
Normative Requirements for Business
Process Compliance

Mustafa Hashmi1,2(B), Guido Governatori1,2, and Moe Thandar Wynn1,2

1 NICTA, Queensland Research Laboratory, Brisbane, Australia
{mustafa.hashmi,guido.governatori}@nicta.com.au

2 Queensland University of Technology (QUT), Brisbane, Australia
m.wynn@qut.edu.au

Abstract. Norms regulate the behaviour of their subjects and define what
is legal and what is illegal. Norms typically describe the conditions under
which they are applicable and the normative effects as a result of their
applications. On the other hand, process models specify how a business
operation or service is to be carried out to achieve a desired outcome.
Norms can have a significant impact on how business operations are con-
ducted and they can apply to the whole or a part of a business
process. For example, they may impose conditions on the different aspects
of a process (e.g., perform tasks in a specific sequence (control-flow), at a
specific time or within a certain time frame (temporal aspect), by spe-
cific people (resources). We propose a framework that provides the for-
mal semantics of the normative requirements for determining whether a
business process complies with a normative document (where a normative
document can be understood in a very broad sense, ranging from internal
policies to best practice policies, to statutory acts). We also present a clas-
sification of normal requirements based on the notion of different types of
obligations and the effects of violating these obligations.

Keywords: Norms · Regulatory compliance · Business process
compliance

1 Introduction

Due to ever increasing pressure and demand from regulatory authorities,
compliance has become a must do activity for every enterprise. Essentially,
compliance corresponds to the enterprise’s obedience to governing regulations
enforced on its business operations. The demand for compliance can come from
government regulations (e.g. the Sarbanes-Oxley Act, HIPPA, BASEL-III . . .),
standards (ISO-9000, CoBIT . . .), and/or an enterprise’s internal policies.
Adherence with regulatory laws and internal controls essentially increase trans-
parency and effective control over business operations.

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

J.G. Davis et al. (Eds.): ASSRI 2013, LNBIP 177, pp. 100–116, 2014.
DOI: 10.1007/978-3-319-07950-9 8, c© Springer International Publishing Switzerland 2014

Normative Requirements for Business Process Compliance 101

Service-Oriented Architecture (SOA) is one of the enablers for innovation
in today’s highly competitive business environment. Public and private
enterprises alike are adopting new technologies to bring innovations into their
business operations and to offer their core competencies as web services. Web
services are often physically independent but logically interrelated pieces of ser-
vices orchestrated to provide a specific functionality, and are designed by combin-
ing (possibly) disparate and often incongruous business processes from different
enterprises [4]. In such a dynamic setting, the ability to trust that one another’s
internal processes that form the backbone of successful invocation of web services
are compliant with regulations becomes even more crucial.

Business process models provide a high-level view on how business opera-
tions can be carried out to achieve a desired outcome. Business processes must
behave within the defined limits of the regulatory guidelines (in legal context)
called norms. Norms regulate business processes by imposing restrictions on
how business activities should be performed. Any divergent behaviour may lead
to termination of interactions or financial penalties [9]. Consider, a procurement
process of a government agency which handles dynamic selection of vendors to
place orders, which is implemented as a web service. Using such a web service,
the agency can quickly place an order, receive and evaluate the quotes from
suppliers. This process is subject to regulations, as such the procurement web
service must be checked for compliance with relevant regulations before it can be
deployed. A process model that reflects the behaviour of the procurement web
service can be used to verify the effectiveness of regulations and policy controls.

The structure and properties of norms have been extensively studied by the
field of Deontic Logic, Artificial Intelligence and Law, and Legal Reasoning (see,
[15] for a comprehensive treatment with a formal and legal theory perspective). A
number of researchers have incorporated the notion of process compliance in the
service domain. Reference [13] deals with business rules driven business processes
as service composition using various types of composition elements. The busi-
ness rules considered in the framework are related to the structure of business
processes. Reference [18] provides a formal characterisation of behavioural rules
for business policy compliance for SOA which is again useful to check structural
compliance of business processes. However, compliance is not only about how the
activities should be performed (the control flow aspect) but also about what these
activities do (data), and who performs the tasks (resources aspect).

Generally the compliance rules are written in a natural language (c.f. those
that can be found in legal or policy documents). To enable automatic compliance
checks of processes, these rules need to be formalised in a machine-readable
format. Typically the formalisation of compliance rules is language dependent,
and the choice of a formal language depends on the business analysts. In this
paper, we carefully examine all different types of normative requirements which
can be imposed upon the different perspectives of business processes and propose
how these requirements can be captured in a formal manner without restricting
ourselves to any particular formalism.

Hence, the aim of this paper is not to provide yet another framework for
business process compliance; instead we provide conceptually sound foundations

102 M. Hashmi et al.

for the normative requirements for the normative component of the compliance
problem. This is achieved by giving semantics of norms (obligations) in terms of
the validity of a norm, effects of the violations; and the possible ways in which
a business process can be executed.

In the next section, we provide a motivating scenario of a complaints handling
process together with a set of normative requirements. The formal definitions of
business process models are given in Sect. 3. Various types of normative require-
ments together with concrete examples for each type are discussed in Sect. 4. An
illustration of how compliance checking can be carried out for the complaints
handling process as well as an evaluation of a compliance framework, Regor-
ous, based on the proposed set of normative requirements is provided in Sect. 5.
Section 6 concludes the paper.

2 Motivating Scenario: A Complaints Handling Process

In this section, we provide a short description of the complaints handling process
inspired by the LPMA1 in New South Wales, Australia and required to follow a
number of compliance requirements stated in an internal policy document.

Figure 1 depicts the overview of the procedure followed to resolve a com-
plaint as a BPMN process model. The first step in the process is to determine
whether a complaint is an oral complaint or a written complaint. If it is an

Fig. 1. Complaints handling process.

1 The Land and Property Management Authority (LMPA), available at: http://www.
lpma.nsw.gov.au/ data/assets/pdf file/0004/25663/rth Ch26 Aug 2009.pdf.

http://www.lpma.nsw.gov.au/__data/assets/pdf_file/0004/25663/rth_Ch26_Aug_2009.pdf
http://www.lpma.nsw.gov.au/__data/assets/pdf_file/0004/25663/rth_Ch26_Aug_2009.pdf

Normative Requirements for Business Process Compliance 103

oral complaint, a staff member will identify himself and details are gathered
from the complainant before proceeding. The staff member then verifies whether
the received complaint meets the requirements of a legitimate complaint. If the
received complaint does not meet the definition of a complaint, alternative dis-
pute procedures are adopted (which is out of the scope of this process). After a
complaint has been determined as a legitimate complaint, the staff member must
decide whether (s)he has the appropriate authority to handle the complaint. If
the staff is deemed to have the authority, then the complaint will go though the
complaints handling process with the staff as its handler. Otherwise, the com-
plaint is referred to an authorised staff and the complainant is informed. The
authorised staff explains the process and the available options and attempts to
resolve the complaint straight away if it is an oral complaint. If the complaint
is resolved, then the complaint is logged as resolved and the complainant is
informed about the decision.

For a written complaint, an authorised staff will confirm the complaint within
two working days. A complaint is escalated to a senior staff if it cannot be
resolved or the complainant is not satisfied or if the staff decides that it needs to
be escalated. While the complaint is being investigated, the complainant is being
kept informed. When a decision has been reached, the complainant is informed
about the decision. When the complainant is satisfied with the decision, the
complaint is closed off and archived.

Table 1 shows the policy excerpt of the compliant handling process.

Table 1. The compliance requirements of complaints handling process from LPMA,
NSW.

104 M. Hashmi et al.

3 Formal Foundations of Business Process Compliance

Compliance is related to the behaviour of a process, where by the behaviour
we understand how the process can be (correctly) executed. Thus we have to
identify the traces of a process, where, from the compliance point of view a trace
is the sequence of actions/tasks performed by the process. Compliance is not
only about the tasks or actions undertaken but also what the tasks do, their
artifacts and how they change the environment in which the process is situated.
To capture this, we adopt the idea proposed in [14] and enrich processes with
semantic annotations. These annotations are meant to capture the attributes,
resources and other information related to the tasks in a process. We take an
agnostic approach to the annotations themselves and assume that there is a
suitable language to represent the annotations. We stipulate that the same lan-
guage is used to represent both the annotations and the content of the normative
requirements.

In this paper, we make use of workflow-nets (WF-Nets) [17], a subclass of
Petri nets [12], to represent business processes. However, the definitions below
can be easily modified for other representations of business processes.

Definition 1 (Petri Net). A Petri Net is a tuple PN = (P, T, F) where P is
the set of places, T is the set of transitions, P ∩T = ∅ and F ⊆ (P ×T)∪(T ×P)
is the flow relation.

A Petri net is a collection of two types of nodes: places and transitions. Arcs
connect one type of node to the other. For a node x ∈ (P ∪ T), •x denotes the
set of inputs to x and x• denotes the set of outputs of x. The state of a Petri net
is represented by a marking that describes the number of tokens in each place
of a net.

A workflow net (WF-net) is defined as a subclass of Petri net with the fol-
lowing structural restrictions [16]. There is exactly one source place and exactly
one end place. Every node in the graph is on a direct path from the source place
to the end place.

Definition 2 (WF-net). Given a Petri net N = (P, T, F), the net N is a WF-
net if and only if: (1) There is one source place i ∈ P such that •i = ∅. (2) There
is one sink place o ∈ P such that o• = ∅. (3) Every node x ∈ P ∪ T is on a path
from i to o.

Definition 3 (Enabling and Firing Rules of a WF-net). Given a WF-net
N = (P, T, F), a transition t ∈ T and a marking M of N , t is enabled at M ,
denoted as M [t〉, if and only if, there is at least one token each in all p ∈ •t.
If M [t〉 holds and transition t is fired, a new marking M ′ of N is reached, which
removes a token each from each p ∈ •t and puts a token in each p ∈ t•. This is
denoted as M

t→ M ′.

Normative Requirements for Business Process Compliance 105

Definition 4 (Occurrence sequence). Given a WF-net N = (P, T, F) and
markings M,M1, . . . ,Mn of N , if M

t1→ M1
t2→ · · · tn→ Mn holds then

σ = 〈t1, t2, . . . , tn〉 is an occurrence sequence leading from M to Mn.

The initial marking of a WF-net is i, where there is one token in the source
place i, and the end marking of a WF-net is o. A trace in a WF-net represents
an occurrence sequence from the initial marking i to the end marking o.

Definition 5 (Labeled WF-Net). A labeled WF-net N = (P, T, F, l) is a WF-
net (P,T,F) with a labeling function l ∈ T � UA, where UA is some universe
of activity labels. Let σv = 〈a1, a2, . . . , an〉 ∈ UA

∗ be a sequence of activities and
M,M ′ be two markings of N . M [σv �M ′ if and only if there is a sequence σ ∈ T ∗

such that M [σ〉M ′ and l(σ) = σv.

With this definition we only have the visible and labeled transitions in the net.
For a set of traces of a workflow net T+(N), T+ = {σΘ|i[σΘ〉o} is the set of all
visible traces in the net, where Θ = {σ1, σ2, . . . , σn} is a set of all occurrence
sequences. The idea behind the notion of a labelled WF-Net is that a trace of
visible transitions corresponds to a possible execution sequence of the process,
where the visible transitions correspond to the tasks executed by the process.

Next, we look at how a WF-net can be annotated with compliance require-
ments. We begin with the definition of the language.

Definition 6 (Literal). Let A be the set of all atomic propositions. The set of
literals is L = {a,¬a|a ∈ A}.
A consistent set of literals can be understood as either a (partial) interpretation
(i.e., an assignment of truth value) or equivalently a (partial) description of a
state.

Definition 7 (Consistent Set). A set of literals L is consistent if and only if
L does not contain any pair of literals l,¬l.

Definition 8 (Annotation). Let N be a WF-net and T+ be the set of visible
traces of N . An annotation ann is a function Ann : T+ × N
→ 2L such that for
every t ∈ T+ and every n ∈ N, Ann(t, n) is a consistent set of literals.

Annotations enable a process to have states attached to the tasks. The function
Ann(t, n) returns the state obtained after the execution of the n-th task (visible
transition) in the (visible) trace t.

Definition 9 (Annotated WF-Net). AnannotatedWF-net is a pair 〈N,Ann〉,
where N = (P, T, F, l) is a labeled WF-net, and Ann is an annotation.

In an annotated WF-net, each visible trace uniquely determines the sequence of
states obtained by executing that trace. Thus, in what follows whenever clear
from the context we use trace to refer to a sequence of tasks, and the corre-
sponding sequence of states.

106 M. Hashmi et al.

Remark 1. It is not within the scope of this paper to describe how the sequences
of states corresponding of the execution of a process are obtained. The task of
specifying how the function Ann is implemented is left to specific compliance
applications.

4 Normative Requirements

Norms regulate the behaviour of their subjects and define what is legal and
what is illegal. Norms typically describe the conditions under which they are
applicable and the normative effects they produce when applied. Reference [5]
provides a comprehensive list of normative effects. From the compliance per-
spective the normative effects of importance are the deontic effects. The basic
deontic effects –from which others deontic effects can be derived, see [15]– are:
obligation, prohibition and permission.

Let us start by consider the basic definitions for such concepts:2

Obligation A situation, an act, or a course of action to which a bearer is legally
bound, and if it is not achieved or performed results in a violation.

Prohibition A situation, an act, or a course of action which a bearer should
avoid, and if it is achieved results in a violation.

Permission Something is permitted if the obligation or prohibition to the con-
trary does not hold.

Obligations and prohibitions are constraints that limit the behaviour of processes.
The different between obligations and prohibitions and other types of constraints
is that they can be violated. On the other hand, permissions are constraints that
cannot be violated and thus, permissions do not play a direct role in compliance.
Instead, they can be used to determine that there are no obligations or prohi-
bitions to the contrary, or to derive other deontic effects. Legal reasoning and
legal theory typically assume a strong relationship between obligations and pro-
hibitions: the prohibition of A is the obligation of ¬A (the opposite of A), and
then if A is obligatory, then ¬A is forbidden [15]. In this paper we will subscribe
to this position, given that our focus here is not on how to determine what is
prescribed by a set of norms and how to derive it. Accordingly, we can restrict
our analysis to the notion of an obligation.

Compliance means to identify whether a process violates a set of obligations.
Thus, the first step is to determine whether and when an obligation is in force.
Hence, an important aspect of the study of obligations is to understand the
lifespan of an obligation and its implications on the activities carried out in a
process. As norms give the conditions of applicability of obligations, the next
question is how long does an obligation hold for. Essentially, a norm can specify
that an obligation is in force at a particular time point only, or more often, a
norm indicates when an obligation comes in force. An obligation is considered

2 Here we consider the definition of such concepts given by the OASIS LegalRuleML
working group. http://www.oasis-open.org/apps/org/workgroup/legalruleml/.

http://www.oasis-open.org/apps/org/workgroup/legalruleml/

Normative Requirements for Business Process Compliance 107

Fig. 2. Normative requirements: classes and relationship

to remain in force until it is terminated or removed. In the first case we speak
of non-persistent obligations and persistent obligations in the second.

A persistent obligation that needs to be obeyed for all time instances within
the interval in which it is in force is a maintenance obligation. If achieving the
content of the obligation at least once is enough to fulfill it, then it is consid-
ered an achievement obligation. For an achievement obligation, another aspect to
consider is whether the obligation could be fulfilled even before the obligation is
actually in force. If this is allowed, then we have a preemptive obligation, other-
wise the obligation is a non-preemptive obligation. In contrast, a non-persistent
obligation needs to be obeyed for the instance it is in force, and categorised
as a punctual obligation. For punctual obligations the obligation contents are
immediately achieved otherwise a violation is triggered.

An obligation of any type can be violated. A violation does not always imply
the consequent termination of or impossibility to continue a business process.
Certain violations can be compensated for, and processes with compensated
violations are still compliant [7,10]. For example, contracts typically contain
compensatory clauses specifying penalties and other sanctions triggered by
breaches of contract clauses [6]. However, not all violations are compensable,
and uncompensated violations mean that a process is not compliant. The effects
of a violation on the obligation that has been violated also need to be considered.
If the obligation persists after being violated, it is a perdurant obligation, if it
does not, then we have a non-perdurant obligation.

Figure 2 illustrates possibilities and relationships for the deontic effects we
discussed in this section. The classification provided has been obtained in a
systematic and exhaustive way when one considers the aspect of validity of oblig-
ations (or prohibitions), and the effects of violations on them, namely: whether a
violation can be compensated for, and whether an obligation persists after being
violated.

108 M. Hashmi et al.

4.1 Modeling Obligations

In this section we provide the formal definitions underpinning the notion of
compliance. In particular we formally define the different types of obligations
depicted in Fig. 2.

Definition 10 (Obligation in force). Given a WF-net N , let T+ be the set
of visible traces of N . We define a function Force : T+ × N
→ 2L.

The function Force associates to each task in a trace a set of literals, where these
literals represent the obligations in force for that combination of task and trace.
These are among the obligations that the process has to fulfill to comply with a
given normative framework. Next, we define how and when the process has to
fulfill the various obligations (depending on their type) to be deemed compliant.

Remark 2. As in Remark 1 we abstract from mechanisms to establish which
obligations are in force and when. This is left for specific compliance implemen-
tations.

Definition 11 (Punctual Obligation). Given a WF-net N and a visible trace
t ∈ T+(N),an obligation o is a punctual obligation in t if and only if

∃n ∈ N : o /∈ Force(t, n − 1), o /∈ Force(t, n + 1), o ∈ Force(t, n).

A punctual obligation o is violated in t if and only if o /∈ Ann(t, n).

A punctual obligation is an obligation in force in one task of a trace. The oblig-
ation is violated if what the obligation prescribes is not achieved in or done by
the task, meaning that the literal not being in the set of literals associated to
the task in the trace.

Definition 12 (Achievement Obligation). Given a WF-net N and a visible
trace t ∈ T+(N), an obligation o is an achievement obligation in t if and only
if

∃n < m ∈ N : o /∈ Force(t, n − 1), o /∈ Force(t,m + 1), ∀k : n ≤ k ≤ m, o ∈ Force(t, k)

An achievement obligation o is violated in t if and only if

– o is preemptive and ∀k : k ≤ m, o /∈ Ann(t, k);
– o is non-preemptive and ∀k : n ≤ k ≤ m, o /∈ Ann(t, k).

An achievement obligation is in force in a contiguous set of tasks in a trace.
The violation depends on whether we have a preemptive or a non-preemptive
obligation. For a preemptive obligation o we have a violation if no state before the
last task in which o is in force has o in its annotations; while for a non-preemptive
obligation the set of states is restricted to those defined by the interval in which
the obligation is in force.

Normative Requirements for Business Process Compliance 109

Example 1. Australian Telecommunications Consumers Protection Code 2012
(TCPC 2012). Article 8.2.1.
A Supplier must take the following actions to enable this outcome:

(a) Demonstrate fairness, courtesy, objectivity and efficiency: Suppliers
must demonstrate, fairness and courtesy, objectivity, and efficiency by:
(i) Acknowledging a Complaint:

A. immediately where the Complaint is made in person or by telephone;
B. within 2 Working Days of receipt where the Complaint is made by:

email;

Theobligation to acknowledge a compliantmade inpersonorbyphone (8.2.1.a.i.A)
is a punctual obligation, since it has to be done ‘immediately’ while receiving it.
8.2.1.a.i.B on the other hand is an achievement obligation since the clause specifies
a deadline to achieve it. It is also a non-preemptive obligation as it is not possible
to acknowledge a complaint before receipt. Clause (3) in Example 2 illustrates a
preemptive obligation.

Example 2. Australian National Consumer Credit Protection Act 2009. Schedule
1, Part 2, Section 20: Copy of contract for debtor.

(1) If a contract document is to be signed by the debtor and returned to the
credit provider, the credit provider must give the debtor a copy to keep.

(2) A credit provider must, not later than 14 days after a credit contract is
made, give a copy of the contract in the form in which it was made to the
debtor.

(3) Subsection (2) does not apply if the credit provider has previously given the
debtor a copy of the contract document to keep.

Definition 13 (Maintenance Obligation). Given a WF-Net N and a visible
trace t ∈ T+(N), an obligation o is a maintenance obligation in t if and only if

∃n < m ∈ N : o /∈ Force(t, n − 1), o /∈ Force(t,m + 1), ∀k : n ≤ k ≤ m, o ∈ Force(t, k)

A maintenance obligation o is violated in t if and only if

∃k : n ≤ k ≤ m, o /∈ Ann(t, k).

Similarly to an achievement obligation, a maintenance obligation is in force in
an interval. The difference is that the obligation has to be complied with for all
tasks in the interval, otherwise a violation is triggered.

Example 3. TCPC 2012. Article 8.2.1.
A supplier must take the following actions to enable this outcome:

(v) not taking Credit Management action in relation to a specified disputed
amount that is the subject of an unresolved Complaint in circumstances
where the Supplier is aware that the Complaint has not been resolved to the
satisfaction of the Consumer and is being investigated by the Supplier, the
TIO or a relevant recognised third party;

110 M. Hashmi et al.

In this example, as it is often the case, a maintenance obligation implements a
prohibition. Specifically, the prohibition to initiate a particular type of activity
until either a particular event takes place or a state is reached.

The next three definitions (Definitions 14, 15, Definition 16) capture the
notion of compensation of a violation. A compensation is a set of penalties or
sanctions imposed on the violator, and fulfilling them makes amends for the vio-
lation. The first step is to define what a compensation is. A compensation is a set
of obligations in force after a violation of an obligation. Since the compensations
are obligations themselves they can be violated, and they can be compensable as
well, thus we need a recursive definition for the notion of compensated obligation.

Definition 14 (Compensation). A compensation is a function Comp :
L
→ 2L.

Definition 15 (Compensable Obligation). Given a WF-Net N and a visible
trace t ∈ T+(N), an obligation o is compensable in T if and only if Comp(o) �= ∅
and ∀o′ ∈ Comp(o),∃n ∈ N : o′ ∈ Force(t, n).

Definition 16 (Compensated Obligation). Given a WF-Net N and a visible
trace t ∈ T+(N), an obligation o is compensated in t if and only if it is violated
and for every o′ ∈ Comp(o) either: (1) o′ is not violated in t, or (2) o′ is
compensated in t.

For a stricter notion, i.e., a compensated compensation does not amend the
violation the compensation was meant to compensate, we can simply remove
the recursive call, thus removing 2. from the above condition.

Compensations can be used for two purposes. The first is to specify alter-
native, less ideal outcomes. The second is to capture sanctions and penalties.
Examples 4 and 5 below illustrate, respectively, these two usages.

Example 4. TCPC 2012. Article 8.1.1.
A Supplier must take the following actions to enable this outcome:

(a) Implement a process: implement, operate and comply with a Complaint
handling process that: (vii) requires all complaints to be:
A. Resolved in an objective, efficient and fair manner; and
B. escalated and managed under the Supplier’s internal escalation process if

requested by the Consumer or a former Customer.

Example 5. YAWL Deed of Assignment, Clause 5.2.3

Each Contributor indemnifies and will defend the Foundations against any claim,
liability, loss, damages, cost and expenses suffered or incurred by the Founda-
tions as a result of any breach of the warranties given by the Contributor under
clause 5.1.

3 http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf,
retrieved on March 28, 2013.

http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf

Normative Requirements for Business Process Compliance 111

The final definition is that of a perdurant obligation. The intuition behind it is
that there is a deadline by when the obligation has to be fulfilled. If it is not
fulfilled by the deadline then a violation is raised, but the obligation is still in
force. Typically, the violation of a perdurant obligation triggers a penalty. If an
perdurant obligation is not fulfilled in time, then the process has to account for
the original obligation as well as the penalties associated with the violation.

Definition 17 (Perdurant Obligation). Given a WF-net N and a visible
trace t ∈ T+(N), an obligation o is a perdurant obligation in t if and only if

∃n < m ∈ N : o /∈ Force(t, n − 1), o /∈ Force(t,m + 1), ∀k : n ≤ k ≤ m, o ∈ Force(t, k)

A perdurant obligation o is violated in t if and only if

∃k : n < k < m, ∀j ≤ k, o /∈ Ann(t, j)

Consider again Example 1. Clauses TCPC 8.2.1.a.i.A and 8.2.1.a.i.B state the
deadlines to acknowledge a complaint, but 8.2.1.a.i prescribes that complaints
have to be acknowledged. Thus, if a complaint is not acknowledged within the
prescribed time then either clause A or B are violated, but the supplier still has
the obligation to acknowledge the complaint. Thus the obligation in clause (i) is
a perdurant obligation.

4.2 Business Process Compliance

The set of (visible) traces of a given business process describes the behaviour of
the process insofar as it provides a description of all possible ways in which the
process can be correctly executed. Accordingly, for the purpose of defining what
it means for a process to be compliant, we will consider a process as the set of
its (visible) traces. Intuitively a process is compliant with a given set of norms
if it does not violate the norms. As it is possible to perform a business process
in many different ways, we can have two notions of compliance, namely:

A process is (fully) compliant with a normative system if it is impossible
to violate the norms while executing the process.

A process is (partially) compliant with a normative system if it is possible
to execute the process without violating the norms.

We have a fully compliant process if no matter in which way the process is
executed, its execution does not violates the normative system. A partially com-
pliant process is one where there is an execution of the process that does not
violate the norms. Based on this intuition, we provide the definitions for trace
compliance and process compliance.

Definition 18 (Compliant Trace). Given a WF-net N and a trace t in T+.
Let O(t) be the set of obligations in force in t, i.e., O(t) =

⋃
n∈N

Force(t, n).

112 M. Hashmi et al.

1. A trace t is strongly compliant if and only if no obligation o ∈ O(t) is violated
in t.

2. A trace t is weakly compliant if and only if every violated obligation o ∈ O(t)
is compensated in t.

Definition 19 (Compliant Process). Let N be a WF-net.

1. N is fully compliant if and only if every trace t ∈ T+(N) is compliant.
2. N is partially compliant if and only if there exists a compliant trace t ∈

T+(N).

Notice that a possible refinement of Definition 19 is possible to distinguish
between strongly and weakly compliant processes. This is achieved by passing
the strongly/weakly parameter to the traces. For example a process is strongly
compliant if all its visible traces are strongly compliant.

The definitions given in this section (apart from the Definition 19) can be used
across the entire life-cycle of a process: design-time, run-time and post-execution
analysis. As we pointed out in Remarks 1 and 2 the states and obligations in
force have to be determined by specific compliance checking implementations.
For example, the annotations associated to a task at run-time or log-analysis
will be obtained from the running instance or extracted from the log and the
data sources related to the process, while at design-time such information can
be provided by business analysts or obtained from the schemas of the databases
and data sources linked to the process. Definition 19 can be used at design time
in what is called compliance-by-design [10,14], i.e., verifying before deploying a
process that the process complies with given regulations. Clearly, the definition
is not suitable for checking compliance at run-time (also called conformance)
or auditing (log analysis), since it is possible that some of the possible visible
traces are never executed (run-time) or were not executed (auditing). For these
two cases, one has to use Definition 18 instead applied to the executed traces,
and to the traces of instances of a process recorded in a log.

5 Compliance Checking of the Complaints
Handling Process

We now provide a concrete example of compliance checking based on the com-
plaints handling process shown earlier. Table 2 describes the applicable compli-
ance rules and their types. These rules are relevant to one or more tasks in the
complaints handling process. For example, Rule4 is relevant to Task T14, sug-
gesting that all received complaints must be acknowledged within 2 working days
when received. Similarly, Rule9 intends to verify the legitimacy of complaints
which relates to Task T3 in the process. Consider the following trace t.

t : 〈T3, T5, T6, T7, T8, T9, T10, T11, T18〉
The obligation expressed by R1 is in force from Task T5, and it will be associated
with any following task until the obligation has been fulfilled. Whether R2 is

Normative Requirements for Business Process Compliance 113

Table 2. The ruleID and types of norms from the complaints handling process.

relevant or not for a trace depends on the decision node after T9, and it is not
triggered in the trace given. Whereas R3 is in force from the beginning to the
end of the process, and it is in all traces.

Evaluation

To conclude this section we report on an evaluation of the framework using
Regorous. Regorous is an implementation of the compliance checking methodol-
ogy proposed by Governatori and Sadiq [10,14] where the normative provisions
relevant to a process are encoded in PCL [8,9] and the tasks of a process are
annotated with sets of literals taken from the language used to model the norms.
The Regorous module to check compliance generates the traces of the given
process and cumulates the annotations attached to tasks using an update seman-
tics to determine the state corresponding to a task in a trace (i.e., in case a
literal from the then current task is the complementary of from a previous task,
we remove the old literal and we insert the new one). PCL offers support for
all types of obligations described in the previous section, and for every step in
a trace, it retrieves the state corresponding to the task being examined. Based
on state PCL determines the obligations in force for the current task. Finally,
it checks if the obligations have been fulfilled or violated based on the seman-
tics discussed in the previous section. For the full details of PCL mechanisms,
see [9].

Regorous was tested against the Australian Telecommunication Consumers
Protection Code (TCPC) 2012. The code specifically mandates that every Aus-
tralian entity operating in the telecommunication sector has to provide a certi-
fication that their day to day operations complies with the code.

The test was limited to TCPC Section 8 concerning the management and
handling of consumer complaints. The section was manually mapped to PCL.
The section of the code contains approximately 100 commas, in addition to
approximately 120 terms given in the Definitions and Interpretation section of

114 M. Hashmi et al.

the code. The mapping resulted in 176 PCL rules, containing 223 PCL (atomic)
propositions (literals). The formalisation of TCPC Section 8 required all types
of obligations described in Sect. 4. Table 3 reports the number of distinct occur-
rences and, in parenthesis, the total number of instances (some effects can have
different conditions under which they are effective).

Table 3. Number and types of obligations
and permissions in Section 8 of TCPC

The evaluation was carried out in
cooperation with an industry part-
ner operating in the sector of the
code. The PCL formalisation of TCPC
Secti on 8 was reviewed and infor-
mally approved for the purpose of the
exercise by the regulator. The indus-
try partner did not have formalised
business processes. Thus, we worked
with domain experts from the industry
partner (who had not been previously
exposed to BPM technology, but who
were familiar with the industry code)
to draw process models to capture the
existing complaints handling and man-
agement procedures and other related
activities covered by TCPC Section 8.

As result we generated and annotated six process models. Five out of the six
models are limited in size and they can be checked for compliance in seconds. We
were able to identify non-compliance issues in the processes and to rectify them.
In the simplest and most frequent cases the modifications required were just to
ensure that some type of information was recorded in the databases associated
to the processes. Other cases needed the addition of simple tasks either after or
before other tasks (e.g., make customer aware of documents detailing the esca-
lation procedure after an unsatisfactory outcome of a non-escalated complaint).
The above two types of non-compliance were detected by unfulfilled achievement
obligations and they were the results of new requirements in the 2012 version
of the code. Another case of non-compliance was related to ensuring that a par-
ticular activity does not happen in a part of the process. Finally, there were
some cases where combination of the above issues were needed (a novel way to
handle in person or by phone complaints) where totally new sub-processes were
designed.

The largest process contains 41 tasks, 12 decision points, xor splits, (11
binary, 1 ternary). The shortest path in the model has 6 tasks, while the longest
path consists of 33 tasks (with 2 loops), and the longest path without loop is 22
tasks long. The time taken to verify compliance for this process amounts approx-
imately to 40 s on MacBook Pro 2.2 GHz Intel Core i7 processor with 8 GB of
RAM (limited to 4 GB in Eclipse).

Normative Requirements for Business Process Compliance 115

6 Conclusions

In the SOA and cloud computing domains, a number of approaches have offered
several classifications of business rules for compliance checking. Reference [1]
classifies compliance rules from various regulatory frameworks for cloud-based
compliant workflows. Spanning over nine categories their classification comprises
three main rules classes relevant to either the control-flow or the data flow of
workflow models. These rules classes are then formalised into Petri nets for auto-
mated detection of non-compliant behaviour. Reference [3] provides a taxonomy
of high level pattern-based compliance constraints for business processes. The
compliance patterns are divided into three distinct classes of patterns; namely
atomic, composite, and timed. These patterns are then formalised using temporal
logic for generating the formal expressions for checking the compliance of busi-
ness processes before actual deployment. Primarily the classification of normative
requirements provided in these frameworks is useful for structural compliance
checking only. In addition, these studies do not address how to model and reason
about the normative component of compliance.

Contrary to that, we have provided its formal semantics in terms of what
constitutes a violation, and this analysis was done based on the idea of (possible)
executions of a process. In addition, for each type of normative requirement
we have provided concrete examples from clauses of statutory/legislative acts
corresponding to the requirement. With formalised compliance rules, we can
specify the different types of rules describing various deontic modalities e.g.
obligations, permissions etc. As result, business processes can be annotated with
rules for compliance checking purposes. This means that any system (either SOA
based or other) for checking whether real life business processes are compliant
with real life regulations have to handle such all normative requirements.

One possible use of the framework is to compare different systems, logics, and
frameworks for business process compliance. We plan to carry out such inves-
tigations. A second use is to study the (formal) properties of the problem of
checking whether a business process is compliant. A first step in this direction is
[2] proving that whether a structured business process (without loops) complies
with a set of achievement obligations is already an NP-complete problem. Com-
pliance is conceived as a type of soundness property of process, and thus the
result must be compared to checking the soundness of process, and for the same
class of processes (e.g., structured without loops) this can be done in linear time
(see, e.g., [11]). This opens another area where the framework can be applied,
namely to identify computationally tractable subclasses of the business process
compliance problem.

References

1. Accorsi, R., Lowis, L., Sato, Y.: Automated certification for compliant cloud-based
business processes. Bus. Inf. Syst. Eng. 3(3), 145–154 (2011)

2. Tosatto, S.C., Governatori, G., Kelsen, P., van der Torre, L.: Business process
compliance is hard. Technical report, NICTA (2012)

116 M. Hashmi et al.

3. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Root-cause
analysis of design-time compliance violations on the basis of property patterns. In:
Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol.
6470, pp. 17–31. Springer, Heidelberg (2010)

4. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: On the for-
mal specification of regulatory compliance: a comparative analysis. In: Maximilien,
E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6568, pp. 27–38. Springer, Heidelberg (2011)

5. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: requirements for rule
interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

6. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.
Syst. 14(2–3), 181–216 (2005)

7. Governatori, G., Milosevic, Z.: Dealing with contract violations: formalism and
domain specific language. In: EDOC 2005, pp. 46–57 (2005)

8. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: Proceeding of APCCM’10, vol. 110, pp. 3–12 (2010)

9. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In:
Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp.
194–209. Springer, Heidelberg (2010)

10. Governatori, G., Sadiq, S.: The journey to business process compliance. In:
Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on Business Process
Management, pp. 426–454. IGI Global, Hershey (2009)

11. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow
modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 431–445. Springer, Heidelberg (2000)

12. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

13. Orriëns, B., Yang, J., Papazoglou, M.P.: A framework for business rule driven
service composition. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003. LNCS, vol.
2819, pp. 14–27. Springer, Heidelberg (2003)

14. Sadiq, W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

15. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. Springer,
Dordrecht (2005)

16. van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circuits Syst. Comput. 8(1), 21–66 (1998)

17. van der Aalst, W.M.P.: Workflow verification: finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A.
(eds.) Business Process Management. LNCS, vol. 1806, p. 161. Springer, Heidelberg
(2000)

18. Weigand, H., van den Heuvel, W.-J., Hiel, M.: Business policy compliance in
service-oriented systems. Inf. Syst. 36(4), 791–807 (2011)

	Normative Requirements for Business Process Compliance
	1 Introduction
	2 Motivating Scenario: A Complaints Handling Process
	3 Formal Foundations of Business Process Compliance
	4 Normative Requirements
	4.1 Modeling Obligations
	4.2 Business Process Compliance

	5 Compliance Checking of the Complaints Handling Process
	6 Conclusions
	References

