
Waterfall: Rapid Identification of IP Flows
Using Cascade Classification

Paweł Foremski1, Christian Callegari2, and Michele Pagano2

1 The Institute of Theoretical and Applied Informatics
of the Polish Academy of Sciences,
Bałtycka 5, 44-100 Gliwice, Poland

pjf@iitis.pl
2 Department of Information Engineering, University of Pisa,

Via Caruso 16, I-56122, Italy
{c.callegari,m.pagano}@iet.unipi.it

Abstract. In the last years network traffic classification has attracted
much research effort, given that it represents the foundation of many
Internet functionalities such as Quality of Service (QoS) enforcement,
monitoring, and security. Nonetheless, the proposed works are not able
to satisfactorily solve the problem, usually being suitable for only ad-
dressing a given portion of the whole network traffic and thus none of
them can be considered an ultimate solution for network classification.

In this paper, we address network traffic classification by proposing
a new architecture – named Waterfall architecture – that, by combining
several classification algorithms together according to a cascade principle,
is able to correctly classify the whole mixture of network traffic.

Through extensive experimental tests run over real traffic datasets,
we have demonstrated the effectiveness of the proposal.

Keywords: network management, traffic classification, machine learn-
ing, multi-classification, classifier selection, cascade classification.

1 Introduction

Internet traffic classification – or identification – is the act of matching IP packets
to the applications that generated them [1]. For example, given the packets gen-
erated by the Skype program, a traffic classifier would group the packets in traffic
flows and assign a label of Skype to them [2]. Traffic classification is important
for network management, e.g. for Quality of Service (QoS), routing, and network
diagnostics.

The field of network traffic classification needs a method for integrating re-
sults of various research activities. Many new papers describe methods that in
principle propose a set of traffic features optimized for a set of network protocols
[1–7]. Researchers promote their methods for classifying network traffic, which
are usually quite effective, but none of them is able to exploit all observable
phenomena in the Internet traffic and identify all kinds of protocols.

A. Kwiecień, P. Gaj, and P. Stera (Eds.): CN 2014, CCIS 431, pp. 14–23, 2014.
c© Springer International Publishing Switzerland 2014

Waterfall: Rapid Identification of IP Flows Using Cascade Classification 15

The question arises: could we integrate these approaches into one system, so
that we move forward, building on the achievements of our colleagues? How
would this improve classification systems, in terms of accuracy, functionality,
completeness, and speed? Answering these questions can open new perspectives.
A robust method for combining classifiers can promote research that is more
focused on new phenomena in the Internet, rather than addressing the same old
issues. We need a way to complement and develop our existing methods further.

This paper proposes a new, modular architecture for traffic identification sys-
tems: the Waterfall architecture. In a nutshell, it connects several classification
modules in chain and query them sequentially, as long as none of them replies
with a positive answer – i.e. the first module that identifies a flow wins. Typically,
each module is a specialized and very accurate classifier that targets a subset of
network protocols, i.e. supports the rejection option (the “Unknown” class) [8].
The modules are ordered from the most reliable and specific to the most general
and CPU-intensive. Waterfall follows the scheme of cascade classification, which
is a type of classifier selection approach in the field of multi-classification [9].

The proposed architecture solves the integration problem. Each module can
exploit different traffic features and address different kinds of network protocols,
for example traditional client-server traffic, Peer-to-Peer (P2P), or tunneled traf-
fic. The system can be iteratively extended and updated as new network proto-
cols emerge or new functionality requirements arise. Surprisingly, adding more
classifiers can significantly reduce the total computation time (assuming proper
ordering of the modules), which is the main advantage of Waterfall over popular
classifier fusion approaches, e.g. Behavior Knowledge Space (BKS) [9, 10].

This paper presents a novel method with the following contributions:

1. It is the first application of cascade classification to the field of traffic clas-
sification (to the best of the knowledge of the authors). It represents an al-
ternative to the BKS method (see Sect. 2 and 3).

2. Waterfall lets for integration of independent algorithms and for iterative
development of traffic identification systems, in a way similar to the divide
and conquer algorithm design paradigm (see Sect. 3 and 4).

3. It has an open source implementation in Python that shows excellent perfor-
mance on real traffic and classifies flows in under 10 seconds of their lifetime
(see Sect. 4 and Experiment 1 in Sect. 5).

4. Practical operation shows reduction in computation time with the increase
in the number of modules, and that majority of traffic can be successfully
classified using simple methods (see Experiments 1 and 2 in Sect. 5).

5. Proposes a new avenue for the future directions in the field of traffic classi-
fication (see Sect. 6, which concludes the paper).

2 Background

A naïve approach to the integration problem would be to survey recent papers
for traffic features and apply them as long feature vectors classified with a de-
cent machine learning algorithm. Even with adequate techniques employed, this

16 P. Foremski, C. Callegari, and M. Pagano

could quickly lead us to the curse of dimensionality [8]: an exponential growth
in the demand for training data as the feature space dimensionality increases.
Besides, network flows differ in the set of available features, e.g. only a part
of Internet flows evoke DNS queries [3]. Some features need more packets to be
computed, e.g. port number is available after 1 packet, whereas payload statistics
need 80 packets in [6]. This means that different tools are needed for different
protocols: some flows can be classified immediately using simple methods, while
others need more sophisticated analysis. Finally, from the software engineering
point of view, a big, monolithic system could be hard to develop and maintain.

Instead, researchers adopt multi-classification – in particular the BKS com-
bination method that fuses outputs of many classifiers into one final decision.
In principle, the idea behind BKS is to ask all classifiers for their answers on
a particular problem x and then query a look-up table T for the the final de-
cision. The table T is constructed during training of the system, by observing
the behavior of classifiers on a labeled dataset. For example, if an ensemble of
3 classifiers replies (A,B,A) for a sample with a ground-truth label of B, then
the cell in T under index (A,B,A) is B (see [9], pp. 128). This powerful tech-
nique can increase the performance of traffic classification systems – as shown
by Dainotti et al. in [10] – but comparing to Waterfall, it inherently requires all
modules to be run on each traffic flow, with the drawback that the more modules
are used, the more processing power is required.

In this paper, the idea of cascade classification is employed, which is also
a multi-classifier, but so far it was not applied to traffic classification. Interest-
ingly, L. Kuncheva in her book on multi-classification writes “Cascade classifiers
seem to be relatively neglected although they could be of primary importance
for real-life applications.” (in [9], pp. 106). This paper picks up this thought.

3 The Waterfall Architecture

The Waterfall idea is presented in Fig. 1. The input to the system is an IP flow
in form of a feature vector x, which contains all the features required by all
the modules, but a particular module will usually use only a subset of x.

The system sequentially evaluates selection criteria that decide which clas-
sification modules to use for the problem x. If a particular criterion is fulfilled,
the associated module is run. If it succeeds, the algorithm finishes. Otherwise,
or if the criterion was not satisfied, the process advances to the next step.
When there are no more modules to try, the flow gets rejected and is labeled as
“Unknown”. More precisely,

Deci(x) =

{
Classi(x) Criti(x) satisfied ∧ Classi(x) successful
Deci+1(x) otherwise

, (1)

Decn+1(x) = Reject , (2)

where Deci is the decision taken at step i = {1, 2, . . . , n}, n is the number of
modules, Classi(x) is the protocol identified by the module i, and Criti(x) is
the associated criterion.

Waterfall: Rapid Identification of IP Flows Using Cascade Classification 17

Fig. 1. The Waterfall architecture. A flow enters the system and is sequentially exam-
ined by the modules. In case of no successful classification, it is rejected.

The selection criteria are designed to skip ineligible classifiers quickly. For
example, in order to implement a module that classifies traffic by analyzing
the payload size of the first 5 packets in a flow, the criterion could check if at
least 5 data packets were sent in each direction. If this condition is true, a ma-
chine learning algorithm could be run to identify the network protocol. Probably,
a huge amount of IP flows would be skipped, saving computing resources and
avoiding classification with an inadequate method. On the other hand, if a flow
satisfies this criterion, it would be classified with a method that does not need
to support corner cases. The selection criteria are optional, i.e. if a module does
not have an associated criterion, it is always run.

4 Practical Implementation

A system using the Waterfall architecture was created and is available as open
source1. It was implemented in the C and Python languages in two parts: Flow-
calc, which prepares the flow feature vectors in form of ARFF files, and Mutrics2,
which classifies the flows. The Mutrics classifier has several modules, described
below.

1. dstip: classification by destination IP address. During training, the module
observes which remote destinations uniquely identify network protocols. If
such particular IP address is popular enough, it is used as a rule for quick
protocol identification by single lookup in a hash table.

2. dnsclass: classification by DNS domain name of the remote host. In [3],
the authors described how to obtain the textual host names associated with

1 See http://mutrics.iitis.pl/
2 The name comes from “Multilevel Traffic Classification”.

http://mutrics.iitis.pl/

18 P. Foremski, C. Callegari, and M. Pagano

network flows and how to use this information for traffic classification. This
module implements the DNS-Class algorithm and extends it with a mecha-
nism for detecting unknown protocols. The selection criterion checks if a par-
ticular flow has an associated DNS name or is a DNS query-response flow.

3. portsize: classification by the port number and packet size. In a way similar
to dstip, the module observes which tuples of transport protocol, port num-
ber, and payload size of the first packets in both directions uniquely identify
network protocols. Popular tuples are stored in a hash table. The selection
criterion checks if the flow feature vector contains packet payload sizes.

4. npkts: classification by packet sizes. The module uses payload sizes of the
first 4 packets in both directions, plus the transport protocol and the port
number. It employs the random forest machine learning algorithm, which
itself is a multi-classifier ensemble that combines many decision trees [9, 8].
The selection criterion is the same as for portsize.

5. port: classification by the port number. The module uses the classic pair
of transport protocol and port number to find the pairs that uniquely and
reliably identify network protocols, similarly to dstip and portsize. Clas-
sification requires a single lookup in a hash table.

6. stats: classification by flow statistics. The module uses the same machine
learning algorithm as npkts. As features, it uses the following statistics
of packet sizes and inter-arrival times in both directions: the minimum,
the maximum, the average, and the standard deviation – i.e. a total of 16
statistics.

The Flowcalc part of the system, responsible for computing the feature vectors,
was limited to only consider the first 10 seconds of traffic in each flow. This
simulates a real-time scenario in which the network protocol must be identified
in given time limit. All experiments presented in the next section were run with
such constraints to demonstrate real-time traffic classification.

5 Experiments

In this section, the results of two experiments are presented: 1) classification
performance on real network traffic, and 2) effect of adding new modules. First,
the methodology is described below.

Four traffic datasets were used for experimental validation: a) Asnet1, col-
lected at a Polish ISP company serving <500 residential customers, b) Asnet2,
collected at the same network, c) IITiS1, collected from the network of the IITiS
institute serving <50 academic users, and d) Unibs, collected from the campus
network of the University of Brescia serving 20 workstations3. The Asnet1 and
Asnet2 datasets were collected at the same gateway router, but with a time gap
of 8 months. The Asnet1 and IITiS1 datasets were collected at different net-
works, but at the same time. The Unibs dataset was collected a few years earlier
than the other datasets, contains no packet payload, and has the IP addresses
anonimized. Details are presented in Table 1e.
3 Downloaded from http://www.ing.unibs.it/ntw/tools/traces/

http://www.ing.unibs.it/ntw/tools/traces/

Waterfall: Rapid Identification of IP Flows Using Cascade Classification 19

Table 1. Experiment 1: classification performance and the datasets. Metrics for vali-
dation on 4 real traffic datasets: a) Asnet1, b) Asnet2, c) IITiS1, and d) Unibs. Part
e) presents details on the datasets used in the paper.

For establishing the ground-truth labels on the datasets a)–c), Deep Packet
Inspection (DPI) was employed. DPI is not perfect – as shown by Dusi et al. [11]
– but it is the most popular method used in the literature, and often the only
practically available. The libprotoident v. 2.0.7 was used as the DPI software
(reported to offer very good accuracy in [12]). The Unibs dataset already con-
tained ground-truth and was not suitable for DPI because of no payload data.

20 P. Foremski, C. Callegari, and M. Pagano

Finally, the datasets were sanitized by dropping flows that had no data trans-
mitted in both directions, e.g. incomplete TCP sessions and empty UDP flows.
The datasets contain different subsets of network protocols (see Table 1).

For measuring the classification accuracy for a given protocol p, the popular
%TPp and %FPp metrics were employed:

%TPp =
|TPp|
|Fp| · 100% , %FPp =

|FPp|
|F ′

p|
· 100% , (3)

where TPp is the set of true positives for protocol p, Fp is the set of all testing
flows for protocol p that were classified, FPp is the set of false positives for p, and
F ′
p is the set of all testing flows for all protocols except p that were classified. For

evaluating the overall accuracy, the average values of these metrics were used –
the %TP and %FP metrics – which were complemented with the %Unk metric
that measures the amount of rejected flows:

%Unk =
|U |
|F | · 100% , (4)

where U is the set of rejected flows, and F is the set of all testing flows.
For dividing the data into training and testing parts, a 60%/40% split was

used on Asnet1 and on Unibs, i.e. 60% of their flows were randomly selected for
training, and 40% for testing. The classifier trained on Asnet1 was validated on
the rest of Asnet1 (to evaluate the “classical” classification performance), and
on the whole Asnet2 and IITiS1 datasets (so as to demonstrate stability in time
and space). The classifier trained on Unibs was validated only on the rest of
the Unibs dataset: this tested operation on a trace without packet payloads.

In the Experiment 1, the system was evaluated for classification performance
on the datasets a)-d), with 5 modules enabled: dstip, dnsclass, portsize,
npkts, and port. For the Unibs dataset, stats was used instead of dnsclass,
because this dataset had no DNS payload packets.

The results in form of confusion matrices and performance metrics are pre-
sented in Table 1, parts a)–d). For all datasets, the %TP and %FP metrics were
close to 100 % and 0 % respectively, which indicates high classification perfor-
mance of the system. The classifier successfully identified all protocols, includ-
ing: BitTorrent, Skype, Kademlia, SSH, STUN, WWW, and more. For the IITiS1
dataset, the system made no errors in classifying over 1.5 million flows; for other
datasets, the number of errors was well below 0.1%. The %Unk metric was 0.1 %,
0.4 %, 1.1 %, and 1.4 %, for Asnet1, Asnet2, IITiS1, and Unibs, respectively –
i.e. almost all flows were classified.

Figure 2 shows traffic progress through the system: the figure presents the
percentage of IP flows at the input of successive modules. An IP flow leaves
the system as soon as it gets classified, so the figure visualizes how many flows
get through the end of the waterfall. It is apparent that the amount of traffic that
a particular module can classify depends on the dataset. For all datasets, more
than half of the flows were classified using simple methods – namely the dstip,
dnsclass, and portsize modules – without the need to run the npkts module,
which employs a sophisticated machine learning algorithm.

Waterfall: Rapid Identification of IP Flows Using Cascade Classification 21

Fig. 2. Experiment 1: amount of traffic passing through successive waterfall steps, for
datasets: a) Asnet1, b) Asnet2, c) IITiS1, and d) Unibs. The classifier works with
5 modules enabled; “dns” means dnsclass and “portsz” means portsize.

In the Experiment 2, the effect of increasing the number of modules was stud-
ied. The system started in configuration with only one module present: the npkts
module, which is CPU intensive. In each iteration, one new module was added –
usually at the front of the waterfall – and the whole system was given the task

Fig. 3. Experiment 2: effect of adding modules on computation time (bars) and on
the number of unknown flows (lines): a) Asnet1, b) Asnet2, c) IITiS1, and d) Unibs

22 P. Foremski, C. Callegari, and M. Pagano

of classifying the same dataset. The experiments were run in separation of each
other, on a single core of an Intel Core i7 machine4 (i.e. single-threaded im-
plementation). The time needed to finish the computations was measured rela-
tively to the first run. The amount of unclassified flows was measured in absolute
numbers.

The results are displayed in Fig. 3. The computation time generally decreased
with new modules being enabled. The modules were added in the following order:
npkts, dnsclass, portsize, dstip, and port – that is, from most to least CPU
demanding. Motivation for this was to resemble a scenario in which a generic
classification algorithm is iteratively augmented with specialized methods. In
each iteration, the number of unclassified flows dropped. The %TP and %FP
metrics were stable and close to perfect values.

6 Conclusions

This paper presented Waterfall – a novel, modular architecture for traffic classi-
fication that lets for integration of many algorithms and exhibits a decrease in
the total computation time with new modules being added. A practical, open
source implementation of the system – the Mutrics classifier – showed very good
performance results on 4 real traffic datasets, in a scenario that resembles real-
time traffic classification. The paper experimentally proved that the majority
of IP flows can be immediately classified using simple methods, which exploit
traffic features like destination IP address, DNS domain name, and packet size.

The paper concludes with a positive answer to the question whether many
independent traffic classification algorithms could be integrated, giving good
results in terms of many metrics. The Waterfall architecture – together with the
open source Mutrics classifier – are a basis for future developments.

The paper presented an alternative to the classifier fusion approach, recently
introduced in the field of traffic classification. The main conclusion is that cas-
cade classification is less computationally demanding than e.g. the BKS method.
The future research could focus on a more detailed comparison between classifier
fusion and classifier selection in context of traffic classification. Another interest-
ing problems are the optimal selection of training instances for the classification
modules (in accordance with their criteria), and the proper sequence of modules
in the cascade.

Acknowledgments. This work was funded by the Polish National Science Cen-
tre, under research grant nr 2011/01/N/ST6/07202: project “Multilevel Traf-
fic Classification”, http://mutrics.iitis.pl/. This paper closes the project.
The Asnet1 and Asnet2 traffic traces were collected thanks to ASN Sp. z o.o.,
http://www.asn.pl/.

4 Intel Core i7-930 2.80 GHz, 8GB RAM, 128 GB SSD.

http://mutrics.iitis.pl/
http://www.asn.pl/

Waterfall: Rapid Identification of IP Flows Using Cascade Classification 23

References

1. Foremski, P.: On different ways to classify Internet traffic: a short review of selected
publications. Theoretical and Applied Informatics 25(2) (2013)

2. Adami, D., Callegari, C., Giordano, S., Pagano, M., Pepe, T.: Skype-Hunter: A real-
time system for the detection and classification of Skype traffic. International Jour-
nal of Communication Systems 25(3), 386–403 (2012)

3. Foremski, P., Callegari, C., Pagano, M.: DNS-Class: Immediate classification of IP
flows using DNS. International Journal of Network Management (accepted, 2014)

4. Fiadino, P., Bär, A., Casas, P.: HTTPTag: A Flexible On-line HTTP Classification
System for Operational 3G Networks. In: International Conference on Computer
Communications, INFOCOM 2013. IEEE (2013)

5. Bermolen, P., Mellia, M., Meo, M., Rossi, D., Valenti, S.: Abacus: Accurate behav-
ioral classification of P2P-TV traffic. Computer Networks 55(6), 1394–1411 (2011)

6. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: Stochastic packet inspection
classifier for udp traffic. IEEE/ACM Transactions on Networking 18(5), 1505–1515
(2010)

7. Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Tunnel hunter: Detecting
application-layer tunnels with statistical fingerprinting. Computer Networks 53(1),
81–97 (2009)

8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. John Wiley & Sons
(2012)

9. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley
(2004)

10. Dainotti, A., Pescapé, A., Sansone, C.: Early classification of network traffic
through multi-classification. Traffic Monitoring and Analysis, 122–135 (2011)

11. Dusi, M., Gringoli, F., Salgarelli, L.: Quantifying the accuracy of the ground truth
associated with Internet traffic traces. Computer Networks 55(5), 1158–1167 (2011)

12. Bujlow, T., Carela-Espanol, V.: Comparison of Deep Packet Inspection (DPI) Tools
for Traffic Classification. Technical report, Polytechnic University of Catalonia
(2013)

	Waterfall: Rapid Identification of IP Flows Using Cascade Classification
	1 Introduction
	2 Background
	3 The Waterfall Architecture
	4 Practical Implementation
	5 Experiments
	6 Conclusions
	References

