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Chapter 1

Introduction

At its heart, economic theory is about individuals and their
interactions on markets or other social systems.

(James J. Heckman 2000)

Abstract Without a doubt, the twentieth century saw some of the most notable

innovations in world history and the laser can certainly be counted among them.

The aim of this study is to contribute to an in-depth understanding of collective

innovation processes by analyzing R&D cooperation and innovation networks in

the German laser industry. Following the neo-Schumpeterian tradition, it employs

interdisciplinary analytical concepts and draws upon a unique longitudinal dataset

from the laser industry that covers more than two decades of observations. The first

chapter provides a general introduction to the subject and is structured as follows:

Sect. 1.1 starts with a brief introduction of the laser and its roots in Germany. In

Sect. 1.2 we raise awareness of the importance of R&D cooperation and innovation

networks in science-driven industries. In Sect. 1.3 the overall research questions

underlying this study are presented. And finally, the research design and the plan of

the book are outlined in Sect. 1.4. In short, our aim with this study is to contribute to

the existing body of literature by exploring how and why firm-specific R&D

cooperation activities and network positions, large-scale network patterns, and

evolutionary network change processes affect the innovative performance of laser

source manufacturers in Germany.

1.1 The Laser and its Beginnings

The twentieth century saw some of the most notable innovations in world history.

Many of these innovations led to the emergence of entirely new technological fields

which have affected our lives and habits in a remarkable way. For instance, the

development of novel means of transportation has enabled the world to grow closer

together and has paved the way for trade between nations. The development of the

transistor has revolutionized the field of electronic engineering and enabled pocket
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calculators, personal computers and countless other electronic devices to be devel-

oped. New information and communication technologies, such as the Internet and

other mobile communication devices, have changed the way people interact in their

private and professional lives. This small selection of examples illustrates how

tremendously new ideas can influence the social and economic life of individuals in

modern societies.

The invention of the laser in the late 1950s can also be included in the list above.

The acronym laser was originally coined by Gordon (1959) and stands for “Light
Amplification by Stimulated Emission of Radiation”. At the onset of laser research
several competing research groups were working under extreme pressure to secure

their supremacy in this vibrant research field. Only one year after Gould’s seminal

article was presented at the “Ann Arbor Conference on Optical Pumping”, Maiman

(1960) commenced operation of the first stable laser device.

Almost instantly the commercial sector took notice of the new technology and

numerous laser source manufacturers (LSMs) entered the scene, not only in the

United States but also in Germany. In the early 1960s, the Siemens Group, whose

headquarters were located in Munich at that time, started to play a dominant role in

the development and manufacturing of lasers in Germany. Shortly afterwards, an

entire industry started to emerge that was characterized by its high number of micro

and small businesses (Buenstorf 2007). Expertise in electrical engineering, physical

and technical skills as well as access to cutting-edge technologies and new sources

of scientific knowledge are essential for LSMs to keep pace with competitors. As a

consequence, the demand began to increase for both applied and basic research into

novel laser operating principles, gain media and laser components. Numerous

public funding initiatives were launched to promote research in this field (Fabian

2011). New laser-related research facilities were founded and entered the German

research landscape. Physics departments at universities and other publicly funded

research organizations (PROs) started to intensify their efforts with regard to laser

research. When Germany was reunified in 1989, the leading laser research facilities

in the former German Democratic Republic (GDR) were integrated into the Ger-

man laser innovation system. All in all, these efforts led to substantial refinements

in the initial laser devices and were accompanied by groundbreaking technological

advances in modern laser research carried out over the past half-century.

Today, laser applications can be found in nearly every walk of life. Their output

power range from 1 to 5 milliwatt (10�3 W) for DVD-ROM drives and laser

pointers, to 1–5 kW lasers (103 W) commonly used for industrial laser cutting

and petawatt lasers (1015 W) used for experiments in plasma and atomic physics.

The economic potential of laser technology has increased significantly over the past

decades. In 2006 the revenue of German producers of laser sources and optical

components amounted to approximately EUR 8 billion and about 45,000 people

were employed in the industry (Giesekus 2007, p. 11).
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1.2 Why Study Innovation Networks?

The previous reflections illustrate the enormous economic potential of new and

innovative ideas. One of the first scholars to recognize the importance of innova-

tions for economic welfare was Schumpeter (1912, 1939, 1942). He emphasized the

role of entrepreneurs and their innovative ideas as the driving forces behind

economic change processes in capitalist societies. Nowadays, it is widely accepted

that technological progress is fundamental to economic growth and the prosperity

of nations (Graf 2006). In this context at least one central question arises that also

constitutes the initial starting point for this book: what are the factors that affect a
firm’s ability to generate novelty and innovate over time?

The search for an answer to this question is anything but new. Over the past

decades scholars of economics and related disciplines have addressed this question

(cf. Sect. 2.2). Previous research on the very nature of innovation processes

(cf. Sect. 2.3) teaches us that the innovation process itself is neither linear in nature

nor is it limited to the individual efforts of single economic entities. Instead, it is

characterized by small incremental steps and accompanied by multiple feedback

loops. The generation of novelty is a highly uncertain and, in most cases, collective

process which is characterized by multiple interactions of independent but hetero-

geneous economic actors with different capabilities, goals and strategies.

Neo-Schumpeterian scholars (Freeman 1988; Lundvall 1988, 1992; Nelson 1992)

explicitly addressed the collective nature of innovation processes by introducing the

concept of “national innovation systems”. Since then, several refinements to the

originally proposed concept have been discussed in the literature (cf. Sect. 2.3). The

common ground shared by all systemic concepts is that: (I) they involve creation,

diffusion and use of knowledge, (II) feedback mechanisms are inherently built in,

(III) they can be fully described by a set of components and relationships among

these components, and (IV) the configuration of components, attributes, and rela-

tionships is constantly changing (Carlsson et al. 2002).

The overlapping of systemic concepts and network concepts is obvious. How-

ever, the systemic approach can be seen as a broader and more general approach

that inherently entails innovation networks. It has been argued that innovation is the

outcome of the interaction between a wide range of heterogeneous economic actors

(Pyka 2002, 2007). These actors are, in many cases, connected through formal

agreements1 such as cooperation in research and development (R&D) (Brenner

et al. 2011, p. 1). Innovation networks allow organizations to exchange existing

information, knowledge and expertise (Cantner and Graf 2011, p. 373). At the same

time, innovation networks provide the basis to commonly generate new knowledge

which can be embodied in new products, services or processes (ibid).

The aim of this book is to analyze innovation networks in the German laser

industry from various angles. More precisely, the investigations below seek to

1 It is important to note that informal cooperation is not a subject of this investigation. Others have

addressed this mode of cooperation in detail (Pyka 1997).
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contribute to the existing body of literature about innovation networks by exploring

how and why firm-specific cooperation activities, structural network patterns,

strategic network positioning, and network evolution affect the innovative perfor-

mance of firms at the micro-level.

1.3 The Current State of Scientific Research and Research

Questions

The initial starting point for every research project is to conduct a comprehensive

literature review. We carried out a bibliometric analysis2 to gain an overall picture

of previous theoretical and empirical contributions in the field of alliances and

networks. In an initial step, we systematically screened various databases in order to

identify all of the relevant articles on cooperation, alliances and networks. We

identified a total of 3,694 publications between 1937 and 2014 from 242 academic

journals. In a second step, we excluded all publications in which alliances and

networks were used in another context or only mentioned in passing. We ended up

with a collection of 2,103 scientific publications for the period between 1980 and

2013.3 In a third step, we explored the bibliometric data from various angles. The

results of this analysis revealed some interesting insights. Figure 1.1 provides a

general overview of alliance and network research over the past three decades.

The solid black line illustrates the full set of empirical and theoretical publica-

tions that focus on interfirm or interorganizational alliances, networks and other

collaborative forms. Hence, this category also includes publications that deal with a

wider range of hybrid organizational structures, such as joint ventures, licensing or

franchising agreements. The dotted black line represents publications that concen-

trate mainly on interfirm and interorganizational networks in the narrow sense. This

category also includes a small number of publications on complex cooperation

structures like, for instance, core-periphery and small-world patterns at the overall

network-level. The solid gray line represents all of the publications that focus

primarily on dyadic strategic alliances or bilateral partnerships. Finally, the dotted

gray line represents publications with a clear emphasis on firm-specific networks

like, for instance, ego networks, alliance constellations, multi-partner alliances and

alliance portfolios.

In conclusion, the early period between 1980 and 1990 is characterized by a very

small number of relevant publications. In the mid-1990s alliance and network

2 This exploration does not claim to be complete or exhaustive. Instead it aims to uncover general

trends in the literature. Appendix 1 provides an overview of bibliometric data sources, a full list of

the evaluated academic journals and a brief description of the applied conventions and search

methods.
3We restricted the time period for two reasons: (I) research on alliances and networks before 1980

is rare, and (II) due to the time of evaluation, data for 2014 was incomplete.
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research starts gaining momentum. This trend is set to continue over the next

decades. Figure 1.1 clearly shows that the total number of publications has

increased significantly in all areas of alliance and network research. Over the last

few years we observe a strong increase, especially in network-related publications.

Our next analysis (cf. Fig. 1.2) explores alliance and network research broken

down by scientific field. Our initial bibliometric exploration is based on three

periods: 1980–1993; 1994–2003; 2004–2013. Figure 1.2 illustrates our findings

for each of the three observation windows. In addition, particular attention was paid

to the exploration of scientific publications over the entire observation period

between 1980 and 2013 (results are reported using a log-scale and in percentage

terms).

In the early phases of alliance and network research (cf. Fig. 1.2, dotted black

line, solid gray line), we only found a relatively small number of papers in

mainstream economics, economic geography, international business, marketing

and entrepreneurship literature. Not surprisingly, we found a relatively high pro-

portion of cooperation and network-related articles in typical sociological journals.

The majority of publications fall into three groups: management science, organi-

zation science and innovation economics.

The dotted gray line (Fig. 1.2) represents the total number of scientific publica-

tions in the most recent period between 2004 and 2013. The findings confirm most
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Fig. 1.1 Alliance and network research, 1980–2013 (Source: Author’s own illustration)
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of the patterns identified before. However, there are at least two notable exceptions.

Firstly, we observe a decreasing number of alliance and network-related publica-

tions in the field of marketing research. Secondly, there is a growing interest in

alliances and networks in the field of mainstream economics and economic

geography.

Finally, a closer look at percentage terms for the entire observation period

between 1980 and 2013 reveals some interesting insights (cf. Fig. 1.2, solid black

line). Alliance and network-related publications in the field of management science

make up the largest percentage in our sample at about 23 %. The proportion of

publications in the field of innovation economics, organization science, and soci-

ology was 21.3 %, 12.0 %, and 11.5 %, respectively. About 8.8 % of all alliance and

network-related papers were published in typical geographical journals and only

6.6 % of all papers appeared in mainstream economic journals.

Our final analysis explores how many of these publications address dynamic or

evolutionary issues. Figure 1.3 illustrates the results of this exploration. As before,

the solid black line represents the full set of papers on alliances, networks and other

collaborative forms. The dotted black line illustrates the proportion of publications

that focus explicitly on dynamic or evolutionary issues.

What do these initial investigations tell us? Firstly, alliance and network

research is a vibrant and still growing field of research. Nonetheless, papers with
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a clear emphasis on firm-specific ego networks and on large-scale network proper-

ties are still rare. Secondly, alliance and network research is a highly interdisci-

plinary area. To illustrate this point, a notable number of relevant publications can

be found in more than ten scientific disciplines and about 1.6 % of all relevant

publications between 1980 and 2013 were published in typical physical journals.

Finally, we found a large amount of papers that focus on interfirm or interorgani-

zational networks. However, publications that explicitly address evolutionary or

dynamic issues are clearly underrepresented in alliance and network research.

Despite these interesting findings, a closer look at the literature is needed to identify

research areas in the field that are still widely unexplored.

We will start by addressing the most general issues. By now, it is well recog-

nized that a firm’s position in the network affects its innovative performance in

various ways. Previous studies have explored the important role that structural

network characteristics play in a firm’s innovation generating process (Shan

et al. 1994; Podolny and Stuart 1995). These early studies did not directly examine

the role of strategic positions in the network structure as predictors of firm-level

innovation output. Over the past few years, scholars have started to analyze how a

firm’s innovative performance is impacted by the various types of network posi-

tions in interfirm or interorganizational network structures (Powell et al. 1996;

Ahuja 2000; Stuart 2000; Baum et al. 2000; Gilsing et al. 2008). However, it is
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Fig. 1.3 Static versus dynamic contributions (Source: Author’s own illustration)
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important to note that the type of network positioning that matters for a firm in its

efforts to innovate can differ significantly from industry to industry. Accordingly,

we reviewed the alliance and network literature that specifically focused on optical

or laser-related technologies. We found very few publications that have explicitly

analyzed the relatedness between network positioning and innovative performance

in the optical industry. For instance, Ouiment and his colleagues (2007) have

explored the relationship between a firm’s network position and its innovativeness

in small Canadian optics and photonics clusters. Lerch (2009) has investigated

network dynamics in the optical cluster in the Berlin-Brandenburg region in

Germany. Similarly, Sydow et al. (2010) have studied path dependencies in a

network context in the Berlin-Brandenburg optics cluster. Joshi and Nerkar

(2011) have analyzed the performance consequences of participating in patent

pools, a unique form of R&D consortia, in the global optical disc industry. They

found that patent pool participation decreases both the quantity and quality of

patents of participating firms.

Even less research has been conducted on interorganizational networks in the

laser industry. In a very early piece of work, Noyons et al. (1994) explored the

science and technology interface by addressing inventor-author relations in laser

medicine research. Shimizu and Hirao (2009) have analyzed interorganizational

networks in the semiconductor laser industry in North America, Europe and Asia

between 1975 and 1994. The two latter studies build upon patent data and

bibliometric data, respectively. The results of both analyses are exploratory in

nature. In summary, to the best of our knowledge, there is currently no longitudinal

empirical study that has analyzed the collective nature of innovation processes in

the German laser industry over a time span of two decades.

Another critical issue is that the majority of the network studies outlined above

are static. The few longitudinal studies that are concerned with performance out-

comes in evolving networks have quite contradictory findings. For instance, it is

still unclear the extent to which network-hub positions or broker-positions are most

beneficial in terms of performance outcomes (Rowley et al. 2000; Gargiulo and

Benassi 2000; Burt 2005). Researchers from various disciplines have called for

more dynamic-oriented alliance and network research (Parkhe et al. 2006; Cantner

and Graf 2011; Ahuja et al. 2012). In general, networks are subject to change due to

multiple network change processes at the micro-level (cf. Chap. 9). Tie formations

or tie terminations as well as node entries or node exits affect the structural

configuration of overall networks over time. These processes of “creative destruc-

tion” are clearly Schumpeterian in nature and provide the basis for explaining the

evolution of networks (Boschma and Frenken 2010, p. 129). The dynamic nature of

networks implies that a firm’s structural positioning within such a network is by no

means static. In other words, neither single cooperation events nor static network

positions should be considered at given points in time but rather cooperation

sequences or positioning paths should be taken into consideration in future

research. This recognition brings us to one of the most crucial points in this section.

A comprehensive analysis of how and why firm-specific cooperation activities,
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structural network patterns and network positions are related to innovative out-

comes at the micro-level requires a dynamic research setting.

Keeping in mind the considerations above, we turn our attention now to more

specific issues in order to stipulate our research questions. An in-depth evaluation of

the literature4 reveals some interesting findings and allows us to extract four widely

unexplored research areas: (I) causes and consequences of evolutionary network

change, (II) cooperation events, ego networks and firm innovativeness, (III) large-

scale network properties and micro-level innovation outcomes, (IV) network prox-

imity, geographical proximity and firm innovativeness.

Research area (I) addresses the dynamic nature of networks. The evaluation of

the literature shows5 that we still have a rather incomplete understanding of the

drivers and mechanisms that cause evolutionary change in complex interorgani-

zational networks. For instance, considerably little research has been conducted on

network formation processes affected by both endogenous and exogenous factors.

In addition, there is a strong bias in the literature towards the presence rather than

the absence of relationships (Kenis and Oerlmans 2008, p. 299). To enhance our

understanding of how and why networks change over time, we propose a concep-

tual network evolution framework and empirically analyze a still widely neglected

facet of network dynamics, i.e. the propensity and timing of network entry pro-

cesses. More precisely, we seek to answer the following two research questions:

How can we explain the network evolution process and its structural implications in

a theoretical way? What are the endogenous or exogenous determinants affect-

ing a firm’s propensity and timing to cooperate for the first time and enter the

industry’s innovation network?

Research area (II) focuses on the innovative performance of firms and seeks to

disentangle the relationship between cooperation events, ego network characteris-

tics and firm innovativeness.6 An essential question that arises in this context is

whether the innovativeness of firms in the German laser industry is directly affected

by individual R&D cooperation events or more indirectly by structure and struc-

tural change in firm-specific ego network characteristics over time. In other words,

through which transmission channels do cooperation events affect a firm’s subse-

quent innovative performance? This dual character of individual R&D cooperation

events has been widely neglected in previous research on ego networks and

constitutes the core of this investigation. Consequently, we address the following

research questions:

4 Each chapter in Part IV provides a comprehensive literature review for each of the four research

areas.
5 For a literature review on the dynamics of alliances and networks, see Sects. 9.1 and 9.2.
6 A literature review on R&D alliances, networks and innovation output is provided in Sect. 10.2.1.

Previous research on the relationship between ego network structure and innovation output is

discussed in Sect. 10.2.2.
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Can we identify a significant relationship between individual cooperation events

(i.e. “direct effects”) or ego network characteristics (i.e. “indirect effects”) and

firm innovativeness over time? How do individual cooperation events affect the

structural configuration of the focal actor’s ego network and which structural

features affect its subsequent innovation output?

Research area (III) turns our attention to the overall network level. Contempo-

rary research on large-scale network properties implies that the network topology

itself is likely to affect the exchange of knowledge in innovation networks.7 It is,

however, important to note that the relationship between large-scale network

properties at the macro-level and innovation outcomes at the micro-level have

been widely neglected in the field of interorganizational alliance and network

research. In this study we focus on small-world properties of large-scale industry

networks. We propose a theoretical framework that draws upon a reconceptua-

lization (Zahra and George 2002) of the absorptive capacity (Cohen and Levinthal

1990) in order to provide the missing link between overall network characteristics

and a firm’s innovative performance. More precisely, we raise the following

research question:

Can we identify a significant relationship between distinct large-scale network

characteristics (i.e. a “high degree of clustering” or “short average paths”) or

small-world properties (i.e. a “high degree of clustering” and “short average

paths”) and firm innovativeness over time?

Research area (IV) addresses the fact that firms are concurrently exposed to

various proximity dimensions. Boschma (2005, pp. 63–71) and Boschma and

Frenken (2010, pp. 122–124) have proposed a theoretical concept that allows for

an unambiguous definition and a clear-cut distinction of five proximity dimensions.

In this study we seek to disentangle the relationship between network positioning,

geographical co-location and firm innovativeness. The literature review reveals8

that integrative research addressing both distinct and combined proximity effects

remains rare. This is in line with the observation made by Whittington et al. (2009).

Thus, we address the following research question:

Are firm-level innovation outcomes positively or negatively related to network

positioning effects, geographical co-location effects or combined proximity

effects; and if the latter case is true, are the combined effects substitutional or

complementary in nature?

7 For an overview of previous research on small world characteristics in an interorganizational

context, see Sect. 11.1. Previous research on the graph theoretical foundations of the “small-

world” phenomenon is discussed in Sect. 11.2.1.
8 For a literature review and discussion of contemporary research in the field, see Sect. 12.2.

12 1 Introduction

http://dx.doi.org/10.1007/978-3-319-07935-6_11
http://dx.doi.org/10.1007/978-3-319-07935-6_11
http://dx.doi.org/10.1007/978-3-319-07935-6_12


1.4 Research Design and Plan of the Book

The research design guides and structures the entire research process. Designing the

research project requires some fundamental decisions at quite an early stage. The

initial question that needs to be addressed is whether to apply a theory-building or a

theory-testing strategy (De Vaus 2001, p. 5).

This book is governed by a deductive theory-testing approach. Deductive rea-

soning starts from a general theoretical framework and the theoretical consider-

ations within this broader framework stipulate which observations are to be made

(De Vaus 2001, p. 6). The underlying research logic implies a move from the

general to the specific (ibid). The research process involves the deduction of testable

hypotheses, data collection and hypotheses testing. The neo-Schumpeterian approach

provides the general theoretical framework for all empirical parts in this book. This

approach explicitly addresses the importance of knowledge, learning and innovation

processes in complex socio-economic systems for the economic performance of

economic agents at the micro and macro-level. Even though Schumpeter did not

address cooperation or networks explicitly, his writings help to improve the under-

standing of how interorganizational connections among firms lead to new combina-

tions and innovative endeavors (Dodgson 2011, p. 1142). We concretize our

hypotheses by drawing upon theoretical concepts and arguments from economics

and related disciplines.

At this point, it is important to note that the applied methods and data are

irrelevant to the logic of the research design (De Vaus 2001, p. 8). The very nature

of the phenomenon in question guides the selection of data and methods. Collective

innovation processes are, as the name already suggests, not a static but rather a

dynamic phenomenon. Consequently, this led to the decision in favor of a quanti-

tative approach and a longitudinal data design. For the purpose of this study,

multiple streams of archival raw data were exploited to create a comprehensive

picture of cooperation and innovation activities for the entire population of German

laser source manufacturers between 1990 and 2010. In principle, two strategies can

be applied to conduct an empirical research project. A “descriptive approach”

allows specific facts and patterns to be identified and explored, whereas an “explan-

atory approach” answers the question of how and why specific observations came to

be the way they are (De Vaus 2001, pp. 1–3). We started with a descriptive analysis

to gain a fundamental understanding of industry, firm, cooperation and innovation

patterns in the German laser industry. De Vaus (2001, p. 2) notes that good

descriptive analysis usually provokes questions for explanatory research. This

was certainly also the case here, since many of the descriptive findings trigged

several subsequent in-depth analyzes. This brings us to the main body of the book.

Each of the four empirical sections explicitly addresses one of the four initially

raised questions and draws upon a separate conceptual framework that schematizes

the transition from the conceptual level to the empirical level. Finally, the ultimate

goal of explanatory methods is to test whether a prediction is correct or incorrect

and to support or reject the theoretical argument that underlies this particular
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hypothesis (De Vaus 2001, p. 7). We applied event history techniques and panel

data count models to accomplish this task. Last but not least, the extraction of

descriptive and exploratory results is necessary but not sufficient. Results have to be

critically discussed and interpreted against the backdrop of a broader theoretical

context. Accordingly, this book is divided into five parts and fourteen chapters

whose contents are described in more detail below.

Chapter 2 provides the theoretical foundation for this book. We start from a

classical-neoclassical perspective and discuss the role of knowledge and innovation

in traditional economic approaches. Then we turn our attention to evolutionary

approaches in economics and related disciplines. The neo-Schumpeterian approach

in evolutionary economics constitutes the core of the theory chapter. Then we

continue by introducing theoretical concepts at the firm level, i.e. the “structure

conduct performance” (SCP) paradigm, the “resource-based view” (RBV), and the

knowledge-based view (KBV), that seek to explain the sources of a firm’s compet-

itive advantage. Next, we draw upon interdisciplinary alliance and network

research. We conclude the theoretical discussion by exposing how this research

project relates to the previously outlined theoretical concepts.

Chapter 3 gives a short introduction of basic laser operating principles and

outlines the most notable technological developments over the past 50 years.

Subsequently, we focus our attention on the German laser industry and illustrate

the configuration of the industry value chain.

Chapter 4 starts with a general discussion of methodological issues and provides

a detailed description of the data sources used to construct a unique longitudinal

laser industry database. This lays the ground for the analytical parts of this study.

The laser industry database covers a time period between 1990 and 2010.

Chapter 5 presents some general graph theoretical concepts and introduces

indicators and measures needed for the quantitative description of the industry

and the industry’s innovation network. Focus is on quantitative network analysis

methods and geographical indicators.

Chapter 6 is divided into two sections. First two longitudinal datasets are

presented. Then there is an overview and general discussion on estimation methods.

In this context, event history analysis methods as well as techniques for analyzing

longitudinal count data are addressed.

Chapter 7 reports descriptive findings at the industry level. We analyze geo-

graphical concentration patterns for three types of organizations, i.e. laser source

manufacturers (LSMs), laser system providers (LSPs) and laser-related public

research organizations (PROs). The subsequent explorations concentrate on

LSMs which are considered to be at the core of the industry value chain.

Chapter 8 focuses on R&D cooperation and innovation networks. We start with

summary statistics on publicly-funded R&D cooperation projects in the German

laser industry. The next descriptive analysis explores the organization’s involve-

ment in these projects from various angles. Our data allows us to construct

innovation networks on an annual basis for the entire population of LSMs and

PROs in the German laser industry. This provides the opportunity to analyze basic

node-related and tie-related network measures and reveals characteristic network
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change patterns over time. We supplement this initial longitudinal network explo-

ration by conducting an in-depth analysis of the overall network topology. In the

last descriptive analysis, we check for the existence of scale-free patterns, test for

small-world properties and analyze the emergence of a core-periphery structure

over time.

Chapter 9 focuses on the evolution of innovation networks. The aim of this

analysis is to investigate the determinants of evolutionary change processes in

innovation networks. We address one particular facet of the network evolution

process in the empirical part of this chapter. More precisely, we conduct an event

history analysis in order to disentangle the extent to which exogenous or endoge-

nous determinants affect a firm’s propensity and timing to cooperate and enter the

industry’s innovation network.

Chapter 10 points to the importance of firm-specific cooperation strategies. The

goal of this investigation is to shed light on the relationship between individual

cooperation events, firm-specific ego network characteristics and firm-level inno-

vation outcomes. In short, by using a panel data count model, we explore how a

firm’s innovativeness is related to its cooperation events on the one hand, and the

structural configuration and dynamics of its ego network on the other.

Chapter 11 raises awareness for large-scale network properties. Consequently,

we switch the analytical level and turn our attention to systemic level properties.

The aim of the third analysis is to understand how the structural network configu-

ration at the macro-level is related to firm-level innovation outcomes at the micro-

level. We use longitudinal network data and quantitative network analysis methods

to quantify large-scale network properties and put the “small-world” hypothesis to

the test in terms of which networks with a high degree of clustering and high

reachability provide a superior environment for firm innovativeness.

Chapter 12 draws upon the proximity concept and points to the fact that firms are

concurrently exposed to multiple proximity dimensions. We apply panel data

methods to find out the extent to which distinct and/or combined effects between

network proximity and geographical co-location are positively related to subse-

quent firm-level innovation outcomes.

Chapter 13 marks the completion of the research project. We summarize the

findings and raise awareness of the limitations of our results.

Chapter 14 concludes with some final considerations and critical remarks. It

includes suggestions for further research.

References

Ahuja G (2000) Collaboration networks, structural hole, and innovation: a longitudinal study.

Adm Sci Q 45(3):425–455

Ahuja G, Soda G, Zaheer A (2012) The genesis and dynamics of organizational networks. Organ

Sci 23(2):434–448

Baum JA, Calabrese T, Silverman BS (2000) Don’t go it alone: alliance network composition and

startup’s performance in Canadian biotechnology. Strateg Manag J 21(3):267–294

References 15

http://dx.doi.org/10.1007/978-3-319-07935-6_9
http://dx.doi.org/10.1007/978-3-319-07935-6_10
http://dx.doi.org/10.1007/978-3-319-07935-6_11
http://dx.doi.org/10.1007/978-3-319-07935-6_12
http://dx.doi.org/10.1007/978-3-319-07935-6_13
http://dx.doi.org/10.1007/978-3-319-07935-6_14


Boschma R (2005) Proximity and innovation: a critical assessment. Reg Stud 39(1):61–74

Boschma R, Frenken K (2010) The spatial evolution of innovation networks: a proximity per-

spective. In: Boschma R, Martin R (eds) The handbook of evolutionary economic geography.

Edward Elgar, Cheltenham, pp 120–135

Brenner T, Cantner U, Graf H (2011) Innovation networks: measurement, performance and

regional dimensions. Ind Innov 18(1):1–5

Buenstorf G (2007) Evolution on the shoulders of giants: entrepreneurship and firm survival in the

German laser industry. Rev Ind Organ 30(3):179–202

Burt RS (2005) Brokerage & closure – an introduction to social capital. Oxford University Press,

New York

Cantner U, Graf H (2011) Innovation networks: formation, performance and dynamics. In:

Antonelli C (ed) Handbook on the economic complexity of technological change. Edward

Elgar, Cheltenham, pp 366–394

Carlsson B, Jacobsson S, Holmen M, Rickne A (2002) Innovation systems: analytical and

methodological issues. Res Policy 31(2):233–245

Cohen WM, Levinthal DA (1990) Absorptive capacity: a new perspective on learning and

innovation. Adm Sci Q 35(3):128–152

De Vaus D (2001) Research design in social science research. Sage, London

Dodgson M (2011) Exploring new combinations in innovation and entrepreneurship: social

networks, Schumpeter, and the case of Josiah Wedgwood (1730–1795). Ind Corp Chang 20

(4):1119–1151

Fabian C (2011) Technologieentwicklung im Spannungsfeld von Industrie, Wissenschaft und

Staat: Zu den Anfängen des Innovationssystems der Materialbearbeitungslaser in der

Bundesrepublik Deutschland 1960 bis 1997. Dissertation, TU Bergakademie Freiberg

Freeman C (1988) Japan: a new national system of innovation. In: Dosi G, Nelson RR,

Silverberg G, Soete L (eds) Technical change and economic theory. Pinter, London, pp

330–348

Gargiulo M, Benassi M (2000) Trapped in your own net? Network cohesion, structural holes, and

the adaptation of social capital. Organ Sci 11(2):183–196

Giesekus J (2007) Die Industrie für Strahlquellen und optische Komponenten – Eine aktuelle
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Chapter 2

Theoretical Background

A theory of essentially complex phenomena must refer to a
large number of particular facts; and to derive a prediction
from it, or to test it, we have to ascertain all these particular
facts.

(Friedrich August von Hayek 1974)

Abstract The aim of this chapter is threefold: firstly, we seek to integrate this

study into a broader context of historical and contemporary economic reasoning.

Secondly, we introduce the theoretical pillars which this research project is built

upon. Due to the interdisciplinary nature of alliance and network research, we refer

to concepts from economics and related scientific disciplines. Finally, we discuss

the initially raised research questions against the backdrop of our preceding theo-

retical considerations. Chapter 2 is structured as follows. In Sect. 2.1 we start with a

brief introduction of classical and neoclassical economics and outline the contri-

butions but also the limitations of these schools of thought. In Sect. 2.2 we turn our

attention to evolutionary approaches in economics and related disciplines. In

Sect. 2.3 we introduce the neo-Schumpeterian approach to evolutionary economics.

Here, we start by clarifying some basic terminology and concepts. Next we discuss

the theoretical cornerstones of the approach. Finally, we address three selected

concepts: proximity, innovation systems and innovation networks. In Sect. 2.4 we

draw upon the knowledge-based theory of the firm to establish the theoretical

linkage between knowledge, competitive advantage and firm performance. In

Sect. 2.5 we look at key concepts from interdisciplinary alliance and network

research. Finally, in Sect. 2.6 we uncover links to previous research and discuss

our own contribution in light of the previously outlined theoretical concepts.

2.1 The Classical-Neoclassical Paradigm in Economics

We’ll start by taking a brief look at the classical-neoclassical paradigm in econom-

ics. This is important for two reasons. On the one hand, it allows us to acknowledge

the long journey in economic history towards a better understanding of the
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relationship between knowledge, innovation and economic prosperity. On the other

hand, it enables us to identify the weaknesses and limitations of classical and

neoclassical approaches that paved the way for the appearance of alternative

schools of thought in economics.

The dominant paradigm in economics at the end of the nineteenth century was

the classical school of thought, strongly influenced by the work by Smith (1776),

Ricardo (1817), Malthus (1798, 1820), Mill (1848, 1859) and Marx (1857, 1867).

According to Brewer (2010, p. 4), the classical theory of economic growth has the

following characteristic features: capital accumulation as the primary source of

economic prosperity, endogeneity of population growth, and innovation processes

and technological change were largely ignored. Even though knowledge and

innovation play, at best, a secondary role in classical mainstream models, several

classical authors did address these issues, at least implicitly, in their writings.

Ricardo (1817) and Malthus (1820) mentioned technological change without giving

it a central role (Brewer 2010, p. 183).

Smith (1776) focused mainly on the efficient organization of production pro-

cesses and economic growth. “An Inquiry into the Nature and Causes of the Wealth
of Nations”, published in 1776, is still considered by many as one of the most

influential contributions to the field of economics. According to Adam Smith’s

theory, the specialization and division of labor are the main sources of growth in

productivity (Antonelli 2009, p. 615). He explicitly addresses the role of inventions

in his writings. However, it is important to note that in Smith’s theory the invention

is the result of a division of labor and not the other way around (Swann 2009, p. 8).

In addition, Adam Smith provides us with further important insights by pointing to

the increasingly specialized nature of knowledge in industrial production processes

(Pavitt 1998, p. 433). Pavitt (1998, pp. 435–436) argues that two types of special-

ization patterns occurred in parallel which have significantly increased the effi-

ciency of discovery, invention and innovation: (a) entirely new scientific

disciplines with specialized bodies of knowledge have emerged, (b) the rate of

technical change has been augmented by the functional division of labor and

corporate R&D laboratories have been established within large businesses. Pavitt

(1998, p. 447) comes to the conclusion that, as forecasted by Adam Smith, the

specialization patterns of knowledge production outlined above are crucial for an

in-depth understanding of the innovating firm.

Mill (1848, 1859), another influential classical economist, contributed to the

economics of innovation by highlighting the central role invention plays in wealth

creation. At the same time he addressed the paradoxical notion that invention did

not obviously lead to an improvement in the wealth of the population at large

(Swann 2009, p. 8).

Finally, Marx1 (1857, 1867) significantly improved our understanding of the

nature and dynamics of capitalist economic systems and was among the first to

1 Even if one is critical of Marx’s doctrine, one should define science by its objects of analysis and

not by its methods or assumptions (Hodgson 2006, p. 1). In a comprehensive bibliometric analysis,
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correctly predict the increasing globalization of markets and the appearance of giant

firms (Hodgson 2006, p. 1). According to Marx, the “bourgeoisie”, what we today

would call a “company”, can only exist by continuously improving the instruments

of production (Swann 2009, p. 9). This recognition highlights the role of innovation

in ensuring a company’s competitiveness (ibid). In a similar vein, Antonelli (2009,

pp. 616–618) notes that Marx contributed to the economics of innovation in at least

two additional ways. On the one hand, he provides a very first analysis of endog-

enous technological change processes that are caused by the changing cost of labor

due to an intentional process of augmented labor substitution. On the other hand,

Marx acknowledges the role of knowledge as an endogenous productive force and

emphasizes the importance of learning processes in changing economic systems.

The ideas of Marx and Schumpeter are closely related, especially when it comes to

the instabilities of capitalist systems. Rosenberg (2011, p. 1216) argues that “[. . .]
they held in common a vision of capitalism as a social system that possessed its own

internal logic, and that underwent, over time, a process of self-transformation”. The

classical theory lost its dominance by the end of the nineteenth century due to the

emergence of the neoclassical paradigm.

Neoclassical economists Jevons (1871), Marshall (1890), Menger (1871) and

Walras (1874) entered the scene and paved the way for the micro foundation of

economics. In general, neoclassical economics is characterized by a high degree of

formalization and puts a strong emphasis on optimization calculus. The primary

task of neoclassical concepts is to establish an equilibrium state (Rutherford 2007,

p. 149). The neoclassical paradigm started to flourish with the onset of the so-called

“marginal revolution” in economics. Most concepts that constitute the core of this

approach, marginal cost, marginal revenues, marginal utility, etc., were mainly

developed by Jevons, Walras and Menger (Rutherford 2007, p. 133). Carl Menger

criticized the German historical school of economics in the so-called

“Methodenstreit”2 and is regarded as one of the key proponents of the Austrian

school of economics.3

In addition to these contributions, the writings of Marshall (1890) provide us, in

particular, with important insights into the interplay between knowledge and

organizations to perpetuate the growth and development of economies (Metcalfe

2010, p. 4). According to Marshall, knowledge is the most powerful source of

industrial production (ibid). Knowledge is considered to be a key component

of capital and is, in itself, a production factor (Antonelli 2009, p. 629). The

generation of technological knowledge is a collective process where a variety

of agents, co-localized within the industrial districts, contribute complementary

bits of knowledge (ibid). In addition, Marshall acknowledged the importance of

knowledge and organization for non-random economic change and accounts for

Hodgson (2006, p. 4) demonstrates that Karl Marx was one of the most frequently cited authors in

leading mainstream economic journals between 1890 and 1990.
2 For more details on the discourse between the two schools of thought, see Von Mises (1969).
3 For an introduction to the Austrian school of economics, see Rutherford (2007, p. 9).
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self-transformation processes4 of capitalist economic systems (Metcalfe 2010, p. 5).

Marshall distinguishes between inventions and innovations and emphasizes the

prominent role of entrepreneurs in his writings (Metcalfe 2010, p. 6). Moreover,

he recognized the importance of interfirm cooperation activities as a way for firms,

whose activities are complementary, to jointly coordinate production processes

(Corolleur and Courlet 2003, p. 300).

Another major concern, not only of classical but also of neoclassical economists,

was economic growth. At the inception of economic growth theory, simple stage

models of economic development dominated the research landscape (Rutherford

2007, p. 59). Economic growth models in the neoclassical tradition prospered in the

mid-twentieth century. Mainstream economics did not account for technological

change processes at all or treated technological change as an exogenous factor. For

instance, the “Harrod-Domar” model (Harrod 1948; Domar 1948) explains eco-

nomic growth on the basis of a maximum long-term growth rate and a warranted

growth rate (Rutherford 2007, p. 60).5 The prevailing economic doctrine at the time

was that capital accumulation was much more important than technological pro-

gress in explaining economic growth (Swann 2009, p. 14).

The most notable step towards an endogenous growth theory is the “Solow-

Swan” model of economic growth (Solow 1956, 1957; Swan 1956). In spite of

Solow’s merits, one has to note that his writings on growth are based on a simplified

neoclassical framework (Nelson 2007, p. 841). Since then, considerable efforts

have been made to incorporate technological change in macroeconomic growth

models and to develop what we call today endogenous growth theory.6

What does this short overview and discussion tell us? First of all, it is essential to

note that several protagonists of the classical-neoclassical school of thought pro-

vided us with important ideas that are still highly topical. The writings are much

richer than mainstream economic models at first suggest. The insights outlined

above provide a basis to better understand how knowledge, innovation and techno-

logical progress affect economic growth and prosperity. The crucial point, however,

is that these leading ideas have been largely overlooked or ignored by mainstream

economists.

In traditional mainstream economics, firms are assumed to be perfectly homo-

genous economic entities. Firms are usually treated as a black box that can be fully

described by a simple production function with two input factors: capital and labor.

4 Both variety and selection processes are essential elements in Marshall’s notion of competition in

a sense that heterogeneous firms (in terms of size, location and efficiency) face each other in the

product marketplace and are sorted out by the competitive process (Antonelli 2009, p. 622).
5 For a comparison of the “Harrod-Domar” model and the neoclassical growth model, see Sato

(1964). The first rate is also called the “natural rate of growth” (this rate equals the sum of

population growth and technical progress) and the second rate reflects the capital accumulation

process (this rate is equal to the ratio of the proportion of income saved to the capital income ratio)

(Rutherford 2007, p. 60).
6 For an overview and in-depth discussion, see Nelson and Winter (1974) and Silverberg and

Verspagen (2005).
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Goods or services produced by these firms are considered to have the same quality.

Consumers are usually described by a utility function. They behave under the

conditions of the well-known “homo oeconomicus” postulate.7 This implies that

individuals in markets always act as fully rational utility maximizers. Market

actors, such as buyers and sellers, face no trade restrictions in a sense that trans-

actions do not produce additional costs and time plays no significant role. Market

actors interact as part of completely transparent markets and share the same

information. In general, information is freely available and has the character of a

public good. Static as well as comparative-static models in classical and

neo-classical economics are able to show, under the restrictive assumption of

fully rationally behaving individuals and perfect market conditions, how markets

tend to reach an equilibrium, at least in the long run, where supply and demand are

balanced.

These strongly simplified and idealized conditions have some important impli-

cations. In a world characterized by homogenous firms, freely available information

and perfect market conditions, there are no incentives for the generation of novelty.

Firms have identical resource endowments and they produce goods and services of

homogenous quality. Under these assumtions, information asymmetries do not exist

by definition. Generating novelty is costless and is subject to no other restrictions

(Boulding 1966, p. 3). As a consequence, there is no need for firms to access or

generate new stocks of knowledge. The creativity of inventors and the ingenuity of

entrepreneurs play no role in classical-neoclassical theory. Similarly, the ability of

firms to generate innovative goods and services as well as the impact of these

innovations on technological change is not inherent in traditional economic models.

Even though neoclassical growth models incorporate technological change, they

fail to explain the factors that cause innovation and technological progress.

Recent developments in mainstream economics might invalidate some of the

arguments raised above. Nonetheless, it must be noted that the research program in

mainstream economics only addresses, in passing, key topics such as knowledge

creation and distribution, invention and innovation, cooperation and networks, and

the evolutionary nature of complex economic systems.

2.2 Evolutionary Thinking in Economics and Related

Fields

In response to the limitations of the classical-neoclassical paradigm, several alter-

native economic schools of thought emerged.8 The onset of evolutionary thinking

in economics can be traced back to the mid-nineteenth and early twentieth

7 For a clarification of the concept and critical reflections from an Austrian view, see Alter (1982).
8 For an overview of evolutionary approaches in economics, see Dopfer (2005), Hanusch and Pyka

(2007c) and Witt (2008a, b).
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centuries. Based on the ideas of Veblen (1898) and Schumpeter (1912), two

independent strands of evolutionary thinking emerged in economics.9 These two

strands moved closer together through the synthesis of Schumpeterian ideas and

natural selection analogies in Nelson and Winters’ (1982) evolutionary theory of

economic change. Today, evolutionary economics can be divided into four distinct

research strands (cf. Witt 2008b): Universal Darwinism, Naturalistic,

Schumpeterian and neo-Schumpeterian approaches. The common denominator of

these approaches is the interest in dynamic change processes in economies occur-

ring at multiple levels of analysis against the backdrop of past events. For the

purpose of this study, we mainly focus on the Schumpeterian and

neo-Schumpeterian schools of thought. Nonetheless, we should not miss the oppor-

tunity to start the discussion by taking a brief look at evolutionary ideas in related

disciplines.

Not only economists but also scholars from related disciplines explicitly address

evolutionary ideas in their writings. Evolutionary principles have a long tradition in

sociology and organization science. These ideas attracted attention and started to

thrive in the second half of the twentieth century. A central debate arose among

organizational scholars on the very nature of evolutionary change processes. Two

alternative perspectives, the adaptation perspective and the selection perspective,

dominated the discourse at that time (Carroll 1984, p. 73).10

The first perspective is based on the notion that organizations are highly adaptive

and that structural changes occur in response to internal and external triggers

(Carroll 1984, p. 73). Organizations adapt to their environments by changing

routines and standard operating procedures (Bruderer and Singh 1996, p. 1322).

The literature on organizational learning11 is clearly based on the adaptation

perspective (Aldrich and Ruef 2006, p. 47). The adaptive learning approach con-

siders organizations to be goal-oriented entities that learn though experience by

undergoing repeated or non-repeated trial-and-error processes (ibid). Some path-

breaking learning models were developed based on the seminal contribution of

Cyert and March (1963). For instance, Agyris and Schön (1978) proposed so-called

single-loop learning and double-loop learning models and the concept of deuteron

learning.12 Subsequent contributions have explicitly addressed the constraints of an

organization’s learning capabilities (Aldrich and Ruef 2006, p. 47). The most

notable contributions are those of Levitt and March (1988) on the nature of

organizational learning processes, Levinthal (1991) on the interrelatedness of

9 For an overview and discussion, see Witt (2003).
10 It is important to note that these perspectives are not mutually exclusive. According to Bruderer

and Singh (1996, p. 1322), substantial research efforts have been undertaken to reconcile these two

perspectives since the early 1990s.
11 According to Aldrich and Ruef (2006, p. 47) at least two strands of research can be identified

within the organizational learning literature: the “knowledge development approach”, pioneered

by Weick (1979) and the “adaptive learning approach” pioneered by Cyert and March (1963). In

this brief review we focus on the latter strand of literature.
12 For a review and discussion of these concepts, see Dodgson (1993) and Bierly et al. (2000).
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adaptation and selection processes, and March (1991) on exploration and exploita-

tion in organizational learning processes. Recently, this strand of literature has

strongly influenced a series of learning-oriented alliance and network studies by, for

example, Rothaermel and Deeds (2004), Lavie and Rosenkopf (2006), Yamakawa

et al. (2011), Bessant et al. (2012).

The second perspective emerged in the late 1970s. In their seminal article on the

population ecology of organizations, Hannan and Freeman (1977) argue that

change is not primarily driven by adaptation. Organizational structures are consid-

ered to be structurally inert (Hannan and Freeman 1984). According to this view,

the dominant mechanism of change is not adaptation but rather selection, governed

by competition, environmental opportunities and constraints (Carroll 1984,

p. 73).13 The organizational ecology approach explains the outcomes of organiza-

tions, such as their survival in terms of the demographic composition of population

and the resource environment they are located in (Aldrich and Ruef 2006, p. 35).

Organizations are considered to be in a state of competitive interdependence as they

compete for scant resources in the same environment (ibid). A broad range of

ecological models has been introduced since the beginning of organizational

ecology research.14 These models enable us to explain how both competitive

relationships between organizations and cooperative interdependencies jointly

affect organizational performance in terms of survival (Aldrich and Ruef 2006,

p. 35). As a consequence, a rich body of alliance and network literature began

emerging from this area of research. To exemplify this, several studies addressed

the relationship between network embeddedness and firm survival (Baum

et al. 2000; Staber 1998; Brüderl and Preisendörfer 1998). Others have applied

organizational level concepts and adapted them to an interorganizational context.

For instance, the structural inertia concept, originally proposed by Hannan and

Freeman (1984), was applied by Kim at al. (2006) to explain a network’s resistance

to change. Finally, considerable efforts were made to address evolutionary change

of interorganizational relations and complex networks (Amburgey et al. 2008;

Lomi et al. 2008).

Similarly, the importance of evolutionary thinking in economics increased at the

beginning of the twentieth century. Not really convinced by the mainstream

classical-neoclassical paradigm, it was at this time that Austrian economist, Joseph

A. Schumpeter (1908, 1912, 1939, 1942), emerged on the scene. In his early years

he had already made several seminal contributions. He was the first to introduce the

13Organizational sociologists have adapted general evolutionary principles of variation, selection

and retention proposed by Campbell (1969) in an organizational context. A strict Darwinian

interpretation of organizational evolution implies that traits are inherited through intergenerational

processes, whereas the Lamarckian concept of organizational evolution regards traits as being

acquired within a generation through learning and imitation (VanDeVen and Poole 1995, p. 519).
14 An excellent overview of organizational ecology research is provided by Amburgey and Rao

(1996) and for some promising future research perspectives, see VanWitteloostuijn (2000). For an

overview of population ecology model applications, see Betton and Dess (1985).
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concept of “methodological individualism” (Schumpeter 1908, pp. 88–98).15 With

his seminal work “Theorie der wirtschaftlichen Entwicklung”, published in 1912,

he questioned mainstream economics and, at the same time, provided the theoret-

ical foundation for a new economic paradigm.16 He emphasized the role of entre-

preneurs and their novel ideas as the driving forces behind evolutionary change

processes in capitalist societies. Perhaps the most striking difference between

evolutionary thinking and classical-neoclassical approaches is the dynamic view

of economic systems. Schumpeter was convinced that economic change is gener-

ated by the economic system and that there must be some kind of inherent force that

destroys every state of equilibrium (Hanusch and Pyka 2007b, p. 21). He pointed to

the fact that “new combinations”, or what we today would call innovations, are the

major source of endogenous economic change (Hanusch and Pyka 2007b, p. 22).

Schumpeter called the activity of combing existing resources in order to generate

new combinations the “entrepreneurial functions” (Fagerberg 2005, p. 6). Both

Marshall and Schumpeter made a distinction between inventions and innovations in

their writings (Metcalfe 2010, p. 6); however, Marshall had another notion of

innovation. The thing that distinguishes him most sharply from Schumpeter is

that he considered innovation to be an intrinsic feature of economic leadership

and part of the normal, routine discovery process (Metcalfe 2010, p. 12). In

contrast, Schumpeter emphasized the radical nature of innovations and explicitly

addressed the disruptive but also creative nature of novelties. Schumpeter was

particularly influenced in many ways by the ideas of Marx. According to Tushman

and Nelson (1990, p. 1), “Both Schumpeter and Marx saw technology and technical

change as central factors underlying organization and political dynamics and as a

critical determinant of group power and individual outcomes.” In his later writings,

Schumpeter (1942) used the metaphor “creative destruction”, originally coined by

Karl Marx,17 to typify the process of how existing economic structures get replaced

by endogenous innovative forces. Schumpeter’s contributions are usually assigned

to either his early phase, i.e. “Schumpeter Mark I” or his later phase,

i.e. “Schumpeter Mark II”. In his early phase, he predominantly focused on the

role of individual entrepreneurs and their abilities to generate novelty. In the second

phase he focused mainly on the role of innovation in large firms (Fagerberg 2005,

p. 6). For a long time, Schumpeter’s writings were ignored by mainstream eco-

nomics. It took almost half a century before Schumpeter’s ideas were rediscovered

and cultivated in economics.

15 Schumpeter’s concept of methodological individualism is mainly focused on the relationship

between prices and the behavior of individuals (Heertje 2004, p. 1453). See also Arrow (1994).
16 For a review of Schumpeter’s contributions to economic theory, see Fagerberg (2003) and

Hanusch and Pyka (2007b).
17Marx originally used this phrase to describe his vision of capitalism’s destructive potential

(Elliott 1978).
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2.3 Some General Reflections on the Neo-Schumpeterian

Approach

From the mid-1970s to the mid-1980s, scholars began focusing on endogenous

determinants of economic change and the economic consequences of technological

change processes. It was at this time that the pioneering work of a few scholars laid

the foundations for the neo-Schumpeterian school of thought.

To start with, Christopher Freeman published his first book “The Economics of
Industrial Innovation” in the mid-1970s (Freeman 1974). He was among the first to

revive Schumpeterian ideas by highlighting the role of innovation and technolog-

ical change processes. In the same year, Nelson and Winter (1974) published an

article in which they strongly criticized the traditional neoclassical paradigm. This

paper laid the foundation for a new generation of endogenous growth models. Only

a few years later, Nelson and Winter (1982) presented the “Evolutionary Theory of
Economic Change” and introduced the concept of organizational routines. The

book is still considered by many to be one of the most influential publications in

economics and organizational science. Giovanni Dosi published at least two sem-

inal papers in the 1980s. The first paper (Dosi 1982) starts with a critique of the

traditional “technological push” theory of technological change and introduces the

concept of technological paradigms and technological trajectories. In his second

paper, Dosi (1988) addresses the sources and effects of innovative activities in

market economies and explains the entire process from the recognition of oppor-

tunity to actual innovative effort and changes in the structure and performance of

entire industries. Neo-Schumpeterian approaches explicitly considered path depen-

dencies and lock-in effects (Page 2006; Arthur 1989; David 1985) when analysing

economic change processes. In the same decade, Keith Pavitt significantly contrib-

uted to clarifying another key issue in innovation economics (Pavitt 1984). His

analysis provided an empirically substantiated taxonomy that enabled two types of

high-tech sectors to be clearly separated: “science-based” and “specialized sup-

pliers”. Pavitt showed that factors leading to successful innovation can differ

significantly across industries and sectors (Fagerberg 2005, p. 16). In the 1970s,

Nathan Rosenberg published several seminal articles on the relationship between

science, invention, innovation and economic growth (Rosenberg 1973, 1974).

Together with Stephen J. Kline, he developed an alternative to the linear innovation

model, the so-called interactive chain-linked model of innovation (Kline 1985;

Kline and Rosenberg 1986). Since then, technological change is no longer seen as a

purely “technology-push” or a “demand-pull” but rather as intertwined forces that

co-exist (Swann 2009, p. 15). Finally, Eric von Hippel prepared the groundwork for

a better understanding of how the demand side, i.e. the consumer, may trigger and

affect innovation processes (Von Hippel 1986, 1988). He demonstrated that the

users’ distinctive knowledge is an important impetus for user-initiated innovation

(Klepper and Malerba 2010, p. 1516). This work has some important overlaps with

the systemic innovation approach. Lundvall (1988), one of the pioneers of the

national innovation system approach, emphasized the importance of user-producer
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interactions quite early on (Klepper and Malerba 2010, p. 1516). Since the late

1980s, many others have contributed to the field and some of these contributions

will be discussed in more detail in subsequent chapters.

The overview above does not claim to be exhaustive; however, it gives an initial

idea of the key topics that were on the research agenda of neo-Schumpeterian

scholars at the time. The merits can hardly be summarized in a few points.

Nonetheless, these early contributions broke new ground in economics in several

ways. The first and maybe most important insight is that the explicit consideration

of innovative activities is crucial for an in-depth understanding of economic change

processes, economic outcomes and economic prosperity. Secondly, the early writ-

ings teach us that the assumptions of the classical-neoclassical paradigm are at least

questionable. For instance, the notion of the very nature of information and

knowledge changed significantly. Thirdly, the writings contributed to an in-depth

understanding of how processes at the micro-level, as well as the determinants and

mechanisms that trigger and fuel these processes, affect economic performance,

growth and prosperity. They paved the way towards more dynamically oriented

approaches and models in economics. Not only were the current interactions of

firms on markets deemed important in explaining the emergence of technological

change patterns at multiple analytical levels, the historical paths or trajectories were

considered to be important as well. Fourthly, scholars recognized that innovation

determinants, the process of generating novelty itself, and the outcomes of innova-

tive efforts could differ significantly across industries. This implies that the insights

from one industry do not necessarily hold true in other – even similar – settings.

Finally, this early work teaches us that both supply-side factors as well as demand-

side factors are important for a comprehensive understanding of innovation pro-

cesses. Moreover, they point to the fact that the innovation process itself is neither

linear in nature nor is it limited to the individual efforts of single economic entities.

Instead, it is characterized by small incremental steps and accompanied by multiple

feedback loops. Generating novelty is a highly uncertain and, in most cases,

collective process which is characterized by the multiple interactions of indepen-

dent, yet heterogeneous, economic actors with different knowledge endowments,

capabilities, goals and strategies.

2.3.1 Clarification of Terms and Concepts

The clarification of some basic terms and concepts is essential for our discussion

below. We start by taking a look at the very nature of information and knowledge.

Then we proceed by disentangling the notions of creativity, invention and innova-

tion. Finally, we address some early innovation models and provide a critical

assessment of these concepts.
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2.3.1.1 On the Nature of Information, Knowledge and Learning

The terms information and knowledge are usually used interchangeably in

classical-neoclassical economics. Perfect competition assumes that all firms share

the same information (Rutherford 2007, p. 118). Market theory usually makes an

explicit assumption about “perfect knowledge” (Boulding 1966, p. 3). This assump-

tion does not imply that firms have complete information about the past and the

future (Rutherford 2007, p. 118), but that the information that the firms need in

order to make their decisions is immediately available and symmetrically distrib-

uted over all economic agents.18 “What this means in effect is that the acquisition of

knowledge of prices or exchange opportunities in a perfect market is costless, so

that knowledge is, as it were, a free good.” (Boulding 1966, p. 3) The reality,

however, looks quite different. Information is rarely complete or costless and

economic agents have to make a considerable effort to search for, identify, gather,

process and store information (Rutherford 2007, p. 118).

Neo-Schumpeterian scholars have explicitly addressed these issues. Malerba

(2007, p. 16) argues that knowledge and learning are key building blocks of the

neo-Schumpeterian approach. We began by drawing upon Cowan et al. (2000,

p. 216) and Morroni (2006, pp. 26–27) to distinguish between data, information

and knowledge.

Data is derived from the senses and consists of various senses that reach the brain

from the outside world, whereas information is a structured and organized set of

data. Neither data nor information is self-interpreting. Instead, it is knowledge

which provides a cognitive dimension. The cognitive context gives a meaning to

information and allows it to be interpreted. Morroni (2006, p. 26) sums it up by

saying: “Knowledge is acquired by elaborating bits of information, and derives

from the ability to search, select, memorize, store, retrieve, structure, compute,

embody and use bits of relevant information within a cognitive system.” By drawing
upon the seminal work of Polanyi (1958, 1967), scholars have frequently argued

that knowledge can be distinguished by a tacit dimension (non-codified knowledge)

and an explicit dimension (codified knowledge). Cowan et al. (2000, p. 212) argued

that this distinction can be misleading, at least in some sense. In a similar vein, Witt

et al. (2012) suggested reconsidering the frequently used distinctions of overt

versus tacit knowledge and encoded versus non-encoded knowledge. Instead,

they propose distinguishing between at least three types of knowledge: (I) encoded

knowledge that can be considered overt knowledge, (II) non-encoded knowledge

that can be articulated and encoded in principle, and (III) non-articulable and,

therefore, inherently non-codifiable knowledge that is considered to be, in fact, tacit

knowledge (Witt et al. 2012). Their main argument is that the technical terms of

storing, accessing, and transferring knowledge affect the key characteristics of

knowledge regarding its public good character (ibid).

18 Not only neo-Schumpeterian scholars but also other approaches in economics, such as agency

theory, have questioned this problematic assumption (Ackerlof 1970; Spence 1976; Spence 2002).
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Another key issue that is frequently addressed by neo-Schumpeterian scholars is

an organization’s ability to store and generate new stocks of knowledge.19 It is well-

recognized that both a firm’s knowledge stock and its ability to generate new stocks

of knowledge play a crucial role in understanding innovation and technological

change. By referring to the concept of organizational routines, originally developed

by Nelson and Winter (1982), several refinements have been proposed to explain a

firm’s ability to access and generate knowledge.20 The sources and channels that

can be used by a firm to access and generate knowledge are subject to discussion

later on in this chapter.

2.3.1.2 Disentangling Creativity, Inventions and Innovation

Understanding creativity requires that we look at the personal and interpersonal

level. Swann (2009, p. 25) claims that creativity is a rather chaotic activity or

process that follows no specific rules or well-defined algorithms. Creative individ-

uals are either intrinsically or extrinsically motivated, they need a certain degree of

autonomy to develop their new ideas, and they have to be both introverted and

extroverted at the same time (Swann 2009, pp. 119–127). It has been argued that

networks play a key role due to the combinatory nature of the creativity process

itself (Swann 2009, p. 128). In this context, Uzzi et al. (2007, p. 448) have argued

that creativity is the consequence of a social system of actors that amplify or stifle

one another’s creativity. However, creativity and invention should be carefully

separated. According to Swann (2009, p. 25), an invention is the result of a more or

less structured research process or other form of creative activity and appears in the

form of an idea, sketches or models for a potentially commercializable new product

or process. In a nutshell, an invention is considered to be the result of a creative

process (Swann 2009, p. 25).

The terms invention and innovation are closely linked but they are clearly not the

same. This distinction is anything but new in economics (cf. Sect. 2.1). According

to Pyka and Scharnhorst (2009, p. 9) an innovation can be defined as “[. . .] the
implementation of a new or significantly improved idea, good, service process or

practice which is intended to be useful or practical in the sense that either efficiency

gains or new returns are generated”. An innovation is the first attempt at carrying

out an invention in practice in the form of a commercializable application (Swann

19Knowledge generation is closely related to organizational learning models. According to Bierly

et al. (2000) learning can be defined in an organizational context as the process of linking,

expanding, and improving data, information, knowledge and wisdom. For an overview of con-

ceptual organizational learning models, see Bierly et al. (2000). For the intellectual roots of the

adaptive learning approach in organization theory, see Sect. 2.2.
20 Several other concepts have been proposed in subsequent years to understand how firms

generate knowledge. These are, most notably, the concept of higher level routines, such as

organizational capabilities (cf. Winter 2003) and the concept of dynamic capabilities (cf. Zollo

and Winter 2002). For an overview, see Becker (2004) and Easterby-Smith et al. (2009).
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2009, p. 25; Fagerberg 2005, p. 4).21 In this context it is important to note that the

capabilities of an inventor differ significantly in many respects from those of an

innovator (Fagerberg 2005, p. 5). Inventors are the creative minds behind the

innovations. Innovators and entrepreneurs need to have other skills that are impor-

tant for commercializing new ideas.22 Finally, an innovation is not a single event

but rather the result of a process involving many interrelated innovations

(Fagerberg 2005, p. 5). This recognition leads us to take a brief look at early

innovation models and their limitations.

2.3.1.3 Early Innovation Models and the Emergence of Systemic

Thinking

The early innovation model considers innovation to be a linear sequence of

activities (Tidd 2006, p. 3). The model was originally proposed by Vannevar

Bush (1945). It assumes that a firm has to traverse a well-defined set of stages –

basic research, applied research, development, production, marketing and distribu-

tion – and at the end of this sequence there will be an innovation. The model is

based on the assumption that innovation is basically nothing more than the result of

applied science (Fagerberg 2005, p. 8). In early innovation models it was either the

new opportunities stemming from research activities – “technology push” – or the

needs of the market – “demand pull” – which triggered the sequence that resulted in

an innovation (Tidd 2006, p. 3). The linear model of innovation is limited in several

ways. Firstly, in practice, innovation is a coupling and matching process, where

interaction is the critical element (Tidd 2006, p. 3). Secondly, the model ignores

feedback loops that can occur between different stages of the model (Fagerberg

2005, p. 8). Finally, it fails to explain all of the innovations that occur within firm

and new ventures (ibid). In response to these limitations, Stephen J. Kline and

Nathan Rosenberg (Kline 1985; Kline and Rosenberg 1986) proposed the interac-

tive chain-linked model of innovation. Since then, several generations of innovation

models23 have been proposed and discussed in the literature.24 The latest generation

of innovation models in Rothwell’s (1994) framework points to the systemic

21 For further details on the classification of innovations, see the “Oslo Manual” (OECD 2005).
22 From Schumpeter’s perspective, the entrepreneur is primarily an innovator (Swann 2009,

p. 131). In his “Theory of Economic Development”, Schumpeter identified the following main

types of entrepreneurial behavior (cf. Schumpeter 1934 cited according to: (Swedberg 2000; Goss

2005, p. 206): (I) the introduction of new goods; (II) the introduction of new production methods;

(III) the struggle into new markets; (IV) finding new sources of raw materials; and (V)

reorganizing an industry in a new way.
23 According to Rothwell (1994) there are five generations of innovation models: (a) the technol-

ogy push model, (b) the market push model, (c) feedback loop or coupling models, (d) parallel-line

models (d) systemic or network models.
24 A review of the development stages of innovation models is not the subject of this investigation.

For an overview and discussion, see Tidd et al. (2005) and Tidd (2006).
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perspective which is characterized by extensive networking activities among the

actors involved, flexible and customized responses and continuous innovation

(Tidd 2006, p. 3). This brings us to the systemic perspective in innovation research.

The original approach, the so-called “national innovation system” concept, was

developed in the early 1980s by neo-Schumpeterian scholars (Freeman 1988;

Lundvall 1988, 1992; Nelson 1992).25

2.3.2 Understanding the Nature of Economic Change

The neo-Schumpeterian approach (cf. Hanusch & Pyka 2007a; Winter 2006) pro-

vides an appropriate theoretical framework for analyzing the determinants and

economic consequences of technological change processes. The aim of this study

is to contribute to an in-depth understanding of how innovations are created and

what factors affect the process of novelty generation in a given industrial setting.

More precisely, we seek to shed some light onto collective innovation processes in

complex interorganizational innovation networks. To accomplish this task, we need

to take a closer look at the theoretical cornerstones of the neo-Schumpeterian

approach.

In a recent article, Hanusch and Pyka (2007a) provide an overview and discus-

sion on the intellectual roots of the neo-Schumpeterian approach. They identify five

historical channels of influence (cf. Hanusch and Pyka 2007a, pp. 277–279): (I) the

seminal writings of Schumpeter26 on the role of innovation and entrepreneurial

activity on economic change and prosperity; (II) the contributions in the broader

field of evolutionary economics27; (III) the field of complexity economics28; (IV)

approaches that are dedicated to change and development29 and, last but not least,
(V) systemic approaches30 in economics and related disciplines. All these research

fields have left their mark and significantly contributed to the emergence and

solidification of the neo-Schumpeterian approach in economics. Today, most

neo-Schumpeterian scholars would agree that the following characteristic features

form the very heart of the approach.31

25 This concept and further developments are subject to discussion in Sect. 2.3.
26 For the most influential contributions, see Schumpeter (1912, 1939, 1942).
27 For an overview of the field of evolutionary economics, see Witt (2003, 2008a, b).
28 For an excellent overview of contemporary research in the field of complexity economics, see

Antonelli (2011). For groundbreaking work on complexity economics, see Kirman (1989, 1993),

Foster (2005) and Arthur (2007).
29 For an overview of evolutionary thinking in economics and related disciplines, see Sect. 2.2.
30 Systemic research has its roots in general system theory (Bertalanffy 1951, 1968; Boulding

1956). For an overview of innovation system approaches, see Sect. 2.3.3.
31 This discussion is guided by Dosi and Nelson (1994) and Hanusch and Pyka (2007a, c).
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2.3.2.1 The Notion of Individuals and Firms

As already outlined above, the notion of individual economic actors in classical-

neoclassical and evolutionary theories differs considerably. The neo-Schumpeterian

approach considers individuals to be bounded-rational economic actors (Simon 1955,

1991) who are continuously searching for new opportunities in uncertain and perma-

nently changing environments (Hanusch and Pyka 2007a, p. 278). Learning and the

cognition of the economic actors are central to the neo-Schumpeterian approach

(ibid).32 This notion of individual behavior is not compatible with the traditional

“homo oeconomicus” concept in classical-neoclassical economics. Alternative con-

cepts were developed and applied by neo-Schumpeterian scholars to capture the

behavior of inventors and innovators in complex economic systems. The “homo

creativus” can be characterized as an individual that is searching for opportunities in

order to meet the challenges of unpredictable qualitative change in uncertain eco-

nomic environments (Foster 1987; Dopfer 2011). The notion of firms in

neo-Schumpeterian economics is closely related to these considerations. In tradi-

tional microeconomic theory, the firm is treated as a “black box” which can be, in

principle, fully described by a simple production function. Firms are homogenous

economic entities that produce homogenous goods and services which can be

consumed by fully rationally-behaving economic agents in perfect markets. In

contrast, from a neo-Schumpeterian perspective, firms are considered to be hetero-

geneous economic entities. They have very specific resource endowments and they

follow their own strategies to accomplish their individual goals. The

neo-Schumpeterian approach acknowledges that “[. . .] firms often no longer com-

pete in a price dimension only, as competition in innovation has taken the dominant

role” (Hanusch and Pyka 2007a, p. 281).

2.3.2.2 Qualitative Change, Punctuated Equilibria and Pattern

Formation

The neo-Schumpeterian approach applies a dynamic perspective. The approach is

concerned with all facets of open and uncertain developments in socioeconomic

systems (Hanusch and Pyka 2007a, p. 276). The models and theoretical explana-

tions focus on procedural issues and not on static snap-shots of economic phenom-

ena. Static and competitive static models are considered to be necessary but not

sufficient in understanding the dynamic processes that generate economic outcomes

at the micro or macro-level. Evolutionary theories seek to explain the movement of

something over time or they explain reasons for why something is what it is at a

given point in time (Dosi and Nelson 1994, p. 154). In this context, Hanusch and

Pyka (2007a, p. 276) argue that the future developmental potential of socio-

economic systems, triggered and fueled by the underlying innovation processes,

32 Both inventors and entrepreneurs receive due attention in neo-Schumpeterian economics.
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has to be regarded from a normative perspective. They identify the following three

constitutive elements or normative principles of neo-Schumpeterian economics

(Hanusch and Pyka 2007a, pp. 276–277): (I) qualitative change is a multi-level

phenomenon that has to be analyzed against the backdrop of the existing constrains

and changing circumstances, (II) qualitative change can be described as a process

characterized by punctuated equilibria patterns with regular and smooth develop-

ment phases and with transitional or disruptive phases, and (III) qualitative change

inherently shows strong non-linearities and multiple feedback effects which are

reflected in pattern formation and other forms of spontaneous structuring. The last

point, in particular, appears in most evolutionary models and theories. These

models involve both random elements, which generate or renew some variation,

and mechanisms that systematically address variation patterns (Dosi and Nelson

1994, p. 154).

2.3.2.3 Path Dependencies and Irreversibilities

The analysis of change processes is at the very heart of evolutionary economics in

general and neo-Schumpeterian economics in particular. Any kind of economic

change process or dynamic development which takes place in historical time is

accompanied by path dependencies and irreversibilities (Hanusch and Pyka 2007a,

p. 277). David (1985, p. 332) defines path dependencies as follows: “A path-

dependent sequence of economic changes is one of which important influences

upon the eventual outcome can be exerted by temporally remote events, including

happenings dominated by chance elements rather than systematic forces.” David

(1985) demonstrates that path-dependent processes can result in a “lock-in” effect.

The basic idea behind the concept is straightforward. A course already adopted in

the past can produce considerable switching costs at a later point in time. This can

result in a situation in which second-best solutions prevail. At the same time, it is

important to note that path-dependent processes do not imply that the future is in

any way closed (Araujo and Harrison 2002, p. 6). Hanusch and Pyka (2007a, p. 278)

note in this context that the outcomes of evolutionary processes are not determined

ex ante but are rather the result of true uncertainty underlying all processes of

novelty generation.

2.3.3 A Closer Look at Selected Key Concepts

We will now look at three concepts that are essential for the purpose of this book:

the proximity concept, the innovation system concept and the network concept.
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2.3.3.1 The Proximity Concept

The proximity concept has increasingly raised attention, not only among

neo-Schumpeterian scholars but also in the areas of sociology, geography and

management science. Both theoretical (e.g. Boschma 2005a, b; Torre and Rallet

2005; Visser 2009; Boschma and Frenken 2010) and empirical studies

(e.g. Oerlemans et al. 2001; Oerlemans and Meeus 2005; Owen-Smith and Powell

2004; Whittington et al. 2009) have improved our understanding of how proximity

relates to firm innovation. In the most general sense, proximity can be defined as

“[. . .] being close to something measured on a certain dimension” (Knoben and

Oerlemans 2006, pp. 71–72). The concept acknowledges that firms are simulta-

neously exposed to a variety of proximity dimensions such as institutional proxim-

ity, organizational proximity, cultural proximity, technological proximity, network

proximity and geographical proximity (cf. Knoben and Oerlemans 2006, p. 71).

However, most proximity concepts have some considerable limitations. According

to Knoben and Oerlemans (2006, p. 71), one of the most notable issues is that

previous research failed to provide a clear separation between proximity dimen-

sions. This is still reflected in conceptual overlaps across many proximity dimen-

sions (ibid).

Only a few studies (cf. Boschma 2005a, b; Boschma and Frenken 2010) have

explicitly addressed this conceptual limitation. The proximity concept originally

proposed by Boschma (2005b) can be regarded as an integral part and extension of

the evolutionary economic approach (Boschma and Frenken 2010).33 The concept

encompasses five proximity dimensions: (I) cognitive proximity, (II) organiza-

tional proximity, (III) institutional proximity, (IV) geographical proximity, and

(V) social proximity. If not otherwise stated, the following discussion on proximity

dimensions draws upon the work of Boschma (2005b, pp. 63–71) and Boschma and

Frenken (2010, pp. 122–124).

The cognitive proximity dimension points to the fact that successful knowledge

transfer and learning processes among firms require, at least to a certain extent, a

common cognitive basis among the actors involved. A high level of cognitive

proximity facilitates effective communication. Firms with similar knowledge

stocks and expertise are more likely to learn from one another than firms with

entirely different cognitive backgrounds. The authors draw upon the absorptive

capacity concept originally proposed by Cohen and Levinthal (1989, 1990) to

substantiate their line of argument. However, it is important to note that the positive

effects of cognitive proximity can have repercussions. Following Nooteboom

(2008), the authors put forward the argument that too much cognitive proximity

can also be detrimental to interactive learning. The reasoning behind the argument

is straightforward: there probably remains little scope for mutual knowledge

33 For a discussion on the intersections between evolutionary economics and approaches in

economic geography, see Boschma and Frenken (2006).
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transfer and interactive learning processes if the knowledge stocks, competencies

and skills are highly similar.

Organizational proximity refers to the extent to which relations are shared within

an organization or between organizations. The basic argument of the authors is that

interactive learning and knowledge creation depends, among many other factors, on

a capacity to coordinate the exchange of complementary knowledge within and

between organizations. Organizational arrangements are considered to be the

arenas in which knowledge transfer and learning can take place. A sufficiently

high level of organizational proximity is assumed to reduce uncertainty and oppor-

tunism. This, in turn, is likely to facilitate interactive learning and knowledge

creation. Too much organizational proximity can cause a lack of flexibility, thereby

generating exactly the opposite effect.34

Institutional proximity addresses both the formal and the informal institutions at

the macro-level. These institutions affect the extent to and way in which organiza-

tions interact. Formal institutions can be laws, norms, rules or codified codes of

conduct. Informal institutions can be cultural norms, values, habits, or other

conventions. In this context, institutions are considered to be enabling mechanisms

that stabilize the environment in which knowledge transfer and interactive learning

processes take place. An above average level of institutional proximity can prevent

mutual knowledge transfer and learning processes due to institutional lock-in

effects.35 Other proximity conceptualizations have acknowledged the latter type

of institutional proximity by introducing a separate “cultural proximity” dimension

(Knoben and Oerlemans 2006, p. 71).

Geographical proximity focuses on the spatial distribution of economic actors.

This proximity dimension addresses the physical distance between economic

actors. Firms can benefit from geographical proximity in many ways. For instance,

being located close to others is assumed to facilitate face-to-face contact. Short

distances simplify the exchange of information and enable interactive learning

processes. This, in turn, is likely to enhance the innovative performance at firm

level. The main drawback of too much spatial proximity is that firms can become

inward looking and isolate themselves from the outside word. Thus, after exceeding

a certain degree of geographical clustering, the benefits outlined above may start to

have the opposite effect.36

Social proximity is the last of the five proximity dimensions proposed by Ron

Boschma and further developed by himself and Koen Frenken. Social proximity

refers to the relationship between economic actors at the micro-level.37 This type of

34 The underlying theoretical arguments used in this context draw upon governance and transaction

cost issues in market, hybrid and hierarchical organizational forms (cf. Sect. 2.5.2).
35 To substantiate this line of argument, Boschma (2005b) points to the fact that too much

institutional proximity can cause structural inertia.
36 For an in-depth discussion, see (cf. Sect. 12.2).
37 The social proximity concept is strongly influenced by the social capital and embeddedness

literature (cf. Sect. 2.5.4).
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proximity is frequently referred to as relational proximity (Coenen et al. 2004). The

occupation of advantageous network positions can enhance access to external

knowledge sources (Grant and Baden-Fuller 2004; Buckley et al. 2009), facilitate

interorganizational learning processes (Hamel 1991; Schoenmakers and Duysters

2006; Nooteboom 2008) and is positively related to firm innovativeness (Ahuja

2000; Stuart 2000). The benefits of social proximity can have the reverse effect if

firms become too densely embedded (cf. “overembeddedness” phenomenon) or

missembedded due to structural inertia (cf. “network inertia” phenomenon).38

The proximity framework proposed by Boschma (2005b) and further developed

by Boschma and Frenken (2010) is characterized by the following four features.

Firstly, the framework provides a clear definition and separation of the proximity

dimensions outlined above. The proximity dimensions are independent of each

other. Secondly, this implies that one can reduce as well as extend the list of

relevant proximity dimensions without changing the meaning of each dimension

(Boschma and Frenken 2010, p. 124). Thirdly, the framework lays the ground for

analyzing each dimension separately and, at the same time, it allows the interplay

between selected proximity dimensions to be explored. Finally, the proximity

framework applies a process-oriented perspective and explicitly addresses both

the positive and the negative impact of proximity on knowledge transfer, interactive

learning and firm-level innovation outcomes. In summary, the concept lays the

foundations for a more dynamic understanding of proximity in all its facets.

2.3.3.2 The Innovation System Concept

Quite early on, neo-Schumpeterian scholars explicitly addressed the collective

nature of innovation processes and introduced the “systemic innovation approach”

(Freeman 1988; Lundvall 1988, 1992; Nelson 1992). According to this approach,

innovations were considered to be the outcome of multiple interactions between

elements in an integrated system (Lundvall 1992). The first conceptualization was

the “national innovation system approach” (NIS). It emphasizes the role of knowl-

edge generation through the process of interactive learning in an evolving social

environment which is determined by national level institutions and increasingly

challenged by the process of internalization and globalization (cf. Lundvall 1992,

pp. 2–3). Since then, several refinements have been proposed. An innovation

system can be defined not only from a national dimension but also along several

38 The overembeddedness concept was originally introduced by Uzzi (1996). The structural

network inertia concept (cf. Kim et al. 2006) is strongly influenced by organizational ecology

research (cf. Sect. 2.2).
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other dimensions: regional dimension (RIS),39 sectoral dimension (SIS),40 or tech-

nological dimension41 (Carlsson et al. 2002, p. 233). The common denominator of

all these concepts is that they all involve creation, diffusion and use of knowledge

and each of them can be fully described by a set of components, relationships

among these components and their attributes (ibid).42

In addition, systemic approaches have three other common features. Firstly,

innovations are not the result of linear processes but rather the outcome of repeated

knowledge exchange and learning processes between various types of actors in

these socio-economic systems. An innovation system is characterized by multiple

interactions and feedbacks and it allows for the reproduction of individual or

collective knowledge (Lundvall 1992, p. 2). Secondly, innovation systems are

dynamic rather than static entities because the elements and relations in the systems

are subject to change. Carlsson et al. (2002, p. 234) summarize this as follows:

“Another dimension is that of time. In a system with built-in feedback mechanisms,

the configuration of components, attributes, and relationships is constantly chang-

ing.” Thus, past events determine current actions and affect future innovation

outcomes. Thirdly, the structural characteristics of innovation systems – such as

the actors, types of relationships, system boundaries and the broader environments

in which the system is embedded – affect the interactions of actors and subsequent

innovation outcomes (Carlsson et al. 2002).

2.3.3.3 The Network Concept

Knowledge is considered to be the key factor in determining the competitiveness of

firms and the economic growth and prosperity of nations (Saviotti 2011, p. 141). An

in-depth understanding of knowledge generation and diffusion processes is a

central theme in neo-Schumpeterian economics because these processes underlie

the generation of novelty in terms of inventions and innovations (Hanusch and Pyka

(2007c, p. 3). In general, firms can gain access to new knowledge via internal or

39 The regional innovation system approach (RIS) is strongly influenced by the idea that innova-

tion is the outcome of spatially or territorially determined learning processes between the actors in

the system (Cooke 2001).
40 The sectoral innovation system’s approach (SIS) emphasizes the cognitive dimension by

arguing that interactive learning processes and subsequent innovation outcomes are fostered by

the technological and contextual relatedness of the actors in the system (Malerba 2002).
41 The technological innovation system approach (TIS) focuses on generic technologies with

general applications over many industries (Carlsson et al. 2002).
42 Carlsson et al (2002, pp. 234–235) define components, relationships and attributes as follows:

Firstly, components are the basic elements or operating parts of a system. They can be individuals,

organizations, businesses, banks, universities, research institutes and public policy agencies

(or parts or groups of each). Secondly, relationships involve all kinds of market and non-market

links between the components of the system. Finally, attributes are considered to be the properties

of the components and the relationships between them and they specify the very nature or type of

system.

38 2 Theoretical Background



external channels of knowledge (Malerba 1992). The internal perspective refers to

learning and knowledge generating processes within the boundaries of the firm,

whereas the external perspective highlights the importance of collaborative partner-

ships. We focus here on the latter perspective. By now it is well recognized that

cooperation and network embeddedness play a key role in a firm’s effort to

innovate. Various types and aspects of networks have attracted a great amount of

attention in economics and related disciplines over the past few years. These are, for

instance, “strategic networks” (Jarillo 1988; Gulati et al. 2000), “alliance networks”

(Koka and Presscott 2008; Phelps 2010), “knowledge networks” (Saviotti 2011;

Ozman 2013; Wang et al. 2014), and “innovation networks” (Pyka 2002; Cantner

and Graf 2011; Leven et al. 2014).43 In order to gain a comprehensive understand-

ing of collective innovation processes, one needs to understand the very nature of

innovation networks. For the purpose of this book, three aspects of innovation

networks are of primary importance: (I) network structure, (II) network positioning

(III) network evolution.

Cooperation activities are, at first glance, micro-level phenomena. However, it is

important to recognize that each tie formation and tie termination process shapes

the structural configuration of the industry’s innovation network. Thus, all of the

collaborative ties among a well-defined set of heterogeneous economic actors spans

the structure of the overall interorganizational network at the macro-level. Firms

follow individual cooperation strategies that are guided by firm-specific goals and

motives. At the same time, each cooperating firm occupies, whether consciously or

not, a position within the industry’s innovation network. Contemporary research

provides sound evidence for the relatedness between a firm’s strategic network

position and its subsequent innovation outcomes. However, the type of positioning

that matters for a firm in its efforts to innovate can significantly differ from industry

to industry. In addition, the structural positioning of a firm in an industry network is

by no means static. The firm’s own tie formations and tie termination processes, as

well as the cooperation activities of other network actors, are reflected in a

continuous change in its network position over time. This brings us to the last

and maybe most important point. The structure of an innovation network is subject

to change due to node entries and exits as well as tie formations and tie termina-

tions. The implications are straightforward: a comprehensive analysis of how a

firm’s network position affects its innovative performance requires a dynamic

setting and a solid understanding of the industry’s characteristics.

To conclude, the overlaps and intersections of the three concepts are obvious.

The proximity concept explicitly acknowledges the importance of networks by

integrating a relational proximity dimension. The systemic approach can be seen as

a broader concept that inherently entails innovation networks.

43 Note that these types of networks are not mutually exclusive. They can be defined within firms

(“intra-organizational network”, cf. Rank et al. 2010), between firms (“interfirm networks”,

cf. Schilling and Phelps 2007), or between various types of organizations (“interorganizational

networks”, cf. Broekel and Hartog 2013).
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2.4 Why Do Some Firms Outperform Others?

So far we have introduced and discussed the general theoretical framework that

constitutes the basis for this study. Now we turn our attention to the micro-level.

The guiding question of this section is why some firms outperform others. In search

of an answer to this question we take a brief look at different schools of thought in

economics and management science that have analyzed the determinants of a firm’s

performance. After this short overview, we will turn our attention to the knowledge-

based theory of the firm. This approach explains a firm’s competitive advantage by

drawing upon its ability to access knowledge and generate new stocks of knowledge

which are key drivers behind commercial success.

2.4.1 The Structure-Conduct-Performance Approach

Industrial economists were among the first to address the question raised above. In

the early 1950s the “structure-conduct-performance” approach (SCP) was the

accepted scientific doctrine. The approach was strongly influenced by the contri-

butions made by Mason (1939, 1957) and Bain (1950, 1951). One of the key

concerns of industrial economists at that time was to analyze a firm’s behavior

and strategic response to imperfect market conditions. Retrospectively, this was

quite a controversial approach against the backdrop of the omnipresent neoclassical

perfect competition paradigm. The core idea of the traditional SCP model is based

on the notion that the structural characteristics of a firm’s industrial environment

affect its conduct and its performance outcomes (Porter 1981, p. 610). The indus-

trial dimension is defined as a relatively stable economic and technological context

in which a firm competes against other firms (Schmalensee 1988, p. 644; Porter

1981, p. 611) and is usually specified by characteristics such as number of sellers

and buyers, entry barriers, level of vertical integration or product differentiation etc.

(Conner 1991, p. 124). The conduct dimension reflects the firm’s choice of strategic

decisions such as pricing and advertising decisions (Porter 1981, p. 611) and is

assumed to be determined by the industry’s structure (Conner 1991, p. 124).

Finally, the performance dimension is quite broadly defined in the traditional

SCP frameworks and encompasses not only profitability or cost minimization but

also a firm’s innovative performance (Porter 1981, p. 611). The main implications

of this approach are strongly connected with firm size and monopoly power

arguments. Accordingly, vertical integration, advertising and, product differentia-

tion are considered to be strategic options to control prices, erect entry barriers and

to sustain or increase monopoly power (Conner 1991, p. 125). Several instances of
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criticism44 were raised against the traditional SCP paradigm which led to many

refinements in subsequent years.45

2.4.2 The Resource-Based View

The resource-based view (RBV) has its intellectual roots in the seminal contribu-

tion of Edith T. Penrose (1959). It is interesting to note that the basic ideas of the

RBV emerged at nearly the same time as the SCP paradigm but it took nearly three

decades to attract the attention of scholars in the field. Proponents of the RBV

(Wernerfelt 1984; Barney 1991; Peteraf 1993) proposed a very different line of

argument to explain a firm’s above-average rents. They argue that firm-specific

factors – not market conditions – are the key drivers behind a firm’s competitive

advantage.46 More precisely, the RBV suggests that a firm’s ability to achieve and

maintain a profitable market position and outperform competitors mainly depends

on its ability to generate, exploit und utilize firm-specific resources (Barney 1991).

The concept of idiosyncratic, immobile resources is the crucial element of the

resource-based approach. Barney (1991, p. 101) defines resources as all kinds of

“[. . .] assets, capabilities, organizational processes, firm attributes, information,

knowledge [. . .]” that are under the control of the firm and “[. . .] that enable the

firm to conceive of and implement strategies that improve its efficiency and

effectiveness”. The explanandum is the firm’s sustainable competitive advantage

(Barney 1991, p. 102) which simply can be defined as a competitive advantage that

lasts for a long period of time (Porter 1985) or a competitive advantage that

continues to exist even after efforts have been made to duplicate it (Lippman and

Rumelt 1982). A firm resource must fulfill four basic conditions to enable a firm to

realize a sustainable competitive advantage (cf. Barney 1991, pp. 105–112): Firstly,

it must be valuable by opening up new opportunities and by neutralizing threats;

secondly, the resource has to be rare; thirdly, it must be difficult for other firms to

imitate; finally, there must be no strategically equivalent substitute that is valuable

44 The static nature of the structural dimension within this framework has been particularly

criticized. For instance, Schumpeter claimed that a static view of competition (i.e. price compe-

tition over existing products) fails to see that creating or adapting innovations is a much more

effective way to compete because it makes the rivals’ positions obsolete (Schumpeter 1950, p. 84:

cited by Conner 1991, p. 127). For a discussion on further limitations of the SCP paradigm, see

Porter (1981, pp. 11–14).
45 For excellent overviews of the traditional SCP paradigm and its refinements, see Schmalensee

(1988) and Conner (1991).
46 It is important to note that the emergence of the RBV can be seen as a critical response to the

black box view of the firm in the SCP paradigm (Foss and Ishikawa 2007, p. 750). The RBV

highlighted asymmetric information in factor markets and heterogeneous economic actors to

explain differential rents (ibid). However, the RBV supplements rather than replaces the SCP

paradigm (Kraaijenbrink et al. 2010, p. 350).
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but neither rare nor difficult to imitate.47 In summary, the RBV emphasized above-

average returns as rents that stem from costly-to-copy productive assets which are

inherent to the firm (Conner 1991, p. 144). Criticism has addressed several of the

RBV’s limitations.48 The three most salient issues will be viewed in more detail

below.

Firstly, Priem and Buttler (2001) argued that the RBV is tautological in a sense

that main assertions are true by definition. Barney (2001, pp. 41–46) responded to

this critique by showing in detail how several elementary building blocks of the

RBV can be parameterized and thus be empirically tested. Secondly, it has been

argued that the VRIN/O criterion is neither a necessary nor sufficient condition for

realizing a sustainable competitive advantage (Kraaijenbrink et al. 2010, p. 351).

This critique is fundamental as it addresses the core of the RVB.49 Finally, the

conceptualization of the sustainable competitive advantage concept itself was

subject to criticism. According to Foss and Ishikawa (2007, p. 750) one central

shortcoming of the RBV is its implicit reliance on the competitive equilibrium in a

sense that resources are mainly used by firms to generate a superior rent equilib-

rium. A careful look at Barney’s seminal contribution reveals this issue. “In a sense,

this definition of sustainable competitive advantage is an equilibrium definition”

(Barney 1991, p. 102). In response to these limitations, Foss and Ishikawa (2007)

draw upon Austrian theories of capital and entrepreneurship and propose a dynamic

resource-based view. The limitations of the RBV outlined above led to numerous

refinements and extensions. A focus on knowledge as a firm’s most decisive source

of superior rents resulted, in particular, in the emergence of an entirely new

paradigm in the mid-1990s.

2.4.3 The Knowledge-Based View

The knowledge-based view (KBV) is based on the notion that a firm’s ability to

assess and generate knowledge is decisive in outperforming competitors (Kogut

47 The so-called originally proposed VRIN criterion has been expanded into the VRIN/O criterion

by Barney (2002). Accordingly, firms must acquire and control valuable, rare, inimitable, and

non-substitutable resources and capabilities, plus have the organization (O) in place that can

absorb and apply them (Kraaijenbrink et al. 2010, p. 350).
48 For an overview and discussion see Priem and Buttler (2001), Foss and Ishikawa (2007) and

Kraaijenbrink et al. (2010). See Barney (2001) for a response to Priem and Butter’s critique.
49 This critique is centered around two lines of argument (cf. (Kraaijenbrink et al. 2010, pp. 355–

356). On the one hand, it has been argued that uncertainty and immobility are the true basic

conditions for achieving a sustainable competitive advantage whereas other conditions are simply

additional to these. On the other hand, it has been argued that the RBV does not sufficiently

recognize the role of the individual actors (i.e. entrepreneurs or managers). Thus, to generate a

sustainable competitive advantage a firm needs: (a) a bundle of resources rather than only a single

resource, and (b) the managerial capabilities to recognize and exploit the opportunities that are

inherent to these resource bundles.
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and Zander 1992; Spender and Grant 1996; Grant 1996). According to the KBV, the

primary rationale for a firm’s existence is the creation, transfer and application of

knowledge (Decarolis and Deeds 1999, p. 954). The KBV has some characteristic

features that clearly distinguish it from all other theories of the firm described

above.50

Firstly, the KBV focuses on knowledge-accessing and on knowledge-acquiring

processes. This concomitantly implies that a firm’s knowledge stock is subject to

change. It is not a firm’s currently existing stock of knowledge but rather a firm’s

ability to access, recombine and create new stocks of knowledge out of existing

firm-specific capabilities which is vital for gaining a competitive advantage

(Nonaka et al. 2000). As a consequence, the KBV clearly paves the way towards

a more dynamic and process-oriented understanding of how firms create above-

normal returns. Secondly, the KBV accentuates the role of individuals and decision

makers during the process of creating new knowledge out of existing knowledge

stocks. Knowledge is regarded as context specific, relational, dynamic and essen-

tially related to human action (Nonaka et al. 2000, p. 2). In other words, the creation

of new stocks of knowledge always requires a certain degree of interaction at the

interpersonal, inter-unit or interorganizational level. Thirdly, the KBV explicitly

considers resource bundles instead of focusing on single idiosyncratic resources.

Dierickx and Cool (1989, p. 1504) point to a fact that is often overlooked “[. . .]
resource bundles need to be deployed to achieve or protect such privileged product

market positions.” In other words, it is not single resources but rather the synergies

that stem from the interdependencies between multiple resources that are the

sources of a firm’s competitive advantage. In a similar vein, Teece (2007) argues

that asset complementarities are important sources of a firm’s above-normal

returns. Last but not least, the KBV is based on the notion that knowledge and

skills are the major source of a firm’s competitive advantage because “[. . .] it is
through this set of knowledge and skills that a firm is able to innovate new products/

processes/services, or improve the existing ones more efficiently and/or effec-

tively.” (Nonaka et al. 2000, p. 2). In other words, the KBV clearly establishes a

link between a firm’s ability to access new stocks of knowledge, generate novelty in

terms of innovations and the market success it will subsequently have.

50 It is important to note that the KBV is not a closed theoretical paradigm but rather a set of

theoretical ideas and concepts that are strongly influenced by related disciplines such as psychol-

ogy and cognitive science (e.g. models of individual learning), organizational science (e.g. models

of single-loop learning and double-loop learning) and evolutionary economics (e.g. routines,

capabilities or dynamic capabilities). See Dodgson (1993) for information on organizational

learning approaches and Winter (2003) for further insights on dynamic capabilities.
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2.5 An Interdisciplinary View on Alliance and Network

Research

Last but not least, we move on to theoretical concepts that substantiate various

facets of alliances and networks. Due to the multifaceted und complex nature of

hybrid organizational forms51 there is no single theoretical paradigm that can

respond sufficiently to the broad variety of research questions in this research

domain. Instead, we face a diverse array of theoretical approaches and methodo-

logical concepts. In an excellent review article, Osborn and Hagedoorn (1997)

describe the field of organizational alliance and network research at that time to

be rather chaotic. Nonetheless the authors come to the conclusion that the research

field is characterized by a rich set of theoretical contributions from economics,

international business, management science and sociology (ibid).

Since then little has changed. Alliance and network research is still a highly

interdisciplinary field (Ozman 2009; Bergenholtz and Waldstrom 2011). As a

consequence, in this section we draw upon theoretical concepts from various

scientific disciplines instead of restricting our line of argument to one school of

thought in order to accomplish the tasks at hand. We define different types of hybrid

organizational forms and introduce the theoretical concepts that allow us to explain

the existence of hybrids. Then, we discuss the rationales and motives for

cooperating. Finally, we introduce theoretical concepts that substantiate and

explain the relationship between network embeddedness and firm performance.

2.5.1 Defining Interorganizational Relations, Alliances
and Networks

This study focuses on the analysis of interorganizational innovation networks in the

German laser industry. Interorganizational relations are the ties or linkages that

connect the nodes or actors of a network.52 Oliver (1990, p. 241) defines interorga-

nizational relations as “[. . .] relatively enduring transactions, flows, and linkages

that occur among or between an organization and one or more organizations in its

environment”. The organizations can be private, public or non-profit (Cropper

et al. 2008, p. 4). The linkages themselves can connect two or more partner

organizations. In the first case we refer to these interorganizational relations

as dyadic and in the second case as multiplicitous hybrid organizational forms

51 The term “hybrid organizational form” has been used by organizational scholars (Powell 1987;

Williamson 1991) to subsume all kinds of mainly formal cooperative arrangements in an

interorganizational context, such as alliances and networks.
52 This term comprises all kinds of strategic alliances or other types of collaborative partnerships.
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(Cropper et al. 2008, p. 4).53 Another essential distinguishing feature of interorga-

nizational relations is the degree of formality. In principle, interorganizational

relations can be both informal as well as formal in nature (Pyka 1997, p. 210).

The latter case encompasses a broad variety of contractual agreements such as

strategic alliances or strategic technology partnerships.

A general definition of strategic alliances has been proposed by Inkpen (2009,

p. 389). He defines strategic alliances as “[. . .] collaborative organizational agree-
ments that use resources and/or governance structures from more than one existing

organization”. In a similar vein, Gulati (1998, p. 293) defines strategic alliances as

“[. . .] voluntary arrangements between firms involving exchange, sharing, or

co-development of products, technologies, or services. They can occur as a result

of a wide range of motives and goals, take a variety of forms, and occur across

vertical and horizontal boundaries”. A third, more technology oriented definition of

strategic partnership has been proposed by Hagedoorn and Schakenraad (1994,

p. 291). They define strategic technology alliances as “[. . .] the establishment of

cooperative agreements aimed at joint innovative efforts or technology transfer that

can have a lasting effect on the product-market positioning of participating

companies”.

The preceding definitions have some important implications and allow us to

identify and summarize four characteristic features of strategic alliances. Firstly,

strategic alliances are formalized voluntary agreements between mutual indepen-

dent companies, firms or other types of organizations. Secondly, even though the

motives for entering a strategic alliance can be quite different, the organizations

have to agree upon a common goal (e.g. joint development of products, technolo-

gies, or services). Thirdly, the achievement of common goals requires a certain

degree of resource exchange (e.g. knowledge or technology transfer) among the

parties involved. In other words, all of the parties involved have to agree upon more

or less formalized rights and obligations. Finally, the definitions above acknowl-

edge the existence of heterogeneous structural alliance forms ranging from short-

term supply contracts, licensing and franchise agreements and consultancy con-

tracts, to consortia, long-term partnerships, joint ventures and shared product

development projects (Gulati and Singh 1998; Podolny and Page 1998; Brass

et al. 2004; Inkpen 2009). In this study we focus on one particular type of formal

knowledge-related interorganizational relation: i.e. publicly funded R&D coopera-

tion projects. Medium-term contractual R&D partnerships clearly fall within the

spectrum of “arm-length” contracts on the one hand and “equity joint ventures” on

the other (Contractor and Lorange 2002, p. 487) irrespective of whether the project

partners received public funding or not.

53 The term “multi-partner alliance” is widely used, especially in management science, to address

this type of hybrid organizational form. It is important to note that a multi-partner alliance is not a

collection of independent dyadic alliances, nor can it be considered a network of partners that

maintain direct ties to a single focal firm; it is rather a cooperation setting that entails multilateral

interaction among the partners involved (Lavie et al. 2007, p. 578).
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Empirical investigations indicate a clear increase in strategic alliances over the

past decades (Duysters et al. 1999; Hagedoorn 2002). As a consequence, companies

increasingly face the challenge of managing more than one alliance simultaneously

(Lavie 2007). Several concepts have been introduced in the literature to capture

firm-specific portfolios of collaborative relationships. These services range from

concepts such as alliance constellations (Das and Teng 2002), alliance networks

(Goerzen 2005), alliance groups (Duysters and Lemmens 2004), alliance portfolios

(Hoffmann 2007; Wassmer 2010) and ego networks (Hite and Hesterly 2001). The

two latter concepts are most frequently to be found in the literature. An ego network

or alliance portfolio is defined from the focal actor’s perspective and consists of a

set of direct, dyadic ties between the focal actor and the alters and indirect ties

between the alters (Ahuja 2000). Ego networks do not include second-tier ties or

second-step ties to which the focal actor is not directly connected (Hite and Hesterly

2001, p. 277).

So far, we have focused on firm-centered cooperation and ego network concepts.

Now we change the perspective and turn our attention to the overall network level.

The following quote nicely shows that researchers have realized quite early the

importance of indirect linkages “[. . .] we need to understand not only which

organizations will become partners but also which part(s) of each partner will

belong to the hybrid” (Borys and Jemison 1989, p. 236). But what exactly do we

mean in terms of networks?

In a most basic sense, any kind of network consists of two basic elements: nodes

and ties between these nodes (Wasserman and Faust 1994). In accordance with this

quite general notion of network, Brass and colleagues (2004, p. 795) define a

network “[. . .] as a set of nodes and the set of ties representing some relationship,

or lack of relationship, between the nodes.” These two definitions have some

important implications. Firstly, the network perspective emphasizes the intercon-

nectedness of a well-defined population of actors. Secondly, not only realized

linkages among embedded network actors but also missing linkages or potentially

realizable linkages are important for an in-depth understanding of the network’s

structural configuration. Thirdly, the network actors can be linked by many types of

usually non-hierarchical connections and flows, such as information, materials,

financial resources, services, and social support (Provan and Kenis 2007, p. 482).

For each of these dimensions of interconnectedness, all ties put together form a

particular network structure (Borgatti and Halgin 2011, p. 1169) which affects the

embedded network actors in multiple ways. In this context, Gulati and colleagues

(2000, p. 203) emphasize the strategic dimension of an interorganizational network

and argue that “[. . .] networks of relationships in which firms are embedded

profoundly influence their conduct and performance”. However, firm performance

has many facets ranging from productivity to revenue and other dimensions of

performance such as firm survival. Due to the objective of this study we are

primarily interested in the innovative performance of an organization. This leads

to the notion of innovation networks. Freeman (1991, p. 501) argues that “[. . .] the
problem of innovation is to process and convert information from diverse sources

into useful knowledge about designing, making and selling new products and
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processes. Networks were shown to be essential both in the acquisition and in the

processing of information inputs”. By now it is well recognized that innovation is

increasingly based on interaction between a variety of actors through formal

agreements like R&D cooperation (Brenner et al. 2011, p. 1). Thus, the very

purpose of an innovation network is to exchange already existing information,

knowledge and expertise among cooperating organizations in order to commonly

generate new knowledge which can be embodied in new products, services or

processes (Cantner and Graf 2011, p. 373).

By drawing upon the considerations above, we define an innovation

network for the purpose of this study as follows: an innovation network consists

of (I) a well-defined set of independent economic actors (i.e. private and public

organizational entities) and (II) connections that allow for a unilateral, bilateral or

multilateral exchange of ideas, information, knowledge and expertise (i.e. formal

and informal knowledge-related interorganizational relations) between directly

and/or indirectly connected organizational entities; (III) it is embedded in a broader

socio-economic environment and (IV) it has a strategic dimension in the sense that

the organizations involved cooperate to recombine and generate new knowledge

enclosed in goods or services in order to respond to continuously changing market

demands and customer needs.

2.5.2 Explaining the Existence of Hybrid Organizational
Forms

This section concentrates on two broad theoretical streams in the field of alliance

and network research that seek to explain the existence of hybrid organizational

structures: economic theories and sociological theories.

Economists (Thorelli 1986; Jarillo 1988; Williamson 1991) utilize predomi-

nantly transaction cost based arguments54 and state that hybrids are an organiza-

tional form positioned intermediately between markets and hierarchies. For

instance Thorelli (1986) argues that a network has to be interpreted as part of the

markets. He puts forward the argument that a “[. . .] network is the one intermediary

between the single firm and the market, i.e. two or more firms which, due to the

intensity of their interaction, constitute a subset of one (or several) market(s)”

(Thorelli 1986, p. 38). In a similar vein, Jarillo (1988) studied the economic

conditions for the existence of networks by referring to transaction cost arguments.

With reference to prior work by Ouchi (1980), who suggested breaking down

hierarchies into two distinct categories (i.e. bureaucracies and clans), Jarillo

54 The dichotomy of markets and hierarchies can be ascribed to the seminal work of Coase (1937)

on the nature of the firm. He was the first to use transaction cost arguments to explain why

economic transactions are processed most efficiently by means of hierarchical organizational

forms. These ideas were applied and developed further, in particular by Williamson (1975, 1985).
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(1988) developed this idea further and proposed doing the same with markets by

splitting this category into two sub-categories (i.e. classic markets and strategic

networks). He ended up with a scheme that illustrates four distinct modes of

organizing economic activity (Jarillo 1988, p. 34).

One of the most advanced transaction cost-based explanations of hybrid orga-

nizational forms was proposed by Williamson (1991). According to this line of

argument, the key distinguishing feature of hybrids compared to other forms of

governance is a flexible contracting mechanism that facilitates continuity and

efficient adaptation (Lee 1992, p. 2). Williamson (1991) conducted a discrete

structural analysis in order to compare three generic forms of economic organiza-

tion – markets, hybrids and hierarchies – in terms of governance cost efficiency. His

analysis is based on three key dimensions that allow the very nature of an economic

transaction to be specified i.e. the level of uncertainty, frequency of disturbance and

asset specificity. One of the key findings from his comparative-static analysis shows

that transactions characterized by an intermediate level of asset specificity are most

efficiently processed by hybrid organizational forms (Williamson 1991, p. 284).

Sociologists have emphasized the relevance of social embeddedness of eco-

nomic activities (Granovetter 1985; Uzzi 1996, 1997).55 Embeddedness literature is

based on the notion that all economic interactions are embedded in a larger socio-

economic context (Borgatti and Foster 2003, p. 994). Proponents of this school of

thought proposed an alternative explanation for the emergence, existence and

profanation of hybrid organizational forms. They argued that hybrids are not

intermediates between markets and hierarchies. Instead they have to be seen as

unique organizational structures and thus should be considered an organizational

form in their own right (Powell 1987, 1990; Podolny and Page 1998). The main

argument is that the concept of market and hierarchies fails to see and explain the

enormous variety of forms that cooperative arrangements can take (Powell 1987,

p. 67). Various types of cooperative agreements have started to emerge in an

unprecedented fashion, especially in high-tech industries such as microelectronics,

telecommunication, and biotechnology (Powell 1987 pp. 71–72). Powell’s argu-

mentation is closely related to a Schumpeterian notion of economic change. He

argues (Powell 1987, p. 77) that the proliferation of hybrid organizational forms is

closely connected to the rapidly transforming economic environments that are

moving away from an older set of industries (characterized by mature well-

established firms) towards a new set of industries (in which most firms are at a

youthful stage) because hybrids provide a better fit with these new market and

technology demands. According to this line of argument there are several main

aspects that explain the emergence, existence and proliferation of hybrid organiza-

tional forms. Powell (1987, pp. 77–82) identifies four specific factors: (I) hybrid

organizational forms allow greater flexibility and adaptability to rapidly changing

environments which are characterized by a shift away from vertical integration and

mass production towards more flexible forms of production and greater emphasis

55 For an in-depth discussion, see Sect. 2.5.4.
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on innovative products or services; (II) hybrids allow large organizations, which

are usually considered to be structurally inert and thus resistant to change,56 to

overcome, at least to some extent, these limitations; (III) hybrids provide fast and

flexible access to information and knowledge located outside the firm’s boundaries;

(IV) hybrids have to be understood as a variant or application of the “generalized

reciprocity concept” (i.e. individual units do not exist in isolation but rather in

relation to other units, cf. (Podolny and Page 1998) that creates legitimacy, repu-

tation and mutual trust, and thus generates an efficient and reliable environment for

exchange and transfer of information.

In summary, both perspectives provide valuable insights into the very nature and

existence of hybrid organizational forms. The merits of the first school of thought

are obvious. Even critics (e.g. Podolny and Page 1998, p. 58; Powell 1990, p. 296)

acknowledged the contributions made by transaction cost theory. On the one hand,

Williamson (1973, 1975, 1985) and other protagonists of the transaction cost school

of thought (e.g. Klein et al. 1978; Jones and Hill 1988) contributed significantly to

an in-depth understanding of how organizational structures affect economic out-

comes. Mainstream economics usually apply a very simplified production function

concept to describe firms in the economy. In contrast, transaction cost economics

opened up the firm as a “black box” and brought economics and other related fields

such as organization theory, law and business history much closer together (Powell

1990, p. 296). On the other hand, transaction cost scholars (Thorelli 1986; Jarillo

1988; Williamson 1991) explicitly acknowledged the existence of hybrids as an

additional form of economic organization by integrating these intermediates into

their originally dichotomous conceptualized market-hierarchy models.

Nonetheless the transaction cost perspective has several limitations. According

to Ozman (2009, pp. 43–44) the criticisms of transaction cost economics can be

grouped into three broad categories: (I) strong emphasis on opportunistic economic

agents and a lack of recognition of mutual trust, (II) the static and cost-centered

analysis perspective ignoring the dynamic nature of networks in rapidly changing

environments, (III) negligence of social processes that are assumed to affect

economic activities.

The sociological view has addressed most of these issues and significantly

widened our understanding of networks by arguing that hybrid organizational

forms represent an entirely new organizational form characterized by unique logics

of exchange (Powell 1987, 1990; Borgatti and Foster 2003, p. 995). The sociolog-

ical view has contributed considerably to moving away from a purely governance

cost-centered network explanation towards a more comprehensive understanding of

hybrid organizational forms. Moreover, the sociological notion of networks has

paved the way for integrating a rich array of theoretical concepts (Granovetter

1973, 1985; Coleman 1988; Burt 1992) and methodological concepts (Wasserman

56 There are at least two perspectives on the very nature of evolutionary change processes: the

adaptation perspective and the selection perspective. This assumption is advocated by proponents

of the latter perspective. For a discussion, see Sect. 2.2.
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and Faust 1994; Carrington et al. 2005; Borgatti et al. 2013) into contemporary

organizational network theory (Parkhe et al. 2006; Borgatti and Halgin 2011). In

their comprehensive review, Borgatti and Foster (2003, p. 995) came to the

conclusion that there is some evidence that the latter stream of research seems to

have since then prevailed.

2.5.3 Addressing the Rationales and Motives Behind
Cooperation

The aim of this section is to elaborate on the rationale behind cooperation and to

discuss what motivates a firm to cooperate in its effort to innovate.

The rationale behind cooperating is most easily illustrated by using a simple

game theory model (cf. Parkhe 1993; Kudic and Banaszak 2009; Faulkner 2006).57

As shown by Parkhe (1993), strategic interactions in collaborative constellations

can be characterized by a typical prisoner dilemma game structure.58 We start the

line of argument with the following initial situation. There are two parties

(i.e. Organization A, Organization B) both of which have, in principle, two strategic

options (i.e. cooperation and defection). Moreover, we introduce a basic assump-

tion that determines the payoff structure for a basic “prisoner dilemma” game

(cf. Eq. 2.1). The payment ε represents the exploitation gains for unilateral defec-

tion, λ stands for net payments in the case of mutual cooperation, τ typifies the net
payments for mutual defection of both actors and δ captures the detriment of

unilateral cooperation. The following inequation determines the initial game

structure.

ε > λ > τ > δ ð2:1Þ

Figure 2.1 illustrates the initial situation (cf. Fig. 2.1, left), a non-cooperative

solution (cf. Fig. 2.1, center) and a cooperative solution (cf. Fig. 2.1, right). We

start the analysis with a single-shot game59 by assuming there is an absence

of mutual trust, reputation or any kind of sanctioning mechanism (cf. Fig. 2.1,

center).60 The game starts from Cell (I). Due to the assumed incentive structure,

each of the two actors can increase their individual payoff by behaving opportu-

nistically. In other words, the “Pareto optimal” payoff structure in Cell (I) is

57 If not otherwise stated, this line of argument is guided by Kudic and Banaszak (2009) and

Faulkner (2006).
58We do not discuss the basic assumption of the simple prisoner dilemma here. For an excellent

introduction to game theory, see Dixit and Skeath (2004) or Saloner (1991).
59 A single-shot game simply means that the game ends after one round.
60 For an in-depth analysis of reputation effects on firm cooperation activities in an iterated

prisoner dilemma game with exit option, see Arend (2009).
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instable. This reflects a shift from Cell (I) to Cell (II) or Cell (III), respectively.

Again, the situation is instable because at least one of the actors can increase its

payoff by choosing a non-cooperative strategy. As a consequence both actors find

themselves in a suboptimal equilibrium (cf. Fig. 2.1, center, Cell IV). In other

words, we achieve a stable solution that is also known as the “Nash equilibrium”.

The moral of the story is straightforward: individually opportunistic behavior leads

to suboptimal results for both actors. The main question now is what makes the two

organizations cooperate?

In order to answer this question, we move away from a single-shot game to an

iterated prisoner dilemma and introduce a sanction mechanism61 to the model. “In a

situation where the partners intend to work with each other over an indeterminate

period” [. . .] “trust can be built” [. . .], “potential synergies from cooperation can be

realized” [. . .], and “reputation comes into the equation” (Faulkner 2006, p. 613).

Opportunistic organizations may find themselves in a situation where they cannot

find an appropriate partner in later periods (ibid). This is because information about

opportunistic behavior will spread rapidly throughout the entire network (Gulati

et al. 2000, p. 209). As a consequence, the loss of a reputation62 has been considered

to be an important governance mechanism in strategic alliances (e.g. Robertson and

Stuart 2007). Basically the same logic applies to a network setting.63 The imple-

mentation of a sanction mechanism with a fixed sanction value β transforms the

Fig. 2.1 The rationale to cooperate – cooperative versus non-cooperative games (Source: Author’s

own illustration, based on: Kudic and Banaszak (2009, p. 17) and Faulkner (2006, p. 612))

61 There is copious literature on different types of governance mechanism in an interorganizational

context (White 2005; Oxley and Sampson 2004; Provan and Kenis 2007). Sanctions can make an

appearance in the form of formal contracts, safeguards consisting of mutual hostages such as

bilateral idiosyncratic tangible and intangible investments, quasi integration, joint decision-

making or loss of reputation (for an overview and discussion, see Kudic and Banaszak 2009).
62 Reputation concept is most easily explained by a simple example (cf. Weigel and Camerer 1988

p. 444): “[. . .] if a colleague always fulfills her promises, then you say she has a reputation for

reliability” [. . .] “based on her past actions you infer that reliability is one of her attributes and she
is a ’reliable person’.”
63 Gulati and colleagues (2000, p. 209) argue that networks can create strong disincentives for

opportunistic behavior because building up a reputation is a long and difficult process, while

destroying it quick.
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non-cooperative game structure into a cooperative game. The sanction β must be at

least so high that the alliance partners are indifferent about cooperative and

non-cooperative behavior:

λ > ε� β > τ � β > δ ð2:2Þ

Inequation 2.2 represents the new payoff structure which is illustrated by Fig. 2.1

(right). The right hand side of Fig. 2.1 shows that if Eq. 2.2 is fulfilled we retain the

stable “Pareto optimum” solution in Cell (I). In other words, the incentives to defect

disappear.

In a nutshell, integrating repeated interactions and implementing sanctions

within the model leads to a situation in which the dominant strategy for both

organizations is to cooperate (Faulkner 2006, p. 613).

Next we address a firm’s motives for cooperating. Several early studies have

provided us with interesting insights (e.g. (Alic 1990; Freeman 1991; Camagni

1993; Osborn and Hagedoorn 1997; Gulati 1998). Alongside them, Hagedoorn

(1993, p. 371) was among the first who raised the question of “why companies

cooperate in their efforts to innovate”. The findings from both early and contem-

porary research allow us to assemble the broad variety of heterogonous and

partially overlapping cooperation motives into six groups. These are: cost savings

(Freeman 1991; Hagedoorn 1993, 2002), risk reduction (Hagedoorn 1993; Sivadas

and Dwyer 2000), time savings (Hagedoorn 1993; Mowery et al. 1996), access to

national and international markets (Perlmutter and Heenan 1986; Harrigan 1988;

Johanson and Mattson 1988; Hagedoorn 1993), status and reputation building

(Podolny 1994; Gulati 1998; Stuart et al. 1999), and last but not least,

knowledge-related motives such as knowledge access (Grant and Baden-Fuller

2004; Rothaermel 2001; Buckley et al. 2009) and interorganizational learning

(Hamel 1991; Khanna et al. 1998; Kale et al. 2000; Bessant et al. 2012).

The first two motives – cost and risk reduction – are closely related to a high

level of uncertainty inherent to innovation processes (Hagedoorn 1993). At the

bottom of the technological innovation processes is the search for new solutions for

a given problem (Dosi 1988, p. 1126). There is no general algorithm that can be

derived from the information about the problem (ibid). This implies that the search

for novelty can generate enormous costs and it is by no means certain whether the

problem can be solved at all. Joint research and development activities allow firms

to share costs and reduce risks inherent to innovation processes (Hagedoorn 2002,

p. 479). In addition, joint R&D efforts allow the period between invention and

market introduction to be reduced (Hagedoorn 1993, p. 373). Even though the first

two motives were named frequently in early studies, researchers realized that these

cooperation motives were not as important for firms as initially expected. Freeman

(1991, p. 507) concludes that especially “[. . .] cost-sharing and cost-minimizing

appeared to play a relatively small role in comparison with strategic objectives

relating to new technology and markets”.

International business scholars presented other arguments to explain what moti-

vates firms to cooperate. It has been argued that network relationships provide
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important ways for firms to get access to national and international markets

(Johanson and Mattson 1988). Cooperation in highly interdisciplinary research

areas can generate new ideas that go beyond the scope of the initial cooperation

project. R&D cooperation allows firms to identify new and unexpected opportuni-

ties during the cooperation process. This can lead to an expansion of their product

portfolios and open up new markets for them. Both opportunity seeking and market

access are considered to be non-negligible cooperation motives (Hagedoorn 1993,

p. 373).

Next we focus on a sociological line of argument and address the following two

concepts: status and reputation. On the one hand, the status-based model of market

competition acknowledges the dual nature status in a sense that a market actor’s

status affects the expectation of other market actors via two channels: its past

demonstrations of quality and the status of its exchange partners (Podolny 1993,

1994; Benjamin and Podolny 1999, p. 563). On the other hand, reputation is an

important asset of a firm (Fombrun and Shanley 1990) and firms spend time and

considerable effort in building up their reputations. Reputation sends out a signal

that allows others to judge an organization’s reliability (Weigel and Camerer 1988,

p. 444). Especially for young entrepreneurial firms there is often a lack of accep-

tance in the market. Thus, building up status and reputation can be an important

motive for firms to cooperate in the area of R&D. In this context, Gulati (1998,

p. 301) points out: “The status of an organization in the network affects its

reputation and visibility in the system. The greater the reputation, the wider the

organization’s access to a variety of sources of knowledge, and the richer the

collaborative experience, which makes it an attractive partner.” Stuart and col-

leagues (1999) were able to empirically show that young companies endorsed by

prominent cooperation partners perform better in term of survival and growth than

comparable ventures without prominent partners.

Among the most pivotal motives for cooperating in R&D are knowledge access

and interorganizational learning.64 Solving technological problems during techno-

logical innovation processes involves the use of information drawn from previous

experience, formal knowledge and various types of specific and uncodified capa-

bilities (Dosi 1988, p. 1126). By now it is well-known that knowledge-related

external linkages have to be considered as an [. . .] important ancillary and com-

plementary source of scientific and technical information rather than a substitute for

indigenous innovative activity” (Freeman 1991, p. 501). Two dominant streams

have emerged in interdisciplinary alliance and network research over the past two

decades: the “knowledge accessing approach” and the “knowledge acquiring

approach” (Al-Laham and Kudic 2008).65 The motives for accessing external

64 These two categories subsume all kinds of knowledge-related cooperation motives that are

directly linked to a firm’s innovation process such as interorganizational learning, capturing tacit

knowledge, technology transfer, technological leapfrogging etc. (cf. Hagedoorn 1993).
65 This distinction refers to the underlying processes of knowledge generation (or “exploration”)

and knowledge application (or “exploitation”) among partners in interorganizational relationships

such as strategic alliances (Grant and Baden-Fuller 2004, p. 61).
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technological knowledge are straightforward. Firms cooperate to gain access to

multiple complementary stocks of knowledge (Grant and Baden-Fuller 2004). The

access of external knowledge stocks does not necessarily require internalizing the

cooperation partner’s skills (Doz and Hamel 1997). According to the second

approach, alliances can be regarded as “vehicles of learning” (Grant and Baden-

Fuller 2004, p. 64) which allow a firm to share a particular part of its knowledge

bases, exchange both explicit and implicit stocks of knowledge across firm bound-

aries and thus learn from one another (Hamel 1991).

2.5.4 Network Embeddedness and Firm Performance

This section draws upon social capital theory in sociology.66 Several ideas and

concepts in social capital literature have strongly influenced contemporary research

on interorganizational networks.67 For the purpose of this study we focus on the

structural embeddedness perspective.68 An in-depth understanding of the relation-

ship between structural network embeddedness and firm performance requires a

look at two concepts that have caused vigorous debate in the field of network

research over the past two decades.

Traditionally, we can distinguish between the “closure concept” and the “bro-

kerage concept” in network research. Both concepts are based on the idea that the

social structure in which an economic actor is embedded affects its actions and

performance outcomes in multiple ways. However, these two perspectives differ

fundamentally with regard to the notion of what kind of structural topologies are

beneficial and how the positioning of an economic actor within these structural

patterns affects its subsequent economic outcomes. During the past two decades

considerable efforts have been made to integrate these sociological concepts in

interorganizational alliance and network research and to empirically test the extent

to which various dimensions of firm performance are affected by structurally

different network surroundings.69

66 For an introduction and overview of concepts in social capital theory, see Lin (2002).
67 For instance, a controversial discussion in social capital literature addressed the question of

whether it was weak ties (Granovetter 1973; Levin and Cross 2004) or strong ties (Uzzi 1996;

Krackhardt 1992) which affect the network actors’ behavior and outcomes in social and economic

networks. Originally, the “strength of ties” and a closely related concept i.e. “density of ties” were

conflated, while later it was recognized that these two tie features have to be clearly distinguished

and treated separately (Nooteboom 2008, p. 619).
68 According to Gulati (1998, p. 296) one has to distinguish between at least two types of network

embeddedness. On the one hand, relational embeddedness highlights the importance of direct

cohesive ties. On the other hand, structural network embeddedness goes beyond direct ties and

emphasizes the structural position of the actors.
69 For an overview, see Ozman (2009, pp. 48–50) or Nooteboom (2008, pp. 618–620).
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We start the discussion by taking a closer look at the closure concept. The basic

idea of the “closure concept” goes back to Bourdieu (1986) and Coleman (1988).

The concept is based on the notion that a network actor’s positioning in a “cohe-

sive” network (or “closed” network structure), characterized by a high degree of

interconnectedness, is more advantageous than other more fragmented structural

network patterns. The reasoning is straightforward. Cohesion facilitates “[. . .] the
build-up of reputation, trust, social norms, and social control, for example by

coalition building to constrain actions, which facilitates collaboration” (Nooteboom

2008, p. 619). This line of argument has far ranging implications for interorgani-

zational innovation networks. The positioning within a cohesive network confers a

competitive advantage to a firm due to improved coordination through repeated

exchange with the same partners (Ozman 2009, p. 49). This enables and facilitates

the successful transfer of tacit knowledge (ibid). As a consequence, a firm’s

involvement and positioning in these cohesive network structures is assumed to

affect its subsequent performance outcomes in multiple ways.

This view is not shared by the proponents of the “structural hole” concept, of

which Burt (1992) is one of the key protagonists. He argues that a network actor’s

position is most beneficial if it allows the actor to bridge the gap between previously

unconnected cohesive subgroups of the network. Basically two main arguments

substantiate the concept. Firstly, according to Burt (1992) much of the information

that circulates in a system is redundant and the efficiency of the information

structure can be increased by removing redundant ties and selectively retaining

only those ties that bridge “structural holes” in the network (Nooteboom 2008,

p. 618). Secondly, the well-known problem of overembeddedness (Uzzi 1997) can

be avoided by pursuing an efficiency oriented cooperation strategy. Or to put it

another way, carefully selecting ties can save time and energy that is needed to

develop new non-redundant linkages (Nooteboom 2008, p. 618). Just like the

“closure concept”, the “structural hole” concept has also been transferred and

applied to the field of interorganizational network research. It suggests that a

firm’s potential to achieve a competitive advantage rests on its ability to take a

broker role and fill structural holes between densely connected subgroups of

organizations in an innovation network (Ozman 2009, p. 48). In summary,

according to this line of argument, those firms that have a broker position in the

network are assumed to outperform others.

At first glance, these two concepts seem to be irreconcilable. However, quite

recently we have been able to observe the emergence of integrative approaches that

are in search of ways to combine these distinct theoretical standpoints (Burt 2000,

2005; Nooteboom 2008). Based on prior theoretical elaborations (Burt 2000) and

empirical findings (Rowley et al. 2000) Nooteboom (2008, p. 619) argues that these

two concepts are not incompatible. In doing so he provides the following two

explanations (Nooteboom 2008, pp. 619–620): The first line of argument is based

on a distinction between a competence dimension and a governance dimension.

Accordingly, the competence dimension has to be interpreted “[. . .] in terms of

access to new knowledge, the combination of complementary competencies, joint

production of knowledge, and the creation of Schumpeterian ‘novel combinations’
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[. . .]” whereas the governance dimension addresses “[. . .] managing relational risks

of opportunism and spillover or loss of appropriability of returns on innovation”

(Nooteboom 2008, p. 619). In other words, the bridging of structural holes allows

new opportunities for generating novelty to be explored whereas a cohesive net-

work structure breeds trust and allows opportunistic behavior in networks to be

overcome. The second line of argument is based on the distinction between

“knowledge acquiring” and “knowledge accessing” in cooperative arrangements

(cf. Al-Laham and Kudic 2008). In reference to prior research, Nooteboom (2008,

p. 619) argues that strong ties in densely interconnected network areas promote the

transfer of complex knowledge while weak ties that bridge structural holes transfer

relatively simple knowledge.

In a nutshell, both theoretical as well as empirical findings substantiate the

assumption that the “closure” and the “structural holes” concepts reflect different

aspect of interorganizational cooperation activities. Accordingly, the concepts seem

to be complementary and compatible with one another.

2.6 This Book in Light of the Preceding Discussion

For the purpose of this monograph we chose the neo-Schumpeterian approach as

the general theoretical framework. The reasons for this are straightforward. The

framework provides an appropriate setting for studying the consequences of inno-

vation processes for economic growth and prosperity. At the same time, it provides

a solid theoretical groundwork for investigating the determinants and mechanisms

which are assumed to cause innovation processes and fuel technological change.

We decided in favor of this theoretical framework because we are convinced that

factors influencing the creation of novelty are best understood from a dynamic

perspective. From a neo-Schumpeterian point of view, firms are considered to be

heterogeneous economic entities (Hanusch and Pyka 2007c). Knowledge is no

longer considered to be a pure public good and becomes a cornerstone of economic

analysis (ibid). Moreover, it is important to note that the neo-Schumpeterian

approach to economics explicitly acknowledges the collective nature of innovation

process (Pyka 2002, 2007, 2009). This is reflected in at least three theoretical

concepts: the “innovation system concept”, the “proximity concept”, and the

“network concept”. The theoretical principles or cornerstones that underpin the

neo-Schumpeterian approach are inherent to all these concepts. To illustrate this,

we briefly address the structure and structural evolution of interorganizational

innovation networks. Firstly, evolutionary change of networks is a phenomenon

that occurs at multiple levels simultaneously. Micro-level network change pro-

cesses, i.e. tie formations & tie terminations and node entries & node exits affect the

structural evolution at the meso (sub-group) level and the macro (overall network)

level. Boschma and Frenken (2010, p. 129) argue that these processes of “creative

destruction” are clearly Schumpeterian in nature. An in-depth understanding of

micro-level network change processes provides the basis for explaining the
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evolution of networks (ibid). Secondly, a firm’s past cooperation strategies and

cooperation sequences affect its future cooperation options and decisions. As a

consequence a network path can be observed over time for each firm in an industry

network. This consideration is closely related to the next point. Early-stage coop-

eration decisions can cause lock-in effects that may restrict the scope of action at

later points in time. Thirdly, a comprehensive understanding of structural network

characteristics and structural network change process is a crucial prerequisite for an

in-depth analysis of knowledge diffusion, knowledge exchange, and knowledge

generating processes among heterogeneous economic actors. In short, the

neo-Schumpeterian approach provides a solid basis for studying the nature of

collective innovation processes and for analyzing micro-level innovation outcomes

of network actors from various angles. Last but not least, the neo-Schumpeterian

paradigm is open to other ideas and concepts from related disciplines. There are

multiple conceptual overlaps with, for example, economic geography, economic

sociology and management science.
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Chapter 3

Laser Technology and the German Laser

Industry

I did realize that the laser had wider applications such as
communications and cutting and welding, but I never
envisaged the breadth of applications for which it is used
today.

(Charles H. Townes 2010)

Abstract The quantitative analysis of innovation networks in the German laser

industry requires a profound understanding of industry characteristics. This

includes a solid understanding of the emergence and the very nature of the under-

lying technology itself. At the same time, a closer look at the laser industry value

chain allows us to identify the core of the industry and provides the basis for

analyzing knowledge exchange and interorganizational learning processes, which

in turn are seen as a central prerequisite for an in-depth understanding of the

collective nature of innovation processes. Chapter 3 is divided into five sections:

Section 3.1 provides some brief information on the historical background of laser

research. Section 3.2 gives a short introduction of basic laser operating principles.

Section 3.3 outlines the most notable milestone developments over the past

50 years. Section 3.4 provides a closer look at the German laser industry by

discussing the emergence of laser technology and specific industry characteristics

in East and West Germany. Finally, in Sect. 3.5, attention is drawn to the config-

uration of the industry value chain.

3.1 Historical Background of Laser Research

In 2010, the laser celebrated its 50th anniversary. Lasers are artificial light sources

that emit a coherent light beam characterized by some distinctive physical proper-

ties that make lasers useful for a broad range of technological applications

(Buenstorf 2007, p. 182). The term laser, which stands for “Light Amplification

by Stimulated Emission of Radiation", was originally coined by Gould (1959). He

presented his ingenious idea for the construction of an optical maser at the “Ann
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Arbor Conference on Optical Pumping” in 1959 and is still considered by many to

be the actual inventor of the laser (Hecht 2005, p. 46).

Only one year after Gould’s seminal article, Maiman (1960) put the first stable

laser device into operation. Maiman and his colleagues demonstrated a flash-lamp-

pumped ruby laser capable of delivering coherent red radiation (TSB 2010, p. 21).

In these early days, the scope and the potential of this groundbreaking invention

were by no means fully recognized. Irnee D’Haenens, a physicist who worked

closely with Maiman, jokingly called the laser “a solution looking for a problem”

(Hecht 2010, p. 21). Nowadays, laser applications have become part of everyday

life (Hecht 2010) and the invention of the laser instigated the new field of quantum

electronics in physics that spans the disciplines of theoretical quantum physics and

electrical engineering (Slusher 1999, p. 472). However, the intellectual roots of

modern laser research are even older and extend as far back as the end of the

nineteenth century.

The detection of electromagnetic microwaves by James C. Maxwell in 1873 and

Heinrich Hertz in 1888 (Bertolotti 2005, pp. 115–116) represent important mile-

stones leading up to the invention of the maser,1 a precursor to the laser, in the early
1950s by Jim P. Gordon, Herbert J. Zeiger and Charles H. Townes at Columbia

University (1954, 1955). However, a crucial prerequisite for the invention of the

laser was the breakthrough by two Soviet scientists, Basov and Prokhorov (1950) in

the field of microwave research. They found a way to produce positive feedback of

stimulated radiation based on a resonant circuit by showing that the circuit losses

were smaller than the gain in energy afforded the wave by stimulated molecular

transitions (Townes 1964, p. 61).

The second crucial event was the discovery of quantum theory which was at the

forefront of physics at the beginning of the twentieth century. The fundamental

concepts of classical physics began to crumble when Max Planck’s seminal article

“On the law of distribution of energy in the normal spectrum” in 1900 provided an

explanation for “blackbody radiation”2 by assuming that atoms emit and absorb

energy (E) which is the product of a frequency (ν) and a fundamental constant (h),

later named Planck’s constant (Phillips 2003, p. 1). Only a few years later, Einstein

(1905) published his seminal article “On a heuristic viewpoint concerning the
production and transformation of light” which was strongly influenced by Planck’s
theory on blackbody radiation. In his article, he provided the theoretical foundation

for what he called “energy quanta” and gave an explanation for the photoelectric

1 The abbreviation MASER stands for “Microwave Amplification by Stimulated Emission of

Radiation” (Schawlow and Townes 1958). Microwaves are the same as light electro-magnetic

radiation but with a wider wavelength and a lower frequency compared to radiation in the visible

spectrum.
2A blackbody is a theoretical object which absorbs emitted radiation. The first experimental setup

for measuring blackbody radiation was designed at the end of the nineteenth century by the

German Imperial Institute of Physics and Technology. It consisted of a long tube with a small

hole which provided a nearly perfect absorbing installation, a so-called “blackbody” (Carson 2000,

p. 8; Bertolotti 2005, p. 61).
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effect (Carson 2000, p. 10) according to which electromagnetic radiation with very

short wavelengths ejects electrons from the surface of metal when radiation fre-

quency exceeds a threshold value (Phillips 2003, p. 18). The frequency or wave-

length allows electromagnetic radiation to be classified on a spectrum ranging from

radio magnetic radiation, microwaves and visible or invisible light, to x-ray radi-

ation and gamma-ray radiation (ibid). Einstein illustrated this phenomenon using

light as an example. This ultimately resulted in the recognition of the wave-particle

duality of light.3 Since then, light has no longer been recognized as a particle or as a

wave.4 Instead, physicists regard light as electromagnetic radiation at any wave-

length which consists of photons, elementary particles of light, and which exhibits

properties of both waves and particles (Carson 2000, p. 17).

In 1913, Niels Bohr developed a general theory of atom structure which paved

the way for the development of quantum mechanics (Bertolotti 2005, p. 139).

Einstein (1917) realized that an atom’s energy level can be affected by the emission

or the absorption of photons in two different ways: spontaneous emission or

stimulated emission (Hecht 2005, p. 10). Spontaneous emission of radiation occurs

when an atom emits energy without any external causation (Prokhorov 1964,

p. 110). Most of the light we see in day-to-day life, such as daylight or artificial

light, is largely spontaneous emission (Hecht 2005, p. 10). In contrast, the phenom-

enon of stimulated emission can be observed when an atom is forced to release

energy due to interaction with an external field (Prokhorov 1964, p. 110). Initially,

stimulated emission only seemed to be of theoretical interest (Hecht 2005, p. 10).

However, it turned out that the principle of stimulated emission provided the

theoretical foundation for the invention of the laser.

3.2 Basic Operating Principles of Lasers

Since the early days of laser research, several new types of lasers have been

invented. Despite the rapid developments in laser technology, most lasers still

operate on the basis of the same basic operating principles.

In the most basic sense, a laser is a unit that amplifies a light wave by simulated

emission and emits a cascade of photons (Townes 1999, p. 12). The amplification of

light by stimulated emission of radiation is achieved “[. . .] by exciting the elec-

tronic, vibrational, rotational, or cooperative modes of a material into a

non-equilibrium state so that photons propagating through the system are amplified

coherently by stimulated emission” (Slusher 1999, p. 471). As a result we can

3 In 1924 DeBroglie proposed that all particles, not only photons, are associated with waves. The

so-called wave-particle duality of light constitutes a central pillar of modern quantum mechanics

(Phillips 2003).
4 For a long time classical physics was dominated by two theoretical explanations about the nature

of light: the “wave theory of light” and the “particle theory of light” (Bertolotti 2005, p. 13).
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observe a coherent amplification “[. . .] that is, amplification of a wave at exactly the

same frequency and phase” (Townes 1999, p. 13). The basic operating principle of a

laser is illustrated in Fig. 3.1.

According to Fischer (2010, p. 54), the basic components of a laser are the “gain

medium”, “pumping system” and “optical resonator”. These components can be

made of several modular subunits. We will start by looking at the so-called “gain

medium” (cf. Fig. 3.1, VI). To a large extent it determines the frequency and wave-

length under which the laser will ultimately operate. The “gain medium” is also

known as the “active medium” or “active material”. This material is characterized

by very special properties in a sense that “[. . .] molecules or atoms have been put in

an abnormal condition, with more molecules in excited states than in ground, or

lower states” (Townes 1999, p. 14). It can be of a solid, gaseous, liquid or plasma

state and provides the basis for raising electrons to a higher energy level by

absorbing the emitted pumping energy. In most, but not all, cases, laser types are

named after the gain medium used. For instance, Maiman’s first laser operated on

the basis of a ruby which is a crystal of aluminum oxide with chromium atoms

(Bertolotti 2005, p. 228). The “pumping system” provides energy in the active

medium (cf. Fig. 3.1, II) which is needed to lift some electrons into an excited state.

The excitation of the gain medium can be accomplished by using optical radiation,

electrical current and discharges or on the basis of chemical reactions (Slusher

1999, p. 471). In his experimental setup, Maiman found a rather simple solution; he

used standard photography equipment consisting of some very powerful helical

flash-lamps (Bertolotti 2005, p. 231). The next important issue is the energy

efficiency of lasers. The discharged energy cannot be entirely utilized during the

pumping process. Thus, a notable amount of waste heat is produced (cf. Fig. 3.1, V).

Finally, a so-called “optical resonator”, consisting of one full reflective (cf. Fig. 3.1,

I) and one semi-transparent (cf. Fig. 3.1, III) mirror, reflects a beam of coherent

light between the two mirrors. In general, the resonator system is a very significant

element of a quantum oscillator (Prokhorov 1964, p. 110). Spontaneous emission

becomes aligned by the mirrors in the optical resonator and generates a “standing

wave” at a particular frequency and wavelength (Bertolotti 2005, p. 231). The

pumping energy and the optical resonator amplify the simulated radiation until the

discharged energy reaches a critical level and a laser beam is emitted (cf. Fig. 3.1,

VII). The coherent light beam is emitted out of the resonator by a semi-transparent

I.

II.

III.

IV. V. VI.

VII.

I. Fully reflective mirror 
II. Pumping energy 
III. Semi-transparent mirror 
IV. Standing wave 
V. Lost thermal energy 
VI Gain medium 
VII Laser beam 

Fig. 3.1 Functioning principles of a laser (Source: Author’s own illustration, based on: Bertolotti

(2005, p. 231) and Fischer (2010, pp. 54 & 79))

74 3 Laser Technology and the German Laser Industry



mirror (Slusher 1999, p. 471). In Maiman’s experiment the capacitor bank

discharged several 1000 V until the threshold energy level of about 0.7–1.0 J was

suddenly reached (Bertolotti 2005, p. 228). Ruby lasers are normally only operated

in pulses because of the comparably high amount of power required to reach the

threshold (Townes 1964, p. 73). In general, lasers can generate a continuous

constant-amplitude output, known as continuous wave, or a pulsed output, by

using a specific pulsing technique. The most commonly used techniques are

q-switching and mode-locking, which will be explained in detail later.

3.3 From an Ingenious Idea to the Emergence of a New

Technology

The early 1960s were characterized by several technological refinements of the

initially presented laser device. Since then, remarkable advances have been made

with regard to enhanced pumping systems which operate on the basis of chemical or

nuclear reactions. The utilization of various types of gain media began quite early

and resulted in entirely new types of lasers, such as solid-state lasers, gas lasers,

semiconductor lasers, and organic dye lasers. In the recent past, researchers started

working on entirely new laser operating principles. Figure 3.2 illustrates milestone

developments in laser research over the past 50 years and provides the basis for the

following chronological discussion.5

The most important types of lasers had already been developed by the late 1960s.

Solid-state lasers operate on the basis of glass or crystalline gain materials which

are doped with impurities – e.g. neodymium (Nd), chromium (Cr), erbium (Er), etc.

– which affect the electrical and optical properties of the material. Only a few

months after Maiman’s ruby laser, Sorokin and Stevenson (1960, 1961) presented

the uranium-doped calcium florid solid-state laser developed at the IBM laborato-

ries in Yorktown Heights, NY, USA. The first solid-state nd:glass laser was

invented by Snitzer (1961) at American Optical Corporation in Southbridge and

the first nd:YAG laser was put into operation by Geusic et al. (1964) at Bell Labs in

New Jersey, USA.

At almost the same time, Javan et al. (1961) developed the first gas laser at Bell

Labs. They generated a continuous laser beam based on neon-helium gas. A wide

variety of gases can be used as a gain medium. These include carbon monoxide

(CO), carbon dioxide (CO2) and argon (Ar). Only three years later, the CO2-laser

was invented by Patel (1964), again at Bell Labs. Carbon dioxide lasers are quite

efficient and still one of the most powerful types of laser. In the same year, Bridges

5Unless otherwise stated, the following overview and discussion of milestone developments in

laser research are based on Hecht (2005, 2010), Bertolotti (2005) and guided by a chronological

overview of laser research provided by photonics.com (http://www.photonics.com/LinearCharts/

Default. aspx?ChartID¼ 2, accessed: November 2011).
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(1964) invented another gas laser – the argon-ion laser – at Hughes Aircraft

Company in California. In the following years, Sorokin and Lankard (1966)

invented a novel type of laser at the IBM research laboratories in New York, United

States which operates on the basis of organic dyes. Even though dye lasers usually

work on the basis of a liquid gain material, new developments proved that solid-

state dyes could also be used as an active medium.

Beyond the invention of new laser types, several further advances were made in

the first decade of laser research. For instance, new pumping techniques were

tested, which led to the discovery of the chemical laser by Kasper and Pimentel

(1965). Additionally, different pulsing techniques were developed in the 1960s.

Hellwarth and McClung (1962, 1963) increased the peak power of ordinary ruby

lasers 100-fold by applying the q-switching method, a pulsing technique which

allowed a high-energy short-pulsed beam to be generated. Only one year later,

Hargrove et al. (1964) successfully demonstrated the implementation of the mode-

locking technique in a helium-neon laser. Mode-locking allows the emission of

light for extremely short periods of time – so-called ultra-short pulses – ranging

from tens of picoseconds (10�12 s.) down to a few femtoseconds (10�15 s.).

After the initial turbulent years of laser research further breakthroughs were

achieved, particularly with respect to maximizing average and peak emissions,

power efficiency, charging techniques and minimizing pulse durations. The most

remarkable achievements in the 1970s were the invention of the excimer laser,

quantum-well laser, free-electron laser and the gallium-arsenide diode laser which

many consider to be the first stably operating semiconductor laser. In the early

1970s, Soviet scientists Basov et al. (1970) developed the first excimer laser at the

Lebedev Physical Institute in Moscow. Excimer lasers operate on the basis of a
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Fig. 3.2 Chronological milestone developments in laser research (Source: Author’s own illustra-

tion, based on: www.photonics.com (Accessed: November 2011))
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short lived molecule – a so-called exited dimer – which consists of a noble gas –

e.g. argon (Ar) or krypton (Kr) – and a reactive gas – e.g. fluorine (F) or chlorine

(Cl).

The first quantum-well laser was invented between 1972 and 1974 by Charles

W. Henry and his colleagues at Bell Labs (Dingle et al. 1974). Quantum-well lasers

require a significantly lower threshold energy level to emit a laser beam compared

to conventional semiconductor lasers. The first free-electron laser (FEL) was

developed in the 1970s by John Madey and his colleagues at Stanford University

(Elias et al. 1976). Free-electron lasers exhibit the same functionality as conven-

tional lasers but they work on the basis of completely new operating principles.

These types of laser use an electron beam as a gain medium which is accelerated to

almost the speed of light. The beam moves through a periodic transitive magnetic

field and this results in the sudden release of coherent radiation. Free-electron lasers

have the widest frequency spectrum of all lasers and allow for extremely high peak

power. Even though the first semiconductor laser was invented in the early 1960s, it

took more than 15 years to present a stable system that operates on a constant basis

at room temperature (Hecht 2010, p. 23). This laser type was a gallium-arsenide

diode laser developed in 1977 at Bell Labs (ibid).

The 1980s were characterized by the development of the titanium-sapphire laser

by Peter F. Moulton at the MIT Lincoln Laboratory in Massachusetts, USA. This

solid-state laser uses a sapphire crystal – i.e. aluminum oxide (Al2O3) – doped with

titanium (Ti) ions as a gain medium. The major advantage of this type of laser is the

generation of ultra-short pulses and the possibility to adjust the wave-length over a

considerably wide bandwidth. The latest generation of Ti:sapphire lasers is advanc-

ing into the realm of ultra-short lasting no more than a few attoseconds (10�18 s.).

This allows for countless applications in fundamental research in natural science

fields such as biology, chemistry and physics (Klein and Kafka 2010, p. 289). The

second remarkable advancement in the 1980s was the invention of the fiber laser

made possible by the pioneering work of Kao and Hockham (1966) on light signal

transmission properties of optical glass fibers. Thus, in the 1980s, David N. Payne

and his colleagues developed the first single-mode continuous-wave erbium-doped

fiber laser at Southampton University in the United Kingdom (Mears et al. 1986).

The laser was able to operate at room temperature at the all-important telecommu-

nications wavelength of 1.55 μm (Nature 2010, p. 281).

At least three up-and-coming discoveries were made in the field of laser research

in the 1990s – the quantum cascade laser, the pulsed atom laser and the InGaN laser.

Based on the groundbreaking theories of Kazarinov and Suris (1971), it took more

than 20 years to demonstrate the first stably operating quantum cascade laser

(QCL). In the mid-1990s, the first successfully operating quantum cascade laser

was presented by Faist and his colleagues (1994) at Bell Labs. These specific types

of semiconductor lasers work on the principle of inter-subband transition and emit

over the whole mid-infrared range (Mueller and Faist 2010, p. 291). Since then,

QCLs have been used for numerous applications in environmental science, process

control and medical diagnostics (Mueller and Faist 2010, p. 291). In the same

decade, the first pulsed atom laser was demonstrated by Ketterle and Misner (1997)
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at MIT, Massachusetts. Atom lasers use matter instead of light to generate a

coherent beam that behaves like a wave. The first stably operating atom laser was

presented by Bloch et al. (1999) at the Max Planck Institute for Quantum Optics in

Munich, Germany. Nakamura and his colleagues (1996) demonstrated the first blue

laser diode at the Nichia Corporation in Tokyo, Japan. This specific type of multi-

quantum well laser was electronically pumped and operated on the basis of indium-

gallium nitride (InGaN). Compared to conventional GaN semiconductor lasers, the

blue diode laser showed stimulated emission through current injection which was

an important breakthrough at the time (Nature 2010, p. 281).

The invention of the hybrid silicon laser and the demonstration of the multi-

beam infrared laser are considered to be some of the most important technological

developments in laser research in the first decade of the twenty-first century. In

2006, researchers at the University of California, Santa Barbara and Intel Corpo-

ration announced the first electrically powered continuous wave hybrid AlGaInAs-

silicon laser (Fang et al. 2006). These novel hybrid silicon lasers combine the light-

emitting capabilities of binary semiconductors, such as indium phosphide (InP),

with the light-routing and cost advantages of silicon and provide the potential for

the implementation of optical data pipes inside of computers operating on a terabit

level (Paniccia et al. 2006, p. 2). In 2009, the first multibeam-multiwave infrared

emitting laser was presented by an international team of scientists (Yu et al. 2009).

The multi-beam abilities of these novel types of semiconductor lasers qualify them

for a broad range of applications in climate monitoring and communications and in

many other applications that shape our everyday life.

3.4 The Onset of Laser Research in East and West

Germany

In the early 1960s both public science and industry quickly initiated their own

efforts towards laser construction and commercialization in Germany (Buenstorf

2007, p. 185). The emergence of laser technology in Germany is quite a unique and

interesting case because of the breakup of Germany into the German Democratic

Republic (GDR) and the Federal Republic of Germany (FRG) after the Second

World War. The separation into East and West Germany was accompanied by the

emergence of two largely detached sectoral innovation systems in the early years of

laser research (Albrecht 1997).

We will start by taking a closer look at the beginnings of laser research in the

GDR. After the Second World War the Soviet authorities established the “German

Academy of Sciences” (GAS) in Berlin-Adlershof. This research center was later

renamed “Academy of Sciences of the German Democratic Republic” and, until

German reunification, was one of the most influential research facilities in the GDR.

The “Institute for Optics and Spectroscopy” (IOS), located in Berlin-Adlershof, was

actively involved in the research activities that paved the way for the first GDR
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laser (Albrecht 2010b, p. 177). The origin of laser research in the GDR in the early

1960s was mainly located in the federal state of Thuringia, specifically in and

around Jena (Albrecht 1997, 2010b). The “Institute for Applied Optics” (IAO) and

the “Physical Institute” (PI) at Friedrich Schiller University (FSU) in Jena were

deeply involved in GDR laser research activities at the time (Albrecht 2010b,

p. 182). In 1962, the “Laser Commission” was founded to coordinate the research

activities between these research institutes and industry. The first GDR ruby laser

was officially demonstrated in Berlin on August 8, 1962 (TSB 2010, p. 22). VEB

Carl Zeiss6 was the most obvious choice for the industrial production of lasers due

to its expertise in optics and electrical engineering. The following year, VEB Carl

Zeiss announced the launch of its first commercial laser device which was devel-

oped together with physicists from FSU (Albrecht 2010b, p. 176). In 1967, the

company started to produce the first generation of stably operating gas lasers and by

1974 had successively extended its product range to a total of six different types of

neon-helium gas lasers (Albrecht 2010b, p. 178). At nearly the same time, the

development of the argon laser and the CW CO2 laser began at the Central Institute

of Optics and Spectroscopy (ZOS) in Berlin (TSB 2010, p. 22). In 1971, the CW

CO2 laser was further developed at the Center for Scientific Instruments (ZWG)

located at GAS in Berlin and finally transferred to the VEB FEHA in Halle in 1975

(ibid).

This early success story in the field of laser research was primarily due to a few

very well-connected GDR scientists.7 However, the headway that was made was

disrupted due to several factors. Firstly, the fields of laser research were pre-defined

and directed by the GDR’s Central Committee. For instance, the research activities

of FSU had to be aligned with the centrally-planned medium-term production plans

of VEB Carl Zeiss (Albrecht 2010b, p. 190). This led to a significant impairment in

the freedom of research. Secondly, both Schramm (2005) and Albrecht (2010b,

p. 198) conclude that there was a climate of mistrust between industry and science

due to the progressive infiltration of informants in key positions during the late

1960s. Finally, the politically motivated change in the strategic orientation of VEB

Carl Zeiss from precision opto-electronics to mass production dramatically ham-

pered the firm’s research potential (Albrecht 2010b).

6 The company was founded in 1846 and over the years maintained its position as one of the

leading manufacturers of microscopes, cameras, optical measuring instruments and other optical

devices in Germany. After World War II, US forces occupied Thuringia for a short period and

relocated engineers and managers to the federal state of Baden-Wurttemberg to build up Carl Zeiss

GmbH in Oberkochen. The remaining sections of Carl Zeiss were taken over by the Soviet

Military Administration and integrated into the GDR as the state-owned company VEB CARL

ZEISS Jena. For more details, see: http://www.zeiss.com/corporate/en_de/history/company%

20history/at-a-glance.html, accessed: August 2014.
7 According to Albrecht (2010b, pp. 179–182), the most notable actors in the initial interpersonal

laser research network in the GDR were: Wilhelm Schuetz (FSU), Konrad Kuehne (FSU), Bruno

Elschner (FSU), Gerhard Wiederhold (FSU), Rudolf Ritschl (GAS), Paul Goerlich (VEB CARL

ZEISS) as well as some international partners, such as Alfred Kastler, a physicist who received the

Nobel Prize for his work on optical pumping techniques.
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The development of the first laser greatly attracted the attention of physicists in

the Federal Republic of Germany (FRG). In the early 1960s, two physicists – Hans

Boersch at the Technical University of Berlin and Hermann Haken at the Technical

University of Stuttgart – worked on typical laser subjects (Albrecht 2010a, p. 173).

Some of the components for the first ruby laser at the TU Berlin in 1962 were made

by several small companies in Berlin and the flash bulb was supplied by Osram

(TSB 2010, p. 21). Only a few years later, research into microwaves and lasers

became the subject of several projects funded by the “German Research Founda-

tion” (GRF) (Albrecht 2010a, p. 161). Within the GRF’s research priority program

on “high-frequency physics”, a total of 245 research applications in the field of

maser and laser research were registered between 1958 and 1967 (Albrecht 2010a,

p. 162). It is remarkable that more than half a dozen research facilities, which

received a grant from the GRF research program on “high-frequency physics” in

1962, were located in the federal state of Baden-Wurttemberg (Albrecht 2010a,

p. 174). A total of 27 laser research projects were awarded in the period between

1962 and 1966 (ibid). In the early 1980s Gerd Herziger, a former doctoral student of

Hans Boersch, took over the formation and direction of the Fraunhofer Institute for

Laser Technology in Aachen (TSB 2010, p. 21). In the late 1980s, the Solid-state

Laser Institute (FLI) was founded as an affiliated institute of the Free University

Berlin and TU Berlin, respectively (TSB 2010, p. 23).

The emergence of industrial laser research in West Germany was closely related

to the microwave research activities of the Siemens Group in the late 1950s. In

1959, the first ruby maser was demonstrated in the research laboratories of Siemens

and Halske AG in Munich (Albrecht 1997, p. 46). Industry data from the LASSSIE

project (Buenstorf 2007) reveals that during the 1960s about a dozen firms entered

the scene in West Germany. Apart from a few exceptions nearly all of these firms

were located in the federal states of Baden-Wurttemberg and Bavaria.8 In a very

short period of time Siemens became the market leader in industrial laser technol-

ogy research. Another dominant actor at that time was Carl Zeiss GmbH in

Oberkochen which became one of the leading optical companies in West Germany

after the Second World War (Albrecht 1997, p. 106).

In a nutshell, the onset of industrial laser research in the GDR was strongly

influenced by the company VEB Carl Zeiss and Friedrich Schiller University, both

located in Thuringia. In addition, the “Institute for Optics and Spectroscopy” (IOS),

which was located at the “German Academy of Sciences” in Berlin, was vitally

important for early laser research activities in the GDR. In contrast, the start of

industrial laser research in West Germany was strongly affected by at least two

dominant players, Siemens & Halske AG in Munich, who built the first German

laser, and Carl Zeiss GmbH in Oberkochen with its long-standing tradition of

8Albrecht (1997, pp. 96–97) has identified the following companies active in the field of laser on

the basis of patent and bibliometric data. Siemens in Munich and Erlangen, Telefunken in Ulm,

Standard Elektrik Lorenz in Stuttgart, Carl Zeiss in Oberkochen, Osram in Augsburg, Sylvania-

Vakuumtechnik in Erlangen, Impulsphysik in Hamburg, Jenaer Glaswerke Schott in Mainz,

Quarzlampen Gesellschaft in Hanau, and Atlas Meß- & Analysentechnik in Bremen.
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optical engineering. Scientific laser research in the FRG in the early 1960s was,

with a few exceptions (most notable: TU Berlin), geographically concentrated in

the southern part of Germany.

3.5 The German Laser Industry Value Chain

Figure 3.3 illustrates the value chain9 of the laser industry and its links to the supply

and market as well as to the contact points of technology and commercial partners.

The laser industry value chain itself consists of the four main elements: “materials”,

“components”, “laser beam sources & periphery” and “laser systems” accompanied

by cross-sectional services that provide specific technical and commercial advice to

these four elements.

To start with, we look at the market dimension (cf. Fig. 3.3, right). In the 1970s

and 1980s the broad spectrum of potential laser applications soon led to a diffusion

of the technology. Lasers started to play an important role in numerous application

fields and industries, such as medical and biotech, military and security, ICT and

Materials  (I) Components (II) Laser  beam     (III) 
sources  

Laser            (IV) 
systems  

MARKETSSUPPLY 
INDUSTRY

Technological Dimension

Commercial Dimension

Universities Other public research  
organizations

Technological 
incubators 

Technology 
transfer agencies 

Technical
universities 

Federations & 
associations

Banks & 
investors 

Venture capital 
companies Distributors

Chemical 
industry

Gas, crystal 
industry

Mechanical 
industry

Industrial 
production

ICT  & 
entertainment 

Transportation 
& aerospace 

Measurement 
& analytics 

Gases 

Glass fibers

Gain media 

Crystals 

Bio-polymeres

Coatings

Doped gases

Electro-optical 
materials

Optical 
Components

Electronic 
Components

Laser sources

Laser source 
periphery
Pumping system
Beam guide system
Cooling system
Optical resonator

Mirrors
Lenses
Detectors 
Fiber components
Discharge lamps 

Solid-state laser 
Gas laser
Dye laser
Diode laser
Chemical laser

Sensor systems 
Switch panel 
Power supply units

Testing Technical Technical Subcontract
Services support consultings engineering

Marketing Distribution Public  Investor Management  
services services relations relations consulting

Material processing
systems 

Measuring & quality 
control systems

Data storage &
transfer systems

Medical systems

Monitoring systems

Projection & 
scanning systems

Patent 
councilor 

Military, safety 
security 
Medical & 
Biotech

Environment 
& Energy 

Mechanical 
processing

Research & 
science

Electronic 
industry

Software  
industry

Applied 
universities

Fig. 3.3 Laser industry value chain (Source: Author’s own illustration, based on: TSB (2010,

p. 18))

9 The following discussion is inspired by the supply chain concept reported in TSB (2010, p. 18).
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entertainment, environment and energy, transportation and aerospace, research and

science, measurement and analytics, and environment and energy.

Since the 1980s, lasers have been increasingly used in the fields of industrial

production and material processing (Poprawe 2010). These two fields of application

have played an important role in Germany due to the traditionally strong presence

of machine building and machine tool companies in the German Mittelstand. The

use of lasers in industrial production revealed the laser’s potential of being an

enabler of several subsequent innovations in large-scale production processes

(Poprawe 2010, p. 31). Professor Boersch, one of Germany’s laser technology

pioneers, already recognized that the future of laser technology was going to be

in material processing (TSB 2010, p. 21). Laser material processing systems can be

divided into two broad categories: macro processing systems and micro processing

systems. The first segment usually includes systems for cutting, welding, marking

and other applications, such as rapid manufacturing and prototyping, ablation, and

engraving of printing cylinders, whereas the second segment comprises systems

used for the production of semiconductors, printed circuit boards, flat panel displays

and lithography systems (Mayer 2006, p. 11). Today virtually every electronic

entertainment device or computer has an optical drive that is practically inconceiv-

able without the use of modern laser technology.

The left side of Fig. 3.3 illustrates the supply side of the industry. Not only the

chemical, gas, and crystalline industries but also the software, electronic and

mechanical industries occupy important positions on the supply side. The chemical

industry plays a key role due to the diversity of chemical products which are usually

used as gain media in lasers. The electronic and optical industries provide a broad

range of ready-to-assemble components for lasers such as sensor systems, power

supply units, optical resonator systems or discharge lamps. Even though these

products are often highly specialized and focus on specific laser types, it is

important to note that the core competencies of the component suppliers are clearly

not in the field of laser design and production. Material and component suppliers

constitute the first two elements of the industry value chain, in a narrower sense,

illustrated at the center of Fig. 3.3 (I & II).

The third element (cf. Fig. 3.3, III) symbolizes laser source manufacturers that

are considered to be the core of the industry. These firms are primarily concerned

with the development, design and production of laser beam sources. In other words,

their business activities are centered on the construction of laser beam units that

constitute the key component of any kind of laser-based machine or system.

Buenstorf (2007, p. 182) points to the fact that “[. . .] even though the laser as a

product is unequivocally defined by its physical properties, there is no such thing as

a general purpose laser.” The different capabilities, origins and specialization

patterns of German laser source manufacturers provide some good reasons to

assume that the industry is characterized by a submarket structure in a sense that

entrepreneurial firms enter as specialists in a single submarket but serve an increas-

ing number of submarkets as they get older (ibid). The German laser industry is

characterized by a high number of micro and small sized laser source
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manufacturing firms (cf. Sect. 4.2.2). The majority of German laser source manu-

facturers operate in highly-specialized, narrow market segments. Exploring laser

industry journals (e.g. Laser und Optoelektronik) reveals that micro and small-sized

laser source manufactures often produce only a handful of laser types which are

designed for very specific applications. At the same time, rapid technological

developments in the field of laser research (cf. Sect. 3.3) steadily increase the

innovative pressure.

The fourth element of the laser industry value chain at the center of Fig. 3.3

(IV) highlights the importance of the industry’s laser system providers. Buenstorf

(2007, p. 182) argues that lasers can significantly differ in economic dimensions,

such as production cost, energy efficiency, longevity, and ease of handling and

usually have to be customized to meet the user’s needs. Laser system providers

purchase ready-to-assemble lasers from highly specialized laser source manufac-

turers and integrate these units into machines or systems which are assigned to a

particular application area. The core competencies of the laser system providers are

located in the application area of the laser system or the laser machine that they

produce and not in the field of laser source production. Nevertheless, due to their

strong market position these firms often trigger the development of novel laser

sources at upstream stages of the industry value chain without being directly

involved in the innovation process.

The technological dimension is displayed at the top of Fig. 3.3. At the onset of its

laser research, the German laser industry was perceived as lagging behind its

international competitors (Buenstorf 2007, p. 185). Substantial government efforts

were initialized to counteract this situation, for example, public funding initiatives

and the establishment of dedicated laser research institutes and technology transfer

agencies (ibid). The main reasons for this were straightforward: on the one hand,

political authorities had become aware of the economic potential of the technology.

On the other hand, there was clearly a demand for both basic and applied laser

research in Germany in order to catch up with international research in this field.

The technological dimension of the laser industry value chain includes all univer-

sities, applied universities and technical universities that are active in the field of

laser research. In addition, the German laser research landscape is characterized by

non-university research mainly conducted by public research institutes active in

both basic and applied research. Most of these institutes belong to one of the four

large German research associations: Fraunhofer, Helmholtz, Max Planck and Leib-

niz Society (cf. Sect. 7.2.4). Moreover, patent councilors and technological incu-

bators are assigned to the technological dimension of the laser industry value chain.

Incubation organizations such as “business incubators”, “science parks” or

“research parks” can be regarded from a theoretical perspective as policy-driven

instruments for counteracting the comparably high failure risk that newly

established ventures face in the very first years after their market entry (Schwartz

2013, p. 7).

The commercial dimension of the laser industry value chain (cf. Fig. 3.3, bot-

tom) includes four groups of organizational entities: “federations & associations”,

“banks & investors”, “venture capital companies” and “distributors”. Federations
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and associations promote the firms’ interests of generating support for laser-related

technologies in politics and society. Banks, investors and venture capital companies

secure financing for the firms, whereas distributors provide access to national and

international markets.

To conclude the debate we turn to the most salient arguments that advocate the

use of data from the German laser industry to conduct this research project. Firstly,

the laser industry is a small but interesting part of the German optical technology

industry. Laser technology requires knowledge from various academic disciplines,

such as physics, optics and electrical engineering (Fritsch and Medrano 2015). It

can clearly be characterized as a science-driven industry (Grupp 2000) in which a

firm’s ability to innovate is a key factor in its performance and success. The

interdisciplinary and science-based nature of the industry is reflected in the high

level of cooperation activities between German laser source manufacturers among

themselves and with laser-related public research organizations (Kudic et al. 2011).

Secondly, the economic potential of the industry is meanwhile well recognized by

national and supra-national political authorities. Over the past few decades Ger-

many has developed into a world market leader in many fields of laser technology.

For instance, Mayer (2004) reports that 40 % of all laser beam sources purchased

worldwide in 2003 were produced by German laser source manufacturers. The

world market share for laser sources used in laser processing systems was even

higher and amounted to 50 % that same year. Moreover, the potential of lasers to act

as enablers of innovation in other industries has since become well recognized.

Thirdly, the German laser industry provides quite a unique case due to the parallel

technological development lines in East and West Germany before reunification in

1990. As we will show in more detail later, the influences of both lines of

development are still clearly identifiable. This, however, qualifies the industry as

being a relatively interesting candidate from a theoretical point of view. Last but not

least, the majority of contemporary network studies on knowledge and innovation

focus on the biotech industry (Fornahl et al. 2011; Owen-Smith and Powell 2004)

and the semiconductor industry (Podolny et al. 1996; Stuart 2000). Findings,

however, can diverge significantly due to inter-industry differences in terms of

the industries’ technological maturity, firm size distribution or industry life cycle

stages. Thus, the quantitative analysis of interorganizational networks in other

industries is clearly underrepresented10 but urgently needed to check and validate

previous empirical results.

10 To the best of our knowledge there is only one study that explicitly analyzes interorganizational

networks in the laser industry (Shimizu and Hirao 2009).
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Chapter 4

Methodological Reflections and Data Sources

You can use all the quantitative data you can get, but you still
have to distrust it and use your own intelligence and
judgment.

(Alvin Toffler).

Abstract In this chapter, we will start with some general methodological consid-

erations about the design of longitudinal network databases. Then, we will look at

the data sources and data collection methods that are required to construct the

empirical basis of the subsequent investigations. Chapter 4 is divided into two

sections: Section 4.1 focuses on methodological issues related to the construction of

network datasets. Section 4.2 provides a description of the raw data sources and

data collection methods that were used to construct a unique longitudinal laser

industry database.

4.1 Initial Methodological Considerations

Each empirical network research project requires some fundamental a-priori con-

siderations. Basically two types of variables can be included in a network dataset:

structural or relational variables that are measured for pairs of actors, and compo-

sition or actor-attribute variables that are measured for each individual actor

(Wasserman and Faust 1994, p. 29). Both types of variables can be calculated at

different analytical levels. Network boundaries have to be defined at the very start.

This requires an exact specification of the nodes and the ties of the network under

investigation. The content and aim of the research project determine the very nature

of the network. As already stated, the German laser industry provides a rich

opportunity to study collective innovation processes.

The aim of the study is to analyze the innovation consequences of knowledge-

transfer and interorganizational learning processes in the German laser industry

innovation network by focusing on knowledge-related R&D linkages among a

well-defined set of laser-related organizations. We concentrate below on laser

source manufacturers (LSMs) and laser-related public research organizations
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(PROs). The value chain discussion above (cf. Sect. 3.3) provides good reasons to

assume that a substantial proportion of the innovation activities in the German laser

industry occur within these two sets of actors and at the intersection of both actor

sets. Other firms positioned at upstream and downstream stages on the industry

value chain are of secondary importance for this study and were deliberately

excluded from the network analysis in the strict sense. This concretization concur-

rently highlights three fundamental issues: (I) network boundary specification (II),
identification of all relevant laser-related organizations (III) and concretization of

knowledge-related linkages.

To start with, we outline the boundary specification concept proposed by

Laumann and colleagues (1989) which provides the following three distinct bound-

ary specification strategies: positional, relational and event-based.1 The positional

strategy draws upon actor-specific attributes such as firm size, firm age, sector or

industry affiliation, stock exchange listing and many other things to set the bound-

aries of the network. Knoke and Yang (2008, p. 16) point to the fact that member-

ship lists are often outdated prompting the need to conduct one’s own census to

compile a complete membership list. The relational strategy is based on the

assumption that a subset of all relevant network actors is initially known. These

actors provide some kind of relational information that allows additional network

actors to be identified and included. The relational approach comprises the follow-

ing procedures according to Knoke and Yang (2008, p. 17): reputational method,

snowball-sampling, fixed list sampling, expanding selection and the k-core method.

The event-based strategy includes actors who participate in a previously defined set

of activities that occur at a specific time and place (Knoke and Yang 2008, p. 20;

Marsden 2005, pp. 9–10).

In this study a combination of positional and relational boundary specification

procedures was employed to identify all LSMs and PROs throughout the entire

observation period. We started with a positional strategy to identify all relevant

laser firms using “laser industry affiliation” as an inclusion criterion. More pre-

cisely, all firms that were actively involved in the development, design and pro-

duction of laser beam sources for at least one year between 1990 and 2010 were

included in the sample. Since we employ a dynamic approach we had to identify a

full set of LSMs for each year under observation. In a second step we applied the

expanding selection procedure originally proposed by Doreian andWoodard (1992)

to identify all laser-related public research organizations (PROs). The identification

procedure starts with a “fixed list” (in our case the annually complied LSM lists)

and adds all PROs that are linked to LSMs on our initial list to create an “extended

list”. In contrast to a simple snowball sampling method, Doreian and Woodard

(1992) proposed including only those objects in the sample with several linkages to

actors on the initial list (Marsden 2005, p. 10). This expanding selection method has

both advantages and some notable limitations. For instance, the procedure ignores

1 The discussion of these three strategies is guided by Marsden (2005, pp. 9–10) and Knoke and

Yang (2008, pp. 16–18).
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all PROs that were actively operating in the field of laser research but had no

cooperation linkages to any LSMs between 1990 and 2010. Consequently we

applied a complementary method based on bibliometric data to complete the

PRO lists (cf. Sect. 4.2.3).

Finally, we had to concretize the types of linkages we looked at. Knowledge-

related linkages can be both informal as well as formal in nature. According to Pyka

(1997, p. 210) the former case includes “[. . .] any action that can contribute to

disclosure, dissemination, transmission and communication of knowledge.” The

latter case encompasses a broad variety of structural forms ranging from short term

contractual alliances and minority alliances characterized by an intermediate

degree of hieratical control to long-term oriented equity alliances such as joint

ventures (Gulati and Singh 1998). Common to all formalized partnerships is that all

parties involved have to agree upon more or less formalized obligations, rights and

common goals. Firms tend to announce the initialization of these partnerships in the

press, through newsletters, on websites or through other communication channels

making them much easier to identify than informal partnerships.

In this study we focus on one particular type of formal knowledge-related

linkage i.e. publicly funded R&D cooperation projects. These partnerships are

very well documented by official funding authorities. Other researchers have

provided solid theoretical as well as methodological arguments for the use of

nationally funded R&D cooperation project data (cf. Broekel and Graf 2011, p. 6;

Fornahl et al. 2011) and supra-nationally funded R&D cooperation project data

(cf. Scherngell and Barber 2009, 2011) for the construction of knowledge-related

innovation networks. This will be discussed in more detail later (cf. Sect. 4.2.3).

4.2 Data Sources and Data Collection Methods

Based on the considerations above, a longitudinal database for the German laser

industry was compiled that covers the time period between 1990 and 2010.2

Proprietary data as well as information sources that were free and subject to fees

were tapped to stock the four main elements of the database (i.e. industry data, firm

data, network data and innovation data). The database was used for the construction

of two longitudinal datasets – (I) an event history dataset, (II) a panel dataset.

Figure 4.1 illustrates the raw data sourced, the overall database structure, the two

datasets that were employed to conduct the descriptive analysis (cf. Part III) and the

econometric estimation in the main part of this study (cf. Part IV).

2Methodological and technical support for data processing was provided by the IWH department

“Formal Methods and Databases” and data collection was supported by student assistants.
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4.2.1 Industry Data

Initial industry data3 came from a proprietary dataset containing detailed informa-

tion on firm entries and exits for the entire population of German laser source

manufacturers4 between 1969 and 2005 (Buenstorf 2007). This dataset was origi-

nally designed to analyze industry dynamics in the German laser industry.

Buenstorf (2007, p. 186) points to the fact that “[. . .] studying the evolution of

industries requires the construction of original data [. . .]” because “[. . .] industry
classifications in official statistics are generally too broad [. . .]” and in-depth “[. . .]
firm-level information is not normally disclosed for the complete firm population

because of privacy considerations [. . .]”. The same argument basically applies and

even increases in significance when studying the evolution of networks. Industrial

Network data 

Industry data Firm data 

Innovation data 

- Laser industry content information
- Core technologies (laser sources)
- Industry value chain 
- Up-stream / down-stream firms 
- Non-profit research organizations 
- Entries/exits of laser-related PROs    

- List of laser source manufacturers
- Entries/exits of LSMs 
- Firm size, age, legal form, turn over 
- Geographical positions of LSMs       
(co-location, agglomeration) 

Longitudinal laser 
industry database

1990-2010
Dataset I:  Event history dataset 
Dataset II:  Panel dataset 

- CORDIS database extract
- FOERDERKATALOG (online access)
- LASER journals, webpages 

- PATSTAT 
- DEPATISnet (online access) 
- ESPACEnet (online access)

- BUNDESANZEIGER  
- MPI / LASSSIE
- CREDITREFORM
- MARKUS database
- LASER journals 
- Webpages

- LASSSIE data 
- EU LASER Markt
- Webpages 
- ISI Web of science 

- German Federal state data 
(nationally funded R&D 
cooperation projects)

- EU Framework program data (supra-
nationally funded R&D cooperation  
projects) 

- Yearly patent grant counts
- Yearly patent application counts  

Fig. 4.1 Longitudinal laser industry database (Source: Author’s own illustration)

3 This dataset was originally compiled by Guido Buenstorf, Max Planck Institute for Economics

in Jena.
4 Corporations were declared to be laser source manufacturers based on their actual business

activities as reported in laser industry business registers and frequently published laser exhibition

catalogs.
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sector classifications, like the NACE, SIC or the German WZ classification, group

firms into coarse-meshed categories based on historically rooted industry develop-

ment patterns. In short, laser source manufacturers cannot be clearly separated on

the basis of these industry classification schemes. As outlined above, specifying

network boundaries in a longitudinal research setting requires a detailed under-

standing of the configuration of the industry on an annual basis. Official classifica-

tion schemes, however, are updated every 4–5 years at best.

The initial industry dataset has been modified in several ways to meet the

requirements of an in-depth analysis of an innovation network in the German

laser industry. Additional data sources were employed to gather supplementary

information about firm entries and exits after 2005. In the first instance, we were

given access to updated German laser industry data, again provided by Guido

Buenstorf. Secondly, we used annually published laser industry business directories

(i.e. “Europ€aischer Laser Markt”) provided by the B-Quadrat Publishing Com-

pany. This data source provided valuable information on the business activities of

laser-related firms. Thirdly, data from Germany’s official company register

(i.e. “Bundesanzeiger”) and two additional data sources i.e. MARKUS database,5

provided by Bureau van Dijk Publishing and the Creditreform archival database,

provided by the Creditreform Company 6 were tapped to supplement our extended

database in the contemporary part of the observation period. These data sources

allowed us to complete industry data for the entire observation period.

For the purpose of this study, we selected the firm or business unit level. The

reasons for this are straightforward: information on both R&D cooperation projects

and patent applications or grants is commonly reported at the firm or business unit

level. Thus, corporate level entities were decomposed and broken down into the

business functions or market segments they serve. This allowed us to identify

organizational entities within large corporations that were primarily concerned

with the design, development or production of laser beam sources. Several archive

data sources were evaluated to gather historical information and missing data in

order to reconstruct complete life histories for all of the firms in the sample.7 First,

we included predecessors of currently existing firms in our sample. All changes to

firm names and legal status over time were taken into consideration in order to

ensure the full traceability of a firm’s origin and development path. Firm exits due

5 The MARKUS database contains information on 1.4 million officially registered companies in

Germany, Austria and Luxembourg. Data on insolvent companies is usually excluded from this

database. Data access was provided by the IWH department “Formal Methods and Databases”.
6 The Creditreform Company stores firm data on insolvent companies in an archive database.
7 Quarterly published laser industry journals (i.e. “Laser & Optoelektronik”, “LaserOpto” and

“Photonik”) provided by the AT Publishing Company, industry brochures (i.e. “Laser für die

Materialbearbeitung” and “World of Laser”) provided by the VDMA, freely accessible Internet

wayback machines (http://www.archive.org/web/web.php, accessed: November 2011) and firm

web pages were systematically screened and evaluated. These historical information sources

provided access to in-depth industry and firm information over the entire observation period

between 1990 and 2010.
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to insolvencies, mergers or acquisitions, and several modes of population entries

like, for instance, new company formations, spin-offs from existing firms or public

research organizations were treated separately. We ended up with an industry

dataset encompassing 233 laser source manufacturers over the entire observation

period between 1990 and 2010.

Public research organizations (PROs) constitute the second set of organizations

in the laser industry database. Two complementary methods were applied to obtain

a complete list of all PROs that were actively operating in the field of laser research

during the investigation period. We started with the “expanding selection method”

according to Doreian and Woodard (1992), introduced in Sect. 4.1. Taking the

initial list of 233 laser source manufacturers we screened our cooperation database

and marked all laser-related research entities as long as these organizations

established a link to at least one firm on our initial list. For each of these cases

we checked whether the identified research entity was active in the field of laser

research or not. Departments, research units or chairs were allocated to respective

superordinate research institutes or universities. An extended membership list was

created containing the full set of all identified PROs. Following the suggestion of

Doreian and Woodard (1992) we adjusted this list by checking all PROs that were

observed only once over the entire observation period. Next we excluded all non

laser-related PROs from the list. All in all, at the end of the procedure 138 laser-

related public research organizations remained in the sample.

As stated above, the expanding selection method is limited insofar as it

completely ignores non-cooperating laser-related PROs. Thus, we applied a second

methodological approach to solve this problem and complement our sample. Based

on a bibliometric analysis we identified all German public research organizations

which published laser papers, conference proceedings or articles in academic

journals over the past two decades. Raw data for this analysis was provided by

the LASSSIE project consortium (Albrecht et al. 2011). Data originally came from

the INSPEC database.8 This initial raw data source was taken and supplemented by

an in-depth search for laser-related publications listed in the ISI Web of Knowledge

database.9 This enabled us to generate a comprehensive list of all PROs which have

published at least one paper in the field of laser research. By comparing and

consolidating the results of the expanding selection method and the bibliometric

analysis we ended up with a final list of 145 laser-related PROs for the time span

between 1990 and 2010. Finally, entry and exit dates and address data were

retrieved for all PROs identified in the dataset.

8 The INSPEC database contains over 11 million abstracts. The database includes journal articles,

conference proceedings, technical reports and literature in the fields of physics, electronics

and computing. For further details, see http://www.ovid.com/site/catalog/DataBase/107.jsp

(Accessed: November 2011).
9 The IWH library provides access to the ISI Web of Knowledge archive to the following extent:

SCI 1995–2011, SSCI 1980–2011, AHCI 1995–2011. For detailed information on the database

packages, their scope and contents see http://www.wokinfo.com (Accessed: September 2011).
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In order to complement the picture of the German laser industry, a third group of

laser related corporations – laser source providers (LSPs) – were included in our

database. Raw data came from the LASSSIE project consortium (Albrecht

et al. 2011). LSP data was made available on a higher regional aggregation level

(i.e. “planning region”) and in an anonymized form. We used information on LSP

counts per year and per planning region to calculate some basic spatial measure-

ments. More precisely, the data was used to calculate a geographical concentration

index and to explore some basic descriptive industry change patterns at the overall

industry level (cf. Sect. 7.1.1).

4.2.2 Firm Data

We gathered firm-level data for the entire population of 233 laser source manufac-

turers based on the same raw data sources that were used at the industry level. Data

from Germany’s official company register (i.e. “Bundesanzeiger”) was used to

reconstruct the firms’ current addresses and address changes for the entire obser-

vation period. In addition we gathered information on the firms’ legal status and

changes in legal status. By drawing upon the ZIP code information we employed

the ESRI ArcMap 10.0 Software package and a freely accessible geo-coding

application10 to gather GPS coordinates (latitudes & longitudes) on an annual

basis for each firm in the sample.

Firm-level information on currently existing firms in our sample came from the

MARKUS database. A typical company report provides a short company profile,

some basic firm information (i.e. registration code, address data, founding date,

ownership structure and management team etc.), a set of general financial figures

(i.e. equity capital, market capitalization) and a set of time-variant indicators that

are usually reported on an annual basis (i.e. number of employees, revenue etc.).

Despite its high coverage, the MARKUS database also has some drawbacks. Most

notably, companies that have closed down are usually removed from the database

after a certain time. Consequently, additional raw data sources were needed to

complete the missing data in our sample. The Creditreform archival database11 was

tapped to supplement missing data on all insolvent firms in our sample. All in all,

we ordered data that was subject to fees on about 110 insolvent firms. As a result of

an in-depth search12 the majority of firm-level information was reconstructed. The

response rate was 85%. Additionally, we had a relatively high coverage for time-

variant variables throughout the lifespan of the firms. Finally we used the archive

10 http://www.netzwelt.de/software/google-maps.html (Accessed: November 2011).
11 The Creditreform Company supplies Bureau van Dijk Publishing Company – the provider of the

MARKUS database – with current business data and has an extensive inventory and historical

company data.
12 I would like to thank Markus Bachmeyer from the Creditreform Company for his support.
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data material described in the previous section to fill the remaining gaps in our firm-

level dataset. For example, we evaluated our stock of historical laser industry

journals that have been published quarterly and which contain company reports,

background stories and interviews with founders or managers to extract some

additional information. Moreover, the firms’ actual web pages as well as expired

web pages, accessed by using Internet wayback machines, provided us with rich

information on the firms’ histories, the milestones they achieved and the develop-

ment paths they took.

4.2.3 Network Data

Up until now several generic approaches for collecting network data have been

proposed such as survey methods, questionnaires, observations as a part of

extended fieldwork and archive data methods (cf. Marsden 2005, pp. 10–21;

Knoke and Yang 2008, pp. 21–32). For the purpose of this study we employed

archival data sources to construct interorganizational networks. In general, archival

data can be obtained from a broad range of archival records or documents such as

journal articles, newspapers, patent citations, minutes from executive meetings,

web pages, court records, annual reports and many other sources (Wasserman and

Faust 1994, p. 50; Marsden 2005, p. 24). The use of archival data is especially

suitable for the compilation of longitudinal network datasets. Archival records are

“[. . .] relatively inexpensive, pose no burden on informant time and efforts, and

may contain high-quality longitudinal information when data are maintained over

time” (Knoke and Yang 2008, p. 28). However, Marsden (2005, pp. 24–25) points

to the following issues that should be taken into consideration when using archive

data. Firstly, archival network data should correspond to the conceptual ties of the

research interest to avoid network misspecifications. Secondly, to ensure the valid-

ity of archive data, both conditions under which objects come to be included, as

well as the conditions under which archives are constructed, should be carefully

noted. Finally, when using electronically available archive data, technical prob-

lems, such as unexpected name changes potentially lead to errors that can be easily

overlooked.

The use of archive data, which is collected, stored and issued by official

authorities, mitigates at least some of these concerns. In this context, Knoke and

Yang (2008, p. 30) point to the fact that “[. . .] government and economic organi-

zations have been assembling massive amounts of information [. . .]” and that these
archive data sources are still “[. . .] largely overlooked and scarcely tapped by

organizational theorists”. In this study we use data on nationally and supra-

nationally funded R&D cooperation projects documented by the funding authori-

ties. In doing so we draw upon two electronically available archive data sources: the

Foerderkatalog database, provided by the German Federal Ministry of Education

and Research (BMBF) and the CORDIS database, provided by the European

Community Research and Development Information Service (CORDIS).
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We are not the first to use these archive data sources to construct knowledge-

related innovation networks (cf. Broekel and Graf 2011, p. 6; Fornahl et al. 2011;

Scherngell and Barber 2009, 2011; Cassi et al. 2008). There are solid arguments

that advocate for the use of these archive data sources for constructing innovation

networks. Organizations that participate in R&D cooperation projects subsidized by

the German federal state have to agree upon a number of regulations that facilitate

mutual knowledge exchange and provide incentives to innovate (Broekel and Graf

2011, p. 6). In a similar vein, the EU has funded thousands of collaborative R&D

projects in order to support transnational cooperation activities, increase mobility,

strengthen the scientific and technological bases of industries and foster interna-

tional competitiveness (Scherngell and Barber 2009, p. 534).

We chose a modular approach for compiling our network database. Each data

source is assigned to an individual database segment. This design ensures expand-

ability and enables additional types of cooperation, such as strategic alliances, to be

included in our database in the future.

In the first instance, we exploited the Foerderkatalog database13 to fill the first

module. This raw data source encompasses information on a total of more than

110,000 completed or ongoing subsidized research projects and provides detailed

information on the starting point, duration, funding, project description and some

additional information on the project partners involved. Each registered project is

equipped with a funding identification number and information on the department

responsible in the subsidizing ministry. All in all, the publicly funded research

projects that are listed in the Foerderkatalog database came from five German

federal ministries.14 We used the following data gathering procedure to extract the

data needed. In a first step, we took the complete list of 233 laser source manufac-

turers and systematically searched for each company name in the Foerderkatalog
database. The search mask offers two search options for the identification of

organizational entities: “Zuwendungsempf€anger” (i.e. grant recipient) &

“Ausf€uhrende Stelle” (i.e. executing body). We chose the latter search field as we

were interested in identifying the entities that were actually involved in the projects.

To deal with spelling issues in the database search process we prepared a list

containing various ways of spelling each firm’s name. In order to separate collab-

orative projects we considered only those projects which were labeled as

“Verbundprojekte” or “Verbundvorhaben”. This is in line with the data gathering

procedure applied by Fornahl et al. (2011, p. 403). We ended up with a complete list

13 http://foerderportal.bund.de/foekat/jsp/StartAction.do (Accessed: May–September 2011).
14 These are the following ministries according to the database description available online.

Federal Ministry of Education and Research (BMBF), Federal Ministry for the Environment,

Nature Conservation and Nuclear Safety (BMU), Federal Ministry of Economics and Technology

(BMWi), Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Federal

Ministry of Transport, Building and Urban Development (BMVBS). For further information on

the use of the “Foerderkatalog” data in the field of innovation research see Fornahl et al. (2011)

and Broekel and Graf (2011). They analyze drivers of patent performance in the German biotech

industry by using the same raw database that was used in this study.
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of all publicly funded R&D cooperation projects for each of the 233 firms over the

entire observation period.

The inherent problem with these cooperation project extracts was that they did

not incorporate a listing of the cooperation partners involved. Thus, we had to

employ the following search procedure in order to obtain a full list of cooperation

partners at the project level. We made use of a special database particularity to

accomplish this task. Cooperation projects are divided into subprojects

(“Teilprojekte”, “Teilvorhaben”) which are executed by at least one of the project

partners involved. The project designation follows a general scheme in a sense that

certain parts of the “project title” of related subprojects are always exactly identical.

Thus, we used the search field “Thema” (i.e. “project title”) that is offered by the

Foerderkatalog online interface and searched for specific parts of the project

designation or project acronyms in order to identify all related subprojects. Fol-

lowing this procedure we ended up with a record for each of the 233 LSMs that

contained a complete listing of R&D cooperation projects. This allowed us to amass

detailed project level information on the subproject structure and all project part-

ners involved. In total, we were able to identify 416 R&D projects with up to

33 project partners from various industry sectors, non-profit research organizations

and universities.

Next we exploited the CORDIS database15 to fill the second module of our

network database. This CORDIS database encompasses all seven EU Framework

Programs and covers a time span from 1983 to 2010. We only used the online

interface of the database for consistency checks and not for data gathering. Instead

we were provided with a database extract which includes a complete collection of

R&D projects for all German companies which were funded by the European

Commission. This database extract compromised all seven EU Framework program

initiatives and covered a time span from 1983 to 2010.16 In total, this database

extract consisted of a project dataset with over 31,000 project files and an organi-

zation dataset with over 57,100 German organizations and roughly 194,000 inter-

national project partners. Each project data file is identified by a project ID and a

record ID and provides information on project content, prime and secondary

contractors, starting and ending date of the project, total costs and total funding,

the framework program and some further information. Data files in the organization

dataset are identified by an organization ID and a project ID and provide detailed

information on an organization’s address, ZIP code, country code, project status

and the contact information of the project coordinators. The project ID allowed us

to link these two datasets in order to identify a complete list of R&D projects for the

15 The Community Research and Development Information Service provides a broad range of

information and resources on European R&D funding activities. Data on publicly funded R&D

cooperation projects can be accessed by tapping the following online interface: http://cordis.

europa.eu/search/index.cfm?fuseaction¼search.advanced (Accessed: May 2012).
16 Additional programs and funding initiatives are included such as “Education & Training”,

“Energy & the Environment”, “Health & Safety”, “Information Society”, “International Cooper-

ation”, “EURATOM Framework Program” as well as some regional programs.

98 4 Methodological Reflections and Data Sources

http://cordis.europa.eu/search/index.cfm?fuseaction=search.advanced
http://cordis.europa.eu/search/index.cfm?fuseaction=search.advanced
http://cordis.europa.eu/search/index.cfm?fuseaction=search.advanced


entire sample of 233 LSMs. Based on this raw data, we identified 154 R&D projects

with up to 53 project partners for the entire observation period.

Using information about publicly funded research projects to construct R&D

networks potentially raises selectivity concerns.17 In this case, empirical findings

that higher innovativeness is related to larger networks might simply be caused by

the inherent superiority of those actors who have been awarded more grants. In our

case, these concerns seem to be of limited salience for the following reasons. The

optical industry is regarded as one of the key technologies affecting the innova-

tiveness and prosperity of the German economy as a whole (BMBF 2010). Prior

work on German technology policy vis-à-vis the laser industry has shown that

beginning in the mid-1980s, German policy makers identified lasers as a crucial

technology for the future competitiveness of various German industries (Fabian

2011). As a consequence, substantial efforts were made to support the industry and

funding of collaborative R&D projects was selected as a key policy instrument for

this purpose. In other words, funding decisions were primarily motivated by the aim

to make German actors more competitive than their international rivals; spurring on

domestic competition through highly selective merit-based funding decisions

appears to have been of secondary importance. Basically the same arguments

apply with regard to European funding decisions. Scherngell and Barber (2009,

p. 534) point out that one of the main EU Framework program objectives is to

strengthen the scientific and technological bases of European industries and foster

international competitiveness. The reasoning above is consistent with our data

showing that not only medium and large sized firms but also a significantly high

proportion of micro and small firms have received public funding for R&D coop-

eration (cf. Fig. 4.2). The diagram below gives an overview of funding received,

either from a “Foerderkatalog” or “CORDIS” program, broken down by partner

type and firm size. This is at least a first indication that funding decisions did not

substantially vary across firms in our sample.

Finally, both cooperation data sources were used to construct interorganizational

innovation networks on an annual basis based upon the following considerations.

The decomposition of R&D cooperation projects with more than two partners

requires a presumption in terms of the connectedness of the partners involved. In

the simplest case, one can assume all project partners are directly linked to the

project’s lead partner but have no links among themselves. The structural implica-

tion of this “star-assumption” is illustrated in Fig. 4.3 (left). This assumption,

however, seems quite unrealistic in the case of publicly funded R&D cooperation

projects for two reasons. Firstly, project partners have to agree on three regulations

that facilitate knowledge exchange: unrestricted use of the project’s results, mutual

cooperation to foster solution finding, and free-of-charge access to project-relevant

know-how and intellectual property rights that existed before the project started

(Fornahl et al. 2011, p. 403). Secondly, innovation incentives are incorporated into

the project regulations in a sense that project partners that have made extraordinary

contributions to an invention have to be explicitly acknowledged (ibid). In a similar

17 This line of argument is taken from Kudic et al. (2011, p. 20).
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vein, European Framework programs are explicitly designed to facilitate the circu-

lation of information and knowledge among participating organizations and across

national boundaries (Cassi et al. 2008, p. 664). These arguments, however, sub-

stantiate the assumption that all partners in nationally as well as supra-nationally

funded R&D cooperation projects are mutually connected to one another. Conse-

quently, for the purpose of this study, we stick to the “full assumption” which is

illustrated in Fig. 4.3 (right).

The problem of converting multi-partner R&D cooperation projects into fully

connected cliques was solved practically by programming a simple permutation

tool in an MS Excel environment.18 Networks consisting of fully connected cliques
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Fig. 4.2 Cooperation funding received – by partner type and firm size (Source: Authors own

illustration)
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Fig. 4.3 Decomposition of R&D cooperation projects (Source: Authors own illustration)

18 Support by the IWH department “Formal Methods and Databases”, especially from Dr. Henry

Dannenberg, is gratefully acknowledged.
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are widespread and usually referred to as bipartite networks (Uzzi and Spiro 2005,

p. 453). The specifics of bipartite networks are explicitly considered in the analyt-

ical part of this study.19

4.2.4 Innovation Data

The emergence of innovation is a complex phenomenon that is difficult to capture

by a single measure (Ejermo 2009, p. 143). There is a long-standing discussion in

the literature on the conceptual background of innovation measurement (cf. Smith

2005). Since then a broad range of innovation indicators have been proposed that

can be grouped into the following broad categories: R&D-based measures, patent-

based measures, market-based innovation count measures, bibliometric measures

and survey-based measures (for an in-depth discussion see: Brenner and Broekel

2011; Smith 2005; Ejermo, 2009). A closer look at the contemporary literature on

innovation measurement reveals that all of these measurements have certain advan-

tages but also considerable disadvantages.

In order to measure the innovative performance at the firm level we decided in

favor of using patent data. Despite some methodological constraints related to the

use of patents to measure innovation performance (Patel and Pavitt 1995), patent

indicators are commonly used in analyzing innovation processes (Jaffe 1989; Jaffe

et al. 1993). The reasons are straightforward. Firstly, patents provide firms with a

time-restricted monopoly on the use of their innovative products and services

(Brenner and Broekel 2011, p. 12). They allow firms to protect their property rights

for a certain period of time. Thus, firms have a natural incentive to secure their

novel ideas against unauthorized use through patents. This argument substantiates

the assumption that a notable proportion of a firm’s innovative efforts are reflected

in patent data. Secondly, patent data are official documents which are processed and

stored by patent authorities. This ensures reliability and trustworthiness of the data.

Thirdly, patent data is usually stored over long periods of time. Patent documents

provide, among other things, application filing dates and publication dates which

enable an exact time tracking of the event in interest. Furthermore, patent require-

ments have not changed remarkably over the past few years which enable patent

data to be compared over time (Ejermo 2009, p. 145). Last but not least, patent data

is frequently used in longitudinal settings simply because no better innovation

indicators are available over long periods of time (Brenner and Broekel 2011,

p. 13).

19 Bipartite networks usually tend to show a higher overall connectedness than unipartite networks.

We have generated annual network layers based on both the “star assumption” and the “full

assumption” to examine the structural consequences of these assumptions. Subsequently, we

calculated a set of overall network measures (i.e. overall density, clustering coefficient, degree

centralization) on an annual basis and explored the results over time. A comparison of the results

revealed nearly the same curve progressions but on a much different scale.
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At the same time, patent-based indicators suffer from some notable limitations.

Firstly, patents are an indicator of invention rather than innovation as they mark the

emergence of a novelty but not the commercialization of the idea (Smith 2005,

p. 160). In other words, the inventor’s idea is not necessarily converted into a

product that can be sold to a customer. Moreover, innovators have several other

possibilities of appropriating the benefits of an invention which are not reflected in

patent data (Fritsch and Slavtschev 2007, p. 204). For instance firms can secure

their innovations by maintaining a high level of information security or by

implementing other knowledge securing strategies (Liebeskind 1996).

Despite these limitations there is a widespread use of patent data for the

construction of an innovation indicator at the firm level. In accordance with

contemporary empirical network studies (Ahuja 2000; Stuart 2000; Whittington

et al. 2009; Baum et al. 2000; Fornahl et al. 2011; Schilling and Phelps 2007), we

decided to use annual patent counts as a proxy for firm innovativeness. Three patent

data sources were tapped to gather the patent data needed. The European Patent

Office’s (EPO) database was used as the primary data source to generate a complete

overview of the firms’ patent activities.20 Additionally, two patent data sources

accessible online – DEPATISnet German Patent and Trade Mark Office database &

ESPACEnet European Patent Office database – were tapped for data completion

and to check results for integrity and consistency.

For the technical realization of the firm-specific patent search procedure we had

to compile an SQL query.21 This query was needed to tap the database and extract a

comprehensive list of patents for each of the 233 LSMs in our sample. Each

extracted patent datasheet included an extensive set of patent variables. We

employed the following data gathering procedure to identify patent applications

and patent grants which were needed for the purpose of this study. By drawing upon

the initially complied list of 233 LSMs, we conducted a firm-specific search in order

to identify and extract all patents which were assigned to the firms. A list of various

ways to spell each firm’s name was used to deal with spelling issues. In the case of

micro firms (i.e. firms with less than 10 employees) we also searched for the

founder’s name. This allowed us to identify some additional patents that were

otherwise overlooked. We used the ‘like’ function in the SQL query to identify

the firm’s name listed as at least one of the following two variables: “person_name”

or “doc_std_name”. Though this increased the likelihood of finding patents that

would have otherwise been overlooked, it also led to the capturing of some

irrelevant patent documents. Search results were entered into an MS Excel spread-

sheet and processed using a two-stage approach. In the first stage, false positive

results and potential double counts were identified and excluded from the data-

sheet. These records were removed manually from the data collection. In the second

stage, patents were sorted into applications and grants. The EPO Patent database

20Data access was provided by the IWH department “Formal Methods and Databases”.
21 Support in generating the SQL query and for conducting the search by Katja Guhr, Martin

Zenker and Dr. Iciar Dominguez Lacasa is gratefully acknowledged.
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has a variable that indicates whether a patent was granted or not. Thus, we used the

“patent first granted” flag in combination with the variable “publn_kind” to identify

all granted patents.22 Finally, the DEPATISnet database23 and the ESPACEnet
database24 were employed to check the results. We ended up with a patent data

file encompassing a comprehensive list of all patent applications and patent grants

for each of the 233 LSMs over the entire observation period.
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Chapter 5

Quantitative Concepts and Measures

Measure what is measurable, and make measurable what is
not so.

(Galileo Galilei).

Abstract A broad range of concepts and measures are needed to provide a

quantitative description of the industry and to analyze the initially raised research

questions. Focus is on using applied methods in calculating geographical and

network-related measures. Chapter 5 is divided into three sections: Section 5.1

presents some general graph theoretical concepts. Section 5.2 provides an overview

of techniques and measures for the structural analysis of interorganizational net-

works. More precisely, we present most commonly used network measures at three

analytical levels: actor level, subgroup level and overall network level. Finally, in

Sect. 5.3 we outline a selection of spatial proximity and geographical concentration

concepts that were applied in the analytical part of the study.

5.1 Graph-Theoretical Foundation and Basic Network

Concepts

Various notional schemes, such as graph theoretical, sociometric and algebraic

approaches, can be used to mathematically describe a network (Wasserman and

Faust 1994, p. 69). The graph theoretical approach is suitable for defining and

clarifying general network properties. From this perspective, a network is defined as

a set of vertexes1 joined by edges2 (Newman 2010, p. 109). A graph (N, g) consists

of a set of nodes N¼ {1. . .n} and a real-valued matrix g (¼n � n), where gij
represents the relation between the node i and the node j in the network (Jackson

2008, p. 21). The node-set consists of a finite number of nodes n which determine

the size of the network. Depending on the specific type of network under

1Vertexes are also called “nodes”, “actors”, “agents”, “players” and “entities”.
2 Edges are also called “ties”, “links”, “connections” and “relationships”.
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investigation the nodes can represent, for instance, individuals, organizations or

nation-states. The matrix g is called the “adjacency matrix” and reflects, for the

relation in question, all of the present or absent connections between the actors in

the node-set (Wasserman and Faust 1994). Again, the type and the very nature of

such a relation depends on the network under investigation and ranges, for instance,

from friendship networks between individuals to strategic alliance networks

between organizations and diplomatic relation networks between nation-states.

Regardless of the object under investigation one can differentiate in general

between weighted and unweighted networks. In unweighted networks the entities

of g assume the value 1 to indicate the presence, and assume the value 0 to indicate

the absence, of a connection between actors. Relations also can be weighted in

order to track the intensity level of a relationship (Jackson 2008, p. 21). Further-

more, relations between network actors can be directed or undirected. A network is

deemed to be directed when gij 6¼ gji; the network is considered to be undirected

when gij¼ gji (Jackson 2008, p. 21). The structure of the “adjacency matrix” is

asymmetric in the first case and symmetric in the latter case. Directed graphs have

higher information content than undirected graphs as they specify not only the

presence or absence of a linkage but also who are the sending and who are the

receiving entities in the network. Undirected graphs are used where the direction of

relations does not make sense or must be, for logical reasons, always reciprocated

(Borgatti et al. 2013). In summary, the graph (N, g), also known as an “adjacency

matrix”, provides a full description of all weighted or unweighted and directed or

undirected mutual linkages for a finite number of nodes n in a node-set N.

The previous considerations provide the basis for the introduction of some

fundamental network concepts. The first concept is the “dyad”. A dyad Dij is the

most basic building block of a network which is defined as “a pair of actors and the

(possible) tie(s) between them” (Wasserman and Faust 1994, p. 18). These building

blocks constitute the smallest structural entity of a network. According to

Wasserman and Faust (1994, p. 510) there are four states and three isomorphism3

dyadic classes for the two actors i and j in a dyadic subgraph. These unique classes

are the null dyad (i.e. Dij¼ {0,0}, no tie between i and j), asymmetric dyad

(i.e. Dij¼ {1,0}, directed tie from i to j or Dij¼ {0,1}, directed tie from j to i) and

the mutual dyad (i.e. Dij¼ {1,1}, undirected tie between i and j). In the case of

symmetric networks only null dyads and mutual dyads need to be considered. The

formation and termination of dyads have some fundamental implications for the

structural features of networks in terms of size, density and fragmentation

(Amburgey et al. 2008). The second concept is the triad. A triad Tijk consists of a

triple of actors (i, j, k), where i 6¼ j 6¼ k, and the (potential) tie(s) between these

actors (Wasserman and Faust 1994, p. 559). A triadic subgraph has a much higher

complexity level than a simple dyad. This becomes apparent when looking at the

triadic states and isomorphism classes. For a triad Tijk, 64 states and 16 unique

3 Isomorphic means in this context that subgraphs are structurally indistinguishable from one

another (Wasserman and Faust 1994, p. 560).

106 5 Quantitative Concepts and Measures



isomorphism classes can be identified whereas the accurate description of these

classes requires a labeling scheme specifically developed for this purpose

(Wasserman and Faust 1994). Holland and Leinhardt (1970, 1976) have proposed

the so-called “M-A-N labeling scheme” which assigns four characters to each

triad.4 A basic understanding of triads and transitivity is important for the under-

standing of more complex concepts such as clustering coefficients. The third

concept is the subgroup. A subgroup is defined as a subset of node set N and the

(possible) linkages between them (Wasserman and Faust 1994, p. 19). There are

several concepts to separate or identify subgroups in networks. The most basic

subgroup concept is the component. A component is defined as a maximally

connected subgraph with a path between all pairs of nodes within the subgraph

but no connection to the nodes in other components (Wasserman and Faust 1994,

p. 109). The components concept is of overriding importance for analyzing the

fragmentation of a network. If a network contains more than one component, the

network is considered disconnected. If there is only one component in a network we

call this a connected network (Newman 2010, p. 142). There are other more-or-less

restrictive subgroup concepts (i.e. cliques, cores and plexes etc.) which allow us to

separate subsets of actors in networks based on some well-defined structural criteria

(Newman 2010, pp. 193–197; Wasserman and Faust 1994, pp. 257–266). The fourth

concept is the ego network concept. Ego networks consist of a focal actor – a

so-called “ego” – and a set of directly connected actors – so-called “alters” – which

can be connected among each other (Wasserman and Faust 1994, p. 42). This

concept involves a shift in the analytical perspective from the overall network

level to an actor-based perspective. Thus, the individual network structure of actors

is highlighted and provides the basis for several ties as well as node-related

structural measures (i.e. ego size, ego density, ego brokerage etc.). Ego network

concepts are less restrictive with regard to data requirements but they also provide a

limited analytical value since second tier ties and indirect structural effects are not

considered. However, ego network concepts can also be applied in analyzing full

network data (cf. Sect. 5.2.2). Depending on the underlying research question, these

concepts can provide an additional analytical value. The last concept is the overall

network or group concept.5 In general a group can be defined as a finite set of actors

that are clearly separable in a theoretical, conceptual or empirical manner and

against which a certain type of relation can be measured (Wasserman and Faust

1994, p. 19). Thus, the group concept provides the graph theoretical foundation for

all analytical concepts that addresses the overall network level.

4 According to this scheme, the first character specifies the number of mutual dyads, the second

character gives the number of asymmetric dyads, the third character displays the number of null-

dyads, and the last character gives a further characterization of how the ties are directed at each

other within these specific isomorphism classes by using the characters “D” (for down), “U” (for

up), “T” (transitive), “C” (cyclic). For details, see Wasserman and Faust (1994, pp. 559–575).
5 The graph theoretical terminology can be somewhat misleading in this context. Note that the term

“group” refers to the overall graph. The term “subgroup” addresses subsets of actors in the overall

network.
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In addition to these fundamental network concepts there are three further aspects

that have to be considered and clarified for the purpose of this study: contextual

specification, time framing and level of analysis. Quantitative network analysis

methods have been applied in a broad range of scientific fields. This analysis

focuses on interorganizational innovation networks. Due to the aim of this study

the actor set is restricted to a clearly defined subset of organizations – laser source

manufacturing firms (LSMs) and laser-related public research organizations

(PROs) in the German laser industry innovation system – and to a specific type of

relationship between these actors – knowledge-related publicly funded R&D coop-

eration project linkages. Because of the very nature of these specific types of

relations and the underlying mutual knowledge exchange and learning processes

(Broekel and Graf 2011), we assume, for the purpose of this study, that there is a

presence of undirected network ties. Secondly, networks can be analyzed from a

static or dynamic perspective. Static means that all actor-specific attributes as well

as all relational ties among these actors are measured at one given point in time or

simply pooled together. In contrast, a dynamic perspective requires that the node

attributes and all of the ties among these nodes are measured at repeated points in

time. The crucial point in this context is that the node set of the underlying graph

has to be adjusted for each time point as not only the ties but also the nodes can be

subject to change over time. In other words, the entry and exit dynamics of both

nodes and ties have to be measured and explicitly considered. Moreover, the

identification of structural change patterns in interorganizational networks requires

a sufficiently long observation period and an adequate separation of the observation

period into distinct time intervals. The length of the intervals is determined by the

underlying research questions and data availability issues. With regard to longitu-

dinal research designs, Suitor et al. (1997, p. 6) point out: “Given the cost and

complexity of network studies, time-series analysis will probably be the rarest form

of study of network change”. In this study we draw upon two longitudinal research

designs to account for the change of the network over time: panel data design &

event history data design. A panel data design enables a given sample to be

analyzed across a discrete number of time points (Suitor et al. 1997, p. 6). Event

history data provides an even more demanding type of network data due to the strict

requirements regarding the exact time-tracking of relevant events. Thirdly, an

in-depth analysis of network structures and embedded actors requires different

analytical perspectives. According to Wasserman and Faust (1994, p. 25) there

are at least three levels of analysis: actor level, subgroup level and overall network

level. Quantitative network analysis methods on the actor level provide an analyt-

ical toolbox for identifying organization-specific properties such as functions, roles

or positions. These micro-level measurements allow us to compare nodes with one

another and to say something about how given nodes relate to the overall network

structure (Jackson 2008, p. 37). The application of subgroup level methods requires

the separation of a set of organizations that is homogenous with respect to specific

network properties. Ego networks can be regarded as one specific type of subgroup

as the focal actor’s direct linkages clearly define the boundaries of the subgraph in

question. The particularly interesting features of ego networks are that they can be
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defined for each actor in the actor set of a graph and the structural properties of

these individualized subgroup networks can be directly ascribed to respective focal

actors (Marsden 2005, p. 9). Finally, group level methods are required to analyze

the structural features of the overall network structure. Measures such as size,

density, reach, cliquishness, connectedness and many others allow us to get a

fine-grained picture of structural features and properties of the network under

investigation. Even though these types of measures are predominantly macro in

nature (Jackson 2008, p. 37) most of these measures can also be applied at the

subgroup level. The next sections provide – together with these three analytical

levels – an overview and clarification of the network analysis methods which were

applied for the purpose of this book.

5.2 Quantitative Network Analysis Methods

The predominant objectives of quantitative network analysis are to measure and

represent the structural relations among a well-defined set of entities, and to explain

both the occurrence and the consequences of structural patterns (Knoke and Yang

2008, p. 4). The analytical power of quantitative network analysis6 methods lies, to

a large extent, in the ability to analyze the connectedness of actors in a system

(Wasserman and Faust 1994, p. 19). These methods provide general analytical tools

which can be used for the structural analysis of complex socio-economic systems.7

More precisely, these methods allow us to quantify overall network features along

various aggregation levels and, at the same time, provide us with analytical

instruments for the analysis of functions, roles and positions of actors in the

network.

5.2.1 Methods for Calculating Network Positioning

In general, one can distinguish between two categories of location property mea-

sures. The first category – so-called “prestige measures” – requires directional

relations whereas the second category – so-called “centrality measures” – is

intended for the analysis of non-directional relations. Due to the conceptual orien-

tation of this study, focus is placed upon the latter category of analytical methods.

6 The historical roots of this concept are located in the field of sociological research. In this study

the terms “social network analysis” and “quantitative network analysis” are used interchangeably.
7 General system theory (Bertalanffy 1968) provides the general theoretical foundation for socio-

economic and other systems by describing the general nature of a system by explicitly referring to

system elements and some kind of relationships or forces between them.
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The overall centrality concept can be defined very broadly as the extensive

involvement of an actor with many other actors (Wasserman and Faust 1994,

p. 173). However, since the development of the first centrality concepts (Bavelas

1948; Czepiel 1974) several remarkable methodological advances and refinements

have subsequently been made (Freeman 1979). Today we can draw on a wide range

of methods capturing various facets of centrality. According to Borgatti (2005) and

Jackson (2008) there are basically four categories of centrality measures – degree

centrality, closeness centrality, betweenness centrality, power centrality, and eigen-

vector centrality. What these centrality concepts share in common is that they seek

to identify exposed actors within a network by referring to previously well-defined

criteria.

Degree centrality is one of the first centrality concepts (Freeman 1979). The idea

behind this network measure is straightforward as the concept defines actor cen-

trality based on the connectedness to other actors in the network. In other words,

degree centrality indicates how well a node is connected in terms of direct linkages

(Jackson 2008, p. 38). Network actors with a high degree have greater opportunities

because they have choices and this autonomy makes them less dependent on any

other specific actor (Hanneman and Riddle 2005). According to Wasserman and

Faust (1994, p. 179) the degree centrality CD of a network actor ni depends on the

group size g with the maximum value (g � 1) and is defined as:

CD nið Þ ¼ d nið Þ
g� 1ð Þ ð5:1Þ

This measure ranges from 0 to 1 and can be compared across networks of

different sizes (Wasserman and Faust 1994, p. 179). The measure allows for the

identification of network actors which are highly connected at the micro-level and

reveals, at the same time, an initial indication of highly active areas – so-called “hot

spots” – in the overall networks at the macro-level. Densely connected actors are

highly visible and well-recognized by others as major channels of relational

information, whereas actors with a low degree centrality are clearly peripheral in

the network (Wasserman and Faust 1994, p. 179). Nevertheless, the concept has

some considerable drawbacks. For instance, second tier ties are not considered so

that the concept fails to recognize the importance of brokers that have a low degree

but who occupy a bridging position between otherwise unconnected network

components (Jackson 2008, p. 38). Accordingly, Newman (2010, p. 188) illustrates

this point by referring to a low-degree node which connects two subgraphs in a

network and therefore occupies a position with a high betweenness centrality. In

general, one can say that the degree centrality measure is very intuitive but

relatively coarse measure of centrality (Borgatti et al. 2013, p. 168).

Closeness centrality is based on the distance of a particular actor to all other

actors or a well-defined subgroup of actors in the graph. The concept basically goes

back to Bavelas (1948), Beauchamp (1965) and Sabidussi (1966). The fundamental

idea is that actors who are near many other actors can easily reach others in the

network. One of the most commonly applied conceptualizations of the idea is the
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Sabidussi Index8 which measures actor closeness as a function of geodesic dis-

tances (Wasserman and Faust 1994, p. 184). The geodesic distance, also called the

shortest distance, is simply defined as the shortest path between network actors

(Newman 2010, p. 139). Thus, the shortest distance between network actors i and j

is reflected by the distance function d(ni,nj). Sabadussi’s closeness index is defined

as an inverse function of the total distance function dT, which is the sum of all

shortest distances from actor i to all other actors in a graph, whereas the sum is

taken over all j 6¼ i (Wasserman and Faust 1994, p. 184). Beauchamp (1965) pro-

poses an actor-based closeness measure by simply multiplying Sabidussi’s (1966)

closeness index by (g � 1) in order to get a standardized index ranging from 0 to

1 (Wasserman and Faust 1994, p. 185). Thus, according to Wasserman and Faust

(1994, p. 185), the closeness centrality CC of a network actor ni depends on the

group size g with the maximum value (g � 1) as well as the total distance function

dT and is defined as:

CC nið Þ ¼ g� 1ð ÞXg

j¼i
d ni; nj
� � ¼ g� 1ð Þ

dT
ð5:2Þ

Closeness measures were applied quite early to analyze the accessibility of

information in communication networks (Leavitt 1951). This centrality conceptu-

alization, however, offers further interesting application possibilities, for instance

to measure the reachability of knowledge stocks dispersed among multiple actors in

networks. Nevertheless, the concept has some noteable limitations. According to

the idea behind the geodesic distance concept, each node in a graph must be

reachable by all other nodes in a graph. This however implies that a closeness

centrality measure, as defined above, can only be applied for a connected graph

(Wasserman and Faust 1994, p. 185).

The betweenness centrality concept provides the third network positioning

measure. The logic behind the betweenness centrality concept is fairly different

to the two previously discussed centrality concepts as it measures the extent to

which an actor controls as many shortest paths as possible between other groups of

network actors. Scholars recognized the basic idea of the concept quite early on

(Bavelas 1948; Shimbel 1953) and pointed out the strategic importance of locations

on geodesics for the actors themselves as well as for the characteristics of the

overall network structure (Burt 1992). However, the first conceptionalization of the

betweenness centrality, usually attributed to Anthonisse (1971) and Freeman

(1977), quantifies how well a node is located in terms of the shortest paths it lies

on (Jackson 2008, p. 39; Wasserman and Faust 1994, p. 189). The measurement of

betweenness centrality requires the consideration of at least three actors i, j and k in

8 Jackson (2008, p. 39) suggests that decay centrality is a richer way of measuring closeness.

Instead of a simple distance function d (ni, nj) a so-called decay parameter with δd(ni, nj).0< δ< 1 is

introduced. The specific feature of this measure is that distances get weighted by the decay

parameter.
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a graph whereas it is assumed the latter two actors j and k always choose the shortest

path to connect one another. If more than two geodesics exist for these two actors, it

is assumed that all geodesics are equally likely to be chosen (Wasserman and Faust

1994, p. 190). The number of geodesics is reflected by gjk so that the probability of

using one of these geodesics is 1/gjk (Wasserman and Faust 1994, p. 190). Next, it

has to be determined how many geodesics gjk(ni) the actor i lies on between actors j

and k (Jackson 2008, p. 39). Based on these considerations we can estimate how

important the actor i is in terms of connecting j and k (Jackson 2008, p. 39) by

calculating the probability pjk¼ gjk(ni)/gjk as originally proposed by Freeman

(1979). According to Wasserman and Faust (1994, p. 190) the betweenness cen-

trality index for all ni, defined as the sum of all pjk, has to be standardized in order to

obtain an actor centrality index ranging from 0 to 1 by using the maximum value of

the index (g�1) (g�2)/2. This reflects the maximum possible number of pairs of

actors not including ni and leads to the actor betweenness centrality being defined

as:

CB nið Þ ¼
X
k 6¼j

pjk
n� 1ð Þ n� 2ð Þ=2 ð5:3Þ

The actor betweenness measure can be calculated for connected as well as

unconnected graphs and the standardization allows for comparisons across net-

works and relations (Wasserman and Faust 1994, p. 190). Betweenness centrality

values are typically distributed over a wide range (Newman 2010, p. 189). More

interesting, however, is the robustness of this measure against network changes

over time. Although betweenness values may shift when the network structure

changes due to node and tie entries and exits, the changes in centrality are relatively

small compared to the large gaps between the leaders and other actors in terms of

betweenness values. Thus the order of the centrality ranking list changes relatively

infrequently (Newman 2010, p. 190). This is a quite interesting property, especially

when analyzing evolutionary network change over time.

The category of power and eigenvector related measures are based on a more

comprehensive understanding of centrality. These centrality concepts take two

perspectives into account by measuring an actor’s network position, i.e. the actor’s

own structural embeddedness, as well as the extent of interconnectedness of its

neighbors. In other words, these measures are based on the premise that a node’s

importance is not simply determined by its own connectivity, closeness or broker-

age position but also by its proximity to many other “important” nodes (Jackson

2008, p. 40). The term “important” refers in this context to a structurally exposed

network position. One of the first conceptualizations of this idea was provided by

(Katz 1953).9 For the purpose of this study we concentrate on the eigenvector

centrality measure originally proposed by Bonacich (1972, 1987). Eigenvector

9 For an in-depth discussion on the Katz prestige measure, see Jackson (2008, pp. 40–41) or

Newman (2010, pp. 172–175).
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centrality can be regarded as a straightforward extension of the degree centrality

concept that takes into account the fact that a network actor’s direct neighbors are

not all identical in terms of their own connectedness to other network actors

(Newman 2010, p. 169):

CE nið Þ ¼ k�1
1

X
j
Aijnj ð5:4Þ

The eigenvector centrality CE of a network actor ni is proportional to the sum of

centralities of its neighbors where Aij represents an element of the adjacency

matrix, xj represents the neighbors’ centralities and k1 is the largest eigenvalue of

the matrix A (Newman 2010, p. 170). The eigenvalue k1 is nonnegative and

constant (Jackson 2008, p. 41). An important property of the eigenvector centrality

measure is, however, that an actor’s centrality value can be large either because the

actor itself has many direct relationships or because the actor has a few direct

relationships to highly interconnected partners (Newman 2010, p. 170). The eigen-

vector centrality can be interpreted as a measure of popularity in a sense that an

actor with a high eigenvector centrality is connected to other actors that are

themselves well connected (Borgatti et al. 2013, p. 168).

5.2.2 Methods for Calculating Ego Network Characteristics

Now we focus on the measurement of firm-specific cooperation structures. This

leads us to the concept of ego centered networks. An ego network consists of a focal

actor called ego and a set of directly connected partners called alters, that can be

connected among one another (Wasserman and Faust 1994, p. 42). Ego networks do

not include second-tier ties or second-step ties to which the focal actor is not

directly connected (Hite and Hesterly 2001, p. 277). The size of an ego network

is determined by the ego itself and the number of partners the ego has. In other

words, an ego size measure is simply defined as the number of all of ego’s one-step-

out neighbors, plus ego itself (Hanneman and Riddle 2005). Marsden (2002)

proposed a reformulation of the classical centrality measures for ego networks.

For the purpose of this study we concentrate exclusively on two structural mea-

sures: ego density and ego brokerage.

The first measure is the ego network density of a focal actor’s individual

cooperation portfolio. Borgatti et al. (2002) define ego network density ED of a

focal actor ni as the number of currently existing ties Ti divided by the number of

potentially possible ties, termed pairs Pi, times one hundred. The ego network

density can be expressed as follows:
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ED nið Þ ¼ Ti

Pi
100 ð5:5Þ

The maximum number of possible dyadic ties for a focal actor’s ego network

with a total number of N alter can be calculated as follows: Pi¼ (N!)/(2!*(N�2)!).

The ego network density measure can be extended and used for the structural

analysis of ego networks that consist of directed relations, valued non-directed

relations or valued directed relations (cf. Knoke and Yang 2008, pp. 53–54).

The second measure is ego network brokerage. Marsden (2002) demonstrated

that brokerage measures for ego networks can differ substantially from complete

network measures. The basic idea of this ego network brokerage concept is to

capture the extent to which the focal actor is the "go-between" for other alters and

establishes a linkage between otherwise unconnected nodes of the ego network

(Hanneman and Riddle 2005). A straightforward quantification of the concept is

provided by Marsden (2002, p. 410):

EB nið Þ ¼
XNi

j2Ai, j 6¼i

Xj�1

k2Ai, k 6¼i

1� a pj; pk
� �� � ð5:6Þ

The brokerage measure EB for a focal actor ni in an ego network setting based on

an egocentric network Ai is defined by the number of pairs of nodes (excluding the

focal actor) in the egocentric network that are not directly connected to one another

and, therefore, are indirectly connected via a geodesic through the focal actor

(Marsden 2002, p. 410). Up until now several refinements of this quite simple

conceptualization have been proposed. For instance, the egocentric equivalent of

Freeman’s (1979) betweenness centrality measure takes into account that some

pairs (pj, pk) may not only be connected via the focal actor, but also through other

nodes in the egocentric network (Marsden 2002, p. 410). In a similar vein, Borgatti

et al. (2002) provide us with a normalized brokerage measure. This normalized ego

network measure is defined as the number of times the focal actor is located on the

shortest path between two alters (i.e. the number of pairs of alters that are not

directly connected) normalized by the potentially possible number of brokerage

opportunities (i.e. a function of the focal actor’s ego network size).10

5.2.3 Methods for Calculating Overall Network Measures

Now we will look at a selection of global network measures. First, we will briefly

present three centralization indices. Then, we will lay the foundation for the

10 For an in-depth discussion on further egocentric concepts and measures see: Marsden (2002) or

Knoke and Yang (2008, pp. 53–56).
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quantification of large-scale network properties by introducing clustering and

average distance measures for complete networks.

In its most basic sense, network centralization can be defined as the extent to

which a network is centralized around one or a few central actors (Freeman 1979).

Centralization indices measure how heterogeneous the actors’ centralities are in a

well-defined population (Wasserman and Faust 1994, p. 176). Centralization mea-

sures provide an indicator of actor variability whereas other global network mea-

sures, such as average degree or graph density, provide quantifications of average

actor tendencies (Wasserman and Faust 1994, p. 182). They draw upon actor-

specific centrality measures. Freeman (1979) proposed three types of network

centralization indices – closeness, degree and betweenness.

The closeness centralization index is based on the closeness centrality measure

outlined above (cf. Bavelas 1948; Beauchamp 1965; Sabidussi 1966). This central-

ization index can be interpreted as an indication of the dispersion of closeness

centralities over the entire population of actors (Knoke and Yang 2008, p. 67). Like

the underlying closeness centrality measure CC, the centralization index ZC is only

meaningfully defined for connected graphs (Wasserman and Faust 1994, pp. 184–

187).11 The numerator represents the sum of the differences between the largest

closeness centrality CC(n*) and the closeness centrality value to all other network

actors CC(ni). The denominator represents the maximum possible closeness cen-

trality value for the graph under investigation. The index ranges from 0 to 1. Low

index values indicate homogenous dispersion of closeness centrality values among

the network actors and high values indicate that actor-specific centralities are

unevenly dispersed:

ZC ¼
Xg

i¼1
CC n�ð Þ � CC nið Þ½ �

g� 2ð Þ g� 1ð Þ= 2g� 3ð Þ½ � ð5:7Þ

The degree centralization index ZD provides a measure that reflects how network

actors vary in terms of their connectedness to other actors. In other words, the index

draws upon the network actors’ nodal degree. At the one extreme, the index equals

zero if all nodes have the same degree centrality and at the other extreme the index

reaches its maximum when degree centralities are extremely unevenly dispersed

(Knoke and Yang 2008, p. 65). The calculation of the degree centralization index

follows the same logic:

ZD ¼
Xg

i¼1
CD n�ð Þ � CD nið Þ½ �
g� 1ð Þ g� 2ð Þ ð5:8Þ

The betweenness centralization index ZB captures a rather different network

property. The index measures the extent to which each network actor controls or

11 In the case of unconnected graphs, the index can be applied to at least the main component.
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mediates the relationships between other actors in the network. The index equals

zero if all network actors have the same betweenness centrality and the index equals

one when a single actor mediates all geodesic paths in the network (Knoke and

Yang 2008, p. 69). We follow a procedure proposed by Wasserman and Faust

(1994, pp. 180–192) which allows us to quantify the dominator of the Freeman

Centralization Index (Wasserman and Faust 1994, p. 182):

ZB ¼
X g

i¼1
CB n�ð Þ � CB nið Þ½ �

g� 1ð Þ̇ g� 2ð Þ½ �=2 ð5:9Þ

All three indices were frequently applied in previous network studies to measure

network properties at the macro-level. However, the measures can also be used to

analyze subgroups. Finally, it is important to note that the latter two indices can be

calculated for both connected and unconnected graphs.

Now we take a look at two further measures that allow us to quantify the

clustering of a network and the average reachability among the network actors

involved.12 We start with the clustering coefficient (cf. Watts 1999; Watts and

Strogatz 1998). This more indirect, tie-related concept captures the density of an

actor’s surroundings and measures how many of its direct partners are

interconnected. In other words, the network is said to be highly clustered or cliquish

when many of the actor’s contacts are connected to each other (Uzzi et al. 2007).

The overall network clustering coefficient is the average of all individual clustering

coefficients for the entire network. In contrast, the weighted overall clustering

coefficient is defined as the weighted mean of the clustering coefficient of all the

actors, each one weighted by its degree (Borgatti et al. 2002). The calculation of the

clustering coefficient is straightforward. The indicator simply measures the density

of triangles in a given network (Newman 2010, p. 264). Firstly, it is important to

consider that the percentage of closed triads is three times the total number of

closed triads (Uzzi et al. 2007, p. 79). Secondly, we have to quantify the number of

triangles (numerator) and the number of connected triples (denominator). This

leads to the following definition of the clustering coefficient (Uzzi et al. 2007,

p. 79):

CC ¼ 3 x number of triangles

number of triples
ð5:10Þ

The coefficient varies from 0 to 1 where a value of zero represents no clustering

and a value of one represents full clustering (Uzzi et al. 2007, p. 79).

Now we focus on the shortest paths and distances between the network actors. In

order to quantify the average reachablility among actors in a connected graph, we

have to take a closer look at the length of the geodesics between all pairs of actors.

12 These measures are especially required for analyzing the emergence of large-scale properties at

the overall network level (cf. Sect. 8.3.2).
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The shortest path between a pair of network actors is referred to as the geodesic

distance (Wasserman and Faust 1994, p. 110). Paths between two actors can have

different lengths in directed networks (Newman 2010, p. 242). In unconnected

networks (i.e. networks with at least two components) the distance for at least one

pair of actors can reach infinity (Wasserman and Faust 1994, p. 110). As most real

world networks are not fully connected (Newman 2010, p. 237) this issue is usually

tackled by focusing on the main component.13 The average path length captures the

reachability among all network actors in a connected graph or subgraph. The

measure can be defined as “[. . .] the average number of intermediaries, that is,

the degrees of separation, between any two actors in the network along their

shortest path of intermediaries” (Uzzi et al. 2007, p. 78). Calculating the shortest

path distance between pairs of nodes in a network is much harder than calculating

the clustering coefficient and no exact expression for the mean distance has been

found yet (Newman 2010, p. 560). As a consequence, we refer to the so-called

average distance weighted reach concept (Borgatti et al. 2002; Schilling and Phelps

2007) to capture the reach of the network:

AR ¼
X

n

X
j

1

dij

� �
=n ð5:11Þ

The number of network nodes is given by n, and dij is defined as the number of

smallest geodesic distances from actor i to a partner j; with i 6¼ j (cf. (Schilling and

Phelps 2007, p. 1118). The measure provides an important macro-level indicator by

quantifying how far the distances between all pairs of network actors are on

average.

5.3 Spatial Proximity and Concentration Measures

Most industries exhibit a pronounced tendency towards geographic concentration

(Sorenson and Audia 2000, p. 424). As we will show in more detail later (cf. Sects.

7.1.2 and 7.1.3), the German laser industry is no exception in this regard. In this

section we introduce two concepts that allow us to account for the geographical

particularities at different levels of analysis.

13 Newman (2010, p. 235) reports that the main component usually fills more than 90 % of the

entire network in the majority of real world networks such as social networks, biological networks,

information networks or technological networks. For the German laser industry network, we found

that the main component fills 94.51 % of the network on average (cf. Sect. 8.3.3).
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5.3.1 Methods for Calculating Spatial Proximity Measures

We start with a localized density measure LD14 originally proposed by Sorenson

and Audia (2000). The Euclidian distance can be used in the simplest case to

calculate the geographical distance between two organizational entities. However

using the shortest geographical distances can cause considerable errors in measur-

ing because this measure ignores the curvature of the earth. As the organizations in

our sample are spread over the entire federal republic, we decided to use the

orthodromic distance. The shortest distance on a curved surface can be calculated

by using the following formula (Sorenson and Audia 2000, p. 435):

gdijt ¼ c arccos sin latið Þ sin latj
� �þ cos latið Þ cos latj

� �
cos longi � longj

��� ���	 
h in o

ð5:12Þ

The calculation of the shortest orthodromic distance between two organizations i

and j requires information about the latitude and longitude of each firm. We

proceeded as follows to collect all of the required information. First we included

data on the organizations’ addresses and address changes in our database. Next, we

utilized ZIP code information to gather GPS coordinates on an annual basis.

Latitudes and longitudes were measured in radians. Unlike Sorenson and Audia

(2000, p. 435) we calculated the distances in kilometers by using the natural earth

radius constant (c¼ 6378 km) and we split the overall population into two

sub-populations, i.e. LSMs and PROs. Inspired by Whittington et al. (2009) we

calculated the shortest distance on a curved surface not only for each LSM to all

other LSMs but also for each LSM to all PROs in our sample. More precisely, in the

case of the LSM-LSM distances, we generated a symmetric orthodromic distance

matrix for each year under observation (t¼ 1. . .21). The number of rows and

columns is determined by the number of actively operating firms in a given year

(cf. Fig. 5.1, top). Likewise, in the case of LSM-PRO distances, we created

asymmetric orthodromic distance matrices on an annual basis where the number

of columns and rows in a given year is determined by the number of actively

operating LSMs and PROs respectively (cf. Fig. 5.1, bottom). In some cases an

even more detailed separation of the overall sample was needed.15

After these steps, both geographical co-location measures (LDLSM-LSM &

LDLSM-PRO) were calculated by using the following localized density measure

14 If not otherwise stated, in this section we follow the methodological concept proposed by

Sorenson and Audia (2000, pp. 433–435).
15 To account for the heterogeneity of organizations in our PRO sample we put all universities and

technical universities into one group, and all other public research organizations into another.

These measures were predominantly used to check for consistency and robustness in our estima-

tion results (for instance, an additional consistency check of estimation results in Chap. 12).
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proposed by Sorenson and Audia (2000, p. 434) and specified by Whittington

et al. (2009)16:

LDit¼
X
j

1

1þ gdijt
� � ð5:13Þ

An LSM’s localized distance measure at time t is defined as the sum of inverse

distance functions to all other LSMs or PROs respectively. Thus, we end up with

two types of localized density measures for each firm in the sample, each of which

is calculated on an annual basis.

5.3.2 Methods for Calculating Geographical Concentration
Measures

Now we turn our attention to the industry level. The Hirschman-Herfindahl Index

and the Entropy measure are some of the most commonly used industry concen-

tration measures (Acar and Sankaran 1999). Economists have used the Hirschman-

Herfindahl Index (HHI) for quantifying the competiveness of markets and for

analyzing the market shares held by firms in an industry. For the purpose of this

study we draw upon the HHI index in order to set up a geographical concentration

index at the industry level. To do so, we proceeded as follows: First, we used the

planning region scheme, commonly used in Germany for the classification of

territorial units for statistical purposes. This divides the territory into

LSM001

LSM002

LSM003

R00U
R00L

(t=1) LSM001 LSM002 LSM003 LDij1

LSM001 d11 d12 d13 =1/((1+d11)+(1+d12)+(1+d13))

LSM002 d21 d22 d23
LSM003 d31 d32 d33

(t=1) RM00U R00L LDij1

LSM001 d1U d1L =1/((1+d1U)+(1+d1L))

LSM002 d2U d2L
LSM003 d3U d3L

d12

d13

d23

d1L
d1U

dUL

Fig. 5.1 Illustration of symmetric and asymmetric orthodromic distance matrices (Source:

Author’s own illustrations, based on: Sorenson and Audia (2000, p. 434))

16 According to Whittington et al. (2009) the weighting factor x in the numerator of the originally

proposed LD measure was taken to equal one.
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97 geographical areas. Next, we generated a count variable for each type of laser-

related organization in our database – LSMs, PROs and LSPs – that represents the

number of organizations per planning region and year. Then we calculated the

relative proportion of organizations on an annual basis for each planning region i

(with I¼ 1. . .97). Finally, three concentration indices were established, one for

each of the three organizational subsets in our database (i.e. LSMs, PROs or LSPs),

by applying the following equation:

HHIt ¼
X
i

p2it ¼
XN

i
a2itXN

i
ait

	 
2
ð5:14Þ

We ended up with an indicator that allows us to quantify the intensity of

organizational crowding in the geographical space. The HHI moves towards zero

if the organizations under observation are equally dispersed throughout the geo-

graphical space; the HHI has comparably large values if some organizations are

widely dispersed whereas others show a pronounced tendency to crowd together.
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Chapter 6

Dataset Design and Estimation Methods

All models are wrong, but some models are useful.
(George E.P. Box 1979)

Abstract The phenomenon under investigation guides the data collection process,

the structural design of the dataset as well as the choice of empirical methods

(Blossfeld et al. 2007, p. 4). The data collection process for the German laser

industry database was described above. Now, we will turn our attention to the

two latter points. Chapter 6 is divided into two sections: Section 6.1 presents the

two compiled datasets. On the one hand, an event history dataset was constructed to

analyze the propensity and timing of laser source manufacturers to cooperate and

enter the German laser industry innovation network. On the other hand, a panel

dataset was employed to analyze the determinants of firms in the German laser

industry from various angles. Section 6.2 provides an overview and general dis-

cussion of estimation methods which were applied in Part IV of this book. We start

with a brief discussion on non-parametric event history analysis models using

continuous time, followed by an introduction of econometric models for panel

count data.

6.1 Design and Scope of the Compiled Datasets

In essence, there are three types of dataset designs: cross-sectional datasets, panel

datasets and event history datasets (Blossfeld et al. 2007, pp. 5–21). Due to the aim

of this study focus is placed on the two latter dataset designs.

6.1.1 Dataset I: Event History Data Structure

The use of event history analysis methods requires a relatively demanding data

design. Firstly, the compilation of an event-oriented longitudinal dataset requires

the appropriate choice of time intervals and information on the origin state and

destination state (Blossfeld et al. 2007, p. 42). Secondly, data has to be organized in
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an event-oriented design in which each record is related to a particular duration in a

predefined state (Blossfeld et al. 2007, p. 42). Finally, precise time-tracking of start

and end dates is needed for the event under investigation to analyze the transitions

from one state to another.

Some issues, however, require particular attention. The most notable is the setup

of the analytical framework. Both dimensions of the analytical framework – “state

space” and “time space” – have to be defined carefully to avoid misspecification

(Blossfeld et al. 2007, p. 38). The choice of these two dimensions is driven by

theoretical considerations and determines the choice of the empirical estimation

models. In general, there are four types of models: the “single episode model”,

“multi state model”, “multi episode model”, and “multi state multi episode model”

(Blossfeld et al. 2007, p. 39).1 For the purpose of this study we employed a design

that is based on the following considerations. On the one hand, we seek to

understand what factors determine a firm’s propensity to cooperate for the first

time and enter the laser industry innovation network. On the other hand, we are

interested in the factors that affect the length of time until the first cooperation

occurs. Consequently, we constructed a single-episode event history dataset that

provides the basis for conducting a non-parametric spell-duration analysis.

The single-episode event history dataset for the German laser industry is

constructed and organized as follows: The time axis is defined on the basis of

century months. All firm foundation dates as well as all start and end dates of

cooperation events are given in century months. The unit of analysis is the firm. In

cases where the number of censored observation units is small, it is acceptable to

simply exclude them (Allison 1984, p. 11). Thus, firms founded before 1990 were

excluded from the dataset to avoid left truncation and left censoring problems

(Blossfeld and Rohwer 2002, pp. 39–41). Starting from the full population of

233 LSMs in our sample we identified 39 firms which were founded before 1990.

Thus, a total of 194 firms were potentially at risk for conducting the first cooper-

ation event. Out of this population we ended up with a total of 112 firms with at

least one cooperation event during the observation period. The event of interest is

the first cooperation for all laser manufacturing firms which are at risk in the time

period between 1990 and 2010. The dataset allows us to analyze the transition from

the origin state (“no cooperation”) to the destination state (“first cooperation”).

These two states allow us to define the risk set. At the same time the initial

cooperation event marks the firm’s entry into the network. Repeated events were

1 Single episode models allow for event transitions from the origin state to the destination state

whereas multi-state models allow us to analyze event transitions from the origin state to multiple

destination states. In contrast, multi-episode models allow for repeated events or event transitions

over time. Finally, multi-state multi-episode models can be applied to analyze both repeated

episodes and repeated events. For further details see (Blossfeld et al. 2007).
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not considered. Firms were basically considered to have two ways of entering the

German laser industry innovation network. The first cooperation event can be either

participating in a Foerderkatalog project or in a CORDIS project. Both types of

cooperation event were coded separately by using a dummy variable. All event

occurrence dates and durations were recorded in century months. Variables were

grouped in the following categories: organizational, relational and contextual.2

Organizational variables3 were included in the dataset to account for hetero-

geneity across firms. In particular these variables are firm origin [origin_ev]4 and
firm size [firmsize_cat_ev]. 5 Additionally, a simple dummy variable was created to

differentiate between “young” and “mature” firms [firmage_ev].6 Relational vari-
ables were included in the dataset. Both types of publicly funded R&D cooperation

projects, Foerderkatalog projects as well as CORDIS projects, were coded sepa-

rately [coop_type_ev].7 Occurrence dates and duration were recorded in century

months. Moreover, a set of contextual variables was included in the dataset. For the

first set of geographical variables, we split the sample into four geographical

regions. We included a set of geographical location variables in our dataset

[region_ev]8 indicating whether a firm is located in the northern, southern, eastern

or western part of Germany. Finally, we included a set of cluster variables [clu_ev]
in our dataset indicating whether a firm was located inside or outside of a densely

2Note that the following variables in the event history dataset can differ from those that were

coded and used in the panel dataset. The suffix “_ev” indicates an event oriented variable.
3 Organizational level variables were coded at the date of a firm’s population entry and considered

to be time-invariant for the purpose of the non-parametric spell-duration analysis.
4 Origin dummies are coded on the basis of the following categories: origin_ev1 ¼ new founda-

tion; origin_ev2 ¼ PRO spin-off; origin_ev3 ¼ LSM spin-off; origin_ev4 ¼ other background,

such as: spin-offs from other types of organizations, name change and post-merger firm

formations.
5 The following five size categories were used: firmsize_cat_ev1 ¼ “micro firm” ¼ 1–9

employees; firmsize_cat_ev2 ¼ “small firm” ¼ 10–49 employees; firmsize_cat_ev3 ¼ “medium

firm” ¼ 50–249 employees; firmsize_cat_ev4 ¼ “larger firms” ¼ more than 250 employees. This

categorization is drawn upon the definition proposed by the European Commission (2005).

Missing data for the number of employees were extrapolated based on employee data for the

same firms but other observation windows.
6We used the mean age of the firms (97 months) in the observation period to split the sample.

Definition of “young firms”: firmage_ev ¼ 0 if firmage_ev < ¼ 97 months (8.1 years); “mature

firms”: firmage_ev ¼ 1 if firmage_ev > 97months (8.1 years).
7 The variable coop_type ¼ 1 in the case of a CORDIS project; coop_type ¼ 2 in the case of a

Foerderkatalog project.
8 Definition of the four geographical regions: region_ev1 ¼ Baden-Württemberg (BW) Bavaria

(BY); region_ev2 ¼ Bremen (HB) Hamburg (HH) Schleswig-Holstein (SH); region_ev3 ¼ Berlin

(B) Brandenburg (BB) Mecklenburg-Western Pomerania (MV) Saxony (S) Thuringia (TH)

Saxony-Anhalt (SA); region_ev4 ¼ North Rhine-Westphalia (NW) Lower Saxony (NS)

Rhineland-Palatinate (RP) Saarland (SR) Hessen (H). The variable for Saarland had to be omitted

due to the non-existence of LSMs in this federal state throughout the entire time period.
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crowded region. The four geographical clusters were identified based on the

descriptive analysis in Sects. 7.1.2 and 7.1.3.9

6.1.2 Dataset II: Panel Data Structure

Panel data methods require the data to be in long form, meaning that each individual

time pair in the dataset is a separate observation (Cameron and Trivedi 2009, p. 274).

The panel dataset for the German laser industry is constructed and organized as

follows: The unit of analysis is the firm year meaning that each firm in the sample is

observed for each year. Thus, we decided in favor of annual time intervals for the

purpose of this study. The panel is unbalanced due to a considerable proportion of

firms entering the sample after 1990 (i.e. new foundations, spin-offs etc.) or leaving

the sample before 2010 (i.e. mergers, bankruptcies etc.). Unbalanced data usually

causes no significant complications as most empirical methods are designed to handle

both balanced and unbalanced panel data (Cameron and Trivedi 2009, p. 230).

Over the course of 21 years we have a total of 233 laser source manufacturers

(LSMs) and 2,645 firm years. Thus, we have an average of 11.35 observations per

firm. The dataset contains time-variant as well as time-invariant variables organized

in content-specific groups of explanatory variables.10

The first group of variables encompasses all firm-specific variables. A linear firm

age variable [firmage] as well as a squared firm age variable [firmage_sq] were

generated on the basis of firm entry and firm exit dates. Both age variables in our

panel dataset are recorded on an annual basis. Data on yearly turnover for each firm

provides the basis for the calculation of a time-invariant average turnover variable

for each firm in the sample [avgturnover]. A set of dummy variables was

constructed to account for the origin of firms in the sample [origin]11 and a second

set of dummies was generated to account for differences in legal status across firms

[leg_stat].12 In addition, the yearly number of employees was used to code a set of

firm size dummies [firmsize_cat].13

9 These clusters are defined as follows: planning regions: 72, 73, 74, 76 & 77¼ clu_ev_bw, located

in Baden-Württemberg; planning regions: 86, 90 & 93¼ clu_ev_bay, located in Bavaria: planning

regions: 54 & 56 ¼ clu_ev_thu, located in Thuringia; planning region 30 ¼ clu_ev_B, located in

Berlin.
10 Note that we had to choose a more detailed categorization for most of the panel data variables

due to the theoretical considerations (cf. Chaps. 10, 11 and 12).
11 Origin dummies are coded on the basis of the following categories: origin1 ¼ new foundation;

origin2¼ name change; origin3¼ post merger firm; origin4¼ PRO spin-off; origin5¼ LSM spin-

off; origin6 ¼ spin-offs from other types of organizations.
12 Legal status dummies are coded on the basis of the following categories: leg_stat1 ¼ GmbH;

leg_stat2 ¼ GmbH & Co; leg_stat3 ¼ GmbH & Co KG; leg_stat4 ¼ OHG; leg_stat5 ¼ AG;

leg_stat6 ¼ other.
13 The following five size categories were used: firmsize_cat1 ¼ “micro firm” ¼ 1–9 employees;

firmsize_cat2 ¼ “small firm” ¼ 10–49 employees; firmsize_cat3 ¼ “medium firm” ¼ 50–249

employees; firmsize_cat4 ¼ “large firms” ¼ 250–749 employees; firmsize_cat5 ¼ “very large
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The second group of variables encompasses all geographical measures on a firm

level, regional level and industry level. All geographical variables are coded on the

basis of annually updated address data for three types of laser-related organizations:

LSMs, PROs and LSPs. At the firm level a set of geographical dummy variables for

each LSM was generated indicating the federal state in which the firm is located

[fed_state].14 Two types of geographical co-location measures [coloclsm,
colocpro] were included in the dataset which were calculated on the basis of the

localized density measures outlined above (cf. Sect. 5.3.1). Additionally we split

the PRO sample into two sub-samples.15 Localized geographical density measures

were generated by calculating all distances between LSM and PROs in both

sub-samples separately [colocpro_appl, colocpro_basic]. In order to get a picture

of geographical concentration tendencies at the industry level, HHI indices were

calculated for LSMs, LSPs and PROs (cf. Sect. 5.3.2) and included in the dataset

[hhi_lsm; hhi_lsp; hhi_pro].
The third group of variables encompasses all cooperation-related variables. Data

on publicly funded cooperation projects from both “Foerderkatalog” as well as

“CORDIS” databases were used to generate cooperation counts [coopcnt_fk;
coopcnt_c], cumulative cooperation counts [coopcum_fk; coopcum_c] and coop-

eration funding [coopfund_fk; coopfund_c] on an annual basis. Based on these

measures several combined variables were generated which include both project

types [coopcnt_fkc; coopcum_fkc; coopfund_fkc]. All cooperation funding vari-

ables are measured in thousand euros.

The fourth group of variables encompasses network variables calculated at three

levels of analysis16 (cf. Sect. 5.2). The following network level variables were

included in the dataset: overall network density [nw_density], network size

[nw_size], clustering coefficients [nw_clust] a weighted clustering coefficient

[nw_wclust], a network fragmentation measure [nw_compcnt] and an average

reachability measure [nw_areach]. The next set of network variables allows us to

quantify the structural configuration of ego network characteristics for each firm in

the sample. In particular these ego network variables measure the ego network size

[ego_size], the ego network density [ego_density] and two ego network-based

brokerage indicators [ego_broker; ego_nbroke]. The last set of network variables

firms” ¼ more than 750 employees. Missing data for the number of employees was extrapolated

based on employee data for the same firm but for other firm years.
14 Definition of federal state dummies: fed_state1 ¼ Baden-Württemberg (BW); fed-state2 ¼
Bavaria (BY); fed_state3 ¼ Berlin (B); fed_state4 ¼ Brandenburg (BB); fed_state5 ¼ Bremen

(HB); fed_state6¼ Hamburg (HH); fed_state7¼ Hessen (H); fed_state8¼Mecklenburg-Western

Pomerania (MV); fed_state9 ¼ Lower Saxony (NS); fed_state10 ¼ North Rhine-Westphalia

(NW); fed_state11 ¼ Rhineland-Palatinate (RP); fed_state12 ¼ Saarland (SR); fed_state13 ¼
Saxony (S); fed_state14 ¼ Saxony-Anhalt (SA); fed_state15 ¼ Schleswig-Holstein (SH);

fed_state16 ¼ Thuringia (TH). The variable for Saarland had to be omitted due the

non-existence of laser source manufacturers in this federal state throughout the entire time period.
15 The full population of 149 PROs is a relatively heterogonous group of organizations. Some

predominantly focus on applied research whereas others mainly conduct basic research.
16We used UCI-Net 6.2 if not otherwise stated (Borgatti et al. 2002).
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measures the strategic network positioning of each firm within the network. The

following network centrality measures were included in the dataset: degree cen-

trality [ctr_degree], betweenness centrality [ctr_between], two reach-based mea-

sures [ctr_2step; ctr_ard] and two power-related measures [ctr_ev; ctr_bon]. The
last group of variables encompasses innovation indicators measured by patent count

variables. Patent application counts [pacnt] and patent grant counts [pgcnt] were
recorded on an annual basis and included in the dataset. Lag variables were

generated for both variables with a lag of 1 year [pacnt1; pgcnt1], 2 years

[pacnt2; pgcnt2] and 3 years [pacnt3; pgcnt3].

6.2 Introducing Selected Econometric Methods

In this section we turn our attention to longitudinal econometric methods. The

discussion addresses general issues connected to event-history and panel data

estimation methods. Specific issues are addressed in the context of their application

later this book.

6.2.1 Event History Analysis Methods

There are basically three classes of event history methods: non-parametric methods,

parametric methods and semi-parametric methods (cf. Allison 1984, p. 14).

Non-parametric models do not make distributional assumptions. Parametric models

assume that the time until an event of interest occurs follows a specific distribu-

tional form. Semi-parametric models make no assumption with regard to the

distribution of event time. But these models require a specification of a regression

model with a specific functional form (cf. Allison 1984, p. 14).

As stated above, we focus on non-parametric event history methods to analyze

cooperation events of German laser source manufacturers. Non-parametric esti-

mation methods do not make any assumptions about the distribution of the process

under investigation and are well suited for an initial analysis of a specific pheno-

menon (Blossfeld et al. 2007, p. 58). The most commonly used non-parametric

approach is the Life-Table method. However, this approach has some notable

limitations (Blossfeld and Rohwer 2002, p. 56). First, the method requires the

pre-specification of fixed and discrete time intervals. Second, to ensure the reliabil-

ity of estimates conditional for each interval, the Life-Table method is usually

applied in the case of a relatively large number of episodes. To overcome these

restraints an alternative non-parametric approach has been proposed, i.e. the

Product-Limit estimator, also known as the Kaplan-Meier method (Kaplan and

Meier 1958).
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The Kaplan-Meier method is a non-parametric empirical method that estimates

the survivor function based upon longitudinal event data (Cleves et al. 2008, p. 93).

In general, the survival function gives the probability of surviving past time t, or to

put it in another way, the probability of failing after time t (ibid). The Kaplan-Meier

method provides some notable advantages. The method is straightforward to use,

requires only weak assumptions and allows us to analyze non-repeated events in

single-episode event history data. In this study we are interested in the German laser

source manufacturers’ propensity to cooperate for the first time and enter the

innovation network as well as the length of time until the first cooperation occurs

on average. Consequently, based on the risk set specified above we define and

interpret the survival function as follows: the survival function estimates the firms’

probability of having the first cooperation event after time t. In our case the survival

function reflects the probability of moving from the origin state (“no cooperation”)

to the destination state (“first cooperation”) at a given point in time. In addition,

both the variance and the confidence interval can be calculated by using Green-

wood’s variance formula of the survival function and the asymptotic variance of the

logarithm of the survival function respectively.17

In some cases the hazard rate18 or the cumulative hazard rate function is of

interest rather than the survival function itself. We focus on the latter concept as it

allows us to measures the overall risk that has been accumulated up to time t

(Cleves et al. 2008, p. 8). There is a simple relationship between the survival

function and the cumulative hazard rate.19 A simple interpretation of the cumulative

hazard rate is that it records the number of times we would theoretically expect to

observe the occurrence of an event (Cleves et al. 2008, pp. 13–15). It is important to

note that cumulative hazards must be interpreted in the context of repeated events

regardless of whether the event of interest is, due to its very nature, repeatedly

observable or not (ibid).20 The commonly used method to calculate the cumulative

hazard rate is the Nelson-Aalen estimator. The reason is that the Nelson-Aalen

estimator exhibits better small-sample properties than the Kaplan-Meier estimator

(Cleves et al. 2008, p. 108).

Non-parametric estimation methods provide the opportunity to compare survi-

vor functions. The overall population can be divided into two or more subgroups by

using an indicator variable to analyze whether the probability of failing after time t

significantly differs among these subgroups. The indicator variable defines the

membership in a particular subgroup based on firm-specific characteristics

17 For an in-depth description of the calculation methods see Cleves et al. (2008, p. 96).
18 The hazard rate function h(t) can vary from zero to infinity and is also known as the conditional

failure rate. It is defined as “[. . .] the (limiting) probability that the failure event occurs in a given

interval, conditional upon the subject having survived to the beginning of the interval, divided by

the width of the interval” (Cleves et al. 2008, p. 7).
19 The cumulative hazard function H(t) is defined as: H(t)¼� ln{S(t)}¼ R

t
0h(u) du, where S

(t) represents the survival function and h() gives the hazard function (Cleves et al. 2008, p. 107).
20 To illustrate this point, cooperation events can occur several times in a firm’s lifespan whereas

other events such as firm exits occur only once.
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(Blossfeld et al. 2007, p. 76). Using these preparatory steps, separate survival

functions are calculated for the members of each subgroup. We apply this approach

to analyze the extent to which firm-specific characteristics affect the cooperation

behavior over time.

The simplest way to check for statistically significant differences in survivor

functions is to calculate and compare the confidence intervals for the estimated

survivor functions. The survivor functions are said to be significantly different as

long as the confidence intervals are not overlapping (Blossfeld et al. 2007, p. 76).

The more comprehensive approach is to calculate a test statistic.21 For the

purpose of this study we make use of the most commonly applied test statistics,

i.e. the Log-Rank test, Cox test, Wilcoxon-Breslow test and Tarone-Ware test.

These tests are designed to compare globally defined overall survival functions

(Cleves et al. 2008, p. 123). Even though these tests provide, in most cases,

relatively similar results, it can be useful to calculate and compare alternative test

statistics. One reason for this is that some tests (e.g. Wilcoxon-Breslow) emphasize

differences in survivor functions at the onset of the observation period whereas

other test statistics (e.g. Log-Rank) stress the differences at the end of the obser-

vation period (Blossfeld et al. 2007, p. 81). Several alternative test statistics have

since been proposed. For instance the Cox test is very similar to the Log-Rank test

whereas the Tarone-Ware test, like the Wilcoxon-Breslow test, puts more weight on

earlier time slots.22 Common to all these test statistics is that they are χ2-distributed
with m-1 degrees of freedom.23 The tests are based on the null hypothesis that the

survivor functions do not differ significantly from each other (Blossfeld et al. 2007,

p. 81). A significant test result indicates that the null hypothesis must be rejected

(ibid), or to put it another way, the rejection of the null hypothesis based on a

significant test result supports the alternative hypothesis that the compared survivor

functions differ significantly from one another.

6.2.2 Econometric Methods for Panel Count Data

The econometric analysis of firm innovativeness based on patent data requires the

use of a particular category of estimation methods, so-called count data methods.

Patent data, which is the same as other types of count data,24 takes discrete

non-negative integer values (Wooldridge 2002, p. 645) and is typically highly

21 For a description of the general approach to construct test statistics to compare non-parametric

survival functions, see Blossfeld and Rohwer (2002, pp. 79–81).
22 For an in-depth discussion on other further tests (e.g. Peto-Peto-Prentice test or the Fleming-

Harrington two-parameter test), see Cleves et al. (2008, pp. 122–128).
23 The degree of freedom is determined by the number of pre-specified subgroups. Thus, the

variable m takes the value 2 in the case of two subgroups (Blossfeld et al. 2007, p. 81).
24 For a brief overview of other count variables analyzed in economics and social science see

(Wooldridge 2002, p. 645).
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skewed making the use of conventional linear models inappropriate (Cincera 1997,

p. 266). Moreover, a considerable fraction of patent data observations takes on the

value zero so that a natural log transformation of the dependent variable in linear

models is not possible (Wooldridge 2002, p. 645). Consequently, for count data it is

advisable to model the population regression directly and to choose a functional

form that ensures positivity for the vector of explanatory variables and any param-

eter values possible (ibid). As long as the dependent variable has no upper limit, an

exponential function is an appropriate choice to meet these requirements (ibid). In

general, count data models can be used to analyze cross-sectional as well as

longitudinal data. Due to the aim of the present study, focus is placed on the

longitudinal models. In their seminal work on the analysis of firm-level R&D

activities, Hausman et al. (1984) propose econometric models which are in many

cases still the model of choice for the analysis of longitudinal patent count data.

We will start with a brief discussion on panel data characteristics. Even though

panel data methods are more complicated than cross-sectional methods, they

provide considerable additional value as they allow data to be analyzed that

encompasses both variation across individual units as well as variation over time

(Cameron and Trivedi 2009, p. 229). The fundamental advantage of panel data is

that it allows great flexibility in modeling differences across individual units

(Greene 2003, p. 284). For instance, a set of firms is by no means homogeneous

as all firms involved differ from one another in several dimensions. Panel data

allows us to cope with the problem of unobserved heterogeneity (Kennedy 2003,

p. 302). Both fixed and random effects models are associated with some notable

advantages and disadvantages that are discussed later. Panel data alleviates

multicollinearity problems by creating more variability through combining varia-

tion across individual units and across time (Kennedy 2003, p. 302). In addition,

panel data allows the analysis of dynamic adjustments which can be crucial in

understanding economic phenomena (ibid). Panel data consists of repeated mea-

surements at different points in time, usually observed in regular time intervals, on a

well-defined set of individual units such as a spatially and sectorally delimited set of

firms. In other words, panel data are repeated observations of the same cross section

of firms (Wooldridge 2002, p. 7).

In general, one can distinguish between short panels (i.e. many individual

observations across a few time periods) and long panels (few individual obser-

vations across many time periods) or panels where the cross-sectional and the time

series dimension are roughly of the same magnitude (Cameron and Trivedi 2009,

p. 230; Wooldridge 2002, p. 7). Most panel data methods can handle both balanced

as well as unbalanced panels (Cameron and Trivedi 2009, p. 230). In the first case,

the full set of individual units is observed over all time periods whereas in the

second case a considerable fraction of individual units are observed for fewer time

periods. Due to the aim of this study and the structural features of the laser industry

panel dataset (cf. Sect. 6.1.2) we focus below on single equation models for

analyzing short, unbalanced panels.
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Now we turn our attention to the choice of model. In many cases the explanatory

variables of our count data model reveal empirical evidence for overdispersion.25

There are several ways to deal with overdispersion in count data models. Com-

monly, overdispersion that is induced by unobserved heterogeneity is accounted for

by estimating Negative Binomial models (NB model) instead of the intuitive

standard Poisson model. The NB model is more general than the Poisson model

because it allows for increased dispersion by incorporating an additional parameter

α. The variance is a linear function of the mean that can be transformed into a

Poisson model (Cameron and Trivedi 1986). The NB model reduces to the Poisson

Model as α ! 0 (Winkelmann 2003). It enables us to deal with a predominance of

zero and small integer values (Cameron and Trivedi, 1986). Finally, we have to take

a brief look at the differences between models that allow for a correlation between

the explanatory variables and the time-invariant component of the error term, and

models which require the unobserved effects and the explanatory variables to be

completely uncorrelated (Wooldridge 2002, p. 668). In the former case we have a

fixed effects model and in the latter case a random effects model. Pioneering work

on the analysis of unobserved effects in panel count data has been conducted by

Hausman et al. (1984) who developed a fixed effects and random effects model

under full distributional assumption (Wooldridge 2002, p. 668). Panel data shows

two types of variation. Variation from one observation to another observation for an

individual unit is called “within-variation” whereas the variation from one indi-

vidual unit to another individual unit is called “between-variation”. The fixed

effects model ignores variation across individuals and uses only within-variation

for all individual units over all observation windows (Kennedy 2003, p. 307). It is

important to note that the coefficient of the regressor in fixed effects models will be

incorrectly estimated or not identified with little or no within-variation (Cameron

and Trivedi 2009, p. 238). Fixed effects models have some important advantages.

The fixed effects estimator is unbiased because it includes dummy variables for the

different intercepts and is more robust against selection bias problems compared to

the random effects estimator (Kennedy 2003, p. 304). However, fixed effects

models also have two considerable drawbacks. Firstly, all time-invariant explana-

tory variables are thrown out because the estimation procedure fails to estimate a

slope coefficient for variables that do not vary within an individual unit (Kennedy

2003, p. 304). Secondly, using only within-variation leads to less efficient estimates

and the model loses explanatory power (Cameron and Trivedi 2009, p. 259). The

random effects model compensates for this disadvantage.

The random effects estimator takes advantage of within-variation as well as

between-variation in panel data (Cameron and Trivedi 2009, p. 256) by using cross-

sectional variation in panel data and by running OLS estimation on the average

values for each individual unit in order to calculate a (matrix) weighted average of

both between-estimators and within-estimators (Kennedy 2003, p. 307). The

random effects model has several advantages compared to the fixed effects

25 The procedure to check for overdispersion was proposed by Cameron and Trivedi (1990).
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model. On the one hand random effects estimators make better use of the informa-

tion values of patent data and generate efficient estimates with higher explanatory

power. In addition, a random effects estimator can generate coefficient estimates of

both time-variant and time-invariant explanatory variables (Kennedy 2003, p. 307).

However, these advantages are not without a downside. The major drawback of the

random effects model is that correlations between the error term and explanatory

variables generate biased estimates (Kennedy 2003, p. 306). In other words, the

random effects estimator generates inconsistent results when the model assump-

tions are violated.

In summary, the main difference between the estimation techniques is that fixed

effects models allow for correlation between the unobserved individual effect and

the included explanatory variables whereas random effects models require the

unobserved individual effect and the explanatory variables to be uncorrelated

(Greene 2003, p. 293).

The question remains whether fixed effects models or random effects models

should be applied. Hausman (1978) has proposed a specification test to select the

appropriate model. The basic idea of the Standard Hausman specification test is to

test the null hypothesis that the unobserved effect is uncorrelated with the expla-

natory variables (Greene 2003, p. 301). In the case that the null hypothesis cannot

be rejected, both the fixed effects estimates and the random effects estimates are

consistent and the model of choice is the random effects model due to its higher

explanatory power. Under the alternative, random effects and fixed effects esti-

mators differ and it can be argued that the latter model is the appropriate choice

(Cameron and Trivedi 2009, p. 260).

Nonetheless, choosing the model based on the Standard Hausman specification

test is controversial for two reasons. First, there is an interdisciplinary controversy

of whether consistency should be preferred over efficiency. Microeconometric

literature advocates the use of fixed effects models whereas most other branches

of applied statistics tend to give preference to random effects models due to

their higher explanatory power (Cameron and Trivedi 2009, p. 230). Second, the

Standard Hausman specification test itself has serious shortcomings because it

requires the random effects estimator to be efficient (Cameron and Trivedi 2009,

p. 261). In the case of unbalanced panels, a robust version of the specification test

can alleviate the latter point (Cameron and Trivedi 2009, pp. 261–262).
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Part III

Descriptive Analysis



Chapter 7

Industry Dynamics and Geographical
Concentration

Use a picture. It’s worth a thousand words.
(Arthur Brisbane 1911)

Abstract A natural starting point for the descriptive part of this book is to look at

the industry as a whole. The results of our initial industry level analysis provide the

basis for exploring cooperation activities in the following sections. This chapter is

divided into two sections. Section 7.1 focuses on industry dynamics and geograph-

ical concentration patterns in the German laser industry. The initial descriptive

exploration provides a comparison of industry dynamics, geographical concentra-

tion indices and spatial distribution patterns for three types of laser-related organi-

zations – laser source manufacturers (LSMs), laser system providers (LSPs) and

laser-related public research organizations (PROs). Section 7.2 focuses on LSMs

that constitute the core of the industry due to their central position along the

industry value chain. Our analysis reveals some interesting insights by uncovering

entry and exit dynamics of LSMs on an annual basis and illustrating the size

distribution of firms at the regional and national level. Finally, we take a closer

look at the public research landscape in the German laser industry by exploring the

structural composition of all PROs in the sample.

7.1 Exploring the German Laser Industry from Various
Angles

This section will begin by focusing on industry dynamics1 and geographical

concentration patterns in the German laser industry.

1 For an in-depth discussion on industry evolution in the German laser industry see Buenstorf

(2007). We had to identify all organizational entities under investigation at firm or business unit

level to meet the requirements of our study. The consequence is that the following descriptive

findings can differ from the industry evolution patterns reported by Buenstorf (2007).
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7.1.1 Industry Dynamics – An Overview of the Major Trends

Figure 7.1 shows the total number of LSPs (black line), PROs (gray line) and LSMs

(dotted gray line) in Germany in the past 20 years. It is immediately apparent that

the yearly number of LSPs exceeds the number of LSMs and PROs throughout the

entire period under observation. The early period between 1990 and 1992 is

characterized by a strong growth tendency for LSPs followed by a stagnating period

between 1992 and 1996. The following decade is characterized by an almost stable

growth trend with minor fluctuations followed by a peak in 2005. The last 5 years

are characterized by a slight decrease in numbers. With the exception of some

minor differences, the overall LSM trend mirrors the long-term LSP trend for the

most part. However unlike the LSPs, the number of LSMs stagnates between 1992

and 1996 and is at a significantly lower level throughout. The number of LSMs

decreases slightly after 2005, however in the last 5 year period, there are some

notable differences between the LSM curve and the LSP curve. This is highlighted

by a short but accentuated increase in LSMs followed by a relatively high number

of firm exits in 2008.

The PRO line on the graph shows the total number of laser-related universities

and public research organizations per annum. The pronounced increase in PROs

between 1990 and 1991 is mainly the result of the integration of former GDR

research facilities into the FRG’s sectoral laser industry innovation system. In

general, there is a less marked increase in PROs than in LSMs and LSPs. After

1991, the number of PROs remains remarkably stable during the entire period under

observation.
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Fig. 7.1 Industry dynamics – overall trends between 1990 and 2010 (Source: Author’s own

calculations and illustration)
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To obtain a more detailed picture of the industry we will now turn our attention

to geographical aspects. More precisely, we will explore geographical concentra-

tion indices at the industry level and spatial distribution patterns at the state level.

7.1.2 Geographical Concentration

Figure 7.2 illustrates the geographical Herfindahl-Hirschman Indices (HHI-indices)

which are calculated on an annual basis and broken down by type of organization

(LSP, PRO, LSM).2

The graph also includes an average trend line seen here as a dotted black line. It

represents the average concentration for all organizations in our sample: LSPs,

PROs and LSMs. We can observe a general decrease in concentration which

amounts to an increasing geographical dispersion of laser-related organizations in

Germany over time. The HHI indicates an overall industry concentration of 0.062

index points at the beginning of the observation period in 1990. Average concen-

tration decreases until 2003 after which the trend remains stable at around 0.04

index points.

However, a closer look at the geographical concentration tendencies, broken

down by organizational type, reveals some interesting insights. LSPs (black line)

have the highest geographical concentration at the beginning of the observation

period of about 0.13 index points. This is followed by a comparably sharp decrease

in concentration over time.

In contrast, the geographical dispersion tendency is less pronounced for LSMs

(gray dashed line). The LSM concentration level starts at about 0.08 index points in

1990 and, after decreasing sharply in the first 2 years, they level off at around 0.06

index points in 1996. After some minor fluctuations between 1996 and 2001, the

LSM trend stabilizes at about 0.05 index points and remains relatively stable until

the end of the observation period.

Finally, a look at the geographical concentration patterns of PROs (gray line)

reveals a different picture. In contrast to LSMs and LSPs, PROs display an

increasing geographical concentration over time. Between 1990 and 1991 there is

a short but pronounced increase in the geographical concentration of PROs. The

curve remains relatively stable over the course of the next 19 years showing little

fluctuation and remaining at between 0.036 and 0.038 index points.

7.1.3 Spatial Distribution Patterns

Next, we refine our initial findings by changing our analytical perspective and

illustrating the location of laser-related organizations within a geographical space.

Figure 7.3 shows the spatial distribution of LSPs, LSMs and PROs based on laser

2 For a detailed description of the calculation procedure, see Sect. 5.3.2.
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industry maps at four distinct points in time.3 These maps are divided into

97 “Raumordnungsregionen” (i.e. planning regions) in order to provide a fine-

grained picture of the organizations’ positioning within the geographical space.4

LSMs and PROs are illustrated by differently shaped and sized elements on the

maps whereas the number of LSPs is reflected in the shading of the regions.5

The data reveals that the German laser industry included 138 LSPs, 50 LSMs and

110 PROs in 1990. It should be noted that this year saw a relatively high number of

LSMs and PROs in three planning regions: Munich (planning region 93: with

LSMs¼ 10, PROs¼ 7), Berlin (planning region 30: with LSMs¼ 6, PROs¼ 8),

and Stuttgart (planning region 72: with LSMs¼ 3, PROs¼ 7). In addition, Fig. 7.3a

indicates that PROs are quite equally dispersed over the geographical space. This

confirms our previous findings. However, a look at the spatial distribution of LSPs

in this first year provides a somewhat different picture (cf. Fig. 7.3a). The largest

number of LSPs was located in Munich with a total of 44 firms (planning region

93). With eleven firms in Starkenburg (planning region 52), 7 firms in Dusseldorf

(planning region 42) and 6 firms in the Rhine-Main region (planning region 51),

LSPs were concentrated in quite different regions than LSMs and PROs at that point

in time.
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Fig. 7.2 Geographical concentration indices in the German laser industry (Source: Author’s own

calculations and illustration)

3We chose the years 1990, 1996, 2002 and 2008 based on the findings in Sects. 7.1.1 and 7.1.2

since these yearly snap-shots reflect some remarkable turning points for the organizations under

observation.
4 Appendix 2 provides a complete list of the 97 planning regions as applied in this analysis.
5 The ESRI ArcMap 10.0 software package was applied to visualize the spatial distribution patterns

in the German laser industry. We would like to thank Mr. Michael Barkholz for his support.
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Fig. 7.3 (continued)
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Fig. 7.3 Spatial distribution of LSPs, PROs and LSMs (Source: Author’s own calculations and

illustration)
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In 1996, the total number of organizations increased among all types of organi-

zations to a total of 306 LSPs, 137 PROs and 106 LSMs. The spatial distribution of

PROs remained nearly unchanged over the entire observation period aside from a

few notable exceptions (cf. Fig. 7.3, a–d). However, a comparison of the geograph-

ical locations of PROs in 1990 and 1996 reveals some interesting patterns. Data

indicates that about 50 % of the total increase in PROs between 1990 and 1996 took

place in only three planning regions – the Upper Elbe Valley (planning region 58:

from 3 to 7 PROs), East Thuringia (planning region 56: from 1 to 4 PROs) and

Berlin (planning region 30: from 8 to 13 PROs). All of these regions are located in

the eastern part of Germany (cf. Fig. 7.3b). In 1996, the number of PROs in Munich

remained just as high as in the years before. A closer look at the geographical

distribution of LSMs between 1990 and 1996 shows that these firms entered the

scene in 15 additional planning regions. In other words, in 1996, we can find at least

one LSM in 39 out of every 97 planning regions. Once again Munich has the highest

number of LSMs in a given year with a total of 15 firms. The sharp increase in

LSMs in Berlin (from 6 to 12 LSMs) and East Thuringia (from 0 to 10 firms) by

1996 is quite remarkable. Finally, this period is marked by the emergence of LSPs

throughout the entire landscape with the highest increases in LSPs in the western

and the southern parts of Germany (cf. Fig. 7.3b). This is reflected in the doubling of

LSPs in the Rhine-Main area (planning region 51), Dusseldorf (planning region 42),

and Starkenburg (planning region 52). The number of LSPs in Stuttgart (planning

region 72) rose considerably (from 2 LSPs in 1990 to 13 LSPs in 1996). Not

surprisingly, the Munich region shows the highest presence of system providers

(a total of 65 LSPs) at that time.

By 2002, the total number of organizations had again increased throughout all

three categories. Data for this year shows there were 458 LSPs, 160 LSMs and

142 PROs. A comparison of 1996 and 2002 reveals some remarkable patterns. We

will start by looking at LSMs (cf. Fig. 7.3c). Compared to 1996, the number of firms

in the dominant southern regions increased on average by about 30 % – Stuttgart

(planning region 72: by 33 %), Southern Upper Rhine (planning region 77: by

25 %), and Munich (planning region 93: by 33 %). In contrast, the eastern regions

present a rather heterogeneous picture between 1996 and 2002. The total number of

LSMs increased at quite a different rate. For instance, Berlin (planning region 30)

shows a pronounced increase of 83 % to a level of 22 LSMs in 2002. By contrast,

data for East Thuringia (planning region 56) indicates a moderate increase of 20 %

to a level of 12 LSMs in 2002. Neither the number nor the positioning of the PROs

in the geographical space changed substantially compared to the situation in 1996.

A closer look at the PROs reveals that research facilities in the regions of the Upper

Elbe Valley (planning region 58: with 7 PROs), East Thuringia (planning region 56:

with 4 PROs), Berlin (planning region 30: with 15 PROs) and Munich (planning

region 93: with 7 PROs) clearly dominated the scene. Figure 7.3c illustrates the

increasing dispersion of LSPs throughout the planning regions. Unlike in the

previous years, the number of LSPs in the western regions of Germany increased

at a significantly lower rate. The number of LSPs in Dusseldorf (planning region

42) increased slightly to a level of 18 firms in 2002 whereas Starkenburg (planning

region 52) lost about 4.5 % of its LSPs compared to previous years. The same is true
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for some southern regions like Munich where the number of LSPs remained

constant at 65 firms. Surprisingly, the industrial region of Central Franconia

(planning region 86) exhibited a remarkable growth tendency in the last 6 years

with LSPs increasing from 8 to 17 firms. Finally, two regions in the eastern part of

Germany made significant gains in terms of LSP presence in 2002. The number of

laser source providers in East Thuringia (planning region 56) and Berlin (planning

region 30) nearly doubled over the course of 6 years.

We can identify a total of 472 LSPs, 163 LSMs and 145 PROs for 2008. A

comparison between 2002 and 2008 reveals no great surprises in terms of geo-

graphical concentration for either PROs or for LSMs. In 2008 the number of PROs

in the regions of the Upper Elbe Valley (planning region 58), East Thuringia

(planning region 56), Berlin (planning region 30) and Munich (planning region

93) was at the same level as 6 years previously. In Central Franconia (planning

region 86) one new public research facility entered the scene. 2008 saw an increase

of at least one or more LSMs in 52 % of the planning regions. The number of LSMs

in the dominant regions did not change considerably over the course of 6 years.

During this period the dispersion of LSPs increased slightly. Figure 7.3d illustrates

the increasing emergence of LSPs in regions around Berlin (planning region 30),

East Thuringia (planning region 56), Munich (planning region 93), Stuttgart (plan-

ning region 72) and Central Franconia (planning region 86).

In summary, the comparably sharp increase in PROs between 1990 and 1996 can

be explained to a large extent by the fact that former GDR research facilities were

being integrated into the German laser industry innovation system after the

reunification. The spatial distribution of PROs in subsequent time periods remained

nearly unchanged. The pronounced increase in LSMs in Thuringia during the early

1990s was largely driven by the reorganization and integration of former state-

owned companies such as VEB Carl Zeiss Jenoptik into the German sectoral

innovation system. In other words, spin-offs are strongly influenced by the domi-

nate actors in the region. In 1996 about 40 % of all laser source manufactures were

located in only five of the 97 planning regions. Berlin had an especially high

number of LSM entries during that time. The following decade was characterized

by industry growth and geographical dispersion tendencies. After a short but

pronounced increase in LSPs in West Germany this trend slowed down in 2002.

In summary, our analysis shows that the laser organizations were concentrated

quite early on in the regions of Munich, Thuringia, Berlin, and in and around

Stuttgart. These geographical areas still constitute the centers of the German

Laser Industry.

7.2 A Closer Look at the Core of the Industry

In this section we focus on LSMs and PROs for the following reasons. As outlined

before, LSMs constitute the core of the German laser industry due to their central

position along the industry value chain. Thus this section explores the entry and exit

dynamics as well as size distribution patterns for the entire population of LSMs

between 1990 and 2010. Breaking up the data into entries and exits reveals some
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details that would otherwise go undetected. Because focus is on innovation net-

works, the technological dimension of the industry has to be taken into particular

consideration. Consequently, we provide some descriptive statistics and give an

overview of all laser-related public research organizations active in the period

between 1990 and 2010.

7.2.1 Exploration of LSM Entry and Exit Dynamics

The upper half of Fig. 7.4 illustrates the number of actively operating LSMs on an

annual basis (cf. Buenstorf 2007; Kudic et al. 2011). Starting with a total of

50 active LSMs in 1990 we observed a total of 183 entries and 83 exits resulting

in a total number of 233 firms throughout the entire observation period. The lower

half of Fig. 7.4 illustrates firm entries (darkly shaded bars) and firm exits (lightly

shaded bars).

Fig. 7.4 Industry dynamics – LSM entries and exits (Source: Author’s own calculations and

illustration)
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The overall trend indicates a 3.4-fold increase in firms over the course of just

15 years peaking in 2005 at 168 firms. This is followed by an overall decrease to

150 LSMs in 2010. Our data indicates the highest number of firm entries in the years

1995, 1999 and 2001 with firm entries peaking in 2001. In contrast, both 1990 and

2010 are characterized by no firm entries at all. However, a relatively high number

of firm exits in 2001 resulted in the steepest net increase in LSMs having occurred in

1999. No LSMs left the industry from 1991 to 1993, nor did any leave in 1996 or

1999. The total number of firm exits peaked in 2000 with eleven LSMs leaving the

industry. However, due to twelve firm entries, the overall industry growth trend

remained unbroken resulting in a marginal increase for this year. Three years later

there is another case of a high fluctuation of entries and exits that are not reflected in

the overall industry growth trend. More precisely, both the number of LSM entries

as well as the number of LSM exits amounts to a total of nine firms in 2003. Unlike

in previous years, firm exits significantly exceeded firm entries in 2006 and 2007.

After an increase in the total number of firms in 2008 we can observe a slightly

increased number of exits at the end of the observation period.

7.2.2 Size Distribution of LSMs at the National Level

Figure 7.5 illustrates the size distribution of German LSMs at the national level.

The bar graph at the top of Fig. 7.5 shows the absolute number of LSMs divided into

five distinct size categories. The line graph at the bottom of Fig. 7.5 shows the

changes in size distribution by presenting the relative terms for each size category.

Firm size categories are based on the number of employees in a firm. Smaller firms

are represented by lighter colored bars and lines while darker shades symbolize

larger firms. To enhance visibility, micro firms are represented by black-hashed

bars and the dotted black line. As before, the period under observation lasted from

1990 to 2010.

We start our analysis by looking at the absolute figures displayed in the bar

graph. To start with, the comparably high number of micro firms and small-sized

firms is striking. At the beginning, more than half of all firms are micro firms. After

a short increase in the number of micro firms in the early 1990s the absolute number

of LSMs remained roughly constant for nearly a decade at around 45–55 firms

before starting to decline after 2005. We can also observe an increase in the number

of small-sized firms over time. Starting with twelve firms in 1990 the number

increases five-fold over the course of 20 years to 59 LSMs. The trend is nearly

the same for medium-sized firms, even though the total number of medium-sized

firms is roughly one half the number of small-sized firms. Accordingly, we can

observe a 4.5-fold rise in the number of medium-sized firms, from six firms in 1990

to 27 firms in 2010. Finally, large and very large firms only begin to play a

significant quantitative role after 1994. At the beginning of the observation period

data indicates there were three large and two very large firms. In both cases the

absolute number of firms quadrupled over the course of 20 years.

The relative values enable us to get a clearer picture of the firm size distribution

within the industry. The line graph provides the relative terms for all five firm size
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categories. The black dotted line represents themicro firms in the sample. It becomes

obvious that micro firms dominated the industry at the onset of the observation

period, not only in absolute terms but also in relative terms. However, the decreasing

trend indicates a diminishing relevance over time of micro firms in comparison to

larger firms. A closer look at small firms reveals a completely different picture. The

line graph clearly indicates a rise in the significance of small-sized firms compared to

other firms in the sample. The same is true for medium-sized firms in terms of

relative figures. In other words, both small and medium-sized firms gain in impor-

tance over time. Finally, the proportion of large firms and very large firms remains

remarkably stable over the entire observation period.

In summary, our descriptive analysis reveals that micro firms, in particular, lost

ground in the German laser industry over time. One possible explanation is that

micro firms outgrow their infancy and, in time, turn into small firms. Small firms

show the highest average growth rates, followed by medium, large and very large

firms. At the end of the observation period small firms dominate the scene. It should

also be stated that due to the moderate but continuous growth of medium-sized

LSMs (by about 20 % up until 2010) there is a clear increase in the presence of both

small and medium-sized LSMs in the German laser industry during the observation

period. Next we explore the size distribution of LSMs at the regional level.

Fig. 7.5 Size distribution of LSMs at the national level (Source: Author’s own calculations and

illustration)
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7.2.3 Size Distribution of LSMs at the Regional Level

Figure 7.6 shows the size distribution of LSMs in a geographical space.6 The level

of analysis is the state level (“Bundesländer”). The vertical axis in the bar graph

represents the number of firms whereas the horizontal axis represents time. For the

sake of clarity, the annual number of firms per region is grouped into 3-year time

intervals.

To start with, we look at the federal states of Bavaria and Baden-Wurttemberg,

both located in the southern part of Germany. Bavaria shows the highest absolute

number of LSMs throughout the entire period of observation. Looking more closely

at firm size distribution reveals that the high number of small and medium-sized

firms is responsible for the above-average presence of LSMs in Bavaria.

In contrast, the majority of large and very large firms are located in Baden-

Wurttemberg. Baden-Wurttemberg also shows a relatively stable trend in firmgrowth

throughout the entire period of observation. The federal state of Thuringia, located in

the eastern part of Germany, reveals a very similar picture to that of Bavaria. In both

cases we see a pronounced growth phase in the early 90s followed by a shakeout at the

end of the observation window. Even though the total number of firms in Thuringia is

lower than in both southern states, we can again observe a relatively high number of

very large firms.Moreover, in all three federal states – Bavaria, Baden-Wuerttemberg

and Thuringia – micro firms lose ground over time whereas small firms and medium-

sized firms are on the rise. In summary, firm size distribution in these three states

follows very similar patterns with only minor exceptions.

The situation looks somewhat different in Lower Saxony since no very large

firms are located in this state. Nonetheless, the relatively high number of micro

firms, small firms and exceptionally the presence of some large firms highlights the

importance of Lower Saxony as a location for LSMs in Germany. The situation in

Berlin is characterized by a comparatively high number of both micro and small

firms. The most plausible explanation for this seems to be the comparably high

number of PRO spin-offs in Berlin. Medium, large and very large firms are

completely missing here.7 This is important to note since otherwise there is a

danger of overemphasizing Berlin in terms of LSM presence. At first glance, the

situation in North Rhine-Westphalia looks quite similar to that of Berlin. However,

the main difference is the existence of a solid stock of medium-sized firms through-

out the entire observation period. Finally, we look at the federal states of Hesse and

Hamburg. The comparatively low presence of LSMs conceals the fact that a small

number of highly relevant actors are located in these regions. As we will see later

the same is true for the federal state of Rhineland Palatinate. The remaining federal

states had a very low number of LSMs throughout the 21 year period. Saarland

shows no LSM presence at all.

6 A similar analysis was previously conducted by Kudic et al. (2011).
7 A contemporary study that focuses on the laser industry in Berlin-Brandenburg confirms this

finding. It found that 94 % of all firms studied have less than 50 employees (TSB 2010, p. 9).
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Fig. 7.6 Size distribution of LSMs at the state level (Source: Author’s own calculations and

illustration)
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7.2.4 Laser-Related Public Research Organizations
in Germany

Figure 7.7 illustrates the composition of public laser-related research facilities in

Germany. Average values are reported since only minor changes occurred to the

composition of the research landscape during the observation period.

Public research organizations (PROs) in Germany that are actively operating in

the field of laser research can be grouped into eight categories. Universities are

divided into three categories – technical universities, universities (in general), and

universities of applied science – and make up about half of all laser-related PROs in

Germany. Laser-related research activities were identified at the chair level and

thereafter aggregated at the overall university level. In total, the proportion of

technical universities, universities and universities of applied science was 10 %,

34 %, and 4 % respectively. Data reveals hardly any fluctuation in terms of

population entries or exits among these organizations over the entire observation

period. Next we turn to non-university research facilities. The German research

landscape is characterized by four large non-university research societies. To start

with, Max Planck Society is a publicly funded, non-governmental and non-profit

organization. Its 80-plus institutes conduct fundamental research in the areas of

natural sciences, life sciences, social sciences and the humanities.8 The proportion

of Max Planck Institutes active in the field of laser research amounts to 5 % on

average. The Helmholtz Association is a community of 18 scientific-technical and

bio-medical research centers which conduct research in the fields of energy, earth

and environment, health, key technologies, structure of matter, aeronautics, space

and transport.9 Our data shows that about 9 % of the laser-related research facilities
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Fig. 7.7 Composition of laser-related PROs in Germany (Source: Author’s own calculations and

illustration)

8 Information from: http://www.mpg.de (Accessed: February 2012).
9 Information from: http://www.helmholtz.de (Accessed: February 2012).
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identified belong to the Helmholtz Association. The Leibniz Association comprises

86 scientifically and organizationally independent research institutions that conduct

research in the areas of natural science, engineering, environmental science, eco-

nomics, social science, infrastructure research and the humanities.10 Our data

shows a sharp increase in Leibniz Institutes at the beginning of the observation

period. Between 1990 and 1993 the number of institutes active in the field of laser

research nearly quadrupled. This can be explained to a large extent by the integra-

tion of former GDR research facilities into the FRG science landscape. Leibniz

Institutes make up, on average, about 6 % of all PROs in the sample.

The last group of institutes is organized under the umbrella of the Fraunhofer

Society. The Fraunhofer Society is Germany’s largest application-oriented research

organization which is made up of around 60 institutes. These institutes primarily

conduct applied research in the fields of health, security, communication, energy

and the environment.11

Our data reveals two interesting facts. Firstly, at the beginning of the observation

period we can again witness a steep increase in population entries. Between 1990

and 1991 we registered a rise by over 50 %; thereafter there was hardly any change

in terms of population entries or exits. The explanation for this is similar to that of

the Leibniz Institutes. Secondly, Fraunhofer Institutes make up the largest percent-

age of non-university research organizations in our sample at about 22 %. Finally,

about 10 % of the overall population, a notable percentage of laser-related PROs, do

not belong to one of the four large German research societies.
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Chapter 8

Evolution of the Industry’s Innovation

Network

In the long history of humankind (and animal kind, too),
those who learned to collaborate and improvise most
effectively have prevailed.

(Charles Darwin)

Abstract At the very heart of this book is the analysis of R&D cooperation and

networking activities of firms in science-driven industries. As outlined before, we

have used two official databases to gather data on nationally and supra-nationally

funded R&D cooperation projects (cf. Sect. 4.2.3). These two data sources provided

the basis for the construction of the German laser industry innovation network.

Network analysis methods (cf. Sect. 5.2) provide us with a broad range of instru-

ments to explore and analyze structural characteristics of networks (Wasserman and

Faust 1994; Degenne and Forse 1999; Carrington et al. 2005; Borgatti et al. 2013).

These methods can be used to analyze both network snap-shots at a particular point

in time, and evolving network patterns over time. This chapter is divided into three

sections. Section 8.1 gives an overview of the organizations involved in publicly

funded R&D cooperation projects from various angles. Based on these findings, we

explore the proportion of LSMs and PROs participating in two types of publicly

funded research projects – “CORDIS” and “Foerderkatalog”. Then, we take an

initial look at the large-scale topology of the German laser industry innovation

network. Next we focus on the evolutionary change patterns of the German laser

industry innovation network. In Sect. 8.2 we start our longitudinal exploration by

analyzing a set of basic node-related and tie-related network measures over time.

In Sect. 8.3 we provide an in-depth analysis of the network topology by testing for

the existence of three distinct large-scale network properties. First, we analyze the

overall degree distribution and check for the emergence of scale-free properties

(Barabasi and Albert 1999). Then we test whether the German laser industry’s

innovation network exhibits small-world properties by applying the method pro-

posed by Watts and Strogatz (1998). Finally, we use different but complementary

methodological approaches to check for the existence of a core-periphery structure

(Borgatti and Everett 1999). We finish off the descriptive analysis by visualizing

the evolution of the German laser industry innovation network over time.
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8.1 Laser-Related Publicly Funded R&D Cooperation

Projects

The aim of this section is threefold. First we provide some basic descriptive

statistics on publicly funded R&D cooperation projects broken down by coopera-

tion type. Then we explore the involvement of LSMs and PROs in the cooperation

projects over time. Finally, we take a look at all cooperation activities between

German laser source manufacturers and laser-related public research organizations

between 1990 and 2010. In other words, we illustrate the transition from a dyadic

perspective to a network perspective by exploring the large-scale topology of the

German laser industry innovation network over the entire observation period.1

8.1.1 Summary Statistics on Publicly Funded R&D
Cooperation

Table 8.1 shows some descriptive statistics on publicly funded R&D cooperation

projects based on both Foerderkatalog and CORDIS data for the period between

1990 and 2010.

The Foerderkatalog data encompasses, in total, information on approximately

110,000 completed or ongoing subsidized research projects. We were able to

identify 416 laser-related R&D cooperation projects for the entire population of

233 German laser source manufacturers. A total of 2,656 organizations were

involved in these projects. Data exploration revealed an overall involvement of

643 LSMs and 570 laser-related PROs. In other words, we found at the project level

a significant degree of interconnectedness among organizations in our sample. Data

on the remaining 1,443 organizations was fully recorded but due to the focus of this

study and related network boundary specifications, they were not included. At the

project level our data reveals a minimum of 2 and a maximum of 33 partners. An

average of 6.39 organizations was involved in each project with a standard devia-

tion of 3.96.

The overall number of project files in the CORDIS database is considerably

smaller and consists of 31,000 files.2 We identified a total of 154 R&D cooperation

projects for the entire LSM population. We found that a total of 189 LSMs and

132 PROs were involved in these projects. As before, other types of organizations

were fully registered but not included as they are not the subject of this analysis.

CORDIS projects are considerably larger than Foerderkatalog projects. The

1We use the standard routines implemented in UCI-Net 6.2 (Borgatti et al. 2002) to calculate

network measures and we employ the software package NetDraw (Borgatti 2002) for the visual-

ization of the German laser industry innovation network.
2 This figure refers to our database extract provided by the CORDIS Service Team, European

Commission (latest update: end of 2010).
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minimum and maximum number of project partners involved at the project level

was two and 53 respectively. The average project size, based on the number of

partners, came to 10.44 with a standard deviation of 8.02.

8.1.2 R&D Cooperation Involvement of LSMs and PROs

Figure 8.1 shows LSM (black line) and PRO (dotted line) participation in publicly-

funded cooperation projects between 1990 and 2010 as expressed in terms of

percentages at the national level. The line graph on the left shows the proportion

of LSMs and PROs participating in CORDIS projects whereas the line graph on the
right illustrates their involvement in Foerderkatalog projects. The line graph below
these illustrates LSM and PRO participation in either CORDIS or Foerderkatalog
projects. Basic descriptive statistics are reported below each of the three line charts.

In general, we can observe an increasing percentage of organizations participat-

ing in publicly funded research projects. CORDIS project data indicates a maximum

percentage of LSM and PRO involvement at 16.23 % and 17.24 % respectively. On

average, cooperation project participation in CORDIS projects is slightly higher for
LSMs (at 8.94 %) compared to PROs (at 8.85 %). In both types of organizations we

see only minor deviations from the upwards-sloping long-term trend. In contrast,

the involvement of LSMs and PROs in Foerderkatalog projects is significantly

higher than in CORDIS projects. The exploration of our data reveals a maximum

participation in Foerderkatalog projects of 44.16 % for LSMs and 54.48 % for

PROs. The average participation of LSMs and PROs in Foerderkatalog projects is

34.11 % and 39.72 % respectively. In addition, we can observe higher fluctuations

for PROs (standard deviation¼ 10.82 %) compared to LSMs (standard

deviation¼ 6.12 %) for the period in question.

Table 8.1 Publicly funded R&D cooperation projects – broken down by cooperation type

Descriptives Foerderkatalog projects CORDIS projects

Overall number of project files 110,000 31,500

Total number of laser-related projects 416 154

Total number of organizations 2,656 1,607

Other types of organizations 1,443 1,286

Total number of LSMs 643 189

Total number of PROs 570 132

Max. no. of organizations at the project level 33 53

Min. no. of organizations at the project level 2 2

Avg. project size (no. of partners) 6.385 10.435

Std. dev. project size (no. of partners) 3.955 8.019

Source: Author’s own calculations
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The overall participation in both types of publicly funded cooperation projects is

displayed in the line graph below. Data on LSMs indicates a minimum participation

of 24.05 % in 1990, a maximum participation of 47.24 % in 2008 and an average

participation of 36.92 %. In contrast, PROs show a significantly lower rate of

involvement in cooperation projects (16.36 %) at the onset. This initially low

involvement in cooperation projects quickly changes direction after a rather short

period of time. The overall participation of PROs in either CORDIS or

Foerderkatalog projects increases about 2.5 times between 1990 and 1998. This

trend continues with nearly the same intensity and some minor fluctuations until the

Descriptive stat. max. min. avg. std. dev. Descriptive stat. max. min. avg. std. dev.
LSM-in-NW-C 16.23% 0.00% 8.94% 5.09% LSM-in-NW-FK 44.16% 22.78% 34.11% 6.12%
PRO-in-NW-C 17.24% 0.00% 8.85% 5.57% PRO-in-NW-FK 54.48% 16.36% 39.72% 10.82%

Descriptive stat. max. min. avg. std. dev.
LSM-in-NW-FKC 47.24% 24.05% 36.92% 6.90%
PRO-in-NW-FKC 59.31% 16.36% 42.74% 12.62%
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Fig. 8.1 Participation OF LSMs and PROs in publicly funded cooperation projects (Source:

Author’s own calculations)
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end of the observation period. As a consequence, the average percentage of PROs

participating in cooperation projects is 42.74 % and the maximum percentage of

cooperation reaches nearly 60 % in 2008.

8.1.3 Large-Scale Network Topology of the Innovation
Network

In general, the visualization of network is no trivial matter. It allows the researcher

to obtain an initial and initiative understanding of the structural configuration of the

system (Borgatti et al. 2013, p. 124). Figure 8.2 illustrates all cooperation activities

between German laser source manufacturers and laser-related public research

organizations between 1990 and 2010.

According to Borgatti et al. (2013, p. 101) there are three basic approaches to

network layout: (a) an attribute-based scatter plot, (b) a multidimensional scaling

(MDS) layout, and (c) graph theory-based layout algorithms.

We visualize the network by using a simple random layout (cf. Fig. 8.2a) and by

applying a spring-embedded layout (Fig. 8.2b) which was originally proposed by

Eades (1984) and Fruchterman and Reingold (1991) and it is still one of the most

commonly used graph theoretical layout algorithms. The basic idea behind the

algorithm is simple. “Its effect is to distribute nodes in a two-dimensional plane

with some separation, while attempting to keep connected nodes reasonably close

together” (Golbeck and Mutton 2005, p. 173). We employ the geodesic distance

criterion, which is defined as the shortest path connecting any pair of nodes in the

network (Wasserman and Faust 1994), to compute the layout. We used NetDraw

2.0 to visualize the network (Borgatti 2002).

These two simple initial explorations already contain some important informa-

tion. For instance, the density of the network structure indicates a pronounced

cooperation propensity among firms and other organizations in the industry. The

size of the node is determined by the network actors’ degree of connectedness

(i.e. the number of direct linkages). Figure 8.2 indicates that some network actors

seem to attract nodes at a higher rate than others. Both types of actors, LSMs3 as

well as PROs,4 seem to be spread out over the entire network and occupy positions

in densely as well as sparsely connected areas of the networks.

However, an in-depth exploration and analysis of the network properties

requires a decomposition of the network. As a result, we apply a time-discrete

3 Each ID in Fig. 8.3 with the syntax: “LSMxxx” represents one of the 233 laser manufacturing

firms. Note that the sequential ID number can be larger than the total number of firms in our

sample.
4 Public research organizations are symbolized by the following abbreviations: Universi-

ty¼ “RxxxU”, University of Applied Sciences¼ “RxxxA”, Technical University¼ “RxxxT”,

Fraunhofer Institute¼ “RxxxF”, Max Planck Institute “RxxxM”, Helmholtz Institute “RxxxH”,

Leibniz Institute “RxxxL” and other laser-related PROs¼ “RxxxD”.
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Fig. 8.2 The German laser industry innovation network. (a) Random layout. (b) Spring-

embedded; degree-based node size (Source: Author’s own calculations and illustration)
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approach and analyze structural changes to both node-related and tie-related net-

work characteristics broken down by year.

8.2 Longitudinal Exploration of Basic Network

Characteristics

In this section we apply an exploratory social network analysis approach (De Nooy

et al. 2005). The primary objective of this method is to reveal structural network

particularities and make them measurable. Emphasis is not on refuting established

structural hypotheses but rather on measuring, exploring and visualizing network

properties. In other words, “[. . .] instead of testing pre-specified structural hypoth-

eses, we explore social networks for meaningful patterns” (De Nooy et al. 2005,

p. 5). Exploratory social network analysis is conducted in four steps: network

definition, network manipulation, identifying network features and visualization

(De Nooy et al. 2005, pp. 5–6).

8.2.1 Basic Network Change Patterns: Measures at the Node
Level

In order to explore basic network measures at the node level over time, we chose a

time-discrete approach and separated the network into annual slices of time. All

network measures are calculated on a yearly basis by using both Foerderkatalog
and CORDIS data. Note that this exploration differs significantly from the analysis

reported before (cf. Sects. 8.1.1 and 8.1.2).

Now we are not focusing on the organizations’ participation in different types of

R&D multi-partner collaborations at the project level but on the involvement of

both types of network actors in the overall German laser industry innovation

network. Figure 8.3 illustrates the network boundaries and the size of the network.

The number of all actively operating LSMs and PROs determines the outer

boundary of the innovation network. In other words, these are all organizations

which are at risk of cooperating, irrespective of whether they are part of the network

or not. All organizations with at least one dyadic R&D linkage to another LSM or

PRO in the sample are considered to be an integral part of the innovation network.

Thus, the outer circle (dotted line) in Fig. 8.3 illustrates the network’s outer

boundaries whereas the inner circle (solid line) reflects the actual size of the

network over time. In 1990, only 20.1 % of all LSMs and PROs in the industry

were actively involved in the innovation network. This comparably small partici-

pation rate nearly doubles over the course of just 5 years. In 1995, we register a

network participation rate of 38.94 %. Despite some minor fluctuations, the partic-

ipation rate continues to grow over the next 10 years. The percentage of LSMs and
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PROs actively involved in the German laser industry innovation network ranges

from 37.35 % in 2001 to 45.53 % in 1998. After 2005 we again record a noticeable

increase in network entries with a maximum network participation rate of 52.92 %

in 2008. Thereafter both trend lines begin to decrease.

In addition to network size, the connectedness of a network is arguably one of

the most salient network features if one wants to get an in-depth understanding of

the structural network configuration itself (Wasserman and Faust 1994, p. 109) and

to understand the evolutionary network change processes over time (Amburgey

et al. 2008, p. 178). A network is called “connected” as long as there is at least one

path that connects all pairs of actors in a network (Newman 2010, p. 142). In

contrast, a “disconnected” network consists of at least two components where a

component is defined as a subgroup of network actors that are connected with one

another but have no connection to other connected network subgroups (Newman

2010, p. 142). Figure 8.4 illustrates the fragmentation of the German laser industry

innovation network broken down by cooperation type. The ordinate records the

number of network components and the abscissa captures the time dimension. On

the left we see the CORDIS network (dotted line), on the right is the Foerderkatalog
network (gray line), and at the bottom is the overall network consisting of both

cooperation types (black line). On average, the CORDIS network is characterized

by a higher fragmentation (average component count¼ 4) and exhibits less pro-

nounced fluctuation tendencies (standard deviation¼ 2.1) compared to the
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Foerderkatalog network (average component count¼ 3.81; standard

deviation¼ 2.8).

Comparing the two networks at two separate time intervals gives us a more

detailed picture. Between 1990 and 2000 the connectedness of the Foerderkatalog
network is clearly more pronounced than that of the CORDIS network. This

tendency, however, changes after 2000. The fragmentation of the Foerderkatalog
increases considerably and reaches a maximum of 12 unconnected network com-

ponents in 2006. The component structure of the overall network reveals a slightly

different picture. Just like with the two separate networks we can see an increasing

tendency towards fragmentation for the overall network over time. This trend,

however, is accompanied by some pronounced fluctuations. The overall network

consists of 3.62 components on average with a standard deviation of 2.33. Between

Descriptive stat. max. min. mean std. dev. Descriptive stat. max. min. mean std. dev.
NW-comp_cnt_C 7 0 4 2.1 NW-comp_cnt_FK 12 1 3.81 2.8

Descriptive stat. max. min. mean std. dev.
NW-comp_cnt_FKC 9 1 3.62 2.33

0

2

4

6

8

10

12

1990 1994 1998 2002 2006 2010
NW-comp_cnt_C

0

2

4

6

8

10

12

1990 1994 1998 2002 2006 2010
NW-comp_cnt_FK

CORDIS FoerderkatalogComponent
count 

Component
count 

0

2

4

6

8

10

12

1990 1994 1998 2002 2006 2010
NW-comp_cnt_FKC

CORDIS & Foerderkatalog Component
count 

Fig. 8.4 Network fragmentation – annual component counts (Source: Author’s own calculations

and illustrations)
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1990 and 1993 and in the year 1997 the network is fully connected and consists of

one single giant component. Only 2 years later, in 1999, we can observe a total of

six components in the overall network. The fragmentation reaches a maximum of

nine unconnected components in 2006 and decreases considerably in subsequent

time periods.

In summary, we gain some interesting insights by exploring the size and

component structure of the innovation network. Nonetheless, several questions

remain unanswered. For instance, the node structure and tie structure within and

between the network components remains entirely unconsidered. These issues will

be addressed later. First, however, we focus on the exploration of some basic

tie-related network characteristics.

8.2.2 Basic Network Change Patterns: Measures at the Tie
Level

The overall network density measure provides an initial indication of a network’s

structural configuration. It simply indicates to what extent the network actors are

connected to each other. Figure 8.5 shows the density measure for the German laser

industry innovation network over time.

The overall density of an unvalued network is defined as the total number of ties

divided by the total number of possible ties. If all nodes of a graph are adjacent, then

it is equal to 1 and the graph is said to be complete (Wasserman and Faust 1994,

p. 102).

The German laser industry innovation network had a maximum overall network

density of 0.441 in 1990. The density decreased continuously until 1998. After a

0

0.1

0.2

0.3

0.4

0.5

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Network 
density

Fig. 8.5 Network density – overall network density (Source: Author’s own calculations and

illustration)
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short-lived density peak in 2000 (NWd¼ 0.118), the overall network density began

decreasing again, reaching a minimum network density of 0.038 in 2010.

Now we turn our attention to global centrality measures originally proposed by

Freeman (1979). Figure 8.6 displays two network centralization indices – degree

and betweenness centralization – for the German laser industry network between

1990 and 2010.

The degree centralization index indicates an alignment of the network actors’

degree centralities over time. The index has a maximum value of 22.74 % in 1990

and decreases with some marginal fluctuations. In 2010, the index reaches a

minimum value of 3.96 % indicating that network actors show only minor dispar-

ities in terms of their degree centralities. Nonetheless, it should be noted that the

degree centralities are by no means equally distributed.

The betweenness centralization index provides quite a different picture. Most

remarkably, the index shows a much higher volatility compared to the degree

centralization index. During the initial years we can observe a pronounced increase

in the index from 13.52 % in 1990 to 26.56 % in 1993. The following years are

characterized by an alignment of the network actors’ betweenness centralities over

time. In 2002 the inequalities among network actors in terms of their brokerage

activities reach a minimum with an index value of 6.73 %. In subsequent years the

index increases again until the network finally reaches a betweenness centralization

of 15.76 % in 2010.
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Fig. 8.6 Network centralization – degree and betweenness centralization indices (Source:

Author’s own calculations and illustration)
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8.3 Exploring the Emergence of Large-Scale Network

Properties

This section addresses large-scale network properties. Real world networks differ

from random networks in many respects. Accordingly, we check for the existence

and emergence of three types of network properties – scale-free distribution, small-

world phenomenon, and core-periphery structure – to demonstrate that the struc-

tural configuration of the German laser industry network exhibits fairly different

patterns than randomly generated reference networks. Finally, we visualize the

network topology at four distinct points in time.

8.3.1 Degree Distribution and Scale-Free Network Structure

In random networks the placement of links is purely random which means that the

resulting system is characterized by nodes that have approximately the same

number of links (Barabasi and Bonabeau 2003, p. 52). In contrast, real-world

networks typically show very different large-scale patterns. In a seminal paper on

large-scale network properties Barabasi and Albert (1999, p. 510) suggest that

“[. . .] large networks self-organize into a scale-free state.” This, however, implies

that some actors attract ties at a higher rate than others. The reasons for this can be

manifold. For instance, some actors have simply more to offer than others or show a

higher capability in establishing or sustaining interorganizational partnerships. In

this context, sociologists have highlighted the importance of reputation, status

(Podolny 1994) and interorganizational endorsement effects (Stuart et al. 1999).

However, these actors are usually called “hubs” (Newman 2010, p. 245) and have a

much higher degree than the majority of other network actors.

The exploration of a network’s degree distribution provides a simple but pow-

erful diagnostic indicator of whether tie formation in a network is equiprobable

(simply random) for all pairs of nodes or systematically biased (Powell et al. 2005,

p. 1151). In other words, the existence of these network hubs should be reflected in

the overall degree-distribution of the network. “Unlike the tail of a random bell

curve whose distribution thins out exponentially as it decays, a distribution gener-

ated by a popularity bias has a “fat” tail for the relatively greater number of nodes

that are highly connected” (Powell et al. 2005, p. 1151).

Figure 8.7 illustrates the degree distribution of the German laser industry

innovation network (above) and a randomly generated Erdös-Renyi network

(below). In order to analyze the large-scale properties of the German laser industry

innovation network we have generated a random network which is comparable in

terms of network size and network density. This procedure was repeated several

times to obtain reliable average degree values.

The abscissa represents the degree k and the ordinate measures the fraction of

nodes in the network p(k) for each degree value. The right-skewed distribution

indicates that the German laser industry innovation network consists of a few
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extremely well-connected actors (with a degree of up to 46) whereas the majority of

network actors are rather sparsely connected (with a nodal degree of 1 or 2).

We follow the procedure proposed by Newman (2010, pp. 247–260) to detect

power-law behavior in networks.5 The logarithm of the degree distribution p(k) is a

linear function of the degree k with a negative sloping gradient and a constant

y-intercept which can be written as a logarithmic equation by simply taking the

exponential of both sides (Newman 2010, p. 247). This leads to a function p(k) that

is defined by the degree k with a negatively defined constant exponent α, which is

known as the “exponent of the power law”, and a constant multiplier C (Newman

2010, p. 248). A simple histogram or scatter graph of the degree distribution plotted

on a log-log scale provides the easiest way to detect power law behavior in real

world networks. A true power-law distribution monotonically decreases over its

entire range and appears in the log-log plot as a negatively sloping straight line

(Newman 2010, p. 249). Figure 8.8 provides the log-log scatter plots of the degree

distributions for the German laser industry network and for a comparable Erdös-

Renyi random network.6
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Fig. 8.7 Degree distribution – German laser industry innovation network vs. random network

(Source: Author’s own calculations and illustrations)

5 These types of networks are called scale-free networks (Barabasi and Bonabeau 2003, p. 52).
6 To provide a solid benchmark for the real world network, we proceeded as follows: First we

calculated the network size and density measures of each real world network on a yearly basis.
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Fig. 8.8 Power law and sale free patterns – German laser industry innovation network

versus random networks (Source: Author’s own calculations and illustrations)

Then we used the Erdös-Renyi procedure implemented in UCI-Net 6.2 (Borgatti et al. 2002) to

generate random networks on an annual basis. Each annual random network corresponded exactly

to its real-world equivalent in terms of network size and network density. Finally the annual degree

distributions for both the real world network and the random network were accumulated and the

results were plotted on a log-log scale.
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We aggregated all log degrees (abscissa) and the log node fraction in the network

(ordinate) over all time periods. Even though the German laser industry innovation

network shows no perfect power law behavior, we can clearly detect the tendency

towards the emergence of a straight line in the log-log plot. In other words, the

degree distribution of our real world network reveals systematically different

structural patterns compared to a purely random network. This indicates a pro-

nounced tendency towards the emergence of scale-free properties. Our analysis

reveals quite similar structural patterns as were reported by Powell and his col-

leagues (2005) for the degree distribution of the interfirm network (one-mode

network: DBFs – DBFs) and the interorganizational network (two-mode network:

DBFs – universities) for the US biotech industry.

8.3.2 Small-Word Properties

Now we turn our attention to small-world network properties. Even though the

underlying idea of small-world networks can be traced back to a series of network

experiments conducted by Stanley Milgram and his team in the late 1960s, it took

nearly 30 years before scholars were able to quantify the concept (Watts and

Strogatz 1998).

Milgram (1967) showed in his letter-passing experiment that people in the

United States are separated, more or less, by six degrees of separation (i.e. letters

that have been sent even reach far-off targets after roughly six distinct steps on

average). He concluded that a small-world network is characterized by a short path

length despite a high level of clustering (Uzzi et al. 2007, p. 78). Small-world

properties have some far-reaching implications for innovation networks. As we will

discuss in more detail later (cf. Chap. 11), it is plausible to assume that macro-level

network properties affect firm innovativeness. However, in this section, we apply

the method proposed by Watts and Strogatz (1998) to check for the existence of

small-world properties in the German laser industry innovation network. According

to this methodological approach, two conventional network measures can be used7:

the overall clustering coefficient and average path length clustering (Uzzi

et al. 2007, p. 78).

We proceeded as follows to check for the existence of small-world properties in

the German laser industry network. First we generated a total of 21 Erdös-Renyi

random networks for the period under observation, one network for each year.8 In

order to ensure comparability between real world and random networks, both the

size and the density parameters were adapted to the actual proportions of the real

networks. In general, random networks are characterized by a short average path

length and a low clustering tendency as neighboring nodes have the same

7 For details on the calculation and interpretation of both measures, see Sect. 5.2.3.
8 To gain a more robust random benchmark this procedure has to be repeated several times.

However, this may be dispensed with for the purpose of this analysis.
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probability of being connected as non-neighboring nodes (Uzzi et al. 2007, p. 79).

Then, based on the procedure proposed byWatts and Strogatz (1998), we calculated

“clustering” and “reach” measures for both the annually constructed German laser

industry networks and for the annually constructed Erdös-Renyi networks. Finally,

we calculated the “clustering coefficient ratio”, the “path length ratio” (Watts and

Strogatz 1998) and the “small-world Q” (Uzzi and Spiro 2005) to compare network

properties.

The “clustering coefficient ratio” is defined as the real world network clustering

coefficient divided by the random network clustering coefficient. The “path length

ratio” is defined as the real world average path length divided by the random

network average path length. The small world Q is defined as the “clustering

coefficient ratio” divided by the “path length ratio” (Watts and Strogatz 1998;

Uzzi and Spiro 2005; Uzzi et al. 2007).9

Standard procedures implemented in UCI-Net 6.2 (Borgatti et al. 2002) were

applied to calculate both the overall clustering coefficient and the weighted overall

clustering coefficient. In accordance with Schilling and Phelps (2007, pp. 1117–

1118) we chose the latter measure here since the weighted clustering coefficient

provides exactly the same measure as the transitivity index of each transitive triple

(Borgatti et al. 2002).

According to Watts and Strogatz (1998) and with reference to Uzzi et al. (2007,

p. 79) small-world networks have to fulfill at least one of the following two

conditions: (I) a “clustering coefficient ratio” that is many times greater than 1.0

and a “path length ratio” that is approximately 1.0 or (II) a “small-world Q” that is

much greater than 1.0.

The threshold values are not exactly specified as they can differ slightly for

different types of real world networks. In our case we chose a threshold value of 2.5

for both the “clustering coefficient ratio” and the “small-world Q” and a band of

accepted “path length ratio” values ranging from 0.7 to 1.3. Areas between mini-

mum and maximum thresholds are shaded in light gray.

Figure 8.9 shows the “clustering coefficient ratio” (cf. Fig. 8.9, top), the “path

length ratio” (cf. Fig. 8.9, center) and the “small-worldQ” (cf. Fig. 8.9, bottom) for the

German laser industry network between 1990 and 2010. The illustrations show that

the conditions specified above are fulfilled with very few exceptions (e.g. year 1990).

In summary, our data clearly shows an increasing tendency towards small-world

properties over time.

Concerns were expressed that, unlike unipartite networks, bipartite10 networks

significantly exaggerate the network’s true level of clustering and understate the

true path length (Uzzi and Spiro 2005, p. 453). Based on the pioneering work of

Watts and Strogatz (1998) a new interpretation of small-world indicators for

9 For further details, see Sect. 5.2.3.
10 Bipartite networks are based on the assumption that all members of a team form a fully

connected clique (Uzzi and Spiro 2005, p. 453). We explicitly checked for this issue, as our

network data is compiled on the basis of multi-partner R&D cooperation projects.
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bipartite networks was proposed by Newman et al. (2001). They showed that the

“path length ratio” in bipartite networks are interpreted in the same way as

unipartite networks (Uzzi and Spiro 2005, p. 454). In contrast, according to

Newman et al. (2001) and Uzzi and Spiro (2005), the “clustering coefficient

ratio” has to be interpreted in a different way. A clustering coefficient ratio of

about 1.0 indicates within-team clustering whereas an exceeding clustering coeffi-

cient ratio indicates an increase in between-team clustering (Uzzi and Spiro 2005,

pp. 454–455).

In our case, both the comparably low path length ratio throughout the observa-

tion period, ranging from 1.05 to 1.3, and the increasing tendency towards
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Fig. 8.9 Small-world properties in the German laser industry innovation network (Source:

Author’s own calculation and illustration)
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comparably high clustering coefficient ratios over time, confirms our initial find-

ings. We put our data to the test to check for the issue addressed above. Appendix 3

provides the results of an additional consistency test that is based on an alternative

network data decomposition procedure. The additional calculations reveal nearly

the same large-scale network patterns as reported above. On the whole, our initially

reported findings were largely confirmed.

8.3.3 Core-Periphery Structure

As we have shown in Sect. 7.1.1, the overall German laser industry network

consists of an average of 3.6 components with a standard deviation of 2.33.

However, the question remains as to what the size proportions of these components

look like and how these proportions change over time. The following core-periph-

ery analyses goes way beyond a simple component-based analysis. The previously

presented explorations substantiate the assumption that real world networks show

quite unique structural patterns.

Several authors have suggested that interorganizational networks typically dis-

play core-periphery structures (Rank et al. 2006; Amburgey et al. 2008; Muniz

et al. 2010). The identification of core-periphery structures in real world networks is

important for several reasons. For instance, Rank and her colleagues (2006, p. 76)

have argued that actors in the core of a network have a favorable position for

negotiating with peripheral actors. In addition they have argued that these actors

have better access to critical information and knowledge (ibid). Consequently, in

this section we check for the emergence and existence of a core-periphery structure

in the German laser industry innovation network.

In its most basic sense, the core-periphery concept is based on the notion of

“[. . .] a dense, cohesive core and a sparse, unconnected periphery” (Borgatti and

Everett 1999, p. 375). In addition, the core of the network occupies a dominant

position in contrast to the subordinated network periphery (Muniz et al. 2010,

p. 113). Several formalizations of the concept have so far been proposed. We

argue that using single indicators runs the risk of providing a somewhat biased

picture of the actual network structure. Thus, in order to identify a core-periphery

structure in longitudinal network data, we propose the simultaneous use of four

distinct indicators, each of which addresses different network characteristics.

According to Doreian and Woodard (1994, p. 269) a core of a network is simply

a more cohesive and richly connected area of the network, relative to the overall

structure of the entire network. Technically spoken, the specification of a network

core is nothing else but the specification of a cohesive subgraph by using concepts

such as n-cliques, k-plexes, k-cores and related concepts (ibid).
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To start with, we focus on a concept that basically draws an actor-based k-core
analysis. Amburgey et al. (2008) have applied this concept to conduct a k-core
decomposition at the overall network level in order to analyze the emergence of a

core-periphery structure in the biotech industry. The basic idea behind the concept

is straightforward. “A k-core is a subgraph in which each node is adjacent to at least
a minimum number, k, of the other modes in the subgraph” (Wasserman and Faust

1994, p. 266). The repeated calculation of k-core values in well-specified time

intervals enables network actors to be categorized and grouped according to their

nodal degree. For instance, a subgroup consisting of network actors with a k-core of
k¼ 6 indicates that all of these actors have at least six direct linkages to other

network actors. Amburgey et al. (2008) have argued that the exploration of the

coreness strata (i.e. coreness layers for k¼ 1. . .n) allows us to check over time for

the existence and emergence of a core-periphery structure. This approach provides

a very valuable initial look at the network’s core-periphery structure.

However, when focusing on “connectedness” as one of the most important

features of networks (Wasserman and Faust 1994, p. 109) the measure creates a

distorted picture for the following reasons. Firstly, and most importantly, the k-core
concept is not a component-based concept. It allows us to identify cohesive sub-

graphs in a network based on the actors’ nodal degree. This, however, implies that

high degree nodes can be found in both peripheral components as well as in the

main component. In other words, nodes with the same k-core value can be spread

over the whole network regardless of whether they belong to the main component

or a peripheral component. Secondly, the k-core concept concentrates exclusively

on the tie dimension. This means that the size distribution of the core component

versus peripheral components remains ignored. In other words, the proportion of

nodes that fills the main component is not captured by the concept.

Consequently we argue that additional measures are needed to substantiate and

complement a coreness analysis. The next two measures are as simple as the

previous one but they provide a quite different view of the same phenomenon.

Newman (2010, p. 235) shows that the majority of real world networks are not fully

connected and the main component usually fills more than 90 % of the whole

network. Our data confirms this finding and indicates that peripheral components

are not only considerably smaller but also quite heterogeneous in terms of size and

structure. In other words, we can distinguish between at least two elementary types

of components in real world networks – the main component and peripheral

component(s). Based on these considerations, two simple ratios – M-P tie ratio &

M-P node ratio – can be calculated which allow us to quantify the proportion of ties

or nodes that fill the main component versus peripheral components. The values for

both ratios range between 0 and 1. These two ratios do not claim to provide

comprehensive core-periphery indicators. Instead they give a valuable initial idea

of size and density proportions between the fully connected main component and

the scattered periphery of a network.

The last of our four core-periphery indicators was originally proposed by

Borgatti and Everett (1999). They introduced two different concepts – discrete

model and continuous model – that can be used to conduct a coreness analysis based
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on directed or undirected as well as valued or non-valued graphs. The underlying

idea of the core-periphery identification procedures is based on a comparison of a

hypothetically optimal core-periphery structure in an artificially generated network

with a network structure that has actually been observed in a real-world network.

Borgatti and Everett (1999, pp. 377–378) argued that an optimal core-periphery

structure is characterized by a few core nodes that are adjacent to other core nodes,

core nodes that are adjacent to some periphery nodes, and a notable proportion of

periphery nodes that are not connected with other periphery nodes. As real-world

networks are very unlikely to fit this theoretically optimal pattern, Borgatti and

Everett (1999, pp. 377–378) have proposed an algorithm that measures how well

the real-world network structure approximates the optimal core-periphery structure.

The discrete model categorizes all network nodes into two classes – core nodes and

peripheral nodes – whereas the procedure implemented in the continuous model

simultaneously matches a core-periphery model to the overall network and esti-

mates the coreness parameters of each actor in the network (Borgatti and Everett

1999; Borgatti et al. 2002). The parameter ρ is a measure of the network coreness.

The measure ranges from 0 to 1 whereas large values indicate a high fit between an

optimal core-periphery structure and an empirically observed network.

Figure 8.10 illustrates the calculation results for all four core-periphery indica-

tors for the German laser industry innovation network between 1990 and 2010. As

before, we chose a time-discrete approach and calculated all four indicators on an

annual basis.

Figure 8.10a displays the k-core decomposition results. In contrast to Amburgey

et al. (2008) we did not plot and interpret each k-core strata layer separately. Instead
we grouped all network actors into three groups based on their k-core values: high
(k� 8), medium (8> k> 4) and low (4� k> 0). We argue that a high spread

between the first and the last group indicates the existence of a core-periphery

structure at a given point in time. Our k-core decomposition analysis indicates that

between 1994 and 1997, and between 2002 and 2010 there was a pronounced

tendency towards having a core-periphery structure.

Figure 8.10b and c shows the M-P tie ratio and the M-P node ratio indicating the

proportion of ties as well as nodes that fill the main component. Both ratios

considerably decrease between 1994 and 1997, and between 2004 and 2008. In

addition, a closer look at the M-P node ratio points to the fact that between 1998 and

2002 a notable proportion of nodes are located in peripheral components.

Figure 8.10d illustrates the results of a core-periphery analysis according to the

approach proposed by Borgatti and Everett (1999). For the purpose of this study we

have applied the continuous core-periphery model for undirected graphs. The

estimation procedures implemented in UCI-Net 6.2 (Borgatti et al. 2002) were

used to calculate coreness values on an annual basis. Figure 8.10d reports the gini-

based core-peripheriness measure. Large values indicate a tendency towards a core-

periphery structure. Results reveal that the German laser industry innovation

network approximated a hypothetically optimal core-periphery structure quite
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well between 1994 and 2008. Surprisingly, the model indicates that the highest

core-peripheriness occurred between 1999 and 2002.

In summary, our analysis gives us good reasons to assume that the German laser

industry innovation network exhibited a comparably pronounced core-periphery

Fig. 8.10 Core-periphery structure in the German laser industry – a comparison of four indicators

(Source: Author’s own calculations and illustration)
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structure during three time periods – (I) 1994–1997, (II) 1999–2002 and (III) 2004–

2008. In all three time periods at least two out of four indicators substantiate this

finding. In addition, the long-term trends indicate the tendency toward an increasing

coreness of the German laser industry network over time. At first glance, the k-core
analysis fails to indicate the pronounced core-peripheriness between 1999 and 2002

indicated by the continuous model of Borgatti and Everett (1999). However, a

closer look at the dotted gray line in Fig. 8.10a (medium group, with k-core values:

8> k> 4) reveals a structural transition between 1998 and 1999. Obviously, there

seem to be some hidden structural processes that strengthen the periphery at that

time. It is interesting to note that the comparably simple M-P node ratio points to

the second time period and reveals patterns that would have maybe remained

unseen if only degree-based indicators were used. To conclude, both node-related

and tie-related indicators should be used in a complementary manner to check for

the existence and emergence of a core-periphery structure over time.

8.3.4 Exploration of Network Change Patterns Over Time

The last step in an exploratory network analysis is visualization (De Nooy

et al. 2005, pp. 5–6). Figure 8.11 gives us snap-shots of the German laser industry

innovation network at four distinct points in time (i.e. 1991, 1995, 1999 and

2007).11 The visualization of the network over time gives us an initial idea of the

network topology and provides valuable insights in terms of characteristic network

change patterns over time.

To start with we take a closer look at the network structure in 1991

(cf. Fig. 8.11a). In this early stage of development the network consists of one

component. Thus, the network is fully connected. Nevertheless, the network struc-

ture is by no means homogeneous. We can generally identify one densely

connected area in the network whereas the majority of the network actors are

relatively sparsely connected. This finding is in line with the comparably high

degree centralization index of about 17.5 % in 1991 as reported earlier.

Only a few years later the picture changes considerably (cf. Fig. 8.11b). In 1995,

the network consists of three distinct components. The main component is by far the

largest. The size proportions among the peripheral components are quite heteroge-

neous. We have a dyadic component on the one hand, and a multi-node component

that consists of five LSMs and PROs on the other. As we will see later (cf. Chap. 9)

this has some important implications for the theoretical conceptualization of evo-

lutionary network change processes. In addition, the network plot reveals the

existence of several densely connected areas – hot spots – within the main compo-

nent of the network. It turns out that initially central actors, such as LSM287,

11We used NetDraw 2.0 to visualize the network (Borgatti 2002).
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LSM272, R126F, R920U, R260D, were able to further develop their position in

terms of their nodal degrees.

Two patterns in 1999 are striking (cf. Fig. 8.12a). Firstly, the number of

components has grown considerably and the main component continues to domi-

nate in terms of size. Now the periphery consists of two dyadic and three triadic

components. Furthermore it is interesting to note that the previously identified
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Fig. 8.11 The evolution of the German laser industry innovation network, 1991 & 1995 (Source:

Author’s own calculations and illustrations)
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peripheral multi-node component has meanwhile been integrated into the main

component. In other words, between 1995 and 1999 at least one of the five LSMs or

PROs in the multi-node component was able to establish a bridging tie to an actor

within the main component. Secondly, we can observe an increasing concentration

tendency in the main component. Some nodes are quite loosely linked to the main
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Fig. 8.12 The evolution of the German laser industry innovation network, 1999 & 2007 (Source:

Author’s own calculations and illustrations)
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component whereas others are embedded in the core of the main component and

show an above-average nodal degree. This observation clearly supports the results

of our core-periphery analysis (cf. Sect. 8.3.3). Not surprisingly, the initially

identified high-degree actors are still positioned at the core of the network. But

what is perhaps more interesting are the high-degree nodes in the network that

entered the scene later. For instance, the firms LSM124 and LSM061 entered the

industry in 1994 and 1995, respectively. This indicates that some nodes seem to

reach the core of the network much faster than others.

Finally, the last network plot (cf. Fig. 8.12b) illustrates the network topology in

2007. The network structure is clearly more fragmented than it was in 1999. In

addition, we can observe a large number of peripheral components. These compo-

nents are quite heterogeneous in terms of size. More precisely, we see five dyadic

components and two multi-node components consisting of five and six nodes

respectively. Moreover, it is remarkable that neither of the peripheral network

organizations identified in 1999 are still in the network periphery in 2007.
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Chapter 9

Causes and Consequences of Network

Evolution

Scholars are slowly shifting from positing simple systems to
using more complex frameworks, theories, and models to
understand the diversity of puzzles and problems facing
humans interacting in contemporary societies

(Source: Ostrom 2009)

Abstract In this chapter we analyze a firm’s propensity and timing to cooperate and

enter the industry’s innovation network. The conceptual framework considers three

groups of determinants – organizational, relational and contextual. Selected factors

within these groups are assumed to cause network change processes at the micro-

level – tie formations and tie terminations – and shape the structural network

configuration at the overall network level. The elements of the framework are

substantiated by drawing upon evolutionary ideas and concepts from organization

science, sociology and evolutionary economics. The following chapter is organized

as follows: We start with a brief introduction in Sect. 9.1. Section 9.2 provides a

literature review and introduces the theoretical cornerstones needed for an in-depth

discussion on evolutionary network change. Based on these ideas we derive our

conceptual framework in Sect. 9.3 and formulate a set of testable hypothesis in

Sect. 9.4. Section 9.5 addresses some methodological issues and provides an over-

view of data and variables used. In Sect. 9.6 we introduce our empirical approach and

present estimation results from our non-parametric event history model. Section 9.7

concludes with a summary and discussion on the implications of our key findings.

9.1 On the Evolutionary Nature of Innovation Networks

In this investigation we seek to understand the relationship between network

change determinants, network change processes at the micro-level and structural

consequences at the overall network level.1 We employ an event history dataset on

1 This chapter draws upon a joint research project conducted by Andreas Pyka, Chair for the

Economics of Innovation, University of Hohenheim, and Jutta Guenther and Muhamed Kudic

© Springer International Publishing Switzerland 2015

M. Kudic, Innovation Networks in the German Laser Industry,
Economic Complexity and Evolution, DOI 10.1007/978-3-319-07935-6_9
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publicly-funded R&D cooperation projects in the German laser industry to analyze

one specific facet of the entire network evolution process, i.e. a firm’s propensity

and timing to cooperate and enter the industry’s innovation network.2

Innovation networks have been the subject of a broad range of theoretical and

empirical studies over the past decades.3 Both organizational scholars and econo-

mists agree that the evolutionary change of complex networks still represents a

widely unexplored area of research (Parkhe et al. 2006, p. 562; Brenner et al. 2011,

p. 5). Quite recently scholars from various scientific disciplines such as physics

(Albert and Barabasi 2000; Jeong et al. 2003), biology (Nowak et al. 2010), soci-

ology (Doreian and Stokman 2005; Snijders 2004; Powell et al. 2005), organization

and management science (Walker et al. 1997; Gulati and Gargiulo 1999; Koka

et al. 2006; Zaheer and Soda 2009), economic geography (Glueckler 2007) and

economics (Jackson and Watts 2002; Cowan et al. 2006; Jun and Sethi 2009) have

started to intensify their research efforts in this area in order to understand the

determinants and mechanisms affecting the structural evolution of networks.

Despite this progress, we still face more questions than answers and empirical

evidence remains scarce.

There are many reasons for this. Firstly, network evolution is a complex phe-

nomenon encompassing causes and consequences of network change among mul-

tiple levels of analysis. In the most basic sense, all types of networks consist of

nodes and connections among these nodes (Wasserman and Faust 1994). The

concept of network evolution “[. . .] captures the idea of understanding change via

some understood process [. . .]” whereas these underlying processes can be defined

as a “[. . .] series of events that create, sustain and dissolve [. . .]” the network

structure over time (Doreian and Stokman 2005, pp. 3–5). Thus, network change

processes at the micro-level – i.e. tie formations or tie terminations – as well as

changes with regard to network nodes – i.e. node entries or node exits – affect the

structural configuration of overall networks over time. These processes of creative

destruction are clearly Schumpeterian in nature and provide the basis for explaining

the evolution of networks (Boschma and Frenken 2010, p. 129).

However, due to both the conceptual ambiguities caused by the complex nature

of networks and the extensive data requirements needed to analyze the evolution of

these entities, research in this field is still in its inception. Secondly, micro-level

network change processes are determined by several factors which can be grouped

from the Department for Structural Economics at the Halle Institute for Economic Research. An

early draft was presented at the 14th ISS Conference in Brisbane, Australia (Kudic et al. 2012). We

are grateful to Wilfried Ehrenfeld for his helpful suggestions. This chapter has greatly benefited

from the comments made by audience members at the Buchenbach Workshop on evolutionary

economics in 2009 and is strongly influenced by the ideas and concepts discussed at the summer-

school on organizational ecology in 2007 taught by Terry Amburgey, Rotman School of Man-

agement, Toronto, Canada. I take full responsibility for any errors in this chapter.
2We used STATA 10.1 (Stata 2007), a standard software package for statistical data analysis.
3 For a comprehensive overview of the research conducted in this field see Pittaway et al. (2004) or

Ozman (2009).
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into three categories: organizational, relational and contextual. Previous research

has predominantly concentrated on network formation processes affected by indi-

vidual factors within one of these three groups. Surprisingly little research has been

conducted on network formation processes affected by both endogenous and

exogenous factors. Finally, even though tie terminations are as important as tie

formations in understanding network evolution, there is a strong bias in the litera-

ture towards the presence of relationships versus their absence (Kenis and Oerlmans

2008, p. 299). This arises, on the one hand, from data availability issues as the

majority of empirical studies in this field are based on alliance network databases in

which tie terminations are systematically underrepresented.4 On the other hand we

can observe a construct validity problem in most studies as often no distinction is

made conceptually between tie failures and intended tie terminations (Kenis and

Oerlmans 2008, p. 299).

Against the backdrop of these issues, the aim of this analysis can be summarized

as follows. On the one hand, an in-depth analysis of network change determinants

requires a comprehensive understanding of network evolution in general. Thus, we

propose a conceptual framework that consists of three building blocks: determi-

nants, micro-level network change processes and structural consequences. Starting

from an evolutionary economic perspective (Hanusch and Pyka 2007b) we consider

innovation networks as an integral part of an innovation system that can be both

spatially and sectorally delimited (Cooke 2001; Malerba 2002). We apply an

interdisciplinary approach to substantiate the building blocks of our framework

by drawing upon concepts from evolutionary economics, sociology and organiza-

tional science. On the other hand, we derive and test a set of hypotheses that

addresses some selected facets of evolutionary network change processes.

The analytical part is inspired by two empirically observable large-scale network

properties of the German laser industry’s innovation network. Firstly, the German

laser industry innovation network shows a fat-tailed degree distribution indicating

that some nodes attract ties at a higher rate than others once they have entered

the network (cf. Sect. 8.3.1). The same properties have been observed in other

real-world networks such as in the US biotech innovation industry (Powell et al.

2005). Secondly, a substantial number of potential network entrants do not cooperate

at all (cf. Sect. 8.2.1).5

In this analysis we are especially interested in analyzing network entry pro-

cesses. More precisely, we ask the following research question: what are the

endogenous or exogenous determinants affecting a firm’s propensity and timing

4 For an overview of the most frequently used alliance databases and their limitations, see

Schilling (2009).
5 The descriptive analysis reveals a minimum network participation rate of 20.1 % in 1990 and a

maximum network participation rate of 52.92 % in 2008 for LSMs and PROs under observation.
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to cooperate for the first time and enter the industry’s innovation network? To

answer this question we employ a single-episode event history dataset (cf. Sect.

6.2.1). This dataset allows for an exact time tracking of all node entries and exits as

well as all tie formations and tie terminations.

9.2 State of the Art and Theoretical Background

This section starts with a brief review of the literature on the dynamics of alliances

and networks. Then we turn our attention to some evolutionary concepts that

provide the theoretical basis for our conceptual framework.

9.2.1 Literature on the Dynamics of Alliances and Networks

The literature on the dynamics of alliances and networks is quite heterogeneous.

Several scholars have provided schemes to systematize the work that is been done

in this field.6 In this chapter we draw upon a general systematization scheme

originally proposed by Van De Ven and Poole (1995) which has been applied and

adapted to categorize dynamically oriented conceptualizations in the field of alli-

ance research (De Rond and Bouchiki 2004) and network research (Parkhe

et al. 2006) into three7 groups: life-cycle model, teleological approaches and

evolutionary approaches.

The use of life-cycle analogies is not new to economics and has been employed

to capture product exploitation stages (Levitt 1965) as well as change patterns of

industries (Klepper 1997) or clusters (Menzel and Fornahl 2009) over time. Life-

cycle conceptualizations of alliance and network change are based on the notion of

“[. . .] linear, irreversible and predictable progressions of events or states over time”

(Parkhe et al. 2006, p. 562). The basic idea that underlies most of these models is

that one can identify ideal development stages like initialization, growth, maturity

and decline. Thus, some authors often refer to these models as phase models

(Schwerk 2000; Sydow 2003). Change is imminent in life-cycle models which

indicate that the developing entity has an underlying logic within itself that regu-

6 For instance, Sydow (2003) has proposed a separation of dynamic network approaches in five

model categories: life-cycle models, non-linear process models, intervention oriented process

models, evolutionary models and co-evolutionary models. For other systematization schemes

see for example Schwerk (2000) or Tiberius (2008).
7 In contrast to De Rond and Bouchiki (2004) our review does not consider the dialectic approach.

This is in line with the systematization applied by Parkhe et al. (2006). Hence, we end up with

three instead of four categories.
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lates the process of change (Van De Ven and Poole 1995, p. 515). The change

process itself is regarded as a linear sequence of events where all development

stages are traversed only once without disruptions or feedback loops along the way.

These events are cumulative in nature which means that each development stage in

both alliance and network life-cycle models can be seen as a precursor to successive

stages (Van De Ven and Poole 1995, p. 515; De Rond and Bouchiki 2004, p. 57).

Literature often contains examples of life-cycle or phase models that address

alliance and network change. For instance, Dwyer and his colleagues (1987) have

proposed a model of buyer-seller linkages in which relationships evolve in general

phases: awareness, exploration, expansion, commitment and dissolution. Murray

and Mahon (1993) have proposed a somewhat similar phase model for strategic

alliances that contains five distinct stages: courtship, negotiation, start-up, mainte-

nance, and ending. Other authors have proposed phase models that encompass four

stages. For instance, Forrest and Martin (1992) suggest an alliance process model

based on their findings from an interview-based survey of senior executives in

70 North American biotech firms. Their model consists of four distinct stages:

matching, negotiation, agreement and implementation. The last category comprises

three-stage life-cycle models that are predominantly growth-oriented. For instance,

Larson (1992) has proposed an entrepreneurial dyad formation model whose stages

consist of: preconditions to exchange, conditions to build, integration and control.

In contrast to this dyadic conceptualization Lorenzoni and Ornati (1988) introduce

one of the first growth-oriented network formation models by arguing that firms that

are expanding pass through three cooperation stages: unilateral relationships, recip-

rocal relationships and network constellations. Critics of life-cycle models have

argued that the phase specification and the length of stages in these models may

vary arbitrarily (Sydow 2003, p. 332). In addition, the notion of a linear change

process that does not consider disruptions or feedback loops is – to put it mildly –

questionable at least.

According to the teleological school of thought, change in organizational entities

is explained by relying on a philosophical doctrine according to which the purpose

or goal is the ultimate cause of change (Van De Ven and Poole 1995, p. 515). From

this point of view development is regarded as a “[. . .] repetitive sequence of goal

formulation, implementation, evaluation and modification of goals [. . .]” whereas

all of these sequences are affected by the experiences and intentions of an adaptive

entity (Van De Ven and Poole 1995, p. 516). This means that organizational entities

are able to learn at each stage of the repetitive sequences and reformulate their

goals. In response to the limitations of the previously discussed lifecycle concep-

tualizations, scholars have applied this teleological perspective in order to gain

more open-ended and iterative process models of alliance and network change in

which the final goal guides the underlying change process (De Rond and Bouchiki

2004, p. 57). Teleological alliance and network change models do not explicitly

refer to life cycle analogies. In summary, this view emphasizes “[. . .] purposeful
cooperation by entities toward desired end states” (Parkhe et al. 2006, p. 562). As
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these models allow for learning and adaptation processes in all development stages,

some authors refer to these models as non-linear process models (Schwerk 2000;

Sydow 2003).

Non-linear process models operating on a dyadic level are the most prominent

applications of teleological ideas in an alliance and network context (Ring and Van

De Ven 1994; Doz 1996; Kumar and Nti 1998; Arino and De La Torre 1998). The

advantages of these models over life-cycle models are obvious. Non-linear process

models provide a basis for analyzing dynamics but also the instability of dyadic

alliances by considering endogenous factors like social embeddedness, trust, learn-

ing and knowledge transfer processes. In addition these models integrate the idea of

feedback loops which affect the alliance development process. They take formation

and catalyst processes of alliances into consideration and place a greater importance

on unplanned terminations (Schwerk 2000, p. 230). This means there is no fixed

assumption with regard to phase transition patterns (ibid). One prominent example

of a non-linear process model was proposed by Ring and Van De Ven (1994). This

model seeks to explain how and why interorganizational relationships emerge,

evolve and dissolve over time. It considers three basic processes (negotiation,

commitment and realization) and refers to the idea that formal and informal aspects

need to be balanced in every process. Another influential non-linear process model

is the conceptualization by Doz (1996). This model includes several internal and

external dimensions – environment, task, process skills and goals – which are

assumed to affect the processes of alliance change over time. The change

process itself is characterized by sequences of interactive learning processes,

reevaluation and readjustment. It explains both the successful development of

alliances over time as well as the alliance failure as a result of little or divergent

learning or frustrated expectations among partners (De Rond and Bouchiki 2004,

p. 57).

Next, research delved further into network process models (Sydow 2003,

p. 336). This approach has been strongly influenced by the contributions of the

IMP research group (Hakansson and Johanson 1988; Hakansson and Snehota 1995;

Halinen et al. 1999) and focuses predominantly on business relation networks. In

these models, network change is driven by market access and internationalization

goals. For instance, Halinen and colleagues (1999) have proposed a dynamic

network model that includes radical and incremental change processes at the dyadic

and network level. The framework integrates the ideas of mechanisms, nature and

forces of change and contains two interdependent circles of radical and incremental

change which are affected by external drivers of change and stability. In summary,

the strength of teleological alliance and network change models lies in the rejection

of simplistic, uniform and predictable sequences of change towards more realistic

non-linear process models which recognize that unplanned events, unexpected

results, as well as conflicting interpretations and interests can and do affect the

change process over time (De Rond and Bouchiki 2004, p. 58).

Evolutionary conceptualizations of alliance and network change draw our atten-

tion to “[. . .] change and development in terms of recurrent, cumulative, and
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problematic sequences of variation, selection and retention.” (Parkhe et al. 2006,

p. 562). Evolutionary approaches seek to understand the forces that cause network

change over time (Doreian and Stokman 2005, p. 5) which means that focus is

placed on the underlying determinants and mechanisms of network change pro-

cesses. In other words, understanding “[. . .] the ‘rules’ governing the sequence of

change through time [. . .]” (Doreian and Stokman 2005, p. 5) provides an in-depth

understanding of the network change process itself. These conceptualizations

encompass the determinants that trigger the change processes at the micro-level,

the mechanisms that generate change, and the structural consequences over multi-

ple aggregation levels. Evolutionary conceptualizations of network change can be

grouped into three partially overlapping categories: network emergence, network

evolution and co-evolutionary approaches.

The first category – so-called network emergence or network growth approaches –

focuses predominantly on determinants and mechanisms affecting alliance forma-

tions and associated network change patterns at the overall network level (Walker

et al. 1997; Gulati 1995; Gulati and Gargiulo 1999; Hagedoorn 2006; Kenis and

Knoke 2002). These growth oriented models consider both endogenous as well as

exogenous factors of alliance and network change and recognize the importance

of previous network structures in current cooperation decisions (Gulati and

Gargiulo 1999). However, these studies clearly place little emphasis on tie termina-

tion processes and the associated structural consequences for the overall network

configuration.

In response to these limitations, network evolution explicitly encompasses both

network formation processes as well as network fragmentation processes by simul-

taneously considering the determinants and mechanisms behind these processes

(Venkatraman and Lee 2004; Powell et al. 2005; Amburgey and Al-Laham 2005;

Doreian and Stokman 2005; Glueckler 2007). The main point of network evolution

models is to understand why and how networks emerge, solidify and dissolve over

time. For instance, Powell and his colleagues (2005) have analyzed the underlying

mechanisms such as “cumulative advantage”, “homophily”, “following the trend”

and “multiconnectivity” in order to explain the structural evolution of complex

networks in the US biotech industry. Organizational scholars have analyzed the

impact of tie formations and tie terminations on the component structure and

connectivity of networks (Amburgey and Al-Laham 2005). Economic geographers

have argued that evolutionary processes of retention and variation in network

structure are affected by a spatial dimension (Glueckler 2007). Co-evolutionary

approaches concentrate on simultaneous change processes between networks and

other subjects of change such as industries (Ter Wal and Boschma 2011), technol-

ogies (Rosenkopf and Tushman 1998) or even other types of networks between the

same actors (Amburgey et al. 2008). The analytical focus is on understanding the

interdependencies between simultaneously evolving network change patterns.
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9.2.2 An Evolutionary View on Interorganizational Change

Despite the differences among evolutionary schools of thought, one can identify

some cornerstones that create the common ground for evolutionary thinking in

economics and related disciplines (Witt 2008b; Aldrich and Ruef 2006; Amburgey

and Singh 2005; Dopfer 2005; Stokman and Doreian 2005).

Firstly, the preceding discussion reveals that evolutionary theories generally

focus on dynamic change over time rather than on analyzing static or comparatively

static snap-shots of economic activity. Closely related to the first point is the fact

that evolutionary theories agree on the notion of path dependencies and irrevers-

ibilities, in other words, that past and present events affect the current decisions and

behavior of economic actors (Arthur 1989; David 1985). Thirdly, the idea that

change occurs simultaneously across multiple levels of analysis is common to most

evolutionary approaches. For instance, organizational ecology scholars have ana-

lyzed intraorganizational evolution, organizational evolution, population evolution

and institutional evolution (Amburgey and Rao 1996). Economists have proposed a

differentiation between three levels of analysis: “micro”, “meso” and “macro”

(Dopfer et al. 2004). Thus, the majority of evolutionary theories are in line with

the notion that change occurs simultaneously and interdependently across multiple

levels (Amburgey and Singh 2005, p. 327). Finally, evolutionary theories explicitly

include the underling mechanisms – the drivers or rules – that guide the change

process. Most evolutionary scholars would agree that evolution includes an under-

standing of the forces that initiate or drive change (Doreian and Stokman 2005) and

the mechanisms of modification or replacement of existing entities (Amburgey and

Singh 2005). For instance, Glueckler (2007) proposes applying general evolution-

ary principles such as selection, retention and variation on relationships in

networks. Below we concentrate on the neo-Schumpeterian school of thought

(cf. Sect. 2.3).

Neo-Schumpeterian economics has its intellectual roots in evolutionary eco-

nomics, industry life-cycle theory, complexity theory and systems theory and

incorporates the ideas of path dependencies, irreversibilities, bounded rationality

and collective innovation processes among heterogeneous actors (Hanusch and

Pyka 2007a).

Research in this field is centered on the role of knowledge and innovation for the

development and economic prosperity of firms and societies. Witt (2008a, p. 555)

identifies the following topics as being at the core of the neo-Schumpeterian

research agenda: innovation, R&D, firm routines, industrial dynamics, competition,

growth and the institutional basis for innovation. Hanusch and Pyka (2007a,

pp. 276–277) argue that the focus on novelty and uncertainty is what primarily

sets neo-Schumpeterian economics apart. They highlight the following constitutive

normative principles of neo-Schumpeterian economics: qualitative change affects

all levels of economy; an idea of punctuated equilibria encompassing smooth as

well as radical change; and change processes characterized by non-linearities and

feedback effects responsible for pattern formation and spontaneous structuring.
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The neo-Schumpeterian, or knowledge-based approach, regards innovation as a

collective process of interacting heterogeneous economic actors (Pyka 2002).

These actors can be characterized as bounded rational agents with incomplete

knowledge bases and capabilities (Pyka 2002). The importance of formal as well

as informal networks for the creation of novelty was recognized quite early on as

“[. . .] networks were shown to be essential both in the acquisition and in the

processing of information inputs” (Freeman 1991, p. 501). Networks allow firms

to share knowledge, learn from each other and innovate (Pyka 2002; Hanusch and

Pyka 2007a). In addition, networks are not static; they change over time. New

relationships are established and existing relationships may be adjusted or even

dissolved depending on the needs, capabilities and cooperation strategies of the

actors involved. Due to the very nature of these underlying processes, networks are

regarded as evolving organizational entities. Most recently we can observe the

emergence of interesting intersections with related disciplines like economic

geography (Boschma and Martin 2010) which provide a fertile ground for a greater

consideration of the spatial dimension in evolutionary change processes.

In summary, the neo-Schumpeterian approach provides a powerful framework

for analyzing knowledge transfer and interorganizational learning processes among

heterogeneous economic actors in sectoral and spatial delimited systems in their

efforts to innovate. It also takes into consideration the evolutionary change of

complex collaborative systems driven by endogenous as well as exogenous deter-

minants and mechanisms of micro-level change processes.

9.3 Linking Micro-Level Processes and Macro-Level

Change

Drawing upon our previous considerations, in this section we introduce and discuss

five general principles of network evolution models proposed by Stokman and

Doreian (2005) in light of innovation networks, and incorporate the notion of

network evolution according to Glueckler (2007) and Doreian and Stokman

(2005). Based on these theoretical underpinnings we derive a conceptual frame-

work that aims to provide an in-depth understanding of evolutionary change in

innovation networks.

9.3.1 General Principles of Network Evolution Models

Stokman and Doreian (2005, pp. 244–251) recommend five general principles for

constructing network evolution models which guide the following discussion.

Firstly, the instrumental character of networks provides the starting point for

modeling network evolution. This means that the motives or goals of the actors

involved have to be taken into consideration right from the very beginning. Inno-

vation research has identified a broad range of reasons for why firms participate in

innovation networks (Parkhe 1993; Pyka 2002) whereas the exchange of knowledge
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and initialization of mutual learning processes can be regarded as the most salient

for successfully generating novelty.

Secondly, in order to gain an in-depth understanding of the actors’ actions and

the structural consequences of those actions it is appropriate to assume that a

network actor possesses only partial or limited local information. This means that

network actors possess global knowledge in the rarest cases. Instead, Stokman and

Doreian (2005, p. 245) argue that network actors should be seen and modeled as

adaptive entities that learn through experience and imitation. This principle is

consistent with the neo-Schumpeterian notion of bounded rational agents with

incomplete knowledge bases and capabilities (Pyka 2002).

The third principle highlights the importance of the relational dimension of

cooperation. This means that the parallel tracking of goals by network actors affects

the emergence of ties in a sense that both entities have to agree upon common goals

and parallelize decisions. From an innovation network perspective, this principle

highlights the importance of integrating concepts that operate primarily on the

dyadic level, such as mutual trust or tensions between partners.

The fourth basic principle refers to the complexity of evolutionary processes in

networks. Consequently, Stokman and Doreian (2005, p. 247) recommend design-

ing network evolution models that are as simple as possible.

The fifth principle refers to the falsifiability of network evolution models. The

authors suggest that network evolution models should have sufficient empirical

reference and conclude that “statistical models are strongly preferred, as they

enable the estimation of essential parameters and test the goodness of fit of the

model” (Stokman and Doreian 2005, p. 249).

9.3.2 Building Blocks of the Network Evolution Framework

Network evolution is neither random nor determined (Glueckler 2007, p. 620). This

means that mechanisms have to be considered that create cumulative causation and

lead to path-dependency and mechanisms that produce contingency in the sense

that the agent’s strategies and actions may deviate from existing development paths

that result in path destruction (ibid). In line with Doreian and Stokman (2005, p. 5)

we regard the designations “network dynamics” or “network development” as more

general terms to describe networks change over time. In contrast, network evolution

“[. . .] has a stricter meaning that captures the idea of understanding change via

some understood process [. . .]” whereas these underlying processes can be defined

as a “[. . .] series of events that create, sustain and dissolve [. . .]” the network

structure over time (Doreian and Stokman 2005, pp. 3–5). In addition, we have to

note “[. . .] that the unit of analysis is always dyadic tie formation, whereas the

object of knowledge is network structure” (Glueckler 2007, p. 622).

Based on the ideas outlined above, we specify three elementary building-blocks

in our conceptual framework (cf. Fig. 9.1): (I) determinants of network change (II)

micro-level network change processes and (III) structural consequences over

multiple levels.
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9.3.2.1 Determinants of Evolutionary Micro-level Network Change

Processes

Due to their very nature, determinants that affect evolutionary micro-level network

change processes can be categorized as organizational, relational and contextual.

To start with, we turn our attention to contextual determinants (cf. Fig. 9.1, left).

Firms and organizations in interorganizational networks are considered to be an

integral part of a spatial-sectoral innovation system (Cooke 2001; Malerba 2002).

Innovation systems have several characterizing features.8 Firstly, they consist of

heterogeneous economic actors that are dispersed throughout geographical space

within the system boundaries.9 Secondly, populations of actors in the system can

change over time which means that, for instance, firms or other types of organiza-

tions can, over time, enter the system (i.e. new company founding, spin-offs etc.)

Evolutionary 
change processes at 

the (micro level)

Organizational 
determinants

Relational  
determinants

Contextual   
determinants

Tie formations
Tie terminations

Feed-back effects

Tie  dimension

Node dimension
Node entries
Node exits

Underlying attachment 
mechanism

- Firm characteristics 
- Knowledge base
- Cooperation capabilities 
- Cooperation strategy  

- Linkage type
- Network position
- Network trajectories 

- Innovation system 
boundaries 

- Industry dynamics  
- Geographical location

Network level
(macro level)

Sub-group level
(meso level)

- Network size
- Network density 
- M-P node proportion 
- M-P tie proportion
- Network fragmentation

- Main component 
- Peripheral components 

Newcomers        Incumbents

(I) (II) (III)

Fig. 9.1 Conceptual framework – causes and consequences of evolutionary network change

processes (Source: Author’s own illustration)

8 For the purpose of this study we focus on some selected features of innovation systems. Note that

the innovation system approach is much richer than described here (cf. Sect. 2.3.3).
9 Network actors are simultaneously embedded in multiple proximity dimensions (Boschma 2005)

each of which is likely to affect a firm’s cooperation behavior (Boschma and Frenken 2010). For

the sake of simplicity, we include only the geographical dimension in the framework.
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and exit the system (i.e. closures, failures, bankruptcies etc.). Thirdly, the system’s

elements do not exist in isolation; they are interconnected by various types of

formal or informal linkages.

This leads to the relational determinants in our framework. Dyads consist of at

least one directed or undirected tie connecting two nodes in a well-defined popula-

tion and, at the same time, constitute the most basic building block of a network

(Wasserman and Faust 1994). Triadic components are more complex network

building blocks (ibid). Below, we refer to all components with more than two

nodes as multi-node components. For the purpose of this analysis we specify

innovation networks as formal, knowledge-related and publicly funded R&D part-

nerships among a well-defined population of firms and public research organiza-

tions.10 The existence of a tie among two nodes in an innovation network implies a

certain degree of partner fit, mutual trust, cooperation capabilities and commitment

to common goals between both parties. The sum of these dyadic network ties spans

the overall innovation network within the system boundaries. Firms and organiza-

tions occupy qualitatively different positions within the overall network structure.

These network positions are the result of cooperation decisions taking place in the

shadow of the past (Gulati and Gargiulo 1999). Soda and Zaheer (2004) argue that

networks have a “memory” in the sense that past and present networks affect current

actions. Doreian (2008) refers to this issue by introducing the concept of “network

trajectories” in the context of the evolutionary change process of networks.

Finally, we move on to organizational determinants in our framework. As we

will establish in more detail later, firm characteristics such as size, age, origin,

knowledge stock and cooperation capabilities etc. are likely to affect knowledge-

related cooperation behavior in innovation networks.

9.3.2.2 Micro-Level Network Change Processes at the Core

of the Model

We continue the debate by moving on to micro-level network change processes at

the core of the model (cf. Fig. 9.1, center). In a similar vein, Hite (2008) highlights

in her model the importance of micro-level network change processes in the context

of network evolution. Glueckler (2007, p. 623) argues that “[. . .] a complete theory

of network evolution [. . .] has to theorize both the emergence and disappearance of

ties and nodes”.

We will start by turning our attention to the node dimension. In the most basic

sense we can differentiate between system actors who participate and those who do

not participate in a particular network. The first group includes all actively

10 Informal partnerships and other structural collaborative forms such as short-term contracts,

licensing and franchise agreements, consultancy contracts, consortia, non-funded long-term part-

nerships or joint ventures were deliberately excluded from the framework.
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cooperating network actors, whereas the second group provides a pool of poten-

tially available network actors. We follow the suggestion made by Guimera

et al. (2005) and differentiate between two groups of potential network actors:

“incumbents” and “newcomers”. Both groups are subject to change due to dynam-

ics at the industry level. Entries and exits affecting actors within the first group

(i.e. active network actors) have direct consequences for the structural configuration

of the network, whereas the same events affecting actors in the second group

(i.e. potential network actors) have an indirect impact by enlarging or reducing

the pool of cooperation partners that are potentially available. To control for this

node-related dimension of change in the German laser industry innovation network,

one needs to have an exact picture of all laser source manufacturers and laser-

related public research organizations over time. In this analysis we choose yearly

time period to capture the industry’s configuration.

Now we will take a closer look at the tie dimension by considering two types of

events – tie formations and tie terminations – to explain the structural change of the

network. In line with Hite (2008) we refer to these events below as micro-level

network change processes.Moreover, tie formation and tie termination processes can

be coupled or uncoupled. A good example of coupled micro-level network change

processes are joint R&D projects with a fixed timeframe. In contrast, strategic long-

term partnerships have no predefined end date and provide a concrete example of

uncoupled micro-level network change processes. For reasons of simplicity, we

focus on coupled events. This approach has two considerable advantages. Firstly,

we have an exact time tracking of all tie termination events which are, from a

structural point of view, as important as tie formation events. Secondly, we consid-

erably reduce complexity as tie termination processes do not follow their own

underlying logic. We argue, in line with Nelson and Winter (2002) and with

reference to Glueckler (2007), that micro-level network change processes can be

explained by the general evolutionary mechanisms of variation, selection and reten-

tion.11 At the same time, the formation and termination of partnerships are affected

by the previously discussed determinants and follow the logic of underlying network

change mechanisms. The preferential attachment concept provides one of the most

frequently discussed tie formation mechanisms in network studies. The underlying

logic is quite simple: highly connected nodes aremore likely to connect to new nodes

than sparsely connected nodes (Barabasi and Albert 1999; Albert and Barabasi

2002). The mechanism generates quite a unique structural pattern at the overall

network level which is characterized by a power law degree distribution (cf. Sect.

8.3.1). Several other mechanisms and underlying logic of network formation pro-

cesses have been discussed in the literature. These include “homophily” according to

which actors with similarities are more likely to connect to one another (McPherson

et al. 2001), “heterophily” according to which heterogeneous actors attract one

another (Amburgey et al. 2009), “herding behavior” where actors follow the crowd

11 For an in-depth discussion, see Glueckler (2007, pp. 623–630).
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(Kirman 1993; Powell et al. 2005) and “transitive closure” where two nodes, which

are both connected to a third partner, attract one another (Snijders et al. 2010).

9.3.2.3 Structural Consequences of Micro-Level Network Change

Processes

Only a few previous studies have analyzed the structural consequences of micro-

level network change processes (Elfring and Hulsink 2007; Baum et al. 2003;

Amburgey and Al-Laham 2005). We draw upon evolutionary ideas and network

change models proposed by Amburgey et al. (2008), Guimera et al. (2005) and

Glueckler (2007) to substantiate this part of the puzzle in our framework.

We start by looking at the model proposed by Amburgey et al. (2008). The

authors provide a conclusive theoretical explanation for structural consequences of

tie formations and tie terminations by introducing four distinct structural processes:

(a) the creation of a bridge between components, (b) the creation of a new

component, (c) the creation of a pendant to an existing component and (d) the

creation of an additional intra-component tie (Amburgey et al. 2008, pp. 184–186).

The framework provides us with very valuable insights. Nonetheless, we argue that

these considerations have to be extended and refined in several ways.

Firstly, we argue that tie formations and tie terminations, as well as subsequent

structural consequences, depend on the actor’s strategic orientation. Strategies and

actions of network actors can result in the destruction of existing network paths

(Glueckler 2007, p. 620) and they determine, at the same time, the scope of future

cooperation options and possibilities. Therefore, we propose and integrate three

basic types of knowledge-related cooperation strategies into our framework: pro-

gressive, moderate and conservative. Progressive strategies are characterized by a

firm’s objective to considerably improve its knowledge base by accessing multiple

knowledge sources simultaneously or by establishing and controlling global knowl-

edge streams that connect entire groups of actors in the networks. The underlying

objective of moderate strategies is to gradually improve the knowledge base

through linkages to a few selected individual partners or through the establishment

and control of local knowledge streams. Conservative strategies aim to secure a

firm’s knowledge base by protecting the existing knowledge stock or by securing

and sustaining existing local or global knowledge channels.

Secondly, the framework of Amburgey et al. (2008, pp. 184–186) primarily

focuses on the tie dimension and neglects the importance of different types of actors

for the structural evolution of networks. As outlined above, not all innovation

system actors are involved in a particular type of innovation network. Instead, a

considerable number of system actors are not embedded at all, whereas others

cooperate repeatedly with the same partners. To account for this fact we follow

the suggestion of Guimera et al. (2005, p. 698) and split the population into

“newcomers” and “incumbents”. This gives us four distinct partnership constella-

tions: “newcomer-newcomer” (NN), “incumbent-newcomer” (IN), “incumbent-

incumbent” (II) and “repeated incumbent-incumbent” (RI).
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Thirdly, under real-world conditions we can frequently observe the formation

and termination of both dyadic ties connecting two actors but also of large-scale

multi-partner projects that encompass a large number of actors. Consequently, we

differentiate between dyadic and multi-node components in our framework.

Finally, in the majority of real world networks, the main component usually fills

more than 90 % of the entire network (Newman 2010, p. 235).12 This substantiates

the assumption that essential elements of industry-specific technological knowl-

edge are tied to the main component. In contrast, peripheral components are likely

to entail only small, rather specific fragments of the industry’s technological

knowledge. Thus, we argue that there is a qualitative difference between whether

network change processes affect the core or the periphery of the network.

Figure 9.2 (left) summarizes our previous considerations and illustrates the

anticipated structural consequences at the overall network level (Fig. 9.2, right).13

To address the structural consequences at the network level we now take a closer
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Fig. 9.2 Partner constellations, cooperation strategies and structural consequences (Source:

Author’s own illustration)

12 For the German laser industry network we found that the main component fills 94.51 % of the

network on average (cf. Sect. 8.3.3).
13 In line with Amburgey et al. (2008) we use three simple indicators to discuss structural network

change: network size, network density and overall network fragmentation. To account for pro-

cesses affecting the core-periphery structure of the network, we introduce two additional ratios to

measure the proportion of nodes and ties in peripheral components in relation to the size and

density of the main component (cf. Sect. 8.3.3).
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look at newcomers who have basically two possible partner constellations (NN and

NI) and six cooperation options (N1–N6). We start our discussion on structural

consequences by focusing on the moderate knowledge-related cooperation strategy

of newcomers.

Actors aiming to gradually improve their knowledge base through selected

individual collaborations basically have two options: either they can cooperate

with another potential newcomer, which would lead to the creation of a new dyadic

component (N2), or they can connect with an incumbent who is embedded in a

peripheral component (N5). The structural consequences are consistent with the

structural processes (b) and (c) identified by Amburgey et al. (2008). However, we

have to consider two additional knowledge-related cooperation strategies. Conser-

vatively oriented actors who predominantly aim to protect their existing knowledge

stock are likely to isolate themselves from other newcomers or incumbents. Thus,

neither is a new component created (N1) nor an existing component extended (N4).

In both cases, the structural configuration of the network is not affected. Even

though these two cooperation strategies have no direct structural consequences they

are important in understanding what prevents potential network entrants from

cooperating for the first time. In contrast, progressively oriented actors seek to

improve their knowledge stock considerably by accessing multiple diverse knowl-

edge bases simultaneously. The initialization of multi-partner projects among

newcomers (N3) leads, from a structural standpoint, to the creation of a multi-

node component. In contrast, the establishment of a linkage to an incumbent in the

main component of the network offers a broad variety of direct and indirect

knowledge-accessing opportunities (N6) and is reflected in the extension of the

main component.

The structural consequences at the network level for the cooperation options

(N2) and (N3) are quite similar but less pronounced in the former. The creation of

new ties affects the number and size distribution of components (Amburgey

et al. 2008, p. 186). This leads to increasing network fragmentation and a decreas-

ing proportion of nodes in the main component in relation to the number of nodes in

peripheral components. A look at the cooperation options (N5) and (N6) reveals

that the number of components remains constant but the network size is affected.

This is in line with structural implications anticipated by Amburgey et al. (2008,

p. 186). However a closer look at the proportion of nodes in the main and peripheral

components reveals two opposing structural effects for the cooperation options

(N5) and (N6). Moderate cooperation strategies produce a situation in which the

main component shrinks in relation to the network’s periphery. On the other hand

progressive strategies lead to a relative growth in the main component versus the

network periphery.

Now we turn our attention to incumbents who, like the newcomers, basically

have two possible partner constellations (II and RI). In this context, Amburgey

et al. (2008, p. 186) differentiate between two structural processes: the creation of a

bridge between two components and the creation of intra-component ties. This
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distinction provides valuable insight into the structural consequences of coopera-

tion events between previously unconnected or indirectly connected network actors

(I1–I6).

However, in order to refine the picture we have to separate consolidation

processes from solidification and fragmentation tendencies in the network. Thus,

we explicitly consider the structural consequences of repeated ties between already

connected incumbents (I7–I8). Moreover, we account for path dependencies in our

framework. By referring to Glueckler (2007, p. 620) we argue that the initial

cooperation strategy of a network entrant affects its later cooperation path. In

other words, the initial cooperation event is hereditary in a sense that it does restrict

cooperation opportunities, yet at the same time it opens up new cooperation options.

Below, we refer to this very specific type of network path dependency as “cooper-

ation imprinting”.

Figure 9.2 illustrates six potentially achievable cooperation options (I1–I6)

among previously unconnected incumbents (II). Newcomers who have pursued a

moderate network entry strategy start the next cooperation round out of a dyadic

component located in the periphery of the network. In contrast, the situation looks

quite different for newcomers who have a progressive strategic orientation at the

onset. These actors started their cooperation path by creating a new multi-node

component and linking themselves to the main component. In both cases the initial

conditions for the next cooperation round are considerably better than for network

entrants with a moderate strategy.

The previous considerations imply that incumbents, who are located in the

network periphery and are still pursuing a moderate cooperation strategy, are likely

to look for cooperation opportunities in their direct neighborhood. This case

addresses the creation of alternative knowledge channels in peripheral components

(I2). In contrast, there are peripheral incumbents who change their strategic orien-

tation towards a more progressively oriented cooperation behavior. These actors

actively search for novel knowledge stocks and tend to establish or control knowl-

edge streams to other groups of network actors. This case is reflected, from a

structural standpoint, in the emergence of brokerage ties among peripheral incum-

bents (I5). In summary, we can observe the consolidation of a connected peripheral

subgraph on the one hand, and the amalgamation of two previously unconnected,

peripheral sub-graphs on the other. Both structural processes are in line with the

model proposed by Amburgey et al. (2008). However, it is important to note that the

cooperation options (I2) and (I5) in our framework exclusively address structural

consequences that occur in the periphery of the network due to the network

entrants’ cooperation imprinting.

Now we look at incumbents who entered the network by pursuing a progressive

cooperation strategy (using N3 or N6). Network entrants who linked themselves to

the main component (using N6) face quite a comfortable situation in the next

cooperation round. On the one hand, they can expand their position in the main

component by establishing direct links to new partners in the main component

(I3) or they can wait for new specific knowledge-accessing opportunities to pop up

in the network periphery in order to establish bridging ties (I6). However, main
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component actors can also pursue a conservative strategy in order to protect and

secure the existing knowledge stock. In other words, a main component actor can

decide to withdraw from the main component by leaving the main component either

alone or together with a handful of strategic partners. The structural consequences

are far-reaching, especially in the latter case (I1). The overall network density

decreases, the fragmentation of the network increases and the component shrinks

in relation to the periphery.

Actors with a progressive cooperation imprinting who entered the network

through the creation of a new multi-node network component (using N3) start the

second cooperation round from a peripheral position. However, multi-partner pro-

jects provide a better starting point than dyadic components because they are much

more visible and prestigious. Incumbents with a progressive strategy can establish a

bridging tie to an actor in the main component (I6).14 This strategy provides access

to essential elements of an industry-specific technological knowledge pool tied to

the main component and leads to an amalgamation of a peripheral component with

the main component. Incumbents pursuing a moderate cooperation strategy will try

to gain access to the much more specific knowledge pool by bridging the gap to

another peripheral multi-node component (I5) or, in the case of a conservative

cooperation strategy, to another dyadic component (I4).

A comparison of options I2 and I3 reveals some interesting structural implica-

tions. In both cases the network density is affected. This is in line with structural

implications anticipated by Amburgey et al. (2008, p. 186). At the same time the

ratio of main-component ties to peripheral-component ties reveals an opposing

structural effect. The amalgamation of two previously unconnected network com-

ponents affects the density and fragmentation of the network (Amburgey

et al. 2008, p. 186). Furthermore, the differentiation between main and peripheral

components (I5 and I6) once again shows an opposing structural effect.

Finally, we take a look at repeated incumbent-incumbent partnerships. Repeated

partnerships can occur sequentially (at different points in time) or in parallel (at the

same point in time). Not only the former but also the latter case is quite important

but frequently neglected in network evolution studies. We refer to these ties as

redundant network ties. These ties secure access to external knowledge sources on

the one hand, while providing the opportunity to exchange qualitatively different

stocks of knowledge among the same partners. In addition, redundant ties have

far-reaching implications for the overall network structure. We argue that redun-

dant ties can affect the stability of the network in several ways. Basically we can

distinguish between two cases. The previously outlined ideas substantiate the

argument that a network in which progressive and moderate cooperation strategies

dominate is likely to show a solidification tendency over time (I7). In contrast, a

14 Note that there is a qualitative difference when comparing the cooperation option (I6) of an

incumbent who is embedded in the main component with an incumbent who is embedded in a

peripheral component. The former case reflects a strategically important gate-keeping position.

This position allows an actor to control who gets access to essential elements of the industry’s

technological knowledge pool tied to the main component.
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network in which moderate and conservative cooperation strategies dominate is

likely to show fragmentation tendencies over time (I8).

9.4 Hypotheses Development for Network Entry Processes

Based on our previously introduced framework we now derive a set of hypotheses

that address only a few selected facets of the entire evolutionary network change

process described above. In order to answer the research question raised initially,

we exclusively concentrate on network entry processes. As a consequence, the

analytical part is confined to a firm’s initial cooperation event. Secondly, each

group of determinants in our framework contains a broad variety of factors that are

likely to affect a firm’s cooperation behavior. The hypotheses outlined below are

centered on only a small selection of factors that are assumed to play a key role in

explaining network entry processes of German laser source manufacturers.

Initially we take a closer look at firm-specific determinants. The resource-based

view (Wernerfelt 1984; Barney 1991; Peteraf 1993) suggests that a firm’s ability to

achieve and maintain a profitable market position and outperform competitors

depends, to a large extent, on its ability to exploit both internal resources (Barney

1991) and external resources (Gulati 2007) and to generate a competitive advan-

tage.15 In this context, it has been argued that small firms face some substantial

disadvantages compared to larger firms in the form of limited reputational, human

capital and financial resources (Lu and Beamish 2006). Small firms can overcome

their resource constraints and counteract their comparably high risk of failure – also

known as “liability of smallness” (Barron et al. 1994) – by forming alliances with

external partners (Baum et al. 2000). Proponents of the knowledge-based view have

argued that alliances allow firms to gain access to external knowledge stocks (Grant

and Baden-Fuller 2004) and learn from cooperation partners (Hamel 1991) in order

to gain competitive advantages (Dierickx and Cool 1989; Coff 2003) and resist the

increasing pressure of global competition. Both resource-based as well as

knowledge-based arguments provide solid theoretical arguments to substantiate

high cooperation propensities of small firms in science-based industries.

However, given the need and willingness of these firms to cooperate, there are

several factors that are likely to hamper their ability to cooperate for the first time or

which delay network entry. Firstly, in the pre-cooperation phase it can be quite

difficult to assess a potential partner’s intentions (Dacin et al. 1997, p. 7). This

enhances the level of uncertainty, especially in international alliances (ibid).

Secondly, potential network entrants have to make a considerable effort and

spend both time and limited resources on identifying potential cooperation partners

(Dacin et al. 1997, p. 4). From a New Institutional Economic standpoint we would

argue that a firm faces considerable screening costs to overcome information

15 For an in-depth discussion on the resource-based view, see Sect. 2.4.2.
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asymmetries and lower the adverse selection risk (Ackerlof 1970; Spence 1976,

2002). These search costs, however, are likely to cause a disproportional burden on

small firms due to their comparably low resource endowment in the pre-cooperation

phase. Once potential partners are identified, other obstacles are likely to delay

network entry. Small firms lack alliance management capabilities (Schilke and

Goerzen 2010) and standardized cooperation interfaces (Goerzen 2005). Finally,

Lu and Beamish (2006) point to the fact that SMEs are usually owned and managed

by the founders and decision-making is much more centralized compared to larger

firms. This, however, is likely to delay the responsiveness of decision makers at

lower hierarchy levels and may hamper the firm’s ability to react rapidly to newly

emerging cooperation opportunities. The arguments outlined above substantiate our

first hypothesis:

H1 Small firms take longer than large firms to enter an innovation network for the

first time.

With regard to relational determinants the question arises as to how the type of

cooperation impacts the time it takes a firm to initialize its first cooperation event.

During the past decades substantial efforts were undertaken by both the EU and by

the German government to support key industries. The funding of R&D coopera-

tion projects is regarded as a key policy instrument. The main difference between

these two types of cooperation is that EU-framework projects explicitly aim to

encourage scientific and technological cooperation between member states whereas

national funding initiatives predominantly aim to address domestic applicants.

There are some clear benefits associated with international R&D project environ-

ments. According to Gunasekaran (1997, p. 639) these include access to new and

different technologies, enhanced scope of potentially accessible technological

knowledge stocks, better access to qualified employees and a broad range of

training opportunities for technical personnel. Nonetheless, there are also some

difficulties that go hand in hand with international R&D projects. The

pre-formation phase is characterized by higher search costs to identify potential

partners. In the post-formation phase, international alliances require greater invest-

ment in communication and transportation to support interaction among the part-

ners involved (Lavie and Miller 2008, p. 625). Project governance costs tend to be

higher due to a higher level of uncertainty (ibid). It is also well recognized that

cross-national cultural differences may affect interaction between firms and orga-

nizations in multiple ways (Hofstede 2001). Firms entering cross-national cooper-

ation projects face the challenge of adjusting to both a foreign country and to an

alien corporate culture (Barkema et al. 1996, p. 154; Lavie and Miller 2008, p. 626).

Differences in national culture are reflected in differing managerial ideologies of

decision makers and have the potential to significantly affect strategic decisions in

both the pre and post alliance formation phase (Dacin et al. 1997, p. 6). As a

consequence, it has been argued that cross-national cultural differences are likely to

affect a firm’s attitude towards cooperation and thus the predisposition to enter

international R&D consortia (Nakamura et al. 1997, p. 155). These considerations

underpin our second hypothesis:
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H2 A firm will enter a national innovation network sooner than an international

network (mode of entry).

Finally, we take a closer look at the contextual dimension. Based on a proximity

framework originally proposed by Boschma (2005), Boschma and Frenken (2010)

have argued that network change is likely to be affected by other dimensions of

proximity such as cognitive, organizational, institutional or geographical proxim-

ity. Like other science-driven industries (Owen-Smith et al. 2002), the German

laser industry shows a pronounced tendency to cluster geographically (Kudic

et al. 2011). Consequently, we focus on the relationship between geographical

proximity and a firm’s cooperation timing. More precisely, we distinguish between

inside-cluster and outside-cluster firms and analyze the extent to which cluster

membership affects cooperation timing. Firstly, it is important to note that cluster

membership does not require or imply network membership. Firms can be located

in a densely crowded region (agglomeration) without having formal partnerships

with other firms or organizations in their immediate geographical surroundings.

Theoretically, there are three potential ways in which cluster membership can affect

a firm’s propensity to cooperate and its timing to do so. A firm’s cluster membership

may have an accelerating impact, a decelerating impact or no impact at all on its

propensity to cooperate for the first time and its timing to do so.

We follow the traditional line of argument which assumes a positive relationship

between a firm’s location in a geographically crowded region and its initial coop-

eration activities. In this context, it has been argued that the local environment

generates positive externalities in terms of knowledge spillovers (Feldman 1999;

Audretsch and Feldman 1996). Social interactions between employees and decision

makers within a regional agglomeration are an important source of information. As

a result, firms located in densely crowded industrial regions become aware of local

cooperation opportunities sooner than others. It is therefore plausible that regional

environments can speed up a firm’s successful search for potential partners and

shorten the time needed to enter the network. However, geographical proximity

may also be accompanied by negative effects. Boschma (2005, p. 70) argues that

highly specialized regions can become too inward-looking and this sensitizes them

to the problem of spatial lock-in effects because of their lack of openness to the

outside world. While there is a great deal of empirical evidence for the importance

of spatial proximity over functioning spillover channels, other dimensions of

proximity such as cognitive proximity (Boschma and Frenken 2010), might

outperform spatial proximity in certain cases. In line with Feldman (1999) and

with Audretsch and Feldman (1996) we formulate our last hypothesis:

H3 The time it takes to first enter an innovation network is shorter for firms located

in densely crowded regions (agglomeration areas) than for firms located in remote

regions.
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9.5 Data and Variable Specification

This analytical section employs the previously introduced event history dataset

(cf. Sect. 6.1.1) which is based on three main data sources: industry data, organi-

zational data and cooperation data.

Industry data came from a proprietary dataset containing detailed information on

firm entries and exits for the entire population of German laser source manufac-

turers between 1969 and 2005 (Buenstorf 2007). This initial industry dataset has

been modified in several ways to meet the requirements of this analysis (cf. Sect.

6.1.1). We ended up with an industry dataset encompassing 233 laser source

manufacturers for the entire observation period from 1990 to 2010. To analyze

the transition from the origin state (“no-cooperation”) to the destination state (“first

cooperation”) we had to account for all firms with “incomplete” cooperation

histories to avoid left truncation and left censoring problems (Blossfeld and Rohwer

2002, pp. 39–41). In cases where the number of censored observation units is small,

it is acceptable to simply exclude them (Allison 1984, p. 11). Starting with a full

population of 233 LSMs in our sample, we identified 39 firms which were founded

before 1990 and excluded them from the dataset. Thus, a total of 194 firms were

potentially at risk of conducting the first cooperation event. Out of this population

we ended up with a total of 112 cooperating firms whose first cooperation event

unambiguously fell between 1990 and 2010.

Organizational level data was basically taken from the same raw data sources

that were used at the industry level (cf. Sect. 4.2.1). Moreover, we used annually

compiled count data on different types of laser related organizations – laser source

manufacturers (LSMs), laser-related public research organizations (PROs) and

laser system providers (LSPs) – which was supplied by the LASSSIE project

consortium (Albrecht et al. 2011). Data was available at the planning region

level. This allowed us to identify planning regions with an above-average number

of LSMs, PROs and LSPs and to group these planning regions into clusters.

Network data came from two electronically available archive data sources: the

Foerderkatalog database provided by the German Federal Ministry of Education

and Research and the CORDIS databases provided by the European Community

Research and Development Information Service (cf. Sect. 4.2.3).

We are not the first to use these archive data sources to construct knowledge-

related innovation networks (cf. Broekel and Graf 2011, p. 6; Fornahl et al. 2011;

Scherngell and Barber 2009, 2011; Cassi et al. 2008). There are solid arguments

that advocate for the use of these archive data sources for analyzing the evolution of

innovation networks. Organizations that participate in R&D cooperation projects

subsidized by the German federal government have to agree on a number of

regulations that facilitate mutual knowledge exchange and provide incentives to

innovate (Broekel and Graf 2011, p. 6). In a similar vein, the European Commission

has funded thousands of collaborative R&D projects in order to support transna-

tional cooperation activities, increase mobility, strengthen the scientific and
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technological bases of industries and foster international competitiveness

(Scherngell and Barber 2009, p. 534). Moreover, both data sources provide exact

information on the timing of tie formation as well as tie termination processes. They

were used to construct a single-episode event history dataset for the German laser

industry (cf. Sect. 6.1.1).

The variables in this dataset were grouped into the following three categories:

organizational, relational and contextual. An organizational variable was created to

account for differences in firm size [firmsize_cat_ev]. The following size categories
were used: firmsize_cat_ev1¼ “micro firm”¼ 1–9 employees; firmsize_ca-

t_ev2¼ “small firm”¼ 10–49 employees; firmsize_cat_ev3¼ “medium

firm”¼ 50–249 employees; firmsize_cat_ev4¼ “large firm”¼more than

250 employees. A simple relational variable was included in the dataset to account

for the type of cooperation. Thus, nationally funded and supra-nationally funded

R&D cooperation projects were coded separately [coop_type_ev]. The variable was
coded coop_type¼ 1 in the case of a CORDIS project and coop_type¼ 2 in the case

of a Foerderkatalog project. Cooperation dates and duration were recorded in

century months. Finally, we included a set of cluster variables [clu_ev] in our

dataset indicating whether a firm was located inside or outside of a densely crowded

region. The four geographical clusters were identified and defined as follows:

planning regions: 72, 73, 74, 76 and 77¼ clu_ev_bw, located in Baden-

Württemberg; planning regions: 86, 90 and 93¼ clu_ev_bay, located in Bavaria;

planning regions: 54 and 56¼ clu_ev_thu, located in Thuringia; region

30¼ clu_ev_b, located in Berlin.

9.6 Empirical Model and Estimation Results

Non-parametric event history methods were used to test our hypotheses (cf. Sect.

6.2.1). We applied the product-limit estimator (Kaplan and Meier 1958).

9.6.1 Empirical Estimation Approach

The Kaplan and Meier (1958) estimation method has several advantages. Most

importantly, it is straightforward to use, requires only weak assumptions and allows

non-repeated events in single-episode event history data to be analyzed (Cleves

et al. 2008, p. 93). In general, the survival function represents the probability of

surviving past time t, or in other words, the probability of failing after time t (ibid).
The event of interest is the first cooperation for all LSMs which are at risk in the

time period from 1990 to 2010. The unit of analysis is the firm. The time axis is

defined on the basis of century months. All firm foundation dates as well as all start

and end dates of cooperation events are given in century months. The dataset allows
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us to analyze the transition from the origin state (“no-cooperation”) to the destina-

tion state (“first cooperation”). Repeated events were not taken into account. Thus,

the survival function has to be interpreted as follows: the survival function esti-

mates the firm’s probability of having the first cooperation event after time t.
Non-parametric estimation methods provide the possibility of comparing survi-

vor functions (cf. Sect. 6.2.1). The overall population can be divided into two or

more subgroups by using an indicator variable to analyze whether the probability of

failing after time t significantly differs among these subgroups. The indicator

variable defines membership in a particular subgroup (Blossfeld et al. 2007,

p. 76). We applied this approach to analyze the extent to which organizational,

relational and contextual determinants affect cooperation behavior over time.

For the purpose of this analysis we make use of four commonly applied test

statistics: i.e. the Log-Rank test, Cox test, Wilcoxon-Breslow test and Tarone-Ware

test. These tests are designed to compare globally defined overall survival functions

(Cleves et al. 2008, p. 123). The tests are based on the null hypothesis that the

survivor functions do not differ significantly from one another (Blossfeld

et al. 2007, p. 81). A significant test result indicates that the null hypothesis must

be rejected (ibid). Or to put it another way, rejecting of the null hypothesis based on

a significant test result supports the alternative hypothesis that the compared

functions differ significantly from one another.

9.6.2 Estimation Results

A natural starting point for the presentation of our exploratory findings is to look at

the overall survivor function. Figure 9.3 displays a plot of the survivor function.

The vertical axis contains values between zero and one whereas the horizontal

axis represents time measured in century months. The interpretation is straightfor-

ward. The survivor function represents the firm’s propensity and timing to move

from the origin state (“no cooperation”) to the destination state (“first coopera-

tion”). To illustrate this, after 50 century months (i.e. 4 years and 2 months) about

66 % of all firms in our sample have entered the network, while about 34 % of all

firms were still unable to initiate their first cooperation event. Only 50 century

months later (i.e. 8 years and 4 months) about 84 % had achieved their first

cooperation event and after 150 century months (i.e. 12 years and 6 months)

99.6 % of all firms had moved from the origin state to the destination state.

To test our hypotheses we have used several indicator variables to split the

sample, compare survivor functions and analyze the extent to which the probability

of entering the network is affected by organizational, relational or contextual

factors.

We start the presentation and discussion of our findings by looking at firm size.

A comparison of survivor functions for micro, small, medium and large firms

reveals some unexpected but quite interesting findings (cf. Fig. 9.4). What we
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observe is that micro firms enter the network significantly later than small and large

firms. The sequence in which micro, small and large firms enter the network

remains unchanged and stable throughout the entire observation period. The test

statistics reported in Table 9.1 indicate that the null hypothesis must be rejected, in

other words, the compared survivor functions differ significantly from one another.

These results seem to confirm, at least at first glance, Hypothesis H1 which states

that smaller firms have higher resource constraints and cooperate later than larger

firms. However, the group of medium-sized firms complicates the story. At some

point in time (e.g. after 50 months) medium-sized firms enter the network signif-

icantly later than both large firms and micro and small-sized firms.

In a nutshell, we found only partial support for Hypothesis H1. The findings for

micro, small and large firms are in line with our expectations. Moreover, the results

clearly indicate that there must be another underlying process affecting a firm’s

timing in entering the network. An in-depth analysis of additional organizational

level determinants is needed to understand what factors cause the delayed entry of

medium-sized firms.

Next, we look at the relational dimension. Our initial assumption was that the

type of cooperation used by a firm to enter the network is likely to affect how long it
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would take for the first cooperation event to occur. Figure 9.5 compares the survivor

function based on cooperation type. Surprisingly, a comparison of nationally and

supra-nationally funded R&D cooperation projects shows no significant differences

(cf. Table 9.2). All four test statistics indicate that the null hypothesis must be

confirmed, meaning that there is no significant difference between the compared

survivor functions. In other words, it makes no difference whether a firm favors

nationally funded (i.e. Foerderkatalog) or supra-nationally funded (i.e. CORDIS)

R&D cooperation projects.

This result implies that the problem of “double layered acculturation” inherent to

international cooperation projects (Barkema et al. 1996, p. 154) seems to play a

subordinate role in this context. As a consequence we have to reject Hypothesis H2.

One potential explanation for this result is that the previously existing interpersonal

network between decision makers relativizes culturally contingent cooperation

barriers.

Finally, we address here only one of several other contextual determinants by

taking a closer look at the geographical proximity dimension. To analyze the extent

to which cluster membership affects a firm’s timing for entering the network we

identified several planning regions with an above-average number of LSMs, PROs

and LSPs and grouped them into four clusters: cluster_Th, cluster_Bay, cluster_B,

cluster_Bw.

Table 9.1 Test statistics – comparison of Kaplan Meier survivor functions based on firm size

(Source: Author’s own calculations)
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Figure 9.6 illustrates our empirical results. Perhaps the most interesting finding

is that cluster membership can have quite different effects on a firm’s timing in

entering the network. Our results show that firms located in the Thuringia Cluster

(clu_Th) cooperate significantly earlier than firms that are located elsewhere.

Exactly the opposite is true for firms located in the Bavarian Cluster (clu_Bay).

In both cases test statistics (cf. Table 9.3) indicate that the compared survivor

functions for inside-cluster and outside-cluster firms differ significantly.

Table 9.2 Test statistics – comparison of Kaplan Meier survivor functions based on cooperation

type

(Source: Author’s own calculations)
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However, this is only half of the story. Our results for the Berlin Cluster (clu_B)

and the Bavarian Cluster (clu_Bw) reveal quite a different picture (cf. Fig. 9.6,

bottom). In both clusters we found no empirical evidence for significantly different

survivor functions when comparing inside-cluster and outside-cluster firms

(cf. Table 9.3). In summary, clusters can, but do not necessarily, affect a firm’s

timing in cooperating and entering the network. Thus, we found empirical support

for each of the three cases proposed by Hypothesis H3. Our findings show that

cluster membership is not generally associated with a higher propensity to cooper-

ate. Instead, we need to take a closer look at the clusters themselves in order to

disentangle the effects of cluster membership on the timing and propensity to

cooperate.
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Table 9.3 Test statistics – comparison of Kaplan Meier survivor functions based on cluster

membership

(continued)
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9.7 Discussion and Implications

The first empirical part was motivated by a desire to deepen our understanding of

how interorganizational innovation networks evolve. This quite demanding task

was approached from two directions. On the one hand we proposed a conceptual

framework that consists of three elementary building blocks – (I) “determinants”,

(II) “micro-level network change processes” and (III) “structural consequences” –

to provide the theoretical basis for an in-depth analysis of evolutionary network

change. On the other hand we conducted a non-parametric event history analysis to

provide some empirical evidence on the propensity of LSMs to cooperate for the

first time and enter the German laser industry innovation network.

(Source: Author’s own calculations)

Table 9.3 (continued)
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The results of our analysis have interesting implications for both policy makers

and practitioners. Firstly, our findings show that micro firms enter the network

significantly later than small-sized and large firms but fail to explain the late entry

of medium-sized firms. The underlying logic of this finding is straightforward. Even

though SMEs depend more on access to external knowledge sources through

interorganizational R&D linkages in order to keep pace with larger competitors,

there are several factors hampering their ability to initiate R&D linkages for the first

time. This finding supports the view of many European countries and regions that

have instigated innovation policy programs for SMEs in order to strengthen R&D

cooperation and innovation networks (e.g. Muldur et al. 2006; OECD 2008). This

enables the joint research potential of SMEs to become effective more quickly. In

further research it would be interesting to disentangle the extent to which factors

such as search costs, a lack of alliance management capabilities or simply the

absence of standardized cooperation interfaces explain the delayed entry of SMEs.

Our second result is surprising. The findings show that the choice of cooperation

type (national or international) has no significant impact on a firm’s timing in

entering the network. Differences between nationally oriented and internationally

oriented R&D cooperation projects seem to only play a subordinate role in the

German laser industry. This can be taken as an indication of the high degree of

internationalization of this technology; it is a cross-sectional technology with many

applications in a truly interdisciplinary scientific field. Both factors clearly contrib-

ute to creating strongly internationalized networks. A second potential explanation

is that previously existing interpersonal networks between decision makers relativ-

ize culturally contingent cooperation barriers.

The findings of the final empirical analysis indicate that cluster membership can

have quite different effects on a firm’s timing in entering the network. Tradition-

ally, it has been argued that a geographically crowded region provides several

benefits for firms. It appears that firms in some regions (e.g. Thuringia) tend to

cooperate earlier and to have a significantly higher propensity to cooperate than

those in other regions (e.g. Bavaria). A plausible explanation for this finding can be

found in the spatial lock-in argument (cf. Boschma 2005; Boschma and Frenken

2010). In terms of policy making, this finding means that clustering processes are

important but no remedy in and of themselves. Very specialized industries, like the

laser industry, depend heavily on cooperation partners located anywhere in

Germany and beyond. This corresponds to the findings on national versus

international networks mentioned above.

This analysis provides us with interesting insights into firm-specific cooperation

patterns and network entry processes. Nonetheless the analysis only reflects a very

first step towards a better understanding of network change and a lot remains to

be done.

Like any empirical study, this analysis also has some appreciable limitations

(cf. Sect. 13.2) and we still face some theoretical and empirical challenges in

obtaining a deeper understanding of causes and consequences of evolutionary

network change processes. These challenges constitute the next steps in our

research agenda (cf. Sect. 14.2).
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Chapter 10

Ego Networks and Firm Innovativeness

Innovation is all about people. Innovation thrives when the
population is diverse, accepting and willing to cooperate.

(Vivek Wadhwa)

Abstract In this chapter we seek to analyze how firm innovativeness is related to

individual cooperation events and the structure and dynamics of firms’ ego net-

works. On the one hand, we analyze to what extent individual cooperation events

have a direct effect on firm innovativeness. On the other hand, each cooperation

event changes the structural configuration of a firm’s portfolio of cooperative

relationships. Evolutionary network change processes at the micro-level – i.e. tie-

formation as well as tie-termination – shape the structural configuration of firm-

specific ego networks which are assumed to have an indirect effect on innovation

output. Consequently, the aim of this second empirical section is to disentangle

these two cooperation-related innovation effects. To shed some light on the ques-

tions raised, we apply the longitudinal panel dataset described above (cf. Sect.

6.1.2). Network measures are calculated on the basis of 570 knowledge-related

publicly funded R&D cooperation projects. Firm innovativeness is measured by

patent grants with a 1 and 2 year time lag. Several robustness checks are performed

on the basis of patent application counts. The following empirical analysis is

organized as follows. We start in Sect. 10.1 with a short introduction. In Sect.

10.2 we provide a theoretical foundation, present our conceptual framework and

derive a set of testable hypotheses. A description of the data sources together with a

brief presentation of the variables used follow in Sect. 10.3. In Sect. 10.4 we discuss

some methodological issues, specify the econometric estimation approach and

present our empirical results. Finally the paper closes with a brief discussion of

our main findings.
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10.1 Motivation and Research Questions

The very aim of this analysis is to investigate how firm innovativeness is related to

individual cooperation events and the structure and dynamics of firms’ ego

networks.1

New knowledge in innovation processes is mainly generated through the

exchange and recombination of existing knowledge content. From a firm’s per-

spective, this recombination may be achieved either through internal learning

processes within the boundaries of the firm or by interacting with other economic

actors (Graf and Krueger 2011, p. 69). Long-term cooperation projects provide a

particularly important way for firms to reach beyond their own corporate bound-

aries (Alic 1990). These projects often take the form of strategic alliances

(Grunwald and Kieser 2007, p. 369) which can be defined as “[. . .] voluntary

arrangements between firms involving exchange, sharing, or co-development of

products, technologies, or services” (Gulati 1998, p. 293). Strategic alliances can be

categorized based on the underlying motivation, goals or organizational forms

(Osborn and Hagedoorn 1997; Mowery et al. 1996).2 The number of R&D partner-

ships has increased considerably since the 1980s, especially in high-tech industries

(Hagedoorn 2002). Thus, firms increasingly face the challenge of managing and

controlling a portfolio of national and international alliances simultaneously.

In this analysis we apply an ego network perspective in order to capture the firm-

specific cooperation patterns and subsequent innovation outcomes over time.3 Ego

networks are constructed on the basis of a specific type of cooperative relationship:

knowledge-related publicly funded R&D alliances that aim to increase the innova-

tiveness of the organizations involved. The subject of our analysis includes various

types of individual cooperation events as well as firm-specific R&D cooperation

project portfolios which are defined from the focal actor’s perspective and consist

of a set of direct, dyadic ties between the focal actor and its alters as well as indirect

ties between the alters (Ahuja 2000). They do not include second-tier ties or second-

step ties to which the focal actor is not directly connected (Hite and Hesterly 2001).

1 This chapter draws upon a joint research project conducted together with Guido Buenstorf,

University of Kassel, Institute of Economics and International Center of Higher Education

Research (INCHER-Kassel) and Katja Guhr, Department for Structural Economics at the Halle

Institute for Economic Research. We have greatly benefited from comments by the audience at the

7th EEMAE conference in 2011 in Pisa, Italy and the IIDEOS PhD colloquium in 2011 in

Marburg. The latest draft of the paper was presented at the 5th EMNET Conference in 2011 in

Limassol, Cyprus (Kudic et al. 2011a). I take full responsibility for any errors in this section.
2 Section 2.5.3 provides a discussion on cooperation rationale and motives.
3 These terms “ego network”, “alliance portfolio” and “alliance constellation” are used in this

paper interchangeably. For an overview and comparison of definitions and concepts, see

Wassmer (2010).
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Figure 10.1 illustrates a typical ego network structure with one focal actor, five

directly connected alters and one indirect connection (cf. Kudic and Banaszak

2009).

Earlier related work has analyzed the relationship between knowledge-intensive

R&D alliances and firm innovativeness (Narula and Hagedoorn 1999; Stuart 1999;

Stuart 2000) and introduced concepts explaining the identification and commercial

utilization of knowledge (Cohen and Levinthal 1990) as well as disturbances in

interorganizational knowledge transfer and learning processes (Simonin 1999).

Moreover, scholars from various disciplines have analyzed how various dimensions

of structural embeddedness in interorganizational networks (Powell et al. 1996;

Rodan and Galunic 2004; Capaldo 2007) or the overall network structure itself

(Schilling and Phelps 2007) affect innovativeness in the firms involved. In contrast,

longitudinal empirical studies that explicitly analyze the relationship between ego

network characteristics and firm innovativeness are comparably rare.4

One essential question that arises in this context is whether the innovativeness of

firms in high-tech industries is directly affected by individual R&D cooperation

events or more indirectly by structure and structural change in firm-specific ego

network characteristics over time. In other words, through which transmission

channels do cooperation events affect a firm’s subsequent innovative performance?

On the one hand it is plausible to assume that individual cooperation events directly

affect firm innovativeness. On the other hand, past as well as present cooperation

events determine the configuration of the focal actor’s individual ego network

structure over time which itself is likely to affect the firm’s innovativeness. The

explicit consideration of structural consequences of firm-level cooperation events

raises the awareness of the existence of direct as well as indirect cooperation related

innovation effects. Furthermore, Wassmer (2010, p. 162) concludes in his compre-

hensive review on alliance portfolios that further research based on longitudinal

Ego-network  
(alliance portfolio) 

Focal 
actor 

Direct tie 

Alter 

Indirect tie 
Second-tier 
tie 

Fig. 10.1 Illustration of a typical ego network structure (Source: Kudic and Banaszak (2009,

p. 9))

4Most notable exceptions are: (Ahuja 2000; Baum et al. 2000; Wuyts et al. 2004).
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studies is needed to understand how and why firms change the configuration of their

alliance portfolios over time and how this affects a firm’s performance. This dual

character of individual cooperation events has been widely neglected in previous

research on ego networks and constitutes the core of this investigation.

Consequently, we seek to answer the following research questions: (I) Do

individual cooperation events (i.e. “direct effects”) or rather structural ego network

characteristics (i.e. “indirect effects”) affect firm innovativeness over time? (II)

How do individual cooperation events affect the structural configuration of the

focal actor’s ego network and which structural features affect its subsequent

innovation output?

To answer these questions, we apply the longitudinal panel dataset introduced

above (cf. Sect. 6.1.2). Information on type, content and funding of publicly funded

R&D cooperation projects provides a solid basis for a fine-grained analysis of direct

innovation effects. Structural ego network measures were calculated on a yearly

basis by applying network data and quantitative network analysis methods

(Wasserman and Faust 1994; Borgatti et al. 2002).5

10.2 Theoretical Reflections, Conceptual Framework

and Hypotheses

Numerous theoretical contributions have sought to explain the nature of hybrid

organizational forms and a firm’s motives to cooperate in its innovation efforts

(Hagedoorn 1993; Osborn and Hagedoorn 1997; Gulati 1998).6 Some early expla-

nations adopted the perspective of transaction cost economics (Jarillo 1988;

Thorelli 1986; Williamson 1991). They interpret hybrid arrangements as strategic

alliances (Borys and Jemison 1989) which are positioned between markets and

hierarchies and reduce transaction costs under moderate asset specificity and

frequency of disturbances (Williamson 1991, p. 292).

Other scholars have argued that hybrids have to be regarded as a unique

organizational form that cannot be classified as an intermediate between markets

and hierarchies (Powell 1990; Podolny and Page 1998). However, the structural

forms behind these hybrids are manifold, ranging from short-term supply contracts,

licensing and franchise agreements and consultancy contracts, to consortia, long-

term partnerships and joint ventures (Podolny and Page 1998; Mowery et al. 1996).

Previous studies on the motives for strategic alliances have shown that R&D

alliances in particular provide significant cost saving potentials (Harrigan 1988;

Hagedoorn 2002) and allow firms to reduce the risk inherent in R&D processes

(Ohmae 1989; Hagedoorn 1993; Sivadas and Dwyer 2000). Furthermore, R&D

5We used standard ego network procedures implemented in UCI-Net 6.2 to calculate ego network

measures (Borgatti et al. 2002).
6 For an in-depth discussion on the motives for cooperating, see Sect. 2.5.3.
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alliances provide access to new products and markets (Kogut 1991; Hagedoorn

1993), allow time to be saved by shortening the time-span between invention and

market introduction (Mowery et al. 1996), and provide opportunities to interna-

tionalize business and penetrate markets abroad (Hakansson and Johanson 1988;

Narula and Hagedoorn 1999). With the emergence of the knowledge-based

approach in organization science (Kogut and Zander 1992; Spender and Grant

1996; Grant 1996), scholars realized the strategic importance of firm-specific

knowledge resources for the competitive advantage of firms (Coff 2003). Knowl-

edge related motives for interorganizational learning processes (Hamel et al. 1989;

Hamel 1991; Khanna et al. 1998; Kale et al. 2000) as well as knowledge transfer

processes (Rothaermel 2001; Grant and Baden-Fuller 2004; Buckley et al. 2009)

have been analyzed from various angles in the field of alliance and network

research. However, scholars have argued that “[. . .] among the various motivations

for partnering, innovation is said to be a rationale of singular importance” (Bidault

and Cummings 1994, p. 33).

10.2.1 R&D Alliances, Networks and Innovation Output

The relationship between knowledge transfer, R&D cooperation and firm innova-

tiveness has been the subject of numerous case studies (Dyer and Nobeoka 2000;

Ciesa and Toletti 2004; Eraydin and Aematli-Köroglu 2005; Capaldo 2007) as well

as several survey-based empirical studies.

For instance, De Propris (2000) has studied the link between innovation perfor-

mance and upstream as well as downstream interfirm partnerships drawing upon a

unique dataset compromised of 435 firms located in the West Midlands,

UK. Estimation results substantiate the importance of R&D cooperation as a

driving force behind firm innovativeness. Harabi (2002) found statistically signif-

icant support for the impact of vertical R&D cooperation on firm-level innovation

outcomes based on a sample of 370 small and medium sized German firms. The

results indicate that informal modes of cooperation are apparently more important

than formal modes. In a similar vein, Freel and Harrison (2006) investigated the

impact of cooperation on firm-level innovation output. They conducted a survey-

based study compromising 1,347 small firms from Northern Britain in both the

manufacturing and service sectors. They report a positive correlation between

product innovation success and cooperation with customers and public sector

organizations.

Even though these studies provide us with important insights into the relation-

ship between R&D partnerships and a firm’s efforts to innovate, they suffer from at

least three serious limitations. Firstly, the majority of survey-based cooperation

studies focus on dyadic partnerships and neglect the structural dimension of the

overall innovation network in which the firms under investigation are embedded.

Secondly, network studies are quite sensitive with regard to network boundary

misspecification and missing cooperation data. Empirical studies employing
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complete network data are quite rare. Finally, the majority of survey-based coop-

eration studies draw upon cross-sectional data and neglect the dynamic nature of

cooperation activities and subsequent innovation consequences.

In response to these issues researchers have quite recently started to analyze the

relationship between firm positioning in complex interorganizational networks and

firm innovativeness based on longitudinal large-scale databases (Stuart 2000; Lee

2010; Fornahl et al. 2011).7

10.2.2 Ego Network Structure and Innovation Output

Over the past years the number of R&D collaborations has increased rapidly,

especially in high-tech industries, (Hagedoorn 2002) and firms increasingly face

the challenge of managing a portfolio of multiple collaborations simultaneously.

This empirically observable fact places attention on firm-specific cooperation

networks – so-called alliance portfolios or ego networks – (Wassmer 2010; Hite

and Hesterly 2001) and raises several interesting and still widely unanswered

research questions.

In the areas of economics, management and organization science, there are a

number of excellent studies on “alliance network compositions” (Baum et al. 2000),

“ego networks” (Ahuja 2000; Jarvenpaa and Majchrzak 2008; Hite and Hesterly

2001), “alliance constellations” (Das and Teng 2002; Gomes-Casseres 2003),

“alliance portfolios” (George et al. 2001; Parise and Casher 2003; Hoffmann

2005, 2007; Lavie 2007; Lavie and Miller 2008) or “portfolios of interfirm agree-

ments” (Wuyts et al. 2004). Our main interest is in the existence and the extent of

additional ego network effects which are assumed to shape the focal actor’s

innovative performance over time. With few exceptions, previous studies have

paid comparably less attention to links between the structural ego network config-

uration and firm innovativeness.

For instance, Ahuja (2000) has analyzed the relationship between three aspects

of a firm’s ego network characteristics – direct ties, indirect ties and structural holes

– as well as subsequent firm-level innovation outcomes. The results confirm that

direct and indirect ties positively affect innovation output, while also raising

awareness for the negative innovation effects of structural holes. Baum and his

colleagues (2000) have shown that the early innovative performance of Canadian

biotech startups – measured by patent grant counts and R&D spending growth – is

strongly affected by the alliance network composition of these firms at the time they

are founded. Wuyts and his colleagues (2004) have analyzed the impact of different

types of alliance portfolio descriptors on a firm’s incremental and radical innova-

tions as well as on firm profitability.

7 Schilling (2009) provides a comprehensive overview of large-scale alliance and network data

databases such as “SDC”, “MERIT-CATI”, “CORE”, “RECAP”, and “BIOSCAN”.
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Evidence that explains the overall advantages of alliance portfolios over dyadic

cooperation linkages can be drawn from three lines of argument. Firstly, ego

networks provide a risk reduction effect which goes beyond the dyadic level

(Hoffmann 2007). By actively managing and controlling a portfolio of alliances,

risk can be reduced by taking advantage of these risk diversification effects

(Markowitz 1952). Given potentially high rates of failure in achieving risk reduc-

tion in dyadic alliances (Bleeke and Ernst 1991; Sivadas and Dwyer 2000), spread-

ing risk over a portfolio of alliances helps firms reduce the variances in expected

returns. Secondly, firms can gain cost savings by utilizing synergy effects in a

portfolio of alliances (White 2005; Hoffmann 2005). Cooperation routines and

standardized cooperation interfaces (Goerzen 2005), as well as alliance experience

(Anand and Khanna 2000) and alliance management capabilities (Schilke and

Goerzen 2010) save costs and increase the overall efficiency of a focal actor’s

ego network. For instance, Rothaermel and Deeds (2006) report a moderating effect

of alliance experience on the relationship between a high-tech venture’s R&D

alliances and its new product development. Thirdly, an alliance portfolio enhances

the scope of potential learning and knowledge access opportunities by providing

access to multiple stocks of knowledge (Grant and Baden-Fuller 2004). Due to the

heterogeneity of directly connected partners, the range of potentially accessible

knowledge stocks increases. In addition, the interconnectedness of direct partners

facilitates the flow of information in the narrower surroundings of the focal actor.

The broader range of opportunities for knowledge access and learning, and the

enhanced flow of information across partners are likely to have a positive impact on

a firm’s ability to innovate and gain competitive advantages (Gomes-Casseres

2003).

Most of the previously discussed arguments are directly reflected in the struc-

tural configuration of a focal actor’s ego network. In other words, a focal actor’s

cooperative path is reflected in his past as well as present cooperation activities.

Thus it is worthwhile taking a closer look at the structural features of firm-specific

cooperation patterns over time in order to answer the research questions that were

initially raised. Basically two distinct structural ego network dimensions can be

identified in this context. On the one hand, we can analyze a firm’s ego network

structure with regard to features relating to the node level. This perspective refers,

for instance, to the number of directly connected partners or to the heterogeneity of

partners in an ego network. On the other hand, we can focus on the connectedness of

partners in an ego network in order to characterize its structural features. From this

point of view the various types and configurations of linkages between the actors in

an ego network become relevant. In addition, ego networks are not static; they

change continuously over time and shape the structural configuration of the focal

actor’s portfolio as well as the focal actor’s subsequent innovative performance.

This requires a dynamic view of networks which is provided in the following

section.
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10.2.3 An Evolutionary Perspective on Ego Networks

Recent reviews of overall interorganizational networks (Provan et al. 2007;

Bergenholtz and Waldstrom 2011) and innovation networks (Pittaway et al. 2004;

Ozman 2009) agree that the dynamic character of networks is still not understood

sufficiently.8 Changes in network structure are the result of events affecting two

basic elements – nodes (i.e. organizations) and ties (i.e. R&D alliances) – of

innovation networks (Doreian and Stokman 2005; Glueckler 2007). This means

that an innovation network evolves as nodes enter and exit the population

(i.e. changes in the number of organizations) and build and dissolve network

relationships with other actors (i.e. changes in the number R&D partnerships).

Structural network change can occur as a result of exogenous and endogenous

factors. Determinants, mechanisms and structural change patterns as a consequence

of micro-level network change processes are given a prominent role in evolutionary

network studies (cf. Sects. 9.1 and 9.2). In comparison to the more general term

“network dynamics” the concept of “network evolution” contains “[. . .] a stricter

meaning that captures the idea of understanding change via some understood

process” (Doreian and Stokman 2005, p. 5). However, the majority of previously

conducted empirical studies on network evolution focus on the overall network

level whereas research from the perspective of the focal actors is rare (Hite and

Hesterly 2001). To date, only a small number of case studies (Dyer and Nobeoka

2000; Dittrich et al. 2007) have addressed the issue of how portfolios of collabo-

rations change over time. Wassmer (2010, p. 165) concludes that “[. . .] little is still
known on how alliance portfolio configurations change over time and what drives

this evolution.” In the present analysis we explicitly consider how tie formations

and tie terminations of both the focal actors’ cooperation activities as well as the

network neighbors affect the structural configuration of ego networks and subse-

quent innovation outcomes.

10.2.4 Conceptual Framework: Direct and Indirect
Innovation Effects

Our conceptual framework (cf. Fig. 10.2) draws upon the previously outlined

theoretical considerations and seeks to substantiate the relationships between evo-

lutionary micro-level network change processes, changes in ego network structure

and firm-level innovation outcomes. The framework consists of four elements – (I)

individual cooperation events, (II) ego network structure, (III) network environ-

ment, (IV) innovation outcomes – and illustrates four cooperation-related effects –

8 Recently a number of excellent theoretical as well as empirical studies have addressed and

analyzed the evolutionary change of networks. For an overview of contemporary research see Sect.

9.2.
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(1) direct innovation effects, (2) indirect innovation effects, (3) structural effect,

and (4) feed-back effects – all from a focal actor’s perspective.

We start our argumentation by focusing on individual cooperation events (I). In

this context, individual cooperation events encompass all tie formations and tie

terminations on the micro-level which affect the structural configuration of the

focal actor’s ego network. These structural effects (3) can arise from the focal

actor’s own cooperation activities as well as from the cooperation activities of the

focal actor’s direct partners. In the first case, the size of the ego network is affected

whereas in the second case the density of the focal actor’s ego network is affected.

In addition, the network environment (III) influences the ego network in at least

two additional ways. Firstly, a focal actor’s cooperation decisions are strongly

influenced by the cooperation opportunities and restraints provided by the broader

network environment. Secondly, even if an ego and its alters do not conduct any

cooperation activities over a given period of time, the relative importance of its ego

network changes continuously due to cooperation activities of other network actors

in the broader network environment. This means that structural ego network

features have to be analyzed in the context of the focal actor’s broader network

environment (III).

Now we turn our attention to the relationship between individual cooperation

events (I) and firm-level innovation outcomes (IV). As outlined above, this direct

innovation effect (1) has been the subject of a large number of empirical studies.

The findings of these studies substantiate the assumption that cooperation events

are positively related to firm-level innovation outcomes. However, especially in the

case of publicly funded R&D cooperation projects, it is unclear whether it is the

cooperation itself or, whether it is in fact the amount of funding received which

affects firm innovativeness at a later point in time. To account for this issue we

divide the direct cooperation-related drivers behind firm innovativeness into a

“cooperation effect” and a “funding effect”.

Firm-specific cooperation activities have an additional, more indirect innovation

effect by shaping the focal actor’s ego network structure. Theoretical arguments on

risk diversification, synergy and cost-savings in alliance portfolios substantiate the

Patent applications 

Direct innovation effects (1.) Innovation 
outcomes

Individual 
cooperation events

R&D tie formations
R&D tie terminations Ego-network 

structure 
a)  Ego-size 

b)  Ego density 

c)  Strategic positioning 

Indirect innovation
effects (2.)Structural effects (3.)

Network 
environment 

(I.) (IV.)

(III.)

(II.)

Feed-back 
effects (4.)

Fig. 10.2 Network change processes, ego network configuration and firm-level innovation output

(Source: Author’s own illustration)
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assumption that an alliance portfolio is more than the sum of its parts. Thus, we

argue that each cooperation event (I) affects the structural configuration of a focal

actor’s ego network structure (II) and exerts an indirect innovation effect (2) which

is assumed to be related to firm-level innovation outcomes (IV) at a later point in

time. We include three structural ego network dimensions – “ego size”, “ego

density” and “strategic positioning” – in our conceptual framework in order to

capture a wide range of portfolio characteristics. Ego network size refers to the

number of directly connected partners of a focal actor and the ego itself whereas

ego network density captures the connectedness of the partners involved. In addi-

tion, firms act strategically in constructing their network (Dyer and Singh 1998;

Gulati et al. 2000) and choose those network partners whose characteristics comply

with their specific innovation process requirements. Consequently we include a

structural component (“ego density”) and strategic component (“strategic position-

ing”) in our framework.

Finally, the dotted feedback line (4) illustrates the inter-temporal relationship

between past and current cooperation events. The sum of all previously conducted

tie formations and tie terminations of a focal actor itself and its closer network

environment constitutes its individual ego network structure. New cooperation

decisions are based on previous cooperation experiences and are determined by

considerations of how new linkages fit into existing webs of linkages (Gulati and

Gargiulo 1999). In other words, cooperation decisions are path-dependent. Some

authors have argued that existing network structures are resistant to change. For

instance, Kim and his colleagues (2006) have proposed a theoretical “network

inertia” framework that explains the organizational resistance to changing

interorganizational network ties as well as difficulties that an organization faces

when it attempts to dissolve old relationships and form new network ties. In

contrast, other authors have argued that firm strategies and actions can disrupt

existing network paths (Glueckler 2007). Both, however, agree that a longitudinal

setting is required to appropriately account for the inter-temporal dimension of

structural ego network change patterns.

The deduction of testable hypotheses in the following section concentrates on

the drivers as well as interrelationships between direct innovation effects (1) and

indirect innovation effects (2) in our framework.

10.2.5 Hypotheses on Cooperation-Related Innovation
Effects

Does R&D cooperation affect firm innovativeness, and if so, what are the rationales

behind this assumption? The answer to at least the second part of this question was

provided quite early by scholars (Alic 1990; Hagedoorn 1993). Due to the science-

based character of the German laser industry (Grupp 2000) we refer to knowledge-

related arguments to substantiate our first set of hypotheses. There are two streams
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of literature – the “knowledge acquiring approach” and the “knowledge accessing

approach” which can be distinguished in this context (Al-Laham and Kudic 2008).

The distinction is based on the underlying processes of knowledge generation

(or “exploration”) and knowledge application (or “exploitation”) among partners

in strategic alliances (Grant and Baden-Fuller 2004, p. 61).

According to the first approach, alliances can be regarded as “vehicles of

learning” (Grant and Baden-Fuller 2004, p. 64) which allow a firm to share a

particular part of its knowledge bases and exchange implicit stock of knowledge

across firm boundaries. The firm’s ability to “[. . .] recognize the value of new,

external information, assimilate it, and apply it to commercial ends [. . .]” (Cohen

and Levinthal 1990, p. 128) is of paramount importance for organizational as well

as interorganizational learning processes. Since the introduction of the initial

concept of “absorptive capacity”, several scholars have contributed to a concreti-

zation of the concept itself (Van Den Bosch et al. 1999; Zahra and George 2002)

and to a reconceptualization from a firm-level construct to a learning dyadic level

concept (Lane and Lubatkin 1998; Lane et al. 2001). In addition, the establishment

of mutual trust between partners (Lui 2009) has been recognized as a key factor in

successful interorganizational learning processes in order to avoid learning races

(Amburgey et al. 1996) or tensions between alliance partners (Das and Teng 2000)

which can result in alliance instabilities or terminations (Park and Russo 1996;

Inkpen and Beamish 1997).

The second approach suggests that firms cooperate in order to gain access to

complementary stocks of knowledge (Grant and Baden-Fuller 2004) without nec-

essarily internalizing the partner’s skills (Doz and Hamel 1997). In other words, a

knowledge accessing strategy focuses on the use of the partner’s rich experience

without acquiring any specific skills (Lui 2009). Grant and Baden-Fuller (2004,

p. 69) argue in their “knowledge accessing” framework that the efficiency of

knowledge integration through alliances can be superior compared to markets or

hierarchies where products require a broad range of different types of knowledge.

Firms do not necessarily have to generate new stocks of knowledge within the

boundaries of the firm. Instead, they can collaborate with other firms or public

research organizations to gain access to complementary stocks of explicit knowl-

edge. However, several problems can occur during the interorganizational knowl-

edge transfer processes. Simonin (1999) has introduced the concept of “causal

ambiguity” and empirically analyzed the determinants affecting knowledge transfer

processes in strategic alliances.

In summary, both knowledge acquiring as well as knowledge assessing strate-

gies can significantly flexibilize and improve the firm’s knowledge base – a

necessary precondition for subsequent innovation processes. Broekel and Graf

(2011, p. 6) argue that publicly funded R&D projects provide strong incentives

for sharing knowledge and for innovating due to the regulative framework to which

all cooperation partners involved have to agree. To test the empirical relationship

between direct cooperation events and innovation output, we look at the two types

of publicly funded R&D cooperation projects separately. Nationally funded coop-

eration projects predominantly address cooperation attempts among German firms
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and organizations. In contrast, supra-national cooperation projects are based on the

notion of supporting pan-European research and development activities. Based on

our previous considerations we can formulate the following two hypotheses:

H1a The annual number of nationally funded cooperation projects

(“Foerderkatalog”) is positively related to a firm’s innovative performance at

subsequent points in time.

H1b The annual number of supra-nationally funded cooperation projects

(“CORDIS”) is positively related to a firm’s innovative performance at subsequent

points in time.

Next we turn our attention to the structural dimension of individual cooperation

events. The appropriate choice and establishment of R&D cooperation projects can

increase the structural efficiency of an existing ego network. As outlined above,

firms choose new partners based on strategic considerations (Dyer and Singh 1998;

Gulati et al. 2000) which comply with their specific innovation process require-

ments. The rationale behind the establishment of a cooperative relationship is not

necessarily direct access to the partner’s resource pool. Instead the focal actor’s

intention may be to reduce its dependence on brokers by establishing alternative

knowledge channels to strategically relevant actors or groups of actors. In other

words, focal actors choose cooperation partners for strategic reasons in order to

secure their network position, to complement their existing ego network structures

and to increase efficiency. Consequently, tie formations and tie terminations may

induce an additional structural effect (i.e. indirect innovation effect) by reshaping

the configuration of the ego network. These individual cooperation events contrib-

ute to firm-specific innovation processes by filling “structural gaps” in existing ego

networks. Thus, not only the “cooperation-specific” effect but also the superior

“ego network-specific” effect is likely to determine firm innovativeness. In other

words, it is plausible to assume that an additional innovation effect occurs which is

caused by the focal actor’s ego network structure. This implies that the several

facets of the focal firm’s ego network structure potentially affect the firm’s

innovativeness.

To test the empirical relationship between network structure and innovation

output, we look separately at the distinct structural dimensions characterizing the

ego network topology. The size of an ego network may affect the focal actor’s

innovativeness for a variety of reasons. As outlined above, collaborative arrange-

ments provide access to new and complementary stocks of knowledge (Rothaermel

2001; Grant and Baden-Fuller 2004). This, however, is also of vital importance in

portfolio settings. The more direct linkages there are in a portfolio, the broader the

range of potentially accessible complementary knowledge stocks. Scholars have

argued that a firm’s ability to access new knowledge from external sources becomes

itself a more relevant source for competitive success than the present stock of

knowledge within the firm (Decarolis and Deeds 1999). Basically the same argu-

ment applies to knowledge-acquiring strategies. In addition, saving time, which can

be achieved through cooperation, becomes increasingly important in science-based
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industries. Mowery and his colleagues (1996, p. 79) argue that the perceived

shortening of product life-cycles increases the competitive pressure on firms in

technology-intensive industries. They conclude that the rapid penetration of foreign

markets becomes increasingly important, a goal which can be more easily achieved

through alliances. These arguments become important, especially in an alliance

portfolio context, as multiple collaborative R&D endeavors with diverse heteroge-

neous partners increase the accessibility to various types of knowledge stocks or

learning opportunities and accelerate the development of new ideas and products.

These arguments substantiate our next hypothesis:

H2a The greater the size of a focal actor’s ego network, the higher its subsequent

innovative performance.

As outlined above, in addition to node-related ego network features such as size

we can distinguish between dimensions that are structurally and strategically

oriented, i.e. degree of connectedness and brokerage positions. The degree of

connectedness in an ego network is related to the extent to which firms gain

innovation experience by being well connected to other firms or public research

organizations. According to closure theory a high degree of connectedness

increases the visibility of network actors (Coleman 1988). Furthermore, a high

number of linkages in a densely connected ego network lower the risk of depen-

dence on other organizations due to the existence of redundant ties and optional

knowledge channels to relevant partners. Moreover, in highly connected networks,

firms gain access to various types of potentially decisive stocks of explicit as well as

implicit (or tacit) knowledge. This increases the scope of the firm’s potentially

available complementary knowledge stock and increases the firm’s flexibility.

These considerations lead to the following prediction9:

H2b The higher the degree of connectedness in a focal actor’s ego network, the

greater its subsequent innovative performance.

A central debate in alliance and network literature occurs around Coleman’s

“closure theory”. Burt’s (1992) “structural hole” theory highlights the importance

of strategic positions and brokerage activities of actors in sparsely connected

networks. Recent theoretical and empirical studies (Rowley et al. 2000; Burt

2005) indicate that these two perspectives are not mutually exclusive. We follow

Burt’s line of argument with regard to our last hypothesis. According to this

perspective it is not so much a high degree of connectedness but rather the

occupation of strategically relevant network positions that is decisive. Actors

9 Even though we argue in this paper that the connectedness of an actor exerts a positive effect on

innovation output, one has to keep contrary lines of argument in mind. For instance, Uzzi (1997)

proposes that the effects of network embeddedness may become negative with an increasing level

of connectedness.
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connecting a large number of otherwise unconnected actors – so-called “brokers” –

occupy such positions. Referring to this argument and keeping in mind our ego

network perspective, we put forward the following argument: like brokers in overall

networks, we can identify strategically decisive actors in ego networks who mediate

the majority of the relationships between the other ego network actors. “When ‘ego’

is tied to a large number of ‘alters’ who themselves are not tied to one another, then

ego has a network rich in structural holes” (Podolny 2001, p. 34). These positions

are beneficial for several reasons. Brokers can facilitate, control or prevent the flow

of knowledge into an ego network to a large extent by bridging structural holes in

existing network structures. They are in a position that allows them to bring

together firms as well as other organizations. Consequently we formulate our last

hypothesis as follows:

H-2c Focal actors that occupy a brokerage position show a higher innovative

performance at a later point in time.

10.3 Data, Methods and Variable Specification

10.3.1 Applied Data Sources

The analytical part of this book is based on three main data sources: patent data,

industry data and network data. 10

We use patent data to construct indicators reflecting the innovative performance

at the firm level. A lot has been written about the empirical challenges of measuring

innovation processes. Despite the methodological constraints related to the use of

patents to measure innovation performance (Patel and Pavitt 1995), patent indica-

tors are commonly used in analyzing innovation processes (Jaffe 1989; Jaffe

et al. 1993). Raw data was taken from the EPO Worldwide Statistical Database.

DEPATISnet (the German Patent and Trade Mark Office’s online database) and

ESPACEnet (European Patent Office database) were used to check results for

integrity and consistency. Our database includes patent applications as well as

patents granted by the German Patent Office and by the European Patent Office.11

Industry data came from a proprietary dataset containing the entire population of

German laser source manufacturers between 1969 and 2005 (Buenstorf 2007).

Based on this initial dataset we used additional data sources to gather information

about firm entries and exits after 2005. For the purpose of this paper we chose the

10 Fo an in-depth description of applied data sources and data gathering procedures, see Sect. 4.2.
11 Identifying patent grants is a difficult task. We used the “patent first granted” flag (PatStat) in

combination with the variable “publn_kind” to identify all granted patents.
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business-unit or firm level. We ended up with an industry dataset encompassing

233 laser source manufacturers over the entire period under observation. In addi-

tion, we identified 145 universities and public research organizations with laser

related activities by using the methodical procedure described below.

Network data came from two official databases on publicly funded R&D col-

laboration projects. The first source was the Foerderkatalog database provided by

the German Federal State, which contains information on a total of more than

110,000 completed or ongoing subsidized research projects and provides detailed

information on the starting point, duration, funding and characteristic features of

the project partners involved. This data source has quite recently been used by other

researchers to gather network data (Fornahl et al. 2011; Broekel and Graf 2011).

The publicly funded research projects are subsidized by five German federal

ministries. In total, we were able to identify, for the entire population of 233 German

laser source manufacturers, 417 R&D projects with up to 33 project partners from

various industry sectors, non-profit research organizations and universities. The

second raw data source was an extract from the CORDIS project database which

includes a complete collection of R&D projects for all German companies which

were funded by the European Commission between 1990 and 2010. Data on EU

Framework programs has also been used by other researchers to construct R&D

networks (Cassi et al. 2008; Protogerou et al. 2010; Scherngell and Barber 2011). In

total, this database extract consisted of a project dataset with over 31,000 project

files and an organization dataset with over 57,100 German organizations and

roughly 194,000 international project partners. Based on this raw data, we identified

155 R&D projects with up to 53 project partners for the entire sample of German

laser source manufacturers. Finally, both cooperation data sources were used to

construct interorganizational innovation networks on a yearly basis.

We used both data sources on publicly funded projects because the German

national funding paradigm differs in several ways from the supra-nationally ori-

ented funding paradigm of the European Union. For instance, a comparison of

Foerderkatalog and CORDIS data shows a much higher heterogeneity of projects in

terms of partner nationality, number of project partners and funding received

(Kudic et al. 2011b). In addition, other researchers have pointed out that supra-

national projects have a much higher involvement of public research organizations

(Scherngell and Barber 2011; Broekel and Graf 2011, p. 5).

Using information about publicly funded research projects to construct R&D

networks raises potentially grave selectivity concerns. It is conceivable – and

indeed desirable from a societal perspective – that funding decisions reflect the

heterogeneous quality of applicants. In our empirical setting, this concern seems to

be of limited salience for several reasons.12 Another potential concern is that

publicly funded R&D projects primarily affect innovation outcomes through their

resource effects. We checked for the resource effects by including funding as a

control variable in our empirical analysis.

12 A detail discussion of potential selection biases is provided in Sect. 4.2.3.

10.3 Data, Methods and Variable Specification 231

http://dx.doi.org/10.1007/978-3-319-07935-6_4


10.3.2 The Data Preparation Process

The empirical analysis is based on the full population of German laser source

manufacturers between 1990 and 2010 – an unbalanced panel of 233 firms with a

total of 2,645 firm years. Over the entire observation period we had an average of

11.08 observations per firm. Annual counts of patent grants and applications were

used as the measure of innovation output, with a 2 year lag structure accounting for

the time required to arrive at patentable innovations.

To construct the R&D network we had to identify all laser-related public

research organizations (PROs). Two complementary methods were applied to

obtain a complete list of all PROs involved (cf. Sect. 4.2.1). We started with the

“expanding selection method” according to Doreian and Woodard (1992). Using

the initial list of 233 laser source manufacturers we added to our extended ID-list all

non-profit research organizations and universities active in the field of laser

research as long as these organizations established two or more links to at least

one firm on our initial list. In contrast to the “snowball sampling method” (Frank

2005) we did not immediately include organizations with just one link in our

sample. Instead, we checked in each of these cases whether the identified public

research organization was active in the field of laser research or not. In total we

identified 138 laser-related public research organizations. This procedure, however,

has a serious limitation. All laser-related PROs that did not cooperate with LSMs in

the period under observation were systematically ignored. Thus, we applied a

second methodological approach to complement our sample. Based on a

bibliometric analysis we identified all of the organizations that published laser

papers in conference proceedings or academic journals over the past two decades.

Raw data for this analysis, provided by the LASSSIE project consortium (Albrecht

et al. 2011), was used and supplemented by searches for laser-related publications

listed in the ISI Web of Knowledge database. Thus we were able to generate a

complete list of all PROs that have published at least one paper in the field of laser

research. By comparing and consolidating the results of these two data gathering

methods we ended up with a final list of 145 laser active PROs for the time spanning

between 1990 and 2010. Finally, entry and exit dates and addresses were retrieved

for all identified PROs in the dataset.

In a second step we broke down the overall network into 21 time-distinctive

network layers, one network for each year. Each network layer is based on a

symmetric undirected and binary adjacency matrix (Wasserman and Faust 1994)

whereas the number of rows or columns was determined by the number of active

laser source manufacturing firms in a given year. The decomposition of multi-

partner R&D cooperation projects into dyadic network linkages is based on the

assumption that all partners involved have linkages to one another (cf. Sect. 5.2).
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This converted dataset allowed us to capture and quantify structural network

characteristics over time and to account for several key network variables –

especially ego network measures – that may influence the innovative performance

of laser source manufacturing firms during the period under observation. We used

standard ego network procedures implemented in UCI-Net 6.2 to calculate ego

network measures (Borgatti et al. 2002).

For the patent data gathering process we used the names of the firms in the

sample and assigned a patent to a firm if its name appeared as an applicant and if

either applicant or inventor had a German address. We also traced changes in

corporate names and legal status, as well as organizational changes and the estab-

lishment of spin-offs to allocate annual patent counts to each company.

10.3.3 Variable Specification

In previous studies, both patent applications and grants were used as innovation

proxies (Powell et al. 1996; Ahuja 2000; Jaffe et al. 1993). We decided in favor of

patent grants [pgcnt] because they indicate the actual securitization of a patent. In

other words, we chose a more restrictive innovation indicator for the purpose of this

empirical section. In addition, we used patent application [pacnt] as an additional

innovation proxy to cross-check our results and ensure robustness of our findings.

Application counts are frequently used in innovation studies as this reflects the

earliest point in time that research was completed (Jaffe et al. 1993). A 1 and 2 year

time lag structure was applied in line with previous research in this area.

The key explanatory variables are two types of cooperation counts and three

basic ego network measures (cf. Sect. 5.2.2). On the one hand, we measured firm-

specific cooperation propensity with two cooperation count measures based on the

Foerderkatalog data [coopcnt_fk] and CORDIS data [coopcnt_c], respectively, as
well as a combined cooperation count indicator [coopcnt_fkc] consisting of the sum
of both. On the other hand we applied three structural ego network indicators. We

used procedures implemented in UCI-Net 6.2 (Borgatti et al. 2002) to generate our

ego network variables. We repeated this procedure for each year under observation.

The first measure is a size variable [ego_size]. It is defined by the number of actors

(alters) that are directly connected to the focal actor (ego). The second ego network

measure is a density variable [ego_density]. This variable is defined as the number

of de facto ties at a given point in time divided by the number of pairs, multiplied by

a factor of 100.13 The third ego network variable is a normalized ego network

13 The number of pairs of alters in an ego network is a measure for the maximum connectedness,

i.e. potential ties that can be realized, of the ego network.
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brokerage indicator [ego_nbroke]. This measure captures the number of times a

focal actor of an ego network lies on the shortest path between two alters, normal-

ized by the number of brokerage opportunities, which is a function of ego network

size (Borgatti et al. 2002).

For firm-level control variables, we include a linear firm age measure [firmage]
as well as a squared term [firmage_sq]. To account for overall network effects we

include two types of network level control variables. The first variable captures the

size of the overall network [nw_size] defined as the proportion of firms with at least

one dyadic partnership in a given year. The second variable measures the connect-

edness of the overall network [nw_density] calculated by using the standard

network density procedure implemented in UCI-Net 6.2 (Borgatti et al. 2002). In

addition, we include annual time-dummies to control for inter-temporal effects. We

included a set of year dummies [yr97-yr08] to account for year-specific effects in

our estimations. Finally, we include a cooperation funding [coopfund_fkc] variable
in our model. The funding received is measured in 1,000 euros.

Table 10.1 provides an overview of the variables and corresponding definitions

on the left-hand side. Summary statistics for the dependent and independent vari-

ables are displayed on the right. Table 10.2 presents the correlation matrix for all

variables used.
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10.4 Empirical Analysis: Model Specification and Results

In this paper we use panel count data techniques to test our hypotheses.14 In general,

the use of fixed effects models provides some important advantages. Most impor-

tantly, the fixed effects estimator is unbiased as it includes dummy variables for the

different intercepts and is more robust against selection bias problems than the

random effects estimator (Kennedy 2003, p. 304). However, fixed effects models

also have two considerable drawbacks. Firstly, all time-invariant explanatory vari-

ables are thrown out because the estimation procedure fails to estimate a slope

coefficient for variables that do not vary within an individual unit (Kennedy 2003,

p. 304). Secondly, using only within-variation leads to less efficient estimates and

the model loses its explanatory power (Cameron and Trivedi 2009, p. 259). The

random effects model compensates for some of these disadvantages. On the one

hand random effects estimators make better use of the information values of patent

data and generate efficient estimates with higher explanatory power. In addition,

random effects estimators can generate coefficient estimates of both time-variant as

well as time-invariant explanatory variables (Kennedy 2003, p. 307). The major

drawback of the random effects model is that correlations between the error term

and the explanatory variables generate biased estimates (Kennedy 2003, p. 306). In

other words, the random effects estimator generates potentially inconsistent results

when the model assumptions are violated.

10.4.1 Empirical Model Specification

As our endogenous variable accepts only nonnegative integer values, we chose a

count data model specification for the purpose of this analysis.15 Following Ahuja

(2000) and Stuart (2000) we estimated panel count models and adopted the follow-

ing estimation strategy to test our hypotheses. First we estimated panel Poisson

models in order to obtain an initial idea of the relationship between cooperation

counts, network positioning measures and firm-specific patenting activity. As our

endogenous variables exhibited strong over-dispersion, we then turned to a negative

binomial model specification with random effects. This generalization of the

Poisson model allows for overdispersion by including an individual, unobserved

effect into the conditional mean (Schilling and Phelps 2007, p. 1119). In the

next step we estimated both fixed effects and random effects models.16 We

14We used STATA 10.1 (Stata 2007), a standard software package for statistical data analysis.
15 For an in-depth discussion of panel data count models, see Sect. 6.1.2.
16 The main difference between the estimation techniques is that fixed effects models allows for

correlations to be made between the unobserved individual effect and the included explanatory

variables whereas random effects models require the unobserved individual effect and the explan-

atory variables to be uncorrelated (Greene 2003, p. 293).
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used the Standard Hausman Test (1978) to decide which results to interpret.17

Finally, we ran several consistency checks to ensure robustness of the reported

results. We used several time lags for the estimations. Additionally, we used

patent applications in some cases as an additional innovation measure to ensure

the results.

10.4.2 Estimation Results

Tables 10.3, 10.4, 10.5, and 10.6 report the estimation results for patent grants

based on a panel negative binomial model with both fixed effects and random

effects estimation techniques. The tables are organized as follows. The baseline

model (i.e. BL Model) consists of a set of time dummies, two firm age variables,

two network control variables and a funding variable. Models I–III address direct

cooperation effects and Models IV–VI report ego network effects. The last three

models (i.e. Model VII–IX) provide the results for the fully specified models. Fixed

effects as well as random effects estimates are reported for both patent grants with a

lag of t¼ 1 and patent grants with a lag of t¼ 2. Results are reported under

consideration of Standard Hausman Test results and interpreted on the basis of

the fully specified models.

We start the discussion with Tables 10.3 and 10.4 which illustrate the estimation

results for patent grants with a time lag of 2 years. The baseline model

(cf. Table 10.3, BL Model) provides fixed effects estimation results for a set of

time dummies, two firm age variables, two network control variables and a funding

variable. The time dummies show positive and significant effects for the time

period from 1998 to 2007. Models I–III (Table 10.3) address direct cooperation

effects. The fixed effects model reveals no significant effects for CORDIS
[coopcnt_c] or Foerderkatalog [coopcnt_fk]. The last cooperation count model

(cf. Table 10.3, Model III) addresses combined cooperation counts [coopcnt_fkc].
Fixed effects estimates are significant at the 0.1 level indicating a moderate

relatedness between combined cooperation counts and firm innovativeness. Models

IV–VI (Table 10.3) address structural ego network effects. The ego size variable

[ego_size] as well as the ego brokerage variable [ego_nbroke] show highly signif-

icant and positive coefficients at the 0.01 level for the fixed effects model. Surpris-

ingly, network density [ego_density] shows no significant effect (cf. Table 10.3,

Model V). Finally, we turn our attention to the fully specified models (cf. Table 10.3,

Models VII–IX). The results are consistent with the previously reported findings on

17 The basic idea of the Standard Hausman specification test is to test the null hypothesis that the

unobserved effect is uncorrelated with the explanatory variables (Greene 2003, p. 301). If the null

hypothesis cannot be rejected, both fixed effects estimates as well as random effects estimates are

consistent and the model of choice is the random effects model due to its higher explanatory

power. Under the alternative, random effects and fixed effects estimators diverge and it is argued

that the latter model is the appropriate choice (Cameron and Trivedi 2009, p. 260).
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cooperation count (Models I–III) and ego networks (Model IV–VI). The effects for

ego network size and ego network brokerage remain robust in Models VII and IX

(Table 10.3) whereas no effect could be identified for ego network density in Model

VIII (Table 10.3) based on fixed effect estimation.

However, a look at the results of the random effects model (cf. Table 10.4)

reveals a slightly different picture. Estimation results for both cooperation count

measures as well as ego network measures are positive and highly significant in

nearly all model specifications. In other words, the previously reported findings are

supported by random effects models. These estimation results, however, have to be

interpreted with caution bearing in mind the results of the Hausman Test.

In order to check the robustness and consistency of these initial findings we

estimated all previously discussed models again with a time lag of 1 year

(cf. Tables 10.5 and 10.6).18 Table 10.5 reports results for fixed effects estimation

techniques whereas Table 10.6 provides results based on random effects estimators.

Just as before, Models I–III (cf. Table 10.6) address direct cooperation effects. This

specification confirms the previously reported combined cooperation count effect

[coopcnt_fkc] with an increased 0.05 significance level. Moreover, we can now

observe an additional direct cooperation for nationally funded cooperation projects

[coopcnt_fk] at the 0.1 significance level.

The results for the ego network effects (cf. Table 10.5, Model IV–VI) are fully

consistent with our previous findings (cf. Table 10.3, Model IV–VI). Again, ego

size (cf. Table 10.5, Model IV) as well as the ego brokerage variable (cf. Table 10.5,

Model VI) show highly positive and significant coefficients at the 0.01 level and no

network-density effects (cf. Table 10.5, Model V). The fully specified models

(cf. Table 10.5, Model VII–IX) reconfirm our previous ego network results and

reveal at the same time some interesting additional insights with regard to individ-

ual cooperation effects. The effects for ego network size [ego_size], and ego

network brokerage [ego_nbroke] remain robust (cf. Table 10.5, Model VII and

IX) and ego network density [ego_density] still shows no significant effect (cf.

Table 10.6, Model VIII). Surprisingly, now the nationally funded cooperation

counts [coopcnt_fk] are directly related to firm-level innovation output, but the

estimates are only marginally significant at the 10 % level (cf. Table 10.6, Model

VII). A look at the fully specified random effects model (cf. Table 10.6, Model VII–

IX) confirms this finding. Model VII (Table 10.6) reports a highly significant

coefficient for nationally funded cooperation counts at the 0.01 significance level

and no effect for ego network density.

What do these results tell us about our previously formulated hypotheses?

Hypotheses H1a and H1b suggest that both nationally (i.e. Foerderkatalog counts)

and supra-nationally funded (i.e. CORDIS counts) collaborations are positively

related to firm innovativeness. Our results show that nationally funded cooperation

projects are positively related to innovation output in three out of four fully

18Additional robustness checks have been conducted by using patent application data. Most of the

results confirm the reported findings. All estimations are available upon request.
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specified models (Model VII, in: Tables 10.4, 10.5, and 10.6). Thus we find at least

modest support for Hypothesis H1a. In addition, these findings support our initial

conjecture that individual cooperation effects diminish at least partially when

considering structural ego network effects at the same time.

Now we turn to Hypothesis H1b. Based on our previously discussed estimation

results we have to reject Hypothesis H1b. Moreover, it is interesting to note that

none of the models (cf. Tables 10.3, 10.4, 10.5, and 10.6) reveal significant

coefficient estimates for funding. In other words, it is not the funding effect but

rather the cooperation itself that is related to firm-level innovativeness. Hypothesis

H2a suggests that the size of an ego network is positively related to firm-level

innovation output. Estimation results provide strong support for Hypothesis H2a,

predicting that innovation output is positively related to a firm’s number of direct

linkages to other laser source manufacturers or public research organizations with

laser-related activities. Likewise our estimation results provide strong support for

Hypothesis H2c suggesting that brokerage positions in ego networks are positively

related to subsequent firm-level innovation outcomes. Surprisingly, estimation

results provide no support for Hypothesis H2b.

In summary, it turns out that the estimation models confirm the existence of

direct innovation effects of individual cooperation events as long as portfolio

characteristics are ignored. These effects partially diminish when ego network

characteristics are taken into consideration at the same time (cf. comparison of

Model VIII, Tables 10.3 and 10.5). Funding plays a subordinate role in the

innovative performance of the firms under investigation. In contrast to the ego

network size and brokerage, the ego network density proves to be of subordinate

importance for firms in their attempts to innovate.

10.5 Discussion and Implications

This analysis was motivated by a goal to broaden our understanding of the rela-

tionship between individual cooperation events, ego network structures and firm

level innovation output in the German laser industry. Our research in this area is

still in an early stage. We started the analysis by taking a closer look at individual

cooperation events of laser manufacturing firms.

The results of our analysis imply that the initialization of new collaborative

arrangements seems to be an important driver behind a firm’s innovation perfor-

mance. Participation in new R&D projects with multiple profit and non-profit

organizations broadens the scope of potentially accessible knowledge stocks. At

the same time this increases the diversity of the knowledge base of focal firms. The

subsequent impact of newly initialized R&D collaboration projects on innovation

output is in line with theoretical reasoning from a knowledge-based perspective as

outlined above. Surprisingly, this result only applies to nationally funded projects

whereas the supra-nationally funded cooperation projects end up showing no

significant effects. Furthermore, our findings relativize the argument that a firm’s
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innovative performance is affected more by public funding than the cooperation

activities themselves. With regard to the structural configuration of a firm’s ego

network it becomes obvious that the size of the ego network does matter. The

findings for ego size suggest that the number of direct connections between the

focal actor and ego network alters are especially decisive in terms of innovation

output. This result is consistent with the initial findings as the diversity of poten-

tially accessible knowledge stocks increases with the size of the ego network.

Surprisingly, we found no support for ego network density. In other words, the

existence of ties among alters seems to be less important for firm-level innovation

outcome in the German laser industry innovation network. Finally, it turns out that

the ego network brokerage has significant coefficient estimates. In other words,

there is a positive and significant relationship between ego network brokerage and a

firm’s patenting activity. Thus, the strategic positioning of focal actors and their

ability to mediate and control knowledge flows between other pairs of ego network

actors appears to be of vital importance for their innovative performance.

The limitations of our empirical analysis (cf. Sect. 13.2) and our strategy to solve

these issues (cf. Sect. 14.2) is subject to discussion in the final chapter of this study.
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Chapter 11

Small World Patterns and Firm

Innovativeness

Innovation is the central issue in economic prosperity.
(Michael E. Porter 1980)

Abstract In this section we switch analytical perspective and take a closer look at

the systemic or overall network level. As outlined before (cf. Sect. 8.3), an in-depth

understanding of large-scale network patterns is important for several reasons. On

the one hand, previous studies have demonstrated that networks with comparably

short path lengths and a high level of clustering – so-called “small-world” networks

– can facilitate the exchange of information, ideas and knowledge in networks

(Fleming, L., C. King, A. I. Juda. 2007. Small worlds and regional innovation.

Organ. Sci. 18(6) 938-954). This, however, substantiates the assumption that

systemic level network properties are likely to affect the embedded firms in their

efforts to innovate. On the other hand, systemic level studies have some far-ranging

implications, not only for firms but also for policy makers, by providing an

informative basis for the evaluation of cooperation-related innovation policies at

the national and supra-national level. In a nutshell, the aim of the third empirical

part of this study is to shed light on the relationship between specific types of large-

scale network properties at the macro-level and firm-level innovation outcomes at

the micro-level. This investigation is organized as follows. After a short introduc-

tion in Sect. 11.1 we outline selected theoretical concepts. Next, we continue by

providing the graph theoretical underpinnings of small-world properties in

Sect. 11.2. Then, we introduce our conceptual framework and derive a set of

testable hypotheses. In Sect. 11.3 we provide a short overview of data and methods

used for this analysis. After these preparatory steps, we continue with a description

of the empirical model and present our estimation results in Sect. 11.4. Finally, after

a brief discussion of our main findings we conclude with some critical remarks.
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11.1 On Small-World Characteristics in Innovation

Networks

In the late 1960s Stanley Milgram conducted an experiment that is still highly

topical, especially in the field of network research. The specific concern of his

research project was to understand how communication processes work in social

systems (Uzzi and Spiro 2005, p. 450). The constellation of his so-called “letter-

passing” experiment was quite simple. He sent letters to a randomly chosen set of

participants who were scattered throughout the United States. Written instructions

were included asking the recipients to pass the letter on to a pre-specified target

individual (Newman 2010, p. 55). It turned out that almost one third of the letters

sent even reached far away targets after an average of around six distinct steps.

Milgram’s (1967) groundbreaking experiment demonstrated that people in the

United States are separated by more or less six degrees of separation.

Only recently have economists, sociologists and management scholars started to

address the “small-world” phenomenon (for a comprehensive review see: Uzzi

et al. 2007). Milgram’s findings have some far-reaching implications for innovation

networks. The experiment implies that the network topology itself is likely to affect

the exchange of knowledge in innovation networks. This, however, substantiates

the assumption that large-scale properties at the overall network level affect the

innovative performance of network actors at the micro-level. It is all the more

astonishing that large-scale network properties have been widely neglected in the

field of interorganizational alliance and network research over the past decades.1

One possible explanation is that it took scholars about 30 years to quantify

Milgram’s initial idea. Watts and Strogatz (1998) have shown that the “small-

world” phenomenon can be empirically analyzed by using relatively simple net-

work measures which were originally designed for unipartite networks (cf. Sect.

8.3.2). Some years later a reconceptualization for bipartite networks was proposed

by Newman and colleagues (2001). Quite recently, a few excellent empirical

studies were conducted which explicitly analyzed the relationship between

“small-world” properties and the creation of novelty and innovation (Uzzi and

Spiro 2005; Fleming et al. 2007; Schilling and Phelps 2007).

One of the first studies on collaboration, creativity and small worlds was

conducted by Uzzi and Spiro (2005). The authors analyzed the relationship between

small-world properties in the Broadway musical industry and creativity in terms of

the financial and artistic performance of musicals produced from 1945 to 1989. This

setting is remarkable for two reasons. Firstly, the network measures were

constructed based on bipartite network data. In other words, groups of artists

were treated as fully connected cliques. To handle the data properly, novel statis-

tical techniques (Newman et al. 2001) were applied to detect and interpret small-

world properties which were explicitly designed for the analysis of bipartite

1Most notable exceptions are the studies by Baum et al. (2003), Corrado and Zollo (2006), Uzzi

and Spiro (2005), Fleming et al. (2007), Schilling and Phelps (2007) and Cassi and Zirulia (2008).
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networks. Finally, it is interesting to note that Uzzi and Spiro (2005) measured

performance outcomes at the team level and not the actor level. They reported a

parabolic small-world network effect in a sense that performance increased initially

and then decreased after a certain point.

In a similar vein, Fleming and colleagues (2007) raised the question of why

some regions outperform others in terms of innovativeness. Like Uzzi and Spiro

(2005) they focused explicitly on small-world networks. However, both “small-

world” properties and innovative performance were measured at the regional level.

Based on patent co-authorship data they showed that comparably short path lengths

and larger connected components are positively correlated with increased innova-

tion. Nonetheless, they failed to find empirical evidence that the small-world

properties of the regional innovation network enhanced firm innovativeness.

The most comprehensive study on small worlds and firm innovativeness was

provided by Schilling and Phelps (2007). They analyzed the patent performance of

1,106 firms in 11 industry-level alliance networks based on a comprehensive panel

dataset. The findings of the study provide support for the small-world hypothesis by

showing that networks with comparably short path lengths and high clustering have

a significant impact on the innovativeness of the firms involved. The authors came

to the conclusion that local density and global efficiency can exist simultaneously,

and in particular, the combination of these two network characteristics enhances

innovation (Schilling and Phelps 2007, p. 1124). Despite these interesting findings

the study has some limitations. The most notable is that the authors had to make

assumptions about alliance duration due to a lack of information on alliance

termination dates. They assumed that alliance relationships last for 3 years on

average. In the worst case, this could result either in a systematic underestimation

or overestimation of small-world network properties.

All of these studies provide us with valuable insights into the small-world

phenomenon. However, this discussion also reveals that recent empirical findings

have so far been rather mixed and inconclusive. In addition, we still lack an

in-depth understanding of how large-scale network properties affect firm innova-

tiveness. In other words, we have to open up the black box in order to understand

the mechanisms or transmission channels through which firm innovativeness is

affected by systemic-level network properties. Thus, the aim of this investigation is

twofold. From a theoretical point of view, we draw upon a reconceptualization of

the absorptive capacity concept proposed by Zahra and George (2002) to provide

the missing link between overall network characteristics and a firm’s innovative

performance. From an empirical point of view, we put the “small-world” hypoth-

esis to the test according to which small-world networks are assumed to enhance an

embedded firm’s creativity and its ability to create novelty in terms of innovation.

More precisely, we analyze the relationship between distinct large-scale patterns

(i.e. “weighted clustering coefficient” or “avg. path-length”) and firm innovative-

ness on the one hand, and small-world properties (i.e. “weighted clustering coeffi-

cient” and “avg. path-length”) and firm innovativeness on the other.
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11.2 Small-World Networks and Absorptive Capacity

11.2.1 Graph Theoretical Basis of the “Small-World”
Phenomenon

Small-world networks are characterized by two structural particularities: a high

level of clustering and short average path lengths. The theoretical conceptualization

and quantification of the small-world phenomenon can be traced back to the

pioneering work of Watts and Strogatz (1998). The authors argued that a compres-

sion of real-world networks and randomly generated networks should reveal some

systematic differences with regard to network clustering and reachability. They

proposed using two simple graph theoretical concepts – “cluster coefficient” and

“average distance” – and calculating two ratios – “clustering coefficient ratio”

(CC ratio) and “path length ratio” (PL ratio) – in order to check for the existence

of small-world properties (cf. Sect. 8.3.2). Quantitative network analysis methods

provide a rich toolbox for calculating these indicators (cf. Wasserman and Faust

1994; Borgatti et al. 2013).

The actor-specific clustering coefficient varies from 0 to 1.0 whereby high

values indicate that many of the actor’s direct contacts are connected to each

other (Wasserman and Faust 1994). The overall clustering coefficient is an indicator

that allows the connectedness and crowding in a network to be quantified. This

measure is simply defined as the average of all individual clustering coefficients for

a well-specified population of network actors. In contrast, the weighted overall

clustering coefficient is defined as the weighted mean of the clustering coefficient of

all the actors, each one weighted by its degree (Borgatti et al. 2002). The shortest

path between two network actors is referred to as a geodesic whereas the length of

the geodesic between a pair of network actors is referred to as the geodesic distance

(Wasserman and Faust 1994, p. 110). The average path length captures the

reachability among all network actors in a connected graph or subgraph. The

measure can be defined as “[. . .] the average number of intermediaries, that is,

the degrees of separation between any two actors in the network along their shortest

path of intermediaries” (Uzzi et al. 2007, p. 78).2

Watts and Strogatz (1998) concluded that real-world networks with a CC ratio

much higher than 1.0 and a PL ratio of about 1.0 have a small-world character. A

related indicator is the so-called “small-world Q” (defined as: the CC ratio divided

by the PL ratio), where Q values that are much greater than 1.0 indicate the small-

world nature of a real-world network (Uzzi et al. 2007, p. 79). Newman et al. (2001,

2002) have shown that the “path length ratio” in bipartite networks has basically the

same interpretation as in unipartite networks (Uzzi and Spiro 2005, p. 454). In

contrast, the “clustering coefficient ratio” has to be interpreted differently in the

2 For further details on the calculation and interpretation of these two measures, see Sects. 5.2.3

and 8.3.2.
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sense that a coefficient ratio of about 1.0 indicates within-team clustering whereas a

higher clustering coefficient ratio indicates an increase in between-team clustering

(Uzzi and Spiro 2005, pp. 454–455).

What do these graph theoretical considerations tell us with regard to firm

innovativeness? Or to put it another way, what is the theoretical explanation that

substantiates the assumption that small-world properties at the systemic level

enhance a firm’s ability to innovate? Earlier researchers have argued as follows

(Schilling and Phelps 2007, pp. 1114–1115): On the one hand, a high level of

clustering increases the network’s information transmission rate, enhances a firm’s

willingness and ability to exchange knowledge and enables richer and greater

amounts of information and knowledge to be integrated. On the other hand,

networks with short average path lengths enhance reachability among actors and

generally improve information accessibility at the systemic level. There is no doubt

that these arguments provide an intuitive reasoning behind the consequences of

potential firm-level innovation outcomes caused by increased information perme-

ability in a small-world network. However, these arguments do not directly address

what is happening at the firm level during the firm’s efforts to innovate.

11.2.2 Potential and Realized Absorptive Capacity: The
Missing Link

We argue that Zahra and George’s (2002) reconceptualization of Cohen and

Levinthal’s (1990) initially proposed “absorptive capacity” concept provides the

missing link in understanding the interrelationship between systemic network level

properties and firm-level innovation outcomes.

The originally proposed “absorptive capacity” concept by Cohen and Levinthal

(1989, 1990) has significantly enhanced our understanding of a firm’s ability to

identify, exploit and assimilate external knowledge and apply it for commercial

ends. Cohen and Levinthal (1989) focused initially on the costs of acquiring new

technological knowledge and on the incentives for learning that determine the

firm’s willingness to invest in creating and establishing absorptive capacity. Later

the authors enriched the construct by emphasizing the relevance of individual

learning processes and incorporating the notion that learning is a cumulative

process (Cohen and Levinthal 1990). Furthermore, they adapted insights from

research on individual cognitive structures and individual learning processes.

They applied these findings to the organizational level and emphasized that an

organization’s absorptive capacity is path-dependent, builds on prior investments in

individual absorptive capacity and depends on an organization’s internal commu-

nication processes and its ability to share knowledge (Lane et al. 2006, p. 838). In

addition, they pointed to the fact that previously accumulated knowledge enables

the firm to predict and appraise new technological trends and developments in a
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timely way. Since then the concept has attracted a great deal of attention.3 Several

scholars have proposed insightful reconceptualizations of Cohen and Levinthal’s

original concept (Lane and Lubatkin 1998; Van Den Bosch et al. 1999; Zahra and

George 2002).

For the purpose of this analysis we draw upon the concept proposed by Zahra

and George (2002). This reconceptualization builds upon the distinction between

“capabilities” and “dynamic capabilities”. By starting from the dynamic capability

perspective (Teece et al. 1997; Katkalo et al. 2010) they suggest a separation of the

original absorptive capacity concept into potential absorptive capacity and realized

absorptive capacity and introduce an efficiency factor η that captures the interrela-
tionship between these two constructs (Zahra and George 2002, p. 194). They argue

that four capabilities4– i.e. knowledge acquisition, assimilation, transformation and

exploitation – are combinative in nature and build upon each other. These four

capabilities make up a firm’s absorptive capacity that has to be regarded as a

dynamic capability pertaining to knowledge creation and utilization that enhances

a firm’s innovative performance and ability to gain and sustain a knowledge-based

competitive advantage (Zahra and George 2002, p. 185). They define absorptive

capacity as “[. . .] a set of organizational routines and processes by which firms

acquire, assimilate, transform, and exploit knowledge to produce a dynamic orga-

nizational capability” (Zahra and George 2002, p. 186).

Figure 11.1 illustrates a slightly refined version of Zahra and George’s (2002)

model. The absorptive capacity construct, at the core of the model (cf. Fig. 11.1

center), is divided into potential absorptive capacity (PACAP), which includes

knowledge acquisition and assimilation, and realized absorptive capacity

(RACAP), that consists of knowledge transformation and exploitation capabilities.

This absorptive capacity construct connects the antecedents, i.e. external knowl-

edge sources, knowledge complementarities and experiences (cf. Fig. 11.1, left)

with firm-level outcomes, i.e. firm innovativeness and sustainable competitive

advantages (cf. Fig. 11.1, right). In addition, the model accounts for several

moderating effects: “activation triggers”, “social integration mechanisms”, and

“regimes of appropriability”. An efficiency factor η is integrated into the model

that captures a firm’s ability to transform and exploit external knowledge sources in

order to gain a sustainable competitive advantage. This factor reflects the extent to

which a firm can make commercial use of potentially available knowledge. In other

words, RACAP approaches PACAP in firms with a high efficiency factor (Zahra

and George 2002, p. 191). This model paves the way for a dynamic conceptualiza-

tion of absorptive capacity and provides several interesting implications for sys-

temic level network studies. Below we argue that a simple extension of the model

3 Lane et al. (2006) identified a total of 289 papers in 14 academic journals between July 1991 and

June 2002 that cite Cohen and Levinthal’s (1990) “absorptive capacity” concept.
4 Zahra and George (2002) draw upon Winter (2000, p. 983) who defines capabilities as “[. . .] a
high-level routine that, together with its implementing input flows, confers upon an organization’s

management a set of decision options for producing significant outputs of a particular type.”
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provides the missing link for understanding how large-scale properties at the

overall network level affect innovation outcomes at the firm level.

In doing so, we have to take a closer look at the first element of the framework

(cf. Fig. 11.1, left). According to the model originally proposed by Zahra and

George (2002, p. 191) there is a direct link between external knowledge sources

and complementarities and a firm’s PACAP. These external knowledge sources

encompass, among other things, various structural forms of interorganizational

relationships such as R&D consortia, alliances, or joint ventures.5 Thus cooperative

relationships to external partners can serve as a vehicle for accessing new infor-

mation and knowledge. However, it is important to note that not only direct but also

indirect interorganizational linkages have to be considered in this context (Gulati

1998). As a consequence, we apply here not a relational but rather a structural

network embeddedness perspective (cf. Sect. 2.5.4). One particular feature of a

network is that a particular firm can even reach far distant organizations that are

spread throughout the entire network space by second or third tier ties. This means

that a firm that is a part of the industry’s innovation network has potential access to

an extensive pool of external technological knowledge sources spread throughout

the entire network. Thus, in line with previous systemic-level studies (Uzzi and

Spiro 2005; Fleming, et al. 2007; Schilling and Phelps 2007), we argue that actual

access to information and the knowledge stocks of other firms is likely to be

affected by the structure of the network in question. The network topology itself

plays a key role in the permeability of the network. In contrast to previous research,

we believe that an extension of the absorptive capacity concept outlined above and

an in-depth exploration of structural network characteristics adds extra value to our

understanding of how large-scale properties at the systemic level affect a firm’s

efforts to innovate (cf. Fig. 11.1, left). Or to put it differently, given that network

topologies can facilitate but also hamper the flow of information and knowledge

Knowledge source 
and complementarily 

Experience

Absorp�ve capacity

Compe��ve advantage

Strategic flexibility 
Innova�on 
Performance 

Realized RACAPPoten�al PACAP

Acquisi�on

Assimila�on 

Transforma�on

Exploita�on

Ac�va�on trigger Social integra�on 
mechanisms 

Regimes of 
appropriability

(ɳ)

Systemic level 

Large-scale proper�es 

Fig. 11.1 Conceptual framework – an adapted model of potential and realized absorptive capacity

(Source: Zahra and George (2002, p. 192), extended and modified)

5 Due to the purpose of this study we focus explicitly on the innovation network as one particular

type of external knowledge source that can be tapped by the firms.

11.2 Small-World Networks and Absorptive Capacity 261

http://dx.doi.org/10.1007/978-3-319-07935-6_2


among actors in an innovation network, the question arises as to what these

structural network patterns look like.

11.2.3 Large-Scale Network Properties: Opening Up
the Black Box

Networks can exhibit quite heterogeneous structural patterns. Figure 11.2 illustrates

four fairly different network topologies. To start with, we look at a typically random

network. It is important to note that the emergence of these networks is not very

likely under realistic conditions. Nonetheless, we explicitly consider and discuss all

four cases in order to develop our theoretical arguments.

The first network example is characterized by a rather fragmented network

structure that consists of five components (cf. Fig. 11.2, I). The structural config-

uration of the network shows no significant peaks in term of the actors’ nodal

degrees. The minimum degree is one and the maximum degree is two. Network

actors within a component are not directly but rather are indirectly connected to

other actors in the same component. The benefits of a firm in participating in such a

fragmented, randomly distributed network are rather limited. The reasons for this

are straightforward. Firstly, the pool of potentially accessible knowledge sources is

limited by the size of the component in which the firm is embedded. Secondly, the

geodesic distances to most other actors are infinite due to the high degree of

fragmentation. Thus, knowledge transfer processes are likely to be hampered by

the component’s size or even entirely prevented by the overall network structure.

These issues lead to our second network example. Figure 11.2 (II) illustrates a

fully connected but randomly distributed network structure. Like before there are

no systematic biases in the degree distribution at the overall network level. The

main difference is that the network consists of only one large component. This,

however, has some important implications with regard to knowledge diffusion

processes. Theoretically, we would expect that a firm’s participation in such a

I II III IV 

Fig. 11.2 Illustration of network topologies (Source: Author’s own illustration)
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network broadens the scope and variety of potentially accessible information and

knowledge sources. One could argue that the firm’s chance of identifying and

actually accessing external knowledge sources that fit with its own set of capabil-

ities increases with the number of potentially accessible knowledge sources. The

crucial point is that such an increased set of opportunities would allow a firm to

make better use of its knowledge exploitation capabilities. According to Zahra and

George (2002) this would be reflected in a higher efficiency factor η and lead to a

higher firm-level innovation outcome at subsequent points in time. In fact the actual

situation looks somewhat different. The likelihood of successfully exchanging

knowledge between two indirectly connected network actors decreases with the

number of other actors that lie on the geodesic between them. A closer look at our

network example illustrates this point (Fig. 11.2, II). In this case we have up to

11 intermediates between the most distant actors in the network.

Next, we turn our attention to a somewhat more realistic network structure. By

now, it is well-recognized that some nodes attract ties at a higher rate than others.

This is reflected in real-world networks by the emergence of a strongly biased

degree distribution at the overall network level. These types of networks are also

known as power law distributed or scale free networks (cf. Sect. 8.3.1). Real-world

network topologies can differ significantly in terms of their structural features.

Our third network example consists of three components (two peripheral and one

main component) and the nodal degrees range from one to five (cf. Fig. 11.2, III).

The network is disconnected and clustered. The nodes within these components are

well-connected themselves but have no linkages to actors in other areas of the

network. We start our line of argument by focusing on the network’s main compo-

nent (cf. Fig. 11.2, III, bottom). A firm’s involvement in a highly interconnected

main component of a disconnected network has some considerable advantages.

Firstly, all main component firms are connected to one another. A main component

firm can reach most other actors in the same component in only a few steps. Short

paths are likely to facilitate potential knowledge transfer and learning processes.

Most innovation researchers would agree that a decreasing path length is positively

related to firm innovativeness (Fleming et al. 2007, p. 941).

Secondly we turn our attention to clustering within connected network compo-

nents. A high degree of interconnectedness allows a focal firm to achieve

cooperation-related synergy effects. These effects can result from direct but also

from indirect linkages among a focal actor’s directly connected partners (White

2005; Hoffmann 2005). Redundant knowledge transfer channels allow firms to

circumvent potentially emerging knowledge transfer barriers. It has been argued

that clustering promotes collaboration, resource pooling and risk sharing (Fleming

et al. 2007, p. 940).6

6 It is important to note that these considerations only hold true as long as the number of

disconnected network components is comparably small. The benefits diminish with an increasing

number of disconnected subgroups in the network. Or to put it another way, increasing fragmen-

tation disestablishes the benefits described above.
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In summary, the previously outlined arguments substantiate the assumption that

a firm’s embeddedness in the main component of a highly clustered but discon-

nected innovation network enhances a firm’s scope and variety of accessible

knowledge sources. Two structural characteristics, i.e. short path lengths and a

high level of clustering are considered to be important in this context. Keeping the

extension of Zahra and George’s (2002) absorptive capacity model in mind, it is

plausible to assume that these structural features enhance a firm’s efficiency factor

η. This, in turn, is likely to be positively related to firm-level innovation outcomes at

later points in time. The arguments above form our first two hypotheses:

H1 Short average path length in the overall network level is positively related to its

innovative performance at later points in time.

H2 A high degree of clustering at the overall network level is positively related to

its innovative performance at later points in time.

Last but not least, we address small-world properties of innovation networks. It

becomes apparent that the previously discussed real-world network in itself

encounters barriers in information and knowledge transfer. As already stated

above, the network consists of several densely interconnected components which

are not connected to one another. This leads us to take a look at the last network

example. Figure 11.2 (IV) illustrates a highly clustered but fully connected real-

world network. The simultaneous occurrence of cohesive subgroups and short paths

in a network has some interesting implications.

Firstly, such a network is rich in structural holes and the cohesive subgroups are

interconnected through network brokers (Burt 1992). They bridge structural gaps in

a network and establish important connections between otherwise unconnected or

at least loosely connected network subgroups (ibid). This, however, significantly

decreases the average path lengths at the overall network level and increases, at the

same time, information permeability. Secondly, the benefits of cohesive subgroups

in a firm’s close network surroundings are maintained. The simultaneous occur-

rence of clustering and short average path length indicate the small-world nature of

a network (Watts and Strogatz 1998).

In line with previous research (Schilling and Phelps 2007) we argue that small-

world network properties are accompanied by some extra additive effects which are

assumed to enhance a firm’s efficiency factor η. The simultaneous occurrence of

both high clustering and short average path lengths is likely to catalyze and foster

local cooperation effectiveness and enhance global information transmission effi-

ciency (Schilling and Phelps 2007, p. 1116). These considerations substantiate our

last hypothesis:

H3 A firm’s participation in a small-world network (characterized by short aver-

age path lengths and a high level of clustering) is positively related to its innovative

performance at later points in time.
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11.3 Data, Variables and Descriptive Statistics

11.3.1 Data Sources

Four main data sources were used to construct a longitudinal panel dataset: patent

data, industry data, geographical data and network data (cf. Sect. 4.2).

Patent data was used to measure innovative performance at the firm level. We

are not the first to use patent data as an innovation proxy (Jaffe 1989; Jaffe

et al. 1993). Previous studies provide us with important insights into the pros and

cons of using patents to measure innovation performance.7 In accordance with

contemporary research (Schilling and Phelps 2007), we used annual patent counts

as a proxy for innovation output. Our database (cf. Sect. 6.1.2) includes patent

applications as well as patents granted by the German Patent Office and by the

European Patent Office. DEPATISnet (the German Patent and Trade Mark Office’s

online database) and ESPACEnet (the European Patent Office database) were

employed to cross check the results from our initial data gathering procedure. For

the purpose of this analysis we used the annual count of patent applications [pacnt]
as an endogenous variable.

Industry data came from a proprietary dataset containing the entire population of

German laser source manufacturers between 1969 and 2005 (Buenstorf 2007).

Based on this initial dataset we used additional data sources to gather information

about firm entries and exits after 2005. We chose the business unit or firm level for

the purpose of this analysis.8 In addition, we identified 145 universities and public

research organizations with laser-related activities by using two complementary

methods – the expanding selection method and the bibliometric approach.9

Network data was gathered from two official databases on publicly funded R&D

collaboration projects – the Foerderkatalog database and CODRIS database.10 The

first database contains information on more than 110,000 ongoing or completed

subsidized research projects. The second raw data source was an extract from the

CORDIS project database which includes a complete collection of R&D projects

for all of the German companies funded by the European Commission. This

database extract encompasses a project dataset with over 31,000 project files and

an organization dataset with over 57,100 German organizations and roughly

194,000 international project partners. In total, we were able to identify, for the

entire population of 233 German laser source manufacturers, 570 R&D projects

with up to 33 project partners from various industry sectors, non-profit research

organizations and universities.

7 Section 4.2.4 provides a detailed discussion on the measurement of innovation and describes the

patent data sources and data gathering procedure used for the purpose of this study.
8 For a detailed description of industry data used for this study, see Sect. 4.2.1.
9 Both methods are described in detail in Sect. 4.2.
10 For a detailed description of both cooperation data sources (CORDIS and Foerderkatalog) and
the methods used to construct annual networks, see Sect. 4.2.3.
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11.3.2 Variable Specification

The data sources described above were used to construct interorganizational inno-

vation networks and calculate network indicators on a yearly basis. We calculated

weighted clustering coefficients [nw_wclust] and average path length [nw_areach]
on an annual basis (cf. Sect. 5.2.3, Eqs. 5.10 and 5.11). An interaction term was

calculated to capture the small-world properties of the network [inter_sw]. Several
additional control variables were calculated. We measured firm-specific coopera-

tion activities with two cooperation count measures based on the Foerderkatalog
data [coopcnt_fk] and CORDIS data [coopcnt_c] respectively, as well as a com-

bined cooperation count indicator [coopcnt_fkc] consisting of the sum of both.

Moreover, we accounted for cooperation funding by including a variable that

measures the firm’s amount of cooperation funding received annually

[coopfund_fkc] in 1,000 euros. We also included a linear firm age measure

[firmage] as well as a squared term [firmage_sq] to account for firm maturity. In

addition, two network level variables were included to control for the structural

network characteristics at the overall network level. The first variable captured

the size of the overall network [nw_size] defined as the proportion of firms with

at least one dyadic partnership in a given year. The second variable measured

the connectedness of the overall network [nw_density]. Standard algorithms

implemented in UCI-Net 6.2 were used to calculate the network measures (Borgatti

et al. 2002).

11.3.3 Descriptive Statistics

Next, we take a brief look at the variable description and basic summary statistics

(cf. Table 11.1). In total, we have 2,645 firm-year observations in the time between

1990 and 2010. The average number of observations per firm amounts to 11.35.

Table 11.2 reports the correlation coefficients for all variables in our empirical

models.

Based on the data sources described above we conducted an initial exploratory

analysis to get an idea of what the overall network topology looks like. Figure 11.3

(top) displays the weighted overall clustering coefficients and the average overall

path length for both the German laser industry innovation network and a randomly

generated Erdös-Renyi network that is comparable in terms of size and density.11

Network measures are calculated on an annual basis and the period under observa-

tion is from 1990 to 2010. All measures are calculated using UCI-Net 6.2 (Borgatti

et al. 2002). The corresponding CC ratios, the PL ratios and the small-world

11 The construction of the reference network is described in Sect. 8.3.2.
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Table 11.1 Descriptive statistics – clustering, reach and small-world properties

Variable

Variable

definition

Summary statistics

Obs. Mean Std. dev. Min Max

Endogenous variables

papcount Patent appli-

cations

(annual

count)

2,645 2.662004 17.43323 0 366

pgrcount Patent grants

(annual

count)

2,645 0.339130 1.635554 0 28

Control variables

firmage Age of the

firm

2,645 8.055955 6.800477 0 43

firmage_sq Age of the

firm, squared

2,645 111.1274 177.8146 0 1,849

coopcount Count of

cooperation

events

(annual)

2,645 0.275992 0.774138 0 8

coopfund Annual

cooperation

funding

received

(in k€)

2,645 132.299 851.8748 0 31.863

nw_size Network size

(overall net-

work level)

2,645 0.381853 0.060200 0.240506 0.472393

nw_density Network

density

(overall net-

work level)

2,645 0.088119 0.069955 0.037300 0.440500

Network level properties

nw_wclust Weighted

clustering

coefficient

2,645 0.58152 0.161069 0.345 0.906

nw_areach Average dis-

tance based

reach

measure

2,645 3.09431 0.504183 2.075 3.786

inter_sw “Small

world” indi-

cator

(nw_wclust

�
nw_areach)

2,645 1.7324 0.298921 1.14021 2.18748

Source: Author’s own calculations
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Q values are reported in the illustration below (cf. Fig. 11.3, bottom). The following

structural patterns are noteworthy.12

Firstly, the German laser industry innovation network shows a relatively high

level of clustering and rather short average path lengths overall. Secondly, over

time we can observe decreasing weighted clustering coefficients and increasing

average path length. This is primarily due to the fact that the German laser industry

network has demonstrated a pronounced growth tendency over time. In other

Fig. 11.3 Weighted overall clustering coefficient and average overall path length

12 Note that the calculations are based on bipartite network data. This is in line with the study by

Uzzi and Spiro (2005). However, the use of bipartite network data generates relatively high

clustering coefficients. This should be kept in mind when interpreting the results. For an

in-depth discussion on the differences between unipartite and bipartite network data, see Sect.

8.3.2. To ensure robustness of the reported results we calculated both small-world indicators based

on an alternative network data decomposition assumption. Additional calculations confirm the

small world character of the network (cf. Appendix 3).
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words, the number of laser-related organizations that actively participate in the

industry’s innovation network increases over time. Thirdly, small-world measures

indicate the emergence and consolidation of the network’s small-world nature.

More precisely, a comparison of the real-world network with a randomly generated

reference network reveals that the German laser industry innovation network

exhibits both higher overall clustering coefficients and longer average path lengths

for each year throughout the entire observation period. The annually calculated CC

ratios are clearly above 1.0 and increase over time. PC ratios do not exceed the

value range between 1.0 and 1.35 and the small-world Q ratio lies significantly

above 1.0 and demonstrates, like the CC ratio, a pronounced tendency towards

increasing values over time.

In summary, the results of the exploratory analysis of large-scale network

properties for the German laser industry are suggestive of an increasing emergence

and solidification of small-world properties over time.

11.4 Estimation Results and Empirical Findings

11.4.1 Model Specification and Estimation Strategy

As our endogenous variable – annual patent application counts – only accepts

nonnegative integer values, we choose a count data model specification for the

purpose of this analysis.13 Following Ahuja (2000), Stuart (2000) and Schilling and

Phelps (2007), we estimated panel data count models.14 Basically, two estimation

techniques can be distinguished: the fixed effects and random effects methods. In

general, the use of fixed effects models provides some important advantages. The

fixed effects estimator is unbiased as it includes dummy variables for the different

intercepts and is more robust against selection bias problems than the random effects

estimator (Kennedy 2003, p. 304). The problem that occurs with fixed effects models

is that all time-invariant explanatory variables are thrown out because the estimation

procedure fails to estimate a slope coefficient for variables that do not vary within an

individual unit (Kennedy 2003, p. 304). In addition, using only within-variation leads

to less efficient estimates and the model loses its explanatory power (Cameron and

Trivedi 2009, p. 259). In contrast, random effects estimators make better use of the

information values of patent data and generate efficient estimates with higher explan-

atory power. In addition, random effects estimators can generate coefficient estimates

of both time-variant as well as time-invariant explanatory variables (Kennedy 2003,

p. 307). The major drawback of the random effects model is that correlations between

the error term and the explanatory variables generate biased estimates and thus

inconsistent estimation results (Kennedy 2003, p. 306).

13 For an in-depth discussion on the use of panel data count models, see Sect. 6.1.2.
14We used STATA 10.1 (Stata 2007), a standard software package for statistical data analysis.
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We adopted the following estimation strategy to test our hypotheses. First, we

implemented a 2-year time lag structure in our empirical setting. Then, we esti-

mated panel Poisson models in order to obtain an initial idea of the relationship

between cooperation counts, network positioning measures and firm-specific

patenting activity. As our endogenous variables exhibited strong overdispersion,

we then turned to a Negative Binomial model specification with random effects

(cf. Sect. 6.2.2). This generalization of the Poisson model allows for overdispersion

by including an individual, unobserved effect in the conditional mean (Schilling

and Phelps 2007, p. 1119). In the next step, we estimated both fixed effects and

random effects models. Usually the Standard Hausman Test (1978) is used to

decide which results to interpret. In this analysis, most fixed effects and random

effects estimates are consistent. In a final step, we ran consistency checks to ensure

the robustness of our results by using a 1-year time lag structure.

11.4.2 Estimation Results

The presentation and discussion of our empirical findings is centered on the

Negative Binomial model for panel count data reported in Table 11.3. Robustness

of our findings is ensured by additional estimation results reported in Table 11.4.

Results from both estimation techniques (fixed effects and random effects) are

reported in the tables below.

Table 11.3 includes information on the total of four models. In addition to a

baseline model (i.e. BL Model), there is one model that includes the network

clustering coefficient (i.e. Model I), one model that comprises the overall average

path length indicator (i.e. Model II), and one model that accounts for small-world

properties of networks (i.e. Model III). We did not specify a full model that

incorporates path-length, clustering and small-world indicators simultaneously

because we are primarily interested in testing the relatedness between three distinct

and structurally quite different network topologies and firm-level innovativeness.

At the same time we face the risk of running into methodological problems when

including all three variables in one estimation model. Potential methodological

extensions and refinements of the empirical setting are discussed in Sect. 14.2.

The baseline model (cf. Table 11.3, BL Model) provides results for firm-level

controls (i.e. firm age & firm age squared), cooperation-related controls

(i.e. cooperation counts & cooperation funding) and overall network level control

variables (i.e. network size & network density). Results from a random effects

specification (time lag, t-2) reveal a positive and significant coefficient for cooper-

ation counts (cf. Table 11.3). This should be viewed with great caution because the

fixed effects specification fails to show a positive and significant relationship

between cooperation counts and firm innovativeness. The same is true for both

the fixed effects and the random effects model with a time lag t-1 (cf. Table 11.4).

The situation looks fairly different for overall network control variables, especially

in terms of network size. Estimation results (cf. Table 11.3, FE & RE; Table 11.4,
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FE & RE) provide empirical evidence for a negative relatedness between network

size and firm innovativeness.

To start with, the estimation results are robust for both time lags (Table 11.3,

time lag t-2; Table 11.4, time lag t-1) and for both estimation techniques

(i.e. random effects & fixed effects models). Coefficient estimates for network

clustering are positive and highly significant at the 0.01 level (cf. Table 11.3,

Model I; Table 11.4, Model I). Estimation results for average path length are

negative and show a minor significance at the 0.1 level (cf. Table 11.3, Model II)

and no significance in the robustness check (cf. Table 11.4, Model II). Finally,

coefficient estimates for the small-world indicator are positive, consistent over all

specifications and highly significant at the 0.01 level (cf. Table 11.3, Model III;

Table 11.4, Model III). In summary, our estimation results provide strong empirical

support for Hypotheses H2 & H3 but only minor support for Hypothesis H1.

11.5 Discussion and Implications

In this section we were primarily interested in testing the relatedness between three

distinct, structurally different, network topologies and firm-level innovativeness.

Our results for the overall average path lengths (Hypothesis H1) are as expected

and in line with previous empirical findings (Schilling and Phelps 2007; Fleming

et al. 2007). Both studies report a negative15 and, in most cases, highly significant

correlation between the average path length at the overall network level and firm

innovativeness. Schilling and Phelps (2007) pay little attention to these individual

effects. Fleming et al. (2007, p. 949) conclude: “Shorter path length [. . .] correlates
with an increase in subsequent patenting.” However, in our setting the significance-

level for this coefficient is fairly low and a robustness check did not support the

initially identified effect.

Our results for the clustering coefficient are in line with our theoretical expec-

tations (Hypothesis H2), however, it is interesting to note that the findings for the

individual clustering of the German laser industry innovation network are not in

line with previous empirical findings in several respects. Schilling and Phelps

(2007, p. 1122) report in four out of six empirical settings a negative but insignif-

icant effect. Similarly, the results of Fleming and colleagues (2007, p. 948) reveal

negative and significant coefficient estimates. This is an issue that clearly calls for

clarification and further research.

Last but not least, we take a look at a network’s small-world properties. Firstly,

the descriptive analysis shows that the German laser industry network clearly

fulfills the small-world criteria according to Watts and Strogatz (1998). Moreover,

results are suggestive of an increasing solidification of small-world properties over

15Note that Fleming and colleagues (2007) use an inverse path length measure. Thus, the

coefficient estimates are positive.
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time. Secondly, in our estimation, results clearly support Hypothesis H3 and

provide empirical evidence for a positive relatedness between a network’s small-

world nature and a firm’s subsequent innovativeness. This is in sharp contrast to the

findings of Fleming et al. (2007, p. 949); the authors conclude: “The small world

effect is not observed in our data.” However, our results are in line with previous

findings by Schilling and Phelps (2007) who summarize their findings as follows:

“[. . .] networks that have both the high information transmission capacity enabled

by clustering, and the high quantity and diversity of information provided by reach,

should facilitate greater innovation by firms that are members of the network”

(Schilling and Phelps 2007, p. 1124).

This empirical analysis has several important implications for both managers

and policy makers. Most noteworthy is the recognition that the network topology

itself seems to affect the innovative performance of firms at the micro-level in

multiple ways. In other words, analyzing firm-specific cooperation patterns is

necessary but not sufficient for a comprehensive understanding of a firm’s innova-

tive performance. Another important implication is that regional innovation net-

works can significantly gain in effectiveness when they concurrently show high

clustering and short average path lengths. Moreover, regional networks should have

a certain degree of openness in a sense that trans-regional linkages should be

established and maintained.

The limitations of this analysis are the subject of a discussion in Sect. 13.2. In

addition, we outline some fruitful avenues for further research into large-scale

networks in Sect. 14.2.
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Chapter 12

Network Positioning, Co-Location or Both?

An invention is a major one if it provides the basis for
extensive applications and improvements [. . .]

(Simon Kuznetz 1971)

Abstract Previous research indicates that firm innovativeness can either be deter-

mined by a firm’s position within the network dimension or by its position within

the geographical dimension. Integrative studies addressing both distinct and com-

bined proximity effects remains rare (cf. Whittington et al. 2009). Thus, we address

in this Chapter the following research question: Are firm-level innovation outcomes

positively or negatively related to network positioning effects, geographical co-

location effects or combined proximity effects; and if the latter case is true, are the

combined effects substitutional or complementary in nature? Panel data count

models with fixed and random effects were used to analyze a firm’s innovative

performance as measured by patent application counts. This last empirical analysis

is organized as follows: We start with a short introduction in Sect. 12.1. Next, we

provide a brief discussion of theoretical background in Sect. 12.2. In Sect. 12.3 we

introduce our conceptual framework and derive our hypotheses. In Sect. 12.4 we

introduce the data and methods used. Next, we outline the estimation strategy and

report our empirical results in Sect. 12.5. Finally, we discuss our findings and

conclude with a number of critical remarks in Sect. 12.6.
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12.1 Introduction: Proximity and Firm Innovativeness

In this analysis we seek to disentangle the relationship between network

positioning, geographical co-location and firm innovativeness.1 The knowledge-

based approach started to thrive in economics in the early 1980s. The

neo-Schumpeterian school of thought explicitly emphasized the central role of

knowledge and innovation as drivers of economic change and prosperity (Hanusch

and Pyka 2007b). From this perspective, knowledge is no longer considered purely

a public good but rather as a scarce and highly valuable firm-specific resource.

Firms have to take action, spend time and resources, and develop routines and

capabilities to successfully tap external stocks of knowledge. The creation of

novelty is regarded as a collective process that involves knowledge exchange and

learning processes among mutually interconnected economic actors, each of whom

seeks to improve their own imperfect knowledge base and accomplish their very

individual goals (Hanusch and Pyka 2007a). These actors are embedded in socio-

economic systems of innovation (Lundvall 1992; Nelson 1992) that are complex

and dynamic in nature (Fagerberg 2005). Quite recently it has been argued that the

proximity concept originally proposed by Boschma (2005b) can be regarded as an

integral part and extension of the evolutionary economic approach (Boschma and

Frenken 2010).

The knowledge-based view in management science emerged just a few years

later. Scholars started to emphasize the strategic nature of knowledge and pointed to

the fact that both knowledge accessing and learning processes are crucial for firms

to gain competitive advantages and outperform competitors (Nonaka 1991; Kogut

and Zander 1992; Grant 1996; Coff 2003). According to this view, firms have to

build up a certain degree of absorptive capacity (Cohen and Levinthal 1990), avoid

learning races (Amburgey et al. 1996) and reduce causal ambiguities (Simonin

1999) to make successful use of external knowledge sources. These challenges are

essentially attributable to the tacit nature of non-codified and context-specific

knowledge (Polanyi 1958; Polanyi 1967) that underlies innovation processes at

the micro-level. With the emergence of the proximity concept it has been argued

that proximity in all its facets can enhance a firm’s ability to access new stocks of

knowledge and generate novelty in the form of innovation (Amin and Wilkinson

1999).

1 This section is based on a joint research project conducted together with Dr. Peter Boenisch, chair

for Statistics and Econometrics at Martin Luther University in Halle and Dr. Iciar Dominguez

Lacasa, Department of Structural Economics at the Halle Institute for Economics (Kudic

et al. 2010). Moreover we thank Dr. Michael Schwartz and Dr. Marco Sunder for reviewing the

paper and providing critical comments and helpful suggestions. We have benefited from comments

from the audience at the 13th International Schumpeter Society Conference in 2010 in Aalborg,

Denmark and the 36th EIBA Annual Conference in 2010 in Porto, Portugal. I take full responsi-

bility for the content or any errors in this completely revised version of the initial paper.

278 12 Network Positioning, Co-Location or Both?



We are surely not the first to address the direct relationship between proximity

and firm innovativeness. An excellent overview of contemporary research in this

area is provided by the study carried out by Knoben and Oerlemans (2006). Quite

recently, a few excellent theoretical (e.g. Boschma 2005b; Torre and Rallet 2005;

Visser 2009; Boschma and Frenken 2010) and empirical studies (e.g. Oerlemans

et al. 2001; Oerlemans and Meeus 2005; Owen-Smith and Powell 2004;

Whittington et al. 2009) have started to address both distinct and combined prox-

imity affects. Nonetheless, we still face more questions than answers.

For instance, Boschma (2005a) calls for a clear analytical separation of distinct

proximity dimensions, a more dynamically oriented proximity perspective and

stronger recognition of both positive and negative effects of proximity on innova-

tion. However, these issues have several far-reaching implications. Due to the

conceptual ambiguity of the proximity concept, the underlying mechanisms are

not clearly assigned to one specific proximity dimension. Thus, we are still lacking

an in-depth understanding and a clear separation of the mechanisms that foster or

hamper innovation processes at the firm level. In addition, we have a rather vague

idea of how and why one proximity dimension affects another and the underlying

logic of combined proximity effects is not yet sufficiently understood. Quite

recently some pioneering studies have started to address these questions empirically

(most notably: Owen-Smith and Powell 2004; Whittington et al. 2009). Nonethe-

less, it should be noted that most previous studies are cross-sectional in nature. This

neglects the dynamic nature of the mechanisms that underlie the various types of

proximity dimensions. Moreover, previous studies inherently imply that proximity

is positive per se; the “dark side” of proximity is widely ignored. Finally, the

majority of previous empirical studies are based on data from the biotech industry.

However, knowledge exchange, learning and innovation processes can significantly

differ across industries due to differences in the degree of the industry’s techno-

logical maturity, different industry life-cycle stages and differences in firm size

distribution.

Consequently, this study contributes to the existing body of literature in several

ways. Firstly, by focusing on two proximity dimensions – network proximity and

geographical proximity – we seek to deepen our understanding as to how distinct, or

potentially, combined proximity effects relate to firm-level innovation outcomes.

Secondly, in response to Boschma’s critique we provide an evolutionary proximity

framework and apply longitudinal data and panel estimation techniques to account

for the dynamic nature of proximity in all its facets. In doing so, we seek to

understand the underlying mechanisms that determine both distinct as well as

combined proximity effects. Thirdly, we supplement existing research by providing

new empirical evidence from a unique panel dataset for the entire population of

233 German laser source manufacturers between 1990 and 2010.

In a nutshell, inspired by the conceptual framework of Boschma (2005a) and the

empirical study of Whittington et al. (2009) and supplemented by our own consid-

erations, we raise the following research question: Are firm-level innovation out-

comes of German laser source manufacturers related to network proximity effects,

12.1 Introduction: Proximity and Firm Innovativeness 279



to geographical co-location effects or to combined proximity effects; and if so, are

the effects positively or negatively related to firm innovativeness at later points in

time?

12.2 Theoretical Background

12.2.1 The Multifaceted Character of Proximity

Over the past few years, scholars in the field of economics, sociology, geography

and management science have significantly improved our understanding of how

proximity can improve a firm’s ability to tap into new knowledge sources, learn to

recombine existing knowledge stocks and finally generate new and

commercializable goods and services. Firms are simultaneously exposed to a

variety of proximity dimensions such as institutional proximity, organizational

proximity, cultural proximity, technological proximity, network proximity and

geographical proximity (cf. Knoben and Oerlemans 2006, p. 71). In the most

general sense, proximity can be defined as “[. . .] being close to something measured

on a certain dimension” (Knoben and Oerlemans 2006, pp. 71–72). One of the main

issues that is common to all literature on proximity is the conceptual ambiguity of

previous approaches. In this context Knoben and Oerlemans (2006, p. 71) criticize

the fact that previous research has failed to provide a clear separation of proximity

dimensions which is still reflected in conceptual overlaps across many proximity

dimensions.

We follow the proximity framework proposed by Boschma (2005b) for several

reasons. Firstly, the framework allows five proximity dimensions to be clearly

defined and separated: cognitive, organizational, social, institutional and geograph-

ical proximity (Boschma 2005b, p. 62). He stresses the lack in understanding

combined proximity effects and emphasizes that proximity in all its facets can

both facilitate and impede knowledge access and learning processes over time.

Thus the framework enables both the positive as well as the negative impact of

proximity on firm-level innovation outcomes to be explained. Secondly, the pro-

posed proximity framework can be regarded as an integral part of the evolutionary

economic approach (Boschma and Frenken 2010, p. 121). The integration of the

concept broadens the analytical scope of the evolutionary approach by explicitly

considering several types of proximity dimensions (ibid). Moreover, it also paves

the way for a more dynamic and process-oriented understanding of the proximity

concept. Thirdly, proximity as an analytical concept allows multiple proximity

dimensions to be incorporated into an explanatory framework (Boschma and

Frenken 2010, p. 124). The proximity dimensions are clearly separated and thus

independent of each other. This implies, however, that one can reduce as well as

extend the list of relevant proximity dimensions without changing the meaning of

each dimension (ibid).
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In summary, the analytical proximity framework originally proposed by

Boschma (2005b) and then extended upon by Boschma and Frenken (2010), clearly

promotes a more process-oriented understanding of how changes in proximity

affect innovation outcomes over time. It allows the interplay between selected

proximity dimensions to be analyzed and provides potential explanations for both

complementary and substitutional effects. Finally, the framework offers the possi-

bility of analyzing the relatedness between firm innovativeness and individual

proximity dimensions and provides a solid basis for examining whether combined

proximity effects are positively or negatively related to firm innovation outcomes at

later points in time.

12.2.2 Network Proximity and Firm Innovativeness

Now we take a closer look at the network proximity dimension. This type of

proximity is frequently referred to as relational or social proximity (Coenen

et al. 2004). The social proximity concept is strongly influenced by social capital

and embeddedness literature (Laumann et al. 1978; Granovetter 1985; Uzzi 1996;

Uzzi 1997; Granovetter 2005). According to this perspective, economic actions and

outcomes are influenced by the context in which they occur (Uzzi 1996; Gulati

2007). Boschma (2005b) defines social proximity “[. . .] in terms of socially embed-

ded relations between agents at the micro-level.” The use of this proximity dimen-

sion requires an in-depth specification of at least three constituent features: the

agents, the type of relations that connect these agents and the system boundaries

that define the scope and size of the overall network.

For the purpose of this paper we focus on interorganizational innovation net-

works (Pyka 2002) consisting of all German laser source manufacturers (LSMs)

and laser-related public research organizations (PROs) that were actively operating

in the field of laser source research and production between 1990 and 2010. In the

most general sense, these actors can be interconnected in multiple ways and can

exchange knowledge either through informal or formal relationships. According to

Pyka (1997, p. 210) the former encompasses “[. . .] any action that can contribute to
disclosure, dissemination, transmission and communication of knowledge.” The

latter addresses a broad variety of structural forms ranging from short term con-

tractual alliances and minority alliances, characterized by an intermediate degree of

hieratical control, to long-term equity alliances such as joint ventures (Gulati and

Singh 1998). All formalized partnerships, however, stipulate that all parties

involved agree upon more or less formalized obligations, rights and common

goals. We focus on a specific type of innovation network that is constructed on

the basis of nationally or supra-nationally funded R&D cooperation projects.2 The

2We are not the first to use data on nationally or supra-nationally R&D cooperation projects to

construct knowledge-related innovation networks (cf. Broekel and Graf 2011; Fornahl et al. 2011;

Scherngell and Barber 2009, 2011; Cassi et al. 2008).
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reasoning for this is straightforward. All project partners have to agree on contract

clauses that aim to improve knowledge exchange among project partners and

initiate innovation activities (Fornahl et al. 2011; Scherngell and Barber 2009).

At the same time the concretization of node and tie dimensions outlined above

specifies the boundaries of the network under investigation.

Previous research provides strong evidence that not only structural network

characteristics such as network density, structural holes, or structural equivalence

(Gulati et al. 2000, p. 205) but also a firm’s structural position within the overall

industry network can significantly affect various dimensions of firm-level perfor-

mance (Baum et al. 2000; Stuart et al. 1999; Zaheer and Bell 2005). It has been

demonstrated that a firm’s occupation of strategically important network positions

can improve its ability to access external knowledge sources (Grant and Baden-

Fuller 2004; Buckley et al. 2009) and facilitate interorganizational learning pro-

cesses (Hamel 1991; Schoenmakers and Duysters 2006; Nooteboom 2008). In a

similar vein, previous studies have explored the importance of structural network

characteristics and various types of network positions in a firm’s innovative per-

formance (Powell et al. 1996; Stuart 1999; Stuart 2000; Fornahl et al. 2011). The

potential benefits of a firm’s network position are closely related to the overall

network topology. Some scholars have argued that brokerage positions in sparsely

connected networks are the most beneficial – the “structural hole theory” (Burt

1992) – whereas others have stressed the importance of high nodal degrees at the

actor level and closely interconnected overall network structures – the “closure

theory” (Coleman 1988).3 For the purpose of this study we focus particularly on the

latter stream of research.

However, not only the positive but also the negative impact of a firm’s network

embeddedness on performance outcomes has been the subject of debate over the

past few years (Boschma 2005b). By now it is well-recognized that a firm’s position

within the innovation network can have a positive impact on its innovative perfor-

mance at subsequent points in time (Uzzi 1997). However, after a certain point the

positive effects of social proximity may move in the opposite direction and have an

adverse effect on learning and innovation (Boschma 2005b, p. 66). This phenom-

enon is referred to as “overembeddedness” (Uzzi 1997). The main argument behind

this concept is straightforward. Too much social proximity can cause a lock-in

effect in a sense that actors remain in an established web of habitual partnerships.

Such a closed network system generates opportunity costs because the actors

involved isolate themselves from other firms and organizations with fresh and

novel ideas (Boschma 2005b, p. 66). Others have pointed to the fact that some

organizations face considerable difficulties in dissolving old relationships and

forming new network ties (Kim et al. 2006). These authors coined the term

“network inertia” to address the persistent organizational resistance to changing

its interorganizational network. Kim and colleagues (2006, p. 706) argue that

3 By now, both theoretical (Burt 2000, 2005) and empirical studies (Rowley et al. 2000) accept the

partial compatibility of both theories (cf. Sect. 2.5.4).
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change is mainly influenced by four types of constraints: internal constraints,

network tie-specific constraints, network position-specific constraints, and external

or environmental constraints. This concept has its intellectual roots in the structural

inertia theory in organizational ecology (Hannan and Freeman 1984) and is clearly

evolutionary in nature. The process-oriented network inertia concept explains

negative innovation outcomes of firms not primarily because of overembeddedness

issues but rather because some firms cannot react and adapt fast enough to new

conditions and needs. In other words, a firm may face a situation in which the

formation of connections to new cooperation partners that would bring in innova-

tion stimuli is likely to be seriously delayed or even entirely impaired whereas

obsolete linkages simply cannot be resolved. Following this reasoning one could

argue that a firm can face a situation in which it is not necessarily overembedded but

rather missembedded.

12.2.3 Geographical Proximity and Firm Innovativeness

Next, we focus on the spatial or geographical dimension of proximity. Oerlemans

and Meeus (2005, p. 94) point out that this body of research can be grouped into two

categories: one which focuses on spatial (or face-to-face) interaction and interactive

learning (Saxanian 1990; Maskell and Malmberg 1999) and one focusing on

spatially mediated knowledge spillovers (Feldman 1993; Audretsch and Feldman

1996, 2003). For the purpose of this paper we stick to the latter perspective for two

reasons. On the one hand, the knowledge spillovers perspective allows us to define

geographical proximity in a quite restrictive manner and isolate the spatial prox-

imity dimension from other proximity dimensions (Boschma 2005b, p. 69). On the

other hand, the knowledge spillover perspective acknowledges the partially

non-rival, dynamic and cumulative character of knowledge (Oerlemans and

Meeus 2005, p. 94) and puts forward the argument that knowledge tends to spill

over locally between firms of the same industry – so-called intra-industry or MAR

externalities (Marschall 1890; Arrow 1962; Romer 1986) – or between firms of

different industries – so-called inter-industry or Jacobs externalities (Jacobs 1969).

Due to the aim and the scope of this study we focus specifically on intra-industry

knowledge spillover.

This perspective stresses that proximity influences a company’s ability to benefit

from knowledge spillover stemming from research and development activities

taking place outside the boundaries of the firm (Audretsch 1998). In the early

1990s a vibrant field of research started to address the spatial dimension of

knowledge and innovation by introducing novel methods for measuring the extent

of local knowledge spillovers and innovative activities (Audretsch 1998, p. 22).

Empirical studies from this strand of research suggest that physical proximity of

firms to external knowledge sources enhances innovative and economic perfor-

mance (Jaffe 1989; Audretsch and Feldman 1996, 2003; Audretsch and Dohse

2007). However, they have also demonstrated that spatial knowledge accumulation
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effects and innovation activities can be strongly determined by the knowledge

intensity of the industry and stage of the industry life cycle (Audretsch 1998).

Keeping in mind the previous considerations, we define geographical proximity

as a concept that “[. . .] refers to the spatial or physical distance between economic

actors, both in its absolute and relative meaning” (Boschma 2005b, p. 69). This

perspective is consistent with a related concretization that defines geographical

proximity as “[. . .] kilometric distance that separates units (e.g. individuals, orga-

nizations, towns) in geographical space” (Torre and Rallet 2005, p. 49) and, at the

same time, provides a solid basis for taking a closer look at the link between

geographical co-location, knowledge and innovation. The main argument is that

any firm located in an agglomeration area can benefit from local knowledge

spillovers as long as geographical openness of the agglomeration is ensured

(Boschma 2005b, p. 69). The mechanisms that generate the knowledge spillover

are not relational in nature. In other words, knowledge spillovers can occur regard-

less of whether firms in a region are interconnected by a formal relationship or not

(Boschma 2005b, p. 69). Geographical proximity has to be defined in such a

restrictive manner as to allow a clear separation of other proximity dimensions

(ibid), especially relational knowledge transfer mechanisms such as informal social

relationships at an interpersonal level.

However, geographical proximity does not have a positive effect on knowledge

transfer and learning processes per se. Boschma (2005b, p. 70) stresses the risk that

spatial lock-in effects and a lack of openness to the outside world can result in

situations in which local knowledge quickly becomes outdated and knowledge-

based agglomeration effects become increasingly eroded over time. Thus, firms in

closed agglomeration areas become increasingly inward-looking and isolate them-

selves from the other actors in the industry. In summary, the geographical proximity

dimension defined in this way addresses positive but also negative consequences of

local knowledge spillovers on firm innovativeness due to a firm’s co-location to

other organizations.

12.2.4 Addressing Combined Proximity Effects and Firm
Innovativeness

In the real world, it is very unlikely that only one proximity dimension affects a

firm’s innovative performance in isolation. Instead, firms are simultaneously

exposed to multiple mutually interdependent proximity dimensions. Below we

focus exclusively on combined proximity effects between two proximity dimen-

sions: network proximity and geographical proximity.

According to Whittington et al. (2009, pp. 97–98), there are theoretically three

ways in which combined proximity effects can affect a firm’s innovation outcome.

Firstly, independent effects of network and geographical proximity on innovation

would imply that both proximity dimensions influence innovation through
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autonomous mechanisms. Secondly, substitutional effects of network and geo-

graphical proximity on innovation are based on the notion that one proximity

dimension can compensate for a lack of another proximity dimension. Finally,

complementary effects of network and geographical proximity on innovation

imply that these two dimensions are supplementary in nature due to extra-additive

effects. Unfortunately, Whittington and colleagues (2009) do not clearly address

and separate the mechanisms that underlie these combined proximity effects. This

is precisely the point at which our conceptual framework comes into play.

12.3 Conceptual Framework and Hypotheses Development

12.3.1 Specifying Distinct and Combined Proximity

Our conceptual framework (cf. Fig. 12.1) builds upon the theoretical considerations

outlined above and aims to contribute to an in-depth understanding of the mecha-

nisms that underlie both distinct and, especially, combined proximity effects. The

first requires a concretization of the elementary building blocks in our framework.

The framework consists of four elements – (I) network proximity (II) geographical

proximity, (III) combined proximity, and (IV) innovation outcomes.

To start with, we outline our notion of network proximity. We argue that a firm

with a high number of direct partners, irrespective of whether these direct partners

are themselves well-connected or not, has a high level of network proximity. We

focus on a firm’s degree of connectedness for the following reasons. Firstly, a firm’s

nodal degree is quite a simple and straightforward network concept that reflects the

full range of its external knowledge channels. Secondly, densely connected actors

are highly visible and well-recognized by other actors in the network (Wasserman

and Faust 1994, p. 179).

Innova�on 
outcomes

Dis�nct network posi�oning effects    (1) 

(IV.)

Dis�nct geographical co-loca�on effect LSM-LSM (2a)

Combined proximity 
effect LSM-LSM (3a)

Network  
proximity

(I.)

connectedness

Combined proximity 
effect LSM-PRO (3b)

(III.)Combined 
proximity

Connectedness  co-loca�on LSM-LSM
Connectedness  co-loca�on LSM-PRO

Dis�nct geographical co-loca�on effect LSM-PRO (2b)

(II.)Geographical
proximity

co-loca�on LSM-LSM
co-loca�on LSM-PRO

Fig. 12.1 Conceptual framework – distinct and combined proximity and firm-level innovation

output (Source: Author’s own illustration)
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Similarly, geographical proximity has to be specified. One way to accomplish

this task is to focus on the physical distances between firms in a well-specified

population. Thus, a firm with a short average distance to all other firms at the same

stage of the industry value chain has a high level of geographical proximity

(Whittington et al. 2009). However, not only firms but also universities or other

public research organizations (PROs) are an important source of new technological

knowledge (Agrawal 2001, p. 285). It has been argued that PROs follow quite

different rules for the dissemination and use of scientific findings than profit-

oriented firms (Owen-Smith and Powell 2004, p. 7). In other words, there is a

qualitative difference as to whether an LSM is co-located to other firms at the same

stage of the industry value chain, or to other laser-related public research organi-

zations carrying out either basic or applied research. In line with Whittington

et al. (2009) we consider a second type of geographical proximity that reflects a

firm’s average distance to all laser related PROs in the sample. The combined

proximity dimension captures a firm’s simultaneous positioning in both the network

space and the geographical space.

Finally, a firm’s innovation output has to be clarified. The Oslo Manual (OECD

2005) differentiates between four types of innovation: “product innovation”, “pro-

cess innovation”, “organizational innovation”, and “marketing innovation”. We

focus here on all kinds of novel ideas generated by laser-related firms that are

truly new to the market and thus at least theoretically patentable.

12.3.2 The Link Between Proximity Effects and Firm
Innovativeness

Previous research has significantly contributed to our understanding of how a firm’s

structural embeddedness and network positioning affects the innovation generating

process (Shan et al. 1994; Powell et al. 1996; Ahuja 2000; Owen-Smith and Powell

2004; Gilsing et al. 2008). These findings leave us to suppose that a firm’s network

proximity is positively related to firm-level innovation outcomes (cf. Fig. 12.1,

Arrow 1). At least three theoretical arguments substantiate this assumption.

Firstly, it is of vital importance, especially in science-based industries (Grupp

2000), to have access to external knowledge stocks and to be able to acquire new

knowledge stocks (Al-Laham and Kudic 2008). A high degree of connectedness

provides access to complementary knowledge sources (Grant and Baden-Fuller

2004) and opens up opportunities of interorganizational learning processes

(Hamel 1991). Secondly, firms with a high nodal degree are most visible in the

network. Agency theory (Spence 1976, 2002) implies that an above-average nodal

degree signalizes an advantageous cooperation opportunity to other network actors.

As a consequence, a well-embedded firm is likely to get more cooperation offers

than other actors (Hanneman and Riddle 2005). A broad opportunity-set of poten-

tial cooperation partners increases the probability of finding the right partner when
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required. Finally, well-embedded firms are characterized by a comparably high

level of alliance experience that allows alliance capabilities to be built up over time

(Kale et al. 2000, p. 750; Schilke and Goerzen 2010). The implementation of

cooperation routines saves costs (Zollo et al. 2002) and increases managerial

efficiency over time (Goerzen 2005). As a consequence, well-experienced firms

have a higher chance of completing innovation projects successfully than firms that

are cooperating for the first time. In summary, these considerations result in the

formulation of our first hypothesis:

H1 A firm’s network proximity is positively related to its innovative performance

at later points in time.

Next, we turn our attention to the relationship between a firm’s geographical

proximity to other firms at the same stage of the industry’s value chain and its

subsequent innovation outcomes (cf. Fig. 12.1, Arrow 2a). The following theoret-

ical arguments substantiate the assumption that geographical co-location can gen-

erate localized knowledge spillovers. Knowledge spillovers provide valuable

information and increase a firm’s awareness of new industrial and technological

trends. Consequently, firms who benefit from knowledge spillovers increase their

general technological understanding. According to Breschi and Lissoni (2001) at

least three underlying mechanisms are responsible for knowledge spillovers at the

local level: local labor markets (Almeida and Kogut 1999; Zucker et al. 1998), local

technology markets (Lamoreaux and Sokoloff 1999) and the low propensity of

skilled workers to relocate in space (Breschi and Lissoni 2009). In particular, it has

been argued that these mechanisms enable knowledge transmission and facilitate

knowledge reuse among firms of the same industry at the local level. These

considerations substantiate the assumption that a firm can benefit from regional

knowledge spillovers due to its geographical closeness to other firms at the same

stage of the industry value chain. Consequently we elaborate on our hypothesis:

H2a A firm’s geographical proximity to other laser source manufacturers is pos-

itively related to its innovative performance at later points in time.

Now we address a firm’s proximity to other laser-related public research orga-

nizations (cf. Fig. 12.1, Arrow 2b). Jaffe (1989) and Acs et al. (1992) provide

interesting empirical results concerning the contribution of knowledge spillovers

from public research organizations (PROs). Using patents (Jaffe 1989) and direct

counts of innovation outputs (Acs et al. 1992), these studies provide evidence for

the positive impact of knowledge spillovers from universities on corporate innova-

tion activity. According to Jaffe (1989), this effect is particularly significant in the

areas of drugs and medical technology, electronics, optics and nuclear technology.

At least two theoretical arguments come into play in this context. Firstly, knowl-

edge flows out of PROs, especially universities, much more readily than it does

from privately owned firms (Jaffe et al. 1993; Owen-Smith and Powell 2004, p. 7).

Firms tend to retain information or implement secrecy strategies to protect their

knowledge stock whereas universities and PROs tend to disseminate research

findings instantly. Secondly, shortages in qualified personnel can become an
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existential problem for a firm. These issues become all the more significant for firms

operating in science-driven and highly interdisciplinary fields of research. A firm’s

geographical co-location to technical universities and universities of applied sci-

ence increases the firm’s chance of hiring well-qualified graduates such as engi-

neers, scientists and other experts. Drawing on these considerations we formulate

the following hypothesis:

H2b A firm’s geographic proximity to laser-related public research organizations

is positively related to its innovative performance at later points in time.

On the one hand, the independent effects of network proximity and geographical

proximity on innovation imply that both proximity dimensions influence innovation

through completely unrelated mechanisms and transmission channels. In other

words, the effects of positioning in the geographical and network space do not

influence each other. On the other hand, it is plausible to assume that these two

proximity dimensions can affect each other in various ways. Substitutional effects

of network proximity and geographical proximity on innovation are based on the

notion that a firm may compensate for its disadvantages in one proximity dimension

through an advantageous position in another proximity dimension. Or to put it

another way, firms located in remote geographical regions may compensate for

their location disadvantages by fostering cooperation. In contrast, complementary

effects of network proximity and geographical proximity on innovation enhance-

ment are regarded as mutually reinforcing.

We argue that network proximity and geographical proximity are not indepen-

dent but rather complementary in nature (cf. Fig. 12.1, Arrow 3a and 3b). Accord-

ingly, being well-embedded in both proximity dimensions implies that firms can

gain extra-additive innovation effects due to their advantageous positioning in both

the geographical space and the network space. To exemplify this point, firms

benefiting from local knowledge spillovers, in terms of improved accessibility to

professionals and graduates on the local labor market, may have better qualified

employees. This would allow these firms to generate greater value from their

interorganizational partnerships. Against the backdrop of these considerations we

formulate the following two hypotheses:

H3a Combined proximity effects of a firm’s network proximity and its geograph-

ical proximity to other laser source manufactures are complementary in nature.

H3b Combined proximity effects of a firm’s network proximity and its geograph-

ical proximity to other laser-related public research organizations are complemen-

tary in nature.
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12.4 Data Sources, Methodological Issues and Variable

Specification

We employed a unique panel dataset for the full population of 233 German laser

source manufactures between 1990 and 2010 to answer the questions raised above.

Four main data sources were used to conduct this study: patent data, industry data,

geographical data and network data.

Patent data4 was used to measure innovative performance at the firm level. A lot

has been written about the empirical challenges of measuring innovation processes.

Despite the methodological constraints related to the use of patents to measure

innovation performance (Patel and Pavitt 1995), patent indicators are commonly

used for analyzing innovation processes (Jaffe 1989; Jaffe et al. 1993). The use of

patent data as a proxy for firm innovativeness must be viewed critically for several

reasons (cf. Fritsch and Slavtschev 2007, p. 204). Nonetheless, there are good

reasons that advocate the use of patent data, especially in longitudinal settings

(cf. Brenner and Broekel 2011, p. 13). In accordance with previous network studies

(Ahuja 2000; Whittington et al. 2009; Stuart 1999), we used annual patent counts as

a proxy for innovation output. Our database (cf. Sect. 6.1.2) includes patent

applications as well as patents granted by the German Patent Office and by the

European Patent Office. DEPATISnet (the German Patent and Trade Mark Office’s

online database) and ESPACEnet (the European Patent Office database) were used

to check results for integrity and consistency. We ended up with patent data-based

innovation indicators: annual count of patent applications [pacnt] and annual count
of patent grants [pgcnt].

Industry data5 came from a proprietary dataset containing the entire population

of German laser source manufacturers between 1969 and 2005 (Buenstorf 2007).

Based on this initial dataset we used additional data sources to gather information

about firm entries and exits after 2005. We ended up with an industry dataset

encompassing 233 laser source manufacturers throughout the period under

observation.

In addition, we used two methods to identify 145 universities and public research

organizations that carried out laser-related activities. We started with the

“expanding selection method” according to Doreian and Woodard (1992). Using

this approach, we identified 138 laser-related public research organizations. This

method, however, is limited insofar as it completely ignores non-cooperating laser-

related PROs. Thus, we applied a second methodological approach to solve this

problem and supplement our sample. Based on a bibliometric analysis we identified

all German public research organizations which published laser papers, conference

proceedings or articles in academic journals over the past two decades. Several raw

data sources were tapped to conduct this analysis. We ended up with a final list of

4 For a description of patent data sources and data gathering procedures, see Sect. 4.2.
5 For a detailed description of industry data, see Sect. 4.2.1.
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145 laser-related PROs for the time spanning 1990 and 2010. Then, entry and exit

dates were retrieved for all of the PROs in the dataset.

Industry data was used for two reasons. On the one hand, we had to specify the

boundaries of the network. On the other hand, two basic firm-level control variables

were recorded and included in our panel dataset: a linear firm age variable [firmage]
as well as a squared firm age variable [firmage_sq].

Geographical data for all LSMs and PROs in the sample was reconstructed over

the entire observation period from 1990 to 2010 (cf. Sect. 4.2). Data from

Germany’s official company register (“Bundesanzeiger”) was used to reconstruct

the firms’ current addresses and address changes for the entire observation period.

We employed the ESRI ArcMap 10.0 Software package and a freely accessible

geo-coding application to gather GPS coordinates (latitudes and longitudes) on an

annual basis for each firm in the sample. Based on this data we set up two types of

localized density measures (LD).6 The shortest distance on a curved surface can be

calculated by using a simple geographical distance formula (cf. Sect. 5.3.1,

Eq. 5.12). Unlike Sorenson and Audia (2000, p. 435) we calculated the distances

in kilometers by using the natural earth radius constant (c¼ 6,378 km) and we split

the overall population into two sub-populations, LSMs and PROs. Inspired by

Whittington et al. (2009) we calculated the shortest distance on a curved surface

not only for each LSM to all other LSMs but also for each LSM to all PROs in our

sample. After these preparatory steps, both geographical co-location measures were

calculated using the localized density formula (cf. Sect. 5.3.1, Eq. 5.13). Thus, we

ended up with two types of localized density measures for each firm in the sample,

each of which was calculated on an annual basis i.e. [coloclsm] and [colocpro].
We also used a simple Herfindahl-Hirschman Index (Acar and Sankaran 1999)

in order to set up two geographical concentration indices at the industry level. To do

so, we proceeded as follows: First, we used the planning region scheme

(“Raumordnungsregionen”), commonly used in Germany to classify of territorial

units for statistical purposes. This divides the territory into 97 geographical areas.

Next, we generated a count variable for both types of organizations – LSMs and

PROs – that represented the number of organizations per planning region and year.

Then we calculated for each planning region i (with i¼ 1. . .97) the relative

proportion of organizations on an annual basis. Finally, two concentration indices

were established by applying an HHI formula (cf. Sect. 5.3.2, Eq. 5.14). The indices

moved in the direction of zero if the organizations under observation are equally

dispersed throughout the geographical space; the HHI had comparably large values

if some organizations were widely dispersed whereas others showed a pronounced

tendency of crowding together. We ended up with two normalized indicators that

allowed us to quantify the intensity of LSM crowding [hhi_lsm] and PRO crowding

[hhi_pro] in the geographical space.

6 This measure was originally proposed by Sorenson and Audia (2000) and applied by Whittington

et al. (2009) in order to quantify distinct and combined geographical proximity measures.
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Network data7 was gathered from two official databases on publicly funded

R&D collaboration projects. The first source was the Foerderkatalog database

provided by the German federal government which encompasses information on

a total of more than 110,000 completed or ongoing subsidized research projects and

provides detailed information on the starting point, duration, funding and charac-

teristic features of the project partners involved. In total, we were able to identify,

for the entire population of 233 German laser source manufacturers, 416 R&D

projects with up to 33 project partners from various industry sectors, non-profit

research organizations and universities. The second raw data source was an extract

from the CORDIS project database which includes a complete collection of R&D

projects for all German companies which were funded by the European Commis-

sion between 1990 and 2010. In total, this database extract consisted of a project

dataset with over 31,000 project files and an organization dataset with over 57,100

German organizations and roughly 194,000 international project partners. Based on

this raw data, we identified 154 R&D projects with up to 53 project partners for the

entire sample of German laser source manufacturers.

Finally, both cooperation data sources were used to construct interorganizational

innovation networks and to calculate network indicators on a yearly basis. We

decided in favor of the degree centrality concept in order to quantify a firm’s

network position (cf. Sect. 5.2.1, Eq. 5.1). The degree centrality measure ranges

from 0 to 1 and can be compared across networks of different sizes (Wasserman and

Faust 1994, p. 179). We applied the data described above to calculate several

network measures. Firstly, we calculated degree centrality measures on an annual

basis for each actor in the sample [ctr_degree]. Then, two network level variables

were calculated and included in the dataset to control for the structural network

characteristics at the overall network level: overall network size [nw_size] and

overall network density [nw_density]. Standard algorithms implemented in

UCI-Net 6.2 were used to calculate the network measures (Borgatti et al. 2002).

Finally, we take a brief look at the variable description and basic summary

statistics (cf. Table 12.1). We have a total of 2,645 firm-year observations in the

time span between 1990 and 2010. The average number of observations per firm

amounts to 11.35. Table 12.2 shows the correlation coefficients for all variables in

our empirical models.

7 For a detailed description of cooperation and network data see Sect. 4.2.3.
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12.5 Model Specification, Estimation Strategy

and Findings

Patents take non-negative integer values. We estimated a count model in line with

Ahuja (2000), Stuart (2000) and Whittington et al. (2009).8 In doing so, we

employed panel count data techniques (cf. Sect. 6.1.2) and adopted the following

estimation strategy to test our hypotheses. First we estimated a Poisson model

(Hausman et al. 1984) in order to obtain an initial idea of the relationship between

distinct proximity effects, combined proximity effects and a firm’s patenting

activity. We tested the significance of overdispersion using the procedure proposed

by Cameron and Trivedi (1990) and rejected the null hypothesis of no

overdispersion with a p-value of 0.000. As our endogenous variables exhibited

strong overdispersion, we then turned to a negative binomial model specification.

Like Whittington et al. (2009) we estimated all models using a negative binomial

specification. In the next step we estimated both fixed effects and random effects

models. We used the Standard Hausman Test (Hausman 1978) to decide which

results to interpret. The basic idea was to test the null hypothesis that the

unobserved effect is uncorrelated with the explanatory variables (Greene 2003,

p. 301). If the null hypothesis cannot be rejected, both fixed effects estimates as

well as random effects estimates are consistent and the model of choice is the

random effects model due to its higher explanatory power. Under the alternative,

random effects and fixed effects estimators diverge and it is argued that the latter

model is the appropriate choice (Cameron and Trivedi 2009, p. 260). Finally, we

ran several consistency checks to ensure robustness of the reported results. We set

up several empirical settings with different time lags and we used data on patent

grants as an additional innovation measure to ensure robustness of our results.

The presentation of our empirical findings was organized as follows. We spec-

ified a total of three empirical settings to test our hypotheses. The presentation and

discussion of our estimation results was centered on a panel data count model for

annual patent application counts with a time lag of 2 years, estimated by using both

types of estimation techniques: fixed effects (cf. Table 12.3) and random effects

(cf. Table 12.4). Next, we set up an additional empirical setting with a 3-year time

lag structure to ensure the robustness of our results (cf. Table 12.5, fixed effects;

Table 12.6, random effects). Finally, we employed an alternative innovation proxy

to cross-check results and substantiate our initial findings. More precisely, we used

data on annually granted patents, again with a time lag of 2 years (cf. Table 12.7;

fixed effects: Table 12.8; random effects).

Each of the three empirical settings outlined above comprise eight models. In

addition to a baseline model (BLModel), there were two models addressing distinct

geographical proximity effects (Model I and Model II), one model addressing

network proximity effects (Model III), and a fully specified model that incorporated

8We used STATA 10.1 (Stata 2007), a standard software package for statistical data analysis.
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both combined proximity effects (Model VII). In addition, we specified three

additional models to check whether the results remained stable when estimating

distinct proximity effects together (Model IV, Model V) and when estimating

combined proximity effects separately (Model VI). The results were reported in

accordance with Standard Hausman Test results and interpreted on the basis of the

fully specified models (Model VII).

We start the discussion with Tables 12.3 and 12.4. The baseline model consists

of firm level, network level and industry level variables. At the firm level we

included two very basic variables i.e. “firm age” and “firm age squared” in the

model. Network size and network density variables were incorporated to control for

the structural network topology at the overall network level. Finally, two geograph-

ical concentration measures were considered to account for geographical concen-

tration patterns of LSMs and PROs at the overall industry level. Three findings

stand out:

Firstly, the firm-level variables have no significant effect on a firm’s patenting

activity in terms of patent application counts in t� 2. Or to put it another way, a

young firm’s patenting activity does not significantly differ from the patenting

behavior of a mature firm. This result is robust over all empirical settings

(cf. Tables 12.3, 12.4, 12.5, and 12.6) and fully confirmed by the patent grant

model (cf. Tables 12.7 and 12.8).

Secondly, spatial concentration patterns of LSMs and PROs at the industry level

turned out to have a significant impact on firm-level innovation outcomes. Estima-

tion results from both fixed effects and random effects models (cf. Tables 12.3 and

12.4) indicate that a high level of geographical clustering of LSMs at the industry

level is negatively related to a firm’s patenting activity at later points in time. As

above, the patent grant model fully confirms this finding (cf. Tables 12.7 and 12.8).

These results suggest that being part of an industry with a high level of geographical

clustering among firms at the same stage of the value chain negatively impacts firm

innovativeness at later points in time.

In contrast, geographical concentration of PROs at the industry level reveals

exactly the opposite. Again, estimation results for both patent applications

(cf. Tables 12.3 and 12.4) and patent grants (cf. Tables 12.7 and 12.8) are significant

and robust over almost all model specifications. In other words, being part of an

industry that is characterized by a high level of PRO clustering is positively related

to a firm’s innovative performance measured by its patenting activities at later

points in time.

Thirdly, it turns out that network size, measured by the number of participating

laser source manufacturing firms, is negatively related to firm innovativeness at the

0.05 significance level (cf. Tables 12.3 and 12.4). This overall network size effect is

fully consistent with the results reported by fixed effects and random effects models

for grants with a t-3 time lag. Hence, firm-level innovativeness is negatively related

to the increasing size of the industry’s innovation network. A look at the network

density measure, however, reveals a somewhat ambiguous picture. On the one

hand, none of the patent application models with a 2-year time lag structure show

statistically significant estimates (cf. Tables 12.3 and 12.4). The same is true for the

12.5 Model Specification, Estimation Strategy and Findings 301



patent grant models with a comparable time lag structure (cf. Tables 12.7 and 12.8).

On the other hand, patent application models with a 3-year time lag structure

indicate a negative relationship between overall network density and firm level

patenting performance at the 0.01 significance level.

In summary, our findings suggest that geographical concentration patterns at the

industry level, as well as the structural network topology itself, turn out to affect the

innovativeness of the firms involved. In addition, the spatial concentration patterns

at the overall industry level, especially PRO clustering, seem to have an earlier

impact on firm innovativeness than structural network characteristics, especially

network density effects.9

Now we look at geographical proximity effects. To start with, we examine a

firm’s geographical co-location to other firms at the same stage of the industry value

chain. Estimation results from patent application models with a 2-year time lag

indicate a negative relatedness between geographical proximity and firm innova-

tiveness at later points in time (cf. Tables 12.3 and 12.4). Coefficient estimates from

the fixed effects model are highly significant at a 0.01 significance level and results

from the random effects model confirm this relationship at a 0.05 significance level.

Robustness checks do not contradict these findings but they also fail to provide

additional empirical support. As a consequence, we have, in the very least, modest

empirical evidence for a negative co-location effect of an LSM’s geographical

proximity to other LSMs. Or to put it another way, being near to other LSMs is not

beneficial per se; instead, geographical proximity can also hamper a firm’s inno-

vativeness in terms of its patenting activity. This result supports the theoretical

argument stated by Boschma (2005b, p. 70) according to which spatial lock-in

effects and a lack of openness to the outside world can result in a situation in which

negative agglomeration effects prevail.

Next, we place our attention on a firm’s geographical co-location to other laser-

related research organizations. The fixed effects patent application model with a

time lag of 2 years (cf. Table 12.3, Model VII) reports a positive and significant

coefficient estimate for the co-location variable at the 0.1 significance level. The

positive relationship between a firm’s patenting performance and its geographical

closeness to other laser-related public research organizations implies the presence

of purely regional knowledge spillovers. However, empirical evidence for this

relationship is fairly weak. Similar to what was mentioned above, robustness checks

do not contradict this finding but they also do not reveal additional empirical

evidence. In a nutshell, the potential emergence or existence of pure knowledge

spillover effects due to a firm’s geographical proximity to laser-related PROs is, in

the very least, doubtful and the positive effect on firm innovativeness should not be

overestimated.

9 To substantiate this finding we repeated the estimations with a 1-year time lag. It turned out that

coefficient estimates for PRO clustering were highly significant; all other coefficient estimates,

including LSM clustering, showed no significant effects. Additional results are available upon

request.
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Estimation results for network proximity effects reveal a much clearer picture.

Similar to what was mentioned above, we start the discussion by focusing on the

patent application models with a 2-year time lag (cf. Tables 12.3 and 12.4). Results

provide strong empirical evidence for a positive and highly significant relationship

between a firm’s nodal degree and its subsequent innovation output. Coefficient

estimates are comparably high and turn out to be significant at the 0.05 level when

using fixed effect estimation techniques. Random effects estimation techniques

reveal even stronger empirical evidence at the 0.01 significance level. This result

is fully confirmed by almost all model specifications, except for the fixed effects

setting (cf. Table 12.5). The implications are straightforward: the more direct

partners a firm has, the higher its innovative performance at later points in time.

To recap, we found strong empirical support for a pronounced and highly signifi-

cant relationship between distinct network proximity effects and firm innovative-

ness in the German laser industry.

Last but not least, we address the relationship between combined proximity

effects and firm innovativeness. Coefficient estimates for combined proximity

variables have to be interpreted as follows according to Whittington et al. (2009,

p. 98): (a) insignificant estimates: the effects of geographical proximity and net-

work proximity are independent; (b) positive significant estimates: geographical

proximity effects and network proximity effects are complementary in nature;

(c) negative significant estimates: geographical proximity effects can be substituted

by network proximity effects and vice versa.

Estimation results for combined proximity effects of a firm’s geographical

co-location to other LSMs and its network centrality provide sound empirical

evidence for a complementary proximity effect. Coefficient estimates are positive

and highly significant at the 0.01 level (cf. Tables 12.3 and 12.4). Patent application

models with a 3-year time lag (cf. Tables 12.5 and 12.6) as well as the patent grant

specification (cf. Tables 12.7 and 12.8) fully confirm this result at the 0.05 signif-

icance level. This finding reveals some interesting implications. The negative

relatedness outlined above between a firm’s geographical proximity to other

LSMs and its innovativeness only persists as long as these firms do not cooperate.

Combined proximity effects – composed of a firm’s co-location to other LSMs and

a firm’s network centrality measured by its nodal degree – are suggestive of

complementary effects. Combined proximity effects of a firm’s co-location to

other PROs and its network proximity turn out to be substitutional in nature.

Again we have sound empirical support for this finding (cf. Tables 12.3, 12.4,

12.6, and 12.8).

12.6 Discussion and Implications

What do our empirical findings tell us in relation to our previously formulated

hypotheses? Our first hypothesis (H1) suggests a positive relationship between a

firm’s number of direct linkages and its patenting output at later points in time. We
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found strong empirical evidence for the relevance of distinct network proximity

effects on the innovative performance of German laser source manufacturers. In

other words, degree centrality, which measures the number of direct ties, turns out

to be highly relevant for a firm’s innovative performance at later points in time. This

finding is in line with the results reported by Whittington and colleagues (2009) for

the US biotech industry. They found a highly positive relatedness between a firm’s

eigenvector centrality and patenting performance.

With regard to distinct geographical proximity, Whittington et al. (2009)

reported significant positive effects of co-location between US biotech firms and

non-significant effects of geographical proximity to PROs. These results imply that

the co-location to other biotech firms, rather than to research organizations, is what

drives firm innovativeness. Our results for the German laser source industry paint

quite a different picture. We have argued that geographical proximity – more

precisely, co-location between a firm and other LSMs (H2a), or co-location

between a firm and other PROs (H2b) – is positively related to firm innovativeness.

Against our initial expectations, estimation results for co-location between laser

source manufacturers turned out to have a significant negative effect on firm-level

innovation outcomes. In other words, co-location between laser source manufac-

tures reduces the innovative performance which leads to the rejection of Hypothesis

H2a. This unexpected result is highly relevant for several reasons.

Firstly, it contradicts the empirical findings of Whittington et al. (2009). This

indicates that distinct geographical proximity effects seem to be industry specific

and follow a completely different logic in the German laser industry. Secondly, we

found strong empirical evidence for the “dark side” of geographical proximity

supporting the spatial lock-in arguments proposed by Boschma (2005b). Obviously,

the positive knowledge spillover mechanisms do not unleash their effects. In

contrast, the explanation for the negative co-location effect is straightforward. A

firm’s geographical proximity to competitors may create an atmosphere character-

ized by reticence, aversion and preconceived notions. As a consequence, a firm can

become inward looking (Boschma 2005b) and may choose secrecy strategies

(Liebeskind 1996) instead of opening itself up to other LSMs. Especially

non-cooperative firms may face a situation in which their knowledge base erodes

and becomes outdated (Boschma 2005b). In summary, non-cooperating firms

trapped in an inward looking geographical surrounding are likely to be adversely

affected in their efforts to innovate.

Our empirical findings for a firm’s co-location to laser-related PROs are in line

with our initial expectations. In contrast to Whittington and colleagues (2009) we

found at least modest empirical support for Hypothesis H1b. Our result suggests

that German laser source manufacturers may benefit from being located near laser-

related public research organizations. Positive externalities in terms of scientific

knowledge spillovers can be explained as follows. Firstly, it is commonly accepted

that universities are an important source of new technological knowledge (Agrawal

2001, p. 285). It has been argued that especially the transfer of highly codified

technological knowledge is facilitated by geographical proximity (Audretsch

et al. 2004, p. 195). Others have put forward the argument that knowledge flows
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out of PROs, especially universities, much more readily than it does from privately

owned firms (Jaffe et al. 1993; Owen-Smith and Powell 2004, p. 7). Secondly, firms

located close to PROs may have a higher chance of attracting and hiring highly

qualified graduates. It is plausible to assume that these employees bring new and

creative ideas with them which affects a firm’s ability to innovate. Our results

suggest that at least one of these two transmission channels seems to create what we

would call “pure” scientific knowledge spillovers.

Finally, our findings on combined geographical proximity and network proxim-

ity confirm our expectations that combined proximity effects are not independent.

However, the story turns out to be more complex than initially expected. To start

with, we take a look at Hypothesis H3a. We have assumed that combined proximity

effects of a firm’s network proximity and its geographical proximity to other laser

source manufactures are complementary. Indeed, we found sound empirical support

for Hypotheses H3a. The interpretation is straightforward. Being close to firms at

the same stage in the value chain in an inward looking and non-cooperative

environment seems to hinder non-cooperative actors in their efforts to innovate.

In contrast, the complementary nature of combined proximity effects suggests that

highly cooperative actors benefit from their geographical closeness to other LSMs.

The results clearly show that being well-positioned in both types of proximity

dimensions can lead to mutually reinforcing effects which, in turn, are positively

related to a firm’s innovative performance at later points in time.

Surprisingly, combined proximity effects of a firm’s network proximity and its

geographical proximity to other laser-related public research organizations turned

out to be substitutional in nature. As a consequence we have to reject Hypothesis

H3b. Nonetheless, this finding has some important implications. Firstly, scientific

knowledge seems to be, at least to some extent, accessible via alternative transmis-

sion channels. In other words, firms can tap scientific knowledge by means of

geographical spillovers or through cooperative linkages. Secondly, the two prox-

imity dimensions seem to be exchangeable within certain limits. To illustrate this

point, a peripheral firm located far away from laser-related research facilities can

compensate for this geographical disadvantage by intensifying its cooperation

activities. Following the same logic, firms located near laser-related PRO agglom-

erations are less dependent on having a high number of formal R&D partnerships.

However, against the backdrop of the modest empirical support for the existence of

“pure” scientific knowledge spillovers and the comparably strong empirical evi-

dence for the existence of network effects, the latter implication should not be

overstated.

To conclude with, the study provides us with some interesting insights and opens

up at the same time several interesting research questions. Both, the limitations of

this analysis (cf. Sect. 13.2) and fruitful avenues for further research on proximity

and innovation (cf. Sect. 14.2) are the subject of discussion in the following

chapters.
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Chapter 13

Findings and Limitations

This neglect of other aspects of the system has been made
easier by another feature of modern economic theory – the
growing abstraction of the analysis, which does not seem to
call for a detailed knowledge of the actual economic system
or, at any rate, has managed to proceed without it.

(Ronald H. Coase 1991)

Abstract The question that naturally arises at this point is what have we learned so

far and, maybe even more importantly, what have we yet to learn? This chapter

addresses precisely these questions. In Sect. 13.1 we start with a brief discussion of

some general issues and limitations. In doing so we focus primarily on general

limitations related to the scope of data sources employed for the purpose of this

study. In Sect. 13.2 we provide a summary of key findings for the analyses

conducted in Parts III and IV. In the same breath, we also address theoretical and

empirical issues that deserve particular attention in future studies.

13.1 General Issues and Limitations

Each empirical research project bears some inherent risks that cannot be excluded

even by a conscious selection of the empirical setting. After careful and critical

reflection we chose the German laser industry to put our theoretical considerations

to the test. This proved to be a good decision for at least two reasons. Firstly, even

though the majority of laser source manufacturing firms are micro and small

enterprises, they demonstrate high cooperation and innovation activities. Secondly,

the underlying technological developments that fuel technological change pro-

cesses in the industry have, by no means, reached the end of the road. This study

concentrates on laser source manufacturers (LSMs) that are at the very heart of the

laser industry’s value chain. The underlying assumption is straightforward; these
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firms are considered to be heavily involved in the development of laser sources.

Cooperation activities between LSMs and laser-related public research organiza-

tions (PROs) were explicitly considered in this study. However, R&D cooperation

between LSMs and up-stream firms (e.g. component suppliers) or down-stream

firms (e.g. laser system producers) were beyond the scope of this study.

In general, the scope of this study is limited in several ways. Firstly, we chose a

window of time between 1990 and 2010 to conduct our analyses. The reason for this

is simple. There are considerable gaps in information on firm characteristics and

cooperation activities in the period before 1990. In contrast, data availability for the

time period after 1990 is much higher and firm histories can be more easily

reconstructed based on these historical raw data sources. Because the laser industry

database was still under construction in 2011, our window of observation was

restricted to the time before 2011.

A second point relates to the R&D cooperation data sources used in this study.

Data on publicly funded R&D cooperation projects was employed to construct

annual innovation network layers between 1990 and 2010. As already highlighted

throughout the study, the use of data on publicly funded research projects can cause

selectivity problems. These problems are usually caused by some unobserved actor-

specific characteristics which can lead to a systematic pre-selection of a sub-set of

actors in a given population. Against this backdrop one could argue that the

empirical findings in this study that higher innovativeness is related to

cooperation-related determinants might simply be caused by the inherent superior-

ity of those actors who were preselected because they were awarded more grants.

These concerns seem to be of limited salience because the optical industry is

considered to be one of the key technologies affecting the innovativeness and

prosperity of the German economy as a whole (BMBF 2010). The very aim of

German policy-makers was to increase the international competiveness of the

industry as a whole (Fabian 2011). Since the early 1980s, German technology

policy has strongly supported not only large but also small and micro-sized firms

in the optical industry (ibid). In other words, funding decisions were primarily

motivated by the aim to make German actors more competitive than their interna-

tional rivals; spurring on domestic competition through highly selective merit-

based funding decisions appears to have been of secondary importance. Basically

the same arguments hold true with regard to European funding decisions.

Scherngell and Barber (2009, p. 534) point out that one of the main EU Framework

program objectives is to strengthen the scientific and technological bases of

European industries and foster international competitiveness. Nonetheless, we

believe that our current R&D cooperation database can and should be supplemented

in several ways (cf. Chap. 14).

Thirdly, the use of patent data in constructing innovation indicators was fre-

quently criticized in the literature. Other indicators such as survey-based innovation

indicators are simply not available retrospectively over a period of more than two

decades. Nonetheless, we agree that more appropriate proxies for measuring inno-

vation output could be applied, especially for industries characterized by a high

number of micro and small-sized firms. A promising way to gather additional
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information on innovation activities of LSMs and PROs may be the use of market-

based innovation outcome measures. These and many other challenges constitute

the next steps in our research agenda (cf. Chap. 14).

Finally, this study is restricted to the national level. An interesting observation

throughout the data compilation procedure was the high involvement of interna-

tional partners in CORDIS cooperation projects. In addition, we know from other

studies that German laser source manufacturers have a strong position in interna-

tional markets and they export their products to a large extent. Both observations

substantiate the assumption that a national analysis provides some highly interest-

ing results but may not go far enough.

Each of the areas addressed above provides interesting starting points for

enriching our database and solidifying the empirical findings made so far.

13.2 Summary of Our Main Findings and Open Questions

In this section we briefly summarize the most salient descriptive findings (Part III)

and address the insights of our four explanatory analyses (Part IV).

The descriptive exploration of industry data has revealed some interesting

patterns. The initial descriptive analyses provide a comparison of industry dynam-

ics and spatial distribution patterns for laser source manufacturers (LSMs), laser

system providers (LSPs) and laser-related public research organizations (PROs).

We start with a brief look at the overall industry dynamics and find that LSPs

dominate in terms of numbers over the entire observation period. All in all, the

period between 1990 and 2005 is characterized by a more-or-less stable growth

trend with only some minor fluctuations in all three types of organizations. The last

5 years are characterized by a slight decrease in the number of LSMs and LSPs

whereas the number of PROs continues to grow at a moderate rate. Next, we

employed geographical Herfindahl-Hirschman Indices to track the geographical

concentration patterns at the overall industry level. Concentration indices for both

LSMs and LSPs start at a high level in 1990 and, after some minor fluctuations,

level off at around 0.06 index points in 2010. Analyzing spatial patterns at the

regional level reveals a concentration of laser-related organizations in four geo-

graphical regions: Munich, Thuringia, Berlin and Stuttgart. These geographical

areas still constitute the centers of the German laser industry.

Our study concentrates on the full population of German laser source manufac-

turers between 1990 and 2010. A closer look at the entry and exit dynamics and the

size distribution of LSMs provides some interesting insights. Data indicates the

highest number of firm entries in 1995, 1999 and 2001. In contrast, the total number

of firm exits peaked in 2000 with 11 LSMs leaving the industry. The overall trend

indicates a 3.4-fold increase in firms over the course of just 15 years with a peak in

2005 followed by an overall decrease by 2010 with some minor fluctuations. The

descriptive analysis of the firm size distribution over the entire observation period

reveals interesting insights. At the beginning of our observation period, more than
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half of all firms are micro firms. Even though micro firms lose ground over time, the

total number of micro firms in the sample remains comparably high. Small firms

show the highest average growth rates, followed by medium, large and very large

firms. A closer look at the size distribution of LSMs at the regional level shows a

notable number of LSMs in 10 out of the 16 federal states. The majority of large and

very large firms are located in Bavaria and Baden-Wurttemberg. In contrast, the

situation in Berlin and North Rhine-Westphalia is characterized by a comparably

high number of either micro firms or small firms. In Bremen, Saxony-Anhalt and

Mecklenburg-Western Pomerania we found a very low presence of LSMs over the

entire observation period.

Not only LSMs but also laser-related public research organizations (PROs) play

an important role in this study. PROs are considered to be important sources of

applied and basic scientific knowledge. The descriptive analysis of the composition

of laser-related PROs in Germany reveals some interesting insights. Fraunhofer

institutes make up the largest percentage of non-university research organizations

in our sample at about 22 %. The proportion of technical universities, universities

and universities of applied science was 10 %, 34 %, and 4 % respectively. About

20 % of the laser-related PROs were members of the Leibniz, Helmholtz or

Max-Planck societies. Finally, about 10 % of the overall population of all laser-

related PROs in Germany do not belong any of the four major German research

societies. Accordingly applied research facilities seem to play a key role in the

Germany laser industry.

Cooperation data for this study came from two sources: Foerderkatalog data and
CORDIS data. From the first source, we identified 416 laser-related R&D cooper-

ation projects and the second source produced R&D projects. The findings show

that CORDIS projects are considerably larger than Foerderkatalog projects. The

average size of CORDIS projects, measured by the number of partners involved,

was 10.44 with a standard deviation of 8.02. In the case of Foerderkatalog projects,
we found an involvement of 6.38 organizations per project with a standard devia-

tion of 3.96. Both data sources were used to construct innovation networks on an

annual basis. In general, our analysis of cooperation project involvement of LSMs

and PROs at the national level shows an increasing proportion of organizations

participating in publicly funded research projects over time. The average percent-

age of PROs participating in either CORDIS or Foerderkatalog R&D cooperation

projects was 42.74 % and the maximum percentage of cooperation reached nearly

60 % in 2008. A look at the overall participation of LSMs in both types of publicly

funded cooperation projects reveals a minimum participation of 24.05 % in 1990, a

maximum participation of 47.24 % in 2008 and an average participation of 36.92 %.

In Chap. 8 we focused on an exploratory analysis of structural evolution of the

industry’s innovation network. We applied two strategies to gain a comprehensive

picture of evolutionary network change processes in the German laser industry. On

the one hand, we made use of exploratory social network analysis methods

(De Nooy et al. 2005) to explore structural change patterns over time. We also

conducted an in-depth analysis of large-scale properties by using more sophisti-

cated network models (Barabasi and Albert 1999; Watts and Strogatz 1998;

Borgatti and Everett 1999).
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We start by reporting the findings of the scale-free analysis. The German

industry innovation network displays no perfect power law behavior. Nonetheless,

the log-log plot for the degree distribution over the entire observation period reveals

systematic differences between the real world and the random network. This

indicates at least a pronounced tendency towards the emergence of scale-free

properties. Our results are in line with the findings of Powell et al. (2005) for the

US biotech industry. Next, we looked at the small-world properties of the innova-

tion network. We employed graph theoretical concepts and measures, i.e. the

“clustering coefficient ratio”, the “path length ratio” and the “small-world Q” to

test for the existence of the network’s small-world nature. Data clearly reveals the

emergence of small-world properties in the German laser industry innovation

network. Robustness checks substantiate this finding. In addition, we found an

increasing tendency towards a solidification of small-world properties over time.

Last but not least, we checked for the existence of core-periphery patterns by using

complementary indicators. Our findings give us good reason to assume that the

German laser industry innovation network exhibited a pronounced core-periphery

structure during three time periods – (I) 1994–1997, (II) 1999–2002 and (III) 2004–

2008. At least two out of four indicators substantiate these findings in all three time

periods.

In Part IV we conducted four empirical investigations. Each of the empirical

studies addresses a quite narrowly defined problem and provides new empirical

evidence for innovation networks in the German laser industry, a still widely

unexplored topic in the literature.

The overall objective of the first empirical part (Chap. 9) was to contribute to an

in-depth understanding of the causes and consequences of evolutionary network

change processes at the micro-level. A natural starting point to throw some light on

the evolution of networks is to look at a firm’s initial cooperation event and the

determinants that affect the timing of network entry processes. In particular, we

included three types of determinants in our analysis: firm size, cooperation type,

and geographical location. Estimation results from a non-parametric event history

model indicate that micro firms enter the network later than small and large firms.

An in-depth analysis of the size effects for medium-sized firms provides some

unexpected yet quite interesting findings. These findings show that the choice of

cooperation type makes no significant difference to a firm’s timing in entering the

network. Finally, the analysis of contextual determinants reveals that cluster mem-

bership can, but does not necessarily, affect a firm’s timing to cooperate. It appears

that firms in some regions (e.g. Thuringia) tend to cooperate earlier and to have a

significantly higher propensity to cooperate than those in other regions

(e.g. Bavaria).

From a theoretical perspective, a lot remains to be done. For instance, our

conceptual framework still requires further refinement. Organizational, relational

and contextual determinates have to be concretized and interdependencies between

these three dimensions have to be addressed more explicitly. An interesting theo-

retical study presented by Hagedoorn (2006) moves in this direction. The proximity

concept (cf. Sect. 2.3.3.2) provides another promising starting point for addressing
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the role of interdependencies between these dimensions for micro-level network

change processes. Our theoretical framework raises awareness of the importance of

network paths. We included a very specific type of network path dependency to

account for a network entrant’s cooperation behavior in the subsequent cooperation

rounds. We refer to this idea as “cooperation imprinting”. We believe that the

sequential analysis of cooperation processes, against the backdrop of new cooper-

ation options and revised strategies, is crucial in understanding structural network

change. A refinement of this idea constitutes one of the next steps in our research

agenda.

From an empirical point of view we are still at an early stage. This study

concentrates exclusively on a firm’s first cooperation event. Cooperation events

between incumbents were not addressed. Consequently, the next steps in our

research agenda are straightforward. Firstly, repeated cooperation events have to

be included in our empirical analysis. An initial step in this direction has already

been made (cf. Kudic et al. 2013). Regression results of a parametric event history

model reveal that a firm’s knowledge endowment (and cooperation experience)

shortens the duration to first (and consecutive) cooperation events. The study

conducted by Kudic et al. (2013) also shows that previous occupation of strategic

network positions is closely related to the swift establishment of further R&D

cooperation at later points in time. Secondly, we have to find a way to analyze

the structural consequences of micro-level network change processes empirically.

Not only the formation entry processes and the network formation phase, but also

dissolution processes and network fragmentation tendencies, have to be explored

more in detail.

The focus of the second empirical part (Chap. 10) is quite different but closely

related to the issues addressed in the first study. The key objective was to analyze

how firm innovativeness is related to individual cooperation events and the struc-

ture and dynamics of a firm’s ego network. We applied panel data count models to

accomplish this task. Estimation results, from a fixed effects model, are suggestive

of direct innovation effects due to individual cooperation events, but only as long as

structural ego network characteristics are ignored. These effects, however, partially

diminish when individual cooperation events and ego network characteristics are

looked at simultaneously. Innovation effects of ego network size, as well as ego

network brokerage, remain stable whereas ego network density reveals some

surprising results. It is also interesting to note that, because we include firm-level

funding as a control variable in all models, our findings relativize the argument that

a firm’s innovative performance is affected more by public funding than by the

cooperation activities themselves.

However, we still face some theoretical and methodological challenges. The

structural configuration of an ego network can be analyzed from various theoretical

perspectives. Not only the size, brokerage and density of the ego network but also

additional structural features have to be explicitly considered in future research. For

instance, various dimensions of node-level structural heterogeneity of ego networks

(i.e. nationality, financial power, organizational form etc.) have to be integrated into

the analysis. Additionally, a fine-grained differentiation between different types of
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collaboration (i.e. funded vs. non-funded collaborations, various types of strategic

alliances etc.) can significantly improve our understanding in this research area.

There are also some methodological limitations. For instance, the use of more

sophisticated indicators of a firm’s ego network structure is needed to account for

additional ego network characteristics that go beyond the scope of this analysis. To

accomplish these tasks, our laser industry database has to be refined and completed

in several ways.

The third empirical investigation (Chap. 11) addresses the relationship between

large-scale network properties and innovation outcomes at the micro-level. More

precisely, we analyzed how small-world properties affect firm innovativeness in a

longitudinal empirical setting. The estimation results for the network’s average path

lengths are as expected. Thus, a short average path length at the overall network

level is positively related to a firm-level innovative performance at later points in

time. Our results for the clustering coefficient are in line with our theoretical

expectations. We found a positive relatedness between clustering at the overall

network level and firm innovativeness. Finally, estimation results provide empirical

evidence for a positive relatedness between a network’s small-world nature and a

firm’s subsequent innovativeness. This result is in sharp contrast to the findings of

Fleming et al. (2007, p. 949) but in line with previous findings by Schilling and

Phelps (2007).

Both theoretical and methodological limitations are closely related to graph

theoretical concepts. Firstly, concerns were expressed that bipartite networks sig-

nificantly exaggerate the network’s true level of clustering and understate the true

path length (Uzzi and Spiro 2005, p. 453). We checked for this issue by conducting

several consistency checks. Consequently, we have to address the bipartite nature

of the networks more explicitly. Not only a network’s small world nature but also

an in-depth analysis of other types of large-scale network characteristics, such as

core-periphery patterns, provide promising opportunities for further research.

Secondly, we did not specify an empirical model that incorporates path-length,

clustering and small-world indicators simultaneously. The reason for this is

straightforward. In this study we were particularly interested in investigating the

relatedness between three distinct structural patterns at the overall network level

and firm-level innovativeness. A more integrated estimation approach would be the

next logical step towards an in-depth understanding of how systemic parameters

affect the innovativeness of the actors involved.

The last of four analytical parts (Chap. 12) explicitly addresses the proximity

concept and analyzes the extent to which firm innovativeness is positively or

negatively related to various proximity dimensions. More precisely, we investi-

gated the relatedness between firm innovativeness and distinct and/or combined

network positioning effects, and geographical co-location effects. Firstly, we found

strong empirical evidence for the relevance of distinct network proximity effects on

the innovative performance of German laser source manufacturers. In other words,

a firm’s degree centrality turned out to be positively related to its innovative

performance at later points in time. Against our initial expectations, estimation

results for co-location between laser source manufacturers turned out to be
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negatively correlated with firm-level innovation outcomes. Findings on combined

geographical proximity and network proximity confirm our theoretical expectations

that combined proximity effects are not independent.

From a theoretical point of view, we are at the onset. The proximity concept

proposed by Boschma (2005) opens up rich opportunities to study the relatedness

between network proximity and other proximity dimensions. For instance,

Nooteboom (2008) heightened our awareness for the importance of cognitive

proximity in this context. Another interesting theoretical perspective could be the

integration of the isolation concept (cf. Ehrenfeld et al. 2014). Hall and Wylie

(2014, p. 358) argue that isolation only rarely appears as a stringent analytical

concept in the literature on economics and innovation. It is usually used in a

descriptive or metaphoric way without being clearly defined (ibid). They make

the point that isolation is a pervasive element of all kinds of social and economic

systems which can be exogenous but also self-imposed (Hall and Wylie 2014,

p. 373). The consequences of isolation for technological innovation are not yet fully

understood. However, it is important to note that isolation in a geographical, social

or cognitive sense is not necessarily negatively related to innovativeness (ibid).

Instead isolation can provide a unique environment and induces innovation pro-

cesses that otherwise would not have happened (Hall and Wylie 2014, p. 374).

Like any empirical investigation, this analysis also has its methodological

limitations. For instance, we used the localized density measure according to

Sorenson and Audia (2000) to quantify two types of geographical proximity

dimensions: geographical proximity between an LSM and other LSMs and geo-

graphical proximity between an LSM and other PROs. This approach is limited in

several ways. It ignores, for instance, the effects of geographical proximity in the

exploitation of inter-industry knowledge spillovers. Further research could include

indicators capturing the effects of a firm’s geographical embeddedness in diversi-

fied industrial agglomerations and in urban areas.
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Chapter 14

Further Research and Conclusions

Believing in progress does not mean believing that any
progress has yet been made.

(Franz Kafka)

Abstract The paradox underlying each scientific research project is that once it

comes to an end we face more questions than at the beginning of the process. Of

course, not all of the interesting new questions can be addressed here in detail.

Nonetheless, we believe that a comprehensive understanding of network dynamics

is essential for nearly all other fields of cooperation and network research. The

complexity of network change processes calls for the application of unconventional

methods. In my point of view this opens up a most promising field of research and

constitutes, at the same time, the core of the outlook that follows in Sect. 14.1.

Finally, we conclude with some final remarks in Sect. 14.2.

14.1 Fruitful Avenues for Further Research

The preceding discussion shows that our database has to be extended in several

ways. Even though data and methods used in this study provide a good starting

point for the analysis of network change processes, they are limited in several ways

and the German laser industry still has many interesting secrets to divulge. Widely

unexplored archival raw data sources contain valuable information on firm charac-

teristics and cooperation activities that are waiting to be explored. We have recently

started to extend the database in all four of the following areas: industry data, firm

data, network data and innovation data. Our efforts encompass not only data

gathering but also the construction of more sophisticated indicators. For instance,

a promising way to gather additional information on R&D cooperation activities

between LSMs and PROs is the exploration and utilization of bibliometric data.
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Bibliographical sources can also be employed to gather more comprehensive

information on innovation activities at the firm level. Information on product

placement and advertisement can be used to gather and construct market-based

innovation indicators. Quite recently we started systematically exploring data on

new product launches based on several archival raw data sources in order to gain a

more appropriate picture of innovation processes at the firm level. One of our next

steps will be to focus on the inclusion of international linkages in our database to lay

the groundwork for studying networks in an international context.

Secondly, more sophisticated empirical estimation methods are needed to

address some of the empirical limitations. Both parametric and semi-parametric

estimation approaches (Blossfeld et al. 2007) provide a broad range of empirical

models that can be used for an in-depth analysis of tie formation and tie termination

processes at the firm level. Moreover, we used standard panel data count models for

our estimation in Chaps. 10, 11, and 12. These methods are limited in at least two

ways. Firstly, the conditional fixed effects estimation approach, which is usually

implemented in standard software packages, has been criticized (Allison and

Waterman 2002). Secondly, more sophisticated methods have recently been pro-

posed in the literature to handle selection biases in panel data (Imbens and

Wooldridge 2009). These empirical challenges need to be addressed in future.

In addition to the issues addressed above, other powerful methods are now

available such as agent-based simulation approaches. We are convinced that the

use of different methodological approaches adds value in understanding a specific

phenomenon. Two classes of agent-based models seem to have the potential to

break new ground in the field of interorganizational network research.

The first class of models, so-called stochastic agent-based models (Snijders

2004; Snijders et al. 2010; Huisman and Snijders 2003; Huisman and Steglich

2008), can be applied to explore the mechanism that fuels the structural change of

networks between two or more discrete points in time. The main focus of stochastic

actor-based simulation models is the analysis of network evolution processes and

co-evolutionary processes between social networks and changeable actor attributes

(Snijders 2004). At their core, stochastic agent-based models combine a random

utility model, continuous-time Markov process, and Monte Carlo simulation

(Buchmann et al. 2014, p. 27). One processing avenue is to apply these models to

gain a more profound understanding of how and why interorganizational innovation

networks change over time.1

Stochastic actor-based models possess several distinctive features, including

flexibility and accessibility of procedures to estimate as well as to test parameters

which support the description of mechanisms or tendencies (Snijders et al. 2010,

p. 2). Therefore, they reflect “network dynamics as being driven by many different

tendencies” (Snijders et al. 2010, p. 1). These tendencies may be, for example,

reciprocity, transitivity or homophily (ibid). Stochastic actor-based models are

1 The following discussion is guided by Snijders et al. (2010). See also, Huisman and

Snijders (2003).
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based on some basic assumptions (cf. Snijders et al. 2010 pp. 1–3). Firstly, the time

parameter t is continuous. This postulation enables the representation of dependen-
cies between ties which are the consequence of processes where one tie occurs due

to the existence of others. Secondly, the modifications of the network are the result

of a Markov process, i.e. that “for any point in time, the current state of the network

determines probabilistically its further evolution, and there are no additional effects

of the earlier past” (Snijders et al. 2010, p. 2). The third assumption is that the actors

are in control of their outgoing ties. Therefore, the changes of ties occur as a result

of the actions of the actors instigating the tie which is influenced by their and other

actors’ attributes, their location in the network as well as their awareness of the rest

of the network. Fourthly, at a certain point in time one probabilistically chosen actor

(‘ego’) may have the occasion to change one outgoing tie. This postulation ends by

decomposing the process of change into its minimum of possible components and

consequently in the implication that alterations are not implemented coordinately,

but merely depends on each other sequentially (Snijders et al. 2010, p. 3).

In the application of stochastic actor-based models, the focal actor – the one who

can make a change – has to be selected with equal probabilities or with probabilities

that depend on features like network position or other attributes. His reaction

possibilities include the opportunity to change one outgoing tie or to do nothing.

Hence, the set of permissible actions includes n elements (n�1 changes and one

non-change). “The probabilities for a choice depend on the so-called objective

function” (Snijders et al. 2010, p. 3) which is the heart of this model. The objective

function ultimately determines the probabilities of modification in the network. The

occurring effects can be divided into two groups: (a) endogenous effects, such as

basic effects, transitivity and other triadic effects and degree-related effects that

solely depend on the network itself, (b) exogenous effects (covariates) and inter-

actions that, in contrast, are external in nature.2 Moreover, it needs to be empha-

sized that issues regarding statistical modeling may arise. This means, among other

things, that certain data requirements have to be met e.g. number of actors, number

of observation moments, and the total number of observations (Snijders et al. 2010,

p. 6).

By now, there are some excellent studies using stochastic agent-based methods

in an economic context (Van de Bunt and Groenewegen 2007; Balland et al. 2012;

Ter Wal and Boschma 2011; Giuliani 2010). One of our current research projects

also moves in this direction. The study conducted by Buchmann et al. (2014)

explores evolutionary network change processes in the German laser and automo-

tive industry by using a stochastic actor-based simulation approach. The results

provide empirical evidence for the explanatory power of network-related determi-

nants in both industries.

Another class of models, the so-called KENE approach (Gilbert et al. 2001,

2007; Pyka et al. 2007) allows a firm’s knowledge base, learning processes and

knowledge transfer in complex network structures to be modeled. These types of

2 For further explanation, see Snijders et al. (2010, pp. 4–6).
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agent-based models can be applied to simulate micro-level firm behavior which

shapes the macro-level network patterns.

Work has already started in this research area. Mueller and colleagues (2014)

draw upon the KENE approach to analyze the evolution of interfirm innovation

networks. In this study we focus on the evolutionary change of innovation networks

which are composed of and driven by individual strategies and goals of heteroge-

neous actors. These actors follow a number of well-defined cooperation partner

selection strategies. The agent-based simulation model (ABSM) that was

implemented allows the causal relationships between firm strategies and the emerg-

ing network structures to be analyzed.

Mueller and colleagues (2014) applied the model to test the following well-

known mechanisms that are assumed to affect a firm’s cooperation activities and

affect the evolution of the overall network over time: homophily, reputation and

cohesion mechanisms. An initial, simplified version of the model was extended by

adding a market mechanism which linked the knowledge base of a firm with the

rewards a firm receives and with its incentives to cooperate. The results of our study

show that a transitive closure mechanism, combined with a tendency for preferen-

tial attachment, produces networks that exhibit both small-world characteristics and

a power-law degree distribution. Moreover our simulation results suggest that

diversity in the selection of cooperation partners is important when we consider

an evolving network.

14.2 Some Concluding Considerations

An in-depth understanding of collective innovation processes and technological

change patterns is a necessary prerequisite for creating appropriate conditions for

economic growth and prosperity. Indeed, there are still a lot of open questions to be

addressed in order to provide a more comprehensive understanding of the evolu-

tionary nature of innovation networks.

This study demonstrates that the neo-Schumpeterian approach in economics

provides an appropriate theoretical framework for studying firm innovativeness in

evolving networks. We chose this theoretical framework and decided in favor of a

longitudinal empirical setting because we were convinced that factors influencing

the creation of novelty are best understood from a dynamic perspective. Similarly,

methods used for the purpose of this study were selected on the basis of two criteria.

One the one hand, they must allow for an exact measurement of industry, firm,

network and innovation characteristics at multiple analytical levels. On the other

hand, they must be able to account for change processes over time. In principle, all

applied indicators and methods, i.e. basic descriptive indicators, social network

analysis methods and empirical estimation techniques, meet these requirements.

All in all our results show that R&D cooperation and innovation network

involvement affects the innovativeness of science-driven firms in multiple ways.

We believe that this book makes a valuable contribution to innovation network
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literature by exploring how and why firm-specific R&D cooperation activities and

network positions, large-scale network patterns and evolutionary network change

processes affect the innovative performance of laser source manufacturers in

Germany. Nonetheless results should always be accessed and interpreted carefully

in light of the limitations raised above. Current follow-up studies, using alternative

methodological approaches, have already confirmed some of our findings and

contributed towards a better understanding of network entry processes (Kudic

et al. 2013; Kudic et. al. 2015) and network evolution processes (Mueller et al.

2014; Buchmann et al. 2014; Kudic and Guenther 2014). In a similar vein, recently

started research projects on core-periphery patterns in Large-scale networks

(Ehrenfeld et al. 2014) aim to complement and enhance our current picture of

collective innovation processes in the German laser industry.

While this book is certainly a good starting point, there is yet much to be done to

fully understand evolutionary network change, strategic positioning, and firm

innovativeness in the German laser industry.
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Appendix

Appendix 1: Bibliometric Analysis

Bibliometric Analysis: Data Sources, Search Terms
and List of Explored Journals

We used several online databases to conduct our search. These are among others:

ISI Web of knowledge (http://wokinfo.com), EBSCO (http://web.ebscohost.com),

JSTORE (http://www.jstor.org). In addition we explored an IWH literature data-

base to conduct our analysis. The differentiation of journals by scientific field was

conducted on the basis of the journals’ main focus.

The following search terms were used to identify publications on cooperation

in general: “coop”, “collab”, “co-op”, “partnership”, “dyad”, “dyadic”, “alliance”,

“inter-org”, “interorg”, “inter-firm”, “interfirm”, “network”, “linkage”, “link”,

“relationship”, “relation”, “hybrid”, “joint”, “franchising”, “licensing”.

The following search terms were used to identify publications on alliance

portfolios, ego-networks and multi-partner alliances: “portfolio”, “ego”, “constell”,

“multi-partner”.

The following search terms were used to identify publications on networks in

general and large-scale network features: “network”, “net”, “small-world”, “small

world”, “large-scale”, “core-periphery”, “scaling”, “scale-free”, “fat-tailed”.

The following search terms were used to identify alliance and network-related

publications that deal with dynamic issues: “change”, “growth”, “dyn”, “evol”,

“process”, “transition”, “formation”, “emerge”, “fragmentation”.

We found relevant articles in 242 academic journals. The full list of journals is

provided below.
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Academy of Management Executive

Academy of Management Journal

Academy of Management Review

Acta Sociologica

Administrative Science Quarterly

Advances in Complex Systems

Advances in Strategic Management

American Economic Review

American Journal of Sociology

American Physical Society

American Sociological Review

Annals of Regional Science

Annual Review of Sociology

Artificial Intelligence and Society

B.E. Journal of Theoretical Economics

Bell Journal of Economics

Biol Philos

British Journal of Management

Brokering Digest

Brooking Institution

Bulletin of Economic Research

Bulletin of Mathematical Biophysics

Business and Economic History

Business Digest

Business Quarterly

California Management Review

Cambridge Journal of Economics

Chain and Network Science

Comparative Economic Studies

Competition & Change

Competitiveness Review

Complexity

Complexity International

Computational & Mathematical Organization Theory

Computation and Economics

Connections

Creativity and Innovation Management

Current Politics and Economics of Europe

Das Wirtschaftsstudium

Die Unternehmung
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Econometrica

Economics and Business Review

Economica New Series

Economic Geography

Economic Journal
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Economic Theory

Economy and Society
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International Journal of Economics of Business
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International Journal of Game Theory
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International Journal of Industrial Organization
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International Journal of Management Reviews

International Journal of Organizational Analysis
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Mathematical Social Sciences
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Nature
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Papers in Regional Science
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Schmalenbach Business Review

Science

Science Technology and Human Values

Scientific American

Scientometrics
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Singapore Management Review

Small Business Economics

Social Forces

Social Methodology
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Social Science Journal
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Appendix 2: Complete List of the 97 Planning
Regions as Applied in this Analysis

ZIP code Number of planning region Name of planning region State

24901 1 Schleswig-Holstein Nord SH

25534 2 Schleswig-Holstein Süd-West SH

24011 3 Schleswig-Holstein Mitte SH

23400 4 Schleswig-Holstein Ost SH

21018 5 Schleswig-Holstein Süd SH

20001 6 Hamburg HH

19001 7 Westmecklenburg MV

18001 8 Mittleres Mecklenburg/Rostock MV

17461 9 Vorpommern MV

17013 10 Mecklenburgische Seeplatte MV

28001 11 Bremen HB

26691 12 Ost-Friesland NI

27501 13 Bremerhaven HB

21202 14 Hamburg-Umland-Süd NI

27201 15 Bremen-Umland NI

26001 16 Oldenburg NI

26851 17 Emsland NI

49001 18 Osnabrück NI

30001 19 Hannover NI

29200 20 Südheide NI

29431 21 Lüneburg NI

38001 22 Braunschweig NI

31013 23 Hildesheim NI

34331 24 Göttingen NI

16501 25 Prignitz-Oberhavel BB

16201 26 Uckermark-Barnim BB

15201 27 Oderland-Spree BB

3001 28 Lausitz-Spreewald BB

14731 29 Havelland-Fläming BB

10001 30 Berlin BE

(continued)
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ZIP code Number of planning region Name of planning region State

39511 31 Altmark LSA

39001 32 Magdeburg LSA

6811 33 Dessau LSA

6002 34 Halle/Saale LSA

48001 35 Münster NW

33501 36 Bielefeld NW

32833 37 Paderborn NW

34418 38 Arnsberg NW

44001 39 Dortmund NW

46201 40 Emscher-Lippe NW

47001 41 Duisburg/Essen NW

40001 42 Düsseldorf NW

44701 43 Bochum/Hagen NW

50400 44 Köln NW

52001 45 Aachen NW

53001 46 Bonn NW

57341 47 Siegen NW

34001 48 Nordhessen HE

35301 49 Mittelhessen HE

36001 50 Osthessen HE

60001 51 Rhein-Main HE

64100 52 Starkenburg HE

37301 53 Nordthüringen TH

99001 54 Mittelthüringen TH

98490 55 Südthüringen TH

7490 56 Ostthüringen TH

4001 57 Westsachsen SN

1001 58 Oberes Elbtal/Osterzgebirge SN

2806 59 Oberlausitz-Niederschlesien SN

9001 60 Chemnitz-Erzgebirge SN

8501 61 Südwestsachsen SN

56001 62 Mittelrhein-Westerwald RP

54181 63 Trier RP

55438 64 Rheinhessen-Nahe RP

67601 65 Westpfalz RP

67201 66 Rheinpfalz RP

66001 67 Saar SL

69001 68 Unterer Neckar BW

74001 69 Franken BW

76481 70 Mittlerer Oberrhein BW

(continued)

Appendix 2: Complete List of the 97 Planning Regions as Applied in this Analysis 337



ZIP code Number of planning region Name of planning region State

75090 71 Nordschwarzwald BW

70001 72 Stuttgart BW

89166 73 Ostwürtemberg BW

89001 74 Donau-Iller (BW) BW

72120 75 Neckar-Alb BW

72168 76 Schwarzwald-Baar-Heuberg BW

79001 77 Südlicher Oberrhein BW

78201 78 Hochrhein-Bodensee BW

78352 79 Bodensee-Oberschwaben BW

63701 80 Bayerischer Untermain BY

97001 81 Würzburg BY

97401 82 Main-Rhön BY

96001 83 Oberfranken-West BY

95400 84 Oberfranken-Ost BY

92200 85 Oberpfalz-Nord BY

91001 86 Industrieregion Mittelfranken BY

91501 87 Westmittelfranken BY

86001 88 Augsburg BY

85001 89 Ingolstadt BY

84042 90 Regensburg BY

94001 91 Donau-Wald BY

84001 92 Landshut BY

80001 93 München BY

87681 94 Donau-Iller (BY) BY

87571 95 Allgäu BY

82055 96 Oberland BY

83001 97 Südostoberbayern BY
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Appendix 3: Consistency Check: Small World Properties
in the German Laser Industry Innovation Network

Consistency Check: Small World Properties

Procedural steps:

1. Use of multi-partner R&D project data (cf. Sect 4.2.3).

2. Assumption: Project partners are not fully connected. A focal actor is assumed to

have only direct linkages to other project partners; these partners are not

interconnected (“star networks”) (cf. Sect. 4.2.3).

3. Annual network layers are compiled based on the R&D project data.

4. Calculation of small world indicators (cf. Sects. 5.2.3 and 8.3.2).

Clustering coefficient ratio

Path length ratio
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Small world (Q)

Source: Author’s own calculation
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