Modelling of Half-Duplex Radio Access
for HopeMesh Experimental WMN
Using Petri Nets

Remigiusz Olejnik

West Pomeranian University of Technology, Szczecin
Faculty of Computer Science and Information Technology
ul. Zoierska 49, 71-210 Szczecin, Poland
r.olejnikQieee.org

Abstract. The article presents a problem of shared access to a radio
channel in an experimental Wireless Mesh Network. Half-duplex radio
access algorithm used by the radio modules used in the network has been
shown, then the access problem has been thoroughly defined. Finally
a shared radio channel access problem has been modelled using Petri
nets.

Keywords: Wireless Mesh Network, Petri net, wireless networks.

1 Introduction

According to Akyildiz [1] “a Wireless Mesh Network (WMN) consists of mesh
routers and clients where mesh routers have minimal mobility and form a mesh of
self-configuring, self-healing links among themselves”. The article presents a half-
duplex radio access algorithm used by the radio modules in the experimental
HopeMesh wireless mesh network along with proposal of its modelling using
Petri nets.

HopeMesh experimental Wireless Mesh Network is composed of simple nodes
based on AVR ATmegal62 microcontroller with external 62256 SRAM memory
chip that offers additional 32 KiB and HopeRF RFM12B radio module. Available
memory can keep routing data for a maximum number of 2838 nodes — one entry
in the network routing table needs of a total 11 bytes. The network stack for the
network has been described in another paper in this volume.

2 Half-Duplex Radio Access

2.1 Problem Definition

The implementation outlined in [2] used an identical (physically) blocking imple-
mentation in order to send or receive data via the RFM12B hardware module.
Listing 1.1 shows the algorithm used for sending data.

A. Kwiecien, P. Gaj, and P. Stera (Eds.): CN 2014, CCIS 431, pp. 108-117, 2014.
© Springer International Publishing Switzerland 2014



Modelling of Half-Duplex Radio Access for HopeMesh Experimental WMN 109

Listing 1.1. Sender routine for the RFM12B hardware module [2]
void rfTx(uint8 t data)

{
while (WAIT NIRQ_LOW () )
rfCmd (0xB800 + data);

This implementation physically blocks the main loop the same way as the
UART algorithm shown in [2|. In this case the algorithm does not wait for
the status of an internal register to send data but rather waits for the external
nIRQ pin from the RFM12B hardware module to go low. The official “RFM12B
programming guide” [3] also proposes a physically blocking algorithm.

The goal of this paper is to show improvement of the algorithm in a sim-
ilar fashion as the UART algorithm. The nIRQ pin of the RFM12B was con-
nected to the INTO pin of the ATmegal62 microprocessor allowing to execute the
SIG_INTERRUPTO interrupt service routine asynchronously. But it turned out
that the implementation could not be reused at all. The RFM12B radio hardware
imposes the following algorithmic challenges for the driver implementation:

— Single interrupt request for multiple events. The RFM12 radio module
uses only one nIRQ pin in order to generate an interrupt for the following
events [4]:

e The TX register is ready to receive the next byte (RGIT).

e The RX FIFO has received the preprogrammed amount of bits (FFIT).
The state management has to be implemented in software otherwise the cur-
rent state of operation (sending or receiving) is undefined.

— Half-Duplex operation. The RFM12 radio module only allows either to
receive or to send data at a time but not simultaneously.

The operation of the RFM12B driver algorithm was abstracted as a (pro-
to)thread. Interestingly enough the thread has a state modelled as a state ma-
chine depending whether it receives or sends data. The following states are valid:

— RX: the receiving state — the thread (logically) blocks until a complete
packet has been received. Whether a packet is complete or not depends on
the upper network stack layers.

— TX: the sending state — the thread (logically) blocks until a complete packet
has been sent. Again the upper network stack layers decide whether the
transmission is complete or not.

The abstract algorithm is shown in Algorithm 1. Receiving data is non-
deterministic. A packet can arrive at any time and thus the invocation of the
SIG_INTERRUPTO interrupt service routine. Therefore the algorithm sets the
RX state as the default state for the radio thread. After receiving the whole
packet the driver has to signal the receiver thread that it can process the packet.

Sending data on the other hand is deterministic. When a user hits the En-
ter key via the UART module a packet can be constructed. A sender thread



110 R. Olejnik

Algorithm 1. RFM12B driver thread algorithm

while true do
if state is RX then
receive data
signal completion to receiver thread
else if state is TX then
send data
signal completion to sender thread
end if
set state to RX
end while

has to inform the radio driver thread to change its state to TX and wait un-
til the packet has been fully transmitted. It was implemented as a concurrency
problem between three threads and a single resource:

— Sender Thread: inside the main loop — wants to acquire the control over
the radio module until the transmission of a packet is complete.

— Receiver Thread: inside the main loop — wants to acquire the control over
the radio module until the reception of a packet is complete.

— Radio Thread (ISR): also wants to acquire the control over the radio
module until the packet reception is complete if it is in the RX state or until
the packet transmission is complete if it is in the TX state.

— Single resource: in this case is the radio module; only one thread at a time
can own the radio hardware resource.

The question is who controls the state of the radio thread and who and when
acquires and releases the lock on the single resource (the radio module). This is
rather a complicated algorithm which needs further research and investigation.
The solution to this problem is presented in the paper.

2.2 Petri Net Model

The purpose of the model is to validate the correct behaviour of the complete
algorithm. The most common models for parallel processing are: Process cal-
culus, Actor model and Petri nets.

The Petri net [5,6] model has been chosen, well known from modelling of
RTOS systems [7]. This solution allows also for a visual modelling of the concur-
rent algorithm. Many different formal definitions for Petri nets exists. According
to Peterson [5] a Petri net is composed of:

— A set of Places P = {p1,p2,...Dn}-

— A set of Transitions T = {t1,ta,...tm}.

— An input function I who maps from a transition ¢; to a collection of input
places I(t;) = {po,p1,...,Di}

— An output function O who maps from a transition ¢; to a collection of output

places O(t;) = {po,p1, ..., Po}-



Modelling of Half-Duplex Radio Access for HopeMesh Experimental WMN 111

The dynamic behaviour of a Petri net can be modelled using marking. A
marked Petri net contains one or more tokens which can only reside inside places
(not transitions). Peterson [5] expresses the marking of a Petri net as a vector
= {1, p2, - - - , fby, which stores the number of tokens for each place p; in a Petri
net. The marking of a Petri net is not constant through the life-cycle but rather
changes over time. The change of a marking will be expressed as a token move-
ment from a place “A” p, to a place “B” p,. This abstraction allows to animate
the change of Petri net marking by moving tokens from one place to another.

The symbols used in the paper are presented in Figure 1.

A place p;

A limited place p;. Stores up to n tokens.

OO

A transition t;
An immediate transition ¢;
An enabled transition

A token

O 0

Fig. 1. Petri net symbols

But how can this abstraction be used to model concurrency? The key aspect
is that a marking of a Petri net at a discrete point of time simply expresses
the current state of the complete system. The location of a token (the place
it currently resides in) defines the system state. A concurrently running system
includes multiple states, one for each concurrently running module as was shown
above. Thus a concurrent system includes multiple locations in which tokens can
reside.

Regarding the initial problem we can as an example define two concurrently
running modules which have to share a common resource. The following states
can be defined:

— Module 1 state. The location of this token abstracts the current state of
the first module.

— Module 2 state. The location of this token abstracts the current state of
the second module.

— Lock state. The two modules both have critical section of code which must
run mutually exclusive because they share a common resource. A lock (mu-
tex) has to be introduced. The mutex token location represents the state of
the mutex lock.

The common Petri net model for mutual exclusion as proposed by Peterson [5]
can be seen in Fig. 2. It was used for the development of the algorithm.



112 R. Olejnik

Module 1 Module 2

Critical
Section

Fig. 2. Mutual exclusion Peterson Petri net model

2.3 RFM12 Driver Petri Net Model

The final algorithm for the RFM12 driver is shown in Fig. 3. It shows the three
above mentioned threads in the initial states:

Sender thread

rfm12_lock

' wait(
i mutex)

Radio thread (ISR)

HI nIRQ

signal (mutex)

wait(rx)

Receiver thread

Fig. 3. Half duplex algorithm modeled as a Petri net

— Sender thread. The sender thread includes an always enabled transition
which emits a token whenever the user prompts to send a message. When
this happens it waits until it can acquire the control over the radio module
in order to send a complete packet.

— Receiver thread. The receiver thread by default always logically blocks in
a waiting state until a packet reception is complete.

— Radio ISR thread. The radio thread is in the RX (or idle) state by de-
fault. All transitions in the radio thread are immediate transitions. This is
because the interrupt service routine itself cannot be interrupted which is
a constraint defined by the hardware of the used CPU. A context switch
to other threads therefore can only then happen when there are no enabled
transitions in the ISR.



Modelling of Half-Duplex Radio Access for HopeMesh Experimental WMN 113

The Petri net behaviour is used to validate the correctness of the presented
algorithm.

Data Reception. Whenever the radio module detects a valid sync pattern it
will fill data into its FIFO buffer. When the reception of one byte is complete
the radio hardware pulls the nIRQ pin low triggering the ISR. The model shown
in Fig. 4 shows this behaviour as an infinitely enabled transition labelled as
“nIRQ” which can fire at any non-deterministic time. The following Fig. 4 and
the corresponding events describe the behaviour when a new byte is received by
the radio.

I nIRQ

signal(mutex)

wait(rx)

Receiver thread

Fig. 4. nIRQ triggers reception

1. The nIRQ transition fires the ISR. An interrupt occurs caused by the radio
module.

2. The radio thread being in the RX state by default tries to acquire the lock
(mutex) on the radio and succeeds. Since the mutex is free the interrupt
source must be caused by the reception of a byte.

3. The radio thread can begin its critical section by taking the received byte
and delegating it to the upper network layers. The radio thread stays in the
RX state and blocks the radio by not releasing the mutex.

Since the radio module has acquired the lock on the radio a sender thread
will have to wait until the mutex will be released. All following nIRQ interrupt
sources therefore also must be caused by a reception of a next byte which is
shown in Fig. 5.

1. The nIRQ transition fires the ISR. An interrupt occurs caused by the radio
module.

2. The radio thread is in the RX state and already acquired the lock (mutex)
on the radio. It is ready to receive the next byte and delegates it to the upper
network layers.

3. The upper network layers did not indicate that the reception is complete so
the radio thread stays in the RX state.



114 R. Olejnik

—HI nIRQ
signal(mutex)

wait(rx)

Receiver thread

Fig. 5. Next byte reception

I nIRQ

signal(mutex)

wait(rx)

Receiver thread

Fig. 6. Final byte reception

Still no sender thread will be able to acquire the mutex lock. The above
described reception of bytes happen until the upper network layers detect the end
of a frame or packet which is described in Fig. 6.

1. The nIRQ transition fires the ISR. An interrupt occurs caused by the radio
module.

2. The upper network layers decide that the reception is complete. The mutex
on the radio can be released.

3. After releasing the mutex the receiver thread is signalled by the radio thread

that the reception of a packet is complete. The signal itself is emitted by
upper network layers who need to wait for the receiver thread to process
the incoming packet.
Note that this is a limited place (currently with the limit of one token).
The maximum number of token corresponds to the maximum number of
packets which have to be buffered by the network stack. If the receiver thread
is too slow to process incoming packets all further incoming packets will be
dropped.

4. The receiver thread now changes its state. From a waiting state it switches
to a processing state where it processes the received packet and i.e. displays
it on the console.

5. The receiver thread finally switches back to a waiting state in order for
the next packet to arrive.



Modelling of Half-Duplex Radio Access for HopeMesh Experimental WMN 115

Data Transmission. The data transmission in contrast to data reception is
triggered by the sender thread. Thus Figure 7 shows an infinitely enabled tran-
sition in the sender thread which triggers a token (a packet to be sent) whenever
the prompts a new send command. Figure 7 describes the behaviour when a new
packet is sent by the sender thread.

Sender thread

rfm12_lock

 wait(
i mutex
) 2.1

HIm nIRQ

Fig. 7. Sender thread triggers transmission

1. The sender thread tries to send a new packet by changing its state to a mutex
waiting state. It waits for the mutex to become free in order to acquire
the lock on the radio module.

2. If the radio module becomes free the mutex can be acquired. The radio
module transmitter hardware and the radio module transmitter FIFO is
enabled.

3. Because the sender thread took over control it resets the radio driver thread
to the new state TX. Afterwards the sender thread puts itself into a waiting
state until the packet transmission is complete.

Sender thread

rfm12_lock

wait (

 mutex)

wait(tx)

sigm

I nIRQ

Fig. 8. Next byte transmission



116 R. Olejnik

of

The sender thread is in a different state now. It waits for the transmission
the complete packet. The transmission of the first (or next) byte is triggered

now by the radio module itself. Whenever the transmission FIFO of the radio is
ready the radio module hardware triggers nIRQ and the ISR fires as shown in
Fig. 8.

1.

3

The nIRQ transition fires the ISR. An interrupt occurs caused by the radio
module.

Since the radio module is in the TX state it is ready to transmit the next
byte. The upper network layers return the next byte to the radio driver.
The upper network layers do not indicate that the transmission is complete
so the radio thread stays in the TX state.

The end of the transmission (final byte) is shown in Fig. 9.

Sender thread

rfm12_lock

 wait(
i mutex)

wait () ___ Radio thread (ISR)

I nIRQ

Fig. 9. Final byte transmission

. The nIRQ transition fires the ISR. An interrupt occurs caused by the radio

module.

. The upper network layers return the next byte and indicate that this is

the last byte to be transmitted.

. The radio thread releases the mutex and signals the sender thread the trans-

mission of the last byte.

. The sender thread leaves the waiting state and finishes the transmission of

the packet. Whenever the user prompts a new send command a new packet
can be transmitted.

Conclusion

The paper presents the problem of shared access to radio module in HopeMesh
experimental WMN. The original algorithm used for RFM12B access has been



Modelling of Half-Duplex Radio Access for HopeMesh Experimental WMN 117

presented, then Petri net model along with mutual exclusion problem has been
introduced. Finally the RFM12B driver has been successfully modelled with
Petri nets — all possible states for data reception and transmission: triggering,
sending /receiving of bytes and sending/receiving of final bytes have been shown.
The algorithms has been used for the implementation of data link layer as a part
of the network stack of HopeMesh experimental WMN.

Acknowledgments. I would like to thank my graduate student, Sergiusz Urba-
niak, who implemented my preliminary ideas of RFM12B and AVR ATmegal6
based wireless mesh network in his master dissertation [8].

References

1. Akyildiz, I.LF., Wang, X., Wang, W.: Wireless Mesh Networks: a Survey. Computer
Networks 47(4), 445-487 (2004)

2. Olejnik, R.: An Experimental Wireless Mesh Network Node Based on AVR AT-

megal6 Microcontroller and RFM12B Radio Module. In: Kwiecien, A., Gaj, P.,

Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 96-105. Springer, Heidelberg (2010)

Datasheet: RFM12B programming guide. HOPE Microelectronics (2011)

Datasheet: Si4421 Universal ISM Band FSK Transceiver. Silicon Labs (2008)

Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall (1981)

Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE 77(4), 541-580 (1989)

7. Rzonca, D., Trybus, B.: Hierarchical Petri Net for the CPDev Virtual Machine with
Communications. In: Kwiecien, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39,
pp. 264-271. Springer, Heidelberg (2009)

8. Urbaniak, S.: Communication algorithms and principles for a prototype of a wireless
mesh network. Master thesis, West Pomeranian University of Technology, Szczecin
(2011)

S Gtk w



	Modelling of Half-Duplex Radio Access for HopeMesh Experimental WMN Using Petri Nets
	1 Introduction
	2 Half-Duplex Radio Access
	2.1 Problem Definition
	2.2 Petri Net Model
	2.3 RFM12 Driver Petri Net Model

	3 Conclusion
	References




