
Chapter 14

Further Research and Conclusions

Believing in progress does not mean believing that any
progress has yet been made.

(Franz Kafka)

Abstract The paradox underlying each scientific research project is that once it

comes to an end we face more questions than at the beginning of the process. Of

course, not all of the interesting new questions can be addressed here in detail.

Nonetheless, we believe that a comprehensive understanding of network dynamics

is essential for nearly all other fields of cooperation and network research. The

complexity of network change processes calls for the application of unconventional

methods. In my point of view this opens up a most promising field of research and

constitutes, at the same time, the core of the outlook that follows in Sect. 14.1.

Finally, we conclude with some final remarks in Sect. 14.2.

14.1 Fruitful Avenues for Further Research

The preceding discussion shows that our database has to be extended in several

ways. Even though data and methods used in this study provide a good starting

point for the analysis of network change processes, they are limited in several ways

and the German laser industry still has many interesting secrets to divulge. Widely

unexplored archival raw data sources contain valuable information on firm charac-

teristics and cooperation activities that are waiting to be explored. We have recently

started to extend the database in all four of the following areas: industry data, firm

data, network data and innovation data. Our efforts encompass not only data

gathering but also the construction of more sophisticated indicators. For instance,

a promising way to gather additional information on R&D cooperation activities

between LSMs and PROs is the exploration and utilization of bibliometric data.
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Bibliographical sources can also be employed to gather more comprehensive

information on innovation activities at the firm level. Information on product

placement and advertisement can be used to gather and construct market-based

innovation indicators. Quite recently we started systematically exploring data on

new product launches based on several archival raw data sources in order to gain a

more appropriate picture of innovation processes at the firm level. One of our next

steps will be to focus on the inclusion of international linkages in our database to lay

the groundwork for studying networks in an international context.

Secondly, more sophisticated empirical estimation methods are needed to

address some of the empirical limitations. Both parametric and semi-parametric

estimation approaches (Blossfeld et al. 2007) provide a broad range of empirical

models that can be used for an in-depth analysis of tie formation and tie termination

processes at the firm level. Moreover, we used standard panel data count models for

our estimation in Chaps. 10, 11, and 12. These methods are limited in at least two

ways. Firstly, the conditional fixed effects estimation approach, which is usually

implemented in standard software packages, has been criticized (Allison and

Waterman 2002). Secondly, more sophisticated methods have recently been pro-

posed in the literature to handle selection biases in panel data (Imbens and

Wooldridge 2009). These empirical challenges need to be addressed in future.

In addition to the issues addressed above, other powerful methods are now

available such as agent-based simulation approaches. We are convinced that the

use of different methodological approaches adds value in understanding a specific

phenomenon. Two classes of agent-based models seem to have the potential to

break new ground in the field of interorganizational network research.

The first class of models, so-called stochastic agent-based models (Snijders

2004; Snijders et al. 2010; Huisman and Snijders 2003; Huisman and Steglich

2008), can be applied to explore the mechanism that fuels the structural change of

networks between two or more discrete points in time. The main focus of stochastic

actor-based simulation models is the analysis of network evolution processes and

co-evolutionary processes between social networks and changeable actor attributes

(Snijders 2004). At their core, stochastic agent-based models combine a random

utility model, continuous-time Markov process, and Monte Carlo simulation

(Buchmann et al. 2014, p. 27). One processing avenue is to apply these models to

gain a more profound understanding of how and why interorganizational innovation

networks change over time.1

Stochastic actor-based models possess several distinctive features, including

flexibility and accessibility of procedures to estimate as well as to test parameters

which support the description of mechanisms or tendencies (Snijders et al. 2010,

p. 2). Therefore, they reflect “network dynamics as being driven by many different

tendencies” (Snijders et al. 2010, p. 1). These tendencies may be, for example,

reciprocity, transitivity or homophily (ibid). Stochastic actor-based models are

1 The following discussion is guided by Snijders et al. (2010). See also, Huisman and

Snijders (2003).
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based on some basic assumptions (cf. Snijders et al. 2010 pp. 1–3). Firstly, the time

parameter t is continuous. This postulation enables the representation of dependen-
cies between ties which are the consequence of processes where one tie occurs due

to the existence of others. Secondly, the modifications of the network are the result

of a Markov process, i.e. that “for any point in time, the current state of the network

determines probabilistically its further evolution, and there are no additional effects

of the earlier past” (Snijders et al. 2010, p. 2). The third assumption is that the actors

are in control of their outgoing ties. Therefore, the changes of ties occur as a result

of the actions of the actors instigating the tie which is influenced by their and other

actors’ attributes, their location in the network as well as their awareness of the rest

of the network. Fourthly, at a certain point in time one probabilistically chosen actor

(‘ego’) may have the occasion to change one outgoing tie. This postulation ends by

decomposing the process of change into its minimum of possible components and

consequently in the implication that alterations are not implemented coordinately,

but merely depends on each other sequentially (Snijders et al. 2010, p. 3).

In the application of stochastic actor-based models, the focal actor – the one who

can make a change – has to be selected with equal probabilities or with probabilities

that depend on features like network position or other attributes. His reaction

possibilities include the opportunity to change one outgoing tie or to do nothing.

Hence, the set of permissible actions includes n elements (n�1 changes and one

non-change). “The probabilities for a choice depend on the so-called objective

function” (Snijders et al. 2010, p. 3) which is the heart of this model. The objective

function ultimately determines the probabilities of modification in the network. The

occurring effects can be divided into two groups: (a) endogenous effects, such as

basic effects, transitivity and other triadic effects and degree-related effects that

solely depend on the network itself, (b) exogenous effects (covariates) and inter-

actions that, in contrast, are external in nature.2 Moreover, it needs to be empha-

sized that issues regarding statistical modeling may arise. This means, among other

things, that certain data requirements have to be met e.g. number of actors, number

of observation moments, and the total number of observations (Snijders et al. 2010,

p. 6).

By now, there are some excellent studies using stochastic agent-based methods

in an economic context (Van de Bunt and Groenewegen 2007; Balland et al. 2012;

Ter Wal and Boschma 2011; Giuliani 2010). One of our current research projects

also moves in this direction. The study conducted by Buchmann et al. (2014)

explores evolutionary network change processes in the German laser and automo-

tive industry by using a stochastic actor-based simulation approach. The results

provide empirical evidence for the explanatory power of network-related determi-

nants in both industries.

Another class of models, the so-called KENE approach (Gilbert et al. 2001,

2007; Pyka et al. 2007) allows a firm’s knowledge base, learning processes and

knowledge transfer in complex network structures to be modeled. These types of

2 For further explanation, see Snijders et al. (2010, pp. 4–6).
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agent-based models can be applied to simulate micro-level firm behavior which

shapes the macro-level network patterns.

Work has already started in this research area. Mueller and colleagues (2014)

draw upon the KENE approach to analyze the evolution of interfirm innovation

networks. In this study we focus on the evolutionary change of innovation networks

which are composed of and driven by individual strategies and goals of heteroge-

neous actors. These actors follow a number of well-defined cooperation partner

selection strategies. The agent-based simulation model (ABSM) that was

implemented allows the causal relationships between firm strategies and the emerg-

ing network structures to be analyzed.

Mueller and colleagues (2014) applied the model to test the following well-

known mechanisms that are assumed to affect a firm’s cooperation activities and

affect the evolution of the overall network over time: homophily, reputation and

cohesion mechanisms. An initial, simplified version of the model was extended by

adding a market mechanism which linked the knowledge base of a firm with the

rewards a firm receives and with its incentives to cooperate. The results of our study

show that a transitive closure mechanism, combined with a tendency for preferen-

tial attachment, produces networks that exhibit both small-world characteristics and

a power-law degree distribution. Moreover our simulation results suggest that

diversity in the selection of cooperation partners is important when we consider

an evolving network.

14.2 Some Concluding Considerations

An in-depth understanding of collective innovation processes and technological

change patterns is a necessary prerequisite for creating appropriate conditions for

economic growth and prosperity. Indeed, there are still a lot of open questions to be

addressed in order to provide a more comprehensive understanding of the evolu-

tionary nature of innovation networks.

This study demonstrates that the neo-Schumpeterian approach in economics

provides an appropriate theoretical framework for studying firm innovativeness in

evolving networks. We chose this theoretical framework and decided in favor of a

longitudinal empirical setting because we were convinced that factors influencing

the creation of novelty are best understood from a dynamic perspective. Similarly,

methods used for the purpose of this study were selected on the basis of two criteria.

One the one hand, they must allow for an exact measurement of industry, firm,

network and innovation characteristics at multiple analytical levels. On the other

hand, they must be able to account for change processes over time. In principle, all

applied indicators and methods, i.e. basic descriptive indicators, social network

analysis methods and empirical estimation techniques, meet these requirements.

All in all our results show that R&D cooperation and innovation network

involvement affects the innovativeness of science-driven firms in multiple ways.

We believe that this book makes a valuable contribution to innovation network
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literature by exploring how and why firm-specific R&D cooperation activities and

network positions, large-scale network patterns and evolutionary network change

processes affect the innovative performance of laser source manufacturers in

Germany. Nonetheless results should always be accessed and interpreted carefully

in light of the limitations raised above. Current follow-up studies, using alternative

methodological approaches, have already confirmed some of our findings and

contributed towards a better understanding of network entry processes (Kudic

et al. 2013; Kudic et. al. 2015) and network evolution processes (Mueller et al.

2014; Buchmann et al. 2014; Kudic and Guenther 2014). In a similar vein, recently

started research projects on core-periphery patterns in Large-scale networks

(Ehrenfeld et al. 2014) aim to complement and enhance our current picture of

collective innovation processes in the German laser industry.

While this book is certainly a good starting point, there is yet much to be done to

fully understand evolutionary network change, strategic positioning, and firm

innovativeness in the German laser industry.
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