
Chapter 8

Evolution of the Industry’s Innovation

Network

In the long history of humankind (and animal kind, too),
those who learned to collaborate and improvise most
effectively have prevailed.

(Charles Darwin)

Abstract At the very heart of this book is the analysis of R&D cooperation and

networking activities of firms in science-driven industries. As outlined before, we

have used two official databases to gather data on nationally and supra-nationally

funded R&D cooperation projects (cf. Sect. 4.2.3). These two data sources provided

the basis for the construction of the German laser industry innovation network.

Network analysis methods (cf. Sect. 5.2) provide us with a broad range of instru-

ments to explore and analyze structural characteristics of networks (Wasserman and

Faust 1994; Degenne and Forse 1999; Carrington et al. 2005; Borgatti et al. 2013).

These methods can be used to analyze both network snap-shots at a particular point

in time, and evolving network patterns over time. This chapter is divided into three

sections. Section 8.1 gives an overview of the organizations involved in publicly

funded R&D cooperation projects from various angles. Based on these findings, we

explore the proportion of LSMs and PROs participating in two types of publicly

funded research projects – “CORDIS” and “Foerderkatalog”. Then, we take an

initial look at the large-scale topology of the German laser industry innovation

network. Next we focus on the evolutionary change patterns of the German laser

industry innovation network. In Sect. 8.2 we start our longitudinal exploration by

analyzing a set of basic node-related and tie-related network measures over time.

In Sect. 8.3 we provide an in-depth analysis of the network topology by testing for

the existence of three distinct large-scale network properties. First, we analyze the

overall degree distribution and check for the emergence of scale-free properties

(Barabasi and Albert 1999). Then we test whether the German laser industry’s

innovation network exhibits small-world properties by applying the method pro-

posed by Watts and Strogatz (1998). Finally, we use different but complementary

methodological approaches to check for the existence of a core-periphery structure

(Borgatti and Everett 1999). We finish off the descriptive analysis by visualizing

the evolution of the German laser industry innovation network over time.
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8.1 Laser-Related Publicly Funded R&D Cooperation

Projects

The aim of this section is threefold. First we provide some basic descriptive

statistics on publicly funded R&D cooperation projects broken down by coopera-

tion type. Then we explore the involvement of LSMs and PROs in the cooperation

projects over time. Finally, we take a look at all cooperation activities between

German laser source manufacturers and laser-related public research organizations

between 1990 and 2010. In other words, we illustrate the transition from a dyadic

perspective to a network perspective by exploring the large-scale topology of the

German laser industry innovation network over the entire observation period.1

8.1.1 Summary Statistics on Publicly Funded R&D
Cooperation

Table 8.1 shows some descriptive statistics on publicly funded R&D cooperation

projects based on both Foerderkatalog and CORDIS data for the period between

1990 and 2010.

The Foerderkatalog data encompasses, in total, information on approximately

110,000 completed or ongoing subsidized research projects. We were able to

identify 416 laser-related R&D cooperation projects for the entire population of

233 German laser source manufacturers. A total of 2,656 organizations were

involved in these projects. Data exploration revealed an overall involvement of

643 LSMs and 570 laser-related PROs. In other words, we found at the project level

a significant degree of interconnectedness among organizations in our sample. Data

on the remaining 1,443 organizations was fully recorded but due to the focus of this

study and related network boundary specifications, they were not included. At the

project level our data reveals a minimum of 2 and a maximum of 33 partners. An

average of 6.39 organizations was involved in each project with a standard devia-

tion of 3.96.

The overall number of project files in the CORDIS database is considerably

smaller and consists of 31,000 files.2 We identified a total of 154 R&D cooperation

projects for the entire LSM population. We found that a total of 189 LSMs and

132 PROs were involved in these projects. As before, other types of organizations

were fully registered but not included as they are not the subject of this analysis.

CORDIS projects are considerably larger than Foerderkatalog projects. The

1We use the standard routines implemented in UCI-Net 6.2 (Borgatti et al. 2002) to calculate

network measures and we employ the software package NetDraw (Borgatti 2002) for the visual-

ization of the German laser industry innovation network.
2 This figure refers to our database extract provided by the CORDIS Service Team, European

Commission (latest update: end of 2010).
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minimum and maximum number of project partners involved at the project level

was two and 53 respectively. The average project size, based on the number of

partners, came to 10.44 with a standard deviation of 8.02.

8.1.2 R&D Cooperation Involvement of LSMs and PROs

Figure 8.1 shows LSM (black line) and PRO (dotted line) participation in publicly-

funded cooperation projects between 1990 and 2010 as expressed in terms of

percentages at the national level. The line graph on the left shows the proportion

of LSMs and PROs participating in CORDIS projects whereas the line graph on the
right illustrates their involvement in Foerderkatalog projects. The line graph below
these illustrates LSM and PRO participation in either CORDIS or Foerderkatalog
projects. Basic descriptive statistics are reported below each of the three line charts.

In general, we can observe an increasing percentage of organizations participat-

ing in publicly funded research projects. CORDIS project data indicates a maximum

percentage of LSM and PRO involvement at 16.23 % and 17.24 % respectively. On

average, cooperation project participation in CORDIS projects is slightly higher for
LSMs (at 8.94 %) compared to PROs (at 8.85 %). In both types of organizations we

see only minor deviations from the upwards-sloping long-term trend. In contrast,

the involvement of LSMs and PROs in Foerderkatalog projects is significantly

higher than in CORDIS projects. The exploration of our data reveals a maximum

participation in Foerderkatalog projects of 44.16 % for LSMs and 54.48 % for

PROs. The average participation of LSMs and PROs in Foerderkatalog projects is

34.11 % and 39.72 % respectively. In addition, we can observe higher fluctuations

for PROs (standard deviation¼ 10.82 %) compared to LSMs (standard

deviation¼ 6.12 %) for the period in question.

Table 8.1 Publicly funded R&D cooperation projects – broken down by cooperation type

Descriptives Foerderkatalog projects CORDIS projects

Overall number of project files 110,000 31,500

Total number of laser-related projects 416 154

Total number of organizations 2,656 1,607

Other types of organizations 1,443 1,286

Total number of LSMs 643 189

Total number of PROs 570 132

Max. no. of organizations at the project level 33 53

Min. no. of organizations at the project level 2 2

Avg. project size (no. of partners) 6.385 10.435

Std. dev. project size (no. of partners) 3.955 8.019

Source: Author’s own calculations
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The overall participation in both types of publicly funded cooperation projects is

displayed in the line graph below. Data on LSMs indicates a minimum participation

of 24.05 % in 1990, a maximum participation of 47.24 % in 2008 and an average

participation of 36.92 %. In contrast, PROs show a significantly lower rate of

involvement in cooperation projects (16.36 %) at the onset. This initially low

involvement in cooperation projects quickly changes direction after a rather short

period of time. The overall participation of PROs in either CORDIS or

Foerderkatalog projects increases about 2.5 times between 1990 and 1998. This

trend continues with nearly the same intensity and some minor fluctuations until the

Descriptive stat. max. min. avg. std. dev. Descriptive stat. max. min. avg. std. dev.
LSM-in-NW-C 16.23% 0.00% 8.94% 5.09% LSM-in-NW-FK 44.16% 22.78% 34.11% 6.12%
PRO-in-NW-C 17.24% 0.00% 8.85% 5.57% PRO-in-NW-FK 54.48% 16.36% 39.72% 10.82%

Descriptive stat. max. min. avg. std. dev.
LSM-in-NW-FKC 47.24% 24.05% 36.92% 6.90%
PRO-in-NW-FKC 59.31% 16.36% 42.74% 12.62%
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Fig. 8.1 Participation OF LSMs and PROs in publicly funded cooperation projects (Source:

Author’s own calculations)
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end of the observation period. As a consequence, the average percentage of PROs

participating in cooperation projects is 42.74 % and the maximum percentage of

cooperation reaches nearly 60 % in 2008.

8.1.3 Large-Scale Network Topology of the Innovation
Network

In general, the visualization of network is no trivial matter. It allows the researcher

to obtain an initial and initiative understanding of the structural configuration of the

system (Borgatti et al. 2013, p. 124). Figure 8.2 illustrates all cooperation activities

between German laser source manufacturers and laser-related public research

organizations between 1990 and 2010.

According to Borgatti et al. (2013, p. 101) there are three basic approaches to

network layout: (a) an attribute-based scatter plot, (b) a multidimensional scaling

(MDS) layout, and (c) graph theory-based layout algorithms.

We visualize the network by using a simple random layout (cf. Fig. 8.2a) and by

applying a spring-embedded layout (Fig. 8.2b) which was originally proposed by

Eades (1984) and Fruchterman and Reingold (1991) and it is still one of the most

commonly used graph theoretical layout algorithms. The basic idea behind the

algorithm is simple. “Its effect is to distribute nodes in a two-dimensional plane

with some separation, while attempting to keep connected nodes reasonably close

together” (Golbeck and Mutton 2005, p. 173). We employ the geodesic distance

criterion, which is defined as the shortest path connecting any pair of nodes in the

network (Wasserman and Faust 1994), to compute the layout. We used NetDraw

2.0 to visualize the network (Borgatti 2002).

These two simple initial explorations already contain some important informa-

tion. For instance, the density of the network structure indicates a pronounced

cooperation propensity among firms and other organizations in the industry. The

size of the node is determined by the network actors’ degree of connectedness

(i.e. the number of direct linkages). Figure 8.2 indicates that some network actors

seem to attract nodes at a higher rate than others. Both types of actors, LSMs3 as

well as PROs,4 seem to be spread out over the entire network and occupy positions

in densely as well as sparsely connected areas of the networks.

However, an in-depth exploration and analysis of the network properties

requires a decomposition of the network. As a result, we apply a time-discrete

3 Each ID in Fig. 8.3 with the syntax: “LSMxxx” represents one of the 233 laser manufacturing

firms. Note that the sequential ID number can be larger than the total number of firms in our

sample.
4 Public research organizations are symbolized by the following abbreviations: Universi-

ty¼ “RxxxU”, University of Applied Sciences¼ “RxxxA”, Technical University¼ “RxxxT”,

Fraunhofer Institute¼ “RxxxF”, Max Planck Institute “RxxxM”, Helmholtz Institute “RxxxH”,

Leibniz Institute “RxxxL” and other laser-related PROs¼ “RxxxD”.

8.1 Laser-Related Publicly Funded R&D Cooperation Projects 157



LSM051

R290D

R300M

R920U

R610U

R260D

R005D

LSM171

R700U

R126FLSM054

LSM034

LSM132

R292D

R162F

LSM272

LSM287

R500T

LSM163

R430T

LSM252

LSM187

R100F

R124F LSM004

LSM164

R270L

LSM284

R400T

R475T

R690U

LSM125

LSM041

R460T

R720U

R138F

R494T

R102F

LSM098

LSM120

R710U

R120F

R134F

R148F

R282L

R940U

R490T

R278L

LSM202

R032A

R480T

R440T

LSM289

R248D

R850U

LSM174

R272L

R254D

R160F

R142F

LSM286

R224H

R520T

R106F

R800U

R570U
LSM081

R560U

LSM291

LSM304

R492T

R276L

LSM129
LSM209

LSM061

LSM124

R880U

LSM046

LSM170

LSM150

LSM172

LSM303

LSM073

R830U

LSM216

LSM025

R910U

R620U

R930U

R670U

LSM256

LSM281

R680U

R450T

R056D

LSM058

R820U

LSM062

R110F

LSM122

R240D

R675U

LSM169

LSM233

LSM022

R860U

R545U

R740U

LSM159

LSM156

LSM097

R960U

R730U

LSM152
LSM271

LSM255

LSM005

R242D
LSM024

R271L

R770U
LSM211LSM086

R590U

LSM151
LSM223

LSM265

R154F

LSM217

R580U

R118F

LSM036

R208H

R038A

LSM147

R212H

R284L

LSM185

R630U

R870U

LSM268

LSM280

LSM285

LSM121

LSM194

LSM118

R955U

R136F

LSM145
LSM201

LSM167

LSM236

LSM166

LSM248

LSM270

R015D

LSM015

LSM200

LSM218

R156F

LSM099

R122F

R470T

R010D

LSM186

LSM001

R660U

LSM290

R158F

LSM052

R114FR780U

R840U

R640U

LSM035

LSM049

LSM178

R130F

R214H

R600U

R890U

R132F

LSM278

LSM306

R510T

R320D

LSM288

LSM111

R034A

LSM072

LSM085

R790U

LSM195

LSM196

R210H

LSM208

R246D

LSM279

LSM182

R304M

R146F

R250D LSM074

R312M

LSM155

LSM042

LSM014

LSM059

LSM031

LSM269

LSM063

LSM123

LSM148

LSM177

LSM215

LSM227

LSM231

LSM105

LSM299

LSM033

LSM302

R128F

LSM088

LSM092

LSM104

LSM173

R308M

R540U

LSM228

LSM298

R950U

R905U

LSM234

LSM244

LSM305

LSM010

LSM071

R306M

R750U

R200H

R900U

LSM253

LSM108

LSM112

LSM243

LSM115

LSM247
R116F

R144F

R152F

LSM119

LSM258

R104F

LSM013

LSM077

R760U

R274L

R970U

R650U

LSM051

R290D

R300M

R920U

R610U

R260D

R005D

LSM171

R700U

R126F

LSM054

LSM034

LSM132
R292D

R162F

LSM272

LSM287

R500T

LSM163R430T
LSM252

LSM187

R100F

R124F

LSM004

LSM164

R270L

LSM284

R400T

R475T

R690U

LSM125
LSM041

R460T

R720U

R138F
R494T

R102F

LSM098

LSM120

R710U

R120F

R134FR148FR282L R940U

R490T

R278L

LSM202

R032A

R480T

R440T

LSM289

R248D

R850U

LSM174

R272L

R254D

R160F

R142F

LSM286R224H

R520T
R106F

R800U

R570ULSM081

R560U

LSM291

LSM304

R492T

R276L

LSM129

LSM209

LSM061

LSM124

R880U

LSM046

LSM170

LSM150

LSM172

LSM303

LSM073

R830U

LSM216

LSM025

R910U

R620U

R930U

R670U

LSM256
LSM281

R680U

R450T

R056D

LSM058

R820U

LSM062

R110F

LSM122

R240D

R675U

LSM169

LSM233

LSM022

R860U

R545U

R740ULSM159

LSM156LSM097

R960U
R730U

LSM152

LSM271

LSM255

LSM005

R242D

LSM024
R271L

R770U

LSM211

LSM086

R590U

LSM151

LSM223

LSM265

R154F

LSM217

R580U

R118F

LSM036

R208H

R038A

LSM147

R212H

R284L

LSM185

R630U

R870U

LSM268

LSM280

LSM285

LSM121

LSM194

LSM118

R955UR136F

LSM145

LSM201

LSM167

LSM236

LSM166

LSM248

LSM270

R015D

LSM015

LSM200

LSM218

R156F

LSM099

R122F

R470T

R010D

LSM186

LSM001

R660U

LSM290

R158F

LSM052

R114F

R780U

R840U

R640U

LSM035

LSM049

LSM178

R130F

R214H

R600U

R890U

R132F

LSM278

LSM306
R510T

R320D

LSM288

LSM111

R034A

LSM072

LSM085

R790U

LSM195
LSM196

R210H

LSM208

R246D

LSM279

LSM182

R304M

R146F

R250D

LSM074

R312M

LSM155

LSM042

LSM014

LSM059

LSM031

LSM269

LSM063
LSM123

LSM148

LSM177

LSM215

LSM227

LSM231

LSM105

LSM299

LSM033

LSM302

R128F

LSM088

LSM092

LSM104

LSM173

R308M

R540U

LSM228

LSM298

R950U

R905U

LSM234

LSM244

LSM305

LSM010

LSM071

R306M

R750U

R200H

R900U
LSM253

LSM108

LSM112

LSM243

LSM115
LSM247

R116F

R144FR152F

LSM119

LSM258

R104F

LSM013

LSM077

R760U

R274L

R970U
R650U

a

b

Fig. 8.2 The German laser industry innovation network. (a) Random layout. (b) Spring-

embedded; degree-based node size (Source: Author’s own calculations and illustration)
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approach and analyze structural changes to both node-related and tie-related net-

work characteristics broken down by year.

8.2 Longitudinal Exploration of Basic Network

Characteristics

In this section we apply an exploratory social network analysis approach (De Nooy

et al. 2005). The primary objective of this method is to reveal structural network

particularities and make them measurable. Emphasis is not on refuting established

structural hypotheses but rather on measuring, exploring and visualizing network

properties. In other words, “[. . .] instead of testing pre-specified structural hypoth-

eses, we explore social networks for meaningful patterns” (De Nooy et al. 2005,

p. 5). Exploratory social network analysis is conducted in four steps: network

definition, network manipulation, identifying network features and visualization

(De Nooy et al. 2005, pp. 5–6).

8.2.1 Basic Network Change Patterns: Measures at the Node
Level

In order to explore basic network measures at the node level over time, we chose a

time-discrete approach and separated the network into annual slices of time. All

network measures are calculated on a yearly basis by using both Foerderkatalog
and CORDIS data. Note that this exploration differs significantly from the analysis

reported before (cf. Sects. 8.1.1 and 8.1.2).

Now we are not focusing on the organizations’ participation in different types of

R&D multi-partner collaborations at the project level but on the involvement of

both types of network actors in the overall German laser industry innovation

network. Figure 8.3 illustrates the network boundaries and the size of the network.

The number of all actively operating LSMs and PROs determines the outer

boundary of the innovation network. In other words, these are all organizations

which are at risk of cooperating, irrespective of whether they are part of the network

or not. All organizations with at least one dyadic R&D linkage to another LSM or

PRO in the sample are considered to be an integral part of the innovation network.

Thus, the outer circle (dotted line) in Fig. 8.3 illustrates the network’s outer

boundaries whereas the inner circle (solid line) reflects the actual size of the

network over time. In 1990, only 20.1 % of all LSMs and PROs in the industry

were actively involved in the innovation network. This comparably small partici-

pation rate nearly doubles over the course of just 5 years. In 1995, we register a

network participation rate of 38.94 %. Despite some minor fluctuations, the partic-

ipation rate continues to grow over the next 10 years. The percentage of LSMs and
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PROs actively involved in the German laser industry innovation network ranges

from 37.35 % in 2001 to 45.53 % in 1998. After 2005 we again record a noticeable

increase in network entries with a maximum network participation rate of 52.92 %

in 2008. Thereafter both trend lines begin to decrease.

In addition to network size, the connectedness of a network is arguably one of

the most salient network features if one wants to get an in-depth understanding of

the structural network configuration itself (Wasserman and Faust 1994, p. 109) and

to understand the evolutionary network change processes over time (Amburgey

et al. 2008, p. 178). A network is called “connected” as long as there is at least one

path that connects all pairs of actors in a network (Newman 2010, p. 142). In

contrast, a “disconnected” network consists of at least two components where a

component is defined as a subgroup of network actors that are connected with one

another but have no connection to other connected network subgroups (Newman

2010, p. 142). Figure 8.4 illustrates the fragmentation of the German laser industry

innovation network broken down by cooperation type. The ordinate records the

number of network components and the abscissa captures the time dimension. On

the left we see the CORDIS network (dotted line), on the right is the Foerderkatalog
network (gray line), and at the bottom is the overall network consisting of both

cooperation types (black line). On average, the CORDIS network is characterized

by a higher fragmentation (average component count¼ 4) and exhibits less pro-

nounced fluctuation tendencies (standard deviation¼ 2.1) compared to the
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Foerderkatalog network (average component count¼ 3.81; standard

deviation¼ 2.8).

Comparing the two networks at two separate time intervals gives us a more

detailed picture. Between 1990 and 2000 the connectedness of the Foerderkatalog
network is clearly more pronounced than that of the CORDIS network. This

tendency, however, changes after 2000. The fragmentation of the Foerderkatalog
increases considerably and reaches a maximum of 12 unconnected network com-

ponents in 2006. The component structure of the overall network reveals a slightly

different picture. Just like with the two separate networks we can see an increasing

tendency towards fragmentation for the overall network over time. This trend,

however, is accompanied by some pronounced fluctuations. The overall network

consists of 3.62 components on average with a standard deviation of 2.33. Between

Descriptive stat. max. min. mean std. dev. Descriptive stat. max. min. mean std. dev.
NW-comp_cnt_C 7 0 4 2.1 NW-comp_cnt_FK 12 1 3.81 2.8

Descriptive stat. max. min. mean std. dev.
NW-comp_cnt_FKC 9 1 3.62 2.33
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Fig. 8.4 Network fragmentation – annual component counts (Source: Author’s own calculations

and illustrations)
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1990 and 1993 and in the year 1997 the network is fully connected and consists of

one single giant component. Only 2 years later, in 1999, we can observe a total of

six components in the overall network. The fragmentation reaches a maximum of

nine unconnected components in 2006 and decreases considerably in subsequent

time periods.

In summary, we gain some interesting insights by exploring the size and

component structure of the innovation network. Nonetheless, several questions

remain unanswered. For instance, the node structure and tie structure within and

between the network components remains entirely unconsidered. These issues will

be addressed later. First, however, we focus on the exploration of some basic

tie-related network characteristics.

8.2.2 Basic Network Change Patterns: Measures at the Tie
Level

The overall network density measure provides an initial indication of a network’s

structural configuration. It simply indicates to what extent the network actors are

connected to each other. Figure 8.5 shows the density measure for the German laser

industry innovation network over time.

The overall density of an unvalued network is defined as the total number of ties

divided by the total number of possible ties. If all nodes of a graph are adjacent, then

it is equal to 1 and the graph is said to be complete (Wasserman and Faust 1994,

p. 102).

The German laser industry innovation network had a maximum overall network

density of 0.441 in 1990. The density decreased continuously until 1998. After a
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Fig. 8.5 Network density – overall network density (Source: Author’s own calculations and

illustration)
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short-lived density peak in 2000 (NWd¼ 0.118), the overall network density began

decreasing again, reaching a minimum network density of 0.038 in 2010.

Now we turn our attention to global centrality measures originally proposed by

Freeman (1979). Figure 8.6 displays two network centralization indices – degree

and betweenness centralization – for the German laser industry network between

1990 and 2010.

The degree centralization index indicates an alignment of the network actors’

degree centralities over time. The index has a maximum value of 22.74 % in 1990

and decreases with some marginal fluctuations. In 2010, the index reaches a

minimum value of 3.96 % indicating that network actors show only minor dispar-

ities in terms of their degree centralities. Nonetheless, it should be noted that the

degree centralities are by no means equally distributed.

The betweenness centralization index provides quite a different picture. Most

remarkably, the index shows a much higher volatility compared to the degree

centralization index. During the initial years we can observe a pronounced increase

in the index from 13.52 % in 1990 to 26.56 % in 1993. The following years are

characterized by an alignment of the network actors’ betweenness centralities over

time. In 2002 the inequalities among network actors in terms of their brokerage

activities reach a minimum with an index value of 6.73 %. In subsequent years the

index increases again until the network finally reaches a betweenness centralization

of 15.76 % in 2010.
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Fig. 8.6 Network centralization – degree and betweenness centralization indices (Source:

Author’s own calculations and illustration)
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8.3 Exploring the Emergence of Large-Scale Network

Properties

This section addresses large-scale network properties. Real world networks differ

from random networks in many respects. Accordingly, we check for the existence

and emergence of three types of network properties – scale-free distribution, small-

world phenomenon, and core-periphery structure – to demonstrate that the struc-

tural configuration of the German laser industry network exhibits fairly different

patterns than randomly generated reference networks. Finally, we visualize the

network topology at four distinct points in time.

8.3.1 Degree Distribution and Scale-Free Network Structure

In random networks the placement of links is purely random which means that the

resulting system is characterized by nodes that have approximately the same

number of links (Barabasi and Bonabeau 2003, p. 52). In contrast, real-world

networks typically show very different large-scale patterns. In a seminal paper on

large-scale network properties Barabasi and Albert (1999, p. 510) suggest that

“[. . .] large networks self-organize into a scale-free state.” This, however, implies

that some actors attract ties at a higher rate than others. The reasons for this can be

manifold. For instance, some actors have simply more to offer than others or show a

higher capability in establishing or sustaining interorganizational partnerships. In

this context, sociologists have highlighted the importance of reputation, status

(Podolny 1994) and interorganizational endorsement effects (Stuart et al. 1999).

However, these actors are usually called “hubs” (Newman 2010, p. 245) and have a

much higher degree than the majority of other network actors.

The exploration of a network’s degree distribution provides a simple but pow-

erful diagnostic indicator of whether tie formation in a network is equiprobable

(simply random) for all pairs of nodes or systematically biased (Powell et al. 2005,

p. 1151). In other words, the existence of these network hubs should be reflected in

the overall degree-distribution of the network. “Unlike the tail of a random bell

curve whose distribution thins out exponentially as it decays, a distribution gener-

ated by a popularity bias has a “fat” tail for the relatively greater number of nodes

that are highly connected” (Powell et al. 2005, p. 1151).

Figure 8.7 illustrates the degree distribution of the German laser industry

innovation network (above) and a randomly generated Erdös-Renyi network

(below). In order to analyze the large-scale properties of the German laser industry

innovation network we have generated a random network which is comparable in

terms of network size and network density. This procedure was repeated several

times to obtain reliable average degree values.

The abscissa represents the degree k and the ordinate measures the fraction of

nodes in the network p(k) for each degree value. The right-skewed distribution

indicates that the German laser industry innovation network consists of a few
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extremely well-connected actors (with a degree of up to 46) whereas the majority of

network actors are rather sparsely connected (with a nodal degree of 1 or 2).

We follow the procedure proposed by Newman (2010, pp. 247–260) to detect

power-law behavior in networks.5 The logarithm of the degree distribution p(k) is a

linear function of the degree k with a negative sloping gradient and a constant

y-intercept which can be written as a logarithmic equation by simply taking the

exponential of both sides (Newman 2010, p. 247). This leads to a function p(k) that

is defined by the degree k with a negatively defined constant exponent α, which is

known as the “exponent of the power law”, and a constant multiplier C (Newman

2010, p. 248). A simple histogram or scatter graph of the degree distribution plotted

on a log-log scale provides the easiest way to detect power law behavior in real

world networks. A true power-law distribution monotonically decreases over its

entire range and appears in the log-log plot as a negatively sloping straight line

(Newman 2010, p. 249). Figure 8.8 provides the log-log scatter plots of the degree

distributions for the German laser industry network and for a comparable Erdös-

Renyi random network.6
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Fig. 8.7 Degree distribution – German laser industry innovation network vs. random network

(Source: Author’s own calculations and illustrations)

5 These types of networks are called scale-free networks (Barabasi and Bonabeau 2003, p. 52).
6 To provide a solid benchmark for the real world network, we proceeded as follows: First we

calculated the network size and density measures of each real world network on a yearly basis.
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Fig. 8.8 Power law and sale free patterns – German laser industry innovation network

versus random networks (Source: Author’s own calculations and illustrations)

Then we used the Erdös-Renyi procedure implemented in UCI-Net 6.2 (Borgatti et al. 2002) to

generate random networks on an annual basis. Each annual random network corresponded exactly

to its real-world equivalent in terms of network size and network density. Finally the annual degree

distributions for both the real world network and the random network were accumulated and the

results were plotted on a log-log scale.
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We aggregated all log degrees (abscissa) and the log node fraction in the network

(ordinate) over all time periods. Even though the German laser industry innovation

network shows no perfect power law behavior, we can clearly detect the tendency

towards the emergence of a straight line in the log-log plot. In other words, the

degree distribution of our real world network reveals systematically different

structural patterns compared to a purely random network. This indicates a pro-

nounced tendency towards the emergence of scale-free properties. Our analysis

reveals quite similar structural patterns as were reported by Powell and his col-

leagues (2005) for the degree distribution of the interfirm network (one-mode

network: DBFs – DBFs) and the interorganizational network (two-mode network:

DBFs – universities) for the US biotech industry.

8.3.2 Small-Word Properties

Now we turn our attention to small-world network properties. Even though the

underlying idea of small-world networks can be traced back to a series of network

experiments conducted by Stanley Milgram and his team in the late 1960s, it took

nearly 30 years before scholars were able to quantify the concept (Watts and

Strogatz 1998).

Milgram (1967) showed in his letter-passing experiment that people in the

United States are separated, more or less, by six degrees of separation (i.e. letters

that have been sent even reach far-off targets after roughly six distinct steps on

average). He concluded that a small-world network is characterized by a short path

length despite a high level of clustering (Uzzi et al. 2007, p. 78). Small-world

properties have some far-reaching implications for innovation networks. As we will

discuss in more detail later (cf. Chap. 11), it is plausible to assume that macro-level

network properties affect firm innovativeness. However, in this section, we apply

the method proposed by Watts and Strogatz (1998) to check for the existence of

small-world properties in the German laser industry innovation network. According

to this methodological approach, two conventional network measures can be used7:

the overall clustering coefficient and average path length clustering (Uzzi

et al. 2007, p. 78).

We proceeded as follows to check for the existence of small-world properties in

the German laser industry network. First we generated a total of 21 Erdös-Renyi

random networks for the period under observation, one network for each year.8 In

order to ensure comparability between real world and random networks, both the

size and the density parameters were adapted to the actual proportions of the real

networks. In general, random networks are characterized by a short average path

length and a low clustering tendency as neighboring nodes have the same

7 For details on the calculation and interpretation of both measures, see Sect. 5.2.3.
8 To gain a more robust random benchmark this procedure has to be repeated several times.

However, this may be dispensed with for the purpose of this analysis.
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probability of being connected as non-neighboring nodes (Uzzi et al. 2007, p. 79).

Then, based on the procedure proposed byWatts and Strogatz (1998), we calculated

“clustering” and “reach” measures for both the annually constructed German laser

industry networks and for the annually constructed Erdös-Renyi networks. Finally,

we calculated the “clustering coefficient ratio”, the “path length ratio” (Watts and

Strogatz 1998) and the “small-world Q” (Uzzi and Spiro 2005) to compare network

properties.

The “clustering coefficient ratio” is defined as the real world network clustering

coefficient divided by the random network clustering coefficient. The “path length

ratio” is defined as the real world average path length divided by the random

network average path length. The small world Q is defined as the “clustering

coefficient ratio” divided by the “path length ratio” (Watts and Strogatz 1998;

Uzzi and Spiro 2005; Uzzi et al. 2007).9

Standard procedures implemented in UCI-Net 6.2 (Borgatti et al. 2002) were

applied to calculate both the overall clustering coefficient and the weighted overall

clustering coefficient. In accordance with Schilling and Phelps (2007, pp. 1117–

1118) we chose the latter measure here since the weighted clustering coefficient

provides exactly the same measure as the transitivity index of each transitive triple

(Borgatti et al. 2002).

According to Watts and Strogatz (1998) and with reference to Uzzi et al. (2007,

p. 79) small-world networks have to fulfill at least one of the following two

conditions: (I) a “clustering coefficient ratio” that is many times greater than 1.0

and a “path length ratio” that is approximately 1.0 or (II) a “small-world Q” that is

much greater than 1.0.

The threshold values are not exactly specified as they can differ slightly for

different types of real world networks. In our case we chose a threshold value of 2.5

for both the “clustering coefficient ratio” and the “small-world Q” and a band of

accepted “path length ratio” values ranging from 0.7 to 1.3. Areas between mini-

mum and maximum thresholds are shaded in light gray.

Figure 8.9 shows the “clustering coefficient ratio” (cf. Fig. 8.9, top), the “path

length ratio” (cf. Fig. 8.9, center) and the “small-worldQ” (cf. Fig. 8.9, bottom) for the

German laser industry network between 1990 and 2010. The illustrations show that

the conditions specified above are fulfilled with very few exceptions (e.g. year 1990).

In summary, our data clearly shows an increasing tendency towards small-world

properties over time.

Concerns were expressed that, unlike unipartite networks, bipartite10 networks

significantly exaggerate the network’s true level of clustering and understate the

true path length (Uzzi and Spiro 2005, p. 453). Based on the pioneering work of

Watts and Strogatz (1998) a new interpretation of small-world indicators for

9 For further details, see Sect. 5.2.3.
10 Bipartite networks are based on the assumption that all members of a team form a fully

connected clique (Uzzi and Spiro 2005, p. 453). We explicitly checked for this issue, as our

network data is compiled on the basis of multi-partner R&D cooperation projects.
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bipartite networks was proposed by Newman et al. (2001). They showed that the

“path length ratio” in bipartite networks are interpreted in the same way as

unipartite networks (Uzzi and Spiro 2005, p. 454). In contrast, according to

Newman et al. (2001) and Uzzi and Spiro (2005), the “clustering coefficient

ratio” has to be interpreted in a different way. A clustering coefficient ratio of

about 1.0 indicates within-team clustering whereas an exceeding clustering coeffi-

cient ratio indicates an increase in between-team clustering (Uzzi and Spiro 2005,

pp. 454–455).

In our case, both the comparably low path length ratio throughout the observa-

tion period, ranging from 1.05 to 1.3, and the increasing tendency towards
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Fig. 8.9 Small-world properties in the German laser industry innovation network (Source:

Author’s own calculation and illustration)
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comparably high clustering coefficient ratios over time, confirms our initial find-

ings. We put our data to the test to check for the issue addressed above. Appendix 3

provides the results of an additional consistency test that is based on an alternative

network data decomposition procedure. The additional calculations reveal nearly

the same large-scale network patterns as reported above. On the whole, our initially

reported findings were largely confirmed.

8.3.3 Core-Periphery Structure

As we have shown in Sect. 7.1.1, the overall German laser industry network

consists of an average of 3.6 components with a standard deviation of 2.33.

However, the question remains as to what the size proportions of these components

look like and how these proportions change over time. The following core-periph-

ery analyses goes way beyond a simple component-based analysis. The previously

presented explorations substantiate the assumption that real world networks show

quite unique structural patterns.

Several authors have suggested that interorganizational networks typically dis-

play core-periphery structures (Rank et al. 2006; Amburgey et al. 2008; Muniz

et al. 2010). The identification of core-periphery structures in real world networks is

important for several reasons. For instance, Rank and her colleagues (2006, p. 76)

have argued that actors in the core of a network have a favorable position for

negotiating with peripheral actors. In addition they have argued that these actors

have better access to critical information and knowledge (ibid). Consequently, in

this section we check for the emergence and existence of a core-periphery structure

in the German laser industry innovation network.

In its most basic sense, the core-periphery concept is based on the notion of

“[. . .] a dense, cohesive core and a sparse, unconnected periphery” (Borgatti and

Everett 1999, p. 375). In addition, the core of the network occupies a dominant

position in contrast to the subordinated network periphery (Muniz et al. 2010,

p. 113). Several formalizations of the concept have so far been proposed. We

argue that using single indicators runs the risk of providing a somewhat biased

picture of the actual network structure. Thus, in order to identify a core-periphery

structure in longitudinal network data, we propose the simultaneous use of four

distinct indicators, each of which addresses different network characteristics.

According to Doreian and Woodard (1994, p. 269) a core of a network is simply

a more cohesive and richly connected area of the network, relative to the overall

structure of the entire network. Technically spoken, the specification of a network

core is nothing else but the specification of a cohesive subgraph by using concepts

such as n-cliques, k-plexes, k-cores and related concepts (ibid).
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To start with, we focus on a concept that basically draws an actor-based k-core
analysis. Amburgey et al. (2008) have applied this concept to conduct a k-core
decomposition at the overall network level in order to analyze the emergence of a

core-periphery structure in the biotech industry. The basic idea behind the concept

is straightforward. “A k-core is a subgraph in which each node is adjacent to at least
a minimum number, k, of the other modes in the subgraph” (Wasserman and Faust

1994, p. 266). The repeated calculation of k-core values in well-specified time

intervals enables network actors to be categorized and grouped according to their

nodal degree. For instance, a subgroup consisting of network actors with a k-core of
k¼ 6 indicates that all of these actors have at least six direct linkages to other

network actors. Amburgey et al. (2008) have argued that the exploration of the

coreness strata (i.e. coreness layers for k¼ 1. . .n) allows us to check over time for

the existence and emergence of a core-periphery structure. This approach provides

a very valuable initial look at the network’s core-periphery structure.

However, when focusing on “connectedness” as one of the most important

features of networks (Wasserman and Faust 1994, p. 109) the measure creates a

distorted picture for the following reasons. Firstly, and most importantly, the k-core
concept is not a component-based concept. It allows us to identify cohesive sub-

graphs in a network based on the actors’ nodal degree. This, however, implies that

high degree nodes can be found in both peripheral components as well as in the

main component. In other words, nodes with the same k-core value can be spread

over the whole network regardless of whether they belong to the main component

or a peripheral component. Secondly, the k-core concept concentrates exclusively

on the tie dimension. This means that the size distribution of the core component

versus peripheral components remains ignored. In other words, the proportion of

nodes that fills the main component is not captured by the concept.

Consequently we argue that additional measures are needed to substantiate and

complement a coreness analysis. The next two measures are as simple as the

previous one but they provide a quite different view of the same phenomenon.

Newman (2010, p. 235) shows that the majority of real world networks are not fully

connected and the main component usually fills more than 90 % of the whole

network. Our data confirms this finding and indicates that peripheral components

are not only considerably smaller but also quite heterogeneous in terms of size and

structure. In other words, we can distinguish between at least two elementary types

of components in real world networks – the main component and peripheral

component(s). Based on these considerations, two simple ratios – M-P tie ratio &

M-P node ratio – can be calculated which allow us to quantify the proportion of ties

or nodes that fill the main component versus peripheral components. The values for

both ratios range between 0 and 1. These two ratios do not claim to provide

comprehensive core-periphery indicators. Instead they give a valuable initial idea

of size and density proportions between the fully connected main component and

the scattered periphery of a network.

The last of our four core-periphery indicators was originally proposed by

Borgatti and Everett (1999). They introduced two different concepts – discrete

model and continuous model – that can be used to conduct a coreness analysis based
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on directed or undirected as well as valued or non-valued graphs. The underlying

idea of the core-periphery identification procedures is based on a comparison of a

hypothetically optimal core-periphery structure in an artificially generated network

with a network structure that has actually been observed in a real-world network.

Borgatti and Everett (1999, pp. 377–378) argued that an optimal core-periphery

structure is characterized by a few core nodes that are adjacent to other core nodes,

core nodes that are adjacent to some periphery nodes, and a notable proportion of

periphery nodes that are not connected with other periphery nodes. As real-world

networks are very unlikely to fit this theoretically optimal pattern, Borgatti and

Everett (1999, pp. 377–378) have proposed an algorithm that measures how well

the real-world network structure approximates the optimal core-periphery structure.

The discrete model categorizes all network nodes into two classes – core nodes and

peripheral nodes – whereas the procedure implemented in the continuous model

simultaneously matches a core-periphery model to the overall network and esti-

mates the coreness parameters of each actor in the network (Borgatti and Everett

1999; Borgatti et al. 2002). The parameter ρ is a measure of the network coreness.

The measure ranges from 0 to 1 whereas large values indicate a high fit between an

optimal core-periphery structure and an empirically observed network.

Figure 8.10 illustrates the calculation results for all four core-periphery indica-

tors for the German laser industry innovation network between 1990 and 2010. As

before, we chose a time-discrete approach and calculated all four indicators on an

annual basis.

Figure 8.10a displays the k-core decomposition results. In contrast to Amburgey

et al. (2008) we did not plot and interpret each k-core strata layer separately. Instead
we grouped all network actors into three groups based on their k-core values: high
(k� 8), medium (8> k> 4) and low (4� k> 0). We argue that a high spread

between the first and the last group indicates the existence of a core-periphery

structure at a given point in time. Our k-core decomposition analysis indicates that

between 1994 and 1997, and between 2002 and 2010 there was a pronounced

tendency towards having a core-periphery structure.

Figure 8.10b and c shows the M-P tie ratio and the M-P node ratio indicating the

proportion of ties as well as nodes that fill the main component. Both ratios

considerably decrease between 1994 and 1997, and between 2004 and 2008. In

addition, a closer look at the M-P node ratio points to the fact that between 1998 and

2002 a notable proportion of nodes are located in peripheral components.

Figure 8.10d illustrates the results of a core-periphery analysis according to the

approach proposed by Borgatti and Everett (1999). For the purpose of this study we

have applied the continuous core-periphery model for undirected graphs. The

estimation procedures implemented in UCI-Net 6.2 (Borgatti et al. 2002) were

used to calculate coreness values on an annual basis. Figure 8.10d reports the gini-

based core-peripheriness measure. Large values indicate a tendency towards a core-

periphery structure. Results reveal that the German laser industry innovation

network approximated a hypothetically optimal core-periphery structure quite
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well between 1994 and 2008. Surprisingly, the model indicates that the highest

core-peripheriness occurred between 1999 and 2002.

In summary, our analysis gives us good reasons to assume that the German laser

industry innovation network exhibited a comparably pronounced core-periphery

Fig. 8.10 Core-periphery structure in the German laser industry – a comparison of four indicators

(Source: Author’s own calculations and illustration)

8.3 Exploring the Emergence of Large-Scale Network Properties 173



structure during three time periods – (I) 1994–1997, (II) 1999–2002 and (III) 2004–

2008. In all three time periods at least two out of four indicators substantiate this

finding. In addition, the long-term trends indicate the tendency toward an increasing

coreness of the German laser industry network over time. At first glance, the k-core
analysis fails to indicate the pronounced core-peripheriness between 1999 and 2002

indicated by the continuous model of Borgatti and Everett (1999). However, a

closer look at the dotted gray line in Fig. 8.10a (medium group, with k-core values:

8> k> 4) reveals a structural transition between 1998 and 1999. Obviously, there

seem to be some hidden structural processes that strengthen the periphery at that

time. It is interesting to note that the comparably simple M-P node ratio points to

the second time period and reveals patterns that would have maybe remained

unseen if only degree-based indicators were used. To conclude, both node-related

and tie-related indicators should be used in a complementary manner to check for

the existence and emergence of a core-periphery structure over time.

8.3.4 Exploration of Network Change Patterns Over Time

The last step in an exploratory network analysis is visualization (De Nooy

et al. 2005, pp. 5–6). Figure 8.11 gives us snap-shots of the German laser industry

innovation network at four distinct points in time (i.e. 1991, 1995, 1999 and

2007).11 The visualization of the network over time gives us an initial idea of the

network topology and provides valuable insights in terms of characteristic network

change patterns over time.

To start with we take a closer look at the network structure in 1991

(cf. Fig. 8.11a). In this early stage of development the network consists of one

component. Thus, the network is fully connected. Nevertheless, the network struc-

ture is by no means homogeneous. We can generally identify one densely

connected area in the network whereas the majority of the network actors are

relatively sparsely connected. This finding is in line with the comparably high

degree centralization index of about 17.5 % in 1991 as reported earlier.

Only a few years later the picture changes considerably (cf. Fig. 8.11b). In 1995,

the network consists of three distinct components. The main component is by far the

largest. The size proportions among the peripheral components are quite heteroge-

neous. We have a dyadic component on the one hand, and a multi-node component

that consists of five LSMs and PROs on the other. As we will see later (cf. Chap. 9)

this has some important implications for the theoretical conceptualization of evo-

lutionary network change processes. In addition, the network plot reveals the

existence of several densely connected areas – hot spots – within the main compo-

nent of the network. It turns out that initially central actors, such as LSM287,

11We used NetDraw 2.0 to visualize the network (Borgatti 2002).
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LSM272, R126F, R920U, R260D, were able to further develop their position in

terms of their nodal degrees.

Two patterns in 1999 are striking (cf. Fig. 8.12a). Firstly, the number of

components has grown considerably and the main component continues to domi-

nate in terms of size. Now the periphery consists of two dyadic and three triadic

components. Furthermore it is interesting to note that the previously identified
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Fig. 8.11 The evolution of the German laser industry innovation network, 1991 & 1995 (Source:

Author’s own calculations and illustrations)
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peripheral multi-node component has meanwhile been integrated into the main

component. In other words, between 1995 and 1999 at least one of the five LSMs or

PROs in the multi-node component was able to establish a bridging tie to an actor

within the main component. Secondly, we can observe an increasing concentration

tendency in the main component. Some nodes are quite loosely linked to the main
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Fig. 8.12 The evolution of the German laser industry innovation network, 1999 & 2007 (Source:

Author’s own calculations and illustrations)
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component whereas others are embedded in the core of the main component and

show an above-average nodal degree. This observation clearly supports the results

of our core-periphery analysis (cf. Sect. 8.3.3). Not surprisingly, the initially

identified high-degree actors are still positioned at the core of the network. But

what is perhaps more interesting are the high-degree nodes in the network that

entered the scene later. For instance, the firms LSM124 and LSM061 entered the

industry in 1994 and 1995, respectively. This indicates that some nodes seem to

reach the core of the network much faster than others.

Finally, the last network plot (cf. Fig. 8.12b) illustrates the network topology in

2007. The network structure is clearly more fragmented than it was in 1999. In

addition, we can observe a large number of peripheral components. These compo-

nents are quite heterogeneous in terms of size. More precisely, we see five dyadic

components and two multi-node components consisting of five and six nodes

respectively. Moreover, it is remarkable that neither of the peripheral network

organizations identified in 1999 are still in the network periphery in 2007.
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