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Abstract. This paper provides description of a text dependent speaker
recognition system based on vector quantization approach. The scope of
this paper is to check influence of feature dimensionality and the com-
plexity of the speaker model on verification process. Provided results
show that MFCC features yield the lowest possible verification errors
among all tested parameters. Although dimensionality of feature vectors
is important, there is no need to increase it above some level as the
improvement in verification performance is relatively low and computa-
tional complexity increases. Far more important than dimensionality is
complexity of the speaker model.

Keywords: biometrics, security, speaker verification, voice identifica-
tion, feature extraction.

1 Introduction

Division of Telecommunication, a part of the Institute of Electronics and Fac-
ulty of Automatic Control, Electronics and Computer Science of the Silesian
University of Technology, for many years specializes in speech and speaker recog-
nition [1–4]. One of the results of conducted research is presented in this paper
which is devoted to speaker verification.

Speaker recognition is the process of automatically recognizing who is speak-
ing by analysis speaker-specific information included in spoken utterances. This
process encompasses identification and verification. The purpose of speaker iden-
tification is to determine the identity of an individual from a sample of his or
her voice and it can be divided into two main categories, i.e. closed-set and
open-set. In a closed-set identification there is an assumption that only regis-
tered speakers have an access to the system which makes a decision 1 from K,
where K is the number of previously registered speakers. In an open-set iden-
tification there is no such an assumption so the identification system has to
determine whether the testing utterance comes from a registered speaker or not
and if yes it should determine his or her identity. The purpose of speaker ver-
ification is to decide whether a speaker is whom he claims to be. Most of the
applications in which voice is used to confirm the identity claim of a speaker are
classified as speaker verification. Speaker recognition systems can also be divided
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into text-dependent and text-independent. In text-dependent mode the speaker
has to provide the same utterance for training and testing, whereas in text-
independent systems there are no such constraints. The text-dependent systems
are usually based on template matching techniques in which the time axes of
an input speech sample and each reference template are aligned and the similarity
between them is accumulated from the beginning to the end of the utterance.
Because these systems can directly exploit voice individuality associated with
each phoneme or syllable, they usually achieve higher recognition performance
than text-independent systems [5].

The paper is organized in the following way. At first fundamentals of speaker
verification are discussed, next feature parameters and construction of speaker
model are presented. At last achieved speaker verification results for the given
dimensionality and complexity of the speaker model are shown.

2 Speaker Recognition

Basic structure of speaker verification system is shown in Fig. 1. Speech signal
is cut into short fragments, which usually last for 20–30 ms known as speech
frames. Feature extraction is responsible for extracting from each frame a set
of parameters known as feature vectors. Extracted sequence of vectors is then
compared to speaker model (in verification) or speaker models (in identification)
by pattern matching. The purpose of pattern matching is to measure similarity
between test utterance and speaker model. In identification an unknown speaker
is identified as the speaker whose model best matches the test utterance. In
verification the similarity between input test sequence and claimed model must
be good enough to accept the speaker as whom he claims to be. As a result,
verification requires choosing decision threshold. If computed distance is less
than this threshold, a decision can be made that the speaker is whom he claims
to be. How to find an optimum value of this threshold still remains a problem for
scientist [6]. Another very desired property of this threshold is its independence
of a speaker, which means that there is one threshold for all speakers. Since
these problems are not solved satisfactorily, they still remain very important
research issues, apart from problem of finding the best set of speech parameters,
which must be studied further to make an improvement in speaker recognition
technology.

Feature

extraction
Decision

ThresholdModel (speaker M)

Speech

signal

Speaker ID

Similarity
Accept/ Reject

Fig. 1. Speaker verification scheme
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3 Feature Parameters

One of the most important procedures in speaker recognition is feature extrac-
tion. The extracted parameters should have high speaker discrimination power,
high interspeaker variability and low intraspeaker variability. Only such param-
eters guarantee very good speaker recognition results. Although there are a lot
of techniques for extracting speaker specific information from the speech sig-
nal, probably the most important are features based on frequency spectrum of
the speech as linear prediction coefficients LPC and parameters derived from
them like LPC cepstrum known as LPCC fetaures.

3.1 LPC Parameters

Calculation of these parameters is based on the linear model for speech pro-
duction shown in Fig. 2, where the glottal pulse, vocal tract and radiation are
individually modeled as linear filters.

Noise
generator

G

Vocal tract
model
V(z)

s(n)
voiced

unvoiced

Impulse
generator

Radiation
model
R(z)

Fig. 2. The linear model of speech production

The source is either a random sequence for unvoiced sounds or a quasi-periodic
impulse sequence for voiced sounds. The gain factor G controls the intensity of
the excitation. The vocal tract is modeled by transfer function V (z) whereas
the radiation model R(z) describes the air pressure at the lips. Combining these
parts of the vocal tract yields an all-pole transfer function

H(z) = G(z)V (z)R(z) =
G

A(z)
, (1)

H(z) =
G

A(z)
=

G

1−
p∑

k=1

akz−k

, (2)
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where p is the prediction order and ak are predictor coefficients. The LPC model
of the speech signal specifies that a speech sample s(n) can be represented as
a linear sum of the p previous samples plus an excitation term

s(n) =

p∑

k=1

aks(n− k) +Gu(n) . (3)

As in speech applications the excitation term is usually unknown it is ig-
nored and the LPC approximation of s(n) depends only on the past output
samples. Unfortunately some speaker specific information is included in the ex-
citation term (e.g. fundamental frequency) which affects on the performance of
the LPC based speaker recognition systems. Since vocal-tract changes its con-
figuration over time, in order to model it, the predictor coefficients ak must be
computed adaptively over short intervals (10 ms to 30 ms) called frames during
which time-invariance is assumed. There are two standard methods of solving
for the predictor coefficients: autocorrelation and covariance method. Both of
them are based on minimizing the mean-square value E of the prediction error
e(n) which is the difference between the actual and the predicted value of the
speech sample

E =

N−1+p∑

n=0

e2(n) =

N−1+p∑

n=0

[

s(n)−
p∑

k=1

aks(n− k)

]2

. (4)

The ak parameters can be found after solving the linear equations resulting
from

∂E

∂ai
= 0 , i = 1, 2, . . . , p . (5)

Assuming that speech samples outside the frame of interest are zero and defining
the autocorrelation function as

r(τ) =

N−1−τ∑

i=0

s(i)s(i+ τ) , (6)

where N is the number of samples in a frame, the autocorrelation method yields
the Yule-Walker equations given by [7]
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Since the matrix is Toeplitz, a computationally efficient algorithm known as
the Levinson-Durbin recursion can be used to find the predictor coefficients.
During this iterative procedure also other useful features known as reflection
coefficients RC are found.
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3.2 Cepstral Parameters

Cepstrum, defined as the inverse Fourier transform of the log of the signal spec-
trum, is an important spectral representation for speech and speaker recognition.
It can be calculated from LPC coefficients or from the filter-bank spectrum. In
the first case it is known as the LPC based cepstral coefficients LPCC. In the lat-
ter case as a mel frequency cepstral coefficients MFCC.

LPCC parameters can be calculated from the transfer function of the vocal
tract H(z) in (1) which requires calculating poles of the H(z), or more compu-
tationally efficient recursion formula is used [7]

clp(n) =

⎧
⎪⎪⎨

⎪⎪⎩

an +
n−1∑

k=0

k
nan−kclp(k), 1 ≤ n ≤ p ,

n−1∑

k=n−p

k
nan−kclp(k), n > p .

(8)

The LPC based cepstrum has many interesting properties. It is causal for
the minimum phase H(z) and of infinite duration. As the cepstrum represents
the log of the signal spectrum, signals represented as the cascade of two effects
which are products in the spectral domain are additive in the cepstral domain.
This property of separability of pitch excitation and vocal tract is considered as
one of the reasons that cepstral parameters are more effective for speaker recog-
nition than other representations of speech signal. Another interesting property
is the fact that clp(n) decays as fast as 1/n as n approaches +∞ so the feature
vector consists of the finite number, most significant components clp(1) to clp(x),
where x ≈ 1.5p.

MFCC parameters are based on the nonlinear human perception of the fre-
quency of sounds. They can be computed as follows: window the signal, take
the FFT, take the magnitude, take the log, warp the frequency according to
the mel scale and finally take the inverse FFT. Mel warping transforms the fre-
quency scale to place less emphasis on high frequencies [8].

4 Pattern Recognition

Since speaker recognition is based on similarity calculation between test utter-
ance and the reference model, it is obvious that the problem of construction
of the good model is crucial. The simplest approach to this problem but also
the most computationally demanding during recognition process is to store in
a memory all feature vectors extracted from the speech during training of the
system. As speech is a very redundant signal, it can be easily seen that for text-
independent recognition, which requires providing a lot of training speech to find
a speaker model, it consists of thousands of multidimensional vectors. Computa-
tional efficiency of such model is very low. In order to compute distance between
such model and vectors extracted from the test speech it is necessary to find for
each test vector the most similar vector, known as a nearest neighbor NN, from
the model.
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Another method used for representing speaker in a speaker recognition system
is based on vector quantization VQ. Speaker is represented as a set of several
(less than 100) vectors that possibly in the best way represent speaker. This set
of vectors is called a codebook. In this case during recognition each test vector is
compared with its nearest neighbour from the codebook and the overall distance
for the whole test utterance is computed. Calculation of normalized distance D
for M frames of speech is given by

D =
1

M

M∑

i=1

min(d(xi, cq)) 1 ≤ q ≤ L , (9)

where xi is a test vector and cq a code vector from a codebook of size L. As
it can be seen for M frames and L code vectors its necessary to calculate ML
distances. The most often used measure of similarity is an Euclidean distance

d(xi, cq) =

p∑

k=1

(xi(k)− cq(k))
2 (10)

where p is a dimension of a vector. VQ method is faster than NN technique,
but unfortunately requires to find a codebook for each speaker, whereas in NN
method a model consists just of all vectors. How to find the best codebook for
speaker from a lot of training data? To solve this problem a kind of clustering
technique is required, which can find a small set of the best representative vec-
tors of a speaker. One of applied algorithms are k-means and Linde Buzo Gray
procedure.

K-means algorithm is an iterative procedure and consists of four major steps.
At first arbitrarily choose L vectors from the training data, next for each training
vector find its NN from the current codebook, which corresponds to partitioning
vector space into L distinct regions. The third step requires updating the code
vectors using the centroid of the training vectors assigned to them and the last
step – repeat steps 2 and 3 until some converge criterion is satisfied. The converge
criterion is usually an average quantization error expressed in the same way as
in (9) with an exception that xi is a training vector.

Although k-means training method works well, it is even better to design
a codebook in steps by using a splitting procedure, which leads to LBG algo-
rithm. It starts with one cluster, which is the centroid of all training vectors,
and then the code vector is split into two, c0 + δ and c0 − δ, where δ is a small
perturbation vector. With these two clusters k-means procedure is run. After
the averaged distortion reaches steady level, the codebook is split again and the
new codebook is trained with k-means method. This splitting is repeated until
the desired codebook size is reached.

5 Speaker Verification in Matlab

All research was done on Polish database ROBOT [9]. This database consists
of 2 CD with 1 GB of speech data. The speech utterances were collected from
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30 speakers of both sex in a several time-separated sessions to catch intraspeaker
variability. Main specifications of ROBOT are the following: sampling frequency
22 kHz, language – Polish, quantization 16 bit, file format “.wav”, lack of files
compression, recording environment – quiet, each file is preceded and followed
by the silence. Recorded utterances consist of the words belonging to three dic-
tionaries (L1, L2, and L3). Words in L1 and L3 are numbers from 0 to 9 and
10 to 99 respectively. Dictionary L2 consists only from commands used in robot
control (start, stop, left, right, up, down, drop, catch, angle). These dictionaries
were used to construct seven different sets of utterances Z1. . . Z7.

During training and testing of the speaker verification system the same sig-
nal processing procedure was used. Speech files, before feature extraction, were
processed to remove silence. Voice activity detection was based on the energy
of the signal. Next signal was preemphasized with a standard parameter of
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Fig. 3. Influence of feature dimensionality on speaker verification
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α = 0.95 and segmented into 10 ms frames every 5 ms. Hamming windowing
was applied. For each frame LPC analysis was applied to obtain LPC and RC
coefficients. LPC parameters were then transformed into LPCC coefficients using
Equation (8). From each frame MFCC parameters were also computed. All ut-
terances from Z3 set were used to obtain model of each speaker. Each model was
constructed from approximately 90 s of speech after silence removing. Text de-
pendent speaker verification was implemented. All test utterances were from Z4
(combination of numbers from Z3 set). Each speaker provided 11 test sequences
of approximately 5 s each. As a result there were 9900 verification trials – 330
valid trails (30*11) and 9570 impostor trials (30*11*29) for each combination of
dimensionality of the feature vector and the size of the speaker model.

In order to check the influence of dimensionality, testing was done for the
prediction order p equal to 4, 8, 12, 16, 20, 24, and 28. Actual dimensionality
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for the LPC and RC feature vectors were equal to p but for cepstral parameters
(LPCC and MFCC) was 1.5p (6 to 42). LBG procedure was applied to obtain
codebooks for each speaker. In order to check the influence of model size L,
testing was done for the codebooks consisting of 2, 4, 8, 16, 32 and 64 code
vectors.

Verification performance was characterized in terms of the two error mea-
sures, namely the false acceptance rate FAR and false rejection rate FRR. These
measures correspond to the probability of acceptance an impostor as a valid user
and the probability of rejection of a valid user. Changing the decision level, DET
curves which show dependence between FRR and FAR can be plotted. Another
very useful performance measure is an equal error rate EER which corresponds
to error rate achieved for the decision threshold for which FRR=FAR. In other
words EER is just given by the intersection point of the main diagonal of DET
plot with DET curves.

Achieved results for the most complex model (L = 64 code vectors per speaker)
as a function of dimensionality of the feature vectors p were shown in Fig. 3.
Achieved results for the highest dimensionality (p = 28 parameters extracted from
each segment of the utterance) as a function of model complexity L were shown
in Fig. 4. The best achieved results of speaker verification were shown in Fig. 5.
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6 Conclusion

The lowest FRR and FAR errors were achieved for the MFCC parameters (Fig. 5)
For the best combination of dimensionality and complexity of the model (p = 28
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and L = 64) achieved EER = 0.27% is definitely better than EER = 1.55%
for LPCC, EER = 2.42% for RC and EER = 6.43% for LPC features. Such
low error rate indicates that for limited number of speakers and high quality
of speech, speaker verification may be implemented as an additional level in
security systems or which is the final goal of this research may be implemented in
a mobile phone. What is interesting is the fact that there is no need to increase
dimensionality of feature vectors above some level. From the Fig. 3 optimum
value of p may be estimated as between 12 and 20 for the MFCC and LPCC.
Much more important than dimensionality is complexity of the model which was
shown in the Fig. 4. Error rates are highly dependent on the number of code
vectors per speaker model. Summarizing if enough learning data is available, the
more code vectors per speaker the better.
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