
Speech Recognition Based on Open Source
Speech Processing Software

Piotr Kłosowski, Adam Dustor, Jacek Izydorczyk, Jan Kotas, and Jacek Ślimok

Silesian University of Technology, Institute of Electronics
Akademicka Str. 16, 44-100 Gliwice, Poland

{piotr.klosowski,adam.dustor,jacek.izydorczyk}@polsl.pl,
{kotas.janek,jacek.slimok}@gmail.com

http://iele.polsl.pl

Abstract. Creating of speech recognition application requires advanced
speech processing techniques realized by specialized speech processing
software. It is very possible to improve the speech recognition research
by using frameworks based on open source speech processing software.
The article presents the possibility of using open source speech processing
software to construct own speech recognition application.

Keywords: speech recognition, speech processing, open source software.

1 Introduction

Division of Telecommunication, a part of the Institute of Electronics and Faculty
of Automatic Control, Electronics and Computer Science Silesian University of
Technology, for many years has been specializing in advanced fields of telecom-
munication engineering. One of them is speech signal processing [1–4]. Main
research areas on this field are: speech synthesis, speech recognition and speaker
verification and identification.

Creating of speech recognition application requires advanced speech process-
ing techniques realized by specialized speech processing software [5]. Which soft-
ware should be used for speech recognition application development? There are
many possibilities. To create own speech recognition application can be used:

1. programming languages such as C++, Java, Python, etc.,
2. high level commercial computing environment for implementation of speech

recognition algorithms such as: MATLAB with Signal Processing Toolbox,
3. open source speech processing software.

Hypothesis can be formulated as follows: It is possible to improve the speech
recognition research by using frameworks based on open source speech processing
software. The article focuses on open source applications that can be used to
construct their own speech recognition system.

A. Kwiecień, P. Gaj, and P. Stera (Eds.): CN 2014, CCIS 431, pp. 308–317, 2014.
c© Springer International Publishing Switzerland 2014

http://iele.polsl.pl

Speech Recognition Based on Open Source Speech Processing Software 309

2 Open Source Speech Processing Software for Speech
Recognition

This section presents to the most frequently used speech processing open source
software tools as a basis for testing and building your own speech recognition
application.

2.1 CMU Sphinx

CMU Sphinx is a group of speech recognition systems, which have been devel-
oped at Carnegie Mellon University in Pittsburgh, Pennsylvania, United States.
Sphinx consists of multiple software systems, not all of which are open source.
First version of Sphinx, developed by Kai-Fu Lee, offered a system that demon-
strates the feasibility of accurate, large-vocabulary speaker-independent, contin-
uous speech recognition [6]. It has been later replaced by newer, better
performing versions. Sphinx 2, the successor of the original, was the first Sphinx
system to be released as open source. The biggest improvement was, apart from
fewer recognition errors overall, the capability to handle much larger vocabulary
size. For 5,000-word speaker-independent speech recognition, the recognition er-
ror rate has been reduced to 5 %. It is used in real-time speech recognition sys-
tems, however this project is no longer developed. Sphinx 3 is a system designed
with accuracy in mind and therefore does not currently allow real-time speech
recognition. It is, however, in active development and recent improvements made
to its algorithms, as well as hardware performance growth have allowed to
achieve near real-time recognition results. It adopts widely used continuous hid-
den Markov model. Together with SphinxTrain – an acoustic model trainer – it
gives access to modeling techniques, such as MLLR (Maximum-Likelihood Linear
Regression), LDA/MLLT (Linear Discriminant Analysis/Maximum Likelihood
Linear Transform) or VTLN (Vocal Tract Length Normalization). Newest version
of Sphinx is Sphinx 4. It is a rewritten Sphinx engine (entirely in Java), providing
a more flexible framework for research in speech recognition. In addition to sys-
tems mentioned above, a lightweight version of Sphinx, named PockedSphinx, is
currently in active development and provides access to speech recognition engine
designed specifically for embedded devices, such as mobile phones. More details
about the Sphinx project are available at: http://cmusphinx.sourceforge.net.

2.2 SPRACH

SPRACH is an abbreviation for Speech Recognition Algorithms for Connection-
ist Hybrids. It involves usage of HMM (Hidden Markov Models), ANN (Artifi-
cial Neural Networks), statistical inference in said networks, as well as hybrid
HMM-ANN technology in order to further improve current research on contin-
uous speech recognition. The project was developed across multiple universities
in Europe and therefore one of its main goals was to adapt hybrid speech recog-
nitions to languages other than English, French and Portuguese in particular.
More details about the project are available at:
http://www.icsi.berkeley.edu/~dpwe/projects/sprach/sprachcore.html.

http://cmusphinx.sourceforge.net
http://www.icsi.berkeley.edu/~dpwe/projects/sprach/sprachcore.html

310 P. Kłosowski et al.

2.3 GMTK

GMTK is an acronym for Graphical Models Toolkit and a project that was
developed by Prof. Jeff Bilmes, Richard Rogers and a number of other indi-
viduals at University of Washington, United States. GMTK is a feature-rich
toolkit, allowing rapid prototyping of statistical models, by using DBM (Dy-
namic Graphical Models) and DBN (Dynamic Bayesian Networks) [7]. Among
many of its features, one can specify the following: exact and approximate infer-
ence, dense, sparse and deterministic conditional probability tables, native sup-
port for ARPA backoff-based factors and factored language models, parameter
sharing, gamma and beta distributions etc. [8]. In addition, it includes Markov
chains of arbitrary orders, graph viewer in form of Graphical User Interface;
supports multiple file formats; allows offline and online mode during parame-
ter learning and prediction. More details about GMTK project are available at:
http://ssli.ee.washington.edu/~bilmes/gmtk/.

2.4 SONIC

SONIC is a system developed by Bryan Pellom and Kadri Hacioglu at the Uni-
versity of Colorado, Boulder, United States. It is designed in order to allow
development of new algorithms of continuous speech recognition. SONIC’s main
features include: phonetic aligner, phonetic decision tree acoustic trainer, core
recognizer, speaker adaptation, live-mode recognition, voice activity detection,
language portability, speech compression interface, as well as application pro-
gramming interface (API) with examples [9]. It is worth mentioning, that SONIC
has been successfully ported to over 15 languages. It is based on CDHMM (Con-
tinuous Density Hidden Markov Model). SONIC has been developed for 4 years
until May 2005 and at the time of the last update it was still considered unfin-
ished by the authors [10]. More details about SONIC project are available at:
http://www.bltek.com/virtual-teacher-side-menu/sonic.html.

2.5 HTK

HTK is a toolkit designed for building HMM (hidden Markov models). This
toolkit at its core is multi-purpose and may be used in order to model any
time series, however it has been created with speech recognition in mind. HTK
consists of two major tool sets. The first, namely HTK training tools, requires
both: speech data and its transcription and is done in order to estimate pa-
rameters of a set of HMM. Once this stage is complete, HTK recognition tools
can be used in order to transcribe unknown speech data [11]. An invaluable
advantage of the described toolkit is its extensive documentation providing nu-
merous examples of usage. More details about HTK project are available at:
http://htk.eng.cam.ac.uk/.

2.6 ALISE

ALIZE is open source platform for biometrics authentication. It provides sin-
gle engine for face and voice recognition. Project’s goal is to provide access

http://ssli.ee.washington.edu/~bilmes/gmtk/
http://www.bltek.com/virtual-teacher-side-menu/sonic.html
http://htk.eng.cam.ac.uk/

Speech Recognition Based on Open Source Speech Processing Software 311

to biometric technologies for industrial and academic usage. It consists of low-
level API and high-level executables. Thanks to this attribute, ALIZE allows
the user to quickly create speech recognition system, as well as provides tools
for industrial voice processing applications. The project has been made open
source, because it is believed that allowing broad scientific research on speech
recognition algorithms results in quicker improvement of such systems, by mak-
ing them more accurate and resistant to noise [12]. Project has been evaluated
by NIST, SRE, RT and French ESTER and achieved very good results. It is
written in C++ and allows multi-platform implementation, including a possi-
ble use in embedded devices. More details about the project are available at:
http://mistral.univ-avignon.fr/index_en.htm.

2.7 SPRO

SPRO is an open source speech processing toolkit. It was designed for both:
speaker and speech recognition. SPRO has been created for variable resolution
spectral analysis, but it also supports classic mechanics used in speech process-
ing. It provides runtime commands, as well as standard C library for imple-
menting new algorithms and applications. After compilation, the user is given
access to tools used for following purposes: filter-bank based speech analysis,
linear predictive speech analysis, comparing streams, extracting speech param-
eters. The library provides additional signal processing functions, which can be
used in custom speech recognition applications, such as FFT, LPC analysis and
feature processing, such as lifter, CMS and variance normalization. SPRO is dis-
tributed under GNU Public License agreement. More details about the project
are available at: https://gforge.inria.fr/frs/index.php?group_id=532.

2.8 Other Open Source Speech Processing Tools

Other open source speech processing tools that can be used to construct own
speech recognition application are:

– AT&T FSM LibraryTM – Finite-State Machine Library
http://www2.research.att.com/~fsmtools/fsm/

– LIBSVM – A Library for Support Vector Machines
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

– SVMlight – Support Vector Machine
http://svmlight.joachims.org/

– PVTK – Periodic Vector Toolkit
http://old-site.clsp.jhu.edu/ws2004/groups/ws04ldmk/PVTK.php

– LAPACK – Linear Algebra PACKage
http://www.netlib.org/lapack/index.html

– Standard Template Library
http://www.sgi.com/tech/stl/

– MIT Finite State Toolkit
http://people.csail.mit.edu/ilh/fst/

http://mistral.univ-avignon.fr/index_en.htm
https://gforge.inria.fr/frs/index.php?group_id=532
http://www2.research.att.com/~fsmtools/fsm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/
http://old-site.clsp.jhu.edu/ws2004/groups/ws04ldmk/PVTK.php
http://www.netlib.org/lapack/index.html
http://www.sgi.com/tech/stl/
http://people.csail.mit.edu/ilh/fst/

312 P. Kłosowski et al.

3 Examples of Use SPRO to Speech Features Extraction

This section presents to the examples of use open source speech processing tools
called SPRO to speech features extraction as a basis for testing and building own
speech recognition application. After compilation SPRO provides the following
tools for speech recognition:

– scompare – tool dedicated to compare input streams tool,
– scopy – feature manipulation tool,
– sfbank – tool dedicated to filter-bank based speech analysis,
– sfbcep – tool dedicated to filter-bank based speech analysis,
– slpc – tool takes as input a waveform and output linear prediction derived

features,
– slpcep – tool dedicated to linear predictive analysis of speech signals,
– splp – tool dedicated to linear predictive analysis of speech signals.

The following examples illustrate the use of SPRO tools to the speech feature
extraction.

3.1 Extracting Speech Features Using Filter-Bank Analysis Tools

SPRO provides an implementation of filter-bank analysis – a spectral analysis
method based on representing the signal spectrum by the log-energies at the
output of a filter-bank, where the filters are overlapping band-pass filters spread
along the frequency axis. This representation gives a approximation of the signal
spectral shape while smoothing out the harmonic structure if any. When using
variable resolution analysis, the central frequencies of the filters are determined
so as to be evenly spread on the warped axis and all filters share the same
bandwidth on the warped axis. This spectral analysis technique is also applied to
Mel frequency warping, a very popular warping in speech analysis which mimics
the spectral resolution of the human ear. The Mel warping is approximated by
function [13]:

mel(f) = 2595 · log10
(
1 +

f

700

)
. (1)

Filter-bank analysis implementation uses triangular filters on the FFT module.
The energy at the output of channel i is given by:

e
i
= log

N∑
j=1

hi(j) · ‖X(j)‖ (2)

where N is the FFT length2 and hi is the filter’s frequency response as depicted
above. The filter’s response is a triangle centered at frequency fi with bandwidth
[fi−1, fi+1], assuming the fi’s are the central frequencies of the filters determined
according to the desired spectral warping.

Speech Recognition Based on Open Source Speech Processing Software 313

The SPRO tools named sfbank and sfbcep are dedicated to filter-bank based
speech analysis. The first filter-bank analysis tool sfbank takes as input a wave-
form and output filter-bank magnitude features. For each frame, the FFT is
performed on the windowed signal, possibly after zero padding, and the magni-
tude is computed before being integrated using a triangular filter-bank.

The second SPRO tool sfbcep takes as input a waveform and output filter-
bank derived cepstral features. The filter-bank processing is similar to what is
done in sfbank. The cepstral coefficients are computed by DCT’ing the filter-
bank log-magnitudes and possibly liftered. Optionally, the log-energy can be
added to the feature vector. In sfbcep, the frame energy is calculated as the sum
of the squared waveform samples after windowing. As for the magnitudes in
the filter-bank, the log-energy are thresholded to keep them positive or null.
The log-energies may be scaled to avoid differences between recordings. Finally,
first and second order derivatives of the cepstral coefficients and of the logenergies
can be appended to the feature vectors. When using delta features, the absolute
log-energy can be suppressed using the --no-static-energy option.

$ sfbcep -F PCM16 -f 16000 input.wav output.mfc

The file with .mfc extention contains the result of the calculation in raw format.
Example Bash script performs speech features extraction from all files on the list
saved as timit.lst file is presented below:

#!/bin/bash

List of file of speech database
fileslist="timit.lst"
speakerlist="speakers_all.txt"

Deleting old feature files
rm -r ./timit/features

Creating empty feature directories
mkdir ./timit/features
for dir in $(cat "$speakerlist")

do
mkdir "./timit/features/$dir"

done

SPRO features extraction
for file in $(cat $fileslist)

do
echo -n "Processing file : $file ... "
inputfile="./timit/speech/$file.WAV"
outputfile="./timit/features/$file.raw.mfc"
./SPRO/sfbcep -F PCM16 -f 16000 $inputfile $outputfile
if (($?)); then echo "ERROR"; exit; else echo "OK"; fi

done

314 P. Kłosowski et al.

File timit.lst contains all processed speech files from TIMIT speech database.
The TIMIT corpus of read speech is designed to provide speech data for acoustic-
phonetic studies and for the development and evaluation of automatic speech
recognition systems. TIMIT contains broadband recordings of 630 speakers of
eight major dialects of American English, each reading ten phonetically rich
sentences [14]. The TIMIT corpus includes time-aligned orthographic, phonetic
and word transcriptions as well as a 16-bit, 16 kHz speech waveform file for each
utterance. Corpus design was a joint effort among the Massachusetts Institute
of Technology (MIT), SRI International (SRI) and Texas Instruments, Inc. (TI).
The speech was recorded at TI, transcribed at MIT and verified and prepared
for CD-ROM production by the National Institute of Standards and Technology
(NIST). Sample contents of the file timit.lst is shown below:

speaker001/SA1
speaker001/SA2
speaker001/SI1565
speaker001/SI2195
speaker001/SI935
speaker002/SA1
speaker002/SA2
speaker002/SI1081
speaker002/SI1202
speaker002/SI1711

3.2 Extracting Speech Features Using LPC Analysis Tools

LPC (Linear Prediction Coding) is a popular speech coding analysis method
which relies on a source/filter model if the speech production process. The vocal
tract is modeled by an all-pole filter of order p whose response is given by [5]:

H(z) =
1

1 +
p∑

i=1

aiz−i

. (3)

The coefficients ai are the prediction coefficients, obtained by minimizing the
mean square prediction error. The minimization is implemented in SPRO using
the auto-correlation method.

PLP (Perceptual Linear Prediction) is combination of filter-bank analysis and
linear prediction to compute linear prediction coefficients on a perceptual spec-
trum [15]. The filter-bank power spectrum is filtered using an equal loudness
curve and passed through a compression function f(x) = x1/n where usually
n = 3, thus resulting in an auditory spectrum from which the autocorrelation
is computed by inverse discrete Fourier transform. Linear prediction coefficients
are then carried out as usual from the autocorrelation.

SPRO provides two different tools slpc and slpcep for linear predictive anal-
ysis of speech signals. The tool slpc takes as input a waveform and output
linear prediction derived features. For each frame, the signal is windowed af-
ter pre-emphasis and the generalized correlation is computed and further used

Speech Recognition Based on Open Source Speech Processing Software 315

to estimate the reflection and the prediction coefficients which can, in turn, be
transformed into log area ratios or line spectrum frequencies. The default is to
output the linear prediction coefficients however reflection coefficients can be
obtained with the --parcor option, log-area ratios with --lar option and line
spectrum pairs with the --lsp one. Optionally, the log-energy can be added to
the feature vector. In slpc, the log-energy is taken as the linear prediction filter
gain, which is also the variance of prediction error, and thresholded to be positive
or null. The log-energies may be scaled to avoid differences between recordings
using the --scale-energy option.

The tool slpcep takes as input a waveform and outputs cepstral coefficients
derived from the linear prediction filter coefficients. The linear prediction pro-
cessing steps are as in slpc and cepstral coefficients are computed from the lin-
ear prediction coefficients using the recursion previously described. The required
number of cepstral coefficients must be less then or equal to the prediction order.
As for slpc, the log-energy, taken as the gain of the linear prediction filter, can be
added to the feature vectors. Mean and variance normalization of the static cep-
stral coefficients can be specified with the global --cms and --normalize options
but do not apply to log-energies. The normalizations can be global or based on
a sliding window whose length is specified with --segment-length. Finally, first
and second order derivatives of the cepstral coefficients and of the log-energies
can be appended to the feature vectors. When using delta features, the absolute
log-energy can be suppressed using the --no-static-energy option.

The tool splp takes as input a waveform and outputs cepstral coefficients
derived from a perceptual linear prediction analysis. Note that, although not
explicitly mentioned in the program name, splp does output cepstral coefficients,
not linear prediction coefficients. The LPC order must be less than or equal to
the number of filters in the filter-bank while the number of cepstral coefficients
must be less than or equal to the prediction order. The log-energy is taken from
the frame waveform as in the filter-bank tools.

Example of extracting speech features using PSRO LPC analysis tools is pre-
sented below:

$ slpc sa.wav slpc.out
$ scopy -o ascii slpc.out slpc.txt
$ slpcep sa.wav slpcep.out
$ scopy -o ascii slpcep.out slpcep.txt
$ splp sa.wav splp.out
$ scopy -o ascii splp.out splp.txt

The files with .txt extentions contains the result of the calculation in ASCII
format.

4 Summary

Table 1 presents comparison among presented open source speech processing
tools. This paper and comparison can be helpful in choosing the right speech
processing tool for a specific speech recognition application.

316 P. Kłosowski et al.

Table 1. The comparison presented open source speech processing tools

Name Environment Portability Flexibility Features
CMU Sphinx C++ Unix high model training,

Java (Linux) speech recognition
Embedded sys. framework

SPRACH C++ Unix high speech recognition
Tcl/Tk (Linux) framework

Perl
GMTK C++ Unix very probabilistic

Tcl/Tk (Linux) high modeling
framework

SONIC C++ UNIX (Linux, Solaris) very continuous
Tcl/Tk Windows high speech

Mac OS recognition
HTK ANSI C Unix (Linux) high hidden Markov

Windows model toolkit
ALIZE C++ Unix (Linux) medium speech processing

Windows and recognition
Embedded sys. framework

SPRO C++ Unix (Linux) medium speech features
Windows extraction

Embedded sys.

The most important elements of each speech recognition system are speech
features extraction and classification. The paper presents examples of the use
open source speech processing software for speech features extraction. Similarly,
the open source software can be used to test and create efficient classifiers that are
the basis for designing effective speech recognition applications. For testing and
construction of the various classifiers can be used e.g. the Hidden Markov Model
Toolkit (HTK) [16] or open source platform for biometrics authentication called
ALIZE [17]. Use of the open source speech processing software can significantly
improve the construction and testing of modern speech recognition application.

Acknowledgements. This work was supported by The National Centre for Re-
search and Development (www.ncbir.gov.pl) under Grant number POIG.01.03.01-
24-107/12 (Innovative speaker recognition methodology for communications net-
work safety).

References

1. Kłosowski, P.: Speech Processing Application Based on Phonetics and Phonology
of the Polish Language. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS,
vol. 79, pp. 236–244. Springer, Heidelberg (2010)

2. Kłosowski, P., Dustor, A.: Automatic Speech Segmentation for Automatic Speech
Translation. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370,
pp. 466–475. Springer, Heidelberg (2013)

Speech Recognition Based on Open Source Speech Processing Software 317

3. Dustor, A., Kłosowski, P.: Biometric Voice Identification Based on Fuzzy Kernel
Classifier. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp.
456–465. Springer, Heidelberg (2013)

4. Kłosowski, P.: Improving Speech Processing Based on Phonetics and Phonology of
Polish Language. Przeglad Elektrotechniczny R 89(8), 303–307. Sigma-Not (2013)

5. Rabiner, L.R., Schafer, R.W.: Introduction to Digital Speech Processing. Founda-
tions and Trends in Signal Processing 1(1-2), 1–194 (2007)

6. Tsontzos, G., Orglmeister, R.: CMU Sphinx4 speech recognizer in a Service-
oriented Computing style. In: IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 1–4 (2011)

7. Bilmes, J., Bartels, C.: Graphical model architectures for speech recognition. IEEE
Signal Processing Magazine 22(5), 89–100 (2005)

8. Bilmes, J., Zweig, G.: The graphical models toolkit: An open source software sys-
tem for speech and time-series processing. In: IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), p. IV-3916–IV-3919 (2002)

9. Pellom, B.: SONIC: The University of Colorado Continuous Speech Recognizer.
University of Colorado, Colorado (2001)

10. Pellom, B., Hacioglu, K.: Recent Improvements in the CU SONIC ASR System for
Noisy Speech: The SPINE Task. In: Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Hong Kong (April 2003)

11. Young, S., Evermann, G., Hain, T., Kershaw, D., Moore, G., Odell, J., Ollason,
D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book. Cambridge University
Engineering Department, Cambridge (2002)

12. Bonastre, J.F., Wils, F., Meignier, S.: ALIZE, a free toolkit for speaker recognition.
In: IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2005), vol. 1, pp. 737–740 (2005)

13. Stevens, S.S., Volkman, J.: The relation of pitch to frequency. American Journal
of Psychology 53, 329 (1940)

14. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., Dahlgren,
N.L., Zue, V.: TIMIT Acoustic-Phonetic Continuous Speech Corpus. Linguistic
Data Consortium, Philadelphia (1993)

15. Hermansky, H.: Perceptual linear predictive (plp) analysis of speech. Journal of
the Acoustical Society of America 87(4) (1990)

16. Ziółko, B., Manandhar, S., Wilson, R.C., Ziółko, M., Gałka, J.: Application of
HTK to the Polish language. In: International Conference on Audio, Language
and Image Processing, ICALIP 2008, pp. 1759–1764 (2008)

17. Fauve, B.G.B., Matrouf, D., Scheffer, N., Bonastre, J.F., Mason, J.S.D.: State-
of-the-Art Performance in Text-Independent Speaker Verification Through Open-
Source Software. IEEE Transactions on Audio, Speech, and Language Process-
ing 15(7), 1960–1968 (2007)

	Speech Recognition Based on Open Source Speech Processing Software
	1 Introduction
	2 Open Source Speech Processing Software for Speech Recognition
	2.1 CMU Sphinx
	2.2 SPRACH
	2.3 GMTK
	2.4 SONIC
	2.5 HTK
	2.6 ALISE
	2.7 SPRO
	2.8 Other Open Source Speech Processing Tools

	3 Examples of Use SPRO to Speech Features Extraction
	3.1 Extracting Speech Features Using Filter-Bank Analysis Tools
	3.2 Extracting Speech Features Using LPC Analysis Tools

	4 Summary
	References

