
Chapter 11

Small World Patterns and Firm

Innovativeness

Innovation is the central issue in economic prosperity.
(Michael E. Porter 1980)

Abstract In this section we switch analytical perspective and take a closer look at

the systemic or overall network level. As outlined before (cf. Sect. 8.3), an in-depth

understanding of large-scale network patterns is important for several reasons. On

the one hand, previous studies have demonstrated that networks with comparably

short path lengths and a high level of clustering – so-called “small-world” networks

– can facilitate the exchange of information, ideas and knowledge in networks

(Fleming, L., C. King, A. I. Juda. 2007. Small worlds and regional innovation.

Organ. Sci. 18(6) 938-954). This, however, substantiates the assumption that

systemic level network properties are likely to affect the embedded firms in their

efforts to innovate. On the other hand, systemic level studies have some far-ranging

implications, not only for firms but also for policy makers, by providing an

informative basis for the evaluation of cooperation-related innovation policies at

the national and supra-national level. In a nutshell, the aim of the third empirical

part of this study is to shed light on the relationship between specific types of large-

scale network properties at the macro-level and firm-level innovation outcomes at

the micro-level. This investigation is organized as follows. After a short introduc-

tion in Sect. 11.1 we outline selected theoretical concepts. Next, we continue by

providing the graph theoretical underpinnings of small-world properties in

Sect. 11.2. Then, we introduce our conceptual framework and derive a set of

testable hypotheses. In Sect. 11.3 we provide a short overview of data and methods

used for this analysis. After these preparatory steps, we continue with a description

of the empirical model and present our estimation results in Sect. 11.4. Finally, after

a brief discussion of our main findings we conclude with some critical remarks.
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11.1 On Small-World Characteristics in Innovation

Networks

In the late 1960s Stanley Milgram conducted an experiment that is still highly

topical, especially in the field of network research. The specific concern of his

research project was to understand how communication processes work in social

systems (Uzzi and Spiro 2005, p. 450). The constellation of his so-called “letter-

passing” experiment was quite simple. He sent letters to a randomly chosen set of

participants who were scattered throughout the United States. Written instructions

were included asking the recipients to pass the letter on to a pre-specified target

individual (Newman 2010, p. 55). It turned out that almost one third of the letters

sent even reached far away targets after an average of around six distinct steps.

Milgram’s (1967) groundbreaking experiment demonstrated that people in the

United States are separated by more or less six degrees of separation.

Only recently have economists, sociologists and management scholars started to

address the “small-world” phenomenon (for a comprehensive review see: Uzzi

et al. 2007). Milgram’s findings have some far-reaching implications for innovation

networks. The experiment implies that the network topology itself is likely to affect

the exchange of knowledge in innovation networks. This, however, substantiates

the assumption that large-scale properties at the overall network level affect the

innovative performance of network actors at the micro-level. It is all the more

astonishing that large-scale network properties have been widely neglected in the

field of interorganizational alliance and network research over the past decades.1

One possible explanation is that it took scholars about 30 years to quantify

Milgram’s initial idea. Watts and Strogatz (1998) have shown that the “small-

world” phenomenon can be empirically analyzed by using relatively simple net-

work measures which were originally designed for unipartite networks (cf. Sect.

8.3.2). Some years later a reconceptualization for bipartite networks was proposed

by Newman and colleagues (2001). Quite recently, a few excellent empirical

studies were conducted which explicitly analyzed the relationship between

“small-world” properties and the creation of novelty and innovation (Uzzi and

Spiro 2005; Fleming et al. 2007; Schilling and Phelps 2007).

One of the first studies on collaboration, creativity and small worlds was

conducted by Uzzi and Spiro (2005). The authors analyzed the relationship between

small-world properties in the Broadway musical industry and creativity in terms of

the financial and artistic performance of musicals produced from 1945 to 1989. This

setting is remarkable for two reasons. Firstly, the network measures were

constructed based on bipartite network data. In other words, groups of artists

were treated as fully connected cliques. To handle the data properly, novel statis-

tical techniques (Newman et al. 2001) were applied to detect and interpret small-

world properties which were explicitly designed for the analysis of bipartite

1Most notable exceptions are the studies by Baum et al. (2003), Corrado and Zollo (2006), Uzzi

and Spiro (2005), Fleming et al. (2007), Schilling and Phelps (2007) and Cassi and Zirulia (2008).
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networks. Finally, it is interesting to note that Uzzi and Spiro (2005) measured

performance outcomes at the team level and not the actor level. They reported a

parabolic small-world network effect in a sense that performance increased initially

and then decreased after a certain point.

In a similar vein, Fleming and colleagues (2007) raised the question of why

some regions outperform others in terms of innovativeness. Like Uzzi and Spiro

(2005) they focused explicitly on small-world networks. However, both “small-

world” properties and innovative performance were measured at the regional level.

Based on patent co-authorship data they showed that comparably short path lengths

and larger connected components are positively correlated with increased innova-

tion. Nonetheless, they failed to find empirical evidence that the small-world

properties of the regional innovation network enhanced firm innovativeness.

The most comprehensive study on small worlds and firm innovativeness was

provided by Schilling and Phelps (2007). They analyzed the patent performance of

1,106 firms in 11 industry-level alliance networks based on a comprehensive panel

dataset. The findings of the study provide support for the small-world hypothesis by

showing that networks with comparably short path lengths and high clustering have

a significant impact on the innovativeness of the firms involved. The authors came

to the conclusion that local density and global efficiency can exist simultaneously,

and in particular, the combination of these two network characteristics enhances

innovation (Schilling and Phelps 2007, p. 1124). Despite these interesting findings

the study has some limitations. The most notable is that the authors had to make

assumptions about alliance duration due to a lack of information on alliance

termination dates. They assumed that alliance relationships last for 3 years on

average. In the worst case, this could result either in a systematic underestimation

or overestimation of small-world network properties.

All of these studies provide us with valuable insights into the small-world

phenomenon. However, this discussion also reveals that recent empirical findings

have so far been rather mixed and inconclusive. In addition, we still lack an

in-depth understanding of how large-scale network properties affect firm innova-

tiveness. In other words, we have to open up the black box in order to understand

the mechanisms or transmission channels through which firm innovativeness is

affected by systemic-level network properties. Thus, the aim of this investigation is

twofold. From a theoretical point of view, we draw upon a reconceptualization of

the absorptive capacity concept proposed by Zahra and George (2002) to provide

the missing link between overall network characteristics and a firm’s innovative

performance. From an empirical point of view, we put the “small-world” hypoth-

esis to the test according to which small-world networks are assumed to enhance an

embedded firm’s creativity and its ability to create novelty in terms of innovation.

More precisely, we analyze the relationship between distinct large-scale patterns

(i.e. “weighted clustering coefficient” or “avg. path-length”) and firm innovative-

ness on the one hand, and small-world properties (i.e. “weighted clustering coeffi-

cient” and “avg. path-length”) and firm innovativeness on the other.
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11.2 Small-World Networks and Absorptive Capacity

11.2.1 Graph Theoretical Basis of the “Small-World”
Phenomenon

Small-world networks are characterized by two structural particularities: a high

level of clustering and short average path lengths. The theoretical conceptualization

and quantification of the small-world phenomenon can be traced back to the

pioneering work of Watts and Strogatz (1998). The authors argued that a compres-

sion of real-world networks and randomly generated networks should reveal some

systematic differences with regard to network clustering and reachability. They

proposed using two simple graph theoretical concepts – “cluster coefficient” and

“average distance” – and calculating two ratios – “clustering coefficient ratio”

(CC ratio) and “path length ratio” (PL ratio) – in order to check for the existence

of small-world properties (cf. Sect. 8.3.2). Quantitative network analysis methods

provide a rich toolbox for calculating these indicators (cf. Wasserman and Faust

1994; Borgatti et al. 2013).

The actor-specific clustering coefficient varies from 0 to 1.0 whereby high

values indicate that many of the actor’s direct contacts are connected to each

other (Wasserman and Faust 1994). The overall clustering coefficient is an indicator

that allows the connectedness and crowding in a network to be quantified. This

measure is simply defined as the average of all individual clustering coefficients for

a well-specified population of network actors. In contrast, the weighted overall

clustering coefficient is defined as the weighted mean of the clustering coefficient of

all the actors, each one weighted by its degree (Borgatti et al. 2002). The shortest

path between two network actors is referred to as a geodesic whereas the length of

the geodesic between a pair of network actors is referred to as the geodesic distance

(Wasserman and Faust 1994, p. 110). The average path length captures the

reachability among all network actors in a connected graph or subgraph. The

measure can be defined as “[. . .] the average number of intermediaries, that is,

the degrees of separation between any two actors in the network along their shortest

path of intermediaries” (Uzzi et al. 2007, p. 78).2

Watts and Strogatz (1998) concluded that real-world networks with a CC ratio

much higher than 1.0 and a PL ratio of about 1.0 have a small-world character. A

related indicator is the so-called “small-world Q” (defined as: the CC ratio divided

by the PL ratio), where Q values that are much greater than 1.0 indicate the small-

world nature of a real-world network (Uzzi et al. 2007, p. 79). Newman et al. (2001,

2002) have shown that the “path length ratio” in bipartite networks has basically the

same interpretation as in unipartite networks (Uzzi and Spiro 2005, p. 454). In

contrast, the “clustering coefficient ratio” has to be interpreted differently in the

2 For further details on the calculation and interpretation of these two measures, see Sects. 5.2.3

and 8.3.2.
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sense that a coefficient ratio of about 1.0 indicates within-team clustering whereas a

higher clustering coefficient ratio indicates an increase in between-team clustering

(Uzzi and Spiro 2005, pp. 454–455).

What do these graph theoretical considerations tell us with regard to firm

innovativeness? Or to put it another way, what is the theoretical explanation that

substantiates the assumption that small-world properties at the systemic level

enhance a firm’s ability to innovate? Earlier researchers have argued as follows

(Schilling and Phelps 2007, pp. 1114–1115): On the one hand, a high level of

clustering increases the network’s information transmission rate, enhances a firm’s

willingness and ability to exchange knowledge and enables richer and greater

amounts of information and knowledge to be integrated. On the other hand,

networks with short average path lengths enhance reachability among actors and

generally improve information accessibility at the systemic level. There is no doubt

that these arguments provide an intuitive reasoning behind the consequences of

potential firm-level innovation outcomes caused by increased information perme-

ability in a small-world network. However, these arguments do not directly address

what is happening at the firm level during the firm’s efforts to innovate.

11.2.2 Potential and Realized Absorptive Capacity: The
Missing Link

We argue that Zahra and George’s (2002) reconceptualization of Cohen and

Levinthal’s (1990) initially proposed “absorptive capacity” concept provides the

missing link in understanding the interrelationship between systemic network level

properties and firm-level innovation outcomes.

The originally proposed “absorptive capacity” concept by Cohen and Levinthal

(1989, 1990) has significantly enhanced our understanding of a firm’s ability to

identify, exploit and assimilate external knowledge and apply it for commercial

ends. Cohen and Levinthal (1989) focused initially on the costs of acquiring new

technological knowledge and on the incentives for learning that determine the

firm’s willingness to invest in creating and establishing absorptive capacity. Later

the authors enriched the construct by emphasizing the relevance of individual

learning processes and incorporating the notion that learning is a cumulative

process (Cohen and Levinthal 1990). Furthermore, they adapted insights from

research on individual cognitive structures and individual learning processes.

They applied these findings to the organizational level and emphasized that an

organization’s absorptive capacity is path-dependent, builds on prior investments in

individual absorptive capacity and depends on an organization’s internal commu-

nication processes and its ability to share knowledge (Lane et al. 2006, p. 838). In

addition, they pointed to the fact that previously accumulated knowledge enables

the firm to predict and appraise new technological trends and developments in a
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timely way. Since then the concept has attracted a great deal of attention.3 Several

scholars have proposed insightful reconceptualizations of Cohen and Levinthal’s

original concept (Lane and Lubatkin 1998; Van Den Bosch et al. 1999; Zahra and

George 2002).

For the purpose of this analysis we draw upon the concept proposed by Zahra

and George (2002). This reconceptualization builds upon the distinction between

“capabilities” and “dynamic capabilities”. By starting from the dynamic capability

perspective (Teece et al. 1997; Katkalo et al. 2010) they suggest a separation of the

original absorptive capacity concept into potential absorptive capacity and realized

absorptive capacity and introduce an efficiency factor η that captures the interrela-
tionship between these two constructs (Zahra and George 2002, p. 194). They argue

that four capabilities4– i.e. knowledge acquisition, assimilation, transformation and

exploitation – are combinative in nature and build upon each other. These four

capabilities make up a firm’s absorptive capacity that has to be regarded as a

dynamic capability pertaining to knowledge creation and utilization that enhances

a firm’s innovative performance and ability to gain and sustain a knowledge-based

competitive advantage (Zahra and George 2002, p. 185). They define absorptive

capacity as “[. . .] a set of organizational routines and processes by which firms

acquire, assimilate, transform, and exploit knowledge to produce a dynamic orga-

nizational capability” (Zahra and George 2002, p. 186).

Figure 11.1 illustrates a slightly refined version of Zahra and George’s (2002)

model. The absorptive capacity construct, at the core of the model (cf. Fig. 11.1

center), is divided into potential absorptive capacity (PACAP), which includes

knowledge acquisition and assimilation, and realized absorptive capacity

(RACAP), that consists of knowledge transformation and exploitation capabilities.

This absorptive capacity construct connects the antecedents, i.e. external knowl-

edge sources, knowledge complementarities and experiences (cf. Fig. 11.1, left)

with firm-level outcomes, i.e. firm innovativeness and sustainable competitive

advantages (cf. Fig. 11.1, right). In addition, the model accounts for several

moderating effects: “activation triggers”, “social integration mechanisms”, and

“regimes of appropriability”. An efficiency factor η is integrated into the model

that captures a firm’s ability to transform and exploit external knowledge sources in

order to gain a sustainable competitive advantage. This factor reflects the extent to

which a firm can make commercial use of potentially available knowledge. In other

words, RACAP approaches PACAP in firms with a high efficiency factor (Zahra

and George 2002, p. 191). This model paves the way for a dynamic conceptualiza-

tion of absorptive capacity and provides several interesting implications for sys-

temic level network studies. Below we argue that a simple extension of the model

3 Lane et al. (2006) identified a total of 289 papers in 14 academic journals between July 1991 and

June 2002 that cite Cohen and Levinthal’s (1990) “absorptive capacity” concept.
4 Zahra and George (2002) draw upon Winter (2000, p. 983) who defines capabilities as “[. . .] a
high-level routine that, together with its implementing input flows, confers upon an organization’s

management a set of decision options for producing significant outputs of a particular type.”
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provides the missing link for understanding how large-scale properties at the

overall network level affect innovation outcomes at the firm level.

In doing so, we have to take a closer look at the first element of the framework

(cf. Fig. 11.1, left). According to the model originally proposed by Zahra and

George (2002, p. 191) there is a direct link between external knowledge sources

and complementarities and a firm’s PACAP. These external knowledge sources

encompass, among other things, various structural forms of interorganizational

relationships such as R&D consortia, alliances, or joint ventures.5 Thus cooperative

relationships to external partners can serve as a vehicle for accessing new infor-

mation and knowledge. However, it is important to note that not only direct but also

indirect interorganizational linkages have to be considered in this context (Gulati

1998). As a consequence, we apply here not a relational but rather a structural

network embeddedness perspective (cf. Sect. 2.5.4). One particular feature of a

network is that a particular firm can even reach far distant organizations that are

spread throughout the entire network space by second or third tier ties. This means

that a firm that is a part of the industry’s innovation network has potential access to

an extensive pool of external technological knowledge sources spread throughout

the entire network. Thus, in line with previous systemic-level studies (Uzzi and

Spiro 2005; Fleming, et al. 2007; Schilling and Phelps 2007), we argue that actual

access to information and the knowledge stocks of other firms is likely to be

affected by the structure of the network in question. The network topology itself

plays a key role in the permeability of the network. In contrast to previous research,

we believe that an extension of the absorptive capacity concept outlined above and

an in-depth exploration of structural network characteristics adds extra value to our

understanding of how large-scale properties at the systemic level affect a firm’s

efforts to innovate (cf. Fig. 11.1, left). Or to put it differently, given that network

topologies can facilitate but also hamper the flow of information and knowledge
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Compe��ve advantage
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Ac�va�on trigger Social integra�on 
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(ɳ)

Systemic level 

Large-scale proper�es 

Fig. 11.1 Conceptual framework – an adapted model of potential and realized absorptive capacity

(Source: Zahra and George (2002, p. 192), extended and modified)

5 Due to the purpose of this study we focus explicitly on the innovation network as one particular

type of external knowledge source that can be tapped by the firms.
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among actors in an innovation network, the question arises as to what these

structural network patterns look like.

11.2.3 Large-Scale Network Properties: Opening Up
the Black Box

Networks can exhibit quite heterogeneous structural patterns. Figure 11.2 illustrates

four fairly different network topologies. To start with, we look at a typically random

network. It is important to note that the emergence of these networks is not very

likely under realistic conditions. Nonetheless, we explicitly consider and discuss all

four cases in order to develop our theoretical arguments.

The first network example is characterized by a rather fragmented network

structure that consists of five components (cf. Fig. 11.2, I). The structural config-

uration of the network shows no significant peaks in term of the actors’ nodal

degrees. The minimum degree is one and the maximum degree is two. Network

actors within a component are not directly but rather are indirectly connected to

other actors in the same component. The benefits of a firm in participating in such a

fragmented, randomly distributed network are rather limited. The reasons for this

are straightforward. Firstly, the pool of potentially accessible knowledge sources is

limited by the size of the component in which the firm is embedded. Secondly, the

geodesic distances to most other actors are infinite due to the high degree of

fragmentation. Thus, knowledge transfer processes are likely to be hampered by

the component’s size or even entirely prevented by the overall network structure.

These issues lead to our second network example. Figure 11.2 (II) illustrates a

fully connected but randomly distributed network structure. Like before there are

no systematic biases in the degree distribution at the overall network level. The

main difference is that the network consists of only one large component. This,

however, has some important implications with regard to knowledge diffusion

processes. Theoretically, we would expect that a firm’s participation in such a

I II III IV 

Fig. 11.2 Illustration of network topologies (Source: Author’s own illustration)
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network broadens the scope and variety of potentially accessible information and

knowledge sources. One could argue that the firm’s chance of identifying and

actually accessing external knowledge sources that fit with its own set of capabil-

ities increases with the number of potentially accessible knowledge sources. The

crucial point is that such an increased set of opportunities would allow a firm to

make better use of its knowledge exploitation capabilities. According to Zahra and

George (2002) this would be reflected in a higher efficiency factor η and lead to a

higher firm-level innovation outcome at subsequent points in time. In fact the actual

situation looks somewhat different. The likelihood of successfully exchanging

knowledge between two indirectly connected network actors decreases with the

number of other actors that lie on the geodesic between them. A closer look at our

network example illustrates this point (Fig. 11.2, II). In this case we have up to

11 intermediates between the most distant actors in the network.

Next, we turn our attention to a somewhat more realistic network structure. By

now, it is well-recognized that some nodes attract ties at a higher rate than others.

This is reflected in real-world networks by the emergence of a strongly biased

degree distribution at the overall network level. These types of networks are also

known as power law distributed or scale free networks (cf. Sect. 8.3.1). Real-world

network topologies can differ significantly in terms of their structural features.

Our third network example consists of three components (two peripheral and one

main component) and the nodal degrees range from one to five (cf. Fig. 11.2, III).

The network is disconnected and clustered. The nodes within these components are

well-connected themselves but have no linkages to actors in other areas of the

network. We start our line of argument by focusing on the network’s main compo-

nent (cf. Fig. 11.2, III, bottom). A firm’s involvement in a highly interconnected

main component of a disconnected network has some considerable advantages.

Firstly, all main component firms are connected to one another. A main component

firm can reach most other actors in the same component in only a few steps. Short

paths are likely to facilitate potential knowledge transfer and learning processes.

Most innovation researchers would agree that a decreasing path length is positively

related to firm innovativeness (Fleming et al. 2007, p. 941).

Secondly we turn our attention to clustering within connected network compo-

nents. A high degree of interconnectedness allows a focal firm to achieve

cooperation-related synergy effects. These effects can result from direct but also

from indirect linkages among a focal actor’s directly connected partners (White

2005; Hoffmann 2005). Redundant knowledge transfer channels allow firms to

circumvent potentially emerging knowledge transfer barriers. It has been argued

that clustering promotes collaboration, resource pooling and risk sharing (Fleming

et al. 2007, p. 940).6

6 It is important to note that these considerations only hold true as long as the number of

disconnected network components is comparably small. The benefits diminish with an increasing

number of disconnected subgroups in the network. Or to put it another way, increasing fragmen-

tation disestablishes the benefits described above.
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In summary, the previously outlined arguments substantiate the assumption that

a firm’s embeddedness in the main component of a highly clustered but discon-

nected innovation network enhances a firm’s scope and variety of accessible

knowledge sources. Two structural characteristics, i.e. short path lengths and a

high level of clustering are considered to be important in this context. Keeping the

extension of Zahra and George’s (2002) absorptive capacity model in mind, it is

plausible to assume that these structural features enhance a firm’s efficiency factor

η. This, in turn, is likely to be positively related to firm-level innovation outcomes at

later points in time. The arguments above form our first two hypotheses:

H1 Short average path length in the overall network level is positively related to its

innovative performance at later points in time.

H2 A high degree of clustering at the overall network level is positively related to

its innovative performance at later points in time.

Last but not least, we address small-world properties of innovation networks. It

becomes apparent that the previously discussed real-world network in itself

encounters barriers in information and knowledge transfer. As already stated

above, the network consists of several densely interconnected components which

are not connected to one another. This leads us to take a look at the last network

example. Figure 11.2 (IV) illustrates a highly clustered but fully connected real-

world network. The simultaneous occurrence of cohesive subgroups and short paths

in a network has some interesting implications.

Firstly, such a network is rich in structural holes and the cohesive subgroups are

interconnected through network brokers (Burt 1992). They bridge structural gaps in

a network and establish important connections between otherwise unconnected or

at least loosely connected network subgroups (ibid). This, however, significantly

decreases the average path lengths at the overall network level and increases, at the

same time, information permeability. Secondly, the benefits of cohesive subgroups

in a firm’s close network surroundings are maintained. The simultaneous occur-

rence of clustering and short average path length indicate the small-world nature of

a network (Watts and Strogatz 1998).

In line with previous research (Schilling and Phelps 2007) we argue that small-

world network properties are accompanied by some extra additive effects which are

assumed to enhance a firm’s efficiency factor η. The simultaneous occurrence of

both high clustering and short average path lengths is likely to catalyze and foster

local cooperation effectiveness and enhance global information transmission effi-

ciency (Schilling and Phelps 2007, p. 1116). These considerations substantiate our

last hypothesis:

H3 A firm’s participation in a small-world network (characterized by short aver-

age path lengths and a high level of clustering) is positively related to its innovative

performance at later points in time.
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11.3 Data, Variables and Descriptive Statistics

11.3.1 Data Sources

Four main data sources were used to construct a longitudinal panel dataset: patent

data, industry data, geographical data and network data (cf. Sect. 4.2).

Patent data was used to measure innovative performance at the firm level. We

are not the first to use patent data as an innovation proxy (Jaffe 1989; Jaffe

et al. 1993). Previous studies provide us with important insights into the pros and

cons of using patents to measure innovation performance.7 In accordance with

contemporary research (Schilling and Phelps 2007), we used annual patent counts

as a proxy for innovation output. Our database (cf. Sect. 6.1.2) includes patent

applications as well as patents granted by the German Patent Office and by the

European Patent Office. DEPATISnet (the German Patent and Trade Mark Office’s

online database) and ESPACEnet (the European Patent Office database) were

employed to cross check the results from our initial data gathering procedure. For

the purpose of this analysis we used the annual count of patent applications [pacnt]
as an endogenous variable.

Industry data came from a proprietary dataset containing the entire population of

German laser source manufacturers between 1969 and 2005 (Buenstorf 2007).

Based on this initial dataset we used additional data sources to gather information

about firm entries and exits after 2005. We chose the business unit or firm level for

the purpose of this analysis.8 In addition, we identified 145 universities and public

research organizations with laser-related activities by using two complementary

methods – the expanding selection method and the bibliometric approach.9

Network data was gathered from two official databases on publicly funded R&D

collaboration projects – the Foerderkatalog database and CODRIS database.10 The

first database contains information on more than 110,000 ongoing or completed

subsidized research projects. The second raw data source was an extract from the

CORDIS project database which includes a complete collection of R&D projects

for all of the German companies funded by the European Commission. This

database extract encompasses a project dataset with over 31,000 project files and

an organization dataset with over 57,100 German organizations and roughly

194,000 international project partners. In total, we were able to identify, for the

entire population of 233 German laser source manufacturers, 570 R&D projects

with up to 33 project partners from various industry sectors, non-profit research

organizations and universities.

7 Section 4.2.4 provides a detailed discussion on the measurement of innovation and describes the

patent data sources and data gathering procedure used for the purpose of this study.
8 For a detailed description of industry data used for this study, see Sect. 4.2.1.
9 Both methods are described in detail in Sect. 4.2.
10 For a detailed description of both cooperation data sources (CORDIS and Foerderkatalog) and
the methods used to construct annual networks, see Sect. 4.2.3.
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11.3.2 Variable Specification

The data sources described above were used to construct interorganizational inno-

vation networks and calculate network indicators on a yearly basis. We calculated

weighted clustering coefficients [nw_wclust] and average path length [nw_areach]
on an annual basis (cf. Sect. 5.2.3, Eqs. 5.10 and 5.11). An interaction term was

calculated to capture the small-world properties of the network [inter_sw]. Several
additional control variables were calculated. We measured firm-specific coopera-

tion activities with two cooperation count measures based on the Foerderkatalog
data [coopcnt_fk] and CORDIS data [coopcnt_c] respectively, as well as a com-

bined cooperation count indicator [coopcnt_fkc] consisting of the sum of both.

Moreover, we accounted for cooperation funding by including a variable that

measures the firm’s amount of cooperation funding received annually

[coopfund_fkc] in 1,000 euros. We also included a linear firm age measure

[firmage] as well as a squared term [firmage_sq] to account for firm maturity. In

addition, two network level variables were included to control for the structural

network characteristics at the overall network level. The first variable captured

the size of the overall network [nw_size] defined as the proportion of firms with

at least one dyadic partnership in a given year. The second variable measured

the connectedness of the overall network [nw_density]. Standard algorithms

implemented in UCI-Net 6.2 were used to calculate the network measures (Borgatti

et al. 2002).

11.3.3 Descriptive Statistics

Next, we take a brief look at the variable description and basic summary statistics

(cf. Table 11.1). In total, we have 2,645 firm-year observations in the time between

1990 and 2010. The average number of observations per firm amounts to 11.35.

Table 11.2 reports the correlation coefficients for all variables in our empirical

models.

Based on the data sources described above we conducted an initial exploratory

analysis to get an idea of what the overall network topology looks like. Figure 11.3

(top) displays the weighted overall clustering coefficients and the average overall

path length for both the German laser industry innovation network and a randomly

generated Erdös-Renyi network that is comparable in terms of size and density.11

Network measures are calculated on an annual basis and the period under observa-

tion is from 1990 to 2010. All measures are calculated using UCI-Net 6.2 (Borgatti

et al. 2002). The corresponding CC ratios, the PL ratios and the small-world

11 The construction of the reference network is described in Sect. 8.3.2.
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Table 11.1 Descriptive statistics – clustering, reach and small-world properties

Variable

Variable

definition

Summary statistics

Obs. Mean Std. dev. Min Max

Endogenous variables

papcount Patent appli-

cations

(annual

count)

2,645 2.662004 17.43323 0 366

pgrcount Patent grants

(annual

count)

2,645 0.339130 1.635554 0 28

Control variables

firmage Age of the

firm

2,645 8.055955 6.800477 0 43

firmage_sq Age of the

firm, squared

2,645 111.1274 177.8146 0 1,849

coopcount Count of

cooperation

events

(annual)

2,645 0.275992 0.774138 0 8

coopfund Annual

cooperation

funding

received

(in k€)

2,645 132.299 851.8748 0 31.863

nw_size Network size

(overall net-

work level)

2,645 0.381853 0.060200 0.240506 0.472393

nw_density Network

density

(overall net-

work level)

2,645 0.088119 0.069955 0.037300 0.440500

Network level properties

nw_wclust Weighted

clustering

coefficient

2,645 0.58152 0.161069 0.345 0.906

nw_areach Average dis-

tance based

reach

measure

2,645 3.09431 0.504183 2.075 3.786

inter_sw “Small

world” indi-

cator

(nw_wclust

�
nw_areach)

2,645 1.7324 0.298921 1.14021 2.18748

Source: Author’s own calculations

11.3 Data, Variables and Descriptive Statistics 267



T
a
b
le

1
1
.2

C
o
rr
el
at
io
n
m
at
ri
x
–
cl
u
st
er
in
g
,
re
ac
h
an
d
sm

al
l-
w
o
rl
d
p
ro
p
er
ti
es

P
g
r
co
u
n
t

P
ap

co
u
n
t

F
ir
m

ag
e

F
ir
m

ag
e_
sq

C
o
o
p
co
u
n
t

C
o
o
p
fu
n
d

N
w
_
si
ze

N
w
_
d
en
si
ty

N
w
_
w
cl
u
st

N
w
_
ar
ea
ch

In
te
r_
sw

P
ap
co
u
n
t

1
.0
0
0
0

P
g
rc
o
u
n
t

0
.6
5
0
6

1
.0
0
0
0

F
ir
m
ag
e

−
0
.0
5
6
6

0
.0
1
0
5

1
.0
0
0
0

F
ir
m
ag
e_
sq

−
0
.0
4
5
5

−
0
.0
0
4
7

0
.9
2
7
6

1
.0
0
0
0

C
o
o
p
co
u
n
t

0
.2
5
3
5

0
.2
7
2
6

0
.0
1
0
1

0
.0
2
7
2

1
.0
0
0
0

C
o
o
p
fu
n
d

0
.3
9
2
3

0
.3
1
1
4

−
0
.0
2
7
9

−
0
.0
1
0
0

0
.5
1
1
2

1
.0
0
0
0

N
w
_
si
ze

0
.0
4
4
8

0
.0
6
7
0

0
.2
1
3
1

0
.1
6
0
3

0
.0
4
4
2

0
.0
1
4
7

1
.0
0
0
0

N
w
_
d
en
si
ty

−
0
.0
5
2
9

−
0
.0
8
3
2

−
0
.2
0
0
6

−
0
.1
4
5
0

−
0
.1
4
5
0

−
0
.0
1
4
5

−
0
.6
5
7
6

1
.0
0
0
0

N
w
_
w
cl
u
st

−
0
.0
5
2
9

−
0
.0
8
3
5

−
0
.2
5
3
0

−
0
.1
9
0
1

−
0
.0
0
7
4

−
0
.0
1
5
3

−
0
.4
6
8
4

0
.6
9
3
4

1
.0
0
0
0

N
w
_
ar
ea
ch

0
.0
6
3
7

0
.0
9
6
5

0
.2
7
6
1

0
.2
0
6
2

0
.0
1
6
4

0
.0
1
0
0

0
.7
1
5
4

−
0
.7
4
9
9

−
0
.8
2
5
5

1
.0
0
0
0

In
te
r_
sw

−
0
.0
2
1
9

−
0
.0
4
1
4

−
0
.1
6
3
9

−
0
.1
2
7
5

0
.0
0
2
6

−
0
.0
1
4
1

−
0
.0
6
5
6

0
.3
1
8
6

0
.8
3
5
7

−
0
.4
0
2
0

1
.0
0
0
0

S
o
u
rc
e:

A
u
th
o
r’
s
o
w
n
ca
lc
u
la
ti
o
n
s

268 11 Small World Patterns and Firm Innovativeness



Q values are reported in the illustration below (cf. Fig. 11.3, bottom). The following

structural patterns are noteworthy.12

Firstly, the German laser industry innovation network shows a relatively high

level of clustering and rather short average path lengths overall. Secondly, over

time we can observe decreasing weighted clustering coefficients and increasing

average path length. This is primarily due to the fact that the German laser industry

network has demonstrated a pronounced growth tendency over time. In other

Fig. 11.3 Weighted overall clustering coefficient and average overall path length

12 Note that the calculations are based on bipartite network data. This is in line with the study by

Uzzi and Spiro (2005). However, the use of bipartite network data generates relatively high

clustering coefficients. This should be kept in mind when interpreting the results. For an

in-depth discussion on the differences between unipartite and bipartite network data, see Sect.

8.3.2. To ensure robustness of the reported results we calculated both small-world indicators based

on an alternative network data decomposition assumption. Additional calculations confirm the

small world character of the network (cf. Appendix 3).
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words, the number of laser-related organizations that actively participate in the

industry’s innovation network increases over time. Thirdly, small-world measures

indicate the emergence and consolidation of the network’s small-world nature.

More precisely, a comparison of the real-world network with a randomly generated

reference network reveals that the German laser industry innovation network

exhibits both higher overall clustering coefficients and longer average path lengths

for each year throughout the entire observation period. The annually calculated CC

ratios are clearly above 1.0 and increase over time. PC ratios do not exceed the

value range between 1.0 and 1.35 and the small-world Q ratio lies significantly

above 1.0 and demonstrates, like the CC ratio, a pronounced tendency towards

increasing values over time.

In summary, the results of the exploratory analysis of large-scale network

properties for the German laser industry are suggestive of an increasing emergence

and solidification of small-world properties over time.

11.4 Estimation Results and Empirical Findings

11.4.1 Model Specification and Estimation Strategy

As our endogenous variable – annual patent application counts – only accepts

nonnegative integer values, we choose a count data model specification for the

purpose of this analysis.13 Following Ahuja (2000), Stuart (2000) and Schilling and

Phelps (2007), we estimated panel data count models.14 Basically, two estimation

techniques can be distinguished: the fixed effects and random effects methods. In

general, the use of fixed effects models provides some important advantages. The

fixed effects estimator is unbiased as it includes dummy variables for the different

intercepts and is more robust against selection bias problems than the random effects

estimator (Kennedy 2003, p. 304). The problem that occurs with fixed effects models

is that all time-invariant explanatory variables are thrown out because the estimation

procedure fails to estimate a slope coefficient for variables that do not vary within an

individual unit (Kennedy 2003, p. 304). In addition, using only within-variation leads

to less efficient estimates and the model loses its explanatory power (Cameron and

Trivedi 2009, p. 259). In contrast, random effects estimators make better use of the

information values of patent data and generate efficient estimates with higher explan-

atory power. In addition, random effects estimators can generate coefficient estimates

of both time-variant as well as time-invariant explanatory variables (Kennedy 2003,

p. 307). The major drawback of the random effects model is that correlations between

the error term and the explanatory variables generate biased estimates and thus

inconsistent estimation results (Kennedy 2003, p. 306).

13 For an in-depth discussion on the use of panel data count models, see Sect. 6.1.2.
14We used STATA 10.1 (Stata 2007), a standard software package for statistical data analysis.
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We adopted the following estimation strategy to test our hypotheses. First, we

implemented a 2-year time lag structure in our empirical setting. Then, we esti-

mated panel Poisson models in order to obtain an initial idea of the relationship

between cooperation counts, network positioning measures and firm-specific

patenting activity. As our endogenous variables exhibited strong overdispersion,

we then turned to a Negative Binomial model specification with random effects

(cf. Sect. 6.2.2). This generalization of the Poisson model allows for overdispersion

by including an individual, unobserved effect in the conditional mean (Schilling

and Phelps 2007, p. 1119). In the next step, we estimated both fixed effects and

random effects models. Usually the Standard Hausman Test (1978) is used to

decide which results to interpret. In this analysis, most fixed effects and random

effects estimates are consistent. In a final step, we ran consistency checks to ensure

the robustness of our results by using a 1-year time lag structure.

11.4.2 Estimation Results

The presentation and discussion of our empirical findings is centered on the

Negative Binomial model for panel count data reported in Table 11.3. Robustness

of our findings is ensured by additional estimation results reported in Table 11.4.

Results from both estimation techniques (fixed effects and random effects) are

reported in the tables below.

Table 11.3 includes information on the total of four models. In addition to a

baseline model (i.e. BL Model), there is one model that includes the network

clustering coefficient (i.e. Model I), one model that comprises the overall average

path length indicator (i.e. Model II), and one model that accounts for small-world

properties of networks (i.e. Model III). We did not specify a full model that

incorporates path-length, clustering and small-world indicators simultaneously

because we are primarily interested in testing the relatedness between three distinct

and structurally quite different network topologies and firm-level innovativeness.

At the same time we face the risk of running into methodological problems when

including all three variables in one estimation model. Potential methodological

extensions and refinements of the empirical setting are discussed in Sect. 14.2.

The baseline model (cf. Table 11.3, BL Model) provides results for firm-level

controls (i.e. firm age & firm age squared), cooperation-related controls

(i.e. cooperation counts & cooperation funding) and overall network level control

variables (i.e. network size & network density). Results from a random effects

specification (time lag, t-2) reveal a positive and significant coefficient for cooper-

ation counts (cf. Table 11.3). This should be viewed with great caution because the

fixed effects specification fails to show a positive and significant relationship

between cooperation counts and firm innovativeness. The same is true for both

the fixed effects and the random effects model with a time lag t-1 (cf. Table 11.4).

The situation looks fairly different for overall network control variables, especially

in terms of network size. Estimation results (cf. Table 11.3, FE & RE; Table 11.4,
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FE & RE) provide empirical evidence for a negative relatedness between network

size and firm innovativeness.

To start with, the estimation results are robust for both time lags (Table 11.3,

time lag t-2; Table 11.4, time lag t-1) and for both estimation techniques

(i.e. random effects & fixed effects models). Coefficient estimates for network

clustering are positive and highly significant at the 0.01 level (cf. Table 11.3,

Model I; Table 11.4, Model I). Estimation results for average path length are

negative and show a minor significance at the 0.1 level (cf. Table 11.3, Model II)

and no significance in the robustness check (cf. Table 11.4, Model II). Finally,

coefficient estimates for the small-world indicator are positive, consistent over all

specifications and highly significant at the 0.01 level (cf. Table 11.3, Model III;

Table 11.4, Model III). In summary, our estimation results provide strong empirical

support for Hypotheses H2 & H3 but only minor support for Hypothesis H1.

11.5 Discussion and Implications

In this section we were primarily interested in testing the relatedness between three

distinct, structurally different, network topologies and firm-level innovativeness.

Our results for the overall average path lengths (Hypothesis H1) are as expected

and in line with previous empirical findings (Schilling and Phelps 2007; Fleming

et al. 2007). Both studies report a negative15 and, in most cases, highly significant

correlation between the average path length at the overall network level and firm

innovativeness. Schilling and Phelps (2007) pay little attention to these individual

effects. Fleming et al. (2007, p. 949) conclude: “Shorter path length [. . .] correlates
with an increase in subsequent patenting.” However, in our setting the significance-

level for this coefficient is fairly low and a robustness check did not support the

initially identified effect.

Our results for the clustering coefficient are in line with our theoretical expec-

tations (Hypothesis H2), however, it is interesting to note that the findings for the

individual clustering of the German laser industry innovation network are not in

line with previous empirical findings in several respects. Schilling and Phelps

(2007, p. 1122) report in four out of six empirical settings a negative but insignif-

icant effect. Similarly, the results of Fleming and colleagues (2007, p. 948) reveal

negative and significant coefficient estimates. This is an issue that clearly calls for

clarification and further research.

Last but not least, we take a look at a network’s small-world properties. Firstly,

the descriptive analysis shows that the German laser industry network clearly

fulfills the small-world criteria according to Watts and Strogatz (1998). Moreover,

results are suggestive of an increasing solidification of small-world properties over

15Note that Fleming and colleagues (2007) use an inverse path length measure. Thus, the

coefficient estimates are positive.
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time. Secondly, in our estimation, results clearly support Hypothesis H3 and

provide empirical evidence for a positive relatedness between a network’s small-

world nature and a firm’s subsequent innovativeness. This is in sharp contrast to the

findings of Fleming et al. (2007, p. 949); the authors conclude: “The small world

effect is not observed in our data.” However, our results are in line with previous

findings by Schilling and Phelps (2007) who summarize their findings as follows:

“[. . .] networks that have both the high information transmission capacity enabled

by clustering, and the high quantity and diversity of information provided by reach,

should facilitate greater innovation by firms that are members of the network”

(Schilling and Phelps 2007, p. 1124).

This empirical analysis has several important implications for both managers

and policy makers. Most noteworthy is the recognition that the network topology

itself seems to affect the innovative performance of firms at the micro-level in

multiple ways. In other words, analyzing firm-specific cooperation patterns is

necessary but not sufficient for a comprehensive understanding of a firm’s innova-

tive performance. Another important implication is that regional innovation net-

works can significantly gain in effectiveness when they concurrently show high

clustering and short average path lengths. Moreover, regional networks should have

a certain degree of openness in a sense that trans-regional linkages should be

established and maintained.

The limitations of this analysis are the subject of a discussion in Sect. 13.2. In

addition, we outline some fruitful avenues for further research into large-scale

networks in Sect. 14.2.
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