
The Cluster-Based Time-Aware Web System

Krzysztof Zatwarnicki and Anna Zatwarnicka

Department of Electrical, Control and Computer Engineering,
Opole University of Technology, Opole, Poland
{k.zatwarnicki,anna.zatwarnicka}@gmail.com

Abstract. The problem of providing fixed Quality of Web Services
(QoWS) is now crucial for further development and application in new ar-
eas of internet services. In this paper, we present the MLF (Most Loaded
First) adaptive and intelligent cluster-based Web system which provides
quality of service on a fixed level. The proposed system keeps the page
response time within established boundaries in such a way that with
a heavy workload, the page response times, for both small and complex
pages, would not exceed the imposed time limit. We show, in experiments
conducted with the use of a cluster of real Web servers, that the system
is efficient and more effective than other examined systems.

Keywords: quality of web services, guaranteeing web page response
time, HTTP request scheduling, request distribution.

1 Introduction

Over the past few years, the Internet has become the most innovative source for
information and data. It has evolved from a medium for only privileged users
into a medium we could not imagine living without. The rapid development of
systems using WWW technology has given rise to the need for research on the ef-
fectiveness of the whole system in delivering the necessary content to the user.

Through the many years of the Web development different aspects of QoWS
have been noted as the most important. In the early nineties, the most important
thing was to properly service HTTP requests, sent by the Web client and deliver
the Web page in a response. At the beginning of the 21st century, the Internet
began to become more popular and widely used. During that period many popu-
lar Web services had problems with simultaneous service of numerous of clients.
One of the most prominent ways to evaluate Web systems then was to measure
their throughput (number of requests serviced in a time unit). Nowadays, in or-
der to provide appropriate throughput of the system, Web clusters are involved,
and the problem of gaining adequate capacity is not a crucial. The challenge
now is to service HTTP requests and deliver Web pages to the client within
an acceptable amount of time [1].

The problem of servicing HTTP requests, taking the response time in to ac-
count was already discussed in our previous work. We have proposed systems
minimizing response times in a locally distributed Web cluster system [2], a glob-
ally distributed Web cluster system with a broker [3] and a globally distributed

A. Kwiecień, P. Gaj, and P. Stera (Eds.): CN 2014, CCIS 431, pp. 37–46, 2014.
c© Springer International Publishing Switzerland 2014



38 K. Zatwarnicki and A. Zatwarnicka

Web cluster system without a broker [4]. In our later work, we dealt with the
problem of providing fixed quality of service in Web systems consisting of one
Web server [5], a locally distributed cluster of servers [6], and a globally dis-
tributed Web cluster with broker [7].

In this paper, we come back to the problem of providing fixed quality of
service in a locally distributed cluster of servers and present the MLF system.
The system was initially described in [6] together with the results of simula-
tion experiments. This article presents the results of experiments conducted for
the MLF system with the use of real Web servers constituting the Web cluster.
We analyze these results to determine if the system is equally or more efficient
than other systems already known from literature or used in the Internet.

There are many papers on how to provide and guarantee Web service quality.
Most of them concern maintaining the quality of the service for individual HTTP
requests [8–13]. Very few papers have been dedicated to Web systems guaran-
teeing to service Web pages within a limited amount of time. In those papers
[14, 15], the proposed solution maintains the quality of the Web service only
for a limited group of users. Guaranteeing quality of service or providing fixed
quality almost always involves rejecting requests of users not belonging to a priv-
ileged group. The MLF proposed in this article system not only provides fixed
quality of service, keeping the page response time within established boundaries,
but also treats all users equally. It should be also noticed that MLF system can
keep the quality of service only for the acceptable amount of incoming traffic
above which the quality becomes lower than expected.

The paper is divided into four sections. Section 2 presents the MLF system and
the methods to schedule and distribute HTTP requests. Section 3 describes the
conducted experiments and the results. Finally, Section 4, presents concluding
remarks.

2 MLF System

The MLF system consists of: clients sending HTTP requests, MLF Web switch
queuing and distributing HTTP requests, Web servers servicing the requests and
database servers delivering data to the Web servers (Fig. 1a). The Web switch,
the database and the Web server together form the Web cluster. The man-
ner of operation of the Web cluster determines the MLF method. According to
the method, clients send HTTP requests to the Web cluster, where the Web
switch receives all of the requests, queues them and distributes them among
Web servers. The requests are serviced by the Web servers with the assistance
of database servers. Responses are delivered back to the Web switch and imme-
diately sent to the clients.

The Web switch controls the operations of the cluster. It especially takes care
to deliver the entire Web page to the client within the fixed time tmax. To achieve
this, the Web switch calculates the term in which each of the incoming requests
have to be serviced on the Web server. The requests are queued in the switch ac-
cording to these calculated terms. When each request leaves the queue, the Web



The Cluster-Based Time-Aware Web System 39

Fig. 1. MLF system: a) Overall view, b) Web switch, c) Service module

switch determines the Web server able to service the request within required
time. In the end the request is sent to the chosen Web server.

The Web switch is logically divided into two separate sections (Fig. 1b). The
first one is a scheduling section, which is responsible for scheduling requests upon
their entrance to the Web cluster. The second section is a switching section,
which distributes requests among Web servers.

After receiving the incoming HTTP request ui, where i is the request index,
the Web switch passes it to the Request Analysis Module (RAM). The RAM
fetches from the request the following information: address xi of requested object,
identifier j of the client sending the request, and identifier p of the page to which
the requested object belongs. The p and j identifiers are included in a cookie
section of the HTTP request. Upon receiving information from the RAM, a Ser-
vice Module (SM) computes deadline bi, indicating the moment the service of
the HTTP request has to be started, and term b′i in which the request service has
to be finished. After calculating deadline bi, the request is passed to the Queue
Module (QM) in which the requests are queued according to Earliest Deadline
First policy (requests with the shortest deadlines are placed at the beginning of
the queue). Not all of the requests are placed in the QM. When the number r of
requests serviced concurrently by all of the Web servers in the cluster is smaller
than the value rmax then the request ui is passed directly to the switching sec-
tion. The value rmax is the lowest number of requests serviced by web servers
in the cluster, for which the service reaches the maximal throughput. Requests
placed in the QM leave the queue and are passed to the switching section only
when r < rmax.



40 K. Zatwarnicki and A. Zatwarnicka

The main element of the scheduling section is the SM, those structure is
complex (Fig. 1c). The SM is composed of page model (PM), service load state
database (SLSDB), service estimation mechanism (SEM) and service adaptation
mechanism (SAM). The PM contains information about the structure of Web
pages served by the Web cluster, the classes of the objects belonging to the pages
and the clients downloading HTTP objects. On the base of xi, p and j the PM
determines time spi and vector Ui. Time spi is measured from the moment
the client requests the first object belonging to the page p to the moment the re-
quest ui arrives. Vector Ui = [k1i , . . . , k

l
i, . . . , k

L
i ] contains information about

the classes of objects belonging to page p and not being downloaded yet by
the j-th client. The class kli of the object, where kli ∈ {1, . . . ,K}, l = 1, . . . , L,
and k1i = ki, is determined on the basis of the object’s size for static objects
(files), whereas every dynamic object (created at the request arrival) has its own
individual class. Objects belonging to the same class have similar service times.

The SLSDB stores information Z ′
i = [ŝ′1i, . . . , ŝ

′
ki, . . . , ŝ

′
Ki] about service times

for different classes, where ŝ′ki is the estimated time to service, by the Web
cluster, the request belonging to the k-th class.

Information stored in SLSDB are used by the SEM to compute bi and b′i.
The SEM takes from SLSDB the information Z ′

Ui = [ŝ′k1i, . . . , ŝ
′
kli, . . . , ŝ

′
kLi]

about service times of objects pointed in the Ui vector. The deadline bi is cal-

culated in the following way bi = τ
(1)
i + Δbi − ŝ1i, where τ

(1)
i is the time of

the i-th request’s arrival, and Δbi − ŝ′k1i(tmax − pi)/(λ
∑L

l=1 ŝ
′
kli) is the period

of time which the request can spend being queued and serviced by the Web
server. The λ is a concurrency factor, and it depends on the number of Web
objects being downloaded concurrently for given the Web page. According to
[16], the value of this factor for average Web pages can be set to λ = 0.267, or
if the WWW pages are not typical, the value can be designated experimentally.

The term b′ is calculated as follows: b′i = τ
(1)
i + Δbi, and that is the term by

which the service of the request has to be finished by the Web server.
The SAM module is responsible for adapting the information Z ′

i. After each
previously queued request is serviced, the SAM updates the service time for
the class the request belonged to. The modification is conducted in the following
way ŝ′k(i+1) = ŝ′ki + η̂(ŝi − ŝ′ki), where ŝ is a measured value of the service time,
and η̂ is an adaptation factor.

After the request ui leaves the QM it is directed to the switching section of
the Web switch. The switching section is composed of: server model modules
(SMM), a decision module (DM), and an execution module (EM).

Every SMM is assigned to one Web server working in the cluster. The SMM
estimates the service time ŝwi of the request for the Web server the module is as-
signed to, where w ∈ {1, . . . ,W} is the server index, andW is the number of Web
servers in the cluster. The service time is computed on the base of information of
the requested object class ki and the load Mw

i = [e2i , f
2
i ] of the server the SMM

is assigned to, where ewi is the number of requests being concurrently serviced by
the w-th server and fw

i is the number of dynamic request concurrently serviced.



The Cluster-Based Time-Aware Web System 41

The DM chooses the Web server to service the request. The decision is made
in the following way:

zi =

{
min {w : w ∈ {1, . . . ,W}} if r = rmax and ∃w∈{1,...,W}ŝwi ≥ Δb′i
wmin : ŝwmin

i = min {ŝwi : w ∈ {1, . . . ,W}} in other case
(1)

where Δb′i = τ
(2)
i − b′i, and τ

(2)
i is the moment the request ui leaves the QM.

According to the Formula (1) the Web server with the lowest index, which is
able to service the request in a time not longer than Δb′i, is chosen. If there is
no such server, the server offering the shortest service time is chosen. Thanks to
this solution, Web servers with the lowest indexes are the most loaded but, still
able to service requests, and the servers with higher indexes are unloaded and
able to service requests very quickly, when necessary.

When the decision zi is taken, the EM sends the request ui to the chosen
server. The module also measures the service time s̃i, and collects the information
esi and f s

i .
The most complex module of the switching section is the SMM. To estimate

the service time ŝwi of the request, for the given Web server, a neuro-fuzzy model
is used (Fig. 2a). Because there are many classes ki = 1, . . . ,K of requested ob-
jects, the same neuro-fuzzy model with different parameters (weights) for each
class is used. It can even be said that each of the SMM has K separated neuro-
fuzzy networks. All parameters for different classes and networks are stored in
the parameter database Zi = [Z1i, . . . , Zki, . . . , ZKi], where Zki = [Cki, Dki, Ski],
Cki = [c1ki, . . . , clki, . . . , c(L−1)ki] and Dki = [d1ki, . . . , dmki, . . . , sJki] are pa-
rameters of input fuzzy set functions, and Ski = [s1ki, . . . , sjki, . . . , sJki] are
parameters of output fuzzy set functions. Input fuzzy set functions are triangu-
lar (Fig. 2b) and are denoted as μFel

(s), μFfm
(fi), l = 1, . . . , L, m = 1, . . . ,M ,

whereas ointentfirstutput fuzzy sets functions μSj(s) are singletons (Fig. 2c).
The values L and M were chosen experimentally and set to 5, and J = L ·M .

The service time is calculated in the following way: ŝi =
∑J

j=1 sjkiμRj (ei, fi),
while μRj (ei, fi) = μFel

· μFfm
(fi). The values of parameters Cki, Dki, Ski are

modified in an adaptation process using the Back Propagation Method each time
the service of the request on a given server finishes. The parameters of output
fuzzy sets are modified as follow: sjk(i+1) = sjki+ηs ·(s̃i−ŝi)·μRj (ei, fi), whereas
parameters of input fuzzy sets are computed in following way
cφk(i+1) = cφki + ηc(s̃i−ŝi)

∑M
m=1(μFfm

(fi)
∑L

l=1(s((m−1)·L+l)ki∂μFel
(ei)/∂cφki))

and
dγk(i+1) = dγki+ηd(s̃i−ŝi)

∑L
l=1(μFel

(ei)
∑M

m=1(s((l−1)·M+m)ki∂μFfm
(fi)/∂dγki))

where ηs, ηc, ηd are adaptation ratios, φ = 1, . . . , L− 1, γ = 1, . . . ,M − 1.

3 Testbed and Results of Experiments

In order to evaluate the MLF system simulation experiments were conducted in
our previous research [5]. Results of the experiments show that the MLF sys-
tem can provide higher quality of service than other reference and well known



42 K. Zatwarnicki and A. Zatwarnicka

Fig. 2. Server model: a) neuro-fuzzy model, b) input fuzzy sets functions, c) output
fuzzy sets functions

distribution methods. The next step to evaluate the system is to conduct exper-
iments with the use of real Web servers and the MLF Web switch. The results of
the experiments presented in this article should enable answering the question
of whether the proposed system is equally or more effective than other systems
already known of from literature or used in real Web switches.

The experiments were conducted using four Web servers, one computer acting
as a Web switch and one computer simulating the behavior of Web clients.
The first computer with an Intel Core i5-3470 3.3GHz processor, and Ubuntu
13.04 Desktop operating system, was acting as a generator of the HTTP requests.
The second computer, with an Intel Core i7-2670 2.2GHz processor and Fedora
18 operating system, hosted the Web switch server software. The computers
chosen for the Web, and database servers, had the lowest computational power
(Intel Celeron 1.7GHz, Ubuntu 13.04 Server), so it was easy to reach the maximal
capacity of the Web servers without overloading other elements of the system.
All of the computers were connected through a gigabyte Repotec RP-G3224V
network switch.

The Web server hosted five different Web pages. Table 1 presents the structure
of the pages. The pages were static and dynamic. All of the pages contained from
10 to 30 embedded objects from 1 to 100KB in size. Dynamic pages used PHP
as the script language generating the content of the page. One of the pages also
used SQL requests to the MySQL database, containing 3 related tables of 10 000
rows in size each.

The Web switch server software was written in the C++ language with the use
of the libsoup [17] and boost [18] libraries supporting the supervision of the HTTP
requests. The gcc compiler was used to create the executable file.



The Cluster-Based Time-Aware Web System 43

Table 1. Web pages used in the experiments

Name Type and size of
the frame object

of the page

Embedded objects
number and sizes

MySQL Database

Static 10 Static 1KB 10, size 1–100KB,
sum 477KB

—

Static 30 Static 1KB 30, size 1–100KB,
sum 1.39MB

—

Dynamic 10 Dynamic, PHP 10, size 1–100KB,
sum 477MB

—

Dynamic 30 Dynamic, PHP 30, size 1–100KB,
sum 1.39MB

—

Dynamic MySQL 30 Dynamic, PHP 30, size 1–100KB,
sum 1.39MB

requests to database
containing 3 tables,
10 000 rows each

In order to compare the MLF method with other well known and often applied
distribution methods the Web switch had implemented four different scheduling
policies:

– MLF,

– LARD (Locality-Aware Request Distribution): one of the best distribution
methods taking into account localization of the previously requested object,

– CAP (Content Aware Policy): an algorithm uniformly distributing HTTP
requests of different types,

– RR (Round-Robin): an algorithm distributing uniformly all incoming
requests.

The software of the HTTP request generator was written in the C++ lan-
guage with the use of the LibcURL library, which enables the creation of HTTP
requests and the supervision of the process of sending requests and receiving
responses. The request generator generated requests in a similar way to modern
Web browsers. It created a given number of virtual clients. Each client, at first,
opened a TCP connection to send the requests concerning the frame of the page.
After that, it sent in concurrent TCP connections requests concerning objects
pointed out in the header of the HTML document. After receiving the frame as
a whole, the client opened up to 6 TCP connections to download the embed-
ded objects. Immediately after finishing downloading the Web page as a whole,
the client started to download the next page.

The software of the generator was not only generating HTTP request but also
collecting information concerning the mean value of request response time and
satisfaction. Nowadays the response time is one of the most important measures
of the effectiveness of the Web system. Most of the results illustrating the effec-
tiveness of the MLF system in comparison to other systems show the response
time in a load function.

The satisfaction allows for determining whether the MLF system is operating
as expected and provides the page response time to be no longer then tmax even
when the load is high. The satisfaction is often used to evaluate real-time soft



44 K. Zatwarnicki and A. Zatwarnicka

systems. It is equal to 1 when the page response time is shorter than tsmax, and de-
creases to 0 when the time is longer than thmax (Fig. 3). In all of the experiments,
it has been adopted that tsmax = tmax = 2000ms and thmax = 2tsmax. Experiments
were conducted for various increasing numbers of simulated clients [19].

Fig. 3. Satisfaction function

Fig. 4. Results of experiments: a) Satisfaction vs. load for theWeb page Static 10; Mean
request response time vs. load for Web pages: b) Static 10, c) Static 30, d) Dynamic 10,
e) Dynamic 30, f) Dynamic MySQL 30



The Cluster-Based Time-Aware Web System 45

The Figure 4a presents a diagram of satisfaction vs. number of clients gener-
ating HTTP requests. It can be noticed, that when the load is low (the number
of clients is between 1 and 14), the satisfaction for all the strategies is very high
and equal to 1. This means that almost every Web page was downloaded by
the clients with a time no longer than tmaxs. When the load is higher (the number
of clients is greater than 15), the satisfaction for LARD and RR/CAP (for static
Web pages the RR and CAP algorithms operate in the same way) algorithms
significantly decreased. For the MLF method, the satisfaction begins to decrease
when the load is very high and equals to 18. That demonstrates that MLF system
is able to provide a page response time no longer than tmax even when the load
is high.

Diagrams b to f in Fig. 4 present the mean request response time vs. the load
for different Web pages. In every experiment the mean request response time was
lowest for the MLF method. When the load is low, the differences between dis-
tribution methods are negligible. However, when the load increases, the request
response time for the MLF method also increases but is considerably lower than
for other distribution methods. It can be also noticed that the difference between
MLF method and the others methods are greater for the dynamic Web pages.
The presented results confirm results obtained during simulations [6] therefore
it can be concluded that under control of the MLF method the cluster-based
Web system is more effective than for other examined methods.

4 Summary

In this paper the HTTP request scheduling and distribution cluster-based Web
system providing service at a fixed level, was presented. The proposed MLF
system can deliver Web pages to the clients in a time not longer than the
Web provider demands. Decision algorithms, used in the MLF method, applies
adaptive algorithms using neuro-fuzzy models in its construction. Experiments
conducted with the use of real Web servers confirm results obtained during sim-
ulations and presented in other articles. A high level of quality can be provided
even when the system is heavily loaded. The request response times for individ-
ual HTTP requests are considerably lower for the MLF method than for other
distribution methods. The results of experiment show that the Web system work-
ing under control of the MLF method is more effective than for other examined
methods.

References

1. McCabe, D.: Network analysis, architecture, and design. Morgan Kaufmann,
Boston (2007)

2. Zatwarnicki, K.: Adaptive control of cluster-based web systems using neuro-fuzzy
models. International Journal of Applied Mathematics and Computer Science
(AMCS) 22(2), 365–377 (2012)



46 K. Zatwarnicki and A. Zatwarnicka

3. Zatwarnicka, A., Zatwarnicki, K.: Adaptive HTTP request distribution in time-
varying environment of globally distributed cluster-based Web system. In: König,
A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES
2011, Part I. LNCS, vol. 6881, pp. 141–150. Springer, Heidelberg (2011)

4. Zatwarnicki, K.: Neuro-Fuzzy Models in Global HTTP Request Distribution. In:
Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS (LNAI),
vol. 6421, pp. 1–10. Springer, Heidelberg (2010)

5. Zatwarnicki, K.: Adaptive Scheduling System Guaranteeing Web Page Response
Times. In: Nguyen, N.-T., Hoang, K., Jȩdrzejowicz, P. (eds.) ICCCI 2012, Part II.
LNCS (LNAI), vol. 7654, pp. 273–282. Springer, Heidelberg (2012)

6. Zatwarnicki, K.: Operation of Cluster-Based Web System Guaranteeing Web Page
Response Time. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013.
LNCS (LNAI), vol. 8083, pp. 477–486. Springer, Heidelberg (2013)

7. Zatwarnicki, K.: Guaranteeing quality of service in globally distributed Web system
with brokers. In: J ↪edrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011,
Part II. LNCS, vol. 6923, pp. 374–384. Springer, Heidelberg (2011)

8. Abdelzaher, T.F., Shin, K.G., Bhatti, N.: Performance Guarantees for Web Server
End-Systems: A Control-Theoretical Approach. IEEE Trans. Parallel and Dis-
tributed Systems 13(1), 80–96 (2002)

9. Blanquer, J.M., Batchelli, A., Schauser, K., Wolski, R.: Quorum: Flexible Quality
of Service for Internet Services. In: Proc. Symp. Networked Systems Design and
Implementation (2005)

10. Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based scheduling
to improve web performance. ACM Trans. Comput. Syst. 21(2), 207–233 (2003)

11. Kamra, A., Misra, V., Nahum, E.M.: A Self Tuning Controller for Managing the
Performance of 3-Tiered Websites. In: Proc. Workshop Quality of Service, pp. 47–
56 (2004)

12. Schroeder, B., Harchol-Balter, M.: Web servers under overload: How scheduling
can help. In: 18th International Teletraffic Congress, Berlin, Germany (2003)

13. Olejnik, R.: An Impact of the Nanoscale Network-on-Chip Topology on the Trans-
mission Delay. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160,
pp. 19–26. Springer, Heidelberg (2011)

14. Suchacka, G.z., Borzemski, L.: Simulation-based performance study of e-commerce
Web server system – results for FIFO scheduling. In: Zgrzywa, A., Choroś, K.,
Siemiński, A. (eds.) Multimedia and Internet Systems: Theory and Practice. AISC,
vol. 183, pp. 249–259. Springer, Heidelberg (2013)

15. Wie, J., Xue, C.Z.: QoS: Provisioning of client-perceived end-to-end QoS guaran-
tees in Web servers. IEEE Trans. on Computers 55(12) (2006)

16. Zatwarnicki, K., Zatwarnicka, A.: Estimation of Web Page Download Time. In:
Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 144–152.
Springer, Heidelberg (2012)

17. Libsoup library description, http://developer.gnome.org/libsoup/stable/

(access September 10, 2013)
18. Boost C++ libraries, http://www.boost.org/ (access September 10, 2013)
19. Platek, M.: Guaranteeing quality of service in cluster-base Web system. M.S. the-

sis, Department of Electroengineering, Automatic Control and Computer Science,
Opole University of Technology, Opole, Poland (2013)

http://developer.gnome.org/libsoup/stable/
http://www.boost.org/

	The Cluster-Based Time-Aware Web System
	1 Introduction
	2 MLF System
	3 Testbed and Results of Experiments
	4 Summary
	References




