
An RDR-Based Approach for Event
Data Analysis

Weisi Chen(&) and Fethi Rabhi

School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia

chenw@cse.unsw.edu.au, f.rabhi@unsw.edu.au

Abstract. Event data analysis is becoming increasingly of interest to academic
researchers looking for patterns in the data, contributing to the emergence and
popularity of a new field called ‘‘data intensive science’’. Unlike domain
experts working in large companies which have access to IT staff and expen-
sive software infrastructure, researchers find it harder to efficiently manage
event processing rules by themselves especially when these rules increase in
size and complexity over time. In this paper, we propose an event data analysis
platform intended for non-IT experts that facilitates the evolution of event
processing rules according to changing requirements. This platform integrates a
rule learning framework called Ripple-Down Rules (RDR) operating in con-
junction with an event pattern detection process invoked as a service. This
solution is demonstrated on real-life scenario involving financial data analysis.

Keywords: Event-based data � Event processing � Event data model � Data
intensive science � Ripple down rules

1 Introduction

An event is ‘‘anything that happens, or is contemplated as happening’’ [1] at a certain
time. Examples of events in the real-world are very diverse and include financial
trades and quotes, banking transactions (ATM, online, credit card use, etc.), news
broadcast, aircraft movements, sensor outputs, updates in social media sites (e.g.
Facebook), network communication message deliveries or computer systems man-
agement activities. We refer to large collections of event occurrences recorded in the
form of data as ‘‘event data’’ or ‘‘event-based data’’. For many years, event data
analysis has been conducted by the business sector for many purposes such as
studying market trends, improving the efficiency of operational processes and gath-
ering business intelligence.

To conduct event analysis tasks, domain experts have to rely on IT experts either
to implement a bespoke program/service or to customize an event processing system
(EPS) according to their needs. Because of constant changes in business needs and the
environment, domain experts need to communicate their new requirements to IT
experts all the time to update and maintain the event data analysis business logic. In
terms of rule management, Luckham [2] claims that managing large sets of event
processing rules is a challenge which has not yet been effectively tackled. In present

J.G. Davis et al. (Eds.): ASSRI 2013, LNBIP 177, pp. 1–14, 2014.
DOI: 10.1007/978-3-319-07950-9_1, � Springer International Publishing Switzerland 2014



event processing systems, rule sets are normally very simple. When it comes to large
and complex rule sets, one typical way an event data analysis process can be sup-
ported is illustrated in Fig. 1. On the one hand, the knowledge engineer manages the
rule set and on the other hand, the IT expert implements the rules according the
underlying software infrastructure. There could be a multitude of domain experts
defining new rules so the knowledge engineer need to constantly cooperate with IT
experts to manage event processing rules particularly when the size of the rule set
becomes large.

More recently, event data analysis is becoming increasingly of interest to aca-
demic researchers looking for patterns in the data, contributing to the emergence and
popularity of a new field called ‘‘data intensive science’’ [3]. Unlike domain experts
working in large companies and having access to IT staff and expensive software
infrastructures, researchers tend to conduct the analysis mostly by themselves using a
range of data processing and statistical tools. Therefore, there is a need to enable
analysis of event data by domain experts who have limited IT expertise and fewer
resources available to them. Whilst the prime motivation of investigating solutions
would be of interest to academic researchers, this research avenue would also be
relevant to Small and Medium Enterprises (SMEs) looking for simple and cost-
effective event data analysis solutions.

In this paper, we propose an approach to enable domain experts to manage event
data analysis with little or no IT expert intervention by:

• Integrating a rule learning framework supporting incremental acquisition that
enables domain users to define and add rules by themselves;

Domain ExpertIT Expert

Event Data 
Analysis

Event-
pattern

rules

Knowledge
Engineer

Maintain tools

Implement event patterns

ana
M

tes
elur

eg

Co
nd

uc
t

Define/Modify RulesCollaborate

Fig. 1. Evolution of an event data analysis process.

2 W. Chen and F. Rabhi



• Providing event pattern detection as a service (EPDaaS) in a way that allows
domain users to conduct event processing without the concern about which event
processing language/engine to use.

The rest of the paper is organized as follows. In Sect. 2, we summarize the related
research efforts on event data analysis. Section 3 explains our proposed approach. In
Sect. 4, we apply our approach to a real-life case study – data cleansing on financial
data – to validate our proposed architecture. Section 5 concludes the paper and pre-
sents the direction of our future work.

2 Background

2.1 Basic Assumptions

There are several unique characteristics of event data; the primary ones are as follows:

• Time-based: Event data represent or record events, flowing in time-streams.
Compared with normal data, event data has a temporal axis in the data schema. To
be precise, every event data record is affixed with a timestamp as well as other
attributes when it is created. Due to this feature, an event database can also be called
time-series database.

• High flow rate and huge volume: Normally, new event data is continuously coming
in to guarantee the timeliness of the data. Also, event data records are generated and
stored in huge volumes, containing data for years.

• Immutable: On account of the high flow rate of event data, each record comes in
and will never be modified.

• Referable: Any event record may be relevant to previous records and can be
referred to other relevant records on some conditions such as within a certain time
window, several days before or after the current event, etc.

• Influential: Any new event may generate a bunch of new events. For instance,
financial market event data represent stimuli, market state transitions and outputs,
each of which is issued followed by a chain of responses such as state changes and
new outputs.

We view event data analysis as primarily the process of detecting patterns in the
data and taking a number of actions accordingly. An example is described next
followed by a review of existing work in this area.

2.2 Motivating Example

This example involves the analysis of Sirca’s daily data [4] by academic researchers.
Often, financial time-series analysis requires the computation of a company returns
over a period of time. However, the value of these returns is affected by corporate
actions such as the issuing of dividends. A dividend denotes a payment made by a firm
out of its current or accumulated retained earnings to its owners, which gives rise to a
fall of the stock price by the dividend amount on the executive date. Although the

An RDR-Based Approach for Event Data Analysis 3



information on corporate actions is available in the data, processing it is a non-trivial
task due to the need to deal with duplicate dividend announcement records. Table 1
illustrates different cases for handling this problem. In most cases (e.g. Table 1(a)),
duplicate events are just recording the same dividend announcement for multiple
times. The initial logic of duplicate dividend detection is:

If there are two Dividend events issued at the same event time (Date)
Then it is a duplicate so delete the first one

After a while, domain users may find this logic gives wrong decisions and actions
in a new case (e.g. Table 1(b)), so they have to change the rule into:

If there are two Dividend events with the same event time (Date) and Div ID
Then it is a duplicate so delete the first one

Soon later, due to another new case (e.g. Table 1(c)), this rule has to be again
modified into:

If there are two Dividend events with the same event time, the same Div ID, and the payment
status of these two events are both marked ‘approved’ (‘APPD’), and the values of ‘Div Delete
Marker’ are both 0

Then it is a duplicate so delete the first one

Table 1. Different cases in duplicate dividend detection

(a) Case 1 simple duplicate dividend records
#RIC Date Type Div 

Ex Date
Div 
Amt

Div ID Div 
Delete 
Marker

Payment 
Status

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD
ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD
(b) Case 2 although these two dividends are issued at the same time (Date), the Div IDs are 

different which indicates that these are two different dividends rather than a duplicate.
#RIC Date Type Div 

Ex Date
Div 
Amt

Div ID Div 
Delete 
Marker

Payment 
Status

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD
ABC 12/08/2012 Dividend 11/10/2012 0.07 7926058 0 APPD
(c) Case 3 the first dividend is proposed (PROP) and has been deleted (Delete Marker = 1), 
which is considered to be an out-dated record; the second dividend is an update so this case is 

not a case of a duplicate dividend to be detected.
#RIC Date Type Div 

Ex Date
Div 
Amt

Div ID Div 
Delete 
Marker

Payment 
Status

ABC 12/08/2012 Dividend 11/09/2012 0.08 7885540 1 PROP
ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

4 W. Chen and F. Rabhi



In real-world event processing, rules are never ‘‘perfect’’ as there are always
exceptions against existing rules. As an extension of the example above, the defined
data cleansing rules built for Australian stock data may be applied to other country’s
stock data, e.g. the German stock data, with similar but not exactly the same logic,
which requires additional modifications to the rules which can be even more com-
plicated than the example above. This also explains why IT experts and knowledge
engineers are always needed to evolve the program or system; in many cases, they
have to develop a number of various applications for different or even slightly dif-
ferent event processing tasks.

2.3 Related Work

According to the book Event Processing in Action [5], event processing is ‘‘com-
puting that performs operations on events’’. The main operations on events include:

• Filter: reducing the overall set of events to be processed by an event-processing
system to those events that are actually relevant for the given processing task, e.g.,
removing erroneous or incomplete data.

• Transformation: changing event instances from one form to another, including
translation, splitting, aggregation, composition, etc.

• Pattern Detection: finding a particular pattern by examining a collection of events.

An event processing system is typically a dedicated platform that provides
abstractions (event processing logic) for operations on events that are separated from
the application logic (event producers and event consumers). This can reduce the cost
of development and maintenance. Event processing logic is expressed by event pro-
cessing languages (EPLs). A stream of event data is fed into the EPS and the event
processing language code is executed, then a list of actions is generated (Fig. 2).
Table 2 lists different types of event processing languages. These languages all have
advantages and disadvantages that reflect the usual tradeoffs between simplicity and
expressiveness. Therefore, whatever EPL/EPS the domain user uses, there might
always be limitations, and switching is by any means troublesome. This is to say that
the performance of the event data analysis largely depends on the selected EPL/EPS.

In the book The Power of Events [1], Luckham have defined event processing
rules as ‘‘the foundation for applications of complex event processing (CEP)’’.
Although some work has realized that user customization of the system according to

List of ActionsEvent Stream

Event processing 
language code

Fig. 2. An event data analysis process.

An RDR-Based Approach for Event Data Analysis 5



their needs is an important criterion for EPS [7], most efforts are focusing on the
operational issues, e.g. event processing language expressiveness and performance
[8], rather than event processing rule management. Most work on EPS does not
support user-driven event data analysis no matter how good the language expressivity
is. Among the very limited discussion on event processing rule management, there are
two important insights:

• Reuse of existing event patterns is of great importance for efficiency [9].
• The idea of rule templates are suitable for EPS for completing rules as well as

decoupled ‘‘building blocks’’ of rule logic [10].

We agree with these insights. However, the use of rule templates is not sufficient
to eliminate rule re-building efforts when modifying the rule. In most cases, the same
IT expert and/or knowledge engineer who built the existing rule set (rule base) are
needed to re-build the entire rule set. Besides, most literature on event processing rule
management tends to focus on building each single rule and disregard the manage-
ment of the rule base as a whole. It has been proved in the knowledge acquisition
community that when the size of the rule base becomes huge, it would be very difficult
to maintain the rule base, as any modification of the rule base may cause the system
collapse [11]. Thus in most existing EPSs, as rules may be closely associated with
each other, it is difficult to keep track of changes effectively.

3 Proposed System

3.1 Architecture

In this paper, we are proposing a novel approach to facilitate incremental event
processing rule definition, which is desirable to eliminate event processing rule-
rebuilding, to enhance the reuse of existing event processing rules, to keep track of
event processing changes, to simplify rule management process, and to avoid rule base
collapse. Our architecture enables domain experts to manage rules, define simple
event patterns or build event patterns upon existing ones. In addition, the event data
analysis system can be incrementally enhanced by domain users. In this case, IT

Table 2. Types and examples of event processing languages

Language type Language/product [5, 6]

Stream-oriented (SQL extension) Aleri, Esper, CQL

Rule-oriented Production rules DROOLS fusion, TIBCO BusinessEvents
ECA rules Amit, IBM WebSphere Business Events
Logic programming Etails, Prova

Imperative MonitorScript, Netcool Impact policy
language

Event processing framework or library for a general
purpose programming language

Progress Apama

6 W. Chen and F. Rabhi



experts will only play one role in the data analysis process: to define and deploy
complex event patterns.

The proposed architecture illustrated in Fig. 3 has two components – a rule-based
system and an event pattern detection as a service (EPDaaS). In order to achieve
‘‘incremental management’’ and eliminate clashes, we utilize a framework called
Ripple Down Rules (RDR) in the rule-based system to route the event processing
logic, which can organize and maintain the rule base more effectively [11]. Unlike
other rule management systems, RDR is an error-driven, incremental rule acquisition
framework, which enables domain experts to evolve the system solely by themselves
and eliminates the risk of corrupting the rule base because all existing rules are never
changed, which reserve the existing decision logic of the event processing. When
errors occur, RDR allows users to capture the characteristic of the new case as an
‘‘exception’’, and add a new rule to quickly recover the degraded performance. The
case that prompted the addition of a rule is called a cornerstone case, which is stored
along with the rule and is used to be compared with new cases by the domain experts.
It has been proved that the whole processing of adding a rule including checking
cornerstone cases takes only a couple of minutes [12].

In this architecture, the EPDaaS has a service interface that has the ability to
invoke any underlying EPS (using any EPL) to detect event patterns. When invoked
with an event pattern type and a reference to an event stream, EPDaaS will select one
available/suitable EPS, run the corresponding EPL code and finally return event
pattern occurrences in this event stream, abstractions or aggregations of these

request to 
detect event patterns

Domain Expert

Service
Interface

Event Pattern 
Rule Manager

Event Pattern 
Rule Processor

ManageApply

Event Pattern 
Definition

and EPL Code 
Database

Rule Base

event pattern occurrences,
abstractions or aggregations

Fig. 3. Proposed EP-RDR architecture

An RDR-Based Approach for Event Data Analysis 7



occurrences. The role of the RDR component is to allow incremental definition of
rules based on the presence of event patterns – each event ‘‘situation’’ is represented as
an event pattern in a rule. The architecture provides the link between the RDR and the
EPDaaS components, i.e. the RDR component sends a request to detect an event
pattern, and the EPDaaS responds with event pattern occurrences back to the RDR.
Finally, RDR will generate a list of actions on the original event stream, which will be
inspected by the domain expert. One of the advantages of this architecture is that for
different event data analysis, the only things that have to be changed are the rule set
and the choice of the EPS invoked by the EPDaaS component; the RDR component,
however, does not have to be changed. IT experts are not involved in rule management
but managing the EPL code in the database. We call this architecture Event-
Processing RDR (EP-RDR).

3.2 Overview of Event Processing Rules

Generally, an event processing RDR rule can be:
If 

an event pattern occurs
Then

case action; 
inference action: go to rule a

Else
inference action: go to rule b

If an error is found in a new case, domain experts can use the Event Pattern Rule
Manager to associate a new event-based rule to the rule that causes the error. Table 3
illustrates the evolution of duplicate dividend rule in EP-RDR. Table 3(a) is a sample
of the initial rule set, in which Rule 4 handles a duplicate dividend case in Table 1(a).
The domain user executes this rule set and finds out an error occurs on Rule 4 due to

Table 3. (a) A sample of the original rule base for event data cleansing. (b) The evolved
sample of rule base for event data cleansing.

(a)

Rule No. Event pattern ID Action Inf. action
(true)

Inf. action
(false)

... ... ... ... ...
4 4 Delete duplicate Div to rule 5 to rule 5
... ... ... ... ...
7 7 Report it as an error exit exit

(b)

Rule No. Event pattern ID Action Inf. action
(true)

Inf. action
(false)

... ... ... ... ...
4 4 Delete duplicate Div to rule 8 to rule 5
... ... ... ... ...
7 7 Report it as an error exit exit
8 8 Retrieve the last action to rule 5 to rule 5

8 W. Chen and F. Rabhi



the case in Table 1(b); then the domain user can add a new rule (Rule 8) to take the
attribute Div ID into account. The new rule is attached to Rule 4, whose Inf. action
(true) is modified (Table 3(b)). Also, the case in Table 1(b) – the cornerstone case – is
stored together with Rule 8. Table 4 shows a summary of the event pattern types used
in this example.

Figure 4 illustrates how an event processing rule is added. Before defining a rule,
an event pattern must be newly defined or selected from the pre-existing event patterns
via an event pattern definition GUI. Note that every time a new pattern is defined, it is
saved so that all defined event patterns can be re-used when building new rules. After
defining or selecting the event pattern, the domain expert can use a rule definition GUI
to define the rule and associate the pattern with the condition and action of the rule.

3.3 A Dynamic View of EP-RDR

Figure 5 demonstrates the business process associated with event-pattern RDR rule
execution. For each single rule being processed on an event, the RDR engine sends a
request to the EPDaaS with three inputs:

• (1) the key of the event pattern to be detected (the key is used as an index in the
event pattern definition and EPL code database);

• (2) a reference to the event stream to be searched from, along with a reference event
to be used as the original point to detect the particular event pattern occurrence(s).

For each occurrence sent back by EPDaaS, RDR will then assert the action
according to the rule and go to the next rule according to the inference defined in the
rule. After processing all rules on all events, a log with a list of actions and a track of

Table 4. Event pattern types used in rule base example

Event pattern ID Event pattern definition

4 Another dividend event is before the current dividend with the same date
7 Missing an End Of Day event on the effective date of a capital change event
8 Two dividend events have different Div ID

Event Pattern 
Definition GUI

1. Define simple patterns 
or select an existing pattern

Event
Pattern

Definition

Rule Definition 
GUI2. Define a rule

4. Add the rule
Rule Base

3. Associate a pattern with the rule

Domain Expert

Event Pattern Rule Manager

Fig. 4. Event processing rule management.

An RDR-Based Approach for Event Data Analysis 9



all ‘‘decisions’’ made during execution will be generated for the domain expert’s
inspection. Figure 6 shows what the domain expert has to do after the rule execution
process: inspect the result; if an error is found due to a case, the domain expert can add
a new rule, where the cornerstone case is stored.

To enable communication between the RDR engine and the EPDaaS, we have
designed a new event data model (see Fig. 7), which allows the architecture to be
independent from any particular event processing language.

There are two sub-types of events, i.e. simple events and complex events. A
complex event is generated by an event pattern occurrence that matches a particular
event pattern. Each event pattern occurrence involves a number of events, which can
be simple events as well as complex events. All events have a number of attributes

RDR Engine EPDaaS

Apply the rules set

Request: (1) Event pattern key
(2) Event stream

Respond: Event pattern occurrences

If next rule is not “exit”

Domain Expert

Apply rules 
on Event e

Associate the first rule
 as “current rule”

Apply the current rule
Determine the pattern
associated in the rule

load EP definition;
run the selected code

EP
Definition
and EPL 

Code
Database

Determine action
Determine next rule Rule Base

Associate the rule
 as “current rule”

If next rule is “exit”More events?
Yes

Event
Pattern Rule 

Processor

Return actions

Apply rules set
on event stream

Select next event e

No:
Return all actions

EP
Definition
and EPL 

Code
Database

Fig. 5. Apply rules on events.

10 W. Chen and F. Rabhi



including ‘‘event time’’ that has a timestamp and ‘‘event type’’ that determines the
headers of attributes. For more details about this data model, see [13].

4 Application and Validation

4.1 Implementation

We have implemented a prototype of the proposed architecture in Java with a simple
GUI which allows users to define RDR rules as well as simple event pattern types
graphically (using JGraph). In this prototype, the underlying event pattern rule pro-
cessor is a Java program that implements the rule processing logic. Among many
structures of RDR, rather than using a tree structure in most RDR applications
[14, 15], we apply the linked-production structure, where all rules are at the same level
and can be reused. Therefore, event processing logic is separated from the inference
logic, and modifications can be made merely on inference logic (which rule to be
processed next) rather than on the content of rules (event patterns or actions) when
adding rules. This method can reduce rule redundancy and protect existing rules for
the sake of rule maintenance. The example previously shown in Table 3 essentially
uses the linked-production RDR structure.

List of 
Actions with 

track of 
decisionsRun Event Pattern 

Rule Processor
Inspect Results 
(list of actions) Add a New Rule

If an error
is found

Fig. 6. Rule evolution.

Simple
Event

Complex
Event

Consists
of

n

1

Event
Pattern
Type

Event
Pattern

Occurrence
Matches

n

Event

1

Event
TimeTimestamp

Attribute Has
1n

NameValue

Headers Event
Type

Other
Attribute

Generates

1

1

Has 11

Determines 1n

Fig. 7. Event data model.

An RDR-Based Approach for Event Data Analysis 11



The EPDaaS used in this prototype is also a dedicated Java program that imple-
ments some simple pattern detection functions. All event pattern definitions/code and
rules are stored in PostgreSQL relational database separately.

4.2 Case Study – Event Data Cleansing

Due to its unique characteristics listed in Sect. 2.1, event data cleansing is an
important part of event data analysis. Working with a domain expert in the financial
area, the case study involves conducting data cleansing in the context of Sirca daily
stock data. As preliminary work, we developed a bespoke program which imple-
mented the data cleansing process. However, every time the domain expert has asked
for the business logic to be changed, it took several days to modify the program, as
changes on one particular rule normally affect some other rules. In total, 8 modifi-
cations took more than a year to complete.

We then repeated the process using the prototype. Firstly, we defined 7 initial
event patterns using the Event Pattern Definition GUI, each representing one type of
event data quality issue respectively: missing value in an end-of-day (EOD) event,
missing value in a dividend (Div) event, missing value in a capital change (CC) event,
duplicate Div events, duplicate CC events, missing an EOD event on dividend
effective date (DED), missing an EOD event on capital change effective date (CCED).
Then the domain expert defined totally 7 rules (Table 5) using the Rule Definition
GUI, each being associated with one of the defined event patterns.

The domain expert worked iteratively by executing the current rule set, inspecting
the resulting list of generated actions and decisions, and adding new rules. Table 6
shows the rule base after the 8 iterations, which only took several hours. The per-
formance is as good as the bespoke program. Note that at each stage of the evolution,
each existing rule is true in terms of all previously encountered cases. Compared to the
previous approach, the domain expert was able to update the rule base simply and
neatly without assistance by the IT expert with significantly less amount of time.

Table 5. Initial data cleansing rule set

Rule
no.

Event pattern Action Inf. action
(true)

Inf. action
(false)

1 Missing value in an EOD
event

Fill in with previous
value

To rule 2 To rule 2

2 Missing value in a Div event Report missing value To rule 3 To rule 3
3 Missing value in a CC event Report missing value To rule 4 To rule 4
4 Duplicate Div events Delete the former one To rule 5 To rule 5
5 Duplicate CC events Delete the former one To rule 6 To rule 6
6 Missing an EOD event on

DED
Report it as an error To rule 7 To rule 7

7 Missing an EOD event on
CCED

Report it as an error Exit Exit

12 W. Chen and F. Rabhi



5 Conclusion and Future Work

In this paper, we have proposed an architecture called EP-RDR for building and
maintaining user-driven event data analysis, in which a Ripple-Down Rule (RDR)
framework is integrated with an event pattern detection service. Our architecture is
designed to optimize the process of rule management from the perspective of managing
the whole rule base and to leverage the power of existing Event Processing Systems.

We have implemented a prototype of the architecture, and validated the archi-
tecture by applying it to event data cleansing in the context of Sirca daily stock data.
The implementation has proved successful in evolving 15 rules, which is not a very
huge rule base size. Besides, the implementation has been validated with financial
data, even though potentially most event data analysis in other domains can be defined
and maintained easily with the proposed architecture. In our future research, we will
focus on managing larger rule bases and apply the approach in various domains.

Acknowledgement. We would like to thank the Smart Services Cooperative Research Centre
in Australia for sponsoring our research project and Sirca for providing financial data used in the
case study. We would also thank Prof. Paul Compton for his valuable advice on the RDR
technique.

References

1. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison Wesley Professional, Reading (2002)

Table 6. Evolved data cleansing rule set

Rule
no.

Event pattern Action Inf. action
(true)

Inf. action
(false)

1 Missing value in an EOD event Fill in with previous
value

To rule 2 To rule 2

2 Missing value in a Div event Report missing value To rule 3 To rule 3
3 Missing value in a CC event Report missing value To rule 4 To rule 4
4 Duplicate Div events Delete the former one To rule 8 To rule 5
5 Duplicate CC events Delete the former one To rule 11 To rule 6
6 Missing an EOD event on DED Report it as an error To rule 7 To rule 14
7 Missing an EOD event on CCED Report it as an error Exit To rule 15
8 Different Div ID Retrieve the last action To rule 5 To rule 9
9 Status is not ‘‘APPD’’ Retrieve the last action To rule 5 To rule 10

10 Delete Marker is not 0 Retrieve the last action To rule 5 To rule 5
11 Different CC ID Retrieve the last action To rule 6 To rule 12
12 Status is not ‘‘APPD’’ Retrieve the last action To rule 6 To rule 13
13 Delete Marker is not 0 Retrieve the last action To rule 6 To rule 6
14 There is a corresponding EOD event

but no trading
Report it as an error To rule 7 To rule 7

15 There is a corresponding EOD event
but no trading

Report it as an error Exit Exit

An RDR-Based Approach for Event Data Analysis 13



2. Luckham, D.: What’s the Difference Between ESP and CEP? (2006). http://www.
complexevents.com/?p=103

3. Rabhi, F., Yao, L., Guabtni, A.: ADAGE: a framework for supporting user-driven ad hoc
data analysis processes. Computing 94, 489–519 (2012)

4. Sirca. http://www.sirca.org.au/
5. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co., Stamford

(2011)
6. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex

event processing. ACM Comput. Surv. 44, 1–62 (2012)
7. Chandy, K., Schulte, W.: Event Processing: Designing IT Systems for Agile Companies.

McGraw-Hill, New York (2010)
8. Hinze, A., Sachs, K., Buchmann, A.: Event-based applications and enabling technologies.

In: Proceedings of the Third ACM International Conference on Distributed Event-Based
Systems, Nashville, Tennessee (2009)

9. Sen, S., Stojanovic, N.: GRUVe: a methodology for complex event pattern life cycle
management. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 209–223. Springer,
Heidelberg (2010)

10. Obweger, H., Schiefer, J., Suntinger, M., Kepplinger, P., Rozsnyai, S.: User-Oriented Rule
Management for Event-Based Applications. In: Proceedings of the Fifth ACM International
Conference on Distributed Event-Based System, New York, USA (2011)

11. Richards, D.: Two decades of ripple down rules research. Knowl. Eng. Rev. 24(2), 159–184
(2009)

12. Compton, P., Peters, L., Edwards, G., Lavers, T.G.: Experience with ripple-down rules.
Knowl. Based Syst. 19, 356–362 (2006)

13. Rabhi, F.A., Chen, W., Perry, R., Yao, L., Natarajan A.: A new data model for representing
events and event patterns. Internal Report, Service Oriented Computing Research Group,
School of Computer Science and Engineering, University of New South Wales (2013)

14. Kang, B.H., Compton, P., Preston, P.: Multiple classification ripple down rules: evaluation
and possibilities. In: The Ninth Banff Knowledge Acquisition for Knowledge Based
Systems Workshop (1995)

15. Prasad, K.H., Faruquie, T.A., Joshi, S., Chaturvedi, S., Subramaniam, L.V., Mohania M.:
Data cleansing techniques for large enterprise datasets. In: Annual SRII Global Conference
(SRII), pp. 135–144 (2011)

14 W. Chen and F. Rabhi

http://www.complexevents.com/?p=103
http://www.complexevents.com/?p=103
http://www.sirca.org.au/

	An RDR-Based Approach for Event Data Analysis
	Abstract
	1 Introduction
	2 Background
	2.1 Basic Assumptions
	2.2 Motivating Example
	2.3 Related Work

	3 Proposed System
	3.1 Architecture
	3.2 Overview of Event Processing Rules
	3.3 A Dynamic View of EP-RDR

	4 Application and Validation
	4.1 Implementation
	4.2 Case Study -- Event Data Cleansing

	5 Conclusion and Future Work
	Acknowledgement
	References


