
Chapter 6

Dataset Design and Estimation Methods

All models are wrong, but some models are useful.
(George E.P. Box 1979)

Abstract The phenomenon under investigation guides the data collection process,

the structural design of the dataset as well as the choice of empirical methods

(Blossfeld et al. 2007, p. 4). The data collection process for the German laser

industry database was described above. Now, we will turn our attention to the

two latter points. Chapter 6 is divided into two sections: Section 6.1 presents the

two compiled datasets. On the one hand, an event history dataset was constructed to

analyze the propensity and timing of laser source manufacturers to cooperate and

enter the German laser industry innovation network. On the other hand, a panel

dataset was employed to analyze the determinants of firms in the German laser

industry from various angles. Section 6.2 provides an overview and general dis-

cussion of estimation methods which were applied in Part IV of this book. We start

with a brief discussion on non-parametric event history analysis models using

continuous time, followed by an introduction of econometric models for panel

count data.

6.1 Design and Scope of the Compiled Datasets

In essence, there are three types of dataset designs: cross-sectional datasets, panel

datasets and event history datasets (Blossfeld et al. 2007, pp. 5–21). Due to the aim

of this study focus is placed on the two latter dataset designs.

6.1.1 Dataset I: Event History Data Structure

The use of event history analysis methods requires a relatively demanding data

design. Firstly, the compilation of an event-oriented longitudinal dataset requires

the appropriate choice of time intervals and information on the origin state and

destination state (Blossfeld et al. 2007, p. 42). Secondly, data has to be organized in
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an event-oriented design in which each record is related to a particular duration in a

predefined state (Blossfeld et al. 2007, p. 42). Finally, precise time-tracking of start

and end dates is needed for the event under investigation to analyze the transitions

from one state to another.

Some issues, however, require particular attention. The most notable is the setup

of the analytical framework. Both dimensions of the analytical framework – “state

space” and “time space” – have to be defined carefully to avoid misspecification

(Blossfeld et al. 2007, p. 38). The choice of these two dimensions is driven by

theoretical considerations and determines the choice of the empirical estimation

models. In general, there are four types of models: the “single episode model”,

“multi state model”, “multi episode model”, and “multi state multi episode model”

(Blossfeld et al. 2007, p. 39).1 For the purpose of this study we employed a design

that is based on the following considerations. On the one hand, we seek to

understand what factors determine a firm’s propensity to cooperate for the first

time and enter the laser industry innovation network. On the other hand, we are

interested in the factors that affect the length of time until the first cooperation

occurs. Consequently, we constructed a single-episode event history dataset that

provides the basis for conducting a non-parametric spell-duration analysis.

The single-episode event history dataset for the German laser industry is

constructed and organized as follows: The time axis is defined on the basis of

century months. All firm foundation dates as well as all start and end dates of

cooperation events are given in century months. The unit of analysis is the firm. In

cases where the number of censored observation units is small, it is acceptable to

simply exclude them (Allison 1984, p. 11). Thus, firms founded before 1990 were

excluded from the dataset to avoid left truncation and left censoring problems

(Blossfeld and Rohwer 2002, pp. 39–41). Starting from the full population of

233 LSMs in our sample we identified 39 firms which were founded before 1990.

Thus, a total of 194 firms were potentially at risk for conducting the first cooper-

ation event. Out of this population we ended up with a total of 112 firms with at

least one cooperation event during the observation period. The event of interest is

the first cooperation for all laser manufacturing firms which are at risk in the time

period between 1990 and 2010. The dataset allows us to analyze the transition from

the origin state (“no cooperation”) to the destination state (“first cooperation”).

These two states allow us to define the risk set. At the same time the initial

cooperation event marks the firm’s entry into the network. Repeated events were

1 Single episode models allow for event transitions from the origin state to the destination state

whereas multi-state models allow us to analyze event transitions from the origin state to multiple

destination states. In contrast, multi-episode models allow for repeated events or event transitions

over time. Finally, multi-state multi-episode models can be applied to analyze both repeated

episodes and repeated events. For further details see (Blossfeld et al. 2007).
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not considered. Firms were basically considered to have two ways of entering the

German laser industry innovation network. The first cooperation event can be either

participating in a Foerderkatalog project or in a CORDIS project. Both types of

cooperation event were coded separately by using a dummy variable. All event

occurrence dates and durations were recorded in century months. Variables were

grouped in the following categories: organizational, relational and contextual.2

Organizational variables3 were included in the dataset to account for hetero-

geneity across firms. In particular these variables are firm origin [origin_ev]4 and
firm size [firmsize_cat_ev]. 5 Additionally, a simple dummy variable was created to

differentiate between “young” and “mature” firms [firmage_ev].6 Relational vari-
ables were included in the dataset. Both types of publicly funded R&D cooperation

projects, Foerderkatalog projects as well as CORDIS projects, were coded sepa-

rately [coop_type_ev].7 Occurrence dates and duration were recorded in century

months. Moreover, a set of contextual variables was included in the dataset. For the

first set of geographical variables, we split the sample into four geographical

regions. We included a set of geographical location variables in our dataset

[region_ev]8 indicating whether a firm is located in the northern, southern, eastern

or western part of Germany. Finally, we included a set of cluster variables [clu_ev]
in our dataset indicating whether a firm was located inside or outside of a densely

2Note that the following variables in the event history dataset can differ from those that were

coded and used in the panel dataset. The suffix “_ev” indicates an event oriented variable.
3 Organizational level variables were coded at the date of a firm’s population entry and considered

to be time-invariant for the purpose of the non-parametric spell-duration analysis.
4 Origin dummies are coded on the basis of the following categories: origin_ev1 ¼ new founda-

tion; origin_ev2 ¼ PRO spin-off; origin_ev3 ¼ LSM spin-off; origin_ev4 ¼ other background,

such as: spin-offs from other types of organizations, name change and post-merger firm

formations.
5 The following five size categories were used: firmsize_cat_ev1 ¼ “micro firm” ¼ 1–9

employees; firmsize_cat_ev2 ¼ “small firm” ¼ 10–49 employees; firmsize_cat_ev3 ¼ “medium

firm” ¼ 50–249 employees; firmsize_cat_ev4 ¼ “larger firms” ¼ more than 250 employees. This

categorization is drawn upon the definition proposed by the European Commission (2005).

Missing data for the number of employees were extrapolated based on employee data for the

same firms but other observation windows.
6We used the mean age of the firms (97 months) in the observation period to split the sample.

Definition of “young firms”: firmage_ev ¼ 0 if firmage_ev < ¼ 97 months (8.1 years); “mature

firms”: firmage_ev ¼ 1 if firmage_ev > 97months (8.1 years).
7 The variable coop_type ¼ 1 in the case of a CORDIS project; coop_type ¼ 2 in the case of a

Foerderkatalog project.
8 Definition of the four geographical regions: region_ev1 ¼ Baden-Württemberg (BW) Bavaria

(BY); region_ev2 ¼ Bremen (HB) Hamburg (HH) Schleswig-Holstein (SH); region_ev3 ¼ Berlin

(B) Brandenburg (BB) Mecklenburg-Western Pomerania (MV) Saxony (S) Thuringia (TH)

Saxony-Anhalt (SA); region_ev4 ¼ North Rhine-Westphalia (NW) Lower Saxony (NS)

Rhineland-Palatinate (RP) Saarland (SR) Hessen (H). The variable for Saarland had to be omitted

due to the non-existence of LSMs in this federal state throughout the entire time period.
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crowded region. The four geographical clusters were identified based on the

descriptive analysis in Sects. 7.1.2 and 7.1.3.9

6.1.2 Dataset II: Panel Data Structure

Panel data methods require the data to be in long form, meaning that each individual

time pair in the dataset is a separate observation (Cameron and Trivedi 2009, p. 274).

The panel dataset for the German laser industry is constructed and organized as

follows: The unit of analysis is the firm year meaning that each firm in the sample is

observed for each year. Thus, we decided in favor of annual time intervals for the

purpose of this study. The panel is unbalanced due to a considerable proportion of

firms entering the sample after 1990 (i.e. new foundations, spin-offs etc.) or leaving

the sample before 2010 (i.e. mergers, bankruptcies etc.). Unbalanced data usually

causes no significant complications as most empirical methods are designed to handle

both balanced and unbalanced panel data (Cameron and Trivedi 2009, p. 230).

Over the course of 21 years we have a total of 233 laser source manufacturers

(LSMs) and 2,645 firm years. Thus, we have an average of 11.35 observations per

firm. The dataset contains time-variant as well as time-invariant variables organized

in content-specific groups of explanatory variables.10

The first group of variables encompasses all firm-specific variables. A linear firm

age variable [firmage] as well as a squared firm age variable [firmage_sq] were

generated on the basis of firm entry and firm exit dates. Both age variables in our

panel dataset are recorded on an annual basis. Data on yearly turnover for each firm

provides the basis for the calculation of a time-invariant average turnover variable

for each firm in the sample [avgturnover]. A set of dummy variables was

constructed to account for the origin of firms in the sample [origin]11 and a second

set of dummies was generated to account for differences in legal status across firms

[leg_stat].12 In addition, the yearly number of employees was used to code a set of

firm size dummies [firmsize_cat].13

9 These clusters are defined as follows: planning regions: 72, 73, 74, 76 & 77¼ clu_ev_bw, located

in Baden-Württemberg; planning regions: 86, 90 & 93¼ clu_ev_bay, located in Bavaria: planning

regions: 54 & 56 ¼ clu_ev_thu, located in Thuringia; planning region 30 ¼ clu_ev_B, located in

Berlin.
10 Note that we had to choose a more detailed categorization for most of the panel data variables

due to the theoretical considerations (cf. Chaps. 10, 11 and 12).
11 Origin dummies are coded on the basis of the following categories: origin1 ¼ new foundation;

origin2¼ name change; origin3¼ post merger firm; origin4¼ PRO spin-off; origin5¼ LSM spin-

off; origin6 ¼ spin-offs from other types of organizations.
12 Legal status dummies are coded on the basis of the following categories: leg_stat1 ¼ GmbH;

leg_stat2 ¼ GmbH & Co; leg_stat3 ¼ GmbH & Co KG; leg_stat4 ¼ OHG; leg_stat5 ¼ AG;

leg_stat6 ¼ other.
13 The following five size categories were used: firmsize_cat1 ¼ “micro firm” ¼ 1–9 employees;

firmsize_cat2 ¼ “small firm” ¼ 10–49 employees; firmsize_cat3 ¼ “medium firm” ¼ 50–249

employees; firmsize_cat4 ¼ “large firms” ¼ 250–749 employees; firmsize_cat5 ¼ “very large
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The second group of variables encompasses all geographical measures on a firm

level, regional level and industry level. All geographical variables are coded on the

basis of annually updated address data for three types of laser-related organizations:

LSMs, PROs and LSPs. At the firm level a set of geographical dummy variables for

each LSM was generated indicating the federal state in which the firm is located

[fed_state].14 Two types of geographical co-location measures [coloclsm,
colocpro] were included in the dataset which were calculated on the basis of the

localized density measures outlined above (cf. Sect. 5.3.1). Additionally we split

the PRO sample into two sub-samples.15 Localized geographical density measures

were generated by calculating all distances between LSM and PROs in both

sub-samples separately [colocpro_appl, colocpro_basic]. In order to get a picture

of geographical concentration tendencies at the industry level, HHI indices were

calculated for LSMs, LSPs and PROs (cf. Sect. 5.3.2) and included in the dataset

[hhi_lsm; hhi_lsp; hhi_pro].
The third group of variables encompasses all cooperation-related variables. Data

on publicly funded cooperation projects from both “Foerderkatalog” as well as

“CORDIS” databases were used to generate cooperation counts [coopcnt_fk;
coopcnt_c], cumulative cooperation counts [coopcum_fk; coopcum_c] and coop-

eration funding [coopfund_fk; coopfund_c] on an annual basis. Based on these

measures several combined variables were generated which include both project

types [coopcnt_fkc; coopcum_fkc; coopfund_fkc]. All cooperation funding vari-

ables are measured in thousand euros.

The fourth group of variables encompasses network variables calculated at three

levels of analysis16 (cf. Sect. 5.2). The following network level variables were

included in the dataset: overall network density [nw_density], network size

[nw_size], clustering coefficients [nw_clust] a weighted clustering coefficient

[nw_wclust], a network fragmentation measure [nw_compcnt] and an average

reachability measure [nw_areach]. The next set of network variables allows us to

quantify the structural configuration of ego network characteristics for each firm in

the sample. In particular these ego network variables measure the ego network size

[ego_size], the ego network density [ego_density] and two ego network-based

brokerage indicators [ego_broker; ego_nbroke]. The last set of network variables

firms” ¼ more than 750 employees. Missing data for the number of employees was extrapolated

based on employee data for the same firm but for other firm years.
14 Definition of federal state dummies: fed_state1 ¼ Baden-Württemberg (BW); fed-state2 ¼
Bavaria (BY); fed_state3 ¼ Berlin (B); fed_state4 ¼ Brandenburg (BB); fed_state5 ¼ Bremen

(HB); fed_state6¼ Hamburg (HH); fed_state7¼ Hessen (H); fed_state8¼Mecklenburg-Western

Pomerania (MV); fed_state9 ¼ Lower Saxony (NS); fed_state10 ¼ North Rhine-Westphalia

(NW); fed_state11 ¼ Rhineland-Palatinate (RP); fed_state12 ¼ Saarland (SR); fed_state13 ¼
Saxony (S); fed_state14 ¼ Saxony-Anhalt (SA); fed_state15 ¼ Schleswig-Holstein (SH);

fed_state16 ¼ Thuringia (TH). The variable for Saarland had to be omitted due the

non-existence of laser source manufacturers in this federal state throughout the entire time period.
15 The full population of 149 PROs is a relatively heterogonous group of organizations. Some

predominantly focus on applied research whereas others mainly conduct basic research.
16We used UCI-Net 6.2 if not otherwise stated (Borgatti et al. 2002).
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measures the strategic network positioning of each firm within the network. The

following network centrality measures were included in the dataset: degree cen-

trality [ctr_degree], betweenness centrality [ctr_between], two reach-based mea-

sures [ctr_2step; ctr_ard] and two power-related measures [ctr_ev; ctr_bon]. The
last group of variables encompasses innovation indicators measured by patent count

variables. Patent application counts [pacnt] and patent grant counts [pgcnt] were
recorded on an annual basis and included in the dataset. Lag variables were

generated for both variables with a lag of 1 year [pacnt1; pgcnt1], 2 years

[pacnt2; pgcnt2] and 3 years [pacnt3; pgcnt3].

6.2 Introducing Selected Econometric Methods

In this section we turn our attention to longitudinal econometric methods. The

discussion addresses general issues connected to event-history and panel data

estimation methods. Specific issues are addressed in the context of their application

later this book.

6.2.1 Event History Analysis Methods

There are basically three classes of event history methods: non-parametric methods,

parametric methods and semi-parametric methods (cf. Allison 1984, p. 14).

Non-parametric models do not make distributional assumptions. Parametric models

assume that the time until an event of interest occurs follows a specific distribu-

tional form. Semi-parametric models make no assumption with regard to the

distribution of event time. But these models require a specification of a regression

model with a specific functional form (cf. Allison 1984, p. 14).

As stated above, we focus on non-parametric event history methods to analyze

cooperation events of German laser source manufacturers. Non-parametric esti-

mation methods do not make any assumptions about the distribution of the process

under investigation and are well suited for an initial analysis of a specific pheno-

menon (Blossfeld et al. 2007, p. 58). The most commonly used non-parametric

approach is the Life-Table method. However, this approach has some notable

limitations (Blossfeld and Rohwer 2002, p. 56). First, the method requires the

pre-specification of fixed and discrete time intervals. Second, to ensure the reliabil-

ity of estimates conditional for each interval, the Life-Table method is usually

applied in the case of a relatively large number of episodes. To overcome these

restraints an alternative non-parametric approach has been proposed, i.e. the

Product-Limit estimator, also known as the Kaplan-Meier method (Kaplan and

Meier 1958).
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The Kaplan-Meier method is a non-parametric empirical method that estimates

the survivor function based upon longitudinal event data (Cleves et al. 2008, p. 93).

In general, the survival function gives the probability of surviving past time t, or to

put it in another way, the probability of failing after time t (ibid). The Kaplan-Meier

method provides some notable advantages. The method is straightforward to use,

requires only weak assumptions and allows us to analyze non-repeated events in

single-episode event history data. In this study we are interested in the German laser

source manufacturers’ propensity to cooperate for the first time and enter the

innovation network as well as the length of time until the first cooperation occurs

on average. Consequently, based on the risk set specified above we define and

interpret the survival function as follows: the survival function estimates the firms’

probability of having the first cooperation event after time t. In our case the survival

function reflects the probability of moving from the origin state (“no cooperation”)

to the destination state (“first cooperation”) at a given point in time. In addition,

both the variance and the confidence interval can be calculated by using Green-

wood’s variance formula of the survival function and the asymptotic variance of the

logarithm of the survival function respectively.17

In some cases the hazard rate18 or the cumulative hazard rate function is of

interest rather than the survival function itself. We focus on the latter concept as it

allows us to measures the overall risk that has been accumulated up to time t

(Cleves et al. 2008, p. 8). There is a simple relationship between the survival

function and the cumulative hazard rate.19 A simple interpretation of the cumulative

hazard rate is that it records the number of times we would theoretically expect to

observe the occurrence of an event (Cleves et al. 2008, pp. 13–15). It is important to

note that cumulative hazards must be interpreted in the context of repeated events

regardless of whether the event of interest is, due to its very nature, repeatedly

observable or not (ibid).20 The commonly used method to calculate the cumulative

hazard rate is the Nelson-Aalen estimator. The reason is that the Nelson-Aalen

estimator exhibits better small-sample properties than the Kaplan-Meier estimator

(Cleves et al. 2008, p. 108).

Non-parametric estimation methods provide the opportunity to compare survi-

vor functions. The overall population can be divided into two or more subgroups by

using an indicator variable to analyze whether the probability of failing after time t

significantly differs among these subgroups. The indicator variable defines the

membership in a particular subgroup based on firm-specific characteristics

17 For an in-depth description of the calculation methods see Cleves et al. (2008, p. 96).
18 The hazard rate function h(t) can vary from zero to infinity and is also known as the conditional

failure rate. It is defined as “[. . .] the (limiting) probability that the failure event occurs in a given

interval, conditional upon the subject having survived to the beginning of the interval, divided by

the width of the interval” (Cleves et al. 2008, p. 7).
19 The cumulative hazard function H(t) is defined as: H(t)¼� ln{S(t)}¼ R

t
0h(u) du, where S

(t) represents the survival function and h() gives the hazard function (Cleves et al. 2008, p. 107).
20 To illustrate this point, cooperation events can occur several times in a firm’s lifespan whereas

other events such as firm exits occur only once.
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(Blossfeld et al. 2007, p. 76). Using these preparatory steps, separate survival

functions are calculated for the members of each subgroup. We apply this approach

to analyze the extent to which firm-specific characteristics affect the cooperation

behavior over time.

The simplest way to check for statistically significant differences in survivor

functions is to calculate and compare the confidence intervals for the estimated

survivor functions. The survivor functions are said to be significantly different as

long as the confidence intervals are not overlapping (Blossfeld et al. 2007, p. 76).

The more comprehensive approach is to calculate a test statistic.21 For the

purpose of this study we make use of the most commonly applied test statistics,

i.e. the Log-Rank test, Cox test, Wilcoxon-Breslow test and Tarone-Ware test.

These tests are designed to compare globally defined overall survival functions

(Cleves et al. 2008, p. 123). Even though these tests provide, in most cases,

relatively similar results, it can be useful to calculate and compare alternative test

statistics. One reason for this is that some tests (e.g. Wilcoxon-Breslow) emphasize

differences in survivor functions at the onset of the observation period whereas

other test statistics (e.g. Log-Rank) stress the differences at the end of the obser-

vation period (Blossfeld et al. 2007, p. 81). Several alternative test statistics have

since been proposed. For instance the Cox test is very similar to the Log-Rank test

whereas the Tarone-Ware test, like the Wilcoxon-Breslow test, puts more weight on

earlier time slots.22 Common to all these test statistics is that they are χ2-distributed
with m-1 degrees of freedom.23 The tests are based on the null hypothesis that the

survivor functions do not differ significantly from each other (Blossfeld et al. 2007,

p. 81). A significant test result indicates that the null hypothesis must be rejected

(ibid), or to put it another way, the rejection of the null hypothesis based on a

significant test result supports the alternative hypothesis that the compared survivor

functions differ significantly from one another.

6.2.2 Econometric Methods for Panel Count Data

The econometric analysis of firm innovativeness based on patent data requires the

use of a particular category of estimation methods, so-called count data methods.

Patent data, which is the same as other types of count data,24 takes discrete

non-negative integer values (Wooldridge 2002, p. 645) and is typically highly

21 For a description of the general approach to construct test statistics to compare non-parametric

survival functions, see Blossfeld and Rohwer (2002, pp. 79–81).
22 For an in-depth discussion on other further tests (e.g. Peto-Peto-Prentice test or the Fleming-

Harrington two-parameter test), see Cleves et al. (2008, pp. 122–128).
23 The degree of freedom is determined by the number of pre-specified subgroups. Thus, the

variable m takes the value 2 in the case of two subgroups (Blossfeld et al. 2007, p. 81).
24 For a brief overview of other count variables analyzed in economics and social science see

(Wooldridge 2002, p. 645).
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skewed making the use of conventional linear models inappropriate (Cincera 1997,

p. 266). Moreover, a considerable fraction of patent data observations takes on the

value zero so that a natural log transformation of the dependent variable in linear

models is not possible (Wooldridge 2002, p. 645). Consequently, for count data it is

advisable to model the population regression directly and to choose a functional

form that ensures positivity for the vector of explanatory variables and any param-

eter values possible (ibid). As long as the dependent variable has no upper limit, an

exponential function is an appropriate choice to meet these requirements (ibid). In

general, count data models can be used to analyze cross-sectional as well as

longitudinal data. Due to the aim of the present study, focus is placed on the

longitudinal models. In their seminal work on the analysis of firm-level R&D

activities, Hausman et al. (1984) propose econometric models which are in many

cases still the model of choice for the analysis of longitudinal patent count data.

We will start with a brief discussion on panel data characteristics. Even though

panel data methods are more complicated than cross-sectional methods, they

provide considerable additional value as they allow data to be analyzed that

encompasses both variation across individual units as well as variation over time

(Cameron and Trivedi 2009, p. 229). The fundamental advantage of panel data is

that it allows great flexibility in modeling differences across individual units

(Greene 2003, p. 284). For instance, a set of firms is by no means homogeneous

as all firms involved differ from one another in several dimensions. Panel data

allows us to cope with the problem of unobserved heterogeneity (Kennedy 2003,

p. 302). Both fixed and random effects models are associated with some notable

advantages and disadvantages that are discussed later. Panel data alleviates

multicollinearity problems by creating more variability through combining varia-

tion across individual units and across time (Kennedy 2003, p. 302). In addition,

panel data allows the analysis of dynamic adjustments which can be crucial in

understanding economic phenomena (ibid). Panel data consists of repeated mea-

surements at different points in time, usually observed in regular time intervals, on a

well-defined set of individual units such as a spatially and sectorally delimited set of

firms. In other words, panel data are repeated observations of the same cross section

of firms (Wooldridge 2002, p. 7).

In general, one can distinguish between short panels (i.e. many individual

observations across a few time periods) and long panels (few individual obser-

vations across many time periods) or panels where the cross-sectional and the time

series dimension are roughly of the same magnitude (Cameron and Trivedi 2009,

p. 230; Wooldridge 2002, p. 7). Most panel data methods can handle both balanced

as well as unbalanced panels (Cameron and Trivedi 2009, p. 230). In the first case,

the full set of individual units is observed over all time periods whereas in the

second case a considerable fraction of individual units are observed for fewer time

periods. Due to the aim of this study and the structural features of the laser industry

panel dataset (cf. Sect. 6.1.2) we focus below on single equation models for

analyzing short, unbalanced panels.

6.2 Introducing Selected Econometric Methods 131



Now we turn our attention to the choice of model. In many cases the explanatory

variables of our count data model reveal empirical evidence for overdispersion.25

There are several ways to deal with overdispersion in count data models. Com-

monly, overdispersion that is induced by unobserved heterogeneity is accounted for

by estimating Negative Binomial models (NB model) instead of the intuitive

standard Poisson model. The NB model is more general than the Poisson model

because it allows for increased dispersion by incorporating an additional parameter

α. The variance is a linear function of the mean that can be transformed into a

Poisson model (Cameron and Trivedi 1986). The NB model reduces to the Poisson

Model as α ! 0 (Winkelmann 2003). It enables us to deal with a predominance of

zero and small integer values (Cameron and Trivedi, 1986). Finally, we have to take

a brief look at the differences between models that allow for a correlation between

the explanatory variables and the time-invariant component of the error term, and

models which require the unobserved effects and the explanatory variables to be

completely uncorrelated (Wooldridge 2002, p. 668). In the former case we have a

fixed effects model and in the latter case a random effects model. Pioneering work

on the analysis of unobserved effects in panel count data has been conducted by

Hausman et al. (1984) who developed a fixed effects and random effects model

under full distributional assumption (Wooldridge 2002, p. 668). Panel data shows

two types of variation. Variation from one observation to another observation for an

individual unit is called “within-variation” whereas the variation from one indi-

vidual unit to another individual unit is called “between-variation”. The fixed

effects model ignores variation across individuals and uses only within-variation

for all individual units over all observation windows (Kennedy 2003, p. 307). It is

important to note that the coefficient of the regressor in fixed effects models will be

incorrectly estimated or not identified with little or no within-variation (Cameron

and Trivedi 2009, p. 238). Fixed effects models have some important advantages.

The fixed effects estimator is unbiased because it includes dummy variables for the

different intercepts and is more robust against selection bias problems compared to

the random effects estimator (Kennedy 2003, p. 304). However, fixed effects

models also have two considerable drawbacks. Firstly, all time-invariant explana-

tory variables are thrown out because the estimation procedure fails to estimate a

slope coefficient for variables that do not vary within an individual unit (Kennedy

2003, p. 304). Secondly, using only within-variation leads to less efficient estimates

and the model loses explanatory power (Cameron and Trivedi 2009, p. 259). The

random effects model compensates for this disadvantage.

The random effects estimator takes advantage of within-variation as well as

between-variation in panel data (Cameron and Trivedi 2009, p. 256) by using cross-

sectional variation in panel data and by running OLS estimation on the average

values for each individual unit in order to calculate a (matrix) weighted average of

both between-estimators and within-estimators (Kennedy 2003, p. 307). The

random effects model has several advantages compared to the fixed effects

25 The procedure to check for overdispersion was proposed by Cameron and Trivedi (1990).
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model. On the one hand random effects estimators make better use of the informa-

tion values of patent data and generate efficient estimates with higher explanatory

power. In addition, a random effects estimator can generate coefficient estimates of

both time-variant and time-invariant explanatory variables (Kennedy 2003, p. 307).

However, these advantages are not without a downside. The major drawback of the

random effects model is that correlations between the error term and explanatory

variables generate biased estimates (Kennedy 2003, p. 306). In other words, the

random effects estimator generates inconsistent results when the model assump-

tions are violated.

In summary, the main difference between the estimation techniques is that fixed

effects models allow for correlation between the unobserved individual effect and

the included explanatory variables whereas random effects models require the

unobserved individual effect and the explanatory variables to be uncorrelated

(Greene 2003, p. 293).

The question remains whether fixed effects models or random effects models

should be applied. Hausman (1978) has proposed a specification test to select the

appropriate model. The basic idea of the Standard Hausman specification test is to

test the null hypothesis that the unobserved effect is uncorrelated with the expla-

natory variables (Greene 2003, p. 301). In the case that the null hypothesis cannot

be rejected, both the fixed effects estimates and the random effects estimates are

consistent and the model of choice is the random effects model due to its higher

explanatory power. Under the alternative, random effects and fixed effects esti-

mators differ and it can be argued that the latter model is the appropriate choice

(Cameron and Trivedi 2009, p. 260).

Nonetheless, choosing the model based on the Standard Hausman specification

test is controversial for two reasons. First, there is an interdisciplinary controversy

of whether consistency should be preferred over efficiency. Microeconometric

literature advocates the use of fixed effects models whereas most other branches

of applied statistics tend to give preference to random effects models due to

their higher explanatory power (Cameron and Trivedi 2009, p. 230). Second, the

Standard Hausman specification test itself has serious shortcomings because it

requires the random effects estimator to be efficient (Cameron and Trivedi 2009,

p. 261). In the case of unbalanced panels, a robust version of the specification test

can alleviate the latter point (Cameron and Trivedi 2009, pp. 261–262).
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