form Solution for Network Component Analysis 199

is unique up to a scaling ambiguity. Since the rows of X and A can always be
reordered, the mth column of A can be rewritten as

am =

[
ām

0Lm×1

]
, (8)

where Lm is the number of zeros in am.

Lemma 1. Under NCA conditions (1) and (2), a solution to UT
0 am = 0, subject

to am defined in (8), is unique up to a scale ambiguity [16].

The lemma also implies that a solution to the constrained optimization problem
in (7) can be obtained column-wise instead of estimating the entire matrix A.
The trivial solution of am = 0 can be avoided by introducing a normalization
constraint.

However, this subspace based approach requires ensemble average Rx, and
since the data available to us is of finite length, only approximations are used.
Towards this end, the left subspace of A is estimated using the singular value
decomposition (SVD). In the standard SVD notation, the matrix X can be
factorized as X = UΣV T . As previously, the matrix U can be factored as

U =
[
Ûs Û0

]
, and the estimate Û0 of U0 will be used henceforth for estimation

purposes. The constrained optimization problem can therefore be stated as:

min
am

||UT
0 am||p s.t. am =

[
ām

0Lm×1

]
, 1T .am = 1, (9)

Remark 2. The optimization problem in (9) was solved using convex optimiza-
tion algorithms for p = 1, 2 in [16]. However, for real data sets, the vector am is
usually large and its optimization entails significant computational complexity.
Hence, a closed form solution is desired to improve the complexity and efficiency
of the subspace based approach.

In this correspondence, we derive a closed form solution for p = 2 using convex
optimization techniques. Define an Lm ×N matrix Cm such that

Cm =
[
0Lm×(N−Lm) ILm

]
. (10)

Using the above definition, the optimization problem (9) can be equivalently
written as

âm = argmin
am

||UT
0 am||22

such that Cmam = 0, 1Tam = 1 (11)

Define now the substitute vector ām via the following equation:

am = Dmām , (12)

200 A. Noor et al.

where the N × Lm matrix Dm is constructed such that it lies in the null space
of the matrix Cm, i.e., CmDm = 0. The matrix Dm is, therefore, given by

Dm =

[
I(N−Lm)

0Lm×(N−Lm)

]
. (13)

Upon substituting am from (12) in (11), we note that the first constraint is always
satisfied by virtue of the construction of matrix Dm. The resulting optimization
problem can be rewritten as

ˆ̄am = argmin
ām

1

2
āT
mDT

mQDmām

such that 1T ām = 1, (14)

where Q = U0U
T
0 . The Lagrangian function can be expressed as

L =
1

2
āT
mDT

mQDmām − μ
(
1T ā− 1

)
. (15)

The Karush-Kuhn-Tucker (KKT) conditions can be written as

DT
mQDmām − μ1 = 0

1T ām = 1. (16)

It can be shown that the KKT conditions are necessary and sufficient [17]. It
follows from the first condition that

ām = μ
(
DT

mQDm

)−1
1 (17)

where the matrix DT
mQDm is indeed invertible since Dm has full column rank

and Q is a product of unitary matrices. Substituting (17) into (16), the Lagrange
multiplier can be expressed as

μ =
1

1T (DT
mQDm)

−1
1
. (18)

The symmetric invertible matrix Q is partitioned as follows

Q =

[
Q11 Q12

Q21 Q22

]
,

where the invertible matrix Q11 stands for the upper left-corner (N − Lm) ×
(N −Lm) submatrix of Q. From the structure of Dm, the matrix DT

nQDm can
be reduced to

DT
mQDm

=
[
I(N−Lm) 0(N−Lm)×Lm

] [Q11 Q12

Q21 Q22

] [
I(N−Lm)

0Lm×(N−Lm)

]
= Q11 . (19)

A Closed-Form Solution for Network Component Analysis 201

The constrained solution for ām is therefore given by

ām =
Q−1

11 1

1TQ−1
11 1

(20)

Remark 3. The closed form solution (20) only requires the inversion of the
(N − Lm) × (N − Lm) submatrix Q11, which is typically a much smaller ma-
trix, since there are a few non-zero entries in am. The matrix inversion requires
O ((N − Lm))

3
operations. The numerator in (20) requires O ((N − Lm))

2
op-

erations. The denominator requires O ((N − Lm))2 + O ((N − Lm)) operations.

Hence, the complexity of the closed form solution is approximatelyO ((N − Lm))
3

for large (N − Lm).

2.2 Estimating the TFA Matrix S

Once an estimate Â is available, S can now be estimated using a least squares
criterion. The optimization problem can be expressed as

S = arg min
S
‖X − ÂS‖2F . (21)

By setting the derivative of (21) equal to zero and solving for S, the estimate is
obtained as

S =
(
ÂT Â

)−1

ÂTX . (22)

Since closed form solutions are available for the estimates of both A and S,
CFNINCA exhibits much lower computational complexity than NINCA.

3 Simulation Results

In this section, the performance of the proposed algorithm is evaluated in com-
parison with the existing state-of-the-art algorithms ALS [7], FastNCA [8] and
NINCA [16] for synthetic as well as real yeast cell cycle data set.

3.1 Synthetic and Hemoglobin Test Data

The algorithm is first investigated for the Hemoglobin test data set used by
the original NCA paper [7] and modified in [16], which assumed spectroscopy
data obtained by mixing Hemoglobin solutions. This data set is used because
the underlying network structure follows the gene network very closely. Moreover,
the knowledge of the original source solutions aids in the performance evaluation
of the algorithms. The data set consists of M = 3 source solutions which result
into N = 7 mixtures where the spectra are measured for K = 321 data points.
The presence of a source solution in the mixture solutions indicates the presence
of the respective connection in the network connectivity matrix A.

202 A. Noor et al.

10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

A
 N

M
S

E

Low Correlation Data

10 15 20 25 30
10

−6

10
−4

10
−2

High Correlation Data

10 15 20 25 30
10

−6

10
−4

10
−2

10
0

S
 N

M
S

E

SNR (dB)
10 15 20 25 30

10
−6

10
−4

10
−2

10
0

SNR(dB)

Fig. 1. Normalized mean square error for the estimation of A and S using CFNINCA
(green), NINCA (blue), FastNCA (red), and ALS (magenta)

This data set is used to evaluate the estimation performance of the algorithms
with mean square error (MSE) as the fidelity criterion for A and S matrices.
Experiments are performed for low and high correlated data over varying signal-
to-noise ratio (SNR) and the Normalized MSEs are depicted in Fig. 1. The
noise is assumed to be additive white Gaussian (AWGN). For the estimation
of A, CFNINCA, NINCA and FastNCA perform comparably and provide lower
NMSE than the ALS algorithm. CFNINCA and NINCA yield the lowest NMSE
for the estimation of S as well, however, the performance of FastNCA and ALS
deteriorates significantly. For the estimation of A, the MSE decreases with the
increase in SNR for all the algorithms, however, FastNCA and ALS exhibit an
error floor for estimation of S. The better performance of these algorithms in
estimating A can be attributed to the availability of prior information.

3.2 Results S.Cerevisiae Cell Cycle Data

This section compares the previously mentioned algorithms in the presence of
Yeast cell cycle data from [18] aand [19].

This data consists of measurements from three synchronization experiments
performed on a large number of genes and TFs. TFA estimation is evaluated
for 11 TFs of interest that are considered in [8] and [16]. These TFs are Ace2,
Fkh1, Fkh2, Mbp1, Mcm1, Ndd1, Skn7, Stb1, Swi4, Swi5, and Swi6. The first
experiment performs synchronization by elutriation and consists of one cell cycle
from 0 to 390. The second synchronization experiment with two cell cycles from
0 to 119 is by α−factor arrest. The third experiment carried out under cdc15
temperature sensitive mutant consists of three cycles from 0 to 300 mins. The
data in the three experiments contain 14, 18, and 15 samples, respectively, and
are stacked together to form one large data set.

A Closed-Form Solution for Network Component Analysis 203

0 200 400
−0.5

0

0.5
Ace2

el
ut

ra
tio

n

0 50 100
−0.5

0

0.5

α−
fa

ct
or

0 100 200 300
−0.5

0

0.5

cd
c−

15
0 200 400

−0.05

0

0.05
Fkh1

0 50 100
−0.1

0

0.1

0 100 200 300
−0.1

0

0.1

0 200 400
−0.2

0

0.2
Fkh2

0 50 100
−0.2

0

0.2

0 100 200 300
−0.5

0

0.5

0 200 400
−0.5

0

0.5
Mbp1

0 50 100
−0.5

0

0.5

0 100 200 300
−0.5

0

0.5

0 200 400
−0.1

0

0.1
Mcm1

0 50 100
−0.5

0

0.5

0 100 200 300
−0.5

0

0.5

0 200 400
−0.5

0

0.5
Ndd1

0 50 100
−1

0

1

0 100 200 300
−1

0

1

0 200 400
−0.2

0

0.2
Skn7

0 50 100
−0.5

0

0.5

0 100 200 300
−0.2

0

0.2

0 200 400
−0.2

0

0.2
Stb1

0 50 100
−0.1

0

0.1

0 100 200 300
−0.2

0

0.2

0 200 400
−0.5

0

0.5
Swi4

0 50 100
−0.5

0

0.5

0 100 200 300
−0.5

0

0.5

Fig. 2. TFAs Reconstruction: Estimation of 11 TFAs (9 shown) of cell-cycle regulated
yeast TFs. Average values of the TFs are shown for the four subnetworks. The results
offered by CFNINCA (black), FastNCA (red) and NINCA (blue) are displayed.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12

FastNCA CF-NINCA NI-NCA

Fig. 3. Consistency Evaluation for S. Cerevisiae Data: Average disagreement from the
subsets for TFA estimation.

Subnetwork analysis is performed here to assess the consistency of the algo-
rithms, where the data set is divided into four overlapping subsets similar to [5].
Each subset consists of 40 TFs, while the 11 TFs under consideration are present
in all of them. The number of genes is set to be between 921 to 1247. TFAs are
estimated using the four subsets and the difference in their estimation indicates
higher degree of inconsistency. This enables us to analyze the robustness of the
algorithm to minor modifications in the TFs and genes under consideration [5].
The disagreement is measured using the same metric as in [16] which is

disagreement(i) =
1

K

∑
i

[
max
n

sn,i(k)−min
n

sn,i(k)
]

(23)

204 A. Noor et al.

where sn,i denote the TFA in the nth subset and i is TF index. The average of the
TFAs estimated using the four subsets is plotted in Fig. 2. The rows depict the
results of the three synchronization experiments. It is observed that CFNINCA
and NINCA result in estimating the same TFA profiles and recovering one, two
and three cycles for the three cycles, respectively. FastNCA yields estimates that
are either opposite to the other algorithms for most TFAs or it does not reveal
their periodicity.

In order to further corroborate the results, a consistency comparison study is
performed and the disagreement between the subset estimates is shown in Fig.
3. It is observed that FastNCA yields much larger disagreement, and therefore,
it is less consistent than CFNINCA and NINCA. Therefore, it can be stated
that CFNINCA is able to estimate the TFAs with a higher degree of accuracy
and consistency. It should also be mentioned that the large size of data set
in this experiment prohibits the use of ALS for comparison due to its high
computational complexity.

3.3 Robustness to Errors in Prior Information

The prior information about connectivity matrix A helps in obtaining a unique
solution. However, it is important to study the reliability of the results in case
of inaccuracies present in prior knowledge which is a possible scenario [20]. In
this analysis, we consider the missed connections only. Suppose that the prior
for connectivity matrix erroneously misses some of the true connections and is
denoted by A∗. Then, the mth column of this matrix is given by

a∗
m =

[
ā∗
m

0L∗
m×1

]
. (24)

where L∗
m is the number of zeros in a∗

m. The constrained optimization solution
can now be stated as

min
a∗

m

||UT
0 a∗

m||p s.t. a∗
m =

[
ā∗
m

0L∗
m×1

]
, 1T .a∗

m = 1, (25)

Following the same steps as in Section 2.1, the solution for this problem is
obtained as

ā∗
m =

Q−1∗
11 1

1TQ−1∗
11 1

. (26)

whereQ∗
11 is (N−L∗

m)×(N−L∗
m) Let the error in mth column be em = am−a∗

m.
Then the error in estimation of A and S is calculated as

EA =
M∑

m=1

||em||22 , (27)

and
ES = ||S − S∗||2F . (28)

A Closed-Form Solution for Network Component Analysis 205

0 0.05

10
−5

10
0

E
A

FastNCA

0 0.05

10
−5

10
0

NINCA

0 0.05

10
−5

10
0

CFNINCA

0 0.05

10
−5

10
0

FastNCA
E

S

0 0.05

10
−5

10
0

NINCA

Probability of Error
0 0.05

10
−5

10
0

CFNINCA

Fig. 4. Robustness to Imperfect Prior: Error in the estimation of A and S matrices
with missed connections in prior

respectively. The SNR for this experiment is kept at 30dB. The estimation per-
formance for FastNCA, NINCA and CFNINCA is evaluated using the same
Hemoglobin data used in the previous subsection. It is noted in Fig. 4, that as
the probability of error in the prior increases, the MSE for the estimation of
all the algorithms increases for A. However, NINCA and CFNINCA give much
lower MSE than FastNCA for estimation of TFA matrix S. NINCA and CFN-
INCA, therefore ,show more robustness to imperfect knowledge of prior. However,
CFNINCA offers these advantages at a much lower computational cost.

3.4 Run Time Comparison

Table 1. Average Computational Time in Seconds for S. Cerevisiae.

Subset 1 2 3 4

FastNCA 0.2 0.2 0.24 0.2
CFNINCA 6 3 3 6
NINCA 71 30 125 97
ALS Exceeds memory limit

Gene regulatory networks require working with large data sets and therefore
a lower computational time for the algorithms is a very appealing feature. We
compare the average run time for the algorithms discussed previously for the
four subsets of the real data set. These simulations were carried out using Mat-
lab 7.10.0 on a Windows 7 system with a 1.90 GHz Intel Core i7 processor. It
is observed that CFNINCA is tens of times faster than NINCA. FastNCA has
advantage in terms of lower complexity. However, as noted in the previous sim-
ulations, FastNCA suffers from poor estimation accuracy and consistency. The

206 A. Noor et al.

complexity of ALS is known to be prohibitive and is added here only for compari-
son. Hence, the CFNINCA algorithm avoids the drawback of high computational
complexity of the NINCA algorithm by providing a closed form solution to esti-
mate A, while maintaining the same estimation accuracy and consistency. This
makes CFNINCA well suited for TFA estimation for large data sets encountered
in practice.

4 Conclusions

This paper presented a closed form solution to a non-iterative network compo-
nent analysis algorithm which uses convex optimization techniques to estimate
the control strength matrix [16]. The NINCA algorithm exhibits superior con-
sistency in terms of TFA estimation but suffers from high computational com-
plexity. The proposed closed form CFNINCA solution considerably speeds up
the algorithm while offering comparable estimation accuracy and consistency to
NINCA. The performance of CFNINCA is compared to NINCA, FastNCA, and
ALS over synthetic data and yeast cell cycle data. The conducted simulations
confirm CFNINCA’s advantages in terms of lower run time, robustness to im-
perfect prior and comparable or better estimation accuracy with respect to the
existing state-of-the-art algorithms.

Acknowledgments. This work was supported by NSF Award No. 1318338.

References

1. Cai, X., Wang, X.: Stochastic modeling and simulation of gene networks. IEEE
Signal Process. Mag. 24(1), 27–36 (2007)

2. Shmulevich, I., Saarinen, A., Yli-Harja, O., Astola, J.: Inference of genetic regula-
tory networks via best-fit extensions. In: Computational and Statistical Approaches
to Genomics, pp. 197–210 (2003)

3. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory net-
works under the boolean network model. Machine Learning 52(1), 147–167 (2003)

4. Noor, A., Serpedin, E., Nounou, M.N., Nounou, H.N.: Inferring gene regulatory
networks via nonlinear state-space models and exploiting sparsity. IEEE/ACM
Trans. Comput. Biology Bioinform. 9(4), 1203–1211 (2012)

5. Yang, Y.L., Suen, J., Brynildsen, M.P., Galbraith, S.J., Liao, J.C.: Inferring yeast
cell cycle regulators and interactions using transcription factor activities. BMC
Genomics 6(1), 90 (2005)

6. Meng, J., Zhang, J.M., Chen, Y., Huang, Y.: Bayesian non-negative factor analysis
for reconstructing transcription factor mediated regulatory networks. Proteome
Science 9, 1–14 (2011)

7. Liao, J., Boscolo, R., Yang, Y., Tran, L., Sabatti, C., Roychowdhury, V.: Network
component analysis: Reconstruction of regulatory signals in biological systems. Pro-
ceedings of the National Academy of Sciences 100(26), 15522–15527 (2003)

8. Chang, C., Ding, Z., Hung, Y., Fung, P.: Fast network component analysis (Fast-
NCA) for gene regulatory network reconstruction from microarray data. Bioinfor-
matics 24(11), 1349–1358 (2008)

A Closed-Form Solution for Network Component Analysis 207

9. Jolliffe, I.T.: Principal component analysis, vol. 487. Springer, New York (1986)
10. Comon, P.: Independent component analysis. Higher-Order Statistics, 29–38 (1992)
11. Tan, M., Alshalalfa, M., Alhajj, R., Polat, F.: Influence of prior knowledge in

constraint-based learning of gene regulatory networks. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 8(1), 130–142 (2011)

12. Noor, A., Ahmad, A., Serpedin, E., Nounou, M., Nounou, H.: ROBNCA: robust
network component analysis for recovering transcription factor activities. Bioinfor-
matics 29(19), 2410–2418 (2013)

13. Tran, L.M., Brynildsen, M.P., Kao, K.C., Suen, J.K., Liao, J.C.: gNCA: A frame-
work for determining transcription factor activity based on transcriptome: Identifi-
ability and numerical implementation. Metabolic Engineering 7(2), 128–141 (2005)

14. Tran, L., Hyduke, D., Liao, J.: Trimming of mammalian transcriptional networks
using network component analysis. BMC Bioinformatics 11(1), 511 (2010)

15. Galbraith, S.J., Tran, L.M., Liao, J.C.: Transcriptome network component analysis
with limited microarray data. Bioinformatics 22(15), 1886–1894 (2006)

16. Jacklin, N., Ding, Z., Chen, W., Chang, C.: Noniterative convex optimization meth-
ods for network component analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 9(5), 1472–1481 (2012)

17. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

18. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K.,
Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., et al.: Transcriptional
regulatory networks in saccharomyces cerevisiae. Science Signalling 298(5594), 799
(2002)

19. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle–
regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Molecular Biology of the Cell 9(12), 3273–3297 (1998)

20. Wang, C., Xuan, J., Shih, I.M., Clarke, R., Wang, Y.: Regulatory component anal-
ysis: A semi-blind extraction approach to infer gene regulatory networks with im-
perfect biological knowledge. Signal Processing 92(8), 1902–1915 (2012)

SVEM: A Structural Variant Estimation Method

Using Multi-mapped Reads on Breakpoints

Tomohiko Ohtsuki1, Naoki Nariai2, Kaname Kojima2, Takahiro Mimori2,
Yukuto Sato2, Yosuke Kawai2, Yumi Yamaguchi-Kabata2, Testuo Shibuya1,

and Masao Nagasaki2,�

1 Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan

2 Department of Integrative Genomics
Tohoku Medical Megabank Organization, Tohoku University
2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan

nagasaki@megabank.tohoku.ac.jp

Abstract. Recent development of next generation sequencing (NGS)
technologies has led to the identification of structural variants (SVs) of
genomic DNA existing in the human population. Several SV detection
methods utilizing NGS data have been proposed. However, there are
several difficulties in analysis of NGS data, particularly with regard to
handling reads from duplicated loci or low-complexity sequences of the
human genome. In this paper, we propose SVEM, a novel statistical
method to detect SVs with a single nucleotide resolution that can uti-
lize multi-mapped reads on breakpoints. SVEM estimates the amount of
reads on breakpoints as parameters and mapping states as latent vari-
ables using the expectation maximization algorithm. This framework
enables us to handle ambiguous mapping of reads without discarding
information for SV detection. SVEM is applied to simulation data and
real data, and it achieves better performance than existing methods in
terms of precision and recall.

1 Introduction

Structural variants (SVs) are common genomic differences among individual
genomes and include various types, such as insertions, deletions, inversions, tan-
dem duplications, and translocations [1]. It has been reported that SVs affect
not only phenotypes but also the occurrence of diseases, such as schizophrenia
[2] and cancer [3]. When classifying SV types according to their size, larger SVs
are called microscopic variants, because they can be detected by using micro-
scopes [4]. Chemical and biological methods, such as karyotyping, chromosome
painting, and FISH-based techniques, are used with the microscope observation
for SV detection [5]. The microscopic approach can identify SVs that are larger
than several Mbp. To find smaller SVs, which are referred to as submicroscopic

� Corresponding author.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 208–219, 2014.
c© Springer International Publishing Switzerland 2014

SVEM: Structural Variant Estimation Method 209

SVs, DNA microarray analyses, such as arrayCGH [6] and single nucleotide poly-
morphism (SNP) arrays [7] are commonly used [8]. Although they are useful for
identifying medium-sized SVs with copy number changes, such as tandem du-
plications and deletions, they are not suitable for detecting small SVs and SVs
without copy number changes [9]. Genome-wide discovery of novel SVs is also
difficult with array based methods. To find such SV events, sequencing-based
methods are preferable. The first sequencing-based method was performed with
capillary sequencing, and short insertion and deletion polymorphisms were dis-
covered [10].

Recently, because of its high-throughput capability, next generation sequenc-
ing (NGS) has been used for discovery of SVs and SNPs with high coverage and
resolution. Several methods for detecting SVs from NGS data have been pro-
posed. These methods use one or more of the following four types of approaches;
read depth approach (CNVnator [11]), read pair approach (DELLY [12] and
BreakDancer [13]), split read approach (DELLY, Pindel [14], and ClipCrop [15])
and de novo assemble approach (SOAPdenovo2 [16]). Although the read depth
approach identifies deletions and copy number variants based on the depth of
coverage of mapped reads on the reference genome, it cannot identify SV events
without copy number changes, such as inversions, insertions and translocations.
It is also difficult to find precise locations of SVs, called breakpoints, on the refer-
ence genome. The read pair approach identifies SVs by detecting discordance of
read pairs around breakpoints in terms of their distance and orientations when
they are aligned to the reference genome. This approach can detect various types
of SVs, such as deletions, insertions, inversions, translocations, and partial dupli-
cations. However, precise positions of breakpoints cannot be located, and hence
detectable SV sizes are limited to several kbp. The split read approach detects
SVs using partially aligned reads on the reference genome. A clipped part of
the read (portion of the read that is not aligned to the reference sequence) is
re-aligned to the reference genome, and breakpoints of SVs within the reference
genome are identified. Although this approach has a high resolution for detect-
ing positions of breakpoints, it requires extensive computational resources and is
not appropriate for detecting larger insertions and deletions. Moreover, because
there are many regions whose sequences are similar to each other, such as du-
plicated loci or low-complexity sequences, some reads can be aligned to more
than one region of the reference genome. This multi-mappability complicates
the usage of the split read approach. The de novo assemble approach is very
unique from the other approaches in that it determines actual genome sequences
directly without mapping to the reference genome. However, de novo assembly
requires extensive computational resources, in terms of both memory usage and
CPU time [5].

In this paper, we propose a new method based on the split read approach,
called SVEM, which utilizes multi-mapped reads on breakpoints under a statis-
tical framework. In SVEM, the most likely breakpoints where the multi-mapped
reads are generated are estimated by the expectation maximization (EM) algo-
rithm. To evaluate the performance of SVEM, we create simulated read data

210 T. Ohtsuki et al.

with artificial SVs and sequencing errors. We also apply SVEM to real data ob-
tained from a human sample in the 1000 Genomes Project [17] and evaluate its
performance.

2 Methods

2.1 Preprocessing

In the preprocessing step, short reads are aligned to the reference genome with
alignment tools such as BWA [18]. At starting or ending positions of SVs in the
reference genome, which are hereafter called ”breakpoints”, there exist reads
that are partially aligned and contain unmapped fragments. Such unmapped
fragments are called “clipped” fragments, and reads containing clipped frag-
ments are called clipped reads. In addition to the positions where the clipped
reads aligned, we obtain candidate breakpoints by the realignment of clipped
fragments of reads to the reference genome. Because the clipped fragments and
original reads can be aligned to multiple positions in many cases, näıve ap-
proaches have difficulties in uniquely determining the breakpoints for each SV.
In the following, we describe the estimation of the starting and ending points of
SVs with SVEM which considers the read generation and abundance of reads
around the candidate breakpoints in a probabilistic manner.

2.2 Modeling for Paired-End Reads

The generative model for sequence reads used for SV detection is shown in Figure
1. The read abundance parameter, selection of the breakpoint, read start position,
fragment length, and the first and second sequences of read n are represented by
θ, Bn, Sn, Fn, R

1
n and R2

n, respectively. Each read is associated with two latent
variables Bn and Sn.

The complete likelihood function of our model is decomposed as

P (Bn, Sn, Fn, R
1
n, R

2
n | θ) = P (Bn | θ)P (Sn | Bn)P (Fn | Bn)

· P (R1
n | Bn, Sn, Fn)P (R2

n | Bn, Sn, Fn).

P (Bn | θ) represents the probability that read n is generated from the break-
point Bn, and it is calculated as

P (Bn = b | θ) = θb, where
∑
b

θb = 1.

P (Sn | Bn) represents the probability of the start position of read n which
spans breakpoint Bn. Let the length of each read be l. Because there are l − 1
possible start positions for reads spanning breakpoint Bn, under the assumption
of equal occurrence of these l − 1 start positions, P (Sn | Bn) is given as

P (Sn | Bn) =

{
1/(l − 1) if the distance between Sn and Bn < l
0 otherwise

.

SVEM: Structural Variant Estimation Method 211

N

Bn Sn

R1
n

R2
n

Fn

Fig. 1. Generative model of paired-end DNA sequence data around breakpoints

P (Fn | Bn) represents the probability of a fragment length from breakpoint
Bn. We assume that Fn is normally distributed and calculate P (Fn | Bn) as

P (Fn = fn | Bn) =
exp(− (fn−μ)2

2σ2)∑fmax

x=2l exp(−
(x−μ)2

2σ2)
,

where fn is the fragment length of read n and fmax is the maximum fragment
length, whose value is dependent on the conditions around the corresponding
breakpoint. μ and σ2 are the mean and variance of the fragment length, respec-
tively, and are given by pre-set values according to experimental protocols, or
estimated from uniquely aligned reads.

P (R1
n | Bn, Sn, Fn) represents the probability of the first sequence of read n

given Bn, Sn, and Fn. Here, we use the Phred quality score [19] Qi at position
i which indicates the reliability of base calling at each base. We calculate

P (R1
n | Bn, Sn, Fn) =

l∏
i=1

r1ni,

where

r1ni =

{
1− 10−Qi/10 if ith nucleotide of read n is the same as the reference

10−Qi/10 otherwise
.

Similarly, P (R2
n | Bn, Sn, Fn) is calculated for the second sequence of read n.

Let Znbsf be a binary variable that takes the value of one if (Bn, Sn, Fn) =
(b, s, f) holds for the read n and zero otherwise. By using Znbsf , the complete
likelihood of the model can be given as:∏

n,b,s,f

P (R1
n, R

2
n, Znbsf | θ)

212 T. Ohtsuki et al.

=
∏

n,b,s,f

{P (R1
n | Znbsf)P (R2

n | Znbsf)P (Znbsf | θ)}Znbsf .

2.3 Parameter Estimation by the EM Algorithm

We use the expectation maximization (EM) algorithm for the parameter estima-
tion of our model. From Jensen’s inequality, the likelihood function of our model
is lower bounded by

log
∑
Z

P (R,Z | θ) ≥
∑
Z

Q(Z) log
P (R,Z | θ)

Q(Z)
, (1)

where Q(Z) is a non-negative function and satisfies
∑

Z Q(Z) = 1. In the EM al-
gorithm, the lower bound of the maximum likelihood is increased by alternately
applying E-Step and M-Step until a convergence criterion is satisfied. In E-Step,
the lower bound in equation (1) is maximized with respect to Q(Z). Q(Z) max-
imizing the lower bound is given by P (Z | R, θ) from the equality condition in
Jensen’s inequality. In M-Step, the lower bound in equation (1) is maximized
with respect to θ. Let θ(old) be θ at the previous step. Because the lower bound
is given by∑

Z

P (Z | R, θ(old)) logP (R,Z | θ)−
∑
Z

P (Z | R, θ(old)) logP (Z | R, θ(old)),

θ maximizing the following formula is obtained by

argmax
θ

∑
Z

P (Z | R, θ(old)) logP (R,Z | θ). (2)

In the following, more details of the EM algorithm for our model are described.

E-Step for our Model. Let ρnbsf be the probability of generating read n given
(Bn, Sn, Fn) = (b, s, f):

ρnbsf = P (Bn | θ(old))P (Sn | Bn)P (Fn | Bn)P (R1
n | Znbsf)P (R2

n | Znbsf).

By using ρnbsf , P (Znbsf | R1
n, R

2
n, θ(old)) is given by

P (Znbsf | R1
n, R

2
n, θ(old)) =

∏
n,b,s,f

r
Znbsf

nbsf , (3)

where

rnbsf =

{
ρnbsf∑

(b′ ,s′,f′)∈πn
ρnb′s′f′ if (b, s, f) ∈ πn

0 otherwise
.

Here, πn is a set of (b, s, f) for all possible alignments of read n.

SVEM: Structural Variant Estimation Method 213

M-Step for our Model. The parameter to be estimated in our model is θ.
Equation (2) in our model is written as follows:∑
Z

P (Z | R, θ(old)) logP (R,Z | θ) =
∑

n,b,s,f

E[Znbsf] logP (R1
n, R

2
n, Znbsf = 1 | θ),

where E[Znbsf] is the expectation of Znbsf on P (Z | R1
n, R

2
n, θ(old)). Because

E[Znbsf] is given by rnbsf from equation (3), θb for each breakpoint b is updated
by

θb =

∑
n,s,f E[Znbsf]∑

n,b′,s,f E[Znb′sf]
.

Initialization and Convergence Criterion. At the initialization step,
E[Znbsf] is set to 1/(the size of πn). We use the difference between the current
and previous lower bounds after the M-Step as the convergence criterion. Let
θ(i) be θ estimated at the ith M-Step. The lower bound of the likelihood after
the ith M-Step l(θ(i)) is given by

l(θ(i)) =
∑

n,b,s,f

E[Znbsf] logP (R1
n, R

2
n, Znbsf = 1|θ(i))

−
∑

n,b,s,f

E[Znbsf] logE[Znbsf].

The lower bound is updated until the following criterion is satisfied for a small
value ε:

l(θ(i))− l(θ(i−1)) ≤ ε.

We set ε = 10−4 for the convergence criterion, and after the algorithm converged,
we use the threshold for E[Znbsf] to determine whether or not the breakpoint
exists as three in the following experiments.

Identification of SVs from the Estimated Breakpoints. After breakpoints
were estimated, deletions, inversions, and insertions are identified according to
the initial alignments of reads and the second alignments of the clipped reads to
the reference genome. A schematic diagram is shown in Figure 2.

3 Results

3.1 Simulation Data Analysis

We evaluate the performance of SVEM by using synthetically generated NGS
data. We prepared an artificial DNA sequence of chromosome 21 from the human
reference genome (GRCh37) with one SNP per 1,000 bp, which is based on the
average base diversity in human genomes [20].

Paired-end sequencing data of 100 bp were generated, under the assumption
that the fragment size was normally distributed with a mean value of 350 bp

214 T. Ohtsuki et al.

Fig. 2. Identification of SVs from breakpoints and re-alignments of clipped reads

and standard deviation of 50 bp. Base substitution errors of 0.1% were randomly
added to each position of reads to simulate sequencing errors. The number of
generated reads was based on “read coverage”, which represents the average
number of overlapping reads at a base position. We prepared a data set whose
read coverage was 50x. The generated reads were aligned to the reference genome
using the Burrows-Wheeler Aligner [18], and the produced bam file containing
the alignment information was used as the input for each SV caller considered
in the following analysis.

Among the SV candidates predicted by each method, if SVs whose start and
end points were sufficiently close (within 10 bp) to those of true SVs, they were
classified as true positives (TPs), and the other SVs were classified as false
positives (FPs). However, some SVs can be expressed in multiple ways, and
such ambiguous cases are difficult to classify as TP or FP. For example, when
the sequence “GAG” is deleted from “CTGAGAGTC”, the remaining sequence
is uniquely represented as “CTAGTC”, but the start and end points of the
deletion can be expressed in two ways: the deletion from the third “G” to the
fifth “G”, or that from the fifth “G” to the seventh “G”. Because such cases
are possible with more complex and large SVs, we defined true positive SVs
in a more relaxed manner: SVs with start and end points among such possible

SVEM: Structural Variant Estimation Method 215

positions were classified as true positives; otherwise, they were classified as false
positives.

Under this relaxed definition of true positives and false positives, we calculated
the recall rate and precision rate as follows:

Recall =
TP

true SV
, Precision =

TP

detected SV
.

Because a trade-off exists between recall and precision, we used F-measure to
evaluate overall performance, which was given by a harmonic mean of precision
and recall as follows:

F-measure =
2× Recall× Precision

Recall + Precision
.

Performance Evaluation for Medium-Size SVs. We evaluate the perfor-
mance of SV detection for a data set containing both homozygous and heterozy-
gous SVs. 350 true SVs, whose sizes were set to 500 bp, were randomly assigned
as homozygous or heterozygous SVs as follows:

– Among 250 deletions, 88 were homozygous, and the other 162 were heterozy-
gous.

– Among 50 inversions, 13 were homozygous, and the other 37 were heterozy-
gous.

– Among 50 insertions, 25 were homozygous, and the other 25 were heterozy-
gous.

SVEM detected 331 SVs in total, among which 300 of them were true positives
and the other 31 were false positives, and the precision, recall, and F-measure
were 0.91, 0.86, and 0.88, respectively. The same statistics for BreakDancer,
DELLY, and Pindel are summarized in Table 1 (top). These results show that
SVEM performed better in both precision and recall than the other methods.

Performance Evaluation for Larger SVs. We additionally generated sim-
ulation read data containing SVs with a larger size (1,000 bp) to evaluate the
influence of SV sizes on precision and recall. Here, we considered 100 deletions,
20 insertions, and 20 inversions for true SVs, i.e., the total number of true SVs
was 140. Note that to maintain the total length of SVs, we reduced the number of
SVs compared with the other experiments above. These 140 SVs were randomly
assigned as homozygous or heterozygous as follows:

– Among 100 deletions, 29 were homozygous, and the other 71 were heterozy-
gous.

– Among 20 inversions, six were homozygous, and the other 14 were heterozy-
gous.

– Among 20 insertions, eight were homozygous, and the other 12 were het-
erozygous.

216 T. Ohtsuki et al.

SVEM predicted 123 SVs in total, among which 121 were true positives and the
other two are false positives, and the precision, recall, and F-measure were 0.98,
0.86, and 0.92, respectively. The same statistics for BreakDancer, DELLY, and
Pindel are summarized in Table 1 (bottom). The precision of SVEM and Pindel
was better for larger SVs than in a data set with medium-size SVs. Moreover,
DELLY and BreakDancer showed improved precision compared to the results
for the data set with medium-size SVs, which implies that the read pair based
approach used in these methods works well for larger SVs.

3.2 Real Data Analysis

We applied SVEM, BreakDancer, DELLY, and Pindel to the real sequencing
data of a HapMap sample and evaluated their recall rates. Paired-end sequenc-
ing data of NA12878, a sample in the 1000 Genomes Project [17], sequenced
with the Illumina HiSeq 2000 system, were used in our analysis. The depth of
coverage, read length, and fragment size of the data were 45x, 101 bp, and 315
bp, respectively. In this analysis, 617 experimentally validated SVs from [21]
were used for calculation of the recall rates. Because the validated SV set did
not cover all of the existing SVs in the sample, we focused on performance in
recall assuming that the validated SVs were the gold standard. Note that the
estimated precision was also provided for the reference.

SVEM predicted 7,082 SVs in total, among which 214 were validated, and
6,868 were not. As a result, the recall and precision were 0.35 and 0.030, respec-
tively. Note again that the precision calculated here would not reflect the true
precision for each method. The same statistics for BreakDancer, DELLY, and
Pindel are summarized in Table 2. Therefore, the recall with SVEM was higher
than that with the other methods. Moreover, fewer non-validated SVs were de-
tected by SVEM than those by the other methods, which implies that SVEM
detected SVs with higher precision than the other methods.

3.3 Computational Resources

All of the experiments were performed on a computer with an Intel Xeon CPU
E5-2670 processor (2.60GHz) with the Red Hat Enterprise Linux Server release
6.2 operating system. SVEM is implemented in Java 1.7.0 17 and executed on a
single core environment. The SV calling tools used in these experiments were as
follows: Pindel 0.2.4, BreakDancer 1.1, and DELLY 0.2.1. All mapping processes
were performed by BWA 0.7.5 [18]. In the experiments for the simulated data
sets containing both homozygous and heterozygous SVs, the execution time for
SVEM was 75 seconds in the first experiment, whereas Pindel, BreakDancer, and
DELLY required 10 minutes, 90 seconds, and 90 minutes, respectively. Although
SVEM required some preprocessing, which took about one minute, it required
two minutes and 15 seconds in total and was still much faster than Pindel and
DELLY. Regarding memory consumption, 48 GBytes were required for running
SVEM, one GBytes for Pindel, 5.6 GBytes for BreakDancer, and 47.7 GBytes for
DELLY. Thus, both Pindel and BreakDancer had better memory efficiency than

SVEM: Structural Variant Estimation Method 217

Table 1. Results with simulated data of medium-size (top) and larger (bottom) SVs

Method Predicted SVs TP FP Precision Recall F-measure

SVEM 331 300 31 0.91 0.86 0.88
BreakDancer 506 3 503 0.0059 0.0086 0.0070
DELLY 894 50 844 0.056 0.14 0.080
Pindel 375 298 77 0.79 0.85 0.82

Method Predicted SVs TP FP Precision Recall F-measure

SVEM 123 121 2 0.98 0.86 0.92
BreakDancer 119 10 109 0.084 0.071 0.076
DELLY 314 105 209 0.33 0.75 0.46
Pindel 123 119 4 0.97 0.85 0.91

Table 2. Results with NA12878 data obtained from the 1000 genomes project

Method Predicted SVs TP Recall Estimated TP ratio

SVEM 7081 214 0.35 0.030
BreakDancer 3213 21 0.034 0.0065
DELLY 206968 43 0.070 0.00021
Pindel 288783 205 0.33 0.0007

SVEM, and the memory requirements for DELLY and SVEM were almost iden-
tical. SVEM achieved high precision and recall with a relatively short execution
time and practical memory requirements.

4 Discussion

We proposed SVEM, a new statistical structural variant caller that considers split
reads and their read mapping uncertainty at breakpoints. In an analysis of simu-
lation data, SVEM was evaluated using Pindel, BreakDancer, and DELLY con-
sidering simulated sequencing errors, the zygosity, and the size of SVs. Through
a careful comparison, we showed that SVEM outperformed existing methods
with regard to both precision and recall under various simulation conditions.
SVEM and the existing methods were also applied to the human sequencing
data of a HapMap sample, NA12878, and predictions were compared with SVs
that were validated by biological experiments. The higher recall rate with SVEM
may be explained by successful incorporation of multi-mapped reads under the
statistical model. Although utilizing multi-mapped reads has been shown to be
effective for quantifying gene expression levels from RNA-Seq data [22,23], we
showed in this paper that this strategy was also effective to improve the per-
formance of SV detection from DNA sequencing data. Because BreakDancer is
based on the paired-end read approach, it is suitable for detecting larger SVs, but
the start and end positions of SVs are not precisely determined. Although the

218 T. Ohtsuki et al.

split read approach can detect precise breakpoints of SVs with a high resolution,
it requires extensive computational resources and is not efficient at identifying
novel insertion sequences. DELLY, based on both the read pair approach and
split read approach, performs better than BreakDancer, although it requires the
memory and CPU time most intensively. Although SVEM is faster than Pindel
and DELLY, some of the drawbacks listed above still exist. Combination of other
approaches with the split read approach may be worth considering [24]. Finally,
additional information such as the pedigree information of individuals can be
useful for improving the prediction of SVs and SNPs [25]. The above topics will
be investigated in our future study.

Acknowledgements. The super-computing resource was provided by Human
Genome Center, Institute of Medical Science, University of Tokyo. This work
was supported (in part) by MEXT Tohoku Medical Megabank Project.

References

1. Feuk, L., Carson, A.R., Scherer, S.W.: Structural variation in the human genome.
Nat. Rev. Genet. 7(2), 85–97 (2006)

2. Xu, B., Roos, J.L., Levy, S., Van Rensburg, E.J., Gogos, J.A., Karayiorgou, M.:
Strong association of de novo copy number mutations with sporadic schizophrenia.
Nat. Genet. 40(7), 880–885 (2008)

3. Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al.:
A census of human cancer genes. Nat. Rev. Cancer 4(3), 177–183 (2004)

4. Reich, D.E., Schaffner, S.F., Daly, M.J., McVean, G., Mullikin, J.C., Higgins, J.M.,
et al.: Human genome sequence variation and the influence of gene history, muta-
tion and recombination. Nat. Genet. 32(1), 135–142 (2002)

5. Hoogendoorn, E.: Computational methods for the detection of structural variation
in the human genome (2012)

6. Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al.: High
resolution analysis of DNA copy number variation using comparative genomic hy-
bridization to microarrays. Nat. Genet. 20(2), 207–211 (1998)

7. Hehir-Kwa, J.Y., Egmont-Petersen, M., Janssen, I.M., Smeets, D., Van Kessel,
A.G., Veltman, J.A.: Genome-wide copy number profiling on high-density bacte-
rial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide
microarrays: a platform comparison based on statistical power analysis. DNA
Res. 14(1), 1–11 (2007)

8. Miller, D.T., Adam, M.P., Aradhya, S., Biesecker, L.G., Brothman, A.R., Carter,
N.P., et al.: Consensus statement: chromosomal microarray is a first-tier clinical
diagnostic test for individuals with developmental disabilities or congenital anoma-
lies. Am. J. Hum. Genet. 86(5), 749–764 (2010)

9. Alkan, C., Coe, B.P., Eichler, E.E.: Genome structural variation discovery and
genotyping. Nat. Rev. Genet. 12(5), 363–376 (2011)

10. Tuzun, E., Sharp, A.J., Bailey, J.A., Kaul, R., Morrison, V.A., Pertz, L.M., et al.:
Fine-scale structural variation of the human genome. Nat. Genet. 37(7), 727–732
(2005)

SVEM: Structural Variant Estimation Method 219

11. Abyzov, A., Urban, A.E., Snyder, M., Gerstein, M.: CNVnator: an approach to
discover, genotype, and characterize typical and atypical CNVs from family and
population genome sequencing. Genome. Res. 21(6), 974–984 (2011)

12. Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., Korbel, J.O.: DELLY:
structural variant discovery by integrated paired-end and split-read analysis. Bioin-
formatics 28(18), i333–i339 (2012)

13. Chen, K., Wallis, J.W., McLellan, M.D., Larson, D.E., Kalicki, J.M., Pohl, C.S., et
al.: BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation. Nat. Methods 6(9), 677–681 (2009)

14. Ye, K., Schulz, M.H., Long, Q., Apweiler, R., Ning, Z.: Pindel: a pattern growth
approach to detect break points of large deletions and medium sized insertions
from paired-end short reads. Bioinformatics 25(21), 2865–2871 (2009)

15. Suzuki, S., Yasuda, T., Shiraishi, Y., Miyano, S., Nagasaki, M.: ClipCrop: a tool
for detecting structural variations with single-base resolution using soft-clipping
information. BMC Bioinformatics 12(Suppl. 14), 7 (2011)

16. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., et al.: SOAPdenovo2:
an empirically improved memory-efficient short-read de novo assembler. Giga Sci-
ence 1(1), 18 (2012)

17. Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker,
R.E., Kang, H.M., Marth, G.T., McVean, G.A.: An integrated map of genetic vari-
ation from 1,092 human genomes. Nature 491(7422), 56–65 (2012) (1000 Genomes
Project Consortium)

18. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

19. Ewing, B., Hillier, L., Wendl, M.C., Green, P.: Base-calling of automated sequencer
traces using Phred. I. Accuracy assessment. Genome Res. 8(3), 175–185 (1998)

20. Sachidanandam, R., Weissman, D., Schmidt, S.C., Kakol, J.M., Stein, L.D., Marth,
G., et al.: A map of human genome sequence variation containing 1.42 million single
nucleotide polymorphisms. Nature 409(6822), 928–933 (2001)

21. Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E., Chen, K., Alkan, C.,
et al.: Mapping copy number variation by population-scale genome sequencing.
Nature 470(7332), 59–65 (2011)

22. Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A., Dewey, C.N.: RNA-Seq
gene expression estimation with read mapping uncertainty. Bioinformatics 26(4),
493–500 (2010)

23. Nariai, N., Hirose, O., Kojima, K., Nagasaki, M.: TIGAR: transcript isoform abun-
dance estimation method with gapped alignment of RNA-Seq data by variational
Bayesian inference. Bioinformatics 29(18), 2292–2299 (2013)

24. Mimori, T., Nariai, N., Kojima, K., Takahashi, M., Ono, A., Sato, Y., Yamaguchi-
Kabata, Y., Nagasaki, M.: iSVP: an integrated structural variant calling pipeline
from high-throughput sequencing data. BMC Systems Biology 7(6), 1–8 (2013)

25. Kojima, K., Nariai, N., Mimori, T., Takahashi, M., Yamaguchi-Kabata, Y., Sato,
Y., Nagasaki, M.: A statistical variant calling approach from pedigree informa-
tion and local haplotyping with phase informative reads. Bioinformatics 29(22),
2835–2843 (2013)

Analysis and Classification of Constrained DNA

Elements with N-gram Graphs
and Genomic Signatures

Dimitris Polychronopoulos1,4, Anastasia Krithara2, Christoforos Nikolaou3,
Giorgos Paliouras2, Yannis Almirantis1, and George Giannakopoulos2,�

1 Institute of Biosciences and Applications, NCSR Demokritos, 15310 Athens, Greece
2 Institute of Informatics and Telecommunications

NCSR Demokritos, 15310 Athens, Greece
3 Department of Biology, University of Crete, 71409 Heraklion, Greece

4 Department of Biochemistry and Molecular Biology, Faculty of Biology,
National and Kapodistrian University of Athens 15701 Athens, Greece

Abstract. Most common methods for inquiring genomic sequence
composition, are based on the bag-of-words approach and thus largely ig-
nore the original sequence structure or the relative positioning of its con-
stituent oligonucleotides. We here present a novel methodology that takes
into account both word representation and relative positioning at various
lengths scales in the form of n-gram graphs (NGG). We implemented the
NGG approach on short vertebrate and invertebrate constrained genomic
sequences of various origins and predicted functionalities and were able
to efficiently distinguish DNA sequences belonging to the same species
(intra-species classification). As an alternative method, we also applied
the Genomic Signatures (GS) approach to the same sequences. To our
knowledge, this is the first time that GS are applied on short sequences,
rather than whole genomes. Together, the presented results suggest that
NGG is an efficient method for classifying sequences, originating from a
given genome, according to their function.

Keywords: genomic sequence representation, n-gram graphs, conserved
non-coding elements, CNEs, UCEs, ultraconserved elements, classifica-
tion, genomic signatures.

1 Introduction

1.1 Constrained Elements in Eukaryote Genomes

High throughput sequencing at a massive scale combined with comparative
genome analysis has led to the discovery of a variety of constrained genomic
elements. In fact, there are many more selectively constrained noncoding than
protein-coding sequences in mammalian genomes. One of the most interest-
ing discoveries that have arisen from comparative genomics among mammalian

� Corresponding author: ggianna@iit.demokritos.gr

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 220–234, 2014.
c© Springer International Publishing Switzerland 2014

Classification of Constrained DNA Elements 221

genomes are the hundreds of such noncoding elements of more than 200bp in
length that show absolute conservation among mammalian orders [1]. These only
represent the tip of the iceberg of a much larger class of conserved noncoding el-
ements (CNEs), a general class of sequence elements that are significantly more
conserved than protein-coding genes and non-coding RNAs (ncRNAs)[10]. In
the following analysis, we implement the term “constrained elements” for both
protein-coding and conserved non-coding sequence stretches, while we refer to
noncoding as strictly not protein-coding.

Conserved non-coding elements can be found in the literature under various
definitions, depending on the percentage of identity between two or more or-
ganisms and the minimum length. Increasing evidence suggests that CNEs are
selectively constrained and not mutational cold-spots [5] and there is a plethora
of studies indicating possible functions of those elements [10]. Among the various
reported functional roles of CNEs, enhancers appear to be the most plausible.
Nevertheless, the relative abundance, genomic distribution and variable length
of CNEs is indicative of various alternatives. CNEs have been shown to bear
resemblance to CTCF insulator sites [30], matrix attachment regions [8], while a
recent, concise study across 29 mammals revealed constrained elements of smaller
sizes that may be directly related to transcriptional regulation as well as to the
encoding of functional RNA molecules [19]. CNE existence may be extended
even further back in evolutionary time as suggested by recent works including
both bony and cartilaginous fish species [18]. While the majority of the analyses
have been conducted in mammals, there is growing evidence that CNEs are not a
vertebrate innovation and can also be found in invertebrates and plants. Despite
the fact that vertebrate and invertebrate CNEs bear no sequence identity, they
share common sequence characteristics, indicating a parallel evolution of those
sequences in order to perform the same, possibly essential, functions [27].

Among the various attributes of these genomic sequences, DNA composition
has been greatly ignored. When compared to non-CNEs and near-promoter se-
quences, CNEs possess an excess of AT-rich motifs, often containing runs of
identical nucleotides. In a recent paper, Walter et al have analysed the base
composition of human and Fugu CNEs at single nucleotide level [29]. They have
found that those elements are A+T rich, much more so than the region they re-
side in, in contrast to their flanking region just outside their boundaries, which
exhibits a marked drop in A+T content that forms a unique pattern. Such com-
positional extremes are strong indications of functionality as has been shown for
gene-dense regions and CpG islands [26,31]. It is therefore of great interest to
further investigate the compositional preference of constrained regions in greater
detail. To this end, conventional approaches addressing composition through his-
tograms, or bag-of-words approaches tend to overlook the positional information,
while probabilistic sequential methods like HMMs are likely to undermine the
effect of local sequence boundaries. In the following we describe a novel method-
ology that is able to address both such aspects with the additional advantage of
allowing for similarity measurements between any two sequences.

222 D. Polychronopoulos et al.

1.2 Analyzing Sequence Composition through a Combination of
Word-Content and Relative Positioning Information

A sequence can easily be considered equivalent to a natural language text, un-
der the assumption that the vocabulary is very limited. Traditionally, natural
language processing methods based on n-grams (n-nucleotides correspondingly)
have been applied on biological sequences, aiming to support sequence matching
[15], indexing [16], analysis of protein sequences [6] and coding and non-coding
DNA sequences [20]. The n-gram models of sequences indicate how short sub-
sequences of length n appear in the whole analyzed sequence. Other alternatives
of analysis, like Hidden Markov Models or Conditional Random Fields [3], model
probabilistically the possible combinations of elements in a sequence.

In this work, we propose the application of the n-gram graph (NGG) rep-
resentation methodology [7], which manages to capture both local and global
characteristics of the analysed sequences. The main idea behind the NGGs is
that the neighborhood between sub-sequences in a sequence contains a crucial
part of the sequence information. The NGG, as derived from a single sequence, is
essentially a histogram of the co-occurrences of symbols. The symbols are consid-
ered to co-occur when found within a maximum distance (window) of each other.
The size of the window, which is a parameter of the NGG, allows for fuzziness
in the representation of co-occurrences within a sequence. The fact that NGGs
take into account co-occurrences offers the local descriptiveness, while the fact
that they act as a histogram of such co-occurrences provides their global repre-
sentation potential. We note that at the limit of window size (infinite window
size) the NGGs lose the local descriptiveness trait.

As opposed to probabilistic models (e.g. HMM), the NGGs are deterministic.
Furthermore, NGGs do not rely on numerous examples to infer model param-
eters. Third, they treat equally under-represented phenomena which removes
the bias of probabilistic approaches towards frequent patterns. As opposed to
n-gram models, NGGs offer more information, based on the representation of
co-occurrences. Overall, they provide a trade-off between expressiveness and gen-
eralization.

The n-gram graph framework, also offers a set of important operators. These
operators allow combining individual graphs into a model graph (the update op-
erator), and comparing pairs of graphs providing graded similarity measurements
(similarity operators). In the sequence composition setting, the representation
and set of operators provide one more means of analysis and comparison, one
that is lacking from widely-implemented probabilistic models such as HMMs.

Finally, the NGGs can be combined with vector representation of sequences
to allow the application of machine learning methods for the classification of
sequences. Within this study, both conserved non-coding and protein coding
segments are analyzed through a NGG-based approach and an approach based
on the method of genomic signatures [11]. Additionally, datasets of CNEs and
protein coding segments (coding exons) are studied along with suitably chosen
(see Methods) surrogate sequence sets.

Classification of Constrained DNA Elements 223

2 Methods

2.1 Datasets Retrieval

We consider various published datasets of constrained sequences. Human, worm
and insect denote sequences taken from H.sapiens, C.elegans and D.melanogaster
genomes. Given that those datasets are heterogeneous in numbers, we randomly
select 1000 elements from each set for our subsequent analysis. Only worm CNEs
are studied in their entirety, as this dataset is relatively small. The exonic se-
quences of human, worm and insect genomes were obtained from the UCSC
genome repository based on the RefSeq annotation referring to the latest genome
assemblies (hg19, ce10, dm3) [21]. The datasets described below along with their
surrogates are used in 26, in total, pairwise classification experiments, denoted
throughout the text as #1, #2, ...; see Supplementary Spreadsheet1 where fur-
ther information is provided. Apart from exonic sequences, the following classes
of constrained non-exonic sequences are used:

– UltraConserved Noncoding Elements (UCNEs): These are sequences of at
least 200bp in length mapped on the human genome (hg19) that display
sequence similarity which is greater than or equal to 95% between human
and chicken whole genome alignments [4]

– EU100 nonexonic CNEs (EU100nx CNEs): These are sequences mapped on
the human genome (hg18) that are identical over 100bp in at least 3 out of
5 placental mammals (human, mouse, rat, dog and cow) [25]. The whole set
is named EU100+ and since we remove elements overlapping exons it will
be referred to as EU100nx.

– Amniotic and Mammalian CNEs: These are elements identified by Kim and
Pritchard[17]. Mammalian CNEs are sequences that are conserved within
mammals but not found in chicken or fish, while Amniotic CNEs are con-
served in mammals and chicken but not found in fish. LiftOver [14] is used
to convert the coordinates to the most recent release of the human genome
(from hg17 to hg19).

– Worm and Insect UCNEs: These are elements mapped on ce10 and dm3
genome releases of C.elegans and D.melanogaster respectively. Worm UC-
NEs are DNA stretches longer than 60bp that exhibit sequence similarity
greater than 90% among C.elegans and C.japonica, while Insect UCNEs are
stretches longer than 60bp that display sequence similarity greater than 90%
among D.melanogaster and D.virilis (unpublished results, Philipp Bucher’s
group, EPFL)

2.2 Treatment of Sequences and Extraction of Surrogate Sequences

A useful suite of tools called BEDTools [22] is used in order to extract FASTA
sequences from BED files and to calculate overlapping elements. Additionally, we

1 You can download the spreadsheet from
http://users.iit.demokritos.gr/~ggianna/Publications/alcob2014/

http://users.iit.demokritos.gr/~ggianna/Publications/alcob2014/

224 D. Polychronopoulos et al.

make use of the EMBOSS suite to calculate fractional GC content of sequences
[24]. It is known from the literature that vertebrate and invertebrate CNEs are
of significantly different lengths (the ones belonging to the latter category are
considerably smaller) [23]. We make sure that we take segments of equal lengths
as follows: for classification experiments involving CNE sets of vertebrate and
invertebrate origin, we truncate the vertebrate ones around their middle point
to the length of the shortest invertebrate CNE included in the experiment. For
each element of each collection under study (CNE or exon), an analogue of
it is extracted from the corresponding genome. Every resulting DNA segment
(surrogate sequence) is ensured that is of the same length and GC content (within
a 1% deviation limit) with its corresponding element in the collection under
study. Statistics of the datasets (mean length and GC content of sequences)
are available in the Supplementary Spreadsheet. All custom shell scripts are
available upon request to interested readers. All the files (coordinates in BED
and sequences in FASTA format) are also available upon request.

2.3 From Sequences to the N-Gram Graph Similarity Vector Space

We have followed a set of steps to represent our sequences using NGGs. The
idea is that from known (labeled) sequences we form representatives of each
class of sequences. Then, we describe all sequences based on their similarity to
the representatives of each class. Thus, there are essentially three steps in our
application of the NGGs:

– Representation of individual sequences using NGGs.
– Calculation of representative (model) NGGs for each training class used.
– Calculation of similarity between training instances and model graphs.
– Representation of instances using only their similarities, i.e., in a similarity

vector space.

In the following paragraphs we elaborate on these steps.

Representation of Sequences. The n-gram graph (NGG) is a graph G =<
V G, EG, L,W >, where V G is the set of vertices, EG is the set of edges, L
is a function assigning a label to each vertex and to each edge and W is a
function assigning a weight to every edge. The graph has n-grams labeling its
vertices vG ∈ V G. The edges eG ∈ EG (the superscript G will be omitted where
easily assumed) connecting the n-grams indicate proximity of the corresponding
vertex n-grams. The weight of the edges can indicate a variety of traits. In our
implementation we apply as weight the number of times the two connected n-
grams were found to co-occur. It is important to note that in NGGs each vertex
is unique. To ensure that no duplicate vertices exist, we also require that the
labelling function is an one-to-one function. Two vertices are considered equal if
and only if their labels are equal.

We repeat that the edgesE are assigned weights of ci,j where ci,j is the number
of times a given pair Si, Sj of n-grams happen to be neighbors in a string within

Classification of Constrained DNA Elements 225

some distanceDwin of each other. The distance d of two n-grams S(i,i+n), S(j,j+n)

is d = |i − j|. To create the NGG from a given sequence, a fixed-width window
Dwin of characters (or words) around a given n-gram N0 ≡ Sr, r ∈ N∗ is used.
All character n-grams within the window are considered to be neighbors of N0.
These neighbors are represented as connected vertices in the text graph. We
use a symmetric approach, where a window of length 2 × Dwin + 1 runs over
the text, centered at the beginning of N0. If the n-gram we are interested in is
located at position p0, then the window will span from p0 −Dwin to p0 +Dwin,
taking into account both preceding and succeeding characters or words. Each
edge e =< a, b > is weighted based on the number of co-occurrences of the
neighbors within a window in the text: w(e) = |{S(i,i+n) = L(a), S(j,j+n) =
L(b) : abs(i− j) ≤ Dwin, i
= j}|

Creation of Representative Graphs. The NGG representation specification
indicates how to represent a text using an NGG. However, in sequence analysis
it is often required to represent a whole sequence set, i.e. a sequence class. In our
applications we have used the update function U to represent sets. The update
function U(G1, G2, l) takes two graphs as input. One graph is considered to be
the pre-existing graph G1 and one that is considered to be the new graph G2.

The U function takes an additional argument, the learning factor l ∈ [0, 1],
which determines the sensitivity of G1 to the change G2 brings. The higher the
value of learning factor, the higher the impact of the new graph to the existing
graph. The definition of the weighting performed in the graph resulting from
U(G1, G2, l) is: w(e) = w1(e) + (w2(e)− w1(e))× l for every edge e ∈ E1 ∪E2.

The U function allows creating a representative graph for a set of documents,
in analogy to the centroid of a set of vectors. The creation of a set-representative
graph Gs, for a given set of graphs G = {G1, G2, G3, ..., Gn} is as follows. We
initialize the class graph with the first document of the class Gs = G1. Then,
iteratively we update Gs by: Gs = U(Gs, Gi,

1
i+1) for i ∈ 2, n. After all iterations

the weight of every edge e ∈ Es will have a weight of: we =

∑

i:e∈Ei

wi

|{i:e∈Ei}|
This weight is the average of the weights of edge e over all the graphs Gi,

where it appears. This means that graphs where the edge does not appear, are
not taken into account in this calculation. This essentially means that having a
graph with an edge e, where w(e) = 0 is different than not having the edge at
all.

Measuring Similarity and Vector Space Representation. In the n-gram
graph framework there are different ways to measure similarity. We choose the
Value Similarity function [7]. This measure quantifies the ratio of common edges
between two graphs, taking into account the ratio of weights of common edges. If
|G| = |{e ∈ G}| the edge count of a graphG, then in the Value Similarity measure

each matching edge e having weight wi
e in graph Gi contributes VR(e)

max(|Gi|,|Gj|) to

VS, while not matching edges do not contribute (consider that for an edge e /∈ Gi

we define wi
e = 0).

226 D. Polychronopoulos et al.

The ValueRatio (VR) scaling factor is defined as: VR(e) =
min(wi

e,w
j
e)

max(wi
e,w

j
e)
. The

equation indicates that the ValueRatio takes values in [0, 1], and is symmetric.

Thus, the full equation for VS is: VS(Gi, Gj) =

∑
e∈Gi

min(we
i ,we

j)

max(we
i
,we

j
)

max(|Gi|,|Gj|)
Given the similarity function VS(Gi, Gj), a sequence instance S with a cor-

responding graph GS and class-representative graphs Gi for classes Ci, we can
describe S in a similarity vector space. In this space, each dimension reflects the
similarity of the instance sequence to a corresponding class. Thus, the vector
V (S) is of the form V (S) =< VS(GS , G1),VS(GS , G2), ...,VS(GS , Gn) > where
n is the number of classes we have. Thus, the above process allows us to map
each sequence in a dataset to a vector space of similarities.

In the following section we discuss another representation of sequences we use
in our experiments: genomic signatures.

2.4 The “Genomic Signature” Method

This is a standard methodology for classifying and distinguishing genomes based
on the quantification of neighbor preferences in a DNA sequence of an entire
genome by computing the vector of the odds ratios for dinucleotides [13]. The
odds ratio of each dinucleotide is the quantity: rij = fij/(fifj), where fij and
fi, fj stand for the frequencies of occurrence in the studied sequence of a din-
ucleotide and its constituent nucleotides respectively. Therefore, the subscripts
i, j represent any pair of A, G, C and T. This is the ratio of the “observed”
dinucleotide frequency over the “expected” one under no neighbor effects, thus
it expresses the actual neighbor preferences of the given pair of nucleotides. Be-
fore computing the odds ratios for a given sequence, this is concatenated to its
reverse complement. Consequently, the relevant ratios are only ten, i.e. four for
the self-complementary dinucleotides and six for the mutually complementary
couples. Karlin and co-workers first proposed that these quantities differenti-
ate between different genomes, according, approximately, to their evolutionary
distance. Thus they have assigned to the vector of these ten “first neighbour
preferences” the name of genomic signature (GS). It has to be noted that GS fil-
ter out mononucleotide composition retaining only the first neighbor preferences.
Among the various implementations of GS, dinucleotides are used more widely
due to the obvious reason of statistical limitations imposed by sequence size. In
our case, we used the same approach for two reasons: a) The examined sequences
were of short size. Both exons and CNE have a mean length of no more than
150 nucleotides and addressing them with higher-order k-mers is bound to be
compromised by the finite size effects. b) Exons, one of the main functional cat-
egories used in this work, are known to be biased towards specific trinucleotides
(and multiples thereof such as 6- and 9-mers) due to the inherent structure of
the genetic code and specific protein coding preferences. This property, (widely
known as codon bias) is much more pronounced in 3-mers than in 2-mers, thus
we chose the latter as the basis of our analysis with GS.

Classification of Constrained DNA Elements 227

For a direct comparison with the n-gram graphs (NGG) approach described in
the previous section, we use classification based on genomic signatures (GS) and
apply that to the same pairs of genomic sequences. When applying classification,
in both the NGG and the GS approaches we use the output of the analysis
(similarity vectors, or ratio correspondingly) as input vectors to train a well-
known, rule-based classifier: the JRIP implementation [9] of RIPPER [2]. We
note that the results provided by RIPPER are comparable to those of other state-
of-the-art classifiers we tried (e.g., Support Vector Machines, Random Forest).
In the following section we report our findings based on experiments using both
analysis methods (NGG and GS).

3 Results and Discussion

In this section we describe a systematic analysis of short genomic segments,
which display different functionalities and stem from human, worm and insect
genomes. For every classification task, we adopt the technique of NGG and GS
as explained previously in order to estimate how different modalities could be
separated based on sequence composition.

We note that the NGG representation embeds three parameters. The first is
the value of m, which defines the minimum length of the n-grams into which a
sequence is split. The second is M , which defines the maximum length of the
n-grams into which a sequence is split. The third is D which represents the max-
imum distance within which we consider the n-grams (n-bases) to be neighbors.
Keeping m = M = D simplifies the analysis step reducing the required time,
while not significantly altering the results in most cases [7].

An estimator described in the the original NGGs’ work [7] was used in order
to define these parameters. As it was devised for a different, linguistic task (sum-
marization system evaluation) not taking into account the prediction potential
of n-grams for a classification task, we performed an approximate optimization
based on exhaustive experiments (for m ∈ [2, 9]) using 10-fold cross validation.
The tuning was performed using 6 different datasets.

We measure performance by means of the F-measure. F-measure, widely used
in machine learning and classification, is the geometric mean of the precision P
(the percentage of sequences assigned to a class that truly belong to the class)
and recall R (the percentage of the set of sequences that truly belong to a class
that were assigned to this class) of a classifier. Thus, F1 = 2×P×R

P+R . In Figure 1 we
illustrate, via F1, the performance of the NGG based classification. Each column
corresponds to a parameter value combination. The strong horizontal line in each
column indicates the average performance of this combination over the set of 6
datasets. The remaining lines represent the quantile values of the performance.
We deduce that there exists a persistent high plateau of performance when 5 ≤
m ≤ 8, which shows that the method does not improve significantly after m = 5.
Another observation is that 2-2-2 performs considerably better than 3-3-3 and
almost equally to 4-4-4. This might be related to the importance of first neighbor
preferences as reflected in the NGG methodology.

228 D. Polychronopoulos et al.

●

2−2−2 3−3−3 4−4−4 5−5−5 6−6−6 7−7−7 8−8−8 9−9−9

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Setting (minN, maxN, D)

F
1

P
er

fo
rm

an
ce

1

Fig. 1. Boxplots of the performance of n-gram graphs classification over varying pa-
rameters

In the tables included throughout the Discussion section, the NGG perfor-
mance obtained for the optimal combination of parameter values is included; e.g.
in Exp #1, Table 1, the value 83, 86 is given for NGG, corresponding to the pa-
rameter choice (7,7,7). We propose (m,M,D) = (5, 5, 5) as the best parameter
settings for analyzing short genomic sequences, based on all the 26 performed
experiments (see Supplementary Spreadsheet, Overall Statistics tab). Genomic
signatures have been used as an alternative to the NGG based classification
method. To our knowledge, for such short genomic segments of possible func-
tional importance, not only the NGG method but also the genomic signature
approach has not been applied before.

3.1 Inter-Species Comparisons of Background Sequences

For comparisons between human, worm and insect background sequences, we use
the surrogate sets described in Methods as representative samples of the different
genomes. Comparisons involving H. sapiens yield always the best classification
rates using both n-gram graphs (NGG) and Genomic Signatures (GS), see Ta-
ble 1. This may be understood on the grounds of the high difference of neighbor
preferences, mainly in CpG and TpA between H.sapiens and the invertebrates,
while these preferences are found to be quite close between invertebrate species:
D.melanogaster (insect) and C.elegans (worm). GS are exclusively a quantifica-
tion of first neighbor preferences and as a consequence are not influenced by GC
content. On the contrary, NGG are able to conceptually incorporate various com-
ponents/aspects of sequence composition, such as mononucleotide composition

Classification of Constrained DNA Elements 229

and higher order neighbor preferences (a criterion that is provided as a parameter
value in our technique by adjusting D).

In cases where human sequences are included in the comparison, GS perform
systematically better than NGG. This difference is also statistically significant
with a p-value below 0.10, based on a paired t-test. It is also worth mentioning
that the two cases with the highest differences in GC content between the sets
involved in the classification experiment are: experiment #22 which is the only
one where NGG perform better than GS; and experiment #1 where GS perform
better than NGG, but with the lowest difference in their performances. I.e. the
cases of the highest relative preponderance of NGG are the ones with the highest
differences in GC content, as expected due to the relative sensitivities of the two
methods to this composition parameter.

Table 1. Inter-species comparisons of background genomic sequences

Exp Description Average length Average GC NGG GS

#1
surrogates for human exons 167.837 0.5155

83.86 85.98
surrogates for worm exons 169.318 0.4049

#14
surrogates for human UCNEs 86.094 0.3651

79.38 84.05
surrogates for insect UCNEs 86.582 0.3949

#20
surrogates for insect exons 169.318 0.5202

80.48 87.49
surrogates for human exons 169.816 0.5087

#22
surrogates for worm exons 213.365 0.4194

73.50 70.35
surrogates for insect exons 212.858 0.5194

#23
surrogates for human UCNEs 82.932 0.3648

80.35 83.75
surrogates for worm UCNEs 82.875 0.4297

#13
surrogates for worm UCNEs 83.407 0.4265

58.79 64
surrogates for insect UCNEs 86.582 0.3949

Average 76.06 79.27

3.2 Classification Experiments of Constrained DNA Sequences
Versus Their Background Surrogates (Intra-Species
Classification)

The following experiments refer to comparisons of constrained sequences against
their surrogates (Table 2). Note that surrogates share the same GC% and length
with the initial sequences (see Methods). As evidenced from inspection of Table
2, comparisons involving invertebrate constrained sequences are not classified as
successfully as their human counterparts using NGG, see experiments #2 and
#17. Only insect UCNEs appear to be resistant to this effect, see experiment #12.
This finding might be understood on the grounds of several particularities of the
warm-blooded animals (often of all vertebrates) especially in their non-functional,
non-constrained background genomic fraction. These include a high enrichment

230 D. Polychronopoulos et al.

in transposable elements, microsatellites, homo-purine/homo-pyrimidine tracts
and several other characteristic compositional motifs. Such genomes also present
a typical profile of avoided dinucleotides (especially CpG and TpA) that are less
avoided in the constrained elements (exons, CNEs), which having functional
roles, do not strictly follow the average genomic compositional trends. Note
that invertebrate genomes are much less abundant in repeats and less marked
by under-representation of specific dinucleotides. In the comparisons by means
of GS, the same trend is followed but the differences are minor, due to the
sensitivity of these quantities solely upon first neighbor preferences. We know
from earlier studies that genomic signatures do not perform well in intra-species
comparisons because neighbor preferences remain relatively constant within the
same genome. Consequently, in most cases listed, NGG perform better than
GS (compare averages, 68,76% versus 61,84%). The difference is statistically
significant (p-value below 0.10, based on a paired t-test).

Table 2. Classification of constrained DNA sequences versus background surrogates

Exp Description Average length Average GC NGG GS

#2
worm exons 213.365 0.4243

57.7 61.05
surrogates 213.365 0.4239

#3
human exons 169.816 0.5190

74.3 63.41
surrogates 169.816 0.5183

#17
insect exons 388.822 0.5412

52.36 59.45
surrogates 381.557 0.5389

#4
worm UCNEs 82.875 0.4309

56.76 55.62
surrogates 82.875 0.4308

#5a
human UCNEs 326.923 0.3676

82.63 72.00
surrogates 326.923 0.3676

#5b
human EU100nx CNEs 155.499 0.3783

76.43 63.75
surrogates 155.499 0.3783

#5c
amniotic CNEs 289.061 0.3756

78.62 63.00
surrogates 289.061 0.3756

#5d
mammalian CNEs 246.488 0.4015

75.85 55.65
surrogates 246.488 0.4018

#12
insect UCNEs 86.582 0.3949

64.15 62.65
surrogates 86.582 0.3949

Average 68.76 61.84

The six last rows of Table 2 denote comparisons of several CNE sequences
collections against their surrogates. In general we notice that among constrained
sequences, human CNE sequences versus surrogates exhibit relatively higher clas-
sification rates, if compared with exonic sequences versus their corresponding
surrogates. This might be attributed to the fact that CNEs (and especially hu-
man UCNEs that we consider here) are more conserved than exons. In addition,
it is known from the literature that CNEs do serve as transcription factor binding

Classification of Constrained DNA Elements 231

sites and bear several motifs [28] that NGG analysis is possibly sensitive enough
to detect and thus, increase the obtained CNE-background vs. exon-background
classification rates.

3.3 Genomic Signatures Perform Better in Classifying Genomic
Segments of Functional Importance and Different Origin

In the experiments included in Table 3 we study the performance of NGG and GS
when they are applied on sets of functional sequences (CNEs or exons) of different
genomes. We verify that GS perform better in inter-genomic classification and
their performance is slightly improved in Table 3, if compared to Table 1. This
means that it is not blurred due to the constrained character of the sequences,
i.e. the first neighbour preference characterizing different genomes and filtered by
GS is clearly retained in exons and CNEs. Once again, we tested the statistical
significance in performance between the NGG and GS methods, based on a
paired t-test, and there exists statistically significant difference (with a p-value
below 0.05).

On the other hand, the performance of NGG drops. This might be associated
with the complex set of compositional traits that are characteristic of the NGG
method: nucleotide composition of the sequence, first neighbor preferences and
also higher neighbor relationships. Thus, in this context, the inter-genomic differ-
ences leading to an efficient NGG based classification of background sequences
(Table 1, average = 76.06) are blurred by the presence of common compositional
constraints related to function as shown by inspection of Table 3 (average =
74.47). Such an example is the known over-representation of adenine and gua-
nine in the composition of protein coding exons (purine loading).

Table 3. Comparisons of functional sequences between genomes

Exp Description Average length Average GC NGG GS

#9
worm exons 169.318 0.3886

74.68 82.21
human exons 169.816 0.5190

#10
worm UCNEs 83.113 0.4277

77.77 82.29
human UCNEs 82.640 0.3728

#15
worm UCNEs 83.086 0.4285

70.89 74.95
insect UCNEs 86.582 0.3949

#16
human UCNEs 86.094 0.3704

82.08 86.70
insect UCNEs 86.582 0.3949

#19
insect exons 169.318 0.5148

70.03 81.29
human exons 169.816 0.5089

#21
worm exons 213.365 0.4196

71.39 72.35
insect exons 212.858 0.5093

Average 74.47 79.97

232 D. Polychronopoulos et al.

4 Conclusions

The problem of assigning functionality to un-annotated sequences is highly rel-
evant in light of the complexity of mammalian genomes. By performing various
comparisons between representative sequences of different origin and function-
ality, we were able to show the potential of the n-gram graphs (NGG) in effec-
tively discriminating between genomic sequence fragments with expected func-
tion against the bulk of the genome. NGG were able to quantify the effect of
sequence constraint, thus their implementation in the description of other func-
tional sequences of mammalian genomes (such as regions with structural proper-
ties, matrix attachment regions and various non-coding RNA species) may pro-
vide valuable insight in the interplay between composition and function. When it
comes to inter-genomic comparisons between sequences of different origin, NGG
are less effective compared to the method of Genomic Signatures (GS). The effi-
ciency of the latter is for the first time demonstrated here at this length scale, as
up to now GS had only been applied in more extended genomic regions of 50kb
or more [12]. Further work is needed for a better exploitation of the presented
results, while combinations of the two methods may result in higher classification
rates.

Acknowledgments. D.P. would like to thank Professors Georgios Rodakis and
Stavros Hamodrakas (Faculty of Biology, University of Athens) for serving as
academic advisors. We would also like to express our gratitude to Dr Slavica
Dimitrieva and Dr Philipp Bucher for providing unpublished datasets of worm
and insect UCNEs. The research leading to these results has received funding
from the European Commission’s Seventh Framework Programme (FP7/2007-
2013, ICT-2011.4.4(d), Intelligent Information Management, Targeted Competi-
tion Framework) under grant agreement n. 318652 (BioASQ challenge).

References

1. Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W.J., Mattick, J.S.,
Haussler, D.: Ultraconserved elements in the human genome. Science 304(5675),
1321–1325 (2004), http://www.ncbi.nlm.nih.gov/pubmed/15131266

2. Cohen, W.W.: Fast effective rule induction. ICML 95, 115–123 (1995)

3. Culotta, A., Kulp, D., McCallum, A.: Gene prediction with conditional random
fields, Tech. Rep. UM-CS-2005-028, University of Massachusetts, Amherst (2005)

4. Dimitrieva, S., Bucher, P.: Genomic context analysis reveals dense interaction
network between vertebrate ultraconserved non-coding elements. Bioinformat-
ics 28(18), i395–i401 (2012), http://www.ncbi.nlm.nih.gov/pubmed/22962458

5. Drake, J.A., Bird, C., Nemesh, J., Thomas, D.J., Newton-Cheh, C., Reymond, A.,
Excoffier, L., Attar, H., Antonarakis, S.E., Dermitzakis, E.T., Hirschhorn, J.N.:
Conserved noncoding sequences are selectively constrained and not mutation cold
spots. Nat. Genet. 38(2), 223–227 (2006),
http://www.ncbi.nlm.nih.gov/pubmed/16380714

http://www.ncbi.nlm.nih.gov/pubmed/15131266
http://www.ncbi.nlm.nih.gov/pubmed/22962458
http://www.ncbi.nlm.nih.gov/pubmed/16380714

Classification of Constrained DNA Elements 233

6. Ganapathiraju, M., Weisser, D., Rosenfeld, R., Carbonell, J., Reddy, R., Klein-
Seetharaman, J.: Comparative n-gram analysis of whole-genome protein sequences.
In: Proceedings of the Second International Conference on Human Language Tech-
nology Research, pp. 76–81. Morgan Kaufmann Publishers Inc. (2002)

7. Giannakopoulos, G., Karkaletsis, V., Vouros, G., Stamatopoulos, P.: Summariza-
tion system evaluation revisited: N-gram graphs. ACM Trans. Speech Lang. Pro-
cess. 5(3), 139 (2008)

8. Glazko, G.V., Koonin, E.V., Rogozin, I.B., Shabalina, S.A.: A significant
fraction of conserved noncoding DNA in human and mouse consists of
predicted matrix attachment regions. Trends Genet. 19(3), 119–124 (2003),
http://www.ncbi.nlm.nih.gov/pubmed/12615002

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. ACM SIGKDD Explorations Newslet-
ter 11(1), 10–18 (2009)

10. Harmston, N., Baresic, A., Lenhard, B.: The mystery of extreme non-coding
conservation. Philosophical transactions of the Royal Society of London 368(1632),
20130021 (2013), http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=3826495&tool=pmcentrez&rendertype=abstract
11. Karlin, S., Mrázek, J.: Compositional differences within and between eukaryotic

genomes. Proceedings of the National Academy of Sciences of the United States
of America 94(19), 10227–10232 (1997), http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=23344&tool=pmcentrez&rendertype=abstract
12. Karlin, S.: Global dinucleotide signatures and analysis of genomic heterogeneity.

Current Opinion in Microbiology 1(5), 598–610 (1998)
13. Karlin, S., Burge, C.: Dinucleotide relative abundance extremes: a genomic signa-

ture. Trends in Genetics 11(7), 283–290 (1995)
14. Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu, Y., Roskin,

K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., et al.: The ucsc genome browser
database. Nucleic Acids Research 31(1), 51–54 (2003)

15. Kim, J.Y., Shawe-Taylor, J.: Fast string matching using an n-gram algorithm. Soft-
ware: Practice and Experience 24(1), 79–88 (1994)

16. Kim, M.S., Whang, K.Y., Lee, J.G., Lee, M.J.: n-gram/2l: A space and time effi-
cient two-level n-gram inverted index structure. In: Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, pp. 325–336. VLDB Endowment
(2005)

17. Kim, S.Y., Pritchard, J.K.: Adaptive evolution of conserved noncoding elements
in mammals. PLoS Genetics 3(9), 1572–1586 (2007),
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1971121&tool

=pmcentrez&rendertype=abstract
18. Lee, A.P., Kerk, S.Y., Tan, Y.Y., Brenner, S., Venkatesh, B.: Ancient vertebrate

conserved noncoding elements have been evolving rapidly in teleost fishes. Mol. Biol.
Evol. 28(3), 1205–1215 (2011), http://www.ncbi.nlm.nih.gov/pubmed/21081479

19. Lindblad-Toh, K., et al.: A high-resolution map of human evolutionary constraint
using 29 mammals. Nature 478(7370), 476–482 (2011),
http://www.ncbi.nlm.nih.gov/pubmed/21993624

20. Mantegna, R., Buldyrev, S., Goldberger, A., Havlin, S., Peng, C.K., Simons, M.,
Stanley, H.: Systematic analysis of coding and noncoding dna sequences using
methods of statistical linguistics. Physical Review E 52(3), 2939 (1995)

21. Pruitt, K.D., Tatusova, T., Maglott, D.R.: Ncbi reference sequences (refseq): a
curated non-redundant sequence database of genomes, transcripts and proteins.
Nucleic Acids Research 35(suppl. 1), 61–65 (2007)

http://www.ncbi.nlm.nih.gov/pubmed/12615002
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3826495&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3826495&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=23344&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=23344&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1971121&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1971121&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/21081479
http://www.ncbi.nlm.nih.gov/pubmed/21993624

234 D. Polychronopoulos et al.

22. Quinlan, A.R., Hall, I.M.: BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26(6), 841–842 (2010),
http://www.ncbi.nlm.nih.gov/pubmed/20110278

23. Retelska, D., Beaudoing, E., Notredame, C., Jongeneel, C.V., Bucher, P.: Verte-
brate conserved non coding DNA regions have a high persistence length and a
short persistence time. BMC Genomics 8, 398 (2007),
http://www.ncbi.nlm.nih.gov/pubmed/17973996

24. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology Open
Software Suite. Trends in genetics: TIG 16(6), 276–277 (2000),
http://www.ncbi.nlm.nih.gov/pubmed/10827456

25. Stephen, S., Pheasant, M., Makunin, I.V., Mattick, J.S.: Large-scale appearance of
ultraconserved elements in tetrapod genomes and slowdown of the molecular clock.
Mol. Biol. Evol. 25(2), 402–408 (2008),
http://www.ncbi.nlm.nih.gov/pubmed/18056681

26. Touchon, M., Arneodo, A., d’Aubenton Carafa, Y., Thermes, C.: Transcription-
coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic
Acids Research 32(17), 4969–4978 (2004)

27. Vavouri, T., Walter, K., Gilks, W.R., Lehner, B., Elgar, G.: Parallel evolution of
conserved non-coding elements that target a common set of developmental regula-
tory genes from worms to humans. Genome Biol. 8(2), R15 (2007),
http://www.ncbi.nlm.nih.gov/pubmed/17274809

28. Viturawong, T., Meissner, F., Butter, F., Mann, M.: A DNA-Centric Protein
Interaction Map of Ultraconserved Elements Reveals Contribution of Transcrip-
tion Factor Binding Hubs to Conservation. Cell reports 5(2), 531–545 (2013),
http://www.cell.com/cell-reports/fulltext/S2211-1247

29. Walter, K., Abnizova, I., Elgar, G., Gilks, W.R.: Striking nucleotide frequency
pattern at the borders of highly conserved vertebrate non-coding sequences. Trends
Genet. 21(8), 436–440 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15979195

30. Xie, X., Mikkelsen, T.S., Gnirke, A., Lindblad-Toh, K., Kellis, M., Lander, E.S.:
Systematic discovery of regulatory motifs in conserved regions of the human
genome, including thousands of CTCF insulator sites. Proc. Natl. Acad. Sci U. S.
A. 104(17), 7145–7150 (2007), http://www.ncbi.nlm.nih.gov/pubmed/17442748

31. Zhang, L., Kasif, S., Cantor, C.R., Broude, N.E.: Gc/at-content spikes as genomic
punctuation marks. Proceedings of the National Academy of Sciences of the United
States of America 101(48), 16855–16860 (2004)

http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://www.ncbi.nlm.nih.gov/pubmed/17973996
http://www.ncbi.nlm.nih.gov/pubmed/10827456
http://www.ncbi.nlm.nih.gov/pubmed/18056681
http://www.ncbi.nlm.nih.gov/pubmed/17274809
http://www.cell.com/cell-reports/fulltext/S2211-1247
http://www.ncbi.nlm.nih.gov/pubmed/15979195
http://www.ncbi.nlm.nih.gov/pubmed/17442748

Inference of Boolean Networks from

Gene Interaction Graphs Using a SAT Solver

David A. Rosenblueth1,3, Stalin Muñoz1,
Miguel Carrillo1, and Eugenio Azpeitia2,3

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,
Universidad Nacional Autónoma de México
Apdo. 20-126, 01000 México, D.F., México

2 Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas
Instituto de Ecoloǵıa, Universidad Nacional Autónoma de México

3er Circuito Universitario Exterior, Junto al Jard́ın Botánico
Coyoacán, 04510 México D.F., México

3 Centro de Ciencias de la Complejidad, piso 6, ala norte, Torre de Ingenieŕıa,
Universidad Nacional Autónoma de México

Coyoacán, 04510 México D.F., México
drosenbl@unam.mx, stalinmunoz@fi-b.unam.mx,

{miguel.mcb,emazpeitia}@gmail.com

Abstract. Boolean networks are important models of gene regulatory
networks. Such models are sometimes built from: (1) a gene interaction
graph and (2) a set of biological constraints. A gene interaction graph
is a directed graph representing positive and negative gene regulations.
Depending on the biological problem being solved, the set of biological
constraints can vary, and may include, for example, a desired set of sta-
tionary states. We present a symbolic, SAT-based, method for inferring
synchronous Boolean networks from interaction graphs augmented with
constraints. Our method first constructs Boolean formulas in such a way
that each truth assignment satisfying these formulas corresponds to a
Boolean network modeling the given information. Next, we employ a
SAT solver to obtain desired Boolean networks. Through a prototype,
we show results illustrating the use of our method in the analysis of
Boolean gene regulatory networks of the Arabidopsis thaliana root stem
cell niche.

Keywords: Boolean network, Gene interaction graph, SAT solver.

1 Introduction

Boolean networks, as simple as they are, have proven to encode meaningful
biological information. Moreover, Boolean networks have emerged as valuable
models of several biological phenomena. With the advent of high-throughput
technologies, the inference of Boolean networks from experimental data has be-
come an increasingly relevant problem. Two main approaches have appeared in

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 235–246, 2014.
c© Springer International Publishing Switzerland 2014

236 D.A. Rosenblueth et al.

the literature of Boolean-network inference, depending on the input to the algo-
rithm. There are methods, on the one hand, inferring a network from time-series
data (or the binarized input-output pairs) [1,5,12,14], and there are methods, on
the other hand, employing a gene interaction graph augmented with biological
constraints [4,18]. Our objective is to present a symbolic approach in the second
category, having as input, in addition to an interaction graph, a set of optional
constraints, such as a desired set of stationary states (also called fixed points)
or other biological restrictions.

A Boolean network can be viewed as a set of Boolean variables representing
genes (with values “active” and “inactive”, say), together with a “next-state”
Boolean function for each gene. In synchronous networks, all such functions are
simultaneously applied. We will omit the term “synchronous”, as we only treat
synchronous Boolean networks here. Usually, the next-state function of a gene
depends only on a subset of the genes, called the set of regulators of that gene.
Intuitively, an interaction graph describes the structure of the network. Such a
graph has a node for each gene, and arcs showing: (1) the regulators of each
gene, and (2) whether a regulation is “positive” or “negative”. An example of
an interaction graph appears in Fig. 1 (left) [1]. A gene j positively regulates a
gene i if there exist values of all genes other than j such that the next value of i
is the same as the current value of j (for both values of j). Conversely, a gene j
negatively regulates a gene i if there exist values of all genes other than j such
that the next value of i is the complement of the current value of j (for both
values of j) [19].

Because the positive and negative regulations of a gene only determine some
values of the next-state function of such a gene, there may be many Boolean
functions satisfying the regulations of that gene. By the same token, there may
be many Boolean networks satisfying a given interaction graph. However, from
a biology point of view, not all such networks may be meaningful. In practice,
therefore, a number of biological constraints are usually imposed.

A minimum requirement for a given Boolean network to be useful is that each
stationary state of the network corresponds to a different biological behavior,
such as the stable gene configurations observed in the cell types of an organism,
as hypothesized by Kauffman [10].

In addition, it may happen that not all experiments necessary to infer an
adequate Boolean network have been reported in the literature. Hence, to have
a Boolean network with a desired set of stationary states, it may be necessary to
add hypothetical regulations [2]. Similarly, we may be willing to admit additional
stationary states than those reported in the literature [4].

Several other biological constraints may be considered. For example, we may
wish to eliminate Boolean networks in which a gene both positively and nega-
tively regulates the same gene. The reason may be that such a double regulation
has rarely been observed in nature. This and other biological constraints are
employed, for instance, in [4].

The problem of inferring Boolean networks from interaction graphs (in addi-
tion to biological constraints) is important, as a number of Boolean networks

Inference of Boolean Networks from Interaction Graphs with a SAT Solver 237

have been so inferred in practice [2,7,9,11,13,15]. Such networks, however, have
mainly been built manually. Hence, the development of an efficient algorithm for
such an inference could have a significant impact.

Two algorithms for inferring Boolean networks from interaction graphs are [4]
and [18]. Such algorithms, nevertheless, explicitly represent each individual net-
work. As the search space is vast, these methods traverse a fragment of the space
with an algorithm employing a random component. Such methods are only ade-
quate for small networks.

This limitation suggests considering the development of methods based on
approaches other than the explicit representation of the Boolean-network search
space, such as symbolic techniques, as used in model checking. Moreover, sym-
bolic algorithms have already been utilized in Boolean-network analysis. For
instance, [17] uses Binary Decision Diagrams (BDDs) for computing the set of
stationary states, while [8] and [20] employ SAT-based algorithms for finding
attractors (of any size) and stationary states, respectively.

Central to our method is a symbolic representation of a set of Boolean net-
works through a set of propositional constraints on “entry” variables. Each as-
signment of truth values to the entry variables that satisfies the given constraints
determines the truth table of a Boolean network. Now, the interaction graph in-
dicates the set of regulator genes for each gene (in addition to the sign of the
regulation). Normally, only a proper subset of all genes regulate each gene. Hence,
when the regulators are incorporated into the entry variables, a reduction in the
number of such variables typically occurs. Next, we generate formulas represent-
ing the sign of each regulation. The biological constraints, such as the desired
set of stationary states, can readily be formalized. The same is true of the fact
(which we may or may not wish to enforce) that a gene should not both positively
and negatively regulate the same gene. We can also incorporate stationary states
of mutated versions of the networks of interest. The conjunction of the formu-
las representing all such constraints is then given to an incremental SAT solver.
Such a solver would have to compute not only one solution, but any number of
desired solutions.

Many of the queries we present are scalable, as their corresponding formulas
are small. The same does not hold for all queries, however. For example, if, given
a set of stationary states, we do not wish networks with additional stationary
states than those given, we must explicitly prohibit such additional states in the
formula. This makes the size of the resulting formula proportional to the number
of network states, that is, exponential in the number of genes.

This paper is organized as follows. Section 2 gives our method, Section 3
reports some experiments, and Section 4 gives concluding remarks.

2 Boolean Networks via Propositional Logic

In this section, after some introductory definitions, we establish a propositional
representation of Boolean networks. Then, we use this representation to develop
propositional formulas expressing some properties of Boolean networks.

238 D.A. Rosenblueth et al.

Fig. 1. A possible input to our algorithm (taken from [1]): G1, an interaction graph
(left) and the desired fixed point 001 (right). Of the seven Boolean networks satisfying
the interaction graph, only two have 001 as fixed point. Of these, only one has no gene
both positively and negatively regulating the same gene.

We use the following notation. N+ is the set of positive natural numbers. Unless
differently stated, we assume that n ∈ N+. N+

n is an initial segment of N+,
N+

n = {x ∈ N+ | x ≤ n}. B = {0, 1} is a set of Boolean values. If b ∈ B, then b′ is
the complement of b. If x ∈ B

n, we say that x is a state and xi denotes the i-th
component of x. We identify the state x with the string x1 · · ·xn denoted by ẍ.
If b ∈ B and J ⊆ N+

n , x[b/J] is the state resulting from replacing, for all i ∈ J ,
the i-th component of x by b. We write x[b/j] instead of x[b/{j}].

2.1 Boolean Networks and Interaction Graphs

Following Richard et al. [19], we define a Boolean network with n components as
a function f :Bn → Bn. The i-th component of f is a function fi:B

n → B such
that fi(x) = f(x)i. We say that x is a fixed point (or stationary state) of f if
f(x) = x. The set of fixed points of f is defined as FP(f) = {x ∈ Bn | f(x) = x}.
Unless differently stated, we assume that f :Bn → Bn.

Definition 1. If j ∈ N+
n , and b ∈ B, the mutation of f by j = b is defined as

f j=b:Bn → Bn, where, for all x ∈ Bn, f j=b
j (x) = b, and f j=b

i (x) = fi(x) if i
= j.

To infer Boolean networks, we use interaction graphs defined as follows.

Definition 2. We say that G is an interaction graph with n nodes if G =
〈N+

n , I
+, I−〉, where: I+ ⊆ N+

n × N+
n is a set of positive interactions, and I− ⊆

N+
n × N+

n is a set of negative interactions. If x ∈ I+ ∩ I−, we say that x is an
ambiguous interaction.

We use arcs with ordinary arrowheads → (resp. %) to graphically represent
positive (resp. negative) interactions. Figure 1 shows the depiction of an in-
teraction graph G1 = 〈N+

n , I
+, I−〉. In this example, n = 3, N+

n = {1, 2, 3},
I+ = {(1, 2), (2, 1), (3, 2)}, and I− = {(1, 3)}.

Definition 3 ([19]). The interaction graph of f is Gf = 〈N+
n , I

+, I−〉 where:

Inference of Boolean Networks from Interaction Graphs with a SAT Solver 239

1. (j, i) ∈ I+ iff ∃x ∈ Bn such that fi(x[1/j])− fi(x[0/j]) > 0
2. (j, i) ∈ I− iff ∃x ∈ Bn such that fi(x[1/j])− fi(x[0/j]) < 0

Intuitively, the interaction graph of f , Gf , describes the structure of f . Note
that Gf may have both a positive and a negative interaction from j to i.

Definition 4. Let G = 〈N+
n , I

+, I−〉 be an interaction graph. The set of essen-
tial regulators of i in G is defined as RG(i) = {j ∈ N+

n | (j, i) ∈ I+ ∪ I−}. The
set of fictitious regulators of i in G is defined as Rc

G(i) = N+
n −RG(i). The full

set of regulators of i in G is defined as Kn(i) = N+
n , for all i ∈ N+

n .

For the example in Fig. 1, RG(1) = {2}, RG(2) = {1, 3} and RG(3) = {1}.

2.2 Representation of Boolean Networks

In this subsection, we first give a propositional representation of Boolean net-
works and then develop propositional formulas expressing constraints.

We use PL for the set of propositional-logic formulas and assume the standard
semantics of PL. When necessary, we use PL(V) to emphasize that PL is built
from the set of variables V .

Definition 5. A set of variables is any nonempty set. We use a particular set of
variables, called entry variables, defined as Varfn = {fiẍ | i ∈ N+

n and x ∈ Bn}.
The variable fiẍ represents the value of the fi at the state x. Hence, Varfn is

a set of variables representing the values of the Boolean network f . For example,
given the interaction graph in Fig. 1, the corresponding set of entry variables
placed at their represented values can be seen in Fig. 2 (a).

x f(x)

0 0 0 f1000 f2000 f3000

0 0 1 f1001 f2001 f3001

0 1 0 f1010 f2010 f3010

0 1 1 f1011 f2011 f3011

1 0 0 f1100 f2100 f3100

1 0 1 f1101 f2101 f3101

1 1 0 f1110 f2110 f3110

1 1 1 f1111 f2111 f3111

(a)

x f(x)

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 1 0 1

0 1 1 1 0 1

1 0 0 0 0 0

1 0 1 0 1 0

1 1 0 1 0 0

1 1 1 1 1 0

(b)

x f(x)

0 0 0 f1000 f2000 f3000

0 0 1 f1000 f2001 f3000

0 1 0 f1010 f2000 f3000

0 1 1 f1010 f2001 f3000

1 0 0 f1000 f2100 f3100

1 0 1 f1000 f2101 f3100

1 1 0 f1010 f2100 f3100

1 1 1 f1010 f2101 f3100

(c)

Fig. 2. (a): Entry variables Varfn of a three-gene example. (b): One of seven Boolean
networks satisfying the interaction graph in Fig. 1. (c): Representative variables as
determined by the interaction graph in Fig. 1.

Observe in Fig. 1 that gene 1 is only regulated by gene 2. Hence, there is no
need to use three different variables for the next value of gene 1: All Boolean net-
works satisfying the interaction graph will have the same value for both f1000 and

240 D.A. Rosenblueth et al.

f1001, for example. Moreover, by using one variable instead of two in each of the
following sets: {f1000, f1001}, {f1010, f1011}, {f1100, f1101}, and {f1110, f1111},
we guarantee that the regulation of gene 1 by itself will not be added by the
SAT solver.

Since gene 1 only depends on one gene, we only need two variables for f1.
We will arbitrarily select the lexicographically smaller fiẍ, which we will call the
“representative” of fiẍ. Figure 2 (c) shows the representative variables of Fig. 1.

Definition 6. Let G an interaction graph and fiẍ ∈ Varfn an entry variable.
We define the representative variable of fiẍ in G as rep(G, fiẍ) = fiẍ[0/R

c
G(i)].

Definition 7. If v is a propositional variable and b ∈ B, the literal of (v, b) is
defined as lit(v, b) = ¬v if b = 0 and lit(v, b) = v if b = 1.

Definition 8. Given a set of variables V , a truth assignment for V is a function
σ:V → B. As usual, we identify a truth assignment σ with the set {x ∈ V |
σ(x) = 1}. The truth assignment of f , σf : Varfn → B, is defined as σf (fiẍ) =
fi(x) for all x ∈ Bn.

Observe that fiẍ is true if fi(x) = 1, and fiẍ is false if fi(x) = 0. In the
Boolean network in Fig. 2 (b), f2000 is false and f3000 is true.

Definition 9. If J ⊆ N+
n , the restriction of Bn to components in J is defined

as Bn|J= {x ∈ Bn | ∀i ∈ N+
n − J, xi = 0}.

Hence, Bn|J is the set of states having 0 in the positions that are not in J .
We are now in a position to define the formulas expressing desired properties

to constrain the inference of Boolean networks.

Definition 10. Let R:N+
n → P(N+

n). For each (j, i) ∈ N+
n × N+

n , we define the
positive, and negative, interaction formulas of (j, i) w.r.t. R as:

ϕ+
R(j, i) =

∨
x∈Bn|R(i)

(fiẍ[1/j] ∧ ¬fiẍ[0/j])

ϕ−
R(j, i) =

∨
x∈Bn|R(i)

(¬fiẍ[1/j] ∧ fiẍ[0/j]).

Note that ϕ+
Kn

(j, i) is true iff ∃x ∈ Bn such that fi(x[1/j]) − fi(x[0/j]) > 0.

A similar remark applies to ϕ−
Kn

(j, i). Observe that this definition is analogous
to Definition 3 and to the definition of interaction graph in [19].

If R is the regulation of G1 in Fig. 1, for instance, these formulas will be:
ϕ+
RG

(1, 2) = (f2100 ∧ ¬f2000) ∨ (f2101 ∧ ¬f2001), ϕ+
RG

(2, 1) = f1010 ∧ ¬f1000,
ϕ+
RG

(3, 2) = (f2001∧¬f2000)∨ (f2101∧¬f2100), and ϕ−
RG

(1, 3) = ¬f3100∧ f3000.
The following theorem has implications for efficiency in the construction of

Boolean networks starting from an interaction graph G. This theorem states
that, if fi is independent of R

c
G(i) for all i ∈ N+

n , in accordance with the mean-
ing established by σf , the interaction formulas w.r.t. Kn are equivalent to the
interaction formulas w.r.t. RG.

Inference of Boolean Networks from Interaction Graphs with a SAT Solver 241

So, to build a Boolean network containing a given interaction graph, we only
have to satisfy a disjunction over Bn|RG(i) rather than satisfying a disjunction
over Bn. Since in practice Bn|RG(i) is often much smaller than Bn, the reduction
of such a disjunction to Bn|RG(i) is significant in terms of efficiency.

Theorem 11. If R:N+
n → P(N+

n) and f :Bn → Bn are such that, ∀i ∈ N+
n ,

∀j ∈ Rc(i), ∀x ∈ Bn, fi(x) = fi(x[0/j]) (i.e., ∀i ∈ N+
n fi is independent of

Rc(i)), then, ∀i, j ∈ N+
n :

1. σf |= ϕ+
Kn

(j, i) iff σf |= ϕ+
R(j, i), and

2. σf |= ϕ−
Kn

(j, i) iff σf |= ϕ−
R(j, i).

Definition 12. Let G be an interaction graph, and x, y ∈ Bn. We define the
input-output pair formula for the input state x and the output state y as:

ϕIO(G, x, y) =
∧

i∈N
+
n

lit(rep(G, fiẍ), yi).

We can use formulas ϕIO, for example, to express that x is a fixed point of f

Definition 13. Let G be an interaction graph. If x ∈ Bn, the fixed-point for-
mula of x is defined as:

ϕFP(G, x) = ϕIO(G, x, x).

For example, taking G1 and the desired fixed point of Fig. 1, we have
ϕFP(G1, x) = lit(f1000, 0) ∧ lit(f2001, 0) ∧ lit(f3000, 1) = ¬f1000∧ ¬f2001∧ f3000.

As well as fixed points of the desired networks, fixed points of networks of
mutated organisms often constitute additional constraints [2]. Instead of using
an additional set of entry variables to treat the Boolean network of the mutated
organism, we employ only one set of entry variables: those of the nonmutated
network. A fixed-point of a mutated network is treated as follows. Let f be the
wild-type network and x a fixed point in the mutated network f j=b and not in the
wild-type network. Observe first that ∀i
= j, f j=b

i (x) = xi and xj = f j=b
j (x) = b.

If it were the case that fj(x) = b, then x would also be a fixed point of f . Hence,
making fj(x) = b′ prevents x from being a fixed point in f . Thus, the key idea
is that, if xj = b, the formula ϕIO(G, x, x[b′/j]) captures the fact that x is not a

fixed point of f but, since f j=b
j (x) = b, x is a fixed point of f j=b.

Definition 14. Let G be an interaction graph, j ∈ N+
n , b ∈ B, and B ⊆ Bn.

The mutation formula for a mutation by j = b with fixed points B is defined as:

ϕfj=b(G, j, b, B) =
∧
x∈B

ϕIO(G, x, x[b′/j]).

For example, using the mutation formula with G1 of Fig. 1, j = 1, b = 1, and
B = {(1, 0, 0)}, we get ϕfj=b(G1, j, b, B) = ¬f1000 ∧ ¬f2100 ∧ ¬f3100. That is,
f(1, 0, 0) = (0, 0, 0) and hence f1=1(1, 0, 0) = (1, 0, 0).

242 D.A. Rosenblueth et al.

We will now assume that we are given the following parameters: an interac-
tion graph G with hypothetical interactions H+ and H−, a set A of desired
fixed points, and a set M of mutations with their corresponding fixed points.
Depending on the query of interest, we can use such parameters and combine
the formulas below into a formula ψ to obtain Boolean networks f such that
σf |= ψ.

Definition 15. Let G = 〈N+
n , I

+, I−〉 be an interaction graph, H+ ⊆ I+, H− ⊆
I−, A ⊆ Bn, and M ⊆ {(j, b, B) | j ∈ N+

n , b ∈ B, B ⊆ Bn}. We define the
following set of Boolean-network formulas.

1. Known interactions:

ϕinteractions (G) =

⎡
⎣ ∧
(j,i)∈(I+−H+)

ϕ+
RG

(j, i)

⎤
⎦ ∧

⎡
⎣ ∧
(j,i)∈(I−−H−)

ϕ−
RG

(j, i)

⎤
⎦

2. Nonambiguity:

ϕnonambiguity (G) =

⎡
⎣ ∧
(j,i)∈I+

¬ϕ−
RG

(j, i)

⎤
⎦ ∧

⎡
⎣ ∧
(j,i)∈I−

¬ϕ+
RG

(j, i)

⎤
⎦

3. Fixed points:
(a) A is exactly the set of fixed points of f :

ϕA=FP(f)(G,A) =

⎡
⎣ ∧
x∈(Bn−A)

¬ϕFP(G, x)

⎤
⎦ ∧

⎡
⎣ ∧
x∈A

ϕFP(G, x)

⎤
⎦

(b) A is a subset of the set of fixed points of f :

ϕA⊆FP(f)(G,A) =
∧
x∈A

ϕFP(G, x)

4. Mutations (For all (j, b, B) ∈M , the states in B are fixed points in f j=b):

ϕmutation(G,M,A) =
∧

(j,b,B)∈M

ϕfj=b (G, j, b, B −A)

3 Experiments

In this section, we report on the effectiveness of our method in a practical biology
case, using a prototype called Griffin (for “Gene regulatory interaction formu-
lator for inquiring networks”). After encoding the problem, Griffin converts the
formula to an equisatisfiable conjunctive normal form (CNF) and feeds it to the
SAT engine Sat4j [6]. If the SAT engine returns a satisfying assignment, such
an assignment is decoded back to a Boolean network. Sat4j operates in an incre-
mental manner, adding a blocking clause for every found satisfying assignment,
and iteratively attempting to find as many satisfying networks as time permits.
Griffin is written in the Java programming language version 7. Times below are
those of Griffin running on a laptop computer (Intel Core i3 CPU at 2.13 GHz,
6GB RAM), averaged over 100 repetitions.

Inference of Boolean Networks from Interaction Graphs with a SAT Solver 243

Fig. 3. Interaction graph for A. thaliana root stem cell niche coupled GRN model,
based on [3] (Fig. 1.b). Node indices map to gene names as follows: 1-SHR, 2-SCR,
3-JKD, 4-MGP, 5-PLT, 6-IAA, 7-AUX, 8-ARF, 9-WOX5, and 10-CLEX. Continuous
arcs denote known regulations; dashed arcs denote hypothetical regulations.

3.1 The Arabidopsis thaliana Root Stem Cell Niche GRN Model

We analyzed the Arabidopsis thaliana root stem cell niche gene regulatory net-
work (GRN) model proposed by Azpeitia et al. [3], which has 10 genes. There
are minor differences between the interaction graph in [3, Fig 1.b] and the one in
Fig 3. These differences, however, are justifiable for the following reasons. SHR
expression was experimentally reported only in a subset of the cell types of the
stem cell niche [16] and CLEX was introduced in [3] as a missing component.
Nevertheless, by 2010, CLEX had not yet been experimentally described or dis-
covered. Thus, the self-regulations of these genes were hypothetical interactions
and were included as such in the present paper. The regulations of MGP and
JKD over SCR were grounded on weak experimental information [21] and their
existence was discussed in [3]. Finally, in [3] we also added as a hypothetical inter-
action the SHR regulation over CLEX. CLEX could represent not only a single
gene, but a complete signaling pathway, so this regulation was also hypothetical.

In the first experiment, Griffin constructed a formula ψ taking as inputs:
(i) the interaction graph shown in Fig. 3, and (ii) the set of five known fixed
points for the network. We chose ϕA=FP(f) as the formula for encoding the set of
desired fixed points, i.e., no additional fixed points were allowed. Compared to
the previous manual analysis [3], where only two Boolean networks were found,
Griffin obtained a total of 74 Boolean networks. Griffin took 6.75 ms to build
the formula and 84.10 ms to find the networks.

In a second experiment, instead of using ϕA=FP(f), the formula ϕA⊆FP(f) was
selected, leaving all other inputs as in the first experiment. A total of 236 Boolean
networks were found. In this case, Griffin took 0.85 ms to build the formula and
169.96 ms to find the networks.

In a final experiment, we kept the two inputs previously described, and added
a third input to Griffin consisting of 20 single mutations with fixed points, cor-

244 D.A. Rosenblueth et al.

ARF′ = ¬ IAA Auxin′ = true CLEX′ = CLEX ∧ SHR
IAA′ = ¬Auxin JKD′ = SHR∧ SCR MGP′ = ¬WOX5 ∧ SHR ∧ SCR
PLT′ = ARF SHR′ = SHR WOX5′ = ¬CLEX ∧ARF ∧ SHR ∧ SCR

SCR′ = (SHR∧ SCR)
SCR′ = (SHR∧ SCR∧¬ JKD) ∨ (¬ SHR∧ SCR∧ JKD) ∨ (SHR∧ SCR∧ JKD)
SCR′ = (SHR∧¬MGP∧ SCR∧¬ JKD) ∨ (SHR∧MGP∧ SCR∧¬ JKD)∨

(¬ SHR∧¬MGP∧ SCR∧ JKD) ∨ (SHR∧¬MGP∧ SCR∧ JKD)∨
(SHR∧MGP∧ SCR∧ JKD)

Fig. 4. Set of Boolean functions for the three networks found by Griffin for the muta-
tions with fixed-points experiments. Top: nine propositional Boolean functions common
to all these networks. Bottom: three alternative Boolean functions on gene SCR. The
network corresponding to the first alternative for SCR coincides with that found by
Azpeitia et al. [3] for the A. thaliana root stem cell niche model. We use names of genes
for components of the states, e.g., IAA instead of x6. We use gene names with a prime
for the respective components of the Boolean network, e.g., ARF′ instead of f8(x).

responding to 10 loss-of-function mutations (b = 0) and 10 gain-of-function
mutations (b = 1). We also asked for networks with exactly the same set of
fixed points as those of the wild-type network. In this case, only three satis-
fying assignments were found. The corresponding Boolean networks are shown
in Fig. 4. All three are different instantiations of the hypothetical regulations.
Griffin took 16.23 ms to build the formula and 18.97 ms to find the networks.
All three experiments were done with nonambiguous interactions.

4 Concluding Remarks

The problem of inferring a Boolean network from a gene interaction graph aug-
mented with biological constraints is important. The reason is that a number
of Boolean networks have been so inferred [2,7,9,11,13,15]. Such inferences have
mainly been done manually, however. Thus, an efficient algorithm for this prob-
lem is likely to have an impact.

The search space of this problem is vast. Hence, nonsymbolic methods [4,18],
explicitly representing each network, are only practical for small networks. Here
we have developed a symbolic method, employing a SAT solver, and having the
potential of inferring larger Boolean networks.

The key idea of our method is straightforward: There is a variable for each
entry of the truth table of the desired networks. Now, the formulas directly de-
rived from the definition of interaction [19] can be unacceptably large, as they
encode an existential quantifier ranging over all genes. Hence, we exploit an im-
portant observation: such a quantifier can equivalently range over the regulators
only. As a gene is typically regulated by only a few genes, this observation has
three consequences: (i) the number of entry variables is reduced, (ii) the size of
the interaction formulas is also reduced, and (iii) it is not necessary to include
explicit constraints preventing the addition of fictitious regulators.

Inference of Boolean Networks from Interaction Graphs with a SAT Solver 245

To the interaction formulas we add formulas representing biological constraints.
Relevant constraints are networks having: (1) a certain known set of fixed points
and (2) a certain known set of fixed points in mutations [2] of the network of
interest. Formulas for the fixed points of the network of interest are readily ex-
pressed, unlike those for the fixed points in a mutated network. A direct approach
for representing the fixed points in a mutated network would employ a new set
of entry variables, thus creating a source of inefficiency. So as to avoid the rep-
resentation of the mutated network, we use the following indirect approach. We
exploit the fact that each fixed point occurring in a mutated network (and not
in the network of interest) corresponds to an input-output pair which is not a
fixed point.

We tested a prototype of our method in the analysis of the A. thaliana root
stem cell niche Boolean GRN. Our prototype produced more precise results than
those performed previously (first experiment), as well as results of analyses that
had not been done before (second and third experiments).

As future work, we plan test our prototype on larger examples, incorporate
canalization, and explore ways of reducing the size of the formula for the pre-
vention of additional fixed points.

Acknowledgments. We should like to thank Álvaro Chaos, Pedro Góngora,
Elizabeth Ortiz, and Nathan Weinstein for fruitful discussions. We also grate-
fully acknowledge the facilities provided by IIMAS, UNAM, as well as financial
support from DGAPA grant PAPIIT IN113013.

References

1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small
number of gene expression patterns under the Boolean network model. In: Pacific
Symposium on Biocomputing, vol. 4, pp. 17–28 (1999)

2. Alvarez-Buylla, E.R., Beńıtez, M., Corvera-Poiré, A., Candor, A.C., de Folter,
S., de Buen, A.G., Garay-Arroyo, A., Garćıa-Ponce, B., Jaimes-Miranda, F.,
Pérez-Ruiz, R.V., Pineiro-Nelson, A., Sánchez-Corrales, Y.E.: Flower development.
The Arabidopsis Book p. 8:e0999 (2010), doi:10.1199/tab.0999

3. Azpeitia, E., Beńıtez, M., Vega, I., Villarreal, C., Alvarez-Buylla, E.R.: Single-cell
and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem
cell niche. BMC Syst. Biol. 4(134) (2010)

4. Azpeitia, E., Weinstein, N., Beńıtez, M., Mendoza, L., Alvarez-Buylla, E.R.: Find-
ing missing interactions of the Arabidopsis thaliana root stem cell niche gene regula-
tory network. Frontiers in Plant Science 4(10) (2013), doi:10.3389/fpls.2013.00110

5. Berestovsky, N., Nakhleh, L.: An evaluation of methods for inferring Boolean net-
works from time-series data. PloS One 8(6), e66031 (2013)

6. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (2010)

7. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PLoS One 3(2), e1672 (2008), doi:10.1371/journal.pone.0001672

8. Dubrova, E., Teslenko, M.: A SAT-based algorithm for computing attractors in syn-
chrounous Boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 8(5), 1393–1399 (2011)

246 D.A. Rosenblueth et al.

9. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a genetic
Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14),
e124–e131 (2006)

10. Kauffman, S.: Homeostasis and differentiation in random genetic control networks.
Nature 224(5215), 177–178 (1969)

11. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A method-
ology for the structural and functional analysis of signaling and regulatory networks.
BMC Bioinformatics 7(56) (2006), doi:10.1186/1471-2105-7-56

12. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory net-
works under the Boolean network model. Machine Learning 52(1-2), 147–167 (2003)

13. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is
robustly designed. Proc. Natl. Acad. Sci. U.S.A. 101(14), 4781–4786 (2004)

14. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering al-
gorithm for inference of genetic network architectures. In: Pacific Symposium on
Biocomputing, vol. 3, pp. 18–29 (1998)

15. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualita-
tive dynamical systems of regulatory networks. Theoretical Biology and Medical
Modelling 3(13) (2006)

16. Nakajima, K., Sena, G., Nawy, T., Benfey, P.: Intercellular movement of the pu-
tative transcription factor SHR in root patterning. Nature 413(6853), 307–3011
(2001)

17. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and
analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

18. Pal, R., Ivanov, I., Datta, A., Bittner, M.L., Dougherty, E.R.: Generating Boolean
networks with a prescribed attractor structure. Bioinformatics 21(21), 4021–4025
(2005)

19. Richard, A., Rossignol, G., Comet, J.P., Bernot, G., Guespin-Michel, J., Merieau,
A.: Boolean models of biosurfactants production in Pseudomonas fluorescens. PLoS
One 7(1), e24651 (2012), http://dx.doi.org/10.1371/journal.pone.0024651

20. Tamura, T., Akutsu, T.: Detecting a singleton attractor in a Boolean network uti-
lizing SAT algorithms. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 92(2), 493–501 (2009)

21. Welch, D., Hassan, H., Blilou, I., Immink, R., Heidstra, R., Scheres, B.: Arabidopsis
JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and
stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21(17),
2196–2204 (2007)

http://dx.doi.org/10.1371/journal.pone.0024651

RRCA: Ultra-Fast Multiple In-species Genome

Alignments

Sebastian Wandelt and Ulf Leser

Knowledge Management in Bioinformatics
Humboldt-University of Berlin, Berlin, Germany
{wandelt,leser}@informatik.hu-berlin.de

Abstract. Multiple sequence alignment is an important method in Bioin-
formatics, for instance, to reconstruct phylogenetic trees or for identifying
functional domains within genes. Finding an optimal MSA is computa-
tionally intractable, and therefore many alignment heuristics were pro-
posed. However, computing MSA for sequences at chromosome/genome
scale in a reasonable time with good alignment results remains an open
challenge.

In this paper we propose RRCA, a very fast method to compute high-
quality in-species MSAs at genome scale. RRCA uses referential com-
pression to efficiently find long common subsequences in to-be-aligned
sequences. A colinear sub collection of these subsequences is used for an
initial alignment and the not yet covered subsequences are aligned fol-
lowing the same approach recursively. Our evaluation shows that RRCA
achieves MSAs at similar quality as current state-of-the-art methods,
while often being orders of magnitude faster for all our datasets. For in-
stance, RRCA aligns eight human Chromosome 22 (around 50 MB each)
within one minute on a consumer computer; a task that takes hours to
days with competitors.

Keywords: Multiple sequence alignment, referential compression.

1 Introduction

A multiple sequence alignment (MSA) arranges a set of sequences in a rectan-
gular array such that one obtains the greatest number of similar characters in
every column of the alignment with the minimal number of columns. An optimal
MSA is usually computed following Carillo-Lipman [6] or generalizations based
on dynamic programming. Since computing an optimal MSA is NP-complete un-
der the most common cost models [33], the development of scalable approximate
alignment methods, necessary in a context where information is growing by the
day, is an open challenge [19]. The main application for MSA is in bioinformat-
ics, where it is used, for instance, to reconstruct a phylogenetic tree [34] or for
function/gene prediction [15]. Recently, several research results on multi-genome
read mapping were published [14,17,31], most of which are based on the align-
ment of many long sequences (genomes or chromosomes) [14,17]. Also recently,

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 247–261, 2014.
c© Springer International Publishing Switzerland 2014

248 S. Wandelt and U. Leser

Fig. 1. Dot plot matrices for principal steps in chaining algorithms

it was shown that very high compression ratios are possible when compressing
aligned genome data [9]. Therefore, we believe that scalable sequence alignment
(in terms of length and number of sequences) will become even more important
in the future.

Practical implementations make use of heuristics to guide the assembly of
a MSA (see [7,28] for reviews and assessment of existing methods). Progres-
sive alignment [22,27] builds a MSA by combining pairwise sequence alignments
(PSA), usually by aligning most similar pairs of sequences first. Hence, progres-
sive alignment methods need a guide tree as an input or compute it on-the-fly.
In contrast to progressive alignment, iterative alignment methods [13,4] repeat-
edly re-align previously aligned sequences and thus often obtain a better score,
because alignment errors obtained in the beginning of the alignment process
can be repaired at later stages. A third class of heuristics, often used for PSA
only, is based on chaining [36,29]. The idea underlying chaining algorithms is
visualized in Figure 1: first a set of maximal identical fragments of both se-
quences is computed (Figure 1, left), then a colinear non-overlapping chain of
fragments is identified (Figure 1, middle), and finally all the subsequences in
between fragments are aligned following an (usually optimal) MSA algorithm
(Figure 1, right); one example in the MSA field is Mugsy [3]. However, many
chaining-based methods fail when it comes to long sequences, e.g. whole human
chromosomes or MSA problems with more than a few sequences (see our evalu-
ation). There exists further work on mixtures of the three approaches and also
on slightly different problems, e.g. alignment-free sequence comparison [35] and
alignment of short protein sequences [10].

Our Solution: We propose RRCA, Recursive Referential Compression Align-
ment. Our technique is based on the idea of chaining and uses the referential
compression framework FRESCO [32] to identify identical fragments within the
collection of sequences. A non-overlapping chain of fragments (Step 2 of chaining
in Figure 1) is identified by a greedy strategy, which always selects the longest
non-overlapping fragment next. For Step 3 of Figure 1, i.e. aligning subsequences
between chain-aligned fragments, we apply the same approach recursively, there-
fore the name Recursive Referential Compression Alignment. The recursion stops

RRCA: Ultra-Fast Multiple In-species Genome Alignments 249

if either 1) all to-be-aligned sequences are equal or 2) all sequences are shorter
than a given threshold. In the latter case an optimal MSA algorithm is applied.

Although our method is very intuitive and simple, we show that RRCA finds
MSA with comparable quality scores as more sophisticated competitors. At the
same time RRCA is often orders of magnitude faster alignment for biological and
non-biological datasets. For instance, RRCA can align eight human Chromosome
22 (around 50 MB each) within one minute on a consumer computer; a task that
takes hours to days with competitors. Besides, since our technique is based on a
compressed representation of all sequences against a reference, RRCA does not
have to store the complete collection of raw sequences in main memory during
any step of the algorithm. In fact, the more similar the sequences, the more
compressed is our representation during the execution of RRCA.

Structure: The structure of the paper is as follows. In Section 2, we define
the problem of multiple sequence alignments. We show in Section 3 how RRCA
computes a multiple sequence alignment by using referential compression. In
Section 4, we evaluate our recursive referential compression algorithm. The paper
is concluded in Section 5.

2 Preliminaries

In the following, we present our recursive referential alignment algorithm RRCA.
First, the multiple sequence alignment problem is defined.

Definition 1 (Multiple Sequence Alignment). Given a collection C =
{s1, ..., sn} of sequences over an alphabet Σ, let − be a symbol not in Σ. A multi-
ple sequence alignment (MSA) of C is a collection of sequences {a1, ..., an}, such
that |a1| = ... = |an| and each ai is obtained from si by inserting any number of
occurrences of symbol −. The term column i of an alignment {a1, ..., an}, refers
to the symbols {a1(i), ..., an(i)}. The length of an alignment is the number of
columns, i.e. the length of any sequence in the MSA. The special case of n = 2
is called pairwise sequence alignment (PSA).

Example 1. A collection CEX = {s1, s2, s3, s4} contains four highly-similar se-
quences1:

s1 : JANE*HAD*LOST*HER*JOB*AND*SHE*WAS*UNHAPPY.

s2 : WHEN*JANE*HAD*LOST*HER*JOB*SHE*FELT*REALLY*UNHAPPY.

s3 : JANE*HAD*LOST*HER*JOB*AND*SHE*REALLY*WAS*UNHAPPY .

s4 : WHEN*JANE*HAD*LOST*HER*JOB*SHE*BECAME*UNHAPPY.

One multiple sequence alignment of CEX is MSAEX = {a1, a2, a3, a4}, shown
in Figure 2: Column 2 of our example alignment is {−, H,−, H}.

Usually, one is interested in alignments that maximizing a given scoring func-
tion. An often used scoring function is sum-of-pairs [16]. A scoring function

1 We use * instead of white-spaces for presentation purposes.

250 S. Wandelt and U. Leser

a_1: -----JANE*HAD*LOST*HER*JOB*AND*SHE--*-W-AS------*UNHAPPY.
a_2: WHEN*JANE*HAD*LOST*HER*JOB*SHE*-FELT*RE-ALLY----*UNHAPPY.
a_3: -----JANE*HAD*LOST*HER*JOB*AND*SHE--*RE-ALLY*WAS*UNHAPPY.
a_4: WHEN*JANE*HAD*LOST*HER*JOB*S----HE--*BECAME-----*UNHAPPY.

Fig. 2. Optimal alignment MSAEX of CEX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
W H E N * J A N E * H A D * L O S T * H E R * J O B * S H E * F E L T * R E A L L Y * U N H A P P Y .

W H E N * J A N E * H A D * L O S T * H E R * J O B * S H E * B E C A M E * U N H A P P Y .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

(0,31,B) (2,1,C) (6,1,M) (8,2,U) (44,6,.)

Fig. 3. Example for a referential compression of s4 (below) against reference s2 (up)

takes a pair of symbols from Σ ∪ {−} and returns a real number. Given a scor-
ing function score, the sum-of-pairs score for a column {c1, ..., cn} is defined as∑

i<j≤n score(ci, cj). Given an MSA {a1, ..., an} of length m, the sum-of-pairs
score is defined as the sum of the sum-of-pairs score for each column. A MSA
is optimal for a collection of sequences C = {s1, ..., sn}, if there exists no other
MSA for C with a higher score.

Example 2. Let score be defined as follows:

score(c1, c2) =

⎧⎪⎨
⎪⎩
1 if c1 ≡ c2

0 if c1 ≡ − ∧ c2 ≡ −
−1 if else

The score of column {A,S,A, S} is 1 ∗ score(A,A) + 1 ∗ score(S, S) + 2 ∗
score(A,S) + 1 ∗ score(S,A) = 1 + 1 + 2 ∗ (−1) + 3 ∗ (−1) = −1.

3 Computing an Alignment with Referential Compression

We present a method for the computation of an initial alignment, usually Step 1
of chaining-based MSA-approaches, i.e. computation of colinear fragments. We
use a technique recently emerged in compression of biological sequences: Ref-
erential compression. Similar to dictionary-based techniques [37,23], referential
compression algorithms replace long subsequences of the to-be-compressed input
with references to a distinct sequence, called reference. The reference is not part
of the to-be-compressed input data. Furthermore, the reference is usually static,
while dictionaries are being extended during compression phase. During the last
years several referential compression algorithms emerged [21,20,11,32]. These al-
gorithms work best if the to-be-compressed sequences are similar to the reference
sequence. Impressive results are reported when compressing large collections of
sequences: referential compression algorithms achieve compression rates of up to
1000:1 for human genomes, i.e. more than 3 TB of raw data for 1092 genomes

RRCA: Ultra-Fast Multiple In-species Genome Alignments 251

Algorithm 1. Referential Compression Algorithm
Input: to-be-compressed sequence s and reference sequence ref
Output: referential compression rc of s with respect to ref

1: Let rc be an empty list
2: while |s| �= 0 do
3: Let pre be the longest prefix of s occurring in ref , and let i be a position of an

occurrence of pre in ref
4: if s �= pre then
5: Add 〈i, |pre|, s(|pre|)〉 to the end of rc
6: Remove the first |pre|+ 1 symbols from s
7: else
8: Add 〈i, |pre| − 1, s(|pre| − 1)〉 to the end of rc
9: Remove the prefix pre from s
10: end if
11: end while

is compressed down to few GB, at compressions speeds close to maximum read
speeds for state-of-the-art hard disks. We proceed with a formal definition of the
referential compression algorithm from [32].

Definition 2 (Referential Compression [32]). A referential match entry
(rme) is a triple 〈start, length,mismatch〉, where start is a number indicat-
ing the start of a match within a reference sequence, length denotes the match
length2, and mismatch denotes a symbol. The length of a referential match en-
try rme, denoted |rme|, is length+1. Given sequences s and a reference ref , a
referential compression of s with respect to ref , is a list of referential match en-
tries, [〈s1, l1,m1〉, ..., 〈sn, ln,mn〉], such that (ref(s1, l1) ◦m1) ◦ (ref(s2, l2) ◦m2) ◦
... ◦ (ref(sn, ln) ◦mn) = s., where ◦ denotes the concatenation of two strings.

The offset of a referential match entry rmei in a referential compression rc =
[rme1, ..., rmen], denoted offset(rc, rmei), is defined as

∑
j<i |rmej |. Given a

rme 〈start, length,mismatch〉, we write the expression (start, length, mismatch)
∈ rc, if and only if 〈start, length,mismatch〉 is an element in the referential com-
pression rc.

An algorithm for computing a referential compression is shown in Algorithm 1.
To create a referential compression of input sequence s with respect to ref , the
algorithm matches prefixes of s with subsequences of ref using a compressed
suffix tree on ref . The longest such prefix is removed from s, encoded as a rme
and added to rc. The algorithm terminates once s contains no more symbols.
Algorithm 1 is a greedy algorithm, i.e. it always takes the longest prefix of the
to-be-compressed which can be found in the reference. Any greedy algorithm
computes a minimal representation, i.e. the size of the compressed sequence is
minimal, if the dictionary for the reference is fixed and the size of a dictionary
entry is constant [8].

Example 3. One example referential compression for Sequence s4 with respect
to the reference sequence s2 is shown in Figure 3. The input is compressed into

2 Match length: Number of symbols for which to-be-compressed sequence and reference
coincide.

252 S. Wandelt and U. Leser

five referential match entries. The first referential match entry is 〈0, 31, B〉 and
describes a match for the first 31 characters of sequence s4 at position 0 of the
reference. The mismatch character is B (in the reference an F is found instead
of a B). The offset of 〈6, 1,M〉 is |〈0, 31, B〉|+ |〈2, 1, C〉| = 34.

3.1 Computing an Initial Alignment

In RRCA, an initial alignment is a chain of colinear fragments, where large
overlapping parts of all to-be-aligned the sequences are used as fragments (see
Figure 1). These fragments can be obtained, for instance, by computing the
longest common subsequences. However, often q-gram-based methods are used:
all q-grams of to-be-aligned sequences are computed and then the longest chain
of colinear q-grams is extracted. The process of computing and chaining these q-
grams is highly time-consuming for long sequences, because a sequence of length
n contains n − q + 1 q-grams. Even increasing q slightly does not make the
problem easier to solve for long sequences. Moreover, if q is chosen too large then
similarities between to-be-aligned sequences might be missed by the alignment
algorithm.

We use referential compression for the computation of an initial alignment
instead. Given a collection of to-be-aligned sequences, we pick one sequence
as a reference ref and compress all sequences referentially against ref . Given
the referential compressions of all sequences, we extract overlapping parts from
the referential match entries, as a base for a chain of colinear fragments. The
main advantage of our approach, compared to q-gram-based algorithms, is that
referential match entries can represent arbitrary long sequences, and therefore
arbitrary long fragments. This allows us to identify fragments with different
degrees of similarity using a homogeneous approach, independent from a fixed
value q. In our implementation we have always chosen the longest sequence as a
reference. Given k sequences of maximum length n, finding the longest sequence
takes O(k) and compression of all sequences against the reference takes O(k ∗n),
since the compression is computed in linear time in the length [32].

Another advantage of using referential compression is as follows: We do not
need to keep all uncompressed sequence in main memory at any time. For com-
puting a referential compression of a sequence s, we only need s plus the refer-
ence sequence and an index over the reference sequence in main memory. After
compression of s we proceed with the compression of remaining sequences, and
only keep the compressed representations of previously compressed sequences
in main memory. This is an important step towards alignment of many very
long sequences on consumer computers. In Example 4, we show the referential
compression of s1 to s4 (from Example 1) with s2 as a reference.

Example 4. The longest sequence in CEX is s2. We obtain the following referen-
tial compressions RC = {rc1, ..., rc4} for each sequence against s2 as a reference:

RRCA: Ultra-Fast Multiple In-species Genome Alignments 253

rc1 ={(5, 22, A), (7, 1, D), (26, 5,W), (6, 1, S), (42, 8, .)}
rc2 ={(0, 50, .)}
rc3 ={(5, 22, A), (7, 1, D), (26, 5, R), (37, 6,W), (6, 1, S), (42, 8, .)}
rc4 ={(0, 31, B), (2, 1, C), (6, 1,M), (8, 2, U), (44, 6, .)}

Definition 3 (Alignment Fragments). Given a collection of sequences C =
{s1, ..., sn}, we say that f = ((astart1, ..., astartn), alength) is a fragment for
C, if s1[astart1, alength] = ... = sn[astartn, alength]. Two fragments f1 =
((astart1,1, ..., astart1,n), alength1) and f2 = ((astart2,1, ..., astart2,n), alength2)
are strictly consecutive, if astart1,i + alength1 ≤ astart2,i for all i ≤ n. An ini-
tial alignment for C is a collection of fragments {f1, ..., fm} for C , such that
each pair of fragments fi and fi+1 is strictly consecutive.

An initial alignment from Definition 3 splits a collection of sequences into
different blocks, such that all sequences in C coincide for every second block
(with unaligned blocks in between). Below, we describe how to compute an ini-
tial alignment by using referential compression. Intuitively, if two referential
match entries overlap, i.e. point to the same subsequence of a reference, then
the overlapping part is identical in referential match entries, and thus in their
uncompressed sequences. We extract all intersections of referential match entries
from all sequences in C . In Definition 4, we define an intersection operation on
referential match entries in order to identify equal referenced subsequences.

Definition 4. Given a collection R of referential match entries, rme1 = (s1,
l1, m1), . . . , rmen = (sn, ln,mn), let s = MAX(si) and l = MIN(si + li) −
MAX(si). The intersection of R, denoted

⋂
i≤n rmei, is defined as the pair (s, l),

if l ≥ 0, and undefined otherwise.

The result of intersecting rme1 = (42, 8, .) with rme2 = (44, 6, .) is the pair
(44, 6). The intersection between rme1 = (5, 22, A) with rme2 = (44, 6, .) is not
defined, since they refer to different (non-overlapping) parts of the reference.

Definition 5 (Referential Agreement). Given a set of referentially com-
pressed sequences RC = {cs1, ..., csn}, the referential agreement of RC is defined
as RefAgree(RC) = {(s, l) | ∃rme1 ∈ cs1, ..., rmen ∈ csn.(s, l) =

⋂
i≤n rmei}.

Informally, the referential agreement of RC defines all the areas of the ref-
erence which are referenced by at least one referential match entry of each ref-
erentially compressed sequence. An upper bound for the time-complexity for
computation of the referential agreement is quadratic in the number of referen-
tial match entries, since all referential match entries have to be intersected. We
reduce the time complexity for this step to O(k2 ∗n∗ logn) as follows. We create
an interval tree [24] for each compressed sequence in O(k ∗ n) (with intervals
defined by start and length of each referential match entry), and then find for
each referential match entry (there are O(k ∗ n) such entries) its overlapping
counterparts by probing k interval trees in O(k ∗ logn).

254 S. Wandelt and U. Leser

Given the set of agreements for RC , we compute partial alignments, which
build the basis for an initial alignment. To compute the partial alignments, we
need to trace back positions in the sequences which contributed to the referential
agreement. The function TRACE computes all such positions for an element of
a referential agreement and a referentially compressed sequence.

Definition 6 (TRACE). Given a referential compression cs and a pair (s, l),
we define TRACE((s, l), cs) = {s−starti | ∃lengthi,mismatchi.(starti, lengthi,
mismatchi) ∈ cs ∧ starti ≤ s ∧ s+ l ≤ starti + length}.

The traces from compressed sequences need to be combined carefully, since
several traces of a single compressed sequence might cause an overlap in the
same region of the reference. For instance, a compressed sequence such as
{(5, 10, A), (7, 12, .)} references the same reference subsequence ref(7, 8) two
times. For the computation of an alignment, we only want to use one of the
two referential match entries, either (5, 10, A) or (7, 12, .), once an overlap with
another referential match entry at the same subsequence is found. The function
TRACEALL in Definition 7 applies the following heuristic: We pick trace posi-
tions from each compressed sequence, such that the difference to the average of
all traces is minimized. Thus, local subsequence matches are preferred over more
distant matches.

Definition 7 (TRACEALL). Given a set of referentially compressed sequences
RC = {cs1, ..., csn} and an element (s, l) of the referential agreement of RC, we
let U =

⋃
i≤n TRACE((s, l), csi). TRACEALL((s, l),RC) = {p1, ..., pn}, such

that each pi is the nearest value toAV G(U) in TRACE((s, l), csi). Note that there
is at least one value in TRACE((s, l), csi) for each i.

Given Definition 7, we compute a set of partial alignments (of different qual-
ity). For computation of a complete initial alignment, we need to select a con-
sistent (strictly consecutive) subset of these partial alignments. Our algorithm
for computing an initial alignment by referential compression is shown in Al-
gorithm 2. The consistent sub collection of fragments (Line 10) is computed
by always choosing the longest fragment next, i.e. starting form an empty set
of fragments, we repeatedly add the longest not yet used consistent fragment,
until no more consistent fragment is left. There exists multiple other heuris-
tics. Finding an optimal chain of colinear non-overlapping fragments is expo-
nential in the number of sequences [2]. Continuing Example 4, we have that
RefAgree(RC) = {(5, 22), (26, 5), (44, 6)}. The initial alignment returned by
Algorithm 2, is {((0, 5, 0, 5), 22), ((35, 44, 42, 39), 6), ((25, 26, 25, 26), 5)}. This ini-
tial alignment is shown in Figure 4.

3.2 Completing an Alignment with Recursive Referential
Compression

In the previous subsection, we showed how to computed an initial alignment,
based on referential compression. Chaining-based approaches usually compute an

RRCA: Ultra-Fast Multiple In-species Genome Alignments 255

Algorithm 2. Initial Alignment Algorithm
Input: Collection of sequences C = {s1, ..., sn}
Output: Collection of alignment fragments

1: Let fragments = ∅
2: Select one s ∈ C as ref
3: Compress all si ∈ C against ref . The result is RC = {cs1, ..., csn}
4: Compute RefAgree(RC)
5: for all (s, l) ∈ RefAgree(RC) do
6: Compute TRACEALL((s, l),RC)
7: Add fragment (TRACEALL((s, l),RC), l) to fragments
8: end for
9: Sort fragments by second component (i.e. length of the fragment)
10: Let consfragments be a consistent sub collection of fragments
11: Sort consfragments by second component (i.e. start positions of the fragment)
12: return consfragments

Algorithm 3. RRCA Algorithm
Input: Collection of sequences C = {s1, ..., sn}
Output: MSA for C

1: if MAXi≤n(|si|) < δ then
2: Return an optimal MSA of C
3: else
4: Let fragments be an initial alignment of C
5: if fragments is empty then
6: Return an optimal MSA of C
7: else
8: for all (non-empty) sequences S not aligned in fragments do
9: Let resS = RRCA(S)
10: end for
11: Return the (alternating) concatenation of all initially aligned fragments and recur-

sively aligned sequence collections resS
12: end if
13: end if

Fig. 4. Initial alignment for CEX

optimal alignment for subsequences not contained in any fragment, for instance
the sequences ’WHEN*’ and ’WHEN*’ in Figure 4. Three reasons can cause
these subsequences not to be part of an initial alignment in RRCA:

1. There is a larger insertion/deletion and not all sequences contribute a refer-
ential match entry.

2. Our greedy referential compression algorithm chose different ways to encode
the same subsequences (equality of subsequences cannot be decided by ref-
erential agreement).

3. The subsequences are really just not similar.

Therefore, we propose a new strategy as follows: instead computing an op-
timal MSA of unaligned sequences directly, we repeat the computation of an

256 S. Wandelt and U. Leser

Fig. 5. Comparison of MSA-methods for biological datasets (time in seconds). The
score is computed as sum-of-pairs of the computed MSA with (match=1, mismatch=-
1, gap=-1); larger scores are better. Computations that did not finish on time are
marked with *.

initial alignment for unaligned (non-empty) subsequences. For instance, the two
sequences ’WHEN*’ and ’WHEN*’ can be perfectly aligned by an initial align-
ment using referential compression with one of the two sequences as reference.
In this case there is no need to compute an (computationally expensive) optimal
alignment.

Our algorithm for recursively aligning referential compressions is shown in
Algorithm 3. If the maximum length of a sequence in C is shorter than a fixed δ,
then the algorithm computes an optimal MSA, following Needleman-Wunsch [26]
(Line 1-2), and returns the result. Otherwise, an initial alignment following Algo-
rithm 2 is computed (Line 4-12). If the initial alignment contains no fragment, i.e.
referential compression cannot identify a common subsequence of all sequences
in the input, then the algorithm computes and returns an optimal MSA as well
(Line 6). If the initial alignment of the input contains at least one fragment,
then the algorithm recursively computes a MSA for each set of subsequences not
covered by fragments (Line 8-11).

Given the initial alignment from Figure 4, we have three blocks not cov-
ered by the initial alignment: one block containing two times ’WHEN*’, one
block containing two times ’AND’ and one block before the fragment containing
’NHAPPY’. The first two blocks are aligned immediately by one recursive call
each. The last block will be aligned by computing an optimal alignment, since
no initial alignment can be found. The result of RRCA is optimal and shown in
Figure 2.

RRCA: Ultra-Fast Multiple In-species Genome Alignments 257

4 Discussion

In the following section, we evaluate our proposed scheme. All experiments were
run on a computer with 16 GB RAM and Intel Core i7-2670QM. We evaluate
our method on five different datasets with different degrees of similarity. Three
biological datasets: a collection of eight human Chromosome 22 (H-22) of the
1000 Genome project [1], a collection of eight Chromosome 1 from Arabidopsis
thaliana (AT-1), taken from the 1001 Genomes project [5], release GMINord-
borg20103, and a collection of eight yeast genomes [25] (Y-wg). We have chosen
these species since their sequences have different degrees of inner-species similar-
ity. In our experiments RRCA was set to always choose the longest sequence as
a reference. If all sequences have the same length, as initially in our experiment,
one sequence is chosen randomly.

We compare RRCA against one optimal MSA algorithm (part of SeqAn [12])
and three approximate solutions (Mugsy [3], T-Coffee [27], and Mafft [18]), in
Figure 5. We ran tests on the biological datasets with different lengths. If a pro-
gram took longer than 15 minutes to complete a test, it was stopped (indicated
by a ∗ in Figure 5). It can be seen that the optimal algorithm can only compute
a MSA for rather short sequences within 15 minutes. The score obtained by all
algorithms is quite similar, with the exception of the least self-similar dataset
Y-wg. Overall, RRCA is the fastest MSA algorithm for each single test case,
usually orders of magnitude faster than all three approximate competitors.

We performed experiments regarding the exact alignment time of random
sequences with an extension of Needleman-Wunsch to MSA, as implemented in
Seqan. We generated 500 collections of k random sequences with a fixed length.
The result for the alignment of the sequences with k = 4 and k = 8 is shown in
Figure 6. We have used the symbolic regression solver Eureqa [30] to estimate
a formula for the alignment time in ms, given input length and the number of
sequences k. The best solution with a size (number of terms) smaller than 10 is
time = 0.0000598 ∗ length2 ∗ k2. This formula helps to estimate the alignment
time, and thus, can be used to set the constant δ (the maximum length for
exact alignment) from Algorithm 3. In our experiments with RRCA, we have set
δ such that computing an optimal alignment in recursive call should not take
longer than 100 ms, e.g. for k = 8, we obtained δ = 161.6.

We analyzed how much time RRCA spends on different parts of the algo-
rithm for aligning 10 human Chromosome 1 (total runtime was three minutes).
Creating the index structure for references, i.e. initial reference and references
in recursive calls, dominates the runtime (45.8%). The exact alignment of small
fragments has the second highest share of the runtime(16.7%). Decompression of
sequences (13.4%), compression of sequences (11.7%), and other parts of RRCA
(12.2%) follow, respectively.

We have performed additional experiments for the alignment of protein se-
quences using benchmark BaliBase 3. Even for the most similar set of sequences
(around 40% identity), RRCA cannot find good initial alignments and falls back

3 http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/

http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/

258 S. Wandelt and U. Leser

Fig. 6. Alignment of four (lower curve) and eight (upper curve) random sequences of
different lengths with SeqAn

to computing an optimal alignment. Similar substrings are not long enough in
these short protein sequences and often only shared by small subsets of the
whole collection. RRCA will not work for the alignment of sequences from differ-
ent species, e.g. derived from human and mouse: Similar substrings are not long
enough to exploit the benefit of referential compression. In addition, computing
the referential compression of a mouse chromosome against a human chromosome
is very time consuming. To sum up, alignment technique implemented RRCA
cannot easily deal with large rearrangements and synteny. RRCA is tailored
towards alignment of long sequences from the same species.

5 Conclusion

RRCA recursively computes a MSA using referential compression for fast iden-
tification of chaining fragments. We show that RRCA computes nearly optimal
alignments for shorter sequences and for long sequences results with a similar
score as competitors. RRCA is orders of magnitude faster than competitors and
allows to align sequences within few seconds that take hours with other pro-
grams.

We see two major directions for future work. First, it should be investigated
how to further improve MSA for very long sequences, in terms of alignment
time and alignment quality. The key for improvement is 1) to extend our simple
greedy strategy for selection of colinear fragments and 2) to find a heuristic for
selecting a reference during the recursive compression step. Our results show that
the selection of the longest reference already produces good results, but more
sophisticated strategies might yield alignments with higher scores. On the other
hand, the run time of sophisticated techniques, which analyze (parts of) each
sequence, will undoubtedly increase alignment time. Thus, selecting an efficient
strategy for improving alignment times and alignment quality is challenging
problem.

In addition, we think that it will be helpful to run an iterative alignment on
top of RRCA to improve the quality (scores) of alignments. Second, running
times of RRCA can be reduced by investigating different index structures for

RRCA: Ultra-Fast Multiple In-species Genome Alignments 259

referential compression. It is important to note that the indexing time of the
reference sequences is dominating the runtime (and not the lookup of matches
alone). Thus we believe that a lightweight index structure, in terms of indexing
time, can further decrease alignment times.

References

1. 1000 Genomes Project Consortium. A map of human genome varia-
tion from population-scale sequencing 467(7319), 1061–1073 (October 2010),
http://dx.doi.org/10.1038/nature09534

2. Abouelhoda, M.I., Ohlebusch, E.: Multiple genome alignment: Chaining algorithms
revisited. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 1–16. Springer, Heidelberg (2003),
http://dx.doi.org/10.1007/3-540-44888-8_1

3. Angiuoli, S.V., Salzberg, S.L.: Mugsy: fast multiple alignment of closely related
whole genomes. Bioinformatics 27(3), 334–342 (2011)

4. Brudno, M., Chapman, M., Göttgens, B., Batzoglou, S., Morgenstern, B.: Fast and
sensitive multiple alignment of large genomic sequences. BMC Bioinformatics 4, 66
(2003)

5. Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig,
D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco,
C., Borgwardt, K., Schmid, K.J., Weigel, D.: Whole-genome sequencing of mul-
tiple Arabidopsis thaliana populations. Nature Genetics 43(10), 956–963 (2011),
http://dx.doi.org/10.1038/ng.911

6. Carillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM
Journal of Applied Math 48, 1073–1082 (1988)

7. Chen, X., Tompa, M.: Comparative assessment of methods for align-
ing multiple genome sequences. Nat. Biotech. 28(6), 567–572 (2010),
http://dx.doi.org/10.1038/nbt.1637

8. Cohn, M., Khazan, R.: Parsing with prefix and suffix dictionaries. In: Data Com-
pression Conference, pp. 180–189 (1996)

9. Deorowicz, S., Danek, A., Grabowski, S.: Genome compression: a novel approach
for large collections. Bioinformatics 29(20), 2572–2578 (2013)

10. Deorowicz, S., Debudaj-Grabysz, A., Gudyś, A.: Kalign-LCS — A more accu-
rate and faster variant of kalign2 algorithm for the multiple sequence align-
ment problem. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine
Interactions 3. AISC, vol. 242, pp. 499–506. Springer, Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-319-02309-0_54

11. Deorowicz, S., Grabowski, S.: Robust Relative Compression of Genomes
with Random Access. Bioinformatics, Oxford, England (September 2011),
http://dx.doi.org/10.1093/bioinformatics/btr505

12. Döring, A., Weese, D., Rausch, T., Reinert, K.: Seqan an efficient, generic C++
library for sequence analysis. BMC Bioinformatics 9 (2008)

13. Edgar, R.C.: Muscle: a multiple sequence alignment method with re-
duced time and space complexity. BMC Bioinformatics 5(1) (August 2004),
http://dx.doi.org/10.1186/1471-2105-5-113

14. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: AliBI: An Alignment-Based Index
for Genomic Datasets. ArXiv e-prints (July 2013)

http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1007/3-540-44888-8_1
http://dx.doi.org/10.1038/ng.911
http://dx.doi.org/10.1038/nbt.1637
http://dx.doi.org/10.1007/978-3-319-02309-0_54
http://dx.doi.org/10.1093/bioinformatics/btr505
http://dx.doi.org/10.1186/1471-2105-5-113

260 S. Wandelt and U. Leser

15. Gross, S.S., Brent, M.R.: Using multiple alignments to improve gene prediction. J.
Comput. Biol., 379–393 (2005)

16. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York (1997)

17. Huang, L., Popic, V., Batzoglou, S.: Short read alignment with populations of
genomes. Bioinformatics 29(13), i361–i370 (2013),
http://dx.doi.org/10.1093/bioinformatics/btt215

18. Katoh, K., Standley, D.M.: MAFFT Multiple Sequence Alignment Software Ver-
sion 7: Improvements in Performance and Usability. Molecular Biology and Evolu-
tion 30(4), 772–780 (2013), http://dx.doi.org/10.1093/molbev/mst010

19. Kemena, C., Notredame, C.: Upcoming challenges for multiple sequence alignment
methods in the high-throughput era. Bioinformatics 25(19), 2455–2465 (2009)

20. Kreft, S., Navarro, G.: Lz77-like compression with fast random access. In: Pro-
ceedings of the 2010 Data Compression Conference, pp. 239–248. IEEE Computer
Society Press, Washington, DC (2010), http://dx.doi.org/10.1109/DCC.2010.29

21. Kuruppu, S., Puglisi, S., Zobel, J.: Optimized relative lempel-ziv compression of
genomes. In: Australasian Computer Science Conference (2011)

22. Larkin, M., Blackshields, G.: Brown: Clustal w and clustal x version 2.0. Bioinfor-
matics 23(21), 2947–2948 (2007),
http://dx.doi.org/10.1093/bioinformatics/btm404

23. Larsson, J., Moffat, A.: Offline dictionary-based compression. In: Proceedings of
the IEEE Data Compression Conference, pp. 296–305 (March 1999)

24. McCreight, E.: Efficient algorithms for enumerating intersection intervals and rect-
angles. Tech. rep., Xerox Paolo Alte Research Center (1980)

25. Mewes, H., Albermann, K., Bähr, M., Frishman, D., Gleissner, A., Hani, J.,
Heumann, K., Kleine, K., Maierl, A., Oliver, S., Pfeiffer, F., Zollner, A.: Overview
of the yeast genome. Nature 387(6632 Suppl.), 7–65 (1997),
http://www.nature.com/doifinder/10.1038/42755

26. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biol-
ogy 48(3), 443–453 (1970), http://view.ncbi.nlm.nih.gov/pubmed/5420325

27. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for
fast and accurate multiple sequence alignment.. Journal of molecular bi-
ology 302(1), 205–217 (2000), http://dx.doi.org/10.1006/jmbi.2000.4042,
doi:10.1006/jmbi.2000.4042

28. Notredame, C.: Recent Evolutions of Multiple Sequence Alignment Algorithms.
PLoS Computational Biology 3(8), e123 (2007),
http://dx.doi.org/10.1371/journal.pcbi.0030123

29. Roytberg, M., Gambin, A., Noe, L., Lasota, S., Furletova, E., Szczurek, E.,
Kucherov, G.: On subset seeds for protein alignment. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 6(3), 483–494 (2009),
http://dx.doi.org/10.1109/TCBB.2009.4

30. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

31. Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,
Kohlbacher, O., Weigel, D.: Simultaneous alignment of short reads against mul-
tiple genomes. Genome biology 10(9), R98+ (2009),
http://dx.doi.org/10.1186/gb-2009-10-9-r98

32. Wandelt, S., Leser, U.: FRESCO: Referential compression of highly-similar se-
quences. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 99(PrePrints), 1 (2013)

http://dx.doi.org/10.1093/bioinformatics/btt215
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.1109/DCC.2010.29
http://dx.doi.org/10.1093/bioinformatics/btm404
http://www.nature.com/doifinder/10.1038/42755
http://view.ncbi.nlm.nih.gov/pubmed/5420325
http://dx.doi.org/10.1006/jmbi.2000.4042
http://dx.doi.org/10.1371/journal.pcbi.0030123
http://dx.doi.org/10.1109/TCBB.2009.4
http://dx.doi.org/10.1186/gb-2009-10-9-r98

RRCA: Ultra-Fast Multiple In-species Genome Alignments 261

33. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput.
Biol. 1(4), 337–348 (1994), http://view.ncbi.nlm.nih.gov/pubmed/8790475

34. Wong, K.M., Suchard, M.A., Huelsenbeck, J.P.: Alignment Uncertainty and Ge-
nomic Analysis. Science 319(5862), 473–476 (2008),
http://dx.doi.org/10.1126/science.1151532

35. Yu, H.J., Huang, D.S.: Normalized feature vectors: A novel alignment-free sequence
comparison method based on the numbers of adjacent amino acids. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 10(2), 457–467 (2013),
http://dx.doi.org/10.1109/TCBB.2013.10

36. Zhang, Z., Raghavachari, B., Hardison, R.C., Miller, W.: Chaining multiple-
alignment blocks. Journal of Computational Biology 1(3), 217–226 (1994)

37. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

http://view.ncbi.nlm.nih.gov/pubmed/8790475
http://dx.doi.org/10.1126/science.1151532
http://dx.doi.org/10.1109/TCBB.2013.10

Exact Protein Structure Classification Using

the Maximum Contact Map Overlap Metric

Inken Wohlers1, Mathilde Le Boudic-Jamin2, Hristo Djidjev3,
Gunnar W. Klau4, and Rumen Andonov2

1 Genome Informatics, University of Duisburg-Essen, Germany
inken.wohlers@uni-due.de

2 INRIA Rennes - Bretagne Atlantique and University of Rennes 1, France
{rumen.andonov,mathilde.le boudic-jamin}@irisa.fr

3 Los Alamos National Laboratory, Los Alamos, NM, USA
djidjev@lanl.gov

4 Life Sciences, CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
gunnar.klau@cwi.nl

Abstract. In this work we propose a new distance measure for compar-
ing two protein structures based on their contact map representations.
We show that our novel measure, which we refer to as the maximum con-
tact map overlap (max-CMO) metric, satisfies all properties of a metric
on the space of protein representations. Having a metric in that space
allows to avoid pairwise comparisons on the entire database and thus
to significantly accelerate exploring the protein space compared to non-
metric spaces. We show on a gold-standard classification benchmark set
of 6, 759 and 67, 609 proteins, resp., that our exact k-nearest neighbor
scheme classifies up to 95% and 99% of queries correctly. Our k-NN
classification thus provides a promising approach for the automatic clas-
sification of protein structures based on contact map overlap.

Keywords: k-nearest neighbours, metric spaces, maximum contact map
overlap, automatic classification of proteins.

1 Introduction

Understanding the functional role and evolutionary relationships of proteins is
key to answering many important biological and biomedical questions. Because
the function of a protein is determined by its structure and because structural
properties are usually conserved throughout evolution, such problems can be bet-
ter approached if proteins are compared based on their representations as three-
dimensional structures rather than as sequences. Databases such as SCOP [14]
and CATH [15] have been built to organize the space of protein structures. Both
SCOP and CATH, however, are constructed partly based on manual curation,
and many of the currently over 98, 000 protein structures in the protein data
bank (PDB) [3] are still unclassified. Moreover, classifying a newly found struc-
ture manually is both expensive in terms of human labor and slow. Therefore,

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 262–273, 2014.
c© Springer International Publishing Switzerland 2014

Exact Protein Structure Classification 263

computational methods that can accurately and efficiently complete such clas-
sifications will be highly beneficial. Basically, given a query protein structure,
the problem is to find its place in a classification hierarchy of structures, for
example, to predict its family or superfamily in the SCOP database.

One approach to solving that problem is based on having introduced a mean-
ingful distance measure between any two protein structures. Then the family
of a query protein q can be determined by comparing the distances between q
and members of candidate families and choosing a family whose members are
“closer” to q than members of the other families, where the precise criteria for
deciding which family is closer depend on the specific implementation. The key
condition and a crucial factor for the quality of the classification result is having
an appropriate distance measure between proteins.

Several such distances have been proposed, each having its own advantages.
Recently, a number of approaches based on a graph-based measure of closeness
called contact map overlap (CMO) [7] have been shown to perform well [2,5,11,
12, 16, 19, 20]. Informally, CMO corresponds to the maximum size of a common
subgraph of the two contact map graphs, see the next section for the formal
definition. Although CMO is a widely used measure, none of the CMO-based
distance methods suggested so far satisfies the triangle inequality and, hence,
introduces a metric on the space of protein representations. Having a metric
in that space establishes a structure that allows much faster exploration of the
space compared to non-metric spaces. For instance, all previous CMO-based
algorithms require pairwise comparisons of the query with the entire database.
With the rapid increase of the protein databases, such a strategy will unavoidably
create performance problems even if the individual comparisons are fast.

In this work we propose a new distance measure for comparing two protein
structures based on their contact map representations. We show that our novel
measure, which we refer to as the maximum contact map overlap (max-CMO)
metric, satisfies all properties of a metric. This enables us to describe a given
protein database as a metric space where we model each protein family as a
ball with a specially chosen protein from the family as center. We exploit this
representation to accurately and efficiently classify a query protein according to
its k nearest neighbors. We demonstrate that using polynomial-time approxi-
mations of max-CMO in terms of lower-bound upper-bound intervals speeds up
the classification process significantly, without sacrificing its accuracy. We point
out that our approach is not heuristic and guarantees solving the classification
problem to provable optimality with respect to our max-CMO metric and that
we do so without having to compute all query-target alignments to optimality.

We show on a gold-standard classification benchmark set of 6, 759 proteins
that our exact k-nearest neighbor scheme classifies up to 224 out of 236 queries
correctly, and on a large, extended version of the data set that contains 67, 609
proteins even up to 1361 out of 1369 queries. Our k-NN classification thus pro-
vides a promising approach for the automatic classification of protein structures
based on flexible contact map overlap alignments.

264 I. Wohlers et al.

v1 v2 v3 v4

u1 u2 u3 u4 u5

G1

G2

Fig. 1. The alignment visualized with dashed lines ((v1 ↔ u1)(v2 ↔ u2)(v3 ↔
u4)(v4 ↔ u5)) maximizes the number of the common edges between the graphs G1

and G2. The alignment activates four common edges that are emphasized in bold (i.e.,
CMO(G1, G2) = 4).

Amongst the other existing (non-CMO) protein structure comparison meth-
ods we are aware of only one satisfying the triangle inequality. This so called
scaled Gauss metric (SGM) introduced in [17] and further developed in [8] is
shown to be very successful in automatic classification. In our work, however,
we focus on contact map overlap and a comparison to classification algorithms
based on different concepts is outside the scope of this paper. There have also
been works on graph distances motivated by applications unrelated to protein
structure comparison. Closest to our work are [4, 9], where a graph distance
is defined based on the maximum common subgraph of two graphs. But un-
like max-CMO, which takes into account the number of edges in contact map
overlap, the authors in [4, 9] use the number of nodes for the size of a graph.

2 The Maximum Contact Map Overlap Metric

We introduce here the notions of contact map overlap (CMO) and the related
max-CMO distance between protein structures. A contact map describes the
structure of a protein P in terms of a simple, undirected graph G = (V,E)
with vertex set V and edge set E. The vertices of V are linearly ordered and
correspond to the sequence of residues of P . Edges denote residue contacts, that
is, pairs of residues that are close to each other. More precisely, there is an
edge (i, j) between residues i and j iff the Euclidean distance in the protein fold
is smaller than a given threshold. The size |G| := |E| of a contact map is the
number of its contacts. Given two contact maps G1(V,E1) and G2(U,E2) for two
protein structures, let I = (i1, i2, . . . , im) and J = (j1, j2, . . . , jm) be subsets of
V and U , respectively, respecting the linear order. Vertex sets I and J encode an
alignment of G1 and G2 in the sense that vertex i1 is aligned to j1, i2 to j2 and
so on. In other words, the alignment (I, J), is a one-to-one mapping between the
sets V and U . Given an alignment (I, J), a shared contact (or common edge)
occurs if both (ik, il) ∈ E1 and (jk, jl) ∈ E2 exist. We say in this case that
the shared contact (ik, il) is activated by the alignment (I, J). The maximum
contact overlap problem consists in finding an alignment (I∗, J∗) that maximizes
the number of shared contacts and CMO(G1, G2) denotes then this maximum
number of shared contacts between the contact maps G1 and G2, see Figure 1.

Exact Protein Structure Classification 265

Computing CMO(G1, G2) is NP-hard following from [10]. Nevertheless, maxi-
mum contact map overlap has been shown to be a meaningful way for comparing
two protein structures [2,5,11,12,19,20]. Previously, several distances have been
proposed based on the maximum contact map overlap, for example, Dmin [5,16]
and Dsum [2, 11, 20] with

Dmin(G1, G2) = 1− CMO(G1, G2)

min{|E1|, |E2|}
and Dsum(G1, G2) = 1− 2CMO(G1, G2)

|E1|+ |E2|
.

These distances have the disadvantage that they are no metrics as the following
lemma shows (see the extended version [18] for a proof).

Lemma 1. Distances Dmin and Dsum do not satisfy the triangle inequality.

Let G1(V,E1), G2(U,E2) be two contact maps graphs. We propose a new
distance

Dmax(G1, G2) = 1− CMO(G1, G2)

max{|E1|, |E2|}
. (1)

The following claim states that Dmax is indeed a distance metric on the space
of contact maps and we refer to it as the max-CMO metric.

Lemma 2. Dmax is a metric on the space of contact maps.

Proof. To prove the triangle inequality for the function Dmax, we consider three
contact maps G1(V,E1), G2(U,E2), G3(W,E3), and we want to prove that
Dmax(G1, G2) + Dmax(G2, G3) ≥ Dmax(G1, G3). We will use the fact that a
similar function dmax on sets is a metric, which is defined as

dmax(A,B) = 1− |A ∩B|
max{|A|, |B|} . (2)

The mapping M corresponding to CMO(G1, G2) generates an alignment
(V

′
, U

′
), where V

′ ⊆ V and U
′ ⊆ U are ordered sets of vertices preserving

the order of V and U , correspondingly. Since M is a one-to-one mapping, we
can rename the vertices of U ′ to the names of the corresponding vertices of V ′

and keep the old names of the vertices of U \ U ′. Denote the resulting ordered
vertex set by U and denote by E2 the corresponding set of edges. Define the
graph G2 = (U,E2). Note that |E2| = |E2| and any common edge discovered by
CMO(G1, G2) has the same endpoints (after renaming) in E2 as in E1; hence
CMO(G1, G2) = CMO(G1, G2) = |E1 ∩E2|. Then from (2)

Dmax(G1, G2) = 1− CMO(G1, G2)

max{|E1|, |E2|}
= 1− |E1 ∩ E2|

max{|E1|, |E2|}
= dmax(E1, E2) .

Similarly, we compute the mapping corresponding to CMO(G2, G3) and generate

an optimal alignment (U ′ ,W
′
). As before, we use the mapping to rename the

vertices of W ′ to the corresponding vertices of U ′ and denote the resulting sets

266 I. Wohlers et al.

of vertices and edges by W and E3. Similarly to the above case, it follows that
Dmax(G2, G3) = dmax(E2, E3). Combining the last two equalities, we get

Dmax(G1, G2) +Dmax(G2, G3) = dmax(E1, E2) + dmax(E2, E3)

≥ dmax(E1, E3). (3)

On the other hand, E1 ∩ E3 contains only edges jointly activated by the align-
ments (V

′
, U

′
) and (U ′ ,W

′
) and its cardinality is not larger than CMO(G1, G3),

which corresponds to the optimal alignment between G1 and G3. Hence
|E1 ∩ E3| ≤ CMO(G1, G3) and, since |E3| = |E3|,

dmax(E1, E3) = 1− |E1 ∩E3|
max{|E1|, |E3|}

≥ 1− CMO(G1, G3)

max{|E1|, |E3|}
= Dmax(G1, G3).

Combining the last inequality with (3) proves the triangle inequality for Dmax.
The other two properties of a metric, that Dmax(G1, G2) ≥ 0 with equality if and
only if G1 = G2 and Dmax(G1, G2) = Dmax(G2, G1), are obviously also true. ��

If instead of CMO(G1, G2) one computes lower or upper bounds for its value,
replacing those values in (1) produces an upper or lower bound for Dmax, re-
spectively.

3 Nearest Neighbor Classification of Protein Structures

We suggest to approach the problem of classifying a given query protein structure
with respect to a database of target structures based on a majority vote of the
k nearest neighbors in the database. Nearest neighbor classification is a simple
and popular machine learning strategy with strong consistency results, see for
example [1]. An important feature of our approach is that it is based on a metric
and we fully profit from all usual benefits when exploring a metric space [13].

3.1 Finding Family Representatives

In order to minimize the number of targets with which a query has to be com-
pared directly, i.e., via computing an alignment, we designate a representative
central structure for each family. Let d denote any metric. Each family F ∈ C
can then be characterized by a representative structure RF and a family radius
rF determined by

RF = arg min
A∈F

max
B∈F

d(A,B), rF = min
A∈F

max
B∈F

d(A,B). (4)

In order to find RF and rF , we compute, during a preprocessing step, all
pairwise distances within F . We aim to compute these distances as precise as
possible, using a sufficiently long run time for each pairwise comparison. Since
proteins from the same family are structurally similar, the alignment algorithm
performs favorably and we can usually compute intra-family distances optimally.
These distances obtained during preprocessing are later re-used during k-NN
classification for computing triangle bounds.

Exact Protein Structure Classification 267

3.2 Dominance between Target Protein Structures

In order to find the target structures which are closest to a query q, we have
to decide for a pair of targets A and B which one is closer. We call such a
relationship between two target structures dominance:

Definition 3 (dominance). Protein A dominates protein B with respect to a
query q if and only if d(q, A) < d(q, B).

In order to conclude that A is closer to q than B, it may not be necessary
to know d(q, A) and d(q, B) exactly. It is sufficient that A directly dominates B
according to the following rule.

Lemma 4 (direct dominance). Protein A dominates protein B with respect
to a query q if d(q, A) < d(q, B), where d(q, A) and d(q, B) are an upper and
lower bound on d(q, A) and d(q, B), respectively.

Proof. Follows from the inequalities d(q, A) ≤ d(q, A) < d(q, B) ≤ d(q, B). ��
The idea of dominance is crucial for reducing the number of computations

in our approach. Based on the relationship of polynomial-time computed lower
and upper bounds a dominated protein is discarded from further consideration.
Although the precise distance between proteins and the associated alignment are
not computed, which is an NP-hard problem, the accuracy of the classification
is not sacrificed. In its simplest form this idea has been first proposed in [12].
Here we extend it by exploiting the properties of a metric space as shown below.

Given a query q, a representative r and a target A, the triangle inequality pro-
vides an upper bound, while the reverse triangle inequality provides respectively
a lower bound on the distance from query q to target A

d(q, A) ≤ d(q, r) + d(r, A) and d(q, A) ≥ |d(q, r) − d(r, A)| .

We define the triangle upper (resp. lower) bound as

d
�
(q, A) = min

r∈R
{d(q, r) + d(r, A)} ,

d�(q, A) = max
r∈R

max{d(q, r) − d(r, A), d(r, A)− d(q, r)} .

Lemma 5. d�(q, A) ≤ d(q, A) ≤ d
�
(q, A)

Proof. d�(q, A) = max
r∈R

max{d(q, r) − d(r, A), d(r, A) − d(q, r)} ≤ max
r∈R

|d(q, r) −

d(r, A)| ≤ d(q, A) ≤ min
r∈R

d(q, r) + d(r, A) ≤ min
r∈R

d(q, r) + d(r, A) = d
�
(q, A). ��

Using Lemma 5 we derive supplementary sufficient conditions for dominance,
which we call indirect dominances.

Lemma 6 (indirect dominance). Protein A dominates protein B with respect

to query q if d
�
(q, A) < d�(q, B).

Proof. d(q, A)
Lemma 5
≤ d

�
(q, A) < d�(q, B)

Lemma 5
≤ d(q, B). ��

268 I. Wohlers et al.

3.3 Classification Algorithm

K-nearest neighbor classification is a scheme which assigns the query to the
class to which most of the k targets belong which are closest to the query. In
order to classify, we therefore need to determine the k structures with minimum
distance to the query and assign the super-family to which the majority of the
neighbors belong. As seen in the previous section, we can use bounds to decide
whether a structure is closer to the query than another structure. This can be
generalized to deciding whether or not is it possible for a structure to be among
the k closest structures in the following way. We construct two priority queues
LB and UB whose elements are (t, lb(q, t))) and (t, ub(q, t)), respectively, where
q is the query and t the target. The algorithm works with any lower bound
lb(q, t) on the distance between q and t, for example d(q, t) or d�(q, t) and

with any upper bound ub(q, t) on d(q, t), for example d(q, t) or d
�
(q, t). In our

current implementation we use Dmax as a distance while lower and upper bounds
are polynomially computed based on Lagrangian relaxation as explained in [2].
The quality of these bounds for the purpose of protein classification has been
already demonstrated in [11,12]. LB and UB are sorted in the order of increasing
distance. The k-th element in queue UB is denoted by tUB

k . Its distance to the
query, d(q, tUB

k), is the distance for which at least k target elements are closer to
the query. Therefore we can safely discard all those targets which have a lower
bound distance of more than d(q, tUB

k) to query q. That is, tUB
k dominates all

targets t for which lb(q, t) > ub(q, tUB
k).

4 Validation Setup

We evaluated the classification performance and efficiency of different types of
dominance of our algorithm on domains from SCOPCath [6], a benchmark that
consists of a consensus of the two major structural classifications SCOP [14]
(version 1.75) and Cath [15] (version 3.2.0). We use this consensus benchmark
in order to obtain a gold-standard classification that very likely reflects struc-
tural similarities that are detectable automatically, since two classifications, each
using a mix of expert knowledge and automatic methods, agree in their super-
family assignments. SCOPCath has been filtered such that it only contains pro-
teins with less than 50% sequence identity. Since this results in a rather small
benchmark with only 6, 759 structures, we added these filtered structures for our
evaluation in order to have a benchmark representative of the merged databases
SCOP and Cath. There were 264 domains in extended SCOPCath which share
more than 50% sequence similarity with a domain in SCOPCath, but do not
both belong to the same SCOP family; since their families are perhaps not in
SCOPCath and their classification in SCOP and Cath may not agree, we re-
moved them. This way we obtained 60, 850 additional structures. These belong
to 1, 348 super-families and 2, 480 families of which 2, 093 families have more than
one member. For SCOPCath, there are 1, 156 multi-member families. Structures
and families are divided into classes according to Table 1. For super-family as-
signment, we compared a structure only to structures of the corresponding class

Exact Protein Structure Classification 269

Table 1. For every protein class, the table lists the number of structures in SCOPCath
(str) and extended SCOPCath (ext), the corresponding number of families (fam) and
superfamilies (sup)

class a b c d e f g h i j k

str 1195 1593 1774 1591 30 103 342 72 11 38 10
ext 10796 19215 17497 15679 349 1006 2398 520 43 81 25
fam 524 516 548 632 6 59 121 32 5 29 8
sup 303 266 191 375 6 52 82 31 5 29 8

since class membership can in most cases be determined automatically, for exam-
ple by a program that computes secondary structure content. We then computed
all-versus-all distances (2) or distance bounds within each family using optimal
maximum contact map overlap or the upper Lagrangian bound on it and deter-
mined the family representative according to Equation (4). For every pairwise
distance computation, we used a maximum time limit of 10 s. Since most com-
parisons were computed optimally, the average run time is approximately 2 s.

For classification, we randomly selected one query from every family with at
least six members. This resulted in 236 queries for SCOPCath and 1, 369 queries
for the extended SCOPCath benchmark. For every query, the k = 10 near-
est neighbor structures from SCOPCath and extended SCOPCath, respectively,
were computed using our k-NN Algorithm. The algorithm is a two-step proce-
dure. First it improves distance bounds by applying several rounds of triangle
dominance, in which the maximum contact map overlap bounds from query to
representatives are updated, and second it switches to pairwise dominance, for
which the distance to any remaining target is computed. In the first step, query
representative distances are computed using an initial time limit of τ = 1 s,
then triangle dominance is applied to all targets and the algorithm iterates with
time limit doubled until a termination criterion is met. This way, bounds on
query target distances are improved successively. The computation of triangle
dominance terminates if any of the following holds (i) k targets are left (ii) all
query-representative distances have been computed optimally or with a time
limit of 32 CPU seconds (iii) the number of targets did not reduce from one
round to the next. Pairwise dominance terminates if any of the following holds
(i) k targets are left or all remaining targets belong to the same super-family
(ii) all query-target distances have been computed with a time limit of 32 CPU
seconds. The query is then assigned to the super-family to which the majority
of the k nearest neighbors belongs. In cases in which the pairwise dominance
terminates with more than k targets or more than one super-family remains, the
exact k nearest neighbors are not known. In that case we order the targets based
on the upper bound distance to the query and assign the super-family using the
top ten queries. In the case that there is a tie among the superfamilies to which
the top ten targets belong, we report this situation. In order to investigate the
impact of k on classification accuracy, we additionally decreased k from 9 to
1, using each time the k + 1 nearest neighbors from the classification result for

270 I. Wohlers et al.

k + 1. In the case that for a query more than k + 1 queries remained in this
classification, we used all of them for searching for the k nearest neighbors, but
put an additional termination criterion which prevents extremely long run times
for a few queries. Due to the large number of computations, classifications were
run on different architectures on clusters with various load and are therefore
only used for order of magnitude comparison.

5 Computational Results

5.1 Characterizing the Distance Measure

In a first, preprocessing step we evaluate how well our distance metric cap-
tures known similarities and differences between protein structures by computing
intra-family and inter-family distances. A good distance for structure compari-
son should pool similar structures, i.e., from the same family, whereas it should
locate dissimilar structures from different families far apart from each other.
In order to quantify such characteristics, we compute for each family with at
least two members a central, representative structure according to Equation (4).
Therefore, we compute the distance between any two structures that belong to
the same family. Such intra-family distances should ideally be small. We observe
that the distribution of intra-family distances differ between classes and are usu-
ally smaller than 0.5, except for class c. For the four major protein classes, there
is a distance peak close to 0 and another one around 0.2.

We then compute a radius around the representative structure that encom-
passes all structures of the corresponding family. The number of families with a
given radius decreases nearly linearly from 0 to 0.6, with most families having a
radius close to zero, and almost no families having a radius greater than 0.6.

Considering that the distance metric is bound to be within 0 and 1, inter-
family distances and radii show that our distance overall captures well the sim-
ilarity between structures. Further, we investigate the distance between protein
families by computing their overlap value as defined by d(RF1 , RF2)− rF1 − rF2 .
Most families are not close to each other according to our distance metric. Fam-
ilies of the four most populated classes which belong to different superfamilies
overlap in 23-25% of cases for class a, 11-18% for class b, 10-22% for class c
and 11-18% for class d. These bounds on the number of overlapping families
can be obtained by using the lower and upper bounds on the distances between
representatives and the distances between family members appropriately.

5.2 Results for the SCOPCath Benchmark

When classifying the 236 queries of SCOPCath, we achieve between 89% and 95%
correct super-family assignments, see Table 2. Remarkably, the highest accuracy
is reached for k=1, so here just classifying the query as belonging to the super-
family of the nearest neighbor is the best choice. Our k-NN classification resulted
for any k in a large number of ties, especially for k=2, see Table 2. These currently

Exact Protein Structure Classification 271

Table 2. Classification results showing the number of queries out of overall 236 queries
for SCOPCath and 1369 queries for extended SCOPCath that have been assigned to a
super-family, the number of assignments to the correct superfamily (cor), the number of
assignments computed exactly, i.e. queries which terminate with the provable k nearest
neighbors (exc), thereof the number of correct classifications (e&c) and the number of
ties which do not allow a superfamily assignment based on majority vote

SCOPCath ext. SCOPCath

k cor exc e&c ties cor exc e&c ties

10 210 117 110 10 1303 1120 1104 35
9 211 143 134 9 1331 1182 1166 5
8 213 156 149 11 1334 1228 1215 12
7 213 165 155 8 1341 1271 1257 6
6 214 188 178 10 1341 1286 1276 11
5 217 206 198 10 1346 1339 1329 7
4 217 204 195 10 1344 1341 1330 9
3 219 211 205 10 1351 1352 1341 3
2 213 209 206 20 1348 1347 1343 17
1 224 234 224 0 1361 1368 1360 0

unresolved ties also decrease assignment accuracy compared to k = 1, for which
a tie is not possible. Table 2 further lists the number of queries which have
been assigned, where exact denotes that the provable k nearest neighbors have
been computed. The percentage of exactly computed nearest neighbors varies
between 50% and 99% and increases with decreasing k. A likely reason for this
is that the larger k, the weaker is the k-th distance upper bound that is used for
domination, especially if the target on rank k is dissimilar to the query. Since
SCOPCath domains have low sequence similarity, this is likely to happen. It is
also interesting to note that there are for any k quite a few queries which have
been assigned exact, but which are nonetheless wrongly assigned, see Table 2.
These are cases in which our distance metric fails in ranking the targets correctly
with respect to gold standard.

5.3 Results for the Extended SCOPCath Benchmark

Our exact k-NN classification can also be successfully applied to larger bench-
marks like extended SCOPCath, which are more representative of databases such
as SCOP. Here, the benefit of using a metric distance, triangle inequality and
k-NN classification is more pronounced. Remarkably, our classification run time
on this benchmark that is about an order of magnitude larger than SCOPCath
is for most queries of the same order of magnitude as run times on SCOPCath
(except for some queries which need an extremely long run time and finally can-
not be assigned exactly). Also here, run time varies extremely between queries,
between 0.15 and 85.63 hours for queries of the four major classes which could
be assigned exactly. The median run time for all 1120 exactly assigned extended
SCOPCath queries is 3.8 hours.

272 I. Wohlers et al.

Fig. 2. Boxplots of the percentage of removed targets at each iteration during triangle
and pairwise dominance for the 1369 queries of the extended SCOPCath benchmark

The classification results for extended SCOPCath are shown in Table 2.
Slightly more queries have been assigned correctly compared to SCOPCath,
between 95% and 99%, and significantly more queries have been assigned ex-
actly. Both may reflect that there are now more similar structures within the
targets. Further, the number of ties is decreased. Figure 2 displays the progress
of the computation. Here, many more target structures are removed by triangle
dominance and within the very first iteration of pairwise dominance compared
with the SCOPCath benchmark. For example, for most queries, more than 60%
of targets are removed by triangle dominance alone. Only very few queries need
to explicitly compute the distance to a large percentage of the targets, and most
can be assigned after only one round of pairwise dominance.

6 Conclusion

In this work we introduced a new distance based on the CMO measure and
proved that it is a true metric, which we call the max-CMO metric. We analyzed
the potential of max-CMO for solving the k-NN problem efficiently and exactly
and built on that basis a protein superfamily classification algorithm. Depending
on the value of k, our accuracy varies between 89% for k = 10 and 95% for k = 1
for SCOPCath and between 95% and 99% for extended SCOPCath. The fact
that the accuracy is highest for k = 1 indicates that using more sophisticated
rules than k-NN may produce even better results.

In summary, our approach provides a general solution to k-NN classification
based on a computationally intractable metric for which polynomial upper and
lower bounds are available that can successfully be applied for exact large-scale
protein superfamily classification.

References

1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric re-
gression. The American Statistician (1992)

2. Andonov, R., Malod-Dognin, N., Yanev, N.: Maximum contact map overlap revis-
ited. J. Comput. Biol. 18(1), 27–41 (2011)

Exact Protein Structure Classification 273

3. Bernstein, F., Koetzle, T., Williams, G., Meyer Jr., E., Brice, M., Rodgers, J.,
Kennard, O., Shimanouchi, T., Tasumi, M.: The protein data bank: A computer-
based archival file for macromolecular structures. J. of Mol. Biol. 112, 535 (1977)

4. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters 19, 255–259 (1998)

5. Caprara, A., Carr, R., Istrail, S., Lancia, G., Walenz, B.: 1001 optimal PDB struc-
ture alignments: integer programming methods for finding the maximum contact
map overlap. J. Comput. Biol. 11(1), 27–52 (2004)

6. Csaba, G., Birzele, F., Zimmer, R.: Systematic comparison of SCOP and CATH:
a new gold standard for protein structure analysis. BMC Struct. Biol. 9, 23–23
(2009)

7. Godzik, A., Skolnick, J., Kolinski, A.: Regularities in interaction patterns of glob-
ular proteins. Protein Eng. 6(8), 801–810 (1993)

8. Harder, T., Borg, M., Boomsma, W., Røgen, P., Hamelryck, T.: Fast large-
scale clustering of protein structures using Gauss integrals. Bioinformatics 28(4),
510–515 (2012)

9. Hidovic, D., Pelillo, M.: Metrics for attributed graphs based on the maximal simi-
larity common subgraph. IJPRAI 18(3), 299–313 (2004)

10. Lathrop, R.H.: The protein threading problem with sequence amino acid interac-
tion preferences is NP-complete. Protein Eng. 7(9), 1059–1068 (1994)

11. Malod-Dognin, N., Przulj, N.: Gr-align: fast and flexible alignment of protein 3d
structures using graphlet degree similarity. Bioinformatics (2014)

12. Malod-Dognin, N., Le Boudic-Jamin, M., Kamath, P., Andonov, R.: Using domi-
nances for solving the protein family identification problem. In: Przytycka, T.M.,
Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 201–212. Springer, Heidelberg
(2011)

13. Moreno-Seco, F., Mico, L., Oncina, J.: A modification of the laesa algorithm for
approximated k-nn classification. Pattern Recognition Letters 24, 47–53 (2003)

14. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural clas-
sification of proteins database for the investigation of sequences and structures. J.
Mol. Biol. 247(4), 536–540 (1995)

15. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton,
J.M.: CATH–a hierarchic classification of protein domain structures. Structure 5(8),
1093–1108 (1997)

16. Pelta, D.A., González, J.R., Moreno Vega, M.: A simple and fast heuristic for
protein structure comparison. BMC Bioinformatics 9, 161–161 (2008)

17. Rogen, P., Fain, B.: Automatic classification of protein structure by using gauss
integrals. Proceedings of the National Academy of Sciences of the United States of
America 100(1), 119–124 (2003)

18. Wohlers, I., Boudic-Jamin, M.L., Djidjev, H., Klau, G.W., Andonov, R.: Exact
protein structure classification using the maximum contact map overlap metric.
Tech. Rep. LA-UR-14-20815, Los Alamos National Laboratory (2014)

19. Wohlers, I., Malod-Dognin, N., Andonov, R., Klau, G.W.: CSA: comprehen-
sive comparison of pairwise protein structure alignments. Nucleic Acids Re-
search 40(W1), W303–W309 (2012)

20. Xie, W., Sahinidis, N.V.: A reduction-based exact algorithm for the contact map
overlap problem. J. Comput. Biol. 14(5), 637–654 (2007)

Author Index

Ahmad, Aitzaz 196
Almirantis, Yannis 220
Althaus, Ernst 25
Amaya Moreno, Liana 35
Andonov, Rumen 262
Arruda, Thiago da Silva 59
Azimi, Sepinoud 95
Azpeitia, Eugenio 235

Carrillo, Miguel 235
Chance, Mark R. 171
Chateau, Annie 47
Ciortuz, Liviu 119

Defterli, Ozlem 35
Dias, Ulisses 59
Dias, Zanoni 59, 146, 158
Djidjev, Hristo 262

Euler, Reinhardt 131

Fügenschuh, Armin 35

Galperin, Michael Y. 1
Giannakopoulos, George 220
Giroudeau, Rodolphe 47
Gratie, Diana-Elena 95
Grigoriev, Alexander 71
Grosse, Ivo 83

Hedtke, Ivo 83
Hildebrandt, Andreas 25
Hildebrandt, Anna Katharina 25

Iancu, Bogdan 95

Kawai, Yosuke 107, 208
Kelk, Steven 71
Klau, Gunnar W. 262
Kojima, Kaname 107, 208
Koonin, Eugene V. 1
Koyutürk, Mehmet 171
Krithara, Anastasia 220

Le Boudic-Jamin, Mathilde 262
Lekić, Nela 71
Lemaitre, Claire 119
Lemarchand, Laurent 131
Lemnian, Ioana 83
Leser, Ulf 247
Lin, Congping 131
Lintzmayer, Carla Negri 146, 158

Maxwell, Sean 171
Mimori, Takahiro 107, 208
Mishra, Bud 183
Müller-Hannemann, Matthias 83
Muñoz, Stalin 235

Nagasaki, Masao 107, 208
Nariai, Naoki 107, 208
Narzisi, Giuseppe 183
Nikolaou, Christoforos 220
Noor, Amina 196
Nounou, Hazem 196
Nounou, Mohamed 196

Ohtsuki, Tomohiko 208

Paliouras, Giorgos 220
Peterlongo, Pierre 119
Petre, Ion 95
Polychronopoulos, Dimitris 220

Rosenblueth, David A. 235

Sato, Yukuto 107, 208
Schatz, Michael C. 183
Serpedin, Erchin 196
Shibuya, Testuo 208
Sparkes, Imogen 131

Wajid, Bilal 196
Wandelt, Sebastian 247
Weber, Gerhard-Wilhelm 35
Wohlers, Inken 262

Yamaguchi-Kabata, Yumi 107, 208

	Preface
	Organization
	Table of Contents
	Invited Talks
	Comparative Genomics Approaches to Identifying Functionally Related Genes*
	1 Introduction
	2 What Is the Gene “Function”?
	3 Homology-Based Functional Assignments
	3.1 Annotation by Similarity
	3.2 Family/Superfamily Annotation

	4 Using Genome Comparisons for Predicting Protein Functions
	4.1 Phylogenetic Profiling
	4.2 Genomic Neighborhood
	4.3 Gene Coexpression
	4.4 Protein Domain Fusions
	4.5 Protein-Protein Interactions

	5 Combining Disparate Data into a Single Annotation
	6 Conclusions
	References

	Regular Papers
	A Greedy Algorithm for Hierarchical Complete Linkage Clustering
	1 Introduction
	2 Algorithm and Its Implementation
	2.1 The Basic Idea
	2.2 Some Details

	3 Sketch of Our Main Application
	4 Experiments
	5 Conclusion
	References

	Vester’s Sensitivity Model for Genetic Networkswith Time-Discrete Dynamics
	1 Introduction
	2 TheMethod
	2.1 Linear Programming
	2.2 Vester’s Sensitivity Model

	3 Data
	3.1 Data Analysis

	4 Computational Results
	5 Conclusions and Future Work
	References

	Complexity and Polynomial-Time Approximation Algorithms around the Scaffolding Problem
	1 Introduction
	2 Formal Description of the Problems
	3 Computational Complexity
	4 Inapproximability Results for
	5 A Polynomial-Time Approximation Algorithm for
	6 Conclusion
	References

	Heuristics for the Sorting by Length-WeightedInversions Problem on Signed Permutations
	1 Introduction
	2 Definitions
	3 TheMeta-heuristic
	3.1 Neighborhood
	3.2 Local Search
	3.3 Building Solutions

	4 Experimental Results
	5 Conclusions
	References

	On Low Treewidth Graphs and Supertrees
	1 Introduction
	2 Preliminaries
	3 MainResults
	4 Beyond Treewidth 2
	5 Conclusion
	References

	On Optimal Read Trimming in Next GenerationSequencing and Its Complexity
	1 Introduction
	2 Problems and Notation
	3 Complexity
	4 Polynomial-Time Algorithms for Relaxations of the Problems
	5 Case Studies
	6 Applications
	7 Conclusions
	References

	On the Implementationof Quantitative Model Refinement
	1 Introduction
	2 The Heat Shock Response (HSR)
	3 Quantitative Model Refinement
	3.1 QuantitativeModel Refinement
	3.2 Adding the Acetylation Details to the HSR Model through Data Refinement

	4 Quantitative Refinement in Rule-Based Models
	4.1 A RuleBender Implementation of the Basic HSR Model
	4.2 A RuleBender Implementation of the Acetylation-Refined HSR Model

	5 Quantitative Refinement in Petri Net Models
	5.1 A Petri Net for the Basic HSR Model
	5.2 Petri Nets for the Acetylation-Refined HSR Model

	6 Quantitative Refinement in PRISM Models
	6.1 A PRISM Implementation of the Basic HSR Model
	6.2 A PRISM Implementation of the Acetylation-Refined HSR Model
	6.3 Model Checking of the HSR Models

	7 Discussion
	References

	HapMonster: A Statistically Unified Approachfor Variant Calling and HaplotypingBased on Phase-Informative Reads
	1 Introduction
	2 Methods
	2.1 Modeling
	2.2 Parameter Estimation
	2.3 Variant Calling and Haplotype Inference

	3 Results
	3.1 Simulation Analysis
	3.2 Real Data Analysis
	3.3 Required Computational Resource

	4 Conclusions
	References

	Mapping-Free and Assembly-Free Discoveryof Inversion Breakpoints from Raw NGS Reads
	1 Introduction
	2 Inversion Pattern in the de Bruijn Graph
	2.1 Preliminaries
	2.2 Inversion Pattern

	3 Algorithm for Inversion Pattern Detection
	3.1 Main Algorithm
	3.2 Canonical Representation of Occurrences
	3.3 Presence of Small Inverted Repeats at the Breakpoints
	3.4 Distinguishing Inversions from Approximate Repeats

	4 Results
	4.1 Results on a Bacterial Genome
	4.2 Results on More Complex Genomes
	4.3 Time and Memory Performances

	5 Discussion and Conclusion
	References

	Modeling the Geometryof the Endoplasmic Reticulum Network
	1 Problem
	2 Model
	3 Problem Formulation and Resolution
	3.1 Binary Linear Programming Resolution
	3.2 Linear Programming Formulation

	4 Tests
	4.1 Runtimes for the Solution of the Basic Problem
	4.2 Runtimes of Real-Life Testcases with the Full Model
	4.3 Real-Life Testcase Results and a Comparison with Actual Topologies

	5 Discussion
	References

	On Sorting of Signed Permutationsby Prefix and Suffix Reversals and Transpositions
	1 Introduction
	2 Basic Definitions
	3 Sorting by Signed Prefix Reversals
	4 Sorting by Signed Prefix Reversals and Signed Suffix Reversals
	5 Sorting by Signed Prefix Reversals and Prefix Transpositions
	6 Sorting by Signed Prefix Reversals, Prefix Transpositions, Signed Suffix Reversals and Suffix Transpositions
	7 Results
	References

	On the Diameter of Rearrangement Problems
	1 Introduction
	2 Definitions
	3 Families
	4 Bounds
	5 Conclusion and Future Work
	References

	Efficiently Enumerating All Connected InducedSubgraphs of a Large Molecular Network
	1 Introduction
	2 Methods
	2.1 Problem Definition and Observations
	2.2 Anchor Vertices
	2.3 Efficient Enumeration of Spokes
	2.4 Efficient Enumeration of All Connected Subgraphs
	2.5 Correctness

	3 Experimental Results
	4 Conclusion
	References

	On Algorithmic Complexityof Biomolecular Sequence Assembly Problem
	1 Introduction
	2 The Dovetail-Path Framework
	3 Shortest Superstring Problem (
	4 Graph-Theoretic Formulation
	4.1 Strings, Overlaps and Overlap Graph
	4.2 String Graph
	4.3 De Bruijn Graph

	5 Discussion
	References

	A Closed-Form Solution for Transcription FactorActivity Estimation Using Network ComponentAnalysis
	1 Introduction
	2 CFNINCA: NINCA with Closed Form Solutions
	2.1 Estimating Connectivity Matrix
	2.2 Estimating the TFA Matrix

	3 Simulation Results
	3.1 Synthetic and Hemoglobin Test Data
	3.2 Results S.Cerevisiae Cell Cycle Data
	3.3 Robustness to Errors in Prior Information
	3.4 Run Time Comparison

	4 Conclusions
	References

	SVEM: A Structural Variant Estimation MethodUsing Multi-mapped Reads on Breakpoints
	1 Introduction
	2 Methods
	2.1 Preprocessing
	2.2 Modeling for Paired-End Reads
	2.3 Parameter Estimation by the EM Algorithm

	3 Results
	3.1 Simulation Data Analysis
	3.2 Real Data Analysis
	3.3 Computational Resources

	4 Discussion
	References

	Analysis and Classification of Constrained DNAElements with N-gram Graphsand Genomic Signatures
	1 Introduction
	1.1 Constrained Elements in Eukaryote Genomes
	1.2 Analyzing Sequence Composition through a Combination of

	2 Methods
	2.1 Datasets Retrieval
	2.2 Treatment of Sequences and Extraction of Surrogate Sequences
	2.3 From Sequences to the N-Gram Graph Similarity Vector Space

	3 Results and Discussion
	3.1 Inter-Species Comparisons of Background Sequences
	3.2 Classification Experiments of Constrained DNA Sequences
	3.3 Genomic Signatures Perform Better in Classifying Genomic Segments of Functional Importance and Different Origin

	4 Conclusions
	References

	Inference of Boolean Networks fromGene Interaction Graphs Using a SAT Solver
	1 Introduction
	2 Boolean Networks via Propositional Logic
	2.1 Boolean Networks and Interaction Graphs
	2.2 Representation of Boolean Networks

	3 Experiments
	3.1 The

	4 Concluding Remarks
	References

	RRCA: Ultra-Fast Multiple In-species GenomeAlignments
	1 Introduction
	2 Preliminaries
	3 Computing an Alignment with Referential Compression
	3.1 Computing an Initial Alignment
	3.2 Completing an Alignment with Recursive Referential Compression

	4 Discussion
	5 Conclusion
	References

	Exact Protein Structure Classification Usingthe Maximum Contact Map Overlap Metric
	1 Introduction
	2 The Maximum Contact Map Overlap Metric
	3 Nearest Neighbor Classification of Protein Structures
	3.1 Finding Family Representatives
	3.2 Dominance between Target Protein Structures
	3.3 Classification Algorithm

	4 Validation Setup
	5 Computational Results
	5.1 Characterizing the Distance Measure
	5.2 Results for the SCOPCath Benchmark
	5.3 Results for the Extended SCOPCath Benchmark

	6 Conclusion
	References

	Author Index

