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Abstract. The aim of this paper is to use the superposition of two-state
Markov Modulated Poisson Processes to replicate the statistical nature
of internet traffic over several time scales. This paper characterizes of
network traffic using Bellcore data and LAN traces collected in IITiS
PAN. The fitting procedure for matching second-order self-similar prop-
erties of real data traces to that of two-state MMPP’s has also been
described.
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1 Introduction

The growing variety of IP networks services and applications has been resulting
in an increase of requirement to make reliable measurement of packet flows and
to describe them though appropriate traffic models.

Traditionally, the traffic intensity, has been regarded as a stochastic process,
was represented in queueing models by short term dependencies [1]. However,
the analysis of measurements shows that the traffic establishes also long-terms
dependencies and has a self-similar character. The problem of self-similarity
has been described in Sect. 2. This feature of a traffic was observed on various
protocol layers and in different network structures [2–7].

Several models have been introduced for the purposes of modeling self-similar
processes in the network traffic area. Pioneering work in [6] motivated other
researchers [8] to model network traffic using fractional Brownian Motion. On-
Off source model [9] provides an opportunity for different model based on Stable
Levy Motion [10] depending on order of consideration of limits. Other models
of traffic sources use chaotic maps [11], α-stable distribution [12], fractional
Autoregressive Integrated Moving Average (fARIMA) [13] and fractional Levy
Motion [14] for modeling of network traffic. All above mentioned traffic models
are based on non-Markovian approach. The advantage of these models is that
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they give a good description of the traffic with the use of few parameters. Their
drawbacks consist in the fact that they do not allow the use of traditional and
well known queueing models and modeling techniques for computer networks
performance analysis.

Some researchers use Markov based models to generate a self-similar traf-
fic over a finite number of time scales [15–20]. This approach makes possible
the adaptation of traditional Markovian queueing models to evaluate network
performance. In our research we have made a fitting of a superposition of two
state Markov Modulated Poisson Process (MMPP) proposed in [21] to real traf-
fic data. We have used Ethernet traffic data of Bellcore Morristown Research
and Engineering facility which is available for research purpose [22] and data
captured in our Institute LAN [23].

The rest of this article is organized as follows. Section 2 briefly describes
the mathematics underlying the theory of self-similarity. Section 3 describes the
MMPP traffic model used in our study. Section 4 explains the fitting procedure
for matching second-order self-similar properties of observed data traces. Ob-
tained results are presented in Sect. 5. Conclusions about the work are drawn in
Sect. 6.

2 Self-similarity of Internet Traffic

The term self-similar was introduced by Mandelbrot [24] for explaining water
level pattern of river Nile observed by H. Hurst. This term was also known
as Hurst Effect. The degree of self-similarity is expressed by Hurst parameter,
denoted by H .

A real valued stochastic process:

X = {X(t)}t∈R

is self-similar with H > 0, if for any a > 0,

{X(at)}t∈R
d
= {aHX(t)}t∈R

where d
= denotes equality in finite dimensional distribution sense [25]. Above

definition evidently shows that self-similar processes are scale invariant.
Mathematically, the difference between short-range dependent processes and

long-range ones (self-similar) is as follows [26]:

For a short-range dependent process:
–
∑∞

r=0 Cov(Xt, Xt+τ ) is convergent,
– spectrum at ω = 0 is finite,
– for large m, Var (X(m)

k ) is asymptotically of the form Var (X)/m,
– the aggregated process X

(m)
k tends to the second order pure noise as

m → ∞;
For a long-range dependent process:

–
∑∞

r=0 Cov(Xt, Xt+τ ) is divergent,
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– spectrum at ω = 0 is singular,
– for large m, Var (X(m)

k ) is asymptotically of the form Var (X)m−β ,
– the aggregated process X

(m)
k does not tend to the second order pure

noise as m → ∞,

where the spectrum of the process is the Fourier transformation of the auto-
correlation function and the aggregated process X

(m)
k is the average of Xt on

the interval m:

X
(m)
k =

1

m
(Xkm−m+1 + . . .+Xkm) k ≥ 1 .

Estimation of Hurst parameter is the most frequently used method to check
if a process is self-similar: for non-self-simlar processes H = 0.5; for 0.5 < H < 1
process is self-similar; the closer H is to 1, the greater the degree of persistence of
long-range dependence. Hurst parameter H can be estimated by various meth-
ods. One of the method is called Aggregated Variance [27, 25], where aggregated
sequence is created (as discussed above). This method is based on the analysis
of variance-time plot. The variation of aggregated self-similar process is equal
to:

V ar(X
(m)
k ) = V ar(X)m−β

so the log-log plot of V ar(X
(m)
k )

V ar(X) versus m is a line with slope β.
Another technique of estimation is called R−SP lot, which is based on Central

Limit Theorem. Both the above techniques are time-domain based; in frequency
domain one can estimate H using Periodogram in log-log scale.

As mentioned earlier, many empirical and theoretical studies have shown
the self-similar characteristics of the network traffic. These features have a great
impact on a network performance. They enlarge mean queue lengths at buffers
and increase packet loss probability, reducing this way the quality of services
provided by a network [28]. That is why it is necessary to take into account this
feature when you want to create a realistic model of traffic sources [16].

3 MMPP Model of Packet Traffic Source

Markov chains and Markov-modulated processes (MMP) are well-known mod-
eling techniques which are successful in wide variety of fields. These models are
often motivated by the idea of capturing the long-range dependence (LRD) which
is seen in real internet traffic and replicating the the Hurst parameter H which
characterizes LRD [17].

Two-state Markov Modulated Poisson Process (MMPP) is also known as
the Switched Poisson Process (SPP). The superposition of MMPP’s is also
an MMPP which is a special case of Markovian Arrival Process (MAP).

A MAP is defined by two square matrices D0 and D1 such that Q = D0+D1

is an irreducible infinitesimal generator for the continuous-time Markov chain
(CTMC) underlying the process, and D0(i, j) (respectively D1(i, j)) is the rate
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of hidden (respectively observable) transitions from state i to state j [29]. Two-
state MAP is a Markovian arrival process with square matrices as follows:

D0 =

[−σ1 λ1,2

λ2,1 −σ2

]

D1 =

[
μ1,1 μ1,2

μ2,1 μ2,2

]

where λi,j ≥ 0, μi,j ≥ 0, for all i, j. The diagonal elements of matrix D0 are
σ1 = λ1,2 + μ1,1 + μ1,2 > 0 and σ2 = λ2,1 + μ2,2 + μ2,1 > 0 such that underlying
continuous-time Markov chain Matrix Q has no absorbing states.

Following the model proposed in [21], a LRD process (used in our study)
can be modeled as the superposition of d two-state MMPPs. The i-th MMPP
(1 ≤ i ≤ d) can be parameterized by two square matrices:

Di
0 =

[−(c1i + λ1i) c1i
c2i −(c2i + λ2i)

]

Di
1 =

[
λ1i 0
0 λ2i

]

.

The element c1i is the transition rate from state 1 to 2 of the i-th MMPP and
c2i is the rate out of state 2 to 1. λ1i and λ2i are the traffic rate when the i-th
MMPP is in state 1 and 2 respectively. The sum of D0

i and D1
i is an irreducible

infinitesimal generator Qi with the stationary probability vector:

−→π i =

(
c2i

c1i + c2i
,

c1i
c1i + c2i

)

The superposition of these two-state MMPPs is a new MMPP with 2d states
and its parameter matrices, D0 and D1, can be computed using the Kronecker
sum of those of the d two-state MMPPs [30]:

(D0,D1) =
(⊕d

i=1D0
i,⊕d

i=1D1
i
)

.

Let N i
t be a number of arrivals from the i-th MMPP in time slot (0, t]. The

variance time for this MMPP can be expressed as:

V ar{N i
t} = (λ∗

i + 2k1i)t− 2k1i
k2i

(1− e−k2it)

where:
λ∗
i =

c2iλ1i + c1iλ2i

c1i + c2i

k1i = (λ1i − λ2i)
2 c1ic2i
(c1i + c2i)3

k2i = c1i + c2i
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The second-order properties are determined by this three entities: λ∗
i , k1i and

k2i. The covariance function of the number of arrivals in two time slots of size
Δt is expressed by [21]:

γi(k)=
(λ1i−λ2i)

2c1ic2ie
−((c1ic2i)(k−1)Δt)

(c1i + c2i)4
∗
(
1−2e−((c1i+c2i)Δt)+e−((c1i+c2i)2Δt)

)
=

=
k1i
k2i

e−(k2i(k−1)Δt) ∗
(
1− 2e(−k2iΔt) + e(−k2i2Δt)

)
≈

≈ (Δt)2(λ1i − λ2i)
2c1ic2ie

−((c1i+c2i)(k−1)Δt)

(c1i + (c2i)2
= (Δt)2k1ik2ie

−(k2i(k−1)Δt) .

4 Fitting Procedure for the Self-similar Covariance
Structure

There are two approaches for fitting the family of MAP to observed data:
moment-based approach and likelihood-based approach [31]. The main advan-
tage of moment-based approaches is to reduce computational cost. In such ap-
proaches one determines the MAP model parameters in order to fit theoretical
moments to empirical ones obtained from observed traffic.

The article [21] proposed a fitting method for a superposition of two-state
MAPs (described in Sect. 3) based on Hurst parameter as well as the moments.

For real traffic traces the covariance structure of the counting process is well
described by the asymptotic covariance [21]:

cov(k) = ψcovk
−β

where ψcov jest an absolute measure of the variance, β = 2 − 2H and k is
the lag. The parameters ψcov and β should be estimated from the real data
traces. The objective of the fitting is to achieve:

γ(k) =

d∑

i=1

γi(k) ≈ ψcovk
−β

where 1 ≤ k ≤ 10n and n denotes the number of time scales the model demon-
strate self-similar behavior. The fitting procedure requires the following input
parameters:

λ∗ – the mean rate of the process to be modeled,
n – number of time scales,
d∗ – number of active MMPP’s,
H = 1− β

2 – the Hurst parameter,
ρ – lag 1 correlation.
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The modulating parameters of the MMPP’s have been chosen logarithmically
with a factor a:

c1i = c2i = a1−ic11

for i = 1, . . . , d. The smallest time scale should relate to the packet level so the
fundamental rate has been assumed relative to this time scale: between 1 and
10 [21]. To achieve this, the modulating parameters c11 = c21 have been initially
chosen in the range [0.25, 0.75] (most often to the value 0.4). The parameter a
is dependent on the number of active MMPP’s and number of time scales:

a = 10
n

d−1 .

As was mentioned in Sect. 3, the second-order properties of a superposition
of d MMPPs are determined by this three entities: λ∗

i , k1i and k2i. The arrival
intensities λ1i and λ2i are only involved in k1i through the quantity:

(λ1i − λ2i)
2 .

It is only possible to interpret the superposition of d MMPP’s as a superposition
of d Interrupted Poisson Process (IPP’s) and a Poisson process [21]. With this
interpretation, the IPP’s have arrival intensity:

λIPP
i = λ1i − λ2i .

The Poisson intensity could be determined as:

λp =

d∑

i=1

λ2i .

The fitting procedure requires the following steps:

1. give to the variable β the value: 2− 2H ,
2. give to the number of IPP’s d the value: d∗,
3. give to the variable k21 the value: c11 + c21 (see Sect. 3),
4. give to the variable d0 (the number of φj ’s which were set to 0) the value 0,
5. give to the intensity φd the value 1,
6. give to the variable i the value 1,
7. give to the logarithmic spacing parameter a the value:

10
n

d−1 ,

8. give to the variable D the value:

aiβ −
i−1∑

j=0

(φd−j)
2e1−a−(i−j)

,
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9. if D < 0 then:
give to the intensity φd−i the value 0,
increment a value d0 by one,
if d∗ > d− d0 then: increment a value d by one and go to the step 4,

else: give to the intensity φd−i the value
√
D,

10. increment a value i by one,
11. if i <> d then: go to the step 8,
12. for i = 2 to d do k2i = a1−ik21,
13. if not (k2i < 1ρ < 0.5) then: if necessary adjust k2i and/or ρ,
14. give to the variable η the value:

√
4ρλ∗

√∑d
i=1 φ

2
i k

−2
2i ((1− e−k2i)2 − 2ρ(k2i − (1− e−k2i)))

,

15. give to the variable L the value:

η

d∑

i=1

φi

2
,

16. if λ∗ < L then:
give to the Poisson intensity λP the value 0,
for i = 1 to d do:

give to the model parameter c1i the value:

L2

λ∗2 + L2
k2i ,

give to the model parameter c2i the value k2i − c1i,
give to the arrival intensity λIPP

i the value:

φi
λ∗2 + L2

λ∗ ∑d
i=1 φi

,

else:
give to the Poisson intensity λP the value λ∗ − L,
for i = 1 to d do:

give to the model parameters c1i and c2i the value 0.5k2i,
give to the arrival intensity λIPP

i the value ηφi.

5 Results

As was mentioned in Sect. 4 fitting algorithm requires five input parameters.
Three of them: λ∗ (the mean rate of the process), ρ (lag 1 correlation) and
the Hurst parameter H should be estimated from the real data traces. Real traces
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used in our study comprises of Ethernet traffic data of Bellcore Laboratory [22]
and data captured on the gateway of the Institute of Theoretical and Applied
Informatics (IITiS) of the Polish Academy of Science in Gliwice (Poland).

Bellcore Laboratory data was already interpreted in multiple studies [6, 32,
25]. A dedicated hardware has been built for measuring each packet arrival
and the measurements were performed without losses and with high precision.
The large part of collected data is available by Internet [22]. In this study we
use the file: OctExt.TL. It contains the first million of external arrivals gathered
during 35 hours.

Other data set used in our study has been collected during the whole May
2012 on the Internet gateway of our Institute [23]. The traffic approximately
stands for the few dozen office users (researchers), mainly working Monday–
Friday 8AM–4PM. During May 1–3, there are national holidays in Poland, so
the traffic can be smaller. IP packets were limited to 64 bytes – for most cases
the they contain all headers, plus a few bytes of the transport protocol payload.
The local DNS traffic is not visible, because of specific setup of the network.

The Hurst parameter was estimated by the Aggregated Variance method (see
Sect. 2). Figure 1 presents the normalized variance of the aggregated series as
a function of time scale in log-log coordinates. The slope of IITiS curve (esti-
mated by the least squares method) is equal to −0.42, which gives the Hurst
parameter equal to 0.79. The slope of Bellcore curve is equal to −0.3, which
gives the Hurst parameter equal to 0.85. For comparison, the same plot is also
drawn for the Poisson process. This line has the slope -1, which gives the Hurst
parameter equal to 0.5 (non-self-similar process).

Fig. 1. Variance-time plot; log-log scale (IITiS data, May 2012)
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As was mentioned earlier, the superposition of two-state MMPP’s can be
applied to model traffic exhibiting LRD traffic over a number of time scales. For
LRD processes, the autocovariance decays hyperbolically. Any asymptotically
second-order self-similar process exhibits LRD properties. Each MMPPs models
a specific time scale of data, the volume of traffic modeled by each of the single
two-state sources can be associated with the volume of traffic showing variability
on a given time scale [21]. Figure 2 shows how the autocorrelations of the three
IPP’s behave as a function of lag k. The parameters defining this model are:

λIPP
1 = λIPP

2 = λIPP
3 = 6.0

c11 = c21 = 10−2

c12 = c22 = 10−4

c13 = c23 = 10−6

Figure 3 shows the autocorrelations of the five IPP’s. The parameters defining
this model are:

λIPP
1 = λIPP

2 = λIPP
3 = λIPP

4 = λIPP
5 = 6.0

c11 = c21 = 10−2

c12 = c22 = 10−
7
2

c13 = c23 = 10−5

c14 = c24 = 10−
13
2

c15 = c25 = 10−8

Fig. 2. Autocorrelation of the number of arrivals in a time unit (three IPP’s)
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Fig. 3. Autocorrelation of the number of arrivals in a time unit (five IPP’s)

Tables 1, 2 and 3 present the parameters obtained from the fitting approach
described in Sect. 4. The input parameters defining the asymptotic second-order
self-similarity were selected as an example.

Table 1. Obtained parameters of source fitted to second-order self-similarity with
input parameters: d = 5, n = 6, λ∗ = 3.5, H = 0.6 and ρ = 0.6

λIPP
i c1i c2i

IPP1 27.646 7.241×10−1 7.590×10−2

IPP2 6.944 2.290×10−2 2.400×10−3

IPP3 1.746 7.241×10−4 7.590×10−5

IPP4 0.434 2.290×10−5 2.400×10−6

IPP5 0.119 7.241×10−7 7.590×10−8

Poisson λp = 0

The fitting procedure described in Sect. 4 was also applied to the traces of IP
traffic measured at Bellcore and IITiS. The parameters of the superposition of
two-state MMPP’s was fitted to these obtained from real data traffic. Table 4
gives the parameters defining the model fitted using the set of descriptors ob-
tained from Bellcore trace. The superposition of four MMPP’s is sufficient to
model asymptotic second-order self-similarity of the counting process over five
time-scales. Table 5 gives the parameters obtained for IITiS data traffic traces.
For these trace we have used also the superposition of four MMPP’s.
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Table 2. Obtained parameters of source fitted to second-order self-similarity with
input parameters: d = 5, n = 6, λ∗ = 3.5, H = 0.75 and ρ = 0.6

λIPP
i c1i c2i

IPP1 13.634 6.797×10−1 1.203×10−1

IPP2 5.701 2.150×10−2 3.803×10−3

IPP3 2.475 6.797×10−4 1.203×10−4

IPP4 0.933 2.150×10−5 3.803×10−6

IPP5 0.540 6.797×10−7 1.203×10−7

Poisson λp = 0

Table 3. Obtained parameters of source fitted to second-order self-similarity with
input parameters: d = 5, n = 7, λ∗ = 3.5, H = 0.9 and ρ = 0.5

λIPP
i c1i c2i

IPP1 3.628 5.431×10−1 2.569×10−1

IPP2 2.571 2.162×10−2 1.022×10−2

IPP3 1.913 8.60×10−4 4.071×10−4

IPP4 1.363 3.427×10−5 1.621×10−5

IPP5 1.424 5.431×10−7 2.569×10−7

Poisson λp = 0

Table 4. Obtained parameters of source fitted to the correlation structure of Bellcore
data (input parameters: d = 4, n = 5, λ∗ = 6.3, H = 0.85 and ρ = 0.15)

λIPP
i c1i c2i

IPP1 2.062 4×10−1 4×10−1

IPP2 1.469 8.618×10−3 8.618×10−3

IPP3 0.427 1.857×10−4 1.857×10−4

IPP4 0.602 4×10−6 4×10−6

Poisson λp = 4.020

Table 5. Obtained parameters of source fitted to the correlation structure of IITiS
data (input parameters: d = 4, n = 5, λ∗ = 9.85, H = 0.79 and ρ = 0.0213)

λIPP
i c1i c2i

IPP1 1.086 4×10−1 4×10−1

IPP2 0.508 8.618×10−3 8.618×10−3

IPP3 0.194 1.857×10−4 1.857×10−4

IPP4 0.126 4×10−6 4×10−6

Poisson λp = 8.893



Modeling Packet Traffic 35

6 Conclusions

This paper illustrates how a superposition of two-state MMPP’s can be fitted to
a rate and variance time curve of measured traffic traces. The fitting algorithm
for matching asymptotic second-order self-similarity was described in detail. This
article also shows how to obtain the set of descriptors from real traffic traces using
Bellcore Morristown Laboratory data and IITiS traffic trace. Our future works
will focus on the fitting to additional real traffic descriptors besides second-
order properties of the counting process. We will also try to use other methods
of calculating the Hurst parameter of real data.
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