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Preface

High amounts of specific antibodies are produced upon antigen stimulation during
adaptive immune responses. Antibody production can rapidly resume, long after a
primary response, and in higher amounts, during memory responses. Altogether,
antibodies of every individual recognize a wide repertoire of antigens encountered
during life, including autoantigens. As a result, several grams of antibodies with
multiple specificities per liter of plasma circulate throughout the body via the
bloodstream. Antibodies can reach remote organs in the periphery within minutes.
They are involved in a variety of biological responses in health and disease. They
can both protect from infections and induce allergic, autoimmune, or other
inflammatory diseases. Genetically engineered monoclonal antibodies are
increasingly used in passive immunotherapy, mostly, but not exclusively in cancer.
Immunoglobulins pooled from the plasma of thousands of normal donors are
injected intravenously (IVIg) as an anti-inflammatory treatment in an increasing
number of autoimmune diseases. Actively produced specific antibodies account for
the therapeutic effects of the overwhelming majority of protective vaccines,
whether prophylactic or therapeutic. How antibodies work, however, is far from
being fully understood and appreciated.

Antibodies bind to specific antigens by their Fab portions with a wide range of
affinities. Binding is necessary for antibodies to act on antigens. Binding, however,
is not sufficient. Antibodies indeed exert little or no effect when binding to antigen
only. They have no biological activities per se. Antibodies, however, mediate
many biological activities. They are mediators rather than effectors of adaptive
immunity. Biological activities mediated by antibodies require their Fc portion.
The Fc portion of immunoglobulins consists of the C-terminal constant domains of
the two heavy chains that are characteristic of antibody classes and subclasses.
Antibody-mediated biological activities indeed depend on the class of antibodies.
The reason is that the Fc portion of antibodies of different classes differentially
interacts with other molecules that can induce a variety of effector functions. These
molecules are of two types: soluble molecules such as components of complement,
and Fc Receptors (FcRs) expressed on the membrane of various cells.

For long, the existence of FcRs has been inferred from the observed biological
effects of so-called ‘‘cytophilic’’ antibodies. In spite of the classical opposition
between cell-mediated immunity and humoral immunity, some biological prop-
erties of antibodies were indeed found to depend on cells. When binding to
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antigens, antibodies called ‘‘opsonins’’—literally, which prepare the food to be
ingested—enabled phagocytes to internalize particulate antigen-antibody com-
plexes. Anaphylaxis and antibody-dependent cell-mediated cytotoxicity were
found to result from the release of vasoactive and cytotoxic mediators, respec-
tively, stored in the granules of different cell types. There were ‘‘homocytotropic’’
antibodies, which triggered responses in homologous tissues, and ‘‘heterocyto-
tropic’’ antibodies, which triggered responses in heterologous tissues; there were
antibodies whose cytophilic properties were heat-labile and antibodies which were
heat-stable; there were washing-resistant and washing-sensitive cell-sensitizing
antibodies, all of which could trigger similar responses but under different con-
ditions. There were also enhancing and regulatory antibodies of different IgG
subclasses. Although the concept of receptors for the Fc portion of cytophilic
antibodies was proposed to account for the enhanced internalization of opsonized
antigens by macrophages in the 1960s (Berken and Benacerraf 1966), the term Fc
Receptors was not coined until 1972 by Frixos Paraskevas to describe IgG
receptors on B lymphocytes (Paraskevas et al. 1972). By being given a name, FcRs
gained a material existence. They could be identified on cell membranes and they
became susceptible to molecular analysis.

FcRs for the various classes of immunoglobulins were indeed identified using
several means to visualize cell-bound antibodies. FcRs with a high affinity were
first found on a limited number of cells by assessing the binding of radiolabeled
immunoglobulins. Using this approach, IgG and IgE receptors were found on
macrophages and mast cells, respectively. Homogeneous cell lines made it pos-
sible to assess FcR numbers on single cells, to measure association and dissoci-
ation constants, and thus to calculate affinity constants. These were between 108

(Unkeless and Eisen 1975) and 1010 M-1 (Kulczycki and Metzger 1974).
Many more receptors for the same and for other immunoglobulin isotypes were

subsequently identified by assessing the binding of red cells sensitized with
antibodies under the microscope. These receptors had no measurable affinity for
radiolabeled monomeric immunoglobulins, but they could bind multivalent
immune complexes with high avidity. Using this ‘‘rosetting’’ procedure, all
myeloid cells and some lymphoid cells expressed FcRs, and FcRs for all five
immunoglobulin classes were recognized. These findings led to the distinction of
high-affinity receptors referred to as FcRI, which bind antibodies as monomers,
and of low-affinity receptors referred to as FcRII, which bind antigen-antibody
complexes only. FcRs were also found on parasites (Torpier et al. 1979;
Vincendeau and Daëron 1989), bacteria (Langone 1982), and even virus-encoded
FcRs were described on infected cells (McTaggart et al. 1978; Litwin et al. 1990;
Litwin and Grose 1992).

When monoclonal antibodies were raised against FcRs, cell population analysis
by flow cytometry confirmed the distinction between high- and low-affinity FcRs
and their differential tissue distribution. It also revealed a further heterogeneity
amongst low-affinity receptors for IgG expressed by different cell types (Unkeless
et al. 1988). Low-affinity FcRs were therefore subdivided into FccRII and FccRIII.
More recently another high-affinity receptor for IgG found in mice but not in
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humans, was named FccRIV (Nimmerjahn et al. 2005). Human FcRs identified by
referenced monoclonal antibodies were given CD numbers and used as phenotypic
markers of cell populations: CD16 corresponds to FccRIII, CD32 to FccRII, CD64
to FccRI, CD23 to FceRII and CD89 to FcaRI. FceRI have no CD number.

As FcRs were increasing in numbers, biochemical analysis disclosed their
molecular heterogeneity. High-affinity IgE receptors first (Holowka et al. 1980), then
IgG (Ernst et al. 1993) and IgA receptors (Pfefferkorn and Yeaman 1994) were found
to contain several polypeptides. Most are composed of 2–3-extracellular-domain
immunoglobulin-binding FcRa subunit noncovalently associated with a widely
expressed, highly conserved homodimeric common subunit named FcRc (Orloff
et al. 1990) and, when expressed in mast cells or basophils, with a 4-transmembrane
subunit named FcRb whose expression is restricted to these cells (Kurosaki et al.
1992). cDNAs encoding the various FcR subunits having been cloned and expressed
in different cells, their functional roles could be analyzed. FcRc and FcRb were found
to control both the membrane expression of FcRa (Takai et al. 1994; Kinet 1999) and
the ability of membrane FcRs to generate activation signals when engaged by anti-
gen–antibody complexes. FcRc and FcRb were indeed shown to contain Immuno-
receptor Tyrosine-based activation Motifs (ITAMs) (Reth 1989). Two single-chain
low-affinity IgG receptors expressed in humans only also contained one ITAM,
whereas another single-chain low-affinity IgG receptor expressed in mice and
humans was found to contain an Immunoreceptor Tyrosine-based Inhibition Motif
(ITIM) (Daëron et al. 1995). Other receptors triggered neither activation nor inhi-
bition signals, but permitted a strictly controlled internalization of antibodies. The 5
extracellular domain-containing polyIg receptor enables pentameric IgM and
dimeric IgA to transcytose through polarized cells (Brandtzaeg 1983), whereas the
b2-microglobulin-associated MHC-I-like FcRn not only mediates the intestinal
absorption of maternal IgG through the fetal gut epithelium, but protects IgG from
degradation in adults (Raghavan et al. 1993; Roopenian et al. 2003).

When FcR genes were cloned, their phylogenetic relationship was established
(Qiu et al. 1990) and their heterogeneity was further enriched. Capital letters were
added to FcR names to designate human genes and their murine orthologs. More
recently, a novel family of FcR-like (FCRL) molecules was disclosed in mice and
humans, which dramatically expanded the FcR field (Ehrhardt et al. 2007). Many
FCRLs still have no known ligand. Some can bind immunoglobulins. They have
similar structures, similar signaling properties and similar genetic organizations as
classical FcRs, but also marked differences. Genetic polymorphisms were unrav-
eled in classical human FcRs, some of which were associated with disease, mostly
autoimmune diseases, and/or with a differential efficacy of therapeutic antibodies.
FcR knockout, knockin, and transgenic mice were genetically engineered that
proved to be invaluable analytical tools to assess FcR function in vivo. Special
efforts have been made to generate humanized mice in which murine FcRs have
been more or less extensively replaced by human FcRs, sometimes with the same
tissue distribution as in humans. These unique mice should be a major advance to
analyze the contribution of the various FcRs to the protective and the pathogenic
roles of antibodies in mouse models of human diseases. They should be also of
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interest to tailor and to assess the efficacy of novel therapeutic antibodies for
specific purposes. Indeed, nonhuman primates that are often viewed as the best
animal models for preclinical vaccine trials, seem not to have the same FcRs as
humans (Trist et al. 2014).

As knowledge on FcRs progressed, the complexity of the mechanisms by which
antibodies work increased dramatically. The difficulty to understand their bio-
logical effects in health and disease and to use them as therapeutic tools increased
in parallel. As a consequence, it became difficult for most scientists, including
immunologists, to embrace the multifaceted and often antagonistic properties of
antibodies. The aim the this issue of Current Topics in Microbiology and Immu-
nology on FcRs was to gather in a single volume the contributions of interna-
tionally recognized FcR experts on essential novel aspects of FcR biology in
physiology and pathology. To our knowledge, such a book has not been published
for many years. This volume is divided into five parts, which, we believe, cover
the main aspects of current knowledge on FcRs.

The Part I titled Old and New FcRs contains three chapters. It provides novel
information on old receptors and information on novel FcRs. Hiromi Kubagawa
et al. report their recent findings on human and murine FclR. The existence of this
long suspected receptor for IgM now lies on solid grounds. It also has unexpected
properties that other FcRs do not have. Randall Davis et al. provide a state-of-the-
art overview of the FCRL family with their known ligands, and they discuss their
potential functions. Finally, Leo James describes TRIM21. This intriguing intra-
cellular receptor with an extraordinarily high affinity for IgG and IgM has unique
structural and functional properties that endow it with major protective properties,
especially against viral infection.

The Part II deals with FcR Signaling. It also contains three chapters. Denis
Thieffry et al. present their novel bioinformatic approach of FcR signaling, using
high-affinity IgE receptors in mast cells as a model. They show how computational
modeling can help to integrate the complexity of signaling pathways. Pierre
Launay et al. focus their review on calcium channels that have long been known to
be critical in FcR signaling. They discuss the role of novel channels that control
intracellular calcium and how these channels are tightly regulated. Finally,
Michael Huber et al. address the mechanisms by which the lipid phosphatase
SHIP1 negatively regulates FceRI signaling and how both the expression and
function of SHIP1 are controlled. This hematopoietic cell-specific phosphatase is a
major regulator of many signaling pathways, particularly but not only, in mast
cells.

The Part III entitled FcR Biology deals with various FcR functions, mostly, but
not exclusively under physiological conditions. It contains six chapters. Marc
Daëron first discusses how FcRs function as adaptive immunoreceptors (with an
adaptive specificity, structure and signaling) that trigger adaptive biological
responses with an extensive combinatorial functional diversity, depending on the
functional repertoire of FcR-expressing cells selected by antibodies. Pauline Rudd
et al. provide a comprehensive overview of the role that glycosylation plays in FcR
functions. The glycosylation of antibodies is well known to determine their
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binding to FcRs. That of FcRs is much less known. The interplay between car-
bohydrate–carbohydrate and carbohydrate–protein interactions, in ligands and
receptors, opens a novel field of investigation. Birgitta Heyman discusses how,
depending on the antigen and on the antibody class, antigen–antibody complexes
can exert potent adjuvant effects or, on the contrary, suppress antibody responses.
Understanding the mechanisms behind these versatile effects is essential for
antibody-based immunotherapy. Renato Monteiro et al. review the anti-inflam-
matory properties of IgA and IgA receptors. IgA indeed uses several receptors and
several mechanisms to regulate inflammatory processes generated during immune
responses and the resulting tissue damage observed in autoimmune and inflam-
matory diseases. Jeffrey Ravetch et al. discuss how humanized mice can be used to
assess the role of IgG-FccR interactions in the in vivo effects of therapeutic
antibodies used in the clinic. They focus on such a mouse in which all the FccRs
have been deleted and replaced by human FccRs with a human tissue distribution.
Finally, Sally Ward et al. review the mechanisms used by FcRn to protect IgG
from lysosomal degradation through recycling and transcytosis, to deliver anti-
bodies across cellular barriers to sites of pathogen encounter, to maintain and
regulate renal filtration and to present antigen. These multifaceted functions open
new FcRn-targeted therapies.

The Part IV specifically deals with FcRs and Disease. It contains three chapters.
Robert Kimberly et al. address the issue of FcR polymorphism in human diseases.
They review the single nucleotide polymorphisms, as well as the copy number
variations in classical FcRs, including FcRn, but also in FCRLs, and they discuss
their roles in infectious and inflammatory diseases associated wit these genetic
variations. René Toes et al. focus on the roles of autoantibody–FcR interactions in
rheumatoid arthritis. Specifically, they show how anti-citrullinated protein anti-
bodies determine joint damage through the interplay between activating an
inhibitory receptors. Finally, Mark Hogarth et al. provide a comparative analysis
of human and non-human primate FccRs, in viral infection. They focus on the
polymorphism of macaque FccRs and HIV infection and discuss how faithful the
macaque model is for designing safe and efficient HIV vaccine strategies.

The Part V bears on FcRs and Therapeutic Antibodies. It contains three
chapters. Mark Cragg et al. first discuss how ITIM-containing inhibitory FccRIIB,
that were shown to decrease the efficacy of therapeutic antibodies such as Rit-
uximab or Trastuzumab can, on the contrary, enhance that of antibodies against
members of the TNF Receptor superfamily such as anti-CD40 antibodies. Jantine
Bakema and Marjolein van Egmond review the mechanisms involved in FcR-
dependent passive immunotherapy of cancer. They specifically focus on thera-
peutic antibodies of the IgA class, instead of the anti-tumor IgG antibodies that are
commonly used. Finally, Falk Nimmerjahn et al. review the anti-inflammatory
activity of normal IgG and, specifically, the role of IgG glycosylation in this
property. They discuss how IgG sialylation critically determines the therapeutic
effects of IVIg in several models of autoimmune diseases by affecting both innate
and adaptive immune responses through several receptors and mechanisms.
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We hope this volume will interest scientists and clinicians, immunologists and
non-immunologists, who are willing to know more about FcRs and to master better
antibodies for therapeutic purposes. We also wish they will share with us the
pleasure we had to put these chapters together when they read them.

Marc Daëron
Falk Nimmerjahn
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Part I
Old and New FcRs



The Old but New IgM Fc Receptor (FclR)

Hiromi Kubagawa, Yoshiki Kubagawa, Dewitt Jones,
Tahseen H. Nasti, Mark R. Walter and Kazuhito Honjo

Abstract IgM is the first Ig isotype to appear during phylogeny, ontogeny and the
immune response. The importance of both pre-immune ‘‘natural’’ and antigen-
induced ‘‘immune’’ IgM antibodies in immune responses to pathogens and self-
antigens has been established by studies of mutant mice deficient in IgM secretion.
Effector proteins interacting with the Fc portion of IgM, such as complement and
complement receptors, have thus far been proposed, but fail to fully account for the
IgM-mediated immune protection and regulation of immune responses. Particu-
larly, the role of the Fc receptor for IgM (FclR) in such effector functions has not
been explored until recently. We have identified an authentic FclR in humans using
a functional cloning strategy and subsequently in mice by RT-PCR and describe
here its salient features and the immunological consequences of FclR deficiency in
mice. Since the FclR we cloned was identical to Toso or Fas inhibitory molecule
3 (FAIM3), there have been spirited debates regarding the real function of FclR/
Toso/FAIM3 and we will also comment on this topic.
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1 Introduction

Antibody has dual binding activities: to antigen via its amino terminal variable
regions and to effector molecules such as Fc receptors (FcRs) via its carboxyl
terminal constant regions. FcRs are expressed by many different cell types in the
immune system, and their interaction with antibody can initiate a broad spectrum
of effector functions that are important in host defense. These functions include
phagocytosis of antibody-coated microbes, lysosomal degradation of endocytosed
immune complexes, antibody-dependent cell-mediated cytotoxicity, secretion of
cytokine and chemokines, release of potent inflammatory mediators, enhancement
of antigen presentation, and regulation of antibody production by B lymphocytes,
and plasma cell survival. These diverse regulatory roles depend upon the antibody
isotype and cellular distribution of the corresponding FcR. FcRs for IgG (FccRI to
FccRIV), IgE (FceRI) or IgA (FcaR) have been extensively characterized at both
protein and genetic levels (see other chapters in this volume; Refs. (Ravetch and
Kinet 1991; Daëron 1997; Monteiro and Van De Winkel 2003; Nimmerjahn et al.
2005)). IgM is the first antibody isotype to appear during phylogeny, ontogeny and
immune responses, and the existence of an FcR for IgM (FclR) on various cell
types (B, T, NK cells, macrophages (Mus), and granulocytes) has been suggested
for decades with conflicting results (see Refs in (Kubagawa et al. 2009)). Thus, it
has long been a puzzle why the gene encoding an FclR has defied identification. In
this article, we will describe the identification of an authentic FclR, its genetic and
biochemical features, and the cellular distribution and function of FclR in both
humans and mice.
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2 Human FclR

2.1 Functional Cloning, Predicted Structure,
and Biochemical Nature of FclR

In 1986 during her analysis of B cell activation antigen, Sheila Sanders, then a
post-doctoral fellow in the laboratory of Max Cooper, serendipitously identified a
single chain polypeptide of *60 kDa by mouse IgM monoclonal antibodies
(mAbs) irrespective of their antigen binding specificities that was expressed on the
surface of human blood B cells following activation with phorbol myristate acetate
(PMA) (Sanders et al. 1987). The *60 kDa IgM binding protein was also
detectable on freshly isolated chronic lymphocytic leukemia (CLL) B cells (see
Sect. 2.7) and on the PMA-activated human pre-B cell line 697 (Sanders et al.
1987; Ohno et al. 1990). The IgM-binding by PMA-activated normal blood B or
697 pre-B cells as well as by CLL B cells could be demonstrated by flow
cytometry using highly purified IgM preparations. Several attempts over the years
to obtain protein sequence of this molecule to assist its molecular cloning met with
failures. It was not until 2009 that we were able to identify the gene encoding the
IgM binding protein. Two different cDNA libraries were constructed from CLL B
cells and the PMA-activated 697 pre-B cell line and ligated into a retroviral
expression vector before transfection into a packaging cell line and transduction
into a mouse T cell line BW5147, which lacks IgM binding. The resultant IgM-
binding transduced cells were initially present at very low frequency, but could be
enriched by magnetic and fluorescence-activated cell sorting (FACS) and were
finally subcloned by limiting dilution. Nucleotide sequence analyses of the *2 kb
insert cDNAs responsible for IgM binding in these single cell-derived subclones
defined an identical 1,173-bp open reading frame in both cDNA libraries
(Kubagawa et al. 2009).

The human FclR cDNA encodes a 390-aa type I transmembrane protein (17-aa
signal peptide, 234-aa extracellular region, 21-aa transmembrane segment, and
118-aa cytoplasmic tail) (Fig. 1a). The amino terminal half of the extracellular
region contains a single V-set Ig-like domain with homology to two other IgM-
binding receptors (the polymeric Ig receptor (pIgR) and the FcR for IgA and IgM
(Fca/lR)), but the remaining extracellular region has no identifiable domain
features, designated the ‘‘stalk’’ region in this article. The core peptide is predicted
to have an Mr of *41 kDa and an isoelectric point (pI) of *9.9. There are no N-
linked glycosylation motifs (NxS/T; single aa letter code and x indicating any aa)
in the extracellular region, consistent with results of our previous biochemical
characterization of the IgM binding protein (Sanders et al. 1987; Ohno et al. 1990).
By using both receptor-specific mAbs and IgM ligands, the surface FclR
expressed on FclR cDNA-transduced cells, PMA-activated 697 pre-B cells, CLL
B cells and blood mononuclear cells has an Mr of *60 kDa on SDS-PAGE under
both reducing and non-reducing conditions, albeit with a more intense signal under
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reducing conditions, and into a spot with a pI of *5 on two-dimensional PAGE
analysis, suggesting that one third of the Mr of the mature FclR is made up of
carbohydrate moiety containing many sialic acids (Kubagawa et al. 2009).
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Fig. 1 Schematic representation of FclR. a Homology between human and mouse FclR
proteins. Left FclR is depicted as a badminton-like shape: amino terminal Ig-like domain (black
closed oval shape), stalk region (above the top line), transmembrane (between the two lines) and
cytoplasmic tail (below the bottom line). Hatch marks indicate exon boundaries and the small
closed circle in the transmembrane region indicates a charged His residue. Numbers indicate the
aa identity in the indicated regions between human and mouse receptors. Right The sites of
additional aa or gaps in the mouse FclR are shown by the single aa letter code or dashes (-),
respectively. b Schematic representation of the FCMR gene. The exon (black closed boxes)
organization of FCMR is drawn to the scale indicated, along with intron phases (‘‘phase 0’’
indicating between codons; ‘‘phase I’’ between the first and second nucleotide of a codon; ‘‘phase
II’’ between the second and third nucleotide). Exons encoding particular regions of the receptor
are denoted as follows: the 50 untranslated (50UT), the signal peptide (SS1 and 2), the Ig-like
domain (Ig), the uncharacteristic extracellular (stalk 1 and 2), the transmembrane (TM), the
cytoplasmic (CY1–3), and the 30 untranslated (30UT) regions
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Removal of sialic acid by neuraminidase treatment of FclR+ cells slightly
enhanced IgM binding, suggesting a role of sialic acid in this interaction.

Unlike our earlier observation that the IgM-binding protein on PMA-activated
697 pre-B cells could be attached to the plasma membrane via a glycosyl-
phosphatidylinositol (GPI) linkage (Ohno et al. 1990), the structure predicted by
the FclR cDNA is of a transmembrane protein. (Notably, Tetsuya Nakamura had
previously noticed that the *60 kDa IgM-binding protein on blood T cells,
unlike PMA-activated 697 pre-B cells, was resistant to GPI-specific phospholi-
pase C (GPI-PLC) (Nakamura et al. 1993)). We thus reexamined this issue using
a highly purified GPI-PLC. After GPI-PLC treatment, the surface level of FclR
on both the BW5147 transductants and PMA-activated 697 pre-B cell line was
unchanged, whereas the expression of the GPI-anchored Thy-1 or CD73 was
reduced by *65 %, indicating that FclR is an genuine transmembrane protein,
consistent with the predicted structure encoded by the FclR cDNA (Kubagawa
et al. 2009). We also searched for a cDNA encoding a potential GPI-linked form
of FclR but failed to identify it. However, the experimental data not relying on
GPI-PLC in previous studies by Tatsuharu Ohno (Ohno et al. 1990) could not be
ignored because the results were unambiguous and thus worthy of reconsidera-
tion. Namely, when cell surface-iodinated, PMA-activated 697 pre-B cells were
incubated at 37 �C even without GPI-PLC, significant amounts of the *60 kDa
IgM-binding protein were released into the medium. Furthermore, the *60 kDa
IgM-binding protein was clearly precipitated by IgM-coupled beads from the
culture supernatants of metabolically labeled, PMA-activated 697 pre-B cells. For
direct comparison of FclR in the cell lysates and supernatants, NP-40 detergent
was also added into the supernatants to obtain equivalent conditions in SDS-
PAGE analysis of immunoprecipitated materials (Ohno et al. 1990). Thus, it is
quite conceivable that FclR is released as small vesicles or exosomes from the
plasma membrane upon certain types of activation. The physiological relevance
of FclR-containing exosomes, as well as of the soluble form of FclR
of *40 kDa described in Sect. 2.7, might be to deliver IgM/antigen complexes
to other cell types or to remotely modulate IgM-mediated immune regulation as a
decoy receptor.

2.2 Exon Organization of FCMR

FCMR is a single copy gene located on chromosome 1q32.2, adjacent to two genes
encoding other IgM-binding receptors, PIGR expressed on mucosal epithelium and
FCAMR expressed on follicular dendritic cells (FDCs), separated by *40 Mb
from the cluster of genes encoding FccRs, FceRI, and FcR-like molecules on 1q21
to 1q23 (Kubagawa et al. 2009). FCMR spans *17.6 kb and is composed of eight
exons (Fig. 1b). Unlike the FcRs and most of their relatives, which as a conserved
feature have a signal peptide encoded by two separate exons, the second of which
is either a 21-bp or 36-bp ‘‘mini-exon,’’ FCMR lacks this feature as do the PIGR
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and FCAMR genes (Kikuno et al. 2007; Davis et al. 2001) The intron to exon length
proportion of FCMR is *8, suggesting that it belongs to the class of genes with
relatively short introns, based on the fact that the average intron/exon ratio is *26
with a median of *11 (Castillo-Davis et al. 2002). Given the fact that the tran-
scription process in eukaryotes is slow (*20 nucleotide transcribed per second) and
biologically expensive (at least two ATP molecules per nucleotide), transcription of
genes with short introns is thus less costly than those with long introns, which are
particularly common in mammals (Ucker and Yamamoto 1984). Intriguingly,
highly expressed genes have substantially shorter introns than genes expressed at
low levels. In this regard, natural selection appears to favor short introns in highly
expressed genes to minimize the cost of transcription and other molecular pro-
cesses, such as splicing. Selection favoring short introns is particularly strong for
genes that have to be expressed at high levels at short notice, such as stress-induced
proteins. The FCMR, whose product is selectively expressed on adaptive immune
cells, may thus belong to the intermediate response family of genes.

Other fundamental questions regarding the evolution of FCMR include: (i) do
FclR and IgM genes coevolve during evolution? If so, Fcmr should appear in jawed,
but not jawless, vertebrates, i.e., from cartilaginous fish onwards. (ii) Is FclR
structurally conserved? (iii) Which cell types express FclR? In mammals like
humans and mice, do adaptive immune cells exclusively express FclR (see below)?
In this regard, the recent bioinformatics analysis revealed that both FclR and Fca/lR
were suggested to appear during early mammalian evolution (Akula et al. 2014).

2.3 IgM-Binding (FclR) Versus Anti-apoptotic
(FAIM3/Toso) Functions

When we analyzed our FclR cDNA sequence using the basic local alignment search
technique (BLAST) database, to our surprise, it was identical to that of the previously
identified human Fas apoptosis inhibitory molecule 3 (FAIM3), except for one
nucleotide difference at a position reported as a synonymous single nucleotide
polymorphism. FAIM3 was also identified in a similar cDNA library-based retro-
viral functional assay as a potent inhibitor of Fas/CD95-induced apoptosis and was
originally designated as Toso after a Japanese liquor enjoyed on New Year’s Day to
celebrate long life and eternal youth (Hitoshi et al. 1998). However, apoptosis in this
functional assay was induced by ligation of Fas with an agonistic IgM mAb (CH11
clone), raising the concern that the CH11 mAb bound the Fas receptor via its variable
Fabl region and also to FAIM3/Toso via its constant Fcl region.

To reconcile the conflicting FclR functions, IgM Fc binding (FclR) versus
inhibition of Fas apoptosis (FAIM3/Toso), we first examined the FclR+ BW5147
cells for their Ig-binding specificity. The FclR+ cells clearly boud IgM, but not
other Ig isotype (IgG1-4, IgA1,2, IgD, or IgE), in a dose-dependent manner and the
IgM binding was mediated by its Fc5l fragments consisting mostly of Cl3/Cl4
domains, but not by Fabl fragments, thereby confirming its IgM Fc-binding
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activity. FclR binds IgM pentamers with a strikingly high avidity of *10 nM as
determined by Scatchard plot analysis with the assumption of a 1:1 stoichiometry
of FclR to IgM ligand (Kubagawa et al. 2009). Next, to determine if the FclR has
anti-apoptotic activity, we first repeated the experiment of Hitoshi et al. (1998) and
introduced the FclR cDNA into an apoptosis-prone human T cell line Jurkat.
Ligation of Fas with the CH11 IgM mAb induced robust apoptotic cells in the
control cells, but not in the FclR+ cells (Fig. 2), consistent with the reported anti-
apoptotic activity of FAIM3/Toso. However, ligation of Fas with an agonistic
IgG3 mAb (2R2), which should have the same biological effect as the CH11 mAb,
or with the recombinant Fas ligand induced apoptosis in both FclR+ and control
cells, indicating that FAIM3/Toso is not an anti-apoptotic protein (Kubagawa et al.
2009; Honjo et al. 2012a). Since FclR+ Jurkat cells used in these experiments
bound IgM and were reactive with receptor-specific mAbs, whereas control Jurkat
cells were not, these results taken together clearly demonstrated that the FAIM3/
Toso is an authentic IgM Fc binding protein. This conclusion was recently con-
firmed by others (Vire et al. 2011; Murakami et al. 2012). Similar results with
agonistic IgM versus IgG3 anti-Fas mAb were also observed with Epstein Barr
virus-transformed B cell lines expressing both endogenous FclR and Fas on their
cell surface. Thus, the correct functional designation of this gene product should be
FclR and not FAIM3 or Toso.

2.4 Comparison of the Ig-Like Domain Among
FclR, pIgR, and Fca/lR

The molecular mechanisms responsible for FclR binding specificity will likely
require crystal structure analysis of FclR and the IgM/FclR complex. Fortunately,
the crystal structure of domain 1 (D1) of pIgR, which shares *31 % aa sequence
identity with the Ig-like domain of FclR, has been solved and suggests the Ig-like
domain of FclR shares the same overall b-sandwich fold observed for the pIgR D1
(Hamburger et al. 2004). Sequence alignments and structural analysis suggest the
FclR Ig-like domain Cys residues (C37 and C104) and (C49 and C58) pair to form
intra-chain disulfide bonds, as observed for pIgR. The Ig-like domain of FclR also
forms a salt bridge, between R75 and D98, which is conserved in other Ig domains,
including pIgR. However, notably missing from FclR is the invariant Trp, which is
a Leu (L48) in FclR. Several additional residues are conserved in pIgR and Fca/lR
sequences but not in FclR (Fig. 3, shown in purple). The greatest difference
between FclR and the other two receptor is in the CDR1 regions. The CDR1 of the
pIgR, and Fca/lR, consists of nine amino acids (PPTSVNRHT for human pIgR). In
contrast, the corresponding CDR1 region of FclR consists of only five amino acids
(PEMHV for human FclR). Furthermore, an Arg found in CDR1 of pIgR, which is
solvent exposed and thought to directly interact with polymeric IgA (Hamburger
et al. 2004), has been replaced by a noncharged aa residue (M42 in humans or L42 in
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mice) in FclR. These molecular differences are consistent with the stringent
specificity of FclR for IgM compared with the promiscuous binding of pIgR and
Fca/lR to polymeric IgA and IgM.
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Fig. 2 Role of FclR in Fas-mediated apoptosis in Jurkat T cells. Jurkat cells transduced with the
bicistronic construct containing both human FclR and GFP cDNA (FclR/GFP) or only GFP
(GFP) as a control were cultured at 37 �C for 20 h without (none) or with agonistic mouse anti-
human Fas mAb of IgMj (CH11; 10 ng/ml) or IgG3k isotype (2R2; 1 lg/ml) or with a
recombinant human Fas ligand (FasL; 10 ng/ml). Cells were stained with 7-aminoactinomycin D
(7-AAD) and allophycocyanin-labeled annexin V to identify early (annexin V+/7-AAD2) and late
(annexin V+/7-AAD+) apoptotic and dead (annexin V2/7-AAD+) cells by flow cytometric
analysis. Numbers indicate percentages of cells. Note the resistance of the FclR/GFP
transductant to Fas-mediated apoptosis by IgM mAb, but not by IgG3 mAb or FasL
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Fig. 3 Amino acid sequence alignment of IgM-binding receptors. The Ig-binding domains of
FclR, pIgR and Fca/lR of human and mouse origin are aligned to each other. The numbers
indicate the aa position from the first Met residue of human FclR (NP_005440). Amino acid
identity is indicated by dots (�) and gaps by dashes (-). Residues conserved in all three receptors
and in pIgR and Fca/lR are highlighted in yellow and purple, respectively. Accession numbers of
these sequences are: mouse FclR (NP_081252); pIgR of human (P01833) and mouse (070570);
Fca/lR of human (AAL51154) and mouse (NP_659209)
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2.5 Conserved Ser and Tyr Residues in the FclR
Cytoplasmic Tail

Unlike many paired receptors having a similar extracellular region but transmitting
opposite signal potentials, such as FccRs, NK cell receptors, and paired Ig-like
receptors (Kubagawa et al. 1997), FclR is unique in that a charged His residue
(H253) exists in the predicted transmembrane region and the cytoplasmic tail is
relatively long (118 aa) and contains conserved residues, three Tyr and five Ser,
when compared with FclR from six different species (Fig. 4; Ref. (Kubagawa
et al. 2009)). This suggests that FclR may have a dual signaling capacity: one
from a potential adaptor protein noncovalently associating with FclR via the H253

residue, similar to the association of FcR common c chain with FccRI, and the
other from its own Tyr and/or Ser residues in the cytoplasmic tail. In our previous
studies, an *40 kDa membrane protein (p40) was often co-precipitated with the
60 kDa ligand-binding chain of FclR but it remains unclear whether p40 repre-
sents another membrane protein non-covalently associated with FclR or an
unglycosylated form of FclR (Kubagawa et al. 2009). The carboxyl terminal Tyr
matches the recently described Ig tail tyrosine (ITT) motif (DYxN) in IgG and IgE
isotypes (Engels et al. 2009), but the other two do not correspond to an ITAM
(D/Ex2Yx2L/Ix6-8Yx2L/I), ITIM (I/VxYx2L/V) or switch motif (TxYx2V/I).
Ligation of FclR with preformed IgM immune complexes induced the phos-
phorylation of both Tyr and Ser residues of the receptor (Kubagawa et al. 2009).
Intriguingly, phosphorylated FclR migrated on SDS-PAGE faster than the
unphosphorylated form, unlike the findings that most proteins usually ran slower
when phosphorylated. This observation suggests either that phosphorylation may
cause a global structural change of FclR leading to increased mobility as seen in
CD45 on PMA-activated myeloid cells (Buzzi et al. 1992) or that proteolytic
cleavage may occur in the cytoplasmic tail of FclR after receptor ligation as
observed in FccRIIa on platelets (Gardiner et al. 2008). Upon IgM binding, FclR
was rapidly internalized, and this activity was mediated by the two carboxyl
terminal Tyr residues, as determined by mutation analysis (Vire et al. 2011).
Ligation of FclR on NK cells with IgM immune complexes was shown to induce
phosphorylation of PLCc and Erk1/2 (Murakami et al. 2012).

2.6 Cellular Distribution

Given the fact that IgM is the first antibody isotype to appear during phylogeny,
ontogeny, and immune responses and is the first line of defense against pathogens,
it seemed reasonable to assume that FclR would have a broad cellular distribution.
Results from earlier studies with rosette formation using IgM-coated erythrocytes
also suggested the existence of an FclR on various cell types (B, T, NK, and
phagocytic cells) in humans and rodents. Contrary to this assumption, however,
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current studies using FclR-specific, RT-PCR primers and mAbs, have shown that
FclR is predominantly expressed by adaptive immune cells, both B and T lym-
phocytes and, to a lesser extent, NK cells, but not by other hematopoietic cells (i.e.,
myeloid and erythroid cells and platelets) (Kubagawa et al. 2009). (NK cells are the
only known exception for FclR expression by nonadaptive immune cells, but are
now thought to have features of both adaptive and innate immune cells (Vivier et al.
2011)). Treatment of myeloid cells with various stimuli including PMA/ionomycin,
LPS, mitogens and several cytokines did not induce the cell surface expression of
FclR. Thus, FclR is the only FcR constitutively expressed on T cells of all cell types
(i.e., ab T, cd T, CD4 T, CD8 T, Treg) which are generally negative for the
expression of other FcRs. For B cells, FclR is the only IgM-binding receptor
expressed; Fca/lR was initially thought to be expressed by B cells (Shibuya et al.
2000), but our subsequent analysis revealed that the major cell type expressing Fca/
lR is the FDC in both humans and mice (Kikuno et al. 2007). The restriction of FclR
expression to adaptive immune cells is remarkable, because FcR for the switched Ig
isotypes (FccRs, FceRI, and FcaR) are expressed by various hematopoietic cells,
including phagocytes, and are thought to be central mediators that couple innate and
adaptive immune responses (Ravetch and Kinet 1991; Daëron 1997; Monteiro and
Van De Winkel 2003; Nimmerjahn et al. 2005). The physiological relevance of such

Fig. 4 Amino acid sequence alignment of the transmembrane and cytoplasmic regions of FclRs.
The transmembrane and cytoplasmic regions of FclR from six mammalian species are aligned to
each other. Amino acid identity is indicated by dots (�) and gaps by dashes (-). The predicted
transmembrane region is colored in pink. Conserved Tyr, Ser and Cys residues are also
highlighted in yellow, dark or light blue, and green, respectively. Light blue indicate conservation
of Ser residues in five species. The numbers indicate the aa position from the first Met residue of
human FclR. Accession numbers of these sequences are: chimpanzee (chimp; XP_001165341),
monkey (XP_001084243), dog (XP_547385), and rat (Q5M871)
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restricted cellular expression of FclR may be related to unique features of the IgM
ligand, such as its early appearance during immune responses, the pentameric
configuration of its secreted form and its potency in complement activation.

Many investigators had previously noticed the instability of IgM binding by B,
T and NK cells (Nakamura et al. 1993; Moretta et al. 1977; Pricop et al. 1993). We
also found that the cell surface FclR levels were sensitive to extracellular IgM
concentration, tissue milieu and cellular activation status (Kubagawa et al. 2009).
This vulnerability could explain why FclR was limited to an operationally defined
entity for such a long time. Short-term culture in IgM-free media enhanced the cell
surface expression of FclR on T cells and, to a lesser extent, on B and NK cells.
Remarkably, this phenomenon was much more pronounced with cells from tonsil
and spleen; cell surface FclR was not detectable on freshly isolated B and T cells
from these organs, even with receptor-specific mAbs, but was easily demonstrated
after overnight culture in IgM-free media. Many other cell surface antigens were
detectable in the freshly isolated cell preparations, ruling out an artifact of tissue
manipulation. To our knowledge, the IgM concentration in the interstitial spaces of
such intact tissues has never been determined. If this in vivo down-modulation of
FclR is solely dependent on the extracellular concentration of IgM and not on the
tissue microenvironment (e.g., resident proteases) or cellular activation status, then
the interstitial IgM concentration in secondary lymphoid tissues is perhaps much
higher than in blood (i.e., [ 2 mg/ml). In this regard, it is noteworthy that there are
many IgM-producing plasma cells in the immediate vicinity of B and T cells
within these lymphoid tissues.

2.7 FclR in CLL

The association of FclR with CLL has long been suggested based on the ability of
CLL cells to form rosettes with IgM-coated erythrocytes (Pichler and Knapp 1977;
Ferrarini et al. 1977; Burns et al. 1979; Rudders et al. 1980; Platsoucas et al. 1980).
Unfortunately, this early intriguing suggestion was not pursued thereafter because
of uncertainties with such a crude detection procedure. We thus reexamined the
expression of FclR by B and T cells in CLL patients using receptor-specific mAbs
(Kubagawa et al. 2009; Li et al. 2011). CLL B cells (CD5+/CD19+) expressed
much higher levels of cell surface FclR than B cells from healthy donors. This
enhanced expression was more evident in Ig heavy chain variable region (IGHV)-
mutated, better prognostic, CD382 or early Rai-stage CLL than IGHV-unmutated,
poor prognostic, CD38+ or advanced Rai-stage CLL. Intriguingly, surface FclR
levels also were significantly elevated in the patients’ non-CLL B cells (CD52/
CD19+) and T cells (CD5+/CD192), especially in IGHV-mutated CLL, when
compared with the corresponding populations in normal individuals. This increase
in FclR expression on T cells in CLL patients is unique, because normal T cells
activated ex vivo with anti-CD3 mAb or PMA down-modulate surface FclR,
whereas B cells activated with anti-l mAb or PMA up-regulate surface FclR
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(Kubagawa et al. 2009). According to the findings from the laboratory of Hassan
Jumaa, the CLL-derived BCRs unlike those from other B cell malignancies, ligate
each other via interactions between the Ig heavy chain CDR3 of one BCR and an
intrinsic motif (WVRQxPG; bold fonts indicating critical aa residues) in the
framework region 2 of another BCR, thereby generating antigen-independent cell-
autonomous signaling (Duhren-von et al. 2012). Thus, this antigen-independent self-
ligation of BCR on CLL cells could account for enhanced expression of cell surface
FclR as well as for the well-known phenomenon of reduced levels of cell surface
IgM and IgD on CLL cells. It remains unclear, however, why surface FclR levels
are also elevated on non-CLL B cells and T cells in IGHV-mutated CLL patients.

CLL patients also had high serum titers of FclR compared with healthy donors
as determined by sandwich ELISA using two different receptor-specific mAbs.
Serum FclR levels correlated significantly with circulating lymphocyte numbers
but not with IGHV mutation status or Rai stage. The serum FclR was resolved as
an *40 kDa protein, distinct from the cell surface FclR of *60 kDa, and was
produced by both CLL B and non-CLL B cells. Proteomic analysis revealed that
the serum FclR was a soluble form of the receptor encoded by an alternatively
spliced FclR transcript, which resulted from the direct splicing of exon 4 (stalk 2)
to exon 6 (CY1), skipping exon 5 (TM), thereby causing a reading frame shift in
exon 6 and generating a novel 70-aa hydrophilic carboxyl terminal tail (see
Fig. 1b). Collectively, these findings indicate enhanced levels of both membrane-
bound and soluble forms of FclR in CLL patients (Li et al. 2011). The molecular
basis for such enhanced soluble FclR production in CLL patients and possible
clinical effects of soluble FclR on the immune responses of CLL patients remain
to be explored. In this regard, it has recently been reported that administration of a
recombinant soluble fusion protein consisting of the extracellular portion of human
FclR and the IgG Fc portion ameliorates myelin oligodendrocyte glycoprotein-
induced experimental autoimmune encephalitis in mice (Brenner et al. 2014). In
this regard, various forms of immune-mediated peripheral neuropathy are known
to be associated with monoclonal IgM antibodies against myelin-associated gly-
coproteins, gangliosides or related glycolipids and these demyelinating neuropa-
thies are a clear example of disease association with IgM autoantibodies
(Ramchandren and Lewis 2009; Maurer et al. 2012).

2.8 Other IgM-Binding Proteins

In addition to pIgR and Fca/lR, other proteins have been shown to bind IgM.
CD22/siglec-2 is a B cell membrane-bound lectin recognizing glycan ligands
containing a2,6-linked sialic acid and was shown to interact with glycan ligands
on soluble IgM/antigen complexes, thereby negatively regulating BCR signaling
similar to FccRIIB (Adachi et al. 2012; Poe and Tedder 2012). Other IgM-binding
proteins have also been demonstrated in other cell types. For example, tripartite
motif-containing protein 21 (TRIM21)/Ro52 (see the chapter by Dr. James) binds

14 H. Kubagawa et al.



antibody-opsonized pathogens and targets them to proteasomal degradation in
phagocytes, and thus, TRIM21/Ro52 behaves as a cytosolic FcR for IgG and IgM
(McEwan et al. 2013; Randow et al. 2013). Apoptosis inhibitor of Mus (AIM) or
soluble protein a (Spa) is a member of the group B scavenger receptor cysteine-
rich superfamily and is a glycoprotein of *45 kDa secreted by Mus. In addition
to support the survival of Mus, AIM/Spa is shown to bind serum IgM but not IgG
or IgA (Tissot et al. 2002; Martinez et al. 2011; Miyazaki et al. 2011). Recent data
from analysis of Aim-deficient mice suggest that AIM plays an important role in
obesity-associated natural IgM autoantibody processes in Fca/lR-bearing FDCs
(Arai et al. 2013).

Another intriguing issue in the FcR field is the inducibility of FcRs by exposure to
the corresponding Ig ligands, although such Ig-binding molecules have defied
molecular characterization. For example, IgA-binding by murine T cells was
induced by exposure to IgA in vivo and in vitro (Hoover et al. 1981). However, this
binding must be mediated by a non-FcaR/CD89, because mice lack the human FcaR
ortholog gene (Reljic 2006; Maruoka et al. 2004). Similarly, in our previous studies
(Ohno et al. 1990), IgM induced an IgM receptor on 697 pre-B cells in a dose-
dependent manner without a plateau, and this IgM receptor expression was maximal
within 30 min after exposure, in contrast to the much longer exposure to PMA that is
required for maximal IgM binding via FclR. The up-regulation of the IgM receptor
was dependent on the continuous presence of the ligand, as the removal of IgM from
the culture resulted in a time-dependent decline of IgM-receptor expression on 697
pre-B cells. This ligand-induced IgM receptor seen on 697 pre-B cells is now known
to be mediated by a non-FclR protein as determined by FclR-specific mAbs.

3 Mouse FclR

3.1 Preparation of Mouse FclR cDNA, Its Stable
Transductants and mAbs

After cloning the human FclR cDNA as described above, its mouse ortholog with
a 1,269-bp open reading frame was identified by BLAST database analysis
(GenBank accession no. NM_026976). Surprisingly, the overall aa identity
between the 390-aa human and 422-aa mouse FclRs is not so high, *54 %. The
mouse receptor contains more additions of 1–16 aa in both the extracellular and
cytoplasmic domains, compared to gaps of one aa in the Ig-like and stalk regions
(see Fig. 1a right). The core peptide is predicted to have an Mr of *47 kDa and a
pI of *9.6. Like the human receptor, the mouse FclR has several potential
O-linked glycosylation sites but no N-linked glycosylation motifs. Fcmr is also a
single copy gene located on mouse chromosome 1 (56.89 cM), adjacent to other
IgM-binding receptor genes, Pigr and Fcamr. The exon organization of mouse and
human FclR genes is conserved.
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The mouse FclR cDNA was RT-PCR amplified from C57BL/6 lymph nodes
using a set of primers corresponding to its translation initiation and termination
codons. After verifying the correct nucleotide sequence, the FclR cDNA was
subcloned into an appropriate retroviral expression vector and transduced into
BW5147 T cells to generate two stable transductants, one expressing FclR and the
other expressing both FclR and GFP, as determined by a rat mAb specific for
mouse FclR (4B5 clone, a kind gift from Dr. Hiroshi Ohno (RIKEN, Yokohama);
Ref. (Shima et al. 2010)). FclR+ cells were then used to hyper-immunize Fcmr-
deficient C57BL/6 mice, thereby generating receptor-specific mAbs. When a
mixture of control BW5147 cells and FclR+/GFP+ cells was incubated with 10
different mAbs against mouse FclR as well as with the corresponding isotype-
matched control mAbs or an IgMj myeloma protein, the anti-FclR mAbs spe-
cifically reacted with FclR-bearing GFP+ cells but not control GFP2 cells.
Importantly, the mAb reactivity and the GFP intensity (as an indicator of FclR
transgene expression) were well correlated and, like the human FclR, mAb
reactivity was a more sensitive assay for the detection of FclR than ligand binding
using the myeloma IgM and PE-labeled goat anti-mouse Ig antibodies. A glyco-
protein of *60 kDa was specifically precipitated by anti-FclR mAbs and IgM
ligands from membrane lysates of surface biotinylated, FclR+ transductants and B
cell lines (A20 and CH31). Pre-incubation of membrane lysates of FclR+ cells
with mAbs completely removed the IgM-reactive 60 kDa protein, whereas the
reverse, using the IgM ligand, did not efficiently remove the mAb-reactive 60 kDa
protein, again suggesting that mAbs are better than IgM ligands in the detection of
FclR (Honjo et al. 2012b).

Fig. 5 IgM binding by FclR+ cells. a Difference between human and mouse FclRs. Mixture of
BW5147 cells stably expressing human (top panel) or mouse (bottom panel) FclR along with
GFP and control BW5147 cells, both of which were harvested from the mid-exponential stage of
cell growth, were first incubated without (PBS) or with an IgMj myeloma protein (TEPC183),
anti-human FclR (HM14 clone; mouse c1j isotype) or anti-mouse FclR mAb (MM3 clone;
mouse c1j), washed, and then with PE-labeled anti-mouse j mAb (187.1 clone; rat c1j). Stained
cells were analyzed by flow cytometry. Note the clear IgM binding by human FclR+ cells but not
by mouse FclR+ cells. b Restricted IgM binding activity. After plating control or mouse FclR+/
GFP+ BW5147 cells at 5 9 104 cells/ml, cells were cultured at 37 �C for the indicated time
period and were mixed together before assessment of IgM binding and FclR expression as
described above. Similar results were also obtained with B cell lines (A20 and CH31). Note the
IgM binding by mouse FclR+ cells at an early stage in culture (see arrow) compared to the
relatively unchanged surface receptor levels. c MAb-induced enhancement of IgM binding.
Mouse FclR+ cells were first incubated without (-) or with intact (IgG) or Fab fragments (Fab)
form of anti-FclR mAb of either the MM3 (c1j isotype; black column) or MM4 clones (c3j
isotype; white column), washed, and then with rat anti-mouse j (anti-j) or isotype-matched
control (cont.) mAb. After washing, cells were assessed for their IgM binding. The results are
shown as fold increase in IgM binding by treated cells relative to untreated cells (broken line)

c
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3.2 IgM Ligand Binding of Mouse FclR+ Cells

One of the surprising findings with mouse FclR is its IgM binding activity
compared to human FclR. Human FclR+ transductants exhibited IgM-ligand
binding irrespective of the growth phase in cell culture (constitutive ligand binding
activity) (Fig. 5a). By contrast, mouse FclR+ transductants bound to IgM during
the early, but not exponential, growth phase (transient ligand binding activity),
although the cell surface levels of receptors were not significantly changed during
an entire period of culture (Fig. 5a, b). This transient ligand binding was not due to
IgM ligand configuration, because essentially the same results were obtained with
various molar ratios of IgM/antigen immune complexes or to host cells used for
transduction, as the same results were obtained with FclR+ BaF3 pro-B cells. This
transient IgM binding activity was also observed with FclR-bearing B cell lines
(A20 and CH31). Treatment of these B cell lines with PMA, but not LPS,
enhanced their IgM binding, suggesting that cell activation status affects the ligand
binding activity of FclR on mouse B cells. Pre-incubation of FclR+ cells with
stalk region-specific mAbs also enhanced subsequent IgM-ligand binding and this
enhancement was induced by the intact form (divalent), but not Fab fragments
(univalent), of anti-FclR mAbs (Fig. 5c), suggesting that a dimeric or oligomeric
configuration of receptor is important, especially in mice, for IgM ligand binding
rather than allosteric regulation, e.g., ligand binding regulated by distal portion.

To explore the molecular basis for differences in constitutive versus transient
IgM-ligand binding observed in human and mouse FclRs, respectively, we made
constructs encoding a recombinant human and mouse FclR fusion protein by
swapping each functional segment: Ig-like domain, stalk region and transmem-
brane/cytoplasmic tail, and ligated them into a bicistronic retroviral expression
vector. The acronym ‘‘HHM’’ indicates the FclR consisting of the Ig-like domain
and stalk region of human origin and the remaining transmembrane/cytoplasmic
region of mouse origin, and the ‘‘MMH’’ indicates the reverse. Cells expressing
comparable levels of GFP were enriched from each transductant by FACS and
were assessed for their IgM-ligand binding activity as well as for surface FclR
levels using mAbs specific for an extracellular epitope in the Ig-like domain or
stalk region of human or mouse origin. (Curiously, we made 10 different murine
FclR-specific mAbs but had no mAbs specific for an epitope in the Ig-like domain,
whereas we made 10 different human FclR-specific mAbs, among which three
were directed to the Ig-like domain and seven to the stalk region). As shown in
Fig. 6, strong IgM binding is observed with HMM and HHM FclR-bearing cells,
but not with MMH and MHH FclR-bearing cells, suggesting the correlation of
strong IgM binding with the Ig-like domain of human origin. Small subpopulations
of MHH FclR+ cells appear to exhibit weak IgM binding compared to MMH
FclR+ cells, suggesting a minimal contribution of human stalk region to the ligand
binding activity of mouse Ig-like domain. These findings suggest that the differ-
ence in IgM-ligand binding activity between human and mouse FclRs is more
directly attributed to the ligand-binding, Ig-like domain rather than to allosteric
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regulation, i.e., indirect influence by other parts of the molecule, e.g., the stalk
region or the transmembrane/cytoplasmic tail.

Comparison of mouse and human FclR Ig-like domains reveals several aa
sequence differences, which are localized around the predicted FclR ligand-
binding site and could explain differences in IgM binding properties between
human and mouse FclRs (Fig. 3). In particular, the putative CDR sequences of
mouse FclR differ significantly from those of human FclR. For example, the
negatively charged Glu (E41) found in human FclR CDR1 is replaced by a Gln in
the mouse FclR. Likewise, murine FclR CDR2 contains a one residue deletion,
relative to the human sequence, that removes Asn (N66) from the CDR2. In
addition to the CDRs themselves, murine FclR residues 79–83 are significantly
different from the equivalent human FclR residues (TPCLD in mouse versus
KQYPR in human). Murine sequence differences include two changes in charged
residues (K79 ? T and R83 ? D), changes in the positions of Pro, (Q80 ? P and
P82 ? L) and the removal of an aromatic residue (Y81 ? C). Based on the
structure of pIgR, these residues occur in the DE loop of FclR, which is directly

IgM binding
Reactivity of mAb against FcµR:

hu. Ig-D hu. stalk mo. stalk

HHM

MMH

MHH

HMM

Fig. 6 IgM binding of human/mouse chimeric FclR proteins. BW5147 cells stably expressing
FclR composed of the Ig-like domain, the stalk region and the transmembrane/cytoplasmic tail of
either human (H) or mouse (M) origin were incubated with TEPC183 IgMj for IgM binding, HM7
mAb to the Ig-like domain of human FclR (hu. Ig-D), HM14 mAb to the stalk region of human
FclR (hu. Stalk) or MM3 mAb to the stalk region of mouse FclR (mo. Stalk), before developing
with PE-labeled goat anti-mouse Ig antibodies. Stained cells were analyzed by flow cytometry
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adjacent to CDR1. Thus, residues on this loop could stabilize an alternative murine
CDR1 structure with reduced affinity for IgM, relative to human FclR. Further
studies are required to determine whether these differences indeed contribute to the
constitutive versus transient IgM-ligand binding of human and mouse FclR.

3.3 Cellular Distribution

Immunofluorescence assessment with receptor-specific mAbs showed the
expression of mouse FclR on B cells, but not on T, Mus, granulocytes, or den-
dritic cells in spleen (Fig. 7; Ref. (Honjo et al. 2012)). The restricted expression of
FclR to B cells was also confirmed in lymph nodes, blood, peritoneal cavity, and
gut-associated lymphoid tissues. None of the CD32/DX5+ NK, CD3+/DX5+ NKT,
cd+ T, or innate lymphoid cells expressed FclR on their cell surface. FclR
expression by T cells or Mus was not induced after treatment with various stimuli
including anti-CD3 mAb (for T cells), PMA, mixed lymphocyte culture super-
natants, and LPS (for both T and Mus). FclR expression was not observed by
freshly prepared, bone marrow (BM) CD11b+ myeloid cells or by M-CSF-induced
BM Mus. Contrary to these results, however, Tak Mak’s group recently reported
the faint expression of Toso by Ly6G+ BM granulocytes and Mus (Lang et al.
2013). Strangely, the Ly6G-negative BM cell population, which should contain a
significant number of FclR-bearing B cells, was completely negative with their
Toso-specific mAb B68. Because of this important discrepancy, especially for the
interpretation of the effect of Fcmr ablation on innate immune functions (Lang
et al. 2013), we thus extensively reexamined FclR expression with a panel of
mAbs and appropriate controls and found that none of our FclR-specific mAbs
reacted specifically with the surface of myeloid cells in BM or spleen. Further-
more, FclR transcripts were clearly detectable in B-lineage cells but not in the
double sorted Ly6G+ BM granulocytes or B-cell depleted splenocytes as well as in
Rag1-deficient splenocytes, which are devoid of B and T cells but contain abun-
dant granulocytes and Mus, even after 35 cycles of amplification (Honjo et al.
2012b, 2013). These experiments provide conclusive evidence that FclR is not
expressed by myeloid or T cells.

Cell surface FclR levels in each B cell subset in spleen were also assessed with
the following hierarchy: CD21int/CD23+ follicular (FO) [ CD21hi/CD232 mar-
ginal zone (MZ) [ CD212/CD232 newly formed (NF). CD5+ B1 and CD52 B2
cells expressed comparable levels of FclR, whereas GL7+ germinal center (GC) B
cells expressed much less surface FclR than GL72 non-GC B cells, suggesting
down-modulation of FclR during the GC reaction. FclR was expressed not only
by IgM+ B cells, but also by IgG+ or IgA+ B cells, suggesting that the receptor
expression is not directly linked with IgM production and is maintained on the
switched memory B cells. In BM, FclR was undetectable on CD19+/surface (s)
IgM2 pro-B/pre-B cell compartment, was low on CD19+/sIgM+/sIgD2 immature
B cells and higher on CD19+/sIgM+/sIgD+ mature or recirculating B cells,
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indicating that FclR expression begins at the immature B cell stage of differen-
tiation. The majority of syndecan-1/CD138+ cells in spleen and lymph nodes and a
fraction of the CD138+ cells in BM expressed FclR as well as CD19 and B220,
suggesting the expression of FclR on plasmablasts but not on mature plasma cells.
Collectively, these findings clearly demonstrate that the expression of FclR in
mice is restricted to B-lineage cells, beginning at the early immature B cell stage in
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Fig. 7 Expression of mouse FclR. Nucleated cells from WT adult C57BL/6 spleen (a), blood
(b), peritoneal cavity (c), bone marrow (d) and small intestine (e) were first incubated with FccR-
blocking reagents and then with biotin-labeled, anti-FclR (MM3, c1j) or isotype-matched
control mAb, before developing with PE-streptavidin. PE-stained cells were counterstained with
fluorochrome-labeled mixture of three mAbs with specificity for CD19, CD3, CD11b, CD11c,
CD49b, Gr-1, or cd TCR as well as with fluorochrome-labeled, corresponding isotype-matched
control mAbs for background setting. Stained cells with light scatter characteristics of myeloid or
small lymphoid and large mononuclear cells were analyzed by flow cytometry. Note B cell-
restricted expression of FclR
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BM and continuing through to the plasmablast stage of differentiation, accompa-
nied by transient down-modulation of FclR during the GC reaction.

Several distinctions between mouse and human FclRs in terms of their
detection and expression are worth mentioning. (i) For the detection of FclR on
freshly prepared splenocytes or other lymphoid cells by mAbs, pre-incubation of
cells in IgM-free media was required for the human (see Sect. 2.6) but not the
mouse receptor, suggesting that the mouse FclR is more resistant to extracellular
IgM concentration or tissue milieu. This difference may also be related in part to
the fact that laboratory mice are less immunologically stimulated than humans. (ii)
Cell surface FclR levels were indistinguishable between wild type (WT) mice and
mutant mice deficient in IgM secretion (ls2/2), which are able to express surface
IgM and other Ig isotypes on B cells and to secrete all other classes of Igs except
IgM (Ehrenstein and Notley 2010). This also suggests that secreted IgM does not
significantly influence cell surface expression of the FclR in mice. (iii) However,
the ex vivo binding of exogenous IgM to FclR was more easily demonstrable on B
cells in ls2/2 mice than in WT controls, suggesting that the ligand binding site of
FclR in normal mice could be already occupied with secreted IgM in vivo. It
remains unclear if the IgM-bound FclR is internalized like the human receptor,
rapidly retrieved from early endosomes and returned to the cell surface, otherwise
the constitutive expression of FclR cannot easily be explained. Alternatively,
IgM-bound FclR in mice may remain on the cell surface without internalization,
as is the case for the interaction of IgE and the high affinity FceR on mast cells and
basophils (Ravetch and Kinet 1991). In this regard, although the mouse receptor
contains the Tyr residues that are involved in human FclR-mediated endocytosis,
the mouse FclR also has an additional 16-aa in its cytoplasmic carboxyl terminal
tail that may affect the FclR-mediated internalization process.

3.4 Fcmr-Deficient Mice

Fcmr-deficient (KO) mice have been independently generated by three laborato-
ries: K. H. Lee (Leibniz Center for Medicine and Biosciences, Borstel, Germany),
H. Ohno (RIKEN, Yokohama, Japan) and T. Mak (Ontario Cancer Institute,
Toronto, Canada) and have recently been characterized by five different groups
and there are clear differences in the reported phenotypes (Brenner et al. 2014;
Honjo et al. 2012; Lang et al. 2013; Nguyen et al. 2011; Ouchida et al. 2012; Choi
et al. 2013). While the basis for these differences requires further investigation, it
might be due in part to: (i) different strategies for gene targeting (i.e., deletion of
exon 4–7, exon 2–4 versus exon 2–8 and/or the absence versus presence of the Neo
gene in the mouse genome) as well as the extent of the 129 mouse-origin DNA
around the Fcmr gene remaining after backcrossing onto C57BL/6, (ii) investi-
gators’ concepts of the function of FclR/Toso as an IgM binding protein versus an
anti-apoptotic protein, and/or (iii) other factors (e.g., mouse ages, environments
including intestinal microbiota or reagents used). Nevertheless, the abnormal
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phenotypes commonly observed in Fcmr KO mice are: (i) alterations in B cell
subpopulations (Honjo et al. 2012; Ouchida et al. 2012), (ii) dysregulation of
humoral immune responses (Honjo et al. 2012; Ouchida et al. 2012; Choi et al.
2013), (iii) impairment of B cell proliferation upon BCR ligation in vitro (Ouchida
et al. 2012; Choi et al. 2013), and (iv) predisposition to autoantibody production
(Honjo et al. 2012; Ouchida et al. 2012; Choi et al. 2013). Notably, many
abnormalities in Fcmr KO mice mirror those observed in ls2/2 mice, suggesting
the critical role in normal B cell functions both for secreted IgM and for its
interaction with FclR (Ehrenstein and Notley 2010).

(a) Alteration of B cell subsets The ablation of Fcmr ablation had no significant
effect on overall B- and T-cell development, but led to a fourfold reduction of
MZ B cells and a twofold increase in splenic B1 B cells (Honjo et al. 2012). In
peritoneal cavity, the total numbers of B1a, B1b, and B2 cells were compa-
rable in both mutant and WT control mice. The numbers of pro-B/pre-B,
immature B and recirculating B cells as well as myeloid cells in BM were
identical in both groups of mice. In addition to the changes in cell numbers,
there were some differences in the density of certain cell surface markers
between mutant and WT mice. The CD19, sIgM, and sIgD levels on splenic B
cells were indistinguishable, but the CD21 and CD23 levels were slightly
lower in mutant mice than in WT controls. Thus, these findings suggest that
Fcmr ablation does not significantly affect overall B- and T-cell development,
but alters B cell subset numbers, accompanied by changes in the surface
density of certain markers on B cells.
Contrary to the marked reduction of MZ B cells in Fcmr KO mice, the number
of MZ B cells in ls2/2 mice is increased by *3 fold and this increase can be
normalized by passive administration of natural or polyclonal, but not mono-
clonal, IgM preparations (Baker and Ehrenstein 2002). It remains to be deter-
mined, however, whether this normalization results from differentiation of MZ
B cells into plasma cells, apoptosis of MZ B cells upon possible engagement of
multiple receptors including TLRs with natural IgM, or some other mecha-
nisms. In any case, FclR and its signals may play an important role in the
regulation of MZ B cell responses to blood-borne pathogens or self-antigens.

(b) Elevation of pre-immune serum IgM To determine whether Fcmr deficiency
affects natural antibody levels, we assessed pre-immune serum Ig isotype levels
in Fcmr KO and WT control mice of the same age (13–18 weeks) and sex by
ELISA. Both IgM and IgG3 levels were twofold higher in mutant mice than WT
controls: 857 ± 298 versus 431 ± 297 lg/ml for IgM (mean ± 1 SD) and
1,434 ± 1,292 versus 567 ± 350 lg/ml for IgG3. Notably, the increase in IgM
levels was evident irrespective of gender, whereas significant elevation of IgG3
was observed only in female mutant mice. We also found an elevation of IgM
and IgG natural autoantibodies in mutant mice as determined by immunofluo-
rescent analysis of HEp-2 cells and by ELISA using dsDNA and chromatin
autoantigens. These findings suggest that FclR deficiency leads to an elevation
of IgM and IgG natural autoantibodies (Honjo et al. 2012).
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Since serum IgM levels are not affected in mice with null mutations of other
IgM-binding receptors, pIgR or Fca/lR (Shimada et al. 1999; Honda et al.
2009), the FclR appears to be the sole receptor in this family that may be
involved in maintenance of serum IgM levels within the physiological range.
Because the half-life of injected IgM is the same in Fcmr KO and WT mice,
FclR may not be involved in IgM catabolism by liver sinusoidal endothelial
cells as previously suggested, but rather is involved in the production and/or
secretion of IgM by B and/or plasmablasts. The increase in pre-immune
natural IgM might be the consequence of exposure to self-antigens associated
with cell corpses and B1 B cells are a major source of natural IgM antibodies
(Baumgarth et al. 2005), consistent with our findings of increased splenic B1
B cells and elevated natural autoantibodies to nuclear and cytoplasmic
components in Fcmr KO mice. It will be important to determine whether
Fcmr ablation facilitates autoimmune processes in autoimmune prone mice.

(c) Dysregulation of humoral immune responses To determine the effect of FclR
deficiency on humoral immune responses, we have chosen a live non-encap-
sulated (avirulent) strain of Streptococcus pneumonia (R36A) as a physio-
logically relevant immunogen. Serum antibodies against phosphorylcholine
(PC) as a T-cell independent type 2 (TI-2) antigen and R36A-associated crude
proteins and recombinant PspA protein as T-cell dependent (TD) antigens were
assessed weekly after immunizing into Fcmr KO and WT mice i.p. with a wide
range of antigen doses (108–102 cfu). IgM and IgG3 PC-specific responses
were comparable within both groups of mice when immunized with 106 or more
bacteria. By contrast, at a suboptimal dose of bacteria (104 cfu) both IgM and
IgG3 PC-specific antibodies were markedly elevated in mutant mice. On the
other hand, IgM and IgG responses against R36A-associated proteins or PspA
protein were indistinguishable in both groups of mice. These findings suggest a
selective role of FclR on B cells and/or plasmablasts in regulation of TI-2
immune responses (Honjo et al. 2012). It is worth noting that similar selective
enhancement of TI-2 immune responses has also been observed in mice with
null mutations in components of the BCR complex such as CD19 (Sato et al.
1995), CD81 (Tsitsikov et al. 1997) and ls (Ehrenstein et al. 1998).
Several possible explanations for this selective enhancement are worth con-
sideration. (i) PC-containing polysaccharides may be poorly degraded, and
thus retained to stimulate B1 or MZ B cells, in mutant mice compared to WT
controls. (ii) Given that the TACI (transmembrane activation calcium mod-
ulator and cytophilin ligand interactor) receptor on mature B cells is essential
for TI-2 responses (von Bülow et al. 2001; Yan et al. 2001), FclR on B cells,
especially B1 and MZ B cells, might negatively regulate TACI-mediated
signaling in response to its ligands, B cell activating factors of the TNF
family (e.g., BAFF and APRIL), to maintain homeostasis of humoral immune
responses to poorly degradable TI-2 antigens. (iii) Since memory B cells
elicited by TI-2 antigens are phenotypically distinct from those elicited by
TD antigens and are regulated by antigen-specific IgM or IgG3 antibodies
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(Hosokawa 1979; Brodeur and Wortis 1980; Obukhanych and Nussenzweig
2006), FclR may preferentially affect TI-2 memory B cell responses. (iv)
Since FclR is expressed predominantly by plasmablasts and not by mature
plasma cells, FclR may negatively regulate the transition from activated B to
plasmablasts.

4 Epilogue

Although the molecular nature of the FclR has long been elusive, the recent
identification of it as an authentic IgM Fc-binding receptor in humans by functional
cloning is unequivocal. Therefore, its original designation as an inhibitor of Fas
apoptosis (Toso/FAIM3) was incorrect. In contrast to the constitutive ligand
binding activity of the human FclR, the mouse FclR exhibits transient IgM binding
activity, suggesting the existence of intriguing mechanisms that regulate murine
FclR activity. Moreover, conflicting data on the effects of Fcmr ablation have been
reported and the investigation of FclR, especially the mouse receptor, becomes
ever more complicated with many unresolved puzzles, some of which have been
introduced in this review. If this article ultimately facilitates other researchers in
their goal to resolve these puzzles and to understand the dichotomy in human and
mouse FclRs as well as to define their functions, the authors will feel grateful and
satisfied. We hope that our contribution will open new avenues of investigation.
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and mice are preferentially expressed by B cells and possess tyrosine-based
immunoregulatory function. Although the majority of these proteins repress B cell
receptor-mediated activation, there is an emerging evidence for their bifunction-
ality and capacity to counter-regulate adaptive and innate signaling pathways. In
light of these findings, the recent discovery of ligands for several of these mole-
cules has begun to reveal exciting potential for them in normal lymphocyte
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review recent advances in the FCRL field and highlight the significance of these
intriguing receptors in normal and perturbed immunobiology.

F. J. Li � W. J. Won � J. L. Easlick � E. M. Tabengwa � R. Li � M. Shakhmatov � K. Honjo �
R. S. Davis (&)
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
e-mail: rsdavis@uab.edu

E. J. Becker Jr. � P. D. Burrows � R. S. Davis
Department of Microbiology, University of Alabama at Birmingham, Birmingham,
AL, USA

R. S. Davis
Department of Biochemistry and Molecular Genetics,
University of Alabama at Birmingham, Birmingham, AL, USA

P. D. Burrows
Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA

P. D. Burrows � R. S. Davis
Comprehensive Cancer Center, University of Alabama at Birmingham,
Birmingham, AL, USA

M. Daëron and F. Nimmerjahn (eds.), Fc Receptors, Current Topics
in Microbiology and Immunology 382, DOI: 10.1007/978-3-319-07911-0_2,
� Springer International Publishing Switzerland 2014

29



Contents

1 Introduction.......................................................................................................................... 30
2 Discovery and Characteristics of FCRL Family Members................................................ 30
3 Cellular Distribution of the FCRLs .................................................................................... 32
4 Emerging FCRL Ligands .................................................................................................... 34
5 Functional and Regulatory Properties ................................................................................ 37

5.1 Roles in Adaptive B Cell Signaling .......................................................................... 37
5.2 Influence on Innate-Like B Cell Responses .............................................................. 39
5.3 Insight from In Vivo Models ..................................................................................... 41

6 FCRL Involvement with Disease........................................................................................ 42
7 Conclusions.......................................................................................................................... 45
References.................................................................................................................................. 46

1 Introduction

The identification of a family of Fc receptor-like (FCRL) molecules over 10 years
ago revealed a much richer landscape of genes related to the conventional Fc
receptors (FCR) for IgG and IgE than was previously anticipated. Although their
existence escaped attention for decades, investigation of the FCRLs is uncovering
unexpected phylogenetic and immunoregulatory complexity for this ancient
molecular cluster. Despite syntenic chromosomal linkage, similar genetic orga-
nization, and shared Ig superfamily (IgSF) membership with the classical FCRs,
their species-specificity as well as differences in their structural features and
expression patterns imply a high degree of evolutionary plasticity for the FCRLs in
adaptive immunity. As their ligands and complex tyrosine-based functions become
clear, we are realizing that parallel studies in humans, mice, and perhaps other
models with be required to better delineate their biologic and pathologic contri-
butions. In this review, we discuss exciting new developments in the FCRL field
that are beginning to unearth the biological roles of these molecules in host pro-
tection and disease at the nexus of innate and adaptive immunity.

2 Discovery and Characteristics of FCRL Family
Members

FCRL genes were discovered by several groups using different strategies and, as a
result, a uniform nomenclature to designate them had to be established (Maltais
et al. 2006). The first representative reported was a glycosylphosphatidylinositol
(GPI)-anchored rat ortholog of FCRL6, initially termed gp42, that was identified
in a search for markers of cytotoxic natural killer (NK) lymphocytes induced by
IL-2 (Imboden et al. 1989; Seaman et al. 1991). However, it was not until
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meticulous work by the Dalla-Favera group nearly 10 years later that the breadth
of this family became apparent. In an effort to define the genes joined at a
t(1;14)(q21;q32) chromosomal translocation breakpoint in the FR4 multiple
myeloma (MM) cell line, the second intron upstream of the exon encoding the
C-terminal portion of the FCRL4 split signal peptide, originally named IgSF
receptor translocation-associated gene 1 (IRTA1), was found fused to the intron
proximal to the transmembrane encoding exon of IgA1 (Hatzivassiliou et al. 2001;
Miller et al. 2002). Our bioinformatic approach of searching human genome
sequences with a 32 amino acid consensus motif derived from the extracellular
Ig-binding region of the classical FCRs yielded discovery of the FCR homolog
(FCRH) family (Davis et al. 2001). In silico strategies were also employed by the
Taranin group to identify molecules sharing features with the IgSF, FCR, and gp42
proteins (IFGP) (Guselnikov et al. 2002) and the Zhao laboratory to find novel Src
homology (SH)-2 domain-containing phosphatase anchoring proteins (SPAP) (Xu
et al. 2001). Additionally, using subtractive hybridization methodology, the B cell
crosslinked by anti-IgM activation sequence (BXMAS) genes were found by
Bothwell and colleagues (Nakayama et al. 2001). These studies collectively
revealed that the human FCRL1-5 cluster spans a *300 kb region of chromosome
1q21–22 at a locus telomeric of the high-affinity FccRI/CD64 gene (FCGR1A) and
encodes type I transmembrane glycoproteins with 3–9 extracellular Ig-like
domains and cytoplasmic tails with immunoreceptor tyrosine-based activating
(ITAM), switch (ITSM), and/or inhibitory (ITIM) motifs (Fig. 1). FCRL6, which
also codes for a transmembrane receptor with similar features, was identified at a
separate locus further telomeric and proximal to the high-affinity IgE (FCER1A)
gene (Davis et al. 2002a). Finally, two additional relatives termed FCRLA and
FCRLB were located proximal to the genes encoding the low affinity FccRs
(FCGR2-3) (Davis et al. 2002b; Facchetti et al. 2002; Mechetina et al. 2002;
Masuda et al. 2005; Wilson and Colonna 2005). Not surprisingly, the FCRL
proteins encoded by this locus share significant sequence identity with the Ig-like
domain subunits of the low affinity FccRs and CD64/FccRI. However, in contrast
to other FCR/FCRL family members that reside at the cell surface, FCRLA and
FCRLB lack transmembrane segments and are intracellular proteins. They also
possess unique C-terminal mucin-like regions rich in serine/threonine, proline, and
leucine residues.

Significant disparity in gene number as well as genetic and primary amino acid
structure is evident for the murine relatives of human FCRLs. Three FCRL genes
are located in tandem at a syntenic position of mouse chromosome 3 (Davis et al.
2002a, 2004; Guselnikov et al. 2002). Mouse Fcrl1 and Fcrl5 encode type I
transmembrane proteins with moderately different features from their human
cousins. Notably, mouse FCRL5 shares greater structural similarity to human
FCRL2 and FCRL3 than its designated name suggests. Its closer relatedness to
these receptors may also be supported by the expression patterns and ligands of
these proteins (see below). By contrast, Fcrls, which is not present in the human
genome, encodes a soluble chimeric protein with four Ig-like domains resembling
human FCRL2, and a C-terminal type-B scavenger receptor cysteine-rich domain.
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Three other FCRL relatives, Fcrl6, Fcrla, and Fcrlb are located in syntenic
locations on mouse chromosome 1. Although mouse FCRL6 shares greater
identity to rat gp42 than human FCRL6, FCRLA, and FCRLB possess the highest
interspecies orthology of the family.

3 Cellular Distribution of the FCRLs

FCRL gene expression is almost entirely restricted to lymphocytes and is prefer-
entially concentrated within the B lineage. Transcript analyses from tissues or sorted
cells by Northern blot, PCR, and in situ hybridization showed that FCRL1–5
expression increases as a function of B cell differentiation and peaks among

HUMAN 

MOUSE 

FCRL1 FCRLA FCRLB FCRL6 

FCRL1 FCRLA FCRLB FCRL6 FCRL5 

Sc

FCRLS 

Pan-B Mem B 
(Circ-MZ) 

B, T, NK Mem B 
(Tis-MZ) 

Pan-B, PC Cyt T, NK GC-B GC-B

FCRL2 FCRL3 FCRL4 

FCRL5 

Pan-B B (MZ, B1) Mac Early B  Pan-B B (GC, FO) 

Distribution:

Distribution:

Fig. 1 Protein structure and distribution of human and mouse FCRL family members. Ig-like
domains in the schematic diagram are color-coded to highlight their phylogenetic relationships.
The first domain of FCRLA appears to be a degenerate Ig-like subunit and is thus truncated in the
figure. The type-B cysteine-rich scavenger receptor domain (Sc) of mouse FCRLS and mucin-like
regions (triangles) of FCRLA and FCRLB are also specified. FCRL1-6 cytoplasmic tails possess
potential consensus ITIM (L/V/I)-X-Y-X-X-(L/V/I) (red boxes), ITAM-like (E/D)-X-X-Y-X-X-
(L/I)-X6-8-Y-X-X-(L/I) (green boxes), and ITSM (S/T)-X-Y-X-X-(V/I) (orange box) sequences.
The expression patterns among B cells include memory (Mem), circulating (Circ) and tissue-based
(Tis) marginal zone (MZ), plasma cell (PC), germinal center (GC), and follicular (FO) subsets.
FCRL3 and FCRL6 are both expressed by cytotoxic (Cyt) T and NK cells, but FCRL3 is also found
on CD4 T regulatory cells. Transcripts for FCRLS have been detected in macrophages (Mac)
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circulating cells and those localized in secondary lymphoid tissues (Davis et al.
2001; Miller et al. 2002). The development of receptor-specific monoclonal anti-
bodies (mAbs) confirmed these findings and enabled refined examination of their
individual and sometimes overlapping expression patterns (see Fig. 1 summary).
FCRL1 emerges at the pre-B cell stage and increases with B cell maturation,
peaking on naïve and memory subpopulations (Leu et al. 2005; Polson et al. 2006).
Although this general distribution implies its practical utility as a pan B cell marker,
FCRL1, as well as its other four relatives, are downregulated by activated germinal
center (GC) B cells. Evidence that the FCRL1 mouse ortholog exhibits similar broad
expression among B cells (Davis et al. 2004) (Won and Davis, unpublished results),
suggests that despite their interspecies structural variation, their regulation is
strongly conserved. By contrast, FCRL2–5 exhibit subset-specific differences in
their expression by B cells. FCRL2 and FCRL3 both peak on memory B cells in the
periphery and mark a circulating innate-like marginal zone (MZ) B cell equivalent
(Weller et al. 2004; Li et al. 2013). Their presence on this latter subset is noteworthy
given the discrete basal regulation of the mouse FCRL5 protein by innate-like MZ
and B1 B cells in mice (Won et al. 2006). These specialized B cells are distinguished
by their germline-biased Ig repertoires, potential to secrete broadly reactive natural
Abs, ability to respond to T cell-independent (TI) antigens, and involvement in
primary humoral responses (Martin and Kearney 2000; Cerutti et al. 2013). Con-
sistent with the sensitivity of these cells to innate stimulation, both human FCRL2
and FCRL3 as well as FCRL5 in mice are strongly induced by Toll-like receptor
(TLR) agonists (Li et al. 2013) (Won and Davis unpublished results). However,
FCRL3 is also individually expressed outside the B lineage by subpopulations of
cytotoxic NK and CD8+ T cells as well as a dysfunctional population of CD4+

regulatory T cells (Polson et al. 2006; Nagata et al. 2009; Swainson et al. 2010).
FCRL4 defines a subpopulation of tissue-based memory B cells with an activated
phenotype and a discriminating transcript profile. These cells occupy sites in
mucosa-associated lymphoid tissues (MALT) that correspond to an anatomical
equivalent of the MZ (Falini et al. 2003; Ehrhardt et al. 2005, 2008); hence, FCRL4
is typically scarce among circulating B cell populations in healthy donors. FCRL5
has a broader B cell distribution that extends to, and reaches the highest surface
density on, terminally differentiated plasma cells (PC) derived from the bone
marrow, tonsils, or spleen (Polson et al. 2006). By contrast, human FCRL6 is not
expressed by B cells, but is rather a distinguishing surface glycoprotein of perforin-
expressing cytotoxic NK and CD8+ T cells as well as a rare CD4+ T lineage subset
with similar lytic features (Wilson et al. 2007; Schreeder et al. 2008; Kulemzin et al.
2011). Thus, FCRL3 and FCRL6 are expressed by non-B cells and share overlap-
ping expression on lymphocytes with cytolytic potential. In mice, FCRL6 can be
induced in T cells by IL-2, but is constitutively produced by B cell precursors (Won
and Davis unpublished results). Human FCRLA is predominantly found in subsets
of GC B cells, mainly the proliferating centroblasts, but is expressed at some level
by all B cell subsets in the tonsil, with the notable exception of PCs where it is very
low/absent, (Davis et al. 2002b; Facchetti et al. 2002; Mechetina et al. 2002; Masir
et al. 2004) and in freshly isolated blood B cells (Santiago et al. 2011). In mice,
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FCRLA is broadly expressed among peripheral B cells, being highest in PCs, but is
downregulated by GC B cells (Wilson et al. 2010; Reshetnikova et al. 2012).
FCRLB has been difficult to study because its low-level transcripts are undetectable
by Northern blot and even difficult to resolve by RT-PCR; with a single round of
amplification, human FCRLB is found in placenta, kidney, and spleen (Wilson and
Colonna 2005). Based on analysis of cell lines, FCRLB appears to be restricted
among hematopoietic cells to the B lineage. To the extent that it has been examined
in primary human tissue, FCRLB is restricted to the GC; however, FCRLB+ cells are
very rare, small, nonproliferating (Ki-67-) B cells that do not co-express FCRLA
(Wilson and Colonna 2005). Thus, despite many shared features, these two proteins
appear to have mutually exclusive expression patterns among B cells. Essentially
nothing is known about mouse FCRLB, except that the gene knockout has no
obvious phenotype (Masuda et al. 2010). Outside of the B lineage, both FCRLA and
FCRLB have been reported to be expressed in human melanocytes and melanoma
cells (Chikaev et al. 2005; Inozume et al. 2005). The function of FCRLA/B in
melanocytes has not been examined, but the expression of these receptors in non-B
cells may suggest a more general role for them as ER chaperones.

4 Emerging FCRL Ligands

A major hurdle for understanding the immunologic function of these receptors
has been the enigmatic nature of their counterpart ligands. While most FCRLs
still remain orphan receptors, ligands for several family members have recently
been discovered (see summary in Table 1). There was early anecdotal evidence
that FCRL4 and FCRL5 could bind heat-aggregated IgA and IgG (Hatzivassiliou
et al. 2001), an anticipated finding given their homology to the classical FCRs.
This unpublished data was unconfirmed until Polson et al. also detected inter-
actions between FCRL5 and IgG when staining with a preparation of mixed
isotypes, but reactivity was lost when individual subclasses were used (Polson
et al. 2006). However, recent work by the Colonna group has confirmed and
extended these early findings. By generating FCRL1–6 transient transfectants for
flow cytometry-based Ig-binding studies, Wilson et al. confirmed that FCRL4 and
FCRL5, but not other FCRLs, can bind heat-aggregated IgA and IgG (Wilson
et al. 2012). FCRL5 demonstrated relatively stronger binding to IgG1 and IgG2
aggregates than to IgG4, and reactivity required the three N-terminal Ig-like
FCRL domains. The specificity of FCRL4 and FCRL5 interactions with Ig
observed in these studies was further supported by blockade studies using
receptor-specific mAbs.

The binding specificity and kinetics of FCRL5/IgG associations have now been
independently confirmed by surface plasmon resonance (SPR) analyses. Using
FCRL5 recombinant protein, the Tolnay laboratory validated interactions with IgG
and similarly localized the binding interface with a panel of mAbs reactive with
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the three membrane distal domains of FCRL5 (Franco et al. 2013). Moreover,
these studies also revealed several novel and unexpected features of the FCRL5-Ig
interaction. First, although binding affinities were estimated overall in the
micromolar (lM) range, variation was evident among monoclonal and polyclonal
IgG1–4 subclass preparations. IgG1 and IgG4 bound with a KD of *1 lM, but the
affinity of IgG3 was about a log lower at *10 lM. However, IgG2 bound over a
range of affinities from 35 nM (nanomolar) to 205 lM that varied according to the
Ig sample. Second, IgG bound FCRL5 with unusual heterogeneous two-state
kinetics that differed among the subclasses. In general, SPR sensorgrams dem-
onstrated a fast initial on rate (Ka1) followed by a slow secondary association (Ka2),
whereas dissociation at the end of the injection was initially fast (Kd1) followed by
a slower secondary phase (Kd2). Notably, these parameters differ from the 1:1
kinetics that typify classical FCR/Ig interactions (Bruhns et al. 2009) and indicate
that other properties, beyond the isotype, influence FCRL5’s recognition of IgG.
Third, in contrast to the FCRs for IgG, IgM, and IgE, which interact strictly with
the Fc region, high-affinity binding to FCRL5 required intact Ig molecules.
Enzymatic digestion and biochemical strategies to correlate structure–function
contributions of IgG1 anatomy with the two-state kinetics evident by SPR confined
a primary interaction with the Fc portion and a secondary interaction with the
F(ab’)2 region. Finally, binding affinities were also strongly dependent on Ig
glycosylation status. Sialic acid enrichment of IVIg preparations promoted higher

Table 1 Ligands identified for human and mouse FCRL family members

Receptor FCRL ligands

Human
FCRL1 N.D.
FCRL2 N.D.
FCRL3 N.D.
FCRL4 Heat-aggregated IgA—flow cytometry (Wilson et al. 2012)
FCRL5 Heat-aggregated IgG: IgG1, IgG2 [ IgG3 [ IgG4-flow cytometry (Wilson et al.

2012)
Intact IgG; IgG1, IgG4 (*1 lM) [ IgG3 (18 lM) [ IgG2 (0.03–205lM)—SPR

(Franco et al. 2013)
FCRL6 MHC class II/HLA-DR (Schreeder et al. 2010)
FCRLA Intracellular IgM and IgG (Wilson et al. 2010)

Intracellular IgM, IgG, and IgA (Santiago et al. 2011)
FCRLB N.D.
Mouse
FCRL1 N.D.
FCRL5 OMCP (Orthopox MHC class I-like protein) (Campbell et al. 2010)
FCRL6 N.D.
FCRLS N.D.
FCRLA N.D.
FCRLB N.D.

No data (N.D.); surface plasmon resonance (SPR)
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affinity kinetics, whereas deglycosylation abrogated nearly all binding activity.
These intriguing findings introduce a second immunoregulatory IgG-binding
receptor on B cells that possesses complex binding properties and potentially
higher differential affinity for some intact IgG isotypes than CD32/FccRIIB, which
has a KA of * 2.5 9 104 – 2 9 105 M-1, depending on the IgG isotype (Bruhns
et al. 2009).

Evidence for unconventional Ig binding has also been shown for the FCRLA
intracellular protein, whose two Ig domains resemble two of the three Ig-like
subunits present in the high-affinity CD64/FccRI. Early studies using chimeric
proteins artificially expressed on the cell surface failed to demonstrate interactions
with Igs (Facchetti et al. 2002); however, immunoprecipitation of endogenous
FCRLA disclosed its co-association with intracellular IgM, IgG, and IgA in cell
lines as well as in primary B cells (Wilson et al. 2010; Santiago et al. 2011). The
elevated expression of FCRLA in GC B cells, together with its ability to bind
multiple isotypes of intracellular Ig, suggests a possible role for FCRLA in Ig
retention during affinity maturation. Indeed, FCRLA has been shown to prefer-
entially associate in the ER with the secretory versus membrane form of IgM in the
GC-like human B cell line Ramos (Santiago et al. 2011). Although FCRLB has
even greater sequence identity with CD64, no evidence of Ig binding has been
established for it yet and, like the Fcrla knockout mouse (Wilson et al. 2010), the
Fcrlb knockout mouse had no discernible phenotype (Masuda et al. 2010).

Aside from Ig, MHC-related proteins have been identified as ligands for two
other FCRLs, human FCRL6, and mouse FCRL5. FCRL6 is not expressed on B
cells but on cytotoxic T cells and NK cells. To search for its ligand(s), we employed
a cell line engineered with an NFAT driven GFP reporter that was co-transduced
with a construct encoding the human FCRL6 extracellular region fused to the
ITAM-bearing mouse CD3f cytoplasmic tail (Schreeder et al. 2010). GFP induction
was triggered when cells from different sources expressing MHC class II were used
for co-culture assays. These studies defined HLA class II as an FCRL6 ligand.
Importantly, variability in FCRL6 staining of transductants expressing MHCII
heterodimers with different beta subunits indicated that FCRL6 binding affinities
may differ according to the MHCII haplotype. These studies thus introduce a novel
interaction between FCRL6-expressing cytotoxic NK and T lymphocytes that are
critical for maintaining cell-mediated immunity and antigen presenting cells or
other cells that upregulate MHCII. Another MHC-related protein was discovered as
a mouse FCRL5 ligand. Using a hidden Markov model to identify MHC-like viral
proteins that might function as immune decoys, Campbell et al. found a immu-
noevasin encoded by a cowpox virus termed orthopox MHC class I protein
(OMCP). OMCP had first been identified as a ligand for the NK cell activation
receptor NKG2D and could suppress its role in cytotoxicity (Campbell et al. 2007).
However, beyond NK cells, OMCP also bound innate-like MZ and B1 B cells. An
expression cloning approach defined mouse FCRL5 as a second OMCP receptor
and the use of blocking mAbs and receptor mutants narrowed the binding interface
to FCRL5’s three N-terminal domains (Campbell et al. 2010). Although the
functional impact of these associations is not yet clear, the tyrosine-based
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regulatory potential of these receptors, their interactions with fundamental elements
of adaptive immunity, and exploitation as targets of manipulation by pathogens
underscore their critical roles in lymphocyte biology.

5 Functional and Regulatory Properties

5.1 Roles in Adaptive B Cell Signaling

In addition to their divergent extracellular Ig-like domain configurations, the
cytoplasmic properties of FCRLs are also more complex than those of the classical
FCRs. A common theme among IgSF protein families such as the FCR, leukocyte
Ig-like receptors (LILR), and paired Ig-like receptors (PIR) is to balance cellular
responses by expressing representatives with either activating or inhibitory
capacity. These tyrosine-based signals may be transmitted directly via motifs in
their cytoplasmic tails or indirectly through noncovalent transmembrane interac-
tions with adaptor proteins harboring cytoplasmic ITAMs. In contrast to this form
of bimodal regulation using separate paired receptors, most FCRL cytoplasmic
tails possess both ITAM-like and ITIM elements. The possession of these tandem
intracellular sequences indicates that the majority of these molecules may be
capable of exerting dual-modulation in an autonomous fashion. FCRL1 appears to
be an exception to this. It has two ITAM-like sequences and serves as a
co-activation receptor. Its ligation by receptor-specific mAbs results in its tyrosine
phosphorylation (pTyr) and stimulates human B cell proliferation (Leu et al.
2005). Moreover, crosslinking FCRL1 with the B cell receptor (BCR) augments
activation as indicated by enhanced calcium flux and B cell proliferation. Our
unpublished observations of the mouse FCRL1 protein show that it has similar
activating properties (Won and Davis unpublished results). FCRL1 is also unique
among FCRL in humans and mice by virtue of a charged glutamic acid residue in
its transmembrane region. This feature indicates that FCRL1 likely co-associates
with another partner in cis, but what effector proteins are recruited to its intra-
cellular tyrosine-based sequences or its acidic transmembrane region remain under
investigation.

Work exploring the contributions of the FCRL2–5 cytoplasmic tyrosine-based
motifs on BCR-mediated activation has been carried out by several groups
(Ehrhardt et al. 2003; Haga et al. 2007; Kochi et al. 2009; Jackson et al. 2010).
Details of these mutagenesis and chimeric receptor analyses have been carefully
summarized in a recent review (Ehrhardt and Cooper 2011). Despite the binary
potential implied by their composite intracellular regions, in general BCR co-
ligation studies have identified a suppressive function for them. While their
engagement alone does not appear to impact basal B cell function, crosslinkage
with the BCR induces pTyr of FCRL2–5 and coincident docking of the SHP-1 and/
or SHP-2 SH-2 domain-containing phosphatases at consensus ITIMs (Fig. 2).
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Accordingly, these repressive components attenuate antigen receptor-mediated
calcium mobilization and MAPK activation. However, these studies have also
uncovered subtle hints of possible dual functionality. This was initially suggested
by the potential of FCRL3 to recruit Syk and ZAP-70 as well as SHP-1 and SHP-2
(Xu et al. 2002), a finding that was recently confirmed (Kochi et al. 2009).
Moreover, experiments employing B cell lines transfected with disabled FCRL2-5
ITIM mutants frequently result in enhanced calcium flux compared to BCR
engagement alone (Ehrhardt et al. 2003; Haga et al. 2007; Kochi et al. 2009;
Jackson et al. 2010).
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Fig. 2 Differential FCRL3 regulation of adaptive and innate signaling pathways. Co-ligation of
FCRL3 with the BCR induces pTyr of the receptor, facilitates the recruitment of SHP-1 and SHP-
2 that inhibit Syk and PLCc2 phosphorylation, and suppresses downstream calcium signaling and
apoptosis. Following exposure to the CpG DNA TLR9 agonist, FCRL3 expressing B cells are
globally pTyr and activate the NF-jB/p-p65 and MAPK/pERK and p-p38 pathways that drive
proliferation. pERK additionally induces expression of the BLIMP1 plasma cell commitment
factor that stimulates B cell differentiation and Ab production. By contrast, simultaneous
crosslinking of FCRL3 with receptor-specific mAbs in TLR9 activated B cells significantly
elevates whole pTyr, p-p65, pERK, and p38 to promote proliferation and survival. However,
augmented pERK activation in TLR9/FCRL3 co-stimulated B cells represses BLIMP1 induction
and abrogates plasma cell differentiation and Ab production
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To more carefully investigate their suspected dualistic function, we dissected the
tyrosine-based regulation of the mouse FCRL5 ortholog that, like human FCRL2-5,
possesses both cytoplasmic ITAM-like and ITIM consensus sequences. Initial work
in WEHI231 and primary MZ B cells showed that FCRL5 also inhibits BCR-
mediated calcium signaling (Won et al. 2006), but surprisingly had little impact on
activation in innate-like B1 B cells that also discretely express it. As in earlier work
(Ehrhardt et al. 2003), we engineered a panel of chimeric receptor mutant constructs
comprised of the extracellular and transmembrane portions of mouse FccRIIB fused
to different FCRL5 Y [ F tail variants for transduction into the FccR deficient
IgG2a class-switched A20IIA1.6 B cell line (Zhu et al. 2013). This system permits a
comparative analysis of downstream signaling pathways engendered by chimeric
receptor/BCR co-engagement by using intact anti-mouse IgG versus BCR-only
triggering using F(ab’)2 fragments (Okazaki et al. 2001). These studies indeed
disclosed inverse contributions for the FCRL5 intracellular motifs on BCR driven
calcium flux and MAPK activation. Effector recruitment experiments identified
binding of SHP-1 at the ITIM and the Lyn Src family kinase at the N-terminal
ITAM-like tyrosine residue, but the C-terminal tyrosine was dispensable. These
relationships were also confirmed in sorted primary MZ and B1 B cells. To further
validate these findings in primary cells and to investigate the apparent impotent
effects of FCRL5 on BCR activation in B1 B cells, we utilized mice deficient in Lyn
or SHP-1 activity (motheaten/Mev) (Shultz et al. 1993; Chan et al. 1997). Both of
these models have expanded B1 B cells, but they express FCRL5 at levels com-
parable to C57BL/6 wild-type mice. Using B1 B cells from these mutant strains
allowed us to directly deconstruct the impact of these opposing signaling proteins on
calcium flux and whole-cell pTyr signaling and correlate observations made in
A20IIA1.6 cells. These findings revealed a critical role for the SHP-1/Lyn signaling
circuit in balancing FCRL5 function. These binary regulatory properties were
unique compared to other well-studied inhibitory receptors including CD5, CD22,
CD32, and CD70, which failed to acquire enhancing function in SHP-1 deficient B
cells. Moreover, the relative activity of SHP-1/Lyn differed in MZ versus B1 B cells.
The dominant inhibitory function for FCRL5 directly correlated with a twofold
higher level of SHP-1 in MZ B cells, whereas the lack of FCRL5 influence in B1 B
cells was ascribed to more balanced SHP-1/Lyn activity in this subset. These data
provide robust molecular and functional evidence for novel dual-regulatory features
of FCRL molecules and uncover subset-specific differences in their activity in
innate-like B cells.

5.2 Influence on Innate-Like B Cell Responses

Although the majority of FCRL signaling work has been focused on the modu-
lation of antigen receptor activation pathways in B cells, more recent studies have
begun to explore the effects of human FCRLs on innate-driven cascades.
Extending work on FCRL4 signaling, Sohn et al. detected constitutive pTyr and
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SHP-1 and SHP-2 binding to FCRL4 in transfected unstimulated Ramos B cells
(Sohn et al. 2011). BCR crosslinking did not appear to influence these relation-
ships, but all three tyrosine residues were required for proximal inhibition of Syk
activation and the downstream PLCc2, Vav, and calcium signaling pathways by
FCRL4. Consequently, FCRL4 also halted CD69 induction following BCR
co-ligation, but its expression alone independently impaired immune synapse
formation as determined by time-lapse imaging using TIRF microscopy. However,
in addition to adaptive stimulation, the Pierce group also examined the impact of
FCRL4 on TLR responses. Remarkably, exposure of FCRL4 expressing B cells to
the TLR9 agonist CpG prompted co-localization of these receptors in endosomes
and the upregulation of CD23. These results strongly indicate a differential
regulatory role for FCRL4 in adaptive versus innate signaling.

Additional evidence for these proteins promoting TLR-mediated signaling has
also been observed for FCRL3. We recently examined the impact of this disease-
associated receptor (see below) on TLR9-mediated B cell responses. FCRL3
engagement with receptor-specific mAbs augmented TLR9 triggered blood B cell
proliferation, survival, and induction of the CD25, CD86, and HLA-DR activation
markers (Li et al. 2013) (see Fig. 2). Remarkably though, FCRL3 had inverse
effects on Ig production. To examine its role in TI PC generation, we adapted a
cord blood differentiation model (Capolunghi et al. 2008). Culturing transitional B
cells with CpG 2006 and FCRL3 mAbs promoted B cell proliferation, but halted
the differentiation of Ab secreting cells. Flow-based analyses revealed that FCRL3
enhances CpG-mediated NF-jB p65 and MAPK pERK and p38 activation.
Because ERK signaling can modulate the expression and regulation of the PC
commitment factor BLIMP1 (Rui et al. 2003; Yasuda et al. 2011), we considered
this pathway as a mechanistic link for these surprising observations. Exposure of
the FCRL3-expressing SUDHL5 B cell line to CpG indeed upregulated BLIMP1
expression, but coincident FCRL3 ligation substantially blocked induction of this
repressor protein. Consequently, ERK-dependent BLIMP1 suppression transmitted
by FCRL3 could be restored by treatment with a MEK inhibitor. These data
provide additional support for counter-regulatory functions of FCRL proteins in
adaptive and innate B cell responses. Furthermore, the finding that FCRL3 mod-
ulates the differentiation of Ab secreting cells may be important in its implicated
role in the pathogenesis of autoimmune (AI) disorders discussed below.

Stimulatory properties for FCRL5 in the interplay of adaptive and innate
pathways have also been found by the Tolnay group. Their earlier studies had
shown that the viral Notch analog Epstein-Barr virus nuclear antigen 2 (EBNA2)
could induce FCRL5 expression via interactions with the CBF1/RBP-Jj DNA-
binding protein in its promoter (Mohan et al. 2006). In a follow-up analysis they
investigated FCRL5 modulation following exposure to different stimuli and
explored the consequences of its ligation on B cell responses. Although naïve B
cells isolated from blood modestly upregulated protein levels when exposed to
CpG, FCRL5 was markedly induced by anti-Ig co-stimulation (Dement-Brown
et al. 2012). By contrast, the addition of T cell-dependent (TD) stimuli in the form
of anti-CD40 and IL-2 had little effect. However, this combination of stimuli along
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with mAb-directed co-ligation of FCRL5 and the BCR enhanced B cell prolifer-
ation during TLR9 stimulation. This approach yielded other positive effects
including the generation of IgG and IgA isotype switched cells as well as unusual
cells that co-expressed several Ig isotypes. This phenomenon has been previously
seen in patients with hairy cell leukemia (HCL) (Forconi et al. 2001). It is
important to note that, despite similar effects on proliferation, these results con-
cerning a positive role for FCRL5 in driving isotype switched cells may conflict
with our recent findings that FCRL3 inhibits PC generation and Ig secretion. Given
the alternate experimental strategies, including the use of T cell help that can
relieve ERK-mediated BLIMP1 repression (Rui et al. 2006), follow-up studies will
be required to carefully dissect the nature of these divergent outcomes.

5.3 Insight from In Vivo Models

Finally, little is known about the in vivo roles of these molecules as only a few
genetically deficient mice have been generated. To this point, two transgenic
models have now been published describing mice with targeted disruption of Fcrla
and Fcrlb. The Colonna group developed Fcrla-/- mice by cre-mediated ablation
of the third and fourth exons that encode the two Ig-like domains in 129 ES cells
(Wilson et al. 2010). Lymphocyte development was grossly normal including CD4
and CD8 T cell populations in the thymus and B cells in the bone marrow and
spleen. Lymphoid architecture of splenic GCs that formed following challenge
with SRBCs was also unremarkable in these mice and the absence of FCRLA
protein was confirmed with rabbit polyclonal antisera. However, the availability of
pAbs did clarify that intracellular FCRLA expression is restricted to and evident
throughout B cell development in wild-type mice. Although primary humoral
responses to SRBCs were unperturbed, secondary challenge indicated significantly
higher anti-SRBC IgG1 levels in Fcrla-/- animals. However, immunization with
another TD antigen NP-KLH did not show alterations in primary or secondary
NP-specific IgM or IgG responses as a function of the dose or memory recall time
out to 6 months. TI type II responses were also intact. Furthermore, despite the
ability of human FCRLA to bind intracellular Ig, the quality and functional activity
of Ig produced by Fcrla-/- mice was also normal. Aside from potentially
disadvantageous strain-specific regulatory differences (see below), alternative
immune challenge strategies or crosses with disease-susceptible models may be
required to unveil the subtle phenotype of these mice. However, it is also possible
that FCRLA possesses redundant properties to other Ig-binding chaperones.
Because FCRLB has similar features it could certainly serve as a candidate,
although the evidence to date suggests that these two molecules are not
co-expressed, at least in humans (Wilson and Colonna 2005).

The Fcrlb gene was targeted by the Burrows group with a construct designed to
replace *1.5 kb of its 50 upstream sequence including the promoter as well as
exons 1, 2, and the 50 end of exon 3 with neomycin cassette in 129 ES cells
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(Masuda et al. 2010). Despite the lack of FCRLB-specific Abs, a PCR-based
analysis validated loss of Fcrlb expression at the transcript level. Mice were viable
and backcrossed with C57BL/6. Similar to Fcrla deficiency, there were no global
differences in lymphocyte development either from bone marrow and spleen-
derived B lineage cells or CD4 and CD8 T cell populations from the thymus or
spleen. Although in vitro proliferation studies were unrevealing, TD challenge
with NP-CGG indicated enhanced NP-specific IgG1 Ab responses that were more
pronounced for those with high-affinity. Moreover, ELISPOT assays showed
increased numbers of Ab secreting cells in the spleen and bone marrow.
Unfortunately, these results were confounded by a 13 bp deletion in the Fcgr2b
promoter common to AI mouse strains including 129. This promoter variation
disturbs two putative transcription factor binding sites for AP4 and an S box
resulting in reduced FccRIIB expression and inhibitory function (Pritchard et al.
2000). Thus, strains harboring this anomaly have relatively more exuberant TD Ab
responses and a greater propensity to develop auto-Abs than mice with intact
regulatory regions that are governed by higher FccRIIB expression and consequent
SHIP1 repression (Xiu et al. 2002). Unfortunately, PCR amplification clarified that
Fcrlb deficient mice indeed possess this deletion making the independent impact
of FCRLB difficult to discern. Furthermore, the use of 129 background ES cells for
the generation of Fcrla knockout mice may also provide rationale for the enhanced
SRBC production seen in these mice (Wilson et al. 2010). Investigators will need
to be attentive to this issue and craft suitable strategies for accurately assessing
humoral responses in FCRL-related transgenic mice.

6 FCRL Involvement with Disease

Given their preferential expression by B cells, it comes as no surprise that since
their initial discovery, associations for FCRL family members with immune-
mediated disorders have been steadily growing. Not only are they candidate bio-
markers for clinical diagnosis and prognosis as well as logical therapeutic targets,
but roles for them in disease pathogenesis are also becoming clear. As nearly 75 %
of leukemias and lymphomas are B cell-derived, multiple groups have detected
their expression and dysregulation in various lymphoproliferative disorders. In
fact, their involvement in B cell malignancies first led to the Dalla-Favera labo-
ratory’s unearthing of FCRL4/IRTA1 as a partner joined at a t(1;14)(q21;32)
translocation breakpoint in a MM cell line (Hatzivassiliou et al. 2001; Miller et al.
2002). Northern blot analyses of Burkitt lymphoma (BL) cell lines harboring 1q21
abnormalities revealed upregulation of FCRL5/IRTA2 in the majority of samples.
Early searches of FCRL expressed sequence tags (ESTs) in the Lymphochip
microarray database also showed differential upregulation for the FCRLs among
diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic
lymphocytic leukemia (CLL) samples (Alizadeh et al. 2000). The availability of
mAbs confirmed FCRL1–5 protein surface expression on DLBCL, FL, CLL, BL,
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HCL, and mantle cell lymphoma (MCL) samples (Ise et al. 2005; Polson et al.
2006; Du et al. 2008). However, studies by Ise et al. also detected soluble FCRL5
in the sera of patients with various B lineage malignancies (Ise et al. 2007). Given
the lack of diagnostic markers for MZ lymphomas (MZL) and evidence that
FCRL4 distinguishes a subset of B cells positioned near the epithelium in MALT
corresponding to the MZ, Falini et al. recently investigated its use as a novel
histopathologic marker. FCRL4 was identified in the majority of nodal (154/210
73 %) and extranodal (307/329 93 %) MZLs, but was not present in the subtype
derived from the spleen (Falini et al. 2012).

Apart from their applicability in diagnosis, the use of FCRLs as prognostic
biomarkers has also been under investigation. CLL, the most common leukemia in
Western countries, can be segregated into two subtypes that differ in clinical
aggressiveness according to the degree of somatic hypermutation in the heavy chain
variable region (IGHV) gene expressed by the clonally expanded B cells (Damle
et al. 1999; Hamblin et al. 1999). To assess whether FCRL1–5 might be useful
surrogates for predicting IGHV mutation status, we analyzed 107 CLL samples,
including 55 mutated-indolent and 52 unmutated-aggressive patients, with a panel
of FCRL-specific reagents by flow cytometry (Li et al. 2008). While FCRL1–3 and
FCRL5 were all significantly upregulated by the mutated-indolent subtype, FCRL4
was not detected. Remarkably, FCRL2 emerged as 94 % concordant with IGHV
status and was superior to two established markers of aggression, CD38 and ZAP-70
(Rassenti et al. 2008), in predicting this hallmark feature, and by multivariate
analysis was more robust at forecasting first time to progression. Current validation
of these initial findings using optimized reagents and expanded samples shows
growing promise for FCRL2 as a novel biomarker in CLL.

Strategies to immunotherapeutically target these molecules have also been
explored. Because FCRL1 is broadly expressed by B cells it may be a useful
candidate. Work by Du et al., who have retained an interest in immunotoxin
treatment approaches, found FCRL1 on the majority of CLL, FL, HCL, and MCL
samples analyzed and explored the cytotoxicity of anti-FCRL1 toxin conjugated
mAbs (Du et al. 2008). Additionally, since FCRL5 is present on PCs, it is being
pursued as a tool for MM immunotherapy. An analysis of bone marrow aspirates
from MM, monoclonal gammopathy of unknown significance (MGUS), and
healthy donors confirmed FCRL5 expression on PCs and the development of
antibody–drug conjugates has shown promising preclinical efficacy for targeting it
in xenograft models (Elkins et al. 2012).

Several FCRLs have also drawn interest by virtue of their upregulation among
lymphocyte populations in individuals with infectious diseases. Perhaps the best
investigated representative in this context is the appearance of FCRL4+ cells in the
circulation of patients afflicted with chronic viral diseases including HIV and
Hepatitis C. However, a similar innate-like B cell population has also been found
in patients with combined variable immunodeficiency (CVID) (Rakhmanov et al.
2009). Moir et al. identified a subset of CD19+CD20+CD27-CD21-CD10- B
cells in the blood of viremic HIV patients that surprisingly co-expressed FCRL4
(Moir et al. 2008). This subpopulation exhibited features of ‘‘exhaustion’’ akin to T
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cells in persistent LCMV infections (Zajac et al. 1998; Wherry et al. 2007), which
are characterized by the upregulation of inhibitory receptors as well as diminished
proliferative potential and replication history. Despite limited Ig diversity, this
distinct tissue-like FCRL4+ subset possessed an Ab repertoire enriched for HIV-
specific antigens, implying a key role for it in effector humoral responses. To
clarify its contribution to their arrested function, a siRNA approach found that
knockdown of FCRL4 and several other inhibitory receptors could restore BCR-
mediated proliferation, HIV-specific Ab responses, as well as cytokine and che-
mokine production (Kardava et al. 2011). These findings suggested that lingering
tonic signaling by the HIV pathogen might lead to reciprocal dampening mech-
anisms in these B cells. However, exciting new findings by the Fauci laboratory
have provided a novel perspective on the ability of HIV to directly handicap B cell
responsiveness. Their earlier work had demonstrated that the gp120 HIV envelope
protein can directly bind the a4b7 integrin on NK and T cells (Arthos et al. 2008).
In a recent study, gp120 was similarly found to interact with this ligand on B cells
and in turn inhibit proliferation and cell cycle progression (Jelicic et al. 2013).
Microarray profiling disclosed the upregulation of TGFb1 together with related
elements of this cascade and FCRL4. Because TGFb has repressive effects on B
cell function (Kehrl et al. 1991), the investigators established that gp120/a4b7
integrin binding initiated an axis of suppression by triggering TGFb secretion and
the autocrine induction of FCRL4, as well as down-modulation of the CD80 co-
stimulatory protein. These results have important implications for understanding
the humoral dysfunction in HIV patients and could be informative for clarifying
why a similar FCRL4+ population materializes in the circulation of individuals
infected with malaria and Hepatitis C (Charles et al. 2008; Weiss et al. 2009). How
FCRL4 contributes to B cell impairment in these chronic infections and in what
way its newfound IgA ligand is integrated will require further study (Wilson et al.
2012).

With regard to tolerance and AI, disease risk associations for single nucleotide
polymorphisms (SNP) located in the intergenic noncoding and coding regions of
FCRL genes have been mounting in a variety of disorders and syndromes. Pio-
neering work by Kochi et al. surveyed a *2 Mb region around the FCRL1-5 locus
and identified 41 SNPs in the gene cluster including one that had a peak association
among 658 Japanese controls and 830 individuals afflicted with rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), Grave’s disease, and other types of AI
(Kochi et al. 2005). The principal variant (rs7528684; P = 8.5 9 10-7;
OR = 2.15; 95 % confidence interval = 1.58-2.93) was located in a potential NF-
jB consensus binding motif within the FCRL3 promoter region, 169 bp upstream of
the transcription initiation site. Intriguingly, the C susceptibility allele of this -

169T ? C SNP generated a more orthodox NF-jB binding sequence, fostered
higher promoter activity via p50, p65, and c-Rel binding, and exerted a dose-
dependent regulatory effect on FCRL3 transcript and protein expression as well as
on auto-Ab production (Kochi et al. 2005; Gibson et al. 2009). This report has
stimulated over 80 publications that have focused on this functional SNP as well as
others among the FCRLs in a multitude of AI disorders. A recent genome-wide
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association study of Grave’s disease in a Chinese-Han population has verified the
FCRL3 association and refined the analysis of FCRL SNPs in this 1q21 region (Zhao
et al. 2013). Accordingly, there is now also evidence that FCRL3 is modulated by
this SNP in T cells and is associated with clinical progression in RA (Maehlen et al.
2011; Bajpai et al. 2012). Confirmation that the -169 SNP confers risk or protection
in different AI conditions has led to the candidature of FCRL3 as a general AI
susceptibility gene (Chistiakov and Chistiakov 2007). However, there have also
been conflicting results for many analyses that find no link with AI disease sus-
ceptibility. These incompatible outcomes may reflect differences in racial and ethnic
backgrounds. An updated meta-analysis was recently performed to assess the
growing number of FCRL3 case-control association studies and highlight its het-
erogeneous pathogenic potential in AI (Yang et al. 2013). These intriguing genetic
relationships, along with our growing understanding of FCRL3’s complex influence
on lymphocyte biology in innate versus adaptive responses, have the potential to
provide exciting new insight into AI disease pathogenesis.

7 Conclusions

Substantial recent progress has been made in the FCRL field and these discoveries
are beginning to unravel fundamental roles for this extended family in the immune
system. The recent identification of ligands for several FCRLs presents a new
gateway for realizing their biology, but further work will be required to understand
the functional consequences of these interactions. How their complex dual-regu-
lation is integrated during these encounters and how they are impacted by innate
and adaptive responses will also need to be explored. Another major hurdle has
been their evident interspecies differences and a lack of fruitful genetic deficiency
models for study in mice. However, several trends are beginning to take shape. For
example, the preferential expression of human FCRL2–FCRL3 as well as mouse
FCRL5 by innate-like MZ B cells and their capacity to promote TI responses
suggests that the regulation of these genes is to a certain extent conserved. Thus,
investigating these relatives in parallel will be important. Furthermore, FCRL4’s
unique distribution among innate-like tissue-based B cells and ability to enhance
TI signaling indicates that several FCRLs serve as facilitators of innate stimula-
tion. Determining how their tyrosine-based signaling features modulate TLR
versus BCR activation is another area ripe for investigation. Finally, their sig-
nificance as pathologic, diagnostic, prognostic, and therapeutic agents is showing
great promise in a large number of lymphoid malignancies and immune-mediated
disorders. In conclusion, recent advances have launched a new phase of explo-
ration for FCRL family members in lymphocyte biology. These intriguing
developments portend key roles for these receptor-genes in normal and perturbed
immunity and we expect this momentum will accelerate our basic and therapeutic
understanding of the FCRLs in the coming years.
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Intracellular Antibody Immunity
and the Cytosolic Fc Receptor TRIM21

Leo C. James

Abstract Until recently, it was thought that antibody effector mechanisms were
mediated purely by Fc receptors expressed on professional cells, following capture
of immune complexes in the extracellular space. Recently a new Fc receptor,
TRIM21, was discovered that is expressed by cells of all histogenetic lineages and
which mediates immune responses intracellularly. This new receptor possesses
many unique structural and functional properties. TRIM21 binds both IgG and
IgM, interacts primarily with the CH3 rather than CH2 domain and engages two
heavy chains simultaneously. This latter property allows TRIM21 to bind anti-
bodies with a higher affinity than any other Fc receptor. TRIM21 is cytosolic, has
both effector and signalling functions and is exquisitely conserved in mammals.
The discovery of this missing part of humoral immunity has important implica-
tions for where and how antibodies work.
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1 Introduction

The detection of pathogens, in particular viruses, represents perhaps the most sig-
nificant challenge facing the immune system. This is because viruses are highly
adaptive and germline encoded antivirals can be rapidly out-evolved. Antibodies are
the only soluble immune molecule whose evolution can hope to keep pace with
viruses and recognize an almost limitless diversity of antigen structure. Antibodies
are secreted into the extracellular spaces, in fluid compartments and on mucosal
surfaces. There they can intercept pathogens as they invade the body. However,
viruses are obligate intracellular pathogens meaning that upon infection, they dis-
appear into their target cells. The result is that the body’s premier targeting mole-
cules seem excluded from the viruses’ most significant habitat.

As it turns out, this is actually not the case. When non-enveloped viruses and
intracellular bacteria infect cells they carry antibodies with them (Mallery et al.
2010). These antibodies are attached to the pathogen surface and remain attached
during the entry process. Once inside the cytosol, antibody-coated pathogens are
rapidly detected by a cytosolic Fc receptor called TRIM21 (James et al. 2007).
TRIM21 is expressed in most tissues, although as it is regulated by interferon the
‘resting’ protein levels can be low (Rhodes et al. 2002). Detection by TRIM21
initiates both an effector and sensing response. TRIM21 is an E3 ubiquitin ligase
and TRIM21-dependent ubiquitination targets incoming viral particles for degra-
dation in a system involving both the AAA ATPase VCP and the proteasome
(Mallery et al. 2010; Hauler et al. 2012). In addition to this degradation pathway,
TRIM21 also catalyses the formation of K63-ubiquitin chains and activates NFjB,
AP-1 and IRF3/5/7 (McEwan et al. 2013). These processes are extremely rapid.
For example, within 1–2 h of infecting a cell, a non-enveloped virus like adeno-
virus has been pulled apart and degraded by the proteasome before it has a chance
to begin replicating (Mallery et al. 2010).

2 Origins of TRIM21

Before its characterisation as an Fc receptor, TRIM21 was studied in the context of
autoimmunity under the name Ro52. Ro52 is an autoantigen in autoimmune dis-
eases rheumatoid arthritis, SLE and Sjorgen’s syndrome (Moutsopoulos et al.
1985; Ben-Chetrit et al. 1988, 1990). Anti-Ro52 autoantibodies are diagnostic both
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of disease (McCauliffe et al. 1997) and disease progression (Frank et al. 1993) and
a pathologic role for Ro52:autoantibody immune complex has been suggested
(Salomonsson et al. 2005). In 1999, a yeast-two-hybrid screen with Ro52 identified
IgG heavy chain as a hit (Yang et al. 1999). The authors noted that it was unlikely
that ‘‘the two proteins should exist in the same subcellular compartment’’ and in
follow up work proposed that Ro52:IgG interaction may occur on the surface of
apoptosed cells (Yang et al. 2000). Later work has reported interaction between
TRIM21 and a number of different ligands, including Skp2 (Sabile et al. 2006),
DAXX (Tanaka and Kamitani 2010), FADD (Young et al. 2011), DDX41 (Zhang
et al. 2013), pro-inflammatory regulators IRF3 (Higgs et al. 2008), IRF5 (Espinosa
et al. 2009) and anti-inflammatory IRF8 (Kong et al. 2007). These proteins are
functionally unrelated or have opposing affects but have in common that they were
all identified as TRIM21 ligands by immunoprecipitation (IP). In an IP experiment,
antibodies are used to pull-down a particular target and anything that co-IPs is
considered a potential ligand. TRIM21, as an Fc receptor, binds to antibody
directly and IPs regardless of antibody specificity. Thus, despite the early identi-
fication of heavy chain as a potential TRIM21 ligand, the focus of TRIM21
research in the context of autoimmunity has largely shifted onto the IRFs. In this
context, TRIM21 has been reported as both a positive (Kong et al. 2007; Yang
et al. 2009) and negative (Wada et al. 2009) regulator of interferon signalling.

3 TRIM21 Structure and Antibody Binding Mechanism

3.1 TRIM21 is a Multi-Domain Protein

TRIM21 is so-called because it is a member of the tripartite motif containing
proteins. This family comprises some 100 members in humans and is functionally
divergent but related in domain topology. All TRIMs members contain a RING, B
Box and coiled-coil domain, the triumvirate that gives the family its name. The
RING domain is a zinc finger found in many diverse proteins and hypothesised to
function as an E3 ubiquitin ligase. TRIMs 5, 18, 21, 25, 32 and 35 have been
shown to mediate ubiquitination (Trockenbacher et al. 2001; Urano et al. 2002; Xu
et al. 2003; Horn et al. 2004; Kudryashova et al. 2005; Vichi et al. 2005) and this is
hypothesised to be a common feature of all TRIM proteins. The B Box domain is a
CHC3H2 zinc finger exclusive to TRIMs, which contain up to two in series. Their
function is yet to be determined, however yeast-two-hybrid studies have identified
interaction between the microtubule-associated protein phosphatase 2A and the B
Box domains of TRIM1 and TRIM18 (Short and Cox 2006). The B Box domain is
also proposed to mediate higher-order assembly of TRIM5, as part of its mecha-
nism of HIV-1 restriction (Diaz-Griffero et al. 2009). Whatever its precise role,
studies of TRIM5 restriction clearly show that the B Box is essential for function.
TRIM proteins are also all believed to contain a coiled-coil domain, which have
recently been re-classified as BBC domains, or ‘coiled-coil regions C-terminal to
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B Box domains’ (Letunic et al. 2006). Coiled-coil domains are known to mediate
oligomerisation through a-helical intertwining and have been shown to facilitate
TRIM dimerisation. The coiled-coil domain is sufficient to facilitate TRIM21 to
dimerise and allows bivalent interaction with IgG.

In addition to these domains, TRIM21, as in around a third of TRIM proteins, has
a C-terminal PRYSPRY domain. It was characterization of this PRYSPRY domain
that first revealed TRIM21 as a new type of Fc receptor. The crystal structure of
TRIM21 PRYPSRY in complex with IgG Fc showed that TRIM21 engages antibody
in a mechanism unlike other antibody receptors. TRIM21 binds IgG symmetrically,
as opposed to the asymmetrical recognition observed with Fcc receptors. In the
TRIM21 crystal structure, two copies of the PRYSPRY domain are bound per Fc
(Fig. 1). Each PRYSPRY makes contacts with both CH2 and CH3 domains
although the largest interface is with CH3 (Fig. 2a). TRIM21 shares Fc epitopes
with the neonatal Fc receptor, FcRn. Like FcRn, TRIM21 interacts with the
‘HNHY’ motif found in a short loop between the final two b-strands in CH3

Fc

CH2 CH2

CH3            CH3

TRIM21
PRYSPRY

TRIM21
PRYSPRY

Fig. 1 Crystal structure of human TRIM21 PRYSPRY bound to human IgG Fc. A transparent
molecular surface with secondary structure visible underneath. IgG Fc is shown in grey with two
copies of TRIM21 shown in orange (‘PRY’ element) and wheat (‘SPRY’ element). The
interaction surface on TRIM21 is shown in yellow and on Fc in blue. The N-linked glycans are
shown in red
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(Fig. 2b). Unlike FcRn, TRIM21 binding is not pH-dependent, suggesting that the
protonation state of histidines H433 and H435 is not critical. TRIM21 is a dimeric
molecule and when it binds IgG it engages both heavy chains simultaneously,
resulting in a 1:1 stoichiometry, unlike the proposed 2:1 stoichiometry for FcRn.
The implications of this binding mechanism are that, in contrast to Fcc receptors,
TRIM21 may not distinguish between free and bound antibodies. The stable 1:1
complex that TRIM21 forms with IgG suggests that cross-linking does not take
place. The simultaneous binding of both heavy chains increases the affinity of
TRIM21 for antibody through avidity. The affinity of a single PRYPSRY monomer
for IgG Fc is *40 nM (depending on salt concentration), whereas the affinity of
dimeric TRIM21 is *0.5 nM. Thus TRIM21 is the highest affinity Fc receptor in
humans. The functional consequences of these binding characteristics help to dis-
tinguish TRIM21 from other Fc receptors. TRIM21 has not evolved to mediate a
trafficking/transporting function like FcRn (binding is neither transitory nor pH-
sensitive) nor does it obviously discriminate between antibody bound states like
FccR (it is not cross-linked or held within a membrane and thus susceptible to
clustering). Rather, TRIM21 can detect antibody that is present even at low con-
centrations and, once captured, antibody will remain bound.

3.2 The PRYSPRY Domain as an Antibody-Binding Protein

PRYSPRY domains are predicted in 11 families in the human genome but despite
this prevalence their function is poorly defined (Rhodes et al. 2005). Within the
TRIM family, the PRYSPRY domain is believed to function as a protein targeting
module: deletion of the PRYSPRY domain abolishes TRIM function whereas
TRIM dysfunction is largely mediated by mutations in the PRYSPRY exon (James
et al. 2007). The PRYSPRY domain is a member of the SPRY superfamily, which

H435

N434

H433

D355 W381

W383

D452

(b)

PRY

SPRY CH2

C
(a)

H3

Fig. 2 Details of TRIM21:Fc interaction. a View into the TRIM21 PRYSPRY binding site.
TRIM21 is shown as a molecular surface, coloured as in Fig. 1. IgG Fc is shown in a secondary
structure representation in green, with TRIM21 contacting areas shown in blue. b The HNHY
motif of IgG Fc (green) binds into a hydrophobic pocket in TRIM21 PRYSPRY (yellow)
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has been divided into two distinct groups—SPRY and B30.2. B30.2 proteins have
a longer N-terminal sequence, which is defined by SMART, NCBI and PFAM as a
separate domain called PRY, hence SPRY members that have a PRY can be
referred to as PRYSPRY. PRYSPRY proteins have a b-sandwich topology made
up of two twisted b-sheets, one of which forms a concaved surface surrounded by
six flexible loops (VL 1–6) (Fig. 3). PRYSPRY proteins have an overall sequence

Fig. 3 The PRYSPRY domain. a Secondary structure representation of the TRIM21 PRYSPRY
domain, indicating variable loops (VLs). b Flattened topology diagram. c Conserved structural
features that define the PRYSPRY fold
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homology of *30 % and share three well-conserved motifs LDP, HYWEV and
VFLDYE. As can be seen in the TRIM21 PRYSPRY structure, these last two
motifs correspond to neighbouring b-strands that form part of lower b-sheet B
(Fig. 3c). In addition to these motifs, there are conserved patches of two or three
residues spread throughout the sequence that broadly correspond to other b-
strands. SPRY proteins are a more diverse group, with an average sequence
identity of \15 % both with respect to each other and to PRYSPRY proteins.
SPRY proteins are predicted to lack the N-terminal PRY domain and as a con-
sequence do not have the LDP motif. Homology between SPRY and PRYSPRY is
limited to the remaining two motifs, HYWEV and VFLDYE, although even these
are significantly more degenerate in SPRY homologs.

As a result of the low sequence homology across the SPRY superfamily, it was
suggested that the PRY and SPRY elements form distinct domains with novel
topologies. Several SPRY structures—SSB-2 (Masters et al. 2006) and GUSTA-
VUS (Woo et al. 2006)—and PRYSPRY structures—TRIM5 (Biris et al. 2012),
TRIM20 (Weinert et al. 2009), TRIM21 (James et al. 2007) and TRIM25 (D’Cruz
et al. 2013)—have been solved. Contrary to prediction, these proteins all adopt a
remarkably similar conformation. The structures also reveal that neither SPRY nor
PRY are independent domains with a single globular fold (Fig. 3). In all the
structures, the b-sandwich of the SPRY element is completed by three N-terminal
b-strands structurally equivalent to PRY. This is true even for GUSTAVUS, which
is not annotated as containing a PRY domain. This suggests that the proper domain
unit should be ‘PRYSPRY’ and that most SPRY homologs have an N-terminus
that is PRY-like. This PRYSPRY domain definition is supported by the fact that
SPRY homologs are often encoded in a single exon containing both SPRY and a
preceding N-terminal sequence of PRY length. In humans, PRYSPRY sequences
are only found in the TRIM and BTN families but in other species they are present
in unrelated proteins such as guinea pig enterophilin (Gassama-Diagne et al.
2001), ‘bloodthirsty’ in fish (Yergeau et al. 2005), king cobra snake venom protein
ohanin (Pung et al. 2005) and stonefish toxin stonustoxin (Ghadessy et al. 1994).
TRIM and BTN are the largest of the SPRY containing protein families and are
only found in higher organisms. This suggests that they may originate from a
common SPRY ancestor that has undergone recent and rapid expansion.

3.3 Molecular Basis for TRIM21:IgG Interaction

TRIM21 PRYSPRY interacts with IgG Fc using all six of the flexible loops found
on sheet A and both PRY and SPRY elements. Residues from the CH2 domain
interact with a pocket on the PRY element, while the CH3 domain interacts with a
binding pocket in the SPRY (Fig. 2a). The PRY binding site is formed by VL1,
which lassoes around a b-hairpin at the beginning of the domain creating an
extended planar surface (Fig. 3). The VL1 loop is the site of greatest structural
difference between SPRY and PRYSPRY domains. In SPRY homologs such as
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GUSTAVUS, VL1 is a short loop connecting strands 2 and 3 and located between
the hairpin and VL6 (Fig. 3). The VL1 conformation is highly conserved amongst
solved TRIM PRYSPRY structures despite having no secondary structure and a
low sequence homology. The VL1 loop is constrained primarily by interactions
between a conserved ‘RF’ motif in VL1 and a conserved ‘LDP’ motif in the b-
hairpin (Fig. 3c). The arginine anchors VL1 to the hairpin through hydrogen bonds
to main-chain oxygen atoms. The phenylalanine pins VL1 between loop VL3 and
strand 3 by forming a cation-p interaction with a conserved arginine in VL3.
Cation-p interactions are thought to be particularly important in protein stabili-
sation; theoretical studies have shown that they may attain a strength of up to
4 kcal/mole and are potentially more stabilising than salt bridges (Gallivan and
Dougherty 1999). VL1 is further constrained by hydrogen bonds between main-
chain oxygen atoms in the RF motif and a conserved lysine from VL3 (Fig. 3c).
Most of the conserved PRYSPRY residues not in b-strands are concerned with
maintaining the extended VL1 loop structure. This suggests that the conformation
of VL1 is likely to be conserved in most PRYSPRY proteins, with the possible
exception of TRIM5 in which this loop has undergone considerable variation in
constitution and length. In TRIM21, the PRY binding site creates a pocket for
residues from CH2 a-helix310–314 and I253 from loop243–258. I253 is one of six hot-
spot residues identified by de Lano et al. as a hot-spot for proteins binding at the
CH2–CH3 Fc interface. However, mutation of TRIM21 PRYSPRY residues sug-
gests that this part of the interface is not critical for IgG binding. Mutation
W299A, within the PRY element, does reduce binding but only weakly.

Most of the important contacts between TRIM21 PRYSPRY and IgG Fc are
located in a concave binding site created by the SPRY element. A short CH3 loop
containing the HNHY motif inserts into this site and is surrounded by a ring of
hydrophobic residues from VLs 3–6. This ring of hydrophobic residues completely
encloses the HNHY loop, effectively creating a solvent-excluding seal (Fig. 2b).
The importance of this seal in IgG interaction is illustrated by the fact that
mutation of these residues severely diminishes or abolishes binding (James et al.
2007). The nature of this interaction explains why TRIM21 binds to IgG in a pH
independent manner, in contrast to FcRn that is sensitive to the protonation state of
the histidines within the HNHY loop. The non-specific nature of hydrophobic
burial may also explain why TRIM21 uniquely binds both IgG and IgM. IgM also
has a loop region that is structurally analogous to the HNHY motif, except that it
has the sequence PNRV. Thus TRIM21 may also mediate a hydrophobic inter-
action with IgM; albeit the affinity for IgM is weaker (monomer PRYSPRY affinity
for IgM is *10–20 lM, compared to 40nM for monomer PRYSPRY to TRIM21
under equivalent conditions). In addition to the ring of hydrophobic residues that
surrounds the HNHY motif in the TRIM21 PRYSPRY:Fc crystal structure, an
aspartic acid residue at 355 is positioned to form a bifurcated hydrogen bond with
the side chains of IgG Fc residues H433 and N434 (Fig. 2b). Mutation of D355
severely diminishes IgG interaction. This bifurcated interaction is not possible
with IgM and may be one reason for the lower affinity to this isotype.
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3.4 Evolutionary Parallels Between PRYSPRY
and Ig Protein Families

The binding between TRIM21 PRYSPRY and IgG Fc is driven by the six flexible
loops that surround the concave b-sheet that forms the binding site. The use of six
loops to determine binding is reminiscent of the manner in which IgG Fabs bind
their antigen. It also suggests that the use of SPRY domains in multiple protein
families with diverse functions may have been achieved by duplication followed
by variation in loop sequences to achieve new ligand specificities. To test this
possibility the phylogenetic variation of surface residues amongst SPRY sequences
was examined. A CLUSTAWL alignment of 1368 SPRY homologs was performed
and imported into the program Consurf (Landau et al. 2005). Consurf uses an
empirical Bayesian algorithm to calculate a conservation score at every residue
position. The stochastic nature of sequence evolution, in particular the different
rates of amino acid evolution, is explicitly taken into account to give an accurate
estimate of phylogenetic variation. The resulting sequence variability score was
then mapped onto the protein surface and coloured from most variable (red) to
most conserved (blue). As can be seen in Fig. 4, the residues that are most variable
between SPRY homologs extend across both SPRY and PRY binding surfaces as
defined by TRIM21. Furthermore, these variable surface patches correspond to the
six variable loops. This suggests that SPRY domains have a common binding site
interface that has been conserved across a billion years of evolution.

TRIM21:IgG complexation has all the hallmarks of a highly specific interaction.
It is also exquisitely conserved amongst mammals. Study of these proteins from
different mammalian species has shown that interaction is conserved at the most
fundamental level (Keeble et al. 2008). Even where there are differences in the
PRYSPRY residues between mouse and human TRIM21, they are conservative
and allow similar interactions with IgG to be made. Indeed the conservation of IgG
binding activity in mammalian TRIM21 is such that structurally equivalent resi-
dues within the binding site of different orthologues not only make the same
thermodynamic contribution to the binding energy but also the same kinetic
contribution (Keeble et al. 2008).

4 TRIM21 Function

4.1 Antibodies Mediate Immune Responses Inside Cells

As discussed above, the structure of TRIM21 and its antibody binding mechanism
is distinct from other Fc receptors. TRIM21 is also unique in that it is expressed in
the cytosol and not secreted, displayed on the cell surface or found inside endo-
cytic compartments. The purpose of expressing a high affinity Fc receptor in the
cytosol is to allow antibodies to exert immune functions inside cells. The fact that
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humoral immunity functions intracellularly, in addition to extracellularly, has only
recently been determined and will be discussed in the following section.

In an uninfected host, functional antibodies should not be capable of accessing
the cytosol of any cell. This is because antibodies have no mechanism to penetrate
the plasma membrane or exit endosomes during endocytosis. Cellular compart-
mentalization also comprises a barrier for pathogens, preventing access to the
nutrient-rich environment of the cytosol (Randow et al. 2013). However, patho-
gens, including viruses and bacteria, have evolved many diverse strategies to cross
cellular membranes and traffic from extracellular to intracellular compartments.
The immune system is tasked with recognising when pathogens have invaded a
cell and mounting a response that prevents them from replicating. This can be
accomplished by detecting molecules or patterns that are unique to a pathogen and
absent in the host. However, this strategy exerts selective pressure on the pathogen
to change its patterns and avoid recognition. Given that pathogens evolve many

Fig. 4 Sequence variability
in the PRYSPRY domain.
Two views of the complex
between TRIM21 PRYSPRY
(molecular surface) and IgG
Fc (green secondary
structure) are shown. The
position of the six PRYSPRY
VLs are shown. The sequence
variability between [1,300
PRYSPRY paralogs has been
mapped onto the structure,
with conserved regions
coloured in blue and variable
regions in red
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orders of magnitude faster than their hosts, this creates an arms race that is biased
in their favour. Antibodies are the only freely diffusing molecule made by mam-
mals whose specificity can be altered on a timescale that is competitive with
pathogen evolution. Antibodies are unparalleled in their ability to stick to patho-
gens once they have entered a host and subsequently mediate a variety of effector
mechanisms such as fix complement or trigger phagocytosis. Recently, it was
shown that antibodies remain attached to pathogens when they infect cells
(Mallery et al. 2010). This provides every cell a way of detecting pathogen
invasion without relying on the recognition of a pathogen associated molecular
pattern (or PAMP). Antibody-coated pathogens that successfully invade a cell and
enter the cytosol are detected by TRIM21. Upon recognition of these antibody-
coated pathogens, TRIM21 triggers several different responses acting both as a
sensor and effector in antipathogen immunity.

4.2 TRIM21 Directly Inhibits Viral Infection

The mechanism of TRIM21 activity, its regulation and the type of immunity it
mediates is distinct from other antibody effector responses. The protection pro-
vided by TRIM21 is fundamentally different because it is not based on immune
surveillance but rather on ‘ambushing’ pathogens inside the cell. Fcc receptors are
expressed largely on professional immune cells, meaning that they will only
encounter antibody-pathogen complexes through chance encounter before these
pathogens have entered their target cells. TRIM21 is expressed in almost all tissues
and therefore has the potential to detect any antibody-coated pathogen, irrespective
of its cellular tropism. Furthermore, recognition occurs during productive infection
making this response extremely difficult for pathogens to avoid. For obligate
intracellular pathogens, each infection event provides an opportunity for TRIM21
recognition.

TRIM21 is rapidly recruited to incoming antibody-coated pathogens (Mallery
et al. 2010). Parallel infection and electron microscopy experiments have revealed
that this process is highly efficient and 1–2 antibodies per pathogen are sufficient
(McEwan et al. 2012). TRIM21 binding to antibody-coated pathogens is thought to
activate its ubiquitin ligase activity and TRIM21/antibody/pathogen complexes
inside the cell also contain ubiquitin (Mallery et al. 2010). TRIM21 catalyses the
formation of ubiquitin chains with different linkages (K48 and K63) in vitro.
Moreover, TRIM21-mediated ubiquitination is functionally essential, as deletion of
the RING domain abolishes both effector and sensor activities (Mallery et al. 2010;
McEwan et al. 2013). However, it is not known what becomes ubiquitinated upon
TRIM21 recruitment (the pathogen, the antibody or TRIM21 itself), the order in
which different chain types are made or how they are subsequently liberated.
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4.3 TRIM21 Targets Cytosolic Antibody-Coated Viruses
for Proteasomal Degradation

TRIM21 directs incoming viral pathogens for degradation in a process that is
dependent upon ubiquitination, the proteasome and the AAA ATPase VCP (Hauler
et al. 2012). Proteasomal degradation of virus occurs rapidly, within an hour of
infection and before replication has begun. In experiments with replication-defi-
cient human adenovirus 5 (hAdv5), this has the result of reducing infection by
100-fold. In spreading-infection experiments using replication-competent mouse
adenovirus (MAV-1), viral replication was shown to be reduced [1,000 fold
(Watkinson et al. 2013). These activities are dependent upon the presence of intact,
pathogen-specific antibody. Proteolysis of the Fc domain using pepsin, to generate
Fab2 fragments, results in a complete loss of TRIM21 antiviral activity (Mallery
et al. 2010). Single point-mutants within the ‘HNHY’ motif, such as N434D, are
also sufficient to abolish activity (McEwan et al. 2012). Importantly, mutations
such as N434D also render an otherwise potently neutralising monoclonal anti-
body, non-neutralising. This demonstrates that the neutralisation activity of anti-
bodies, long thought to simply be a consequence of antibody binding, can be
receptor-dependent. Experiments using polyclonal antiviral sera suggest the
presence of both entry-blocking and TRIM21-dependent antibodies (McEwan et al.
2012). The role of epitope specificity in this dependence is yet to be determined,
although antibodies that compete for receptor attachment are likely to be the most
entry blocking and TRIM21-independent. The efficiency of TRIM21-mediated
degradation is proportional to both antibody concentration and TRIM21 expression
(McEwan et al. 2012). TRIM21 is an interferon-induced gene and upon IFN-
stimulation, expression levels are substantially increased. Increased expression of
TRIM21 results in increased neutralisation potency and a corresponding reduction
in infection.

In addition to ubiquitination and the proteasome, VCP is also required for viral
degradation and the block to infection. VCP is an enzyme with unfoldase and
segregase activity and is required to process a subset of proteasome substrates
(Beskow et al. 2009). These substrates are typically either large, part of multi-
component complexes, embedded in membranes or otherwise difficult for the
proteasome to degrade unaided. VCP extracts these substrates and unfolds them,
allowing proteasomal degradation to proceed. In the case of viral degradation,
VCP may be required to extract component proteins from the viral capsid,
unfolding them for subsequent degradation in the proteasome. This mechanism is
supported by data showing that the requirement for VCP is substrate-specific not
constitutive. IgG Fc that is overexpressed in the cytosol is targeted by TRIM21 and
degraded by the proteasome, but this turnover is VCP-independent (Hauler et al.
2012). VCP is recruited to proteasomes that ‘stall’ upon attempting to process
complex substrates (Isakov and Stanhill 2011). This suggests that the recruitment
of VCP during TRIM21-directed viral degradation is due to a similar stalling of the
proteasome when faced with a viral capsid. The importance of VCP and the
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proteasome in TRIM21 antiviral activity is illustrated by the fact that inhibitors of
these enzymes (DBeQ or Eerystatin, in the case of VCP, or MG132 or Epoxomicin
in the case of the proteasome) prevent neutralisation. Furthermore, the timescale of
viral capsid degradation matches the timescale in which these inhibitors are
effective in blocking neutralisation (Hauler et al. 2012). The addition of inhibitors
at later time points post-infection fails to recover infection, showing that neu-
tralisation occurs within the first few hours of infection, coincident with the
observed TRIM21, proteasome and VCP-dependent degradation of capsid.

4.4 TRIM21 is a DAMP Sensor that Activates
Innate Immunity

In addition to recruiting the proteasome, the recognition of antibody-coated
pathogens in the cytosol by TRIM21 activates innate immune signalling. As well as
catalyzing the formation of K48-ubiquitin chains, TRIM21 also forms free K63-
ubiquitin chains in concert with the E2 enzyme, UbcH9 (McEwan et al. 2013).
Through the production of free K63-ubiquitin chains, TRIM21 is able to activate the
three main innate immune signalling pathways—NFjB, AP-1 and IRF 3/5/7
(McEwan et al. 2013). The activation of these pathways is highly potent, resulting
in the upregulation of proinflammatory cytokine transcript levels by [10,000 fold
and robust cytokine secretion. In addition to activating cytokine expression,
TRIM21 recognition of cytosolic antibody leads to modulation of cell surface
ligands, including upregulation of activating receptor NKG2D and MHC class I and
downregulation of inhibitory receptor NKG2A (McEwan et al. 2013). In experi-
ments in primary human lung fibroblast cells it was found that hAdv5 was capable
of infecting cells without being detected by either TLRs or nucleic acid PAMP
receptors. However, infection experiments in the presence of anti-hAdv5 antibody
resulted in strong NFjB induction in a TRIM21-dependent manner. The magnitude
of cytokine upregulation mediated by TRIM21 is sufficient to place cells in a highly
antiviral state. Interferon secreted from infected cells that were activated by
TRIM21 was sufficient to prevent Sindbis infection of unchallenged cells, in a
media transfer experiment. TRIM21 activation of innate immunity is dependent
upon antibody alone and not on additional PAMPs. Antibody-coated beads were
shown to provoke a proinflammatory response in a TRIM21-dependent manner. The
simplicity of this mechanism allows TRIM21 to detect invasion by both RNA and
DNA viruses and the intracellular bacteria Salmonella typhimurium. The antibody
molecule behaves as a danger-associated molecular pattern (DAMP) and is suffi-
cient to activate innate immunity. Because antibodies should never be in the
cytosol, their presence there can be taken as a clear sign that the sanctity of the cell
has been invaded. Furthermore, this system does not require any complex traf-
ficking on behalf of the host. If a pathogen fails to invade a cell, it remains non-
infectious. If it crosses the cellular membrane then so do any attached antibodies.
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5 Conclusions

Many questions remain to be answered as to the precise molecular events that
accompany TRIM21-mediated neutralisation and signalling. For instance, it is not
clear how binding to antibody activates TRIM21 ubiquitination activity. Such
regulation must take place or otherwise TRIM21-expressing cells would exist in a
permanent antiviral state. That regulation operates at the level of ubiquitination is
suggested by the fact that TRIM21 ubiquitination cannot be detect in uninfected
cells. Furthermore, TRIM21 has a long cellular half-life and does not appear to be
rapidly degraded by the proteasome, suggesting that there is little constitutive
autoubiquitination. The full spectrum of pathogens that are susceptible to TRIM21
also remains to be determined. TRIM21 has been shown to sense nonenveloped
viruses and bacteria and directly neutralise viral infection. However, it is likely
that certain viruses will have evolved strategies to evade or antagonize TRM21
activity. One such strategy is for a virus to shed its antibodies as it infects a cell.
Enveloped viruses, which fuse at the plasma membrane or inside endosomes,
accomplish this very effectively and this is presumably why they have not been
shown to activate TRIM21. It also remains to be determined in which contexts
TRIM21 is most important during infection. In vivo experiments using MAV-1,
suggest that TRIM21 plays a significant role in the ability of antibodies to protect
against lethal infection in both a naïve and protective setting (Vaysburd et al.
2013). A quarter of naïve TRIM21 knockout mice challenged with MAV-1 suc-
cumbed to virally-induced encephalomyelitis within 7 days of infection. In passive
transfer experiments, antibody doses that were sufficient to protect all wild-type
animals against high-titre viral infection failed to protect most TRIM21 knockouts.
Future studies are required to examine other pathogen models and dissect the
contribution of different TRIM21 functions to humoral immunity in the animal.
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Computational Modeling of the Main
Signaling Pathways Involved in Mast Cell
Activation
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Abstract A global and rigorous understanding of the signaling pathways and
cross-regulatory processes involved in mast cell activation requires the integration
of published information with novel functional datasets into a comprehensive
computational model. Based on an exhaustive curation of the existing literature and
using the software CellDesigner, we have built and annotated a comprehensive
molecular map for the FceRI signaling network. This map can be used to visualize
and interpret high-throughput expression data. Furthermore, leaning on this map
and using the logical modeling software GINsim, we have derived a qualitative
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dynamical model, which recapitulates the most salient features of mast cell acti-
vation. The resulting logical model can be used to explore the dynamical properties
of the system and its responses to different stimuli, in normal or mutant conditions.
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1 Introduction

Mast cell activation is a pivotal event in the initiation of inflammatory reactions
associated with allergic disorders. It is triggered by the aggregation of high-affinity
IgE receptors (FceRI) on the mast cell surface, which is in turn induced by the
binding of a multivalent allergen to FceRI-bound IgE antibodies. Mast cell
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activation is a complex process relying on multiple layers of tightly controlled
intracellular signaling molecules, which form an intricate network. Mast cells are
crucially important for innate immunity and further play an effective role in the
amplification of adaptive immunity. They are key players in biological responses,
both in harmless and harmful situations, and it has been long known that they play
a central role in type I hypersensitivity reactions and allergic disorders.

A global and rigorous understanding of the signaling pathways and cross-
regulatory processes involved in mast cell activation ultimately requires the
integration of published information with novel functional genomic datasets, in
particular proteomic data, into a comprehensive computational model. In this
respect, we engaged into an integrative approach involving two main steps: (i) the
construction of a comprehensive and extensively annotated molecular map: (ii) the
derivation of a qualitative dynamical model.

The construction of detailed molecular pathway maps is becoming an important
component of system biology as attested by the release of various maps dealing,
for example, with mTOR signaling (Caron et al. 2010), EGFR (Oda et al. 2005),
RB/E2F (Calzone et al. 2008), and MAPKs (Grieco et al. 2013). These maps are
integrated in dedicated databases, such as KEGG (Kanehisa and Goto 2000),
Transpath (Krull et al. 2006), Reactome (Joshi-Tope et al. 2005), and the Atlas of
Cancer Signaling Networks (http://acsn.curie.fr).

The use of graphical representations of complex networks and pathways is
spreading as a consequence of the rising of Systems Biology and Synthetic
Biology fields. The presence of a consistent, standardized way of representation,
and interpretation of molecular maps is of outmost importance to enable exchange
of information in a quick, unambiguous and systematic way. A consistent notation
also helps improving biological curation (Hucka et al. 2003). An important effort
toward this direction has been made recently with the Systems Biology Graphical
Notation (SBGN) (Le Novere et al. 2005; Klipp et al. 2007).

To cope with large cellular networks for which precise kinetic data are lacking,
logical modeling is increasingly used to derive global qualitative insights about
network dynamics (for recent reviews, see Glass and Siegelmann 2010; Bérenguier
et al. 2013). Recent applications to mammalian networks include logical models
for T-helper cell differentiation (Mendoza 2006; Naldi et al. 2011), T-cell receptor
signaling (Saez-Rodriguez et al. 2007), Erb-b receptor signaling (Sahin et al. 2009;
Samaga et al. 2009; Helikar et al. 2013), as well as for the main MAPK pathways,
including feedbacks and cross-talks (Grieco et al. 2013). Finally, several kinetic
models dealing with subparts of the mast cell FceRI signaling pathway have
already been published, especially focusing on the early signaling events mediated
by FceRI (Goldstein et al. 2002; Nag et al. 2010).

If not absolutely required, a detailed molecular map is certainly an excellent
basis to build a dynamical model. Perhaps less intuitively, the derivation of a
dynamical model forces the biologist to scrutinize the mapped pathways with
specific emphases, often provoking the reconsideration of some aspects of the
map. Finally, model simulations often result in inconsistencies, thereby fostering
the need for further refinements.
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In short, the computational modeling of complex signaling networks involves
various iterations of data curation, molecular mapping and dynamical modeling,
until sufficient consistency is reached (see flowchart in Fig. 1).

2 A Comprehensive Map of FceRI Signaling During Mast
Cell Activation

Molecular maps of several pathways associated with FceRI signaling events during
mast cell activation can be found in public databases, with variable levels of detail
and different representations (see Table 1). These maps can take the form of
simplified graphs focusing on selected components or events, while others are
much more comprehensive, encompassing various related pathways. They also
differ regarding the number of references, as well as updating frequency.

Fig. 1 Data integration workflow. The construction of a logical model is a multistep process
involving several iterations. First, a map of relevant biological pathways integrating information
from literature and public databases is built. Experts then curate this map, leading to the
publication of an updated version on the web. Web publication facilitates community feedback
and hence further refinements and extensions. Computational biologists can apply graph analysis
tools to identify important nodes and pathways, or use it as a scaffold to build dynamical models
allowing simulations. Interesting predictions can then be experimentally tested, thereby
contributing to the validation and refinement of the map and expanding current knowledge

72 A. Niarakis et al.



At this stage, however, we felt that existing maps still lack details to support the
development of predictive models. Consequently, we engaged in the development
of a novel, comprehensive molecular map of the signaling network underlying
mast cell activation, based on an extensive analysis of relevant scientific papers
and reviews, and taking into account existing pathways available in public dat-
abases (Fig. 2). This map has been built using the software CellDesigner (versions
4.2 and 4.3; Funahashi et al. 2003).

The components (vertices) of this map represent proteins and their post-
transcriptional variants, protein complexes, metabolites, or genes, while links
(arcs) represent molecular reactions (complex formation or dissociation, post-
transcriptional modification of proteins, etc.). All nodes and links are extensively
annotated with textual information tracing experimental support, along with links
to databases, e.g., to relevant scientific papers in PubMed, or to representative
entries in genomic databases such as EntrezGene, UniProt or HUGO.

Our current mast cell activation signaling network includes information derived
from over 200 peer-reviewed journal articles. We primarily focused on human
data, but we incorporated information coming from studies in mice or rats
whenever human data were lacking. Similarly, we primarily focused on mast cell-
specific data, but we further took into account results of studies dealing with B and
T lymphocytes to fill gaps in our current knowledge of mast cell signaling.
Inference by homology (from different species or from different cell types) is
systematically emphasized in component annotations.

The resulting map encompasses a total of 122 distinct chemical species (pro-
teins, ion channels, ions, receptors, complexes, chemical entities/compounds) and
73 reactions taking place in five main compartments (cytoplasm, plasma
membrane, Golgi apparatus, endoplasmic reticulum, nucleus). The reactions
encompass 39 state transitions (including catalysis), 30 heterodimer association, 2
transports, and 2 dissociations. Hereafter, we describe the main data integrated in
our molecular map in more details (the CellDesigner map is available on request).

Table 1 Main entries related to FceRI signaling in public pathway databases

Database and url Pathway entry in the
corresponding database

Components and
references (when
specified)

KEGG pathway database
http://www.genome.jp/kegg/pathway.html

map04664 33 components
7 references

Pathway interaction database
http://pid.nci.nih.gov

Fcer1 pathway2 78 components

Biocarta
http://www.biocarta.com

Fc epsilon receptor I
signaling in mast
cells

32 components

Pathway maps
http://pathwaymaps.com/maps/

Immune response_Fc
epsilon RI pathway

55 components
13 references

Computational Modeling of the Main Signaling Pathways 73

http://www.genome.jp/kegg/pathway.html
http://pid.nci.nih.gov
http://www.biocarta.com
http://pathwaymaps.com/maps/


F
ig

.
2

Sn
ap

sh
ot

of
th

e
m

as
tc

el
la

ct
iv

at
io

n
si

gn
al

in
g

pa
th

w
ay

m
ap

cr
ea

te
d

w
it

h
C

el
lD

es
ig

ne
r.

In
te

ra
ct

io
ns

ar
e

co
lo

r
co

de
d:

bl
ac

k
ar

ro
w

s
de

no
te

st
im

ul
at

or
y

re
ac

ti
on

s;
re

d
bl

un
t

en
d

ar
ro

w
de

no
te

s
in

hi
bi

ti
on

s;
bl

ac
k

ro
un

d
he

ad
ar

ro
w

s
de

no
te

ca
ta

ly
si

s.
P

ro
te

in
s

ph
os

ph
or

yl
at

io
n

an
d

ub
iq

ui
ti

na
ti

on
ar

e
de

pi
ct

ed
by

P
an

d
U

b
la

be
ls

,
re

sp
ec

ti
ve

ly
.

D
ot

te
d

co
nt

ou
rs

em
ph

as
iz

e
ac

ti
va

te
d

en
ti

ti
es

.
P

la
sm

a
m

em
br

an
e,

cy
to

pl
as

m
,

en
do

pl
as

m
ic

re
ti

cu
lu

m
,

G
ol

gi
ap

pa
ra

tu
s,

an
d

nu
cl

eu
s

co
m

pa
rt

m
en

ts
ar

e
di

st
in

gu
is

he
d

74 A. Niarakis et al.



3 Signaling Events Covered in the CellDesigner Molecular
Map

3.1 FceRI-Mediated Signaling

The mast cell receptors FceRI belong to the Fc receptor family which can bind a of
variety antibodies (Ab). On mast cells, Fc receptors bind exclusively IgE (Fce
receptors) or IgG (Fcc receptors). FceRI consist of three subunits: an IgE-binding
alpha subunit, a signal-amplifying beta subunit, and a signal-initiating homodi-
meric gamma subunit (Kinet 1999). The beta and gamma subunits contain one
tyrosine activation motif (ITAM) each. The phosphorylation of ITAM canonical
tyrosine residues initiates a cascade of intracellular events.

3.2 FceRI Aggregation and Lyn/Syk/Fyn-Dependent Events

The Src protein tyrosine kinase Lyn is responsible for the phosphorylation of the
ITAM motifs of FceRI. Like other Src family kinases, Lyn is anchored in the lipid
rafts via its palmitoyl or myristoyl moieties. FceRI stimulation causes an accu-
mulation of these protein tyrosine kinases (PTKs) in lipid raft domains (Kovárová
et al. 2001). Moreover, the localization of Lyn in lipid rafts is necessary to sustain
FceRI phosphorylation and to maintain an active Lyn kinase (Young et al. 2003).
Following FceRI aggregation on the mast cell surface, Lyn phosphorylates the
ITAMs of the beta and gamma chains. When phosphorylated, these motifs can
recruit Syk (Spleen tyrosine kinase). Syk is then phosphorylated by Lyn and
autophosphorylates.

Active Syk in turns phosphorylates the transmembrane adaptors LAT1 and
LAT2, as well as several cytosolic proteins including Gab2, Clnk, SLP76, Shc, and
Btk (Simon et al. 2005).

Activated Lyn further phosphorylates Fyn, which is important for the activation
of Btk and Gab2. Fyn is also needed for the activation of PI3K via Fyn-dependent
phosphorylation of Gab2. PI3K is essential for the production of PIP3 (Kraft and
Kinet 2007). PIP3 is the product of PI3K phosphorylation of phosphatidylinositol
(4,5)-bisphosphate (PIP2). Residing on the membrane, this phospholipid causes
various proteins with a PH domain to translocate to the plasma membrane and
affects their activity accordingly. This includes Akt activation, which in turn
activates downstream anabolic signaling pathways required for cell growth and
survival.

Fyn activity is regulated by Cbp/PAG adaptor. This adaptor recruits the neg-
atively regulatory kinase Csk, which in turns phosphorylates Fyn and thereby
inactivates it (Alvarez-Errico et al. 2009).
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3.3 FccRIIB-Mediated Signaling

The single-chain low-affinity IgG receptors FccRIIB are widely expressed by
hematopoietic cells, including mast cells. They inhibit FceRI-dependent mast cell
activation (Daëron et al. 1995a, b). When IgG-allergen immune complexes co-
aggregate FceRI and FccRIIB, Lyn phosphorylates the ITAMs of FceRI and the
ITIM (Immune receptor Tyrosine-based Inhibitory Motif) of FccRIIB (Malbec
et al. 1998). Phosphorylation of the FccRIIB ITIM results in the recruitment of
SHIP1, which in turn recruits Dok1 and RasGAP. RasGAP inhibits SOS, thereby
interrupting Ras activation, as well as subsequent transcriptional regulation and
lipid mediator production. Constitutively bound to Shc in the cytoplasm, Grb2 is
then further recruited (Jabril-Cuenod et al. 1996). Moreover, SHIP1 hydrolizes
PIP3, resulting in a decrease of PLCc, IP3, and Ca2+ fluxes. FccRIIB cooperate
with FccRI for the activation of Ca2+ fluxes, as well as of MAPK pathway (Kraft
and Kinet 2007).

SHIP1 is an important regulator of intracellular levels of PIP3. PtdIns(3,4,5)P3
is dephosphorylated by SHIP1 (SH2-containing inositol phosphatase) on the 50

position of the inositol ring, producing PI(3,4)P2, thereby downregulating Akt
activity.

3.4 LAT1-Dependent Protein Complex Formation

LAT1 is a transmembrane protein that is essential for the propagation of FceRI-
mediated signaling. It acts as an adaptor molecule and enables the association of
different proteins such as Grb2, Gads, SLP76, Btk, Vav1, PLCc (Saitoh et al.
2000). LAT1 undergoes lipid modification such as palmitoylation and acylation,
which determines its cellular localization (Gilfillan and Tkaczyk 2006). Syk
phosphorylates LAT1 shortly after antigen stimulation. Phosphorylated LAT1
plays the role of a signaling platform. It provides binding sites for the direct
binding of Grb2, Gads, and PLCc (Saitoh et al. 2000). Grb2/SOS complex recruits
activated Shc. LAT1 binds SOS and Shc via Grb2. Gads recruits activated SLP76,
which in turns recruits Btk and Vav, while Btk phosphorylates PLCc.

Tyrosine-phosphorylated PLCc in the membrane hydrolyzes PIP2, forming the
second messengers IP3 and 1,2-diacylglycerol, which lead to the release Ca2+ from
internal stores and activate PKC, respectively. The binding of IP3 to specific
receptors in the endoplasmic reticulum results in a depletion of Ca2+ stores, which
activates store-operated Ca2+ entry (ICRAC) from the extracellular medium.

The importance of LAT1 in mast cell activation was demonstrated by experi-
ments in LAT1-deficient mice. LAT1 deficiency did not alter mast cell development
and maturation, neither in vivo nor in vitro (Saitoh et al. 2000), but LAT1 deficient
mice are resistant to IgE-mediated passive systemic anaphylaxis, while PLCc and
SLP76 phosphorylation is markedly reduced (Alvarez-Errico et al. 2009).
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3.5 LAT2-Dependent Protein Complex Formation

Similar to LAT1, LAT2 contains a palmitoylation site adjacent to the trans-
membrane domain involved in its localization to the lipid rafts. Its exact role in
mast cells remains to be elucidated, but it has been shown to affect actin poly-
merization via Rac and Rho (Tumova et al. 2010). Like LAT1, it is able to recruit
PLCc, but in an indirect way, via Gab2, since LAT2 lacks the PLCc binding motif
contained in LAT1 (Alvarez-Errico et al. 2009). LAT2 further affects degranula-
tion through this indirect recruitment of PLCc. However, in vivo experiments
showed that the response of LAT2-deficient mice to systemic anaphylactic chal-
lenge is similar to that of wild type mice (Zhu et al. 2004). LAT2 may also
regulate an inhibitory pathway for FceRI-mediated mast cell degranulation, at least
in mouse bone marrow macrophages. LAT2 knock down in human mast cells and
the RBL 2H3 rat mast cell line attenuates FceRI-mediated degranulation through
reduction of the calcium signal. Subsequent studies suggested that this interaction
may be occurring through SLP76. This maintenance/amplification pathway for
antigen-mediated responses in mast cells may be the portal by which signaling
pathways initiated by other mast cell receptors allow synergistic potentiation of
FceRI-mediated degranulation and cytokine production (Gilfillan and Beaven
2011). Upon FceRI aggregation, LAT2 is phosphorylated by Lyn, Syk, and KIT on
different tyrosines. Phosphorylated LAT2 likely contributes to the activation of
mast cells by providing docking sites for the recruitment of critical signaling
molecules into the lipid raft. LAT2 contains about ten tyrosines, five of which are
principally phosphorylated by SYK, whereas others are phosphorylated by Lyn
and KIT (Iwaki et al. 2008). After proper palmitoylation and phosphorylation,
LAT2 recruits Grb2, which in turns recruits phosphorylated Gab2. The LAT2/
Grb2/Gab2 complex recruits PI3K. In a different scenario, Grb2 binds to SOS, and
the complex recruits activated Shc. The complex Shc/Grb2/SOS associates with
LAT2.

4 Access to the Mast Cell Activation Map

4.1 CellDesigner File

As it was initially built using CellDesigner, the molecular map integrating all the
aforementioned data is provided in the form of an xml file to be open with this
software (xml file available on request). In this respect, the user must download,
install, and open this CellDesigner (http://www.celldesigner.org), and then import
the xml file, which will enable navigation through the map with access to all
annotations.
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4.2 Import into Cytoscape

It is also possible to view the network through the popular software Cytoscape
(http://cytoscape.org; Shannon et al. 2003) using the plugin BiNoM (http://apps.
cytoscape.org/apps/binom). This requires to download and install the proper ver-
sions of Cytoscape 2.8.3 and BiNoM 2.3. Using these tools, the user can import the
CellDesigner XML file and perform various kinds of analysis (examples of such
analyses are provided below).

4.3 REACTOME Database

REACTOME is an open-source, open-access, manually curated, and peer-reviewed
pathway database, which includes an intuitive interface along with various soft-
ware tools to support the analysis of complex experimental and computational
datasets.

An interface based on SBGN, Pathway Browser, facilitates the visualization of
Reactome data and supports zooming, scrolling and event highlighting. It further
exploits web services (PSIQUIC) to overlay molecular interaction data from the
Reactome Functional Interaction Network and external interaction databases, such
as IntAct, ChEMBL, BioGRID, and iRefIndex.

A first version of the mast cell signaling map has been integrated into
REACTOME and can thus be browsed and queried directly from the corresponding
website (http://www.reactome.org). In the course of the import of our map into
REACTOME, all documented interactions were re-evaluated, the list of references
enriched, and the resulting map was reviewed by experts before public release.
Navigation into the REACTOME map can be done using a standard web browser,
including access to all textual annotations, list of references and links to other
databases, thereby avoiding the burden of downloading and installing a dedicated
software such as CellDesigner or Cytoscape. Furthermore, all REACTOME maps
can be easily exported into SBML, BioPAX, and other formats to facilitate data
exchange with other analysis and modeling tools.

4.4 NaviCell

Finally, the mast cell signaling map has been also integrated in the collection
developed by the Cancer Systems Biology team at Institute Curie. This collection
is published online using the software NaviCell, a web tool for exploring large
maps of molecular interactions (https://navicell.curie.fr). NaviCell allows easy
map navigation and access to the network components through the Google maps
engine. Navigation, scrolling, zooming, pop-up bubbles have been adapted from
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Google maps. Semantic zooming enables users to explore the maps at different
levels of detail. NaviCell further contains a web-based blog system (Wordpress) to
collect feedbacks and facilitate exchange of knowledge between specialists and
map managers (Kuperstein et al. 2013). The user can select species and reactions
from a panel and get access to all annotations that were manually entered during
map construction. Links to relevant PubMed entries are provided. Note that our
original map includes protein nodes corresponding to more than one HUGO name
(e.g., ERK node denotes both MAPK1 and MAPK3 isoforms); in such cases, we
have selected unique representative identifiers.

5 Community-Driven Update of Mast Cell Activation Map

The molecular map for mast cell signaling presented here is more detailed and
comprehensive than the previous diagrams published in scientific journals or
available in public databases. It should help biologists to better deal with the
complexity of mast cell signaling network and help them to identify potential
intervention points to block uncontrolled inflammation. Furthermore, as we shall
see, this map can be used as a scaffold for systems biologists to derive dynamical
models for mast cell activation. However, as novel data will accumulate, regular
revisions of the map will be necessary. In this respect, wide availability of the map
should foster feedbacks, comments, and suggestions from the scientific
community.

6 Visualization of Proteomic Data on the CellDesigner
Map

The molecular map for mast cell signaling can be used as a template for the
visualization of expression data, such as transcriptomic or proteomic data. For this
purpose, CellDesigner provides a plugin (Mapping Array Mass) (version 4.0 and
onward) that allows the import of an attribute file with the corresponding values.
The color of the species is set according to the data value. An alternative way to
color CellDesigner map components with expression data is provided by the
Cytoscape plugin BiNoM (Zinovyev et al. 2008).

We illustrate this approach through the visualization of proteomic data on SLP-
76 interactome published by Bounab et al. (2013) for activated BMMCs (Fig. 3).
Such coloration facilitates the interpretation of expression and interaction data in
the context of the known network.
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7 Modularization and Decomposition of the Molecular
Map Using BiNoM

To get insights into the organization of the mast cell signaling network, we used
the Cytoscape plugin BiNoM (Zinovyev et al. 2008). Among other features, Bi-
NoM allows the decomposition of complex networks and the generation of several
modular views. Such high-level representations are fully based on the underlying
detailed map and helps navigation through it. When necessary, the user can easily
refer to the detailed mechanisms underlying a given module. A similar approach
for modular pathway modeling has been implemented in the ProMoT system
(Saez-Rodriguez et al. 2006).

Modularization consists in a semi-automatic procedure to delineate modules
and ensures their coherence. Modules often represent detailed sequences of events
involving either a particular protein or a particular complex. Compressing such
sequences into modules enables a simplified and compact representation of
complex pathways.

The decomposition of biological networks can be performed in different ways.
First, we can separate unconnected network subparts, keeping only the connected
components, i.e., decompose the network into (strongly) connected components.
BiNoM further implements an algorithm enabling the generation of a pruned graph
consisting in three main parts: the incoming flux part, from which all paths lead to
the central core, the cyclic part that consists of strongly connected components,
and the outgoing flux part, devoid of paths leading back to the central core.
Figure 4 shows the pruned graph obtained from the application of this algorithm to
our mast cell signaling network. Using another feature of BiNoM, the central core
can be further decomposed into 12 simple cycles.

Still using BiNoM, the network can be decomposed into material components,
each corresponding to one protein, either as a distinct chemical species or as part
of a complex. As a protein can participate in different complexes, these subnet-
works are usually largely overlapping. Another BiNoM function enables a clus-
tering of these components based on common proteins or complexes and on an
intersection percentage threshold specified by the user (Bonnet et al. 2013).
Automatic decomposition of our molecular map resulted into 45 material com-
ponents, which were then clustered for an intersection threshold set to 35 %.
Manual curation led us to merge some of the 24 resulting components, ultimately
defining the 12 modules shown in Fig. 5.

Structural graph analysis gives us a first estimation of the complexity of the
biological network and can also reveal important properties that are not obvious at
first sight (e.g., nonconnected components, overlapping cycles). The modulariza-
tion process enables a simplification of the network representation, allowing the
user to supervise and check more easily the main events occurring in the network.
Especially for very large networks containing hundreds of interactions, modular-
ization greatly facilitates navigation.
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Both modular views (pruned graph and material components graph) are useful
for the development of a proper dynamical model (cf. following section), in
particular to define the main variables and check that no important interaction is
missed.

Cyclic Part

Incoming Flux
Outgoing

Outgoing Flux

Fig. 4 Modular view of the
pruned graph generated from
our molecular map using
BiNoM. Three modules are
obtained corresponding to
‘‘incoming flux,’’ ‘‘cyclic
part,’’ and ‘‘outgoing flux,’’
while different kinds of
connections between these
modules are specified: black
arrows molecular flows; red
ball arrows catalysis, blue
blunt arrows inhibitions
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8 Logical Modeling of Mast Cell Activation Network

Our mast cell signaling molecular map can be used as a reference to build a
predictive dynamical model accounting for the most salient events following mast
cell receptor activation. In the absence of detailed kinetic data, we decided to rely
upon a sophisticated logical formalism implemented in the software GINsim
(Chaouiya et al. 2012). In this framework, a regulatory network is modeled in terms
of a regulatory graph, where nodes represent regulatory components (proteins,
complexes, transcription factors, etc.), whereas arcs represent interactions between
these components. In addition, each regulatory component is associated with a
logical variable denoting its qualitative concentration or level of activity. In most
cases, Boolean variables (taking the values 0 or 1) are sufficient to represent the
most relevant situations, but whenever needed, multivalued variables can be used.

Based on available data on co-aggregation of FceRI with the inhibitory receptor
FccRIIB, we abstracted relevant information from the reaction map to define a
regulatory graph. Beyond molecular interactions delineated using low-throughput

(a)

(b) (c)

Fig. 5 Modular views of the mast cell signaling network (cf. Fig. 2) generated with the
Cytoscape plugin BiNoM. Modularization according to material components resulted in 45
modules. Clustering of these networks resulted in a reduction of this number. Manual refinement
led to an even more compact representation. Rectangles modules with nested networks; Red
arrows catalysis; Blue arrows inhibition; Black arrows molecular flow. a 45 modules consisting
of material components networks. b 24 modules deriving from clustering of the material
components networks (threshold: 35 % overlapping). c 12 resulting modules, after manual
curation and merging
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approaches, we have used the proteomic data reported in Bounab et al. (2013),
which point to novel SLP76 interactants, some previously reported in T or B cell
activation processes, but now specifically identified in mastocytes.

Based on the 45 material components extracted with BiNoM (Fig. 5a), we have
considered 42 molecular species in the regulatory graph shown in Fig. 6. The
following step is the assignment of logical rules for each regulatory component in
order to specify its target activity level according to the levels of its regulators. In
most cases, this is straightforward, but it becomes tricky when many regulators
converge onto a single component. Figure 7 illustrates the relationship between
regulatory interactions and logical rules on the one hand, and the underlying
molecular subnetworks on the other hand. The structure of the regulatory network
and the logical rules are iteratively refined based on the comparison between
simulations and documented network properties.

Once a regulatory graph and a set of regulatory rules are defined, the user can
select a set of initial values for the components and use GINsim to compute a state
transition graph, highlighting stable states, and cyclic attractors. However, as the
number of components considered increases, such simulations become rapidly
challenging from a computational point of view. In this respect, the recent
development of a rigorous logical model reduction approach and its

Fig. 6 Regulatory graph of the mast cell signaling logical model. The regulatory graph
encompasses 47 components. Green/red arcs denote activating/inhibitory regulations. Ellipsoid
nodes represent Boolean variables, while rectangular nodes represent multilevel variables. Inputs
and output nodes are emphasized in yellow and pink, respectively. Nodes hidden in the reduced
version used for simulations are colored in gray
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implementation into GINsim currently allow the simulation and analysis of reg-
ulatory networks encompassing hundreds of components (Naldi et al. 2011). The
basic idea consists in enabling the user to select a series of components to hide.
The software then hides them iteratively one at a time and recomputes the logical
rules of their targets. Provided that no regulatory circuit is eliminated in this
process (which is forbidden by the algorithm), it has been proven that the most
salient dynamical properties are preserved, including all stable states, which typ-
ically represent different cellular states.

9 Coherence of the Logical Model Behavior
with Published Data

In order to evaluate the coherence of the global behavior of the model with current
biological knowledge, we compared its dynamical properties with published data.
First, we computed the stable states of the model and compared them with
available data. Next, we performed asynchronous simulations for specific initial
conditions (input levels, initial states, in the presence of perturbations or not).
Inconsistencies were progressively fixed through appropriate modifications of the
logical rules and/or adding or removing an interaction or a model component.

Of particular interest are the sets of states forming attractors, i.e., groups of
states from which the system cannot escape, which represent potential asymptotic
behaviors. Attractors can be classified into two main categories: stable states and
cyclic attractors (denoting periodic or homeostatic behavior). From a biological
point of view, the asymptotic behavior represents the ultimate cellular outcome
induced by an initial configuration.

Fig. 7 From CellDesigner molecular map to GINsim logical model. Left zoom in a section of the
CellDesigner map. Right translation of molecular interactions into regulatory interactions into
GINsim and delineation of the logical rule for GRB-SOS, whose activity depends on the presence
of RasGAP-Dok1, Bcr, LAT, and ERK
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The three inputs of the model correspond to antigen activity on the receptors
(considering three levels: Ag = 0, 1 or 2), cCbl activity, and PIP2 activity,
respectively. Ag = 1 corresponds to the aggregation of FceRI, while Ag = 2
denotes co-aggregation of FceRI with FccRIIB. The second input, PIP2 activity is
important for the activation of certain pathways (PIP3, Ca2+). Finally, cCbl stands
for an ubiquitin-protein ligase targeting Syk and Lyn tyrosine kinases for
degradation.

The six outputs of the model and one intermediate component (component Ca,
denoting Ca2+) are used to define the functional outcome. AP1, Elk1, Akt, NF-kB,
NFAT are associated with cytokine release, PLA with the synthesis of lipidic
mediators, and Ca with degranulation.

Table 2 lists the stable states (ss) obtained for the unperturbed model. For wild
type conditions, the model shows that, in the absence of antigen, no matter of the
values of the other inputs, signaling is abolished (ss1 and ss2). However, the stable
state ss3 corresponds to a situation where transient but substantial activation would
nevertheless lead to cytokine release, degranulation and lipidic mediator synthe-
sis. This, state can only be attained when Syk is provided in the initial condi-
tions (cf. Model file available in the model repository on GINsim website, at
http://www.ginsim.org).

For medium receptor activation (Ag = 1), we have two possible stable states,
ss4 and ss5. In the first case (ss4), the FceRI-dependent pathways are activated
provided that Lyn, Syk, and PIP2 are initially present, while in the second case
(ss5), in the absence of Lyn and Syk, no matter the values of the other two inputs,
FceRI-dependent pathways are not activated.

For high receptor activation (Ag = 2), we obtain three stable states, ss6, ss7,
and ss8. The first one (ss6) is very similar to ss5, meaning again that, in the
absence of Lyn and Syk, no matter the values of the other two inputs, we have no
activation. In the second case (ss7), the presence of Lyn and Syk in the absence of
the other inputs can result in the activation of intermediate components, but we
have a final down-regulation of NFkB, NFAT, AP1, PLA, and Elk1. The third case
(ss8) corresponds to a full pathway activation in the presence of Lyn, Syk and
PIP2.

To further assess the behavior of our model in comparison with published data,
we designed and performed a series of in silico experiments (simulations) com-
bining different initial conditions and virtual perturbations (loss or gain of function
of selected model components). As already mentioned above, for the simulation
part, we reduced our model using a specific function of GINsim, resulting in
reduced model version encompassing 31 components.

Table 3 shows the results obtained for simulations corresponding to two dif-
ferent genetic backgrounds.

Analysis of FceRI signaling pathways in Syk-deficient mast cells indicates that
Syk is not required for the activation of Lyn. In contrast, FceRI-induced rise in
intracellular Ca2+ and activation of the ERK and JNK MAP kinase pathways is
completely abrogated in the absence of Syk. Furthermore, phosphorylation of
phospholipase Cc1 (PLCc1) and of the Vav1 exchange factor is also Syk-dependent
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(Simon et al. 2005). In Syk knockout experiments, degranulation and cytokine
release are both abolished (Gilfillan and Tkaczyk 2006).

To check the consistency of our model with these data, we performed an in
silico simulation of Syk knockout, with Lyn and PIP2 present and Ag set to level 2
at the initial state. Note that Lyn level needs to be set at the initial state as we lack
information about its upstream regulator(s). The results of this simulation are
shown in Table 3 (third column). In this situation, the system reaches a stable state
where AP-1, ERK, JNK, Elk-1, NF-kB, NFAT, PKC, PLCG1, Ca2+, and Vav are
all set to zero, in agreement with the published data.

Table 2 Stable states of the logical model for mast cell activation (wild-type)

Component ss1 ss2 ss3 ss4 ss5 ss6 ss7 ss8

Ag (input) 0 0 0 1 1 2 2 2
Akt * 0 0 0 * * 0 0
AP1 * * 1 1 * * 0 1
Bcr 0 0 0 0 0 0 0 0
Btk 0 0 1 1 0 0 0 1
Ca 0 0 1 1 0 0 1 1
CCbl (input) 0 0 1 1 0 0 1 1
Csk 0 0 1 1 0 0 0 1
Elk1 0 1 1 1 0 0 1 1
ERK 0 0 1 1 0 0 0 1
FceRI-IgE_P 0 0 1 1 0 0 0 1
FcgRIIB_P 0 0 0 1 0 0 1 1
Gab2 0 0 0 0 0 0 1 1
GRB2-SOS 0 0 0 0 0 0 0 0
JNK 0 0 0 0 0 0 0 0
LAT 0 0 1 1 0 0 1 1
LAT2 0 0 1 1 0 0 1 1
Lyn 0 0 1 1 0 0 1 1
NFAT 0 1 1 1 0 0 1 1
NFkB 0 0 1 1 0 0 0 1
PIP2 (input) 0 0 1 1 0 0 0 1
PKC 0 0 1 1 0 0 0 1
PLA 0 0 1 1 0 0 0 1
PLCG1 0 0 1 1 0 0 1 1
Rac1 0 0 1 1 0 0 1 1
RAS 0 0 1 1 0 0 0 1
RasGAP-Dok1 0 0 0 0 0 0 1 1
SHIP1 0 0 0 0 0 0 1 1
SLP76 0 0 1 1 0 0 1 1
Syk 0 0 1 1 0 0 1 1
Vav 0 0 1 1 0 0 1 1

All stable states of the model are listed, which differ regarding input (Ag, cCbl, and PIP2) values,
and downstream effects
The * refers to both values 0 and 1
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In the case of Btk knockout, a decrease in degranulation and cytokine release, as
well as a decrease of PLCG1, ERK, and JUN levels have been observed (Kawakami
et al. 2000; Setoguchi et al. 1998). The simulation of Btk knockout indeed results
into a decrease of PLCG1 and ERK (set to zero), in agreement with published data.

Certain mutant phenotypes are not easy to assess because the data are still
controversial (e.g., Lyn knockout and its effect on degranulation). Other mutant
simulations give self-evident results (e.g., Gab2 knockout results in the blockage

Table 3 Examples of simulations for full receptor activation

Component WT Syk KO Btk KO

Ag (input) 2 2 2
Akt 0 0 0
AP1 1 0 0
Bcr 1 0 1
Btk 1 0 0
Ca 1 0 0
CCbl (input) 0 0 0
Csk 1 1 1
Elk1 1 0 1
ERK 1 0 0
FceRI-IgE_P 1 1 1
FcgRIIB_P 1 1 1
Gab2 0 0 0
GRB2-SOS 0 0 0
JNK 1 0 1
LAT 1 0 1
LAT2 1 0 1
Lyn 1 1 1
NFAT 1 0 0
NFkB 1 0 0
PIP2 (input) 1 1 1
PKC 1 0 0
PLA 1 0 0
PLCG1 1 0 0
Rac1 1 0 1
RAS 1 0 0
RasGAP-Dok1 1 1 1
SHIP1 1 1 1
SLP76 1 0 1
Syk 1 0 1
Vav 1 0 1

Columns 2, 3, and 4 correspond to wild-type, and Syk and Btk knockouts, respectively
In each case, we start with initial conditions with Ag = 2, Lyn = PIP2 = 1, all other compo-
nents being set to zero. For both mutants, calcium signaling (hence degranulation), NFkB, NFAT,
and AP1 activity (hence cytokine release), and PLA activation (hence membrane synthesis) are
impaired, although we observe a broader impact of Syk KO on the activity of signaling
components
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of PI3K dependent pathway). Comparing the results for WT and Gab2 knockout
mutant, starting from initial conditions where PI3K and Gab2 are set to zero, we
observed that their activation is only transient (data not shown).

In the case of Lyn knockout, it has been observed that PI3K activity is
increased, while the phosphorylation of the ITAMs of the beta and gamma chains
of FceRI is decreased, and MAP and JUN phosphorylation prolonged (Gilfillan
and Tkaczyk 2006). Our model does not yet account for these results, pointing to
gaps in our knowledge regarding Lyn activation and role.

For LAT knockout and knockdown mice, a decrease on degranulation, cytokine
release, SLP76 and PLCc phosphorylation, and MAPK activity have been
observed, with no change in Syk and Vav phosphorylation (Gilfillan and Tkaczyk
2006). Our model is partly coherent with experimental data, as the simulation of a
LAT knockout mutant points to a decrease in cytokine release (decrease of AP-1,
Erk, NFAT, NFkB), in calcium ions and PLCc, with no change in Syk and Vav
activity.

On the other hand, for LAT2 knockout, an increase of degranulation and
cytokine release, and a hyperphosphorylation of ERK1 and 2, PLCc, and LAT
have been observed (Gilfillan and Tkaczyk 2006). Our model does not account for
these results, since simulations of LAT2 loss-of-function shows no difference from
the WT. This inconsistency can likely be attributed to gaps in our knowledge in the
functioning of the inhibitory pathway. As more data will become available, a more
refined modeling of this pathway could be established.

Regarding SLP76 knockout, a decrease of degranulation, cytokine release,
calcium signaling and PLCc phosphorylation have been reported. The corre-
sponding simulation leads to a decrease in cytokine release (decrease of AP-1,
JNK, NFAT, NFkB), while calcium and PLCc activity are preserved. Here also,
our model could be refined to better take into account the different potential
sources of calcium ions, once they will be better characterized.

Loss of SHIP expression in vivo has been shown to lead to high Akt activation
in bone marrow-derived mast cells in response to cytokine stimulation (Liu et al.
1999). Simulations of SHIP1 knockout mutants indicates that its absence does not
suffice to activate Akt. To reach full activation of Akt, our model suggests that Csk
must be also inactive, thereby enabling Fyn to phosphorylate and activate Gab2.
The simulation of a double SHIP-1 and Csk knock-out indeed results in the
activation of Akt.

Regulatory circuits (or feedback loops) have been reported to play crucial roles
in the generation of specific dynamical properties, such as multistability or peri-
odic behavior. Multistationarity is related to the presence of positive circuits, while
oscillatory behavior depends on the presence of negative ones (for a review, see
Thieffry 2007). In this respect, GINsim includes an algorithm enabling the iden-
tification of all regulatory circuits embedded in a logical model, along with the
delineation of functionality conditions, i.e., conditions on the levels of external
regulators enabling a circuit to generate the corresponding property.

In the case of our mast cell activation model, the analysis of circuits emphasizes
the functionality of two positive circuits, corresponding to Lyn and Syk
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autophosphorylations, and of one negative circuit comprising Raf, MEK, ERK,
GRB2-SOS, and RAS, suggesting a mechanism underlying the oscillatory
behavior observed for medium Ag levels (data not shown).

10 Outlook

In this article, we have reported a systematic effort to model FceRI signaling using
all the relevant information available.

The molecular map presented here is the result of the integration of information
found in the numerous publications. After taking into account suggestions and
corrections from experts, the map has been released on the web. The feedback
from the scientific community and the publication of novel results will lead to
further updating.

Subsequently, the map can be used as a template in order to visualize experi-
mental data, gaining valuable insights about the specific parts of the signaling
cascade that play a major role in response to specific stimuli. Using Cytoscape and
BiNoM software, topological and material analyses have been performed to
characterize the structure of the underlying network, decompose it into modules
and thereby simplify its representation and ease navigation.

The molecular map and its modular representations have in turn been used to
build a dynamical model, using a logical formalism. The derivation of a logical
model and its calibration (through the specification of the logical rules) led us to
reconsider and update specific parts of the map. Furthermore, model simulations
resulted in some inconsistencies (e.g., regarding Lyn knockout), thereby empha-
sizing gaps in our knowledge and the need for further model refinements.

This logical modeling approach enabled the recapitulation of several dynamical
properties of an extremely complex biological system, such as Fc receptor sig-
naling. Systematic testing of different initial conditions and stimuli could further
lead to predictions regarding the outcomes of single or multiple perturbations (e.g.,
mutations, use of specific enzymatic inhibitors), as well as potential pharmaco-
logical intervention points.

As further experimental data will be gathered regarding the cascades of Fc
receptor signaling, our logical model could serve as a template to design continuous
or stochastic models enabling more quantitative predictions. Ultimately, dynamical
model analyses should help to understand in more details how the different func-
tional outcomes of mast cell activation (degranulation, synthesis of lipidic medi-
ators, induction of cytokine transcription) are articulated at the level of the
underlying molecular network, and to what extend it might be possible to uncouple
these functions and delineate means to control them separately or collectively.
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Calcium Channels in Fc Receptor
Signaling

Tarik Attout, Andres Floto and Pierre Launay

Abstract The calcium ion (Ca2+) is the main common second messenger involved
in signaling transduction subsequent to immunoreceptor activation. Its rapid
intracellular elevation induces multiple cellular responses, such as secretion,
proliferation, mobility, and gene transcription. Intracellular levels of Ca2+ need to
reach a specific threshold to efficiently transduce the signal to activate transcrip-
tion factors through the recruitment of Ca2+-binding molecules. However, since
Ca2+ cannot be metabolized, its intracellular concentration is tightly regulated to
avoid the induction of programmed cell death. This highly controlled regulation of
Ca2+ homeostasis has recently been clarified by the uncovering of new ion
channels. The regulation of these channels allows the role of Ca2+ in Fc receptor
transduction pathways to be more precisely defined.
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1 Regulation of Ca2+ Homeostasis in Hematopoietic Cells

Calcium (Ca2+) is a ubiquitous second messenger in many hematopoietic cells,
including myeloid and lymphoid cells (Vig and Kinet 2009). Ca2+ mobilization
subsequent to receptor activation is involved in multiple cellular functions such as
motility, phagocytosis, cytokine secretion, gene expression, and apoptosis. The
aggregation of cell-surface immunoreceptors—such as the T cell receptor (TCR),
the B cell receptor (BCR) or Fcc receptors (FccRs)—by their cognate ligands
triggers a rapid increase in intracellular Ca2+ concentrations ([Ca2+]i) within a few
seconds that lasts for several minutes before returning to basal levels. The main
mechanism responsible of this intracellular Ca2+ rise has been described as store-
operated calcium entry (SOCE) through the Ca2+ release-activated Ca2+ (CRAC)
channel (Feske 2007; Vig and Kinet 2009). Following aggregation, immunore-
ceptors recruit several protein kinases and phosphatases to the receptor signaling
cluster, which initiates signal transduction. The membrane-proximal localization of
a particular repertoire of kinases and phosphatases confers signaling specificity on
each type of membrane receptor. However, the downstream transmission of the
signal from surface membranes requires the generation of one or more second
messengers such as inositol-1,4,5-trisphosphate (IP3). Among signaling molecules
located close to membrane receptors and involved in the early steps of signal
transduction, phospholipase C (PLC) plays a key role in the induction of Ca2+

mobilization. The activation of PLC family members hydrolyzes the lipid phos-
phatidylinositol-3,4-bisphosphate (PIP2) into diacylglycerol (DAG) and IP3. IP3

freely diffuses within the cytosol to bind its specific receptor, IP3R, triggering Ca2+

release from the endoplasmic reticulum (ER), the major intracellular Ca2+ store.
However, Ca2+ release from intracellular organelles can only support a moderate
and transient increase in intracellular Ca2+, and stored Ca2+ release is therefore
rapidly followed by a massive influx of Ca2+ from the extracellular space (Scha-
renberg et al. 2007). In resting lymphocytes, the intracellular concentration of Ca2+,
which is tightly controlled, is maintained at very low levels (10-7 M), while the
extracellular Ca2+ concentration is 10,000 times higher (10-3 M). The depletion of
ER Ca2+ thus activates store-operated Ca2+ channels located in the plasma mem-
brane, leading to Ca2+ influx into the cell down its steep concentration gradient, and
triggering a number of downstream signaling events such as the dephosphorylation
(and subsequent nuclear entry) of the transcription factor NFAT in T cells by the
Ca2+-dependent activation of calcineurin (Dolmetsch et al. 1997, 1998).
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CRAC is the best described and main SOCE channel in lymphocytes. However,
other mechanisms of cytosolic Ca2+ modulation that do not rely on store-operated
calcium signaling also exist in hematopoietic cells (Vig and Kinet 2009). These
channels may offer alternative and stimulus-specific ways for Ca2+ mobilization in
leukocytes, and the initial cue received by the immune cell could thus determine
the strength, amplitude and duration of the Ca2+ response.

The Ca2+ signaling pathway, however, results from the balance between the
positive and negative signals generated by multiple combinations of receptor-
ligand interactions that in turn depend on the variety of membrane receptors
expressed by a given immune cell (Billadeau and Leibson 2002). The Fc receptor
(FcR) family presents great heterogeneity and provides a good example of immune
response regulation (Winfield et al. 1977). The FcRs are composed of five main
subfamilies, according their binding of specific immunoglobulin isotypes: FcaR,
FccR, FclR, FceR, and FcdR (Hulett and Hogarth 1994), and each further consists
of different members. FcRs can be expressed in soluble form or integrated into the
plasma membrane, and are found on many leukocytes including monocytes,
macrophages, mast cells, basophils, neutrophils, natural killer cells, eosinophils,
and B cells (Daeron 1997; Amigorena and Bonnerot 1999). The consequences of
antibody aggregation on leukocyte function are directly related to the intrinsic
structure of the intracellular part of the FcR and its association with the common
signal-transducing c subunit. In fact, FcRs are classified in two groups depending
on their cellular effects: activating FcRs and inhibitory FcRs, and the resultant
Ca2+ mobilization is directly correlated with the status of these receptors. The
activating FcRs share the immunoreceptor tyrosine-based activation motif (ITAM)
with both the BCR and TCR, and use similar transduction pathways to trigger cell
responses (Daeron 1997). In contrast, certain FcRs could deliver an inhibitory
signal via the immunoreceptor tyrosine-based inhibition motif (ITIM), resulting in
the absence of sustained Ca2+ entry. In this review, we aim to describe the
mechanisms of Ca2+ mobilization subsequent to FcR activation.

2 Ca2+ Channels in Immune Cells

Since the increase in cytosolic Ca2+ is correlated with the control of a wide variety
of cellular processes, its regulation is crucial to leukocyte fate. Under resting
conditions, Ca2+ levels differ widely depending on cellular compartment (such as
the ER or mitochondria) and the external environment. To maintain its extremely
low levels in the cytosol when compared to the ER or mitochondria, the cytosolic
[Ca2+]i is tightly regulated, and an efficient return to homeostatic levels must occur
following Ca2+ mobilization (Robert et al. 2011). Several ion channels and
transporters are located at the plasma membrane and on intracellular organelles to
maintain intracellular Ca2+ homeostasis (Feske et al. 2012). In the following
sections, we present various molecules implicated in the movement of Ca2+ across
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the different cellular membranes in resting or activated cells, and their involvement
in the regulation of Ca2+ homeostasis.

2.1 Orai1 Subunits form the CRAC Channel

Cellular activation following the engagement of immunoreceptors leads to the
generation of IP3, the release of Ca2+ from the ER, and consequently, a massive
Ca2+ influx across the plasma membrane. This process, known as SOCE, represents
the main mechanism by which the intracellular Ca2+ concentration increases, and
involves the opening of the CRAC channels (Putney 1986). CRAC channels have
been extensively characterized in hematopoietic cells, especially in T lymphocytes
and mast cells. The existence of CRAC channels was originally demonstrated in
1992 by the characterization of its current (Icrac) (Hoth and Penner 1992). How-
ever, almost 15 years were needed to uncover the molecular structure underlying
the Icrac current (Vig and Kinet 2007). The hallmarks of the CRAC channel are its
extremely high ion selectivity for Ca2+ and its low conductance with a characteristic
inwardly rectifying current-voltage relationship (Prakriya 2009; Feske et al. 2012).
For the molecular identification of the CRAC channel, several laboratories took
advantage of the whole-genome RNA interference (RNAi) screen developed in
Drosophila (Boutros et al. 2004). By visualizing either intracellular Ca2+ mobili-
zation or the translocation of the NFAT-GFP reporter in Drosophila S2 cells, the
knock-down of the single gene olf186-F was found to be crucial for SOCE and Icrac
generation (Feske et al. 2006; Vig et al. 2006a, b). FLJ14466, the human homolog
of Drosophila olf186-F, named ORAI1 (or CRACM1) is a 32.7 kDa four trans-
membrane-domain glycoprotein with both amino and carboxyl termini located
intracellularly (Feske et al. 2012). Two other CRAC channel proteins, ORAI2 and
ORAI3 (also known as CRACM2 and CRACM3), have high sequence homology to
ORAI1. The molecular structure of the CRAC channel requires the homo-tetra-
merization of the ORAI1 molecule (Prakriya et al. 2006; Vig et al. 2006a, b;
Yeromin et al. 2006), but hetero-multimerization also can occur with its homologs
(ORAI2 and ORAI3) as well as some TRPC channel subunits (Liao et al. 2008; Vig
and Kinet 2009). CRAC channels are activated by the depletion of the Ca2+ store by
the coupling of other Ca2+ sensitive molecules located in intracellular stores
including the ER.

2.2 STIM1, the Endoplasmic Reticulum Ca2+ Sensor

Another key set of molecules, the stromal interaction molecules (STIMs), is
involved in the regulation of Ca2+ mobilization, and has been extensively char-
acterized concomitantly to Orai1. STIM1 and STIM2 are crucial for coordinating
Ca2+ release and entry signals necessary for the maintenance of cellular Ca2+
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homeostasis. STIM1 senses the depletion of ER Ca2+ stores through its EF hand-
SAM domain, and is directly coupled with ORAI1 channels to allow ORAI1-
mediated Ca2+ entry (Soboloff et al. 2012). This single transmembrane-domain
protein (77 kDa) is localized essentially in the ER and diffusely distributed in
resting cells. Consequent to cell activation and store depletion, the STIM1 protein
oligomerizes and is redistributed as discrete puncta to create an ER-plasma
membrane junction (Vig and Kinet 2009; Feske et al. 2012).

2.3 Other Ca2+ Channels

Although CRAC channels, composed of the assembly of ORAI and STIM mole-
cules, are the best characterized Ca2+ channels in hematopoietic cells, several other
channels may also mediate Ca2+ influx, including P2X receptors, voltage-gated
Ca2+ channels, and TRP channels. The P2X receptors are a family of nonselective
ion channels that are activated by extracellular ATP and allow the influx of cat-
ions, including Ca2+. At least three different P2X receptors have been implicated in
Ca2+ influx in human T lymphocytes: P2X1, P2X4 and P2X7. Their opening
causes Ca2+ entry and the activation of downstream signaling molecules such as
calcineurin, resulting in cell proliferation and IL-2 production by the autocrine
production of ATP (Yip et al. 2009). The second family of channels that is still
under investigation for its role in immune cells is the family of voltage-gated Ca2+

channels (Cav channels). Originally described in excitable cells such as neurons or
cardiac cells, there are numerous lines of evidence demonstrating the expression of
Cav channels in lymphocytes and particularly in T cells (Pelletier and Savignac
2013). Cav channels are highly Ca2+-selective channels that mediate Ca2+ influx in
response to the depolarization of excitable cells. Members of the Cav channel
family, including Cav1.1, Cav1.2, Cav1.3, and Cav1.4, and their regulatory subunits
b3 and b4, have been found to be expressed in human and mouse T cells, and
several studies have reported the presence of truncated or alternatively spliced Cav

isoforms (Feske et al. 2012). Recently, it has been suggested that voltage-gated
Ca2+ channels might play a different role in T cell biology than CRAC channels
(Badou et al. 2013). For example Cav1.4 modulates naïve T cell survival and
antigen-driven immune responses (Omilusik et al. 2011).

Other Ca2+ channels thought to be directly involved in extracellular Ca2+ entry
into leukocytes include those belonging to the TRP family, which were first
identified in the early 2000s.

3 TRP Channels

The transient receptor potential (TRP)-related channels are a large superfamily of
30 molecules expressed in several tissues and cell types. Most of them fall under
three main subfamilies: the canonical (TRPC), the melastatin-related (TRPM), and

Calcium Channels in Fc Receptor Signaling 99



vanilloid-receptor-related (TRPV) subfamilies. The ten remaining TRP channels
are subdivided into the TRPP, TRPML, TRPN, and TRPA subfamilies (Fleig and
Penner 2004; Pedersen et al. 2005). TRP channels are functionally heterogeneous
despite structural similarities (Freichel et al. 2012). Most TRP channels are non-
selective and permeable to several cations, including Ca2+ and Na+, and show little
voltage dependence (Feske et al. 2012; Freichel et al. 2012). In this section, we
will present the role of the TRP Ca2+ channels that have been shown to be involved
in the regulation of Ca2+ homeostasis in immune cells.

3.1 TRPC Channels

The seven members of the TRPC family (TRPC1-TRPC7) are nonselective cation
channels and are activated by PLCc stimulation. It has been reported by different
groups that TRPC channels increase the [Ca2+]i through plasma membrane
receptor-coupled stimulation or through store depletion in different cell types
(Venkatachalam et al. 2001; Philipp et al. 2003; Putney 2005; Vig and Kinet
2009). In particular, DAG can activate TRPC3, TRPC6, and TRPC7, and induce
sustained Ca2+ mobilization (Venkatachalam et al. 2001; Vig and Kinet 2009).
Before the identification of ORAI1, the contribution of TRPC channels to SOCE
was for a time suggested (Feske 2007; Freichel et al. 2012), but this possibility is
still under investigation.

3.2 TRPM2 Channels

TRPM2 is a nonselective cation channel that is widely expressed in mammalian
cells including leukocytes (Perraud et al. 2001). TRPM2 is permeable to Ca2+ and
activated by ADP-ribose. Several intracellular factors positively (Ca2+, cADP-
ribose, H2O2) or negatively (AMP) regulate this channel (Yamamoto et al. 2010;
Sumoza-Toledo and Penner 2011). The activation of TRPM2 by excess ADP-
ribose production associated with DNA damage and repair may contribute to
apoptosis. In T cells, it has been demonstrated that TRPM2 expression is strongly
upregulated after cell activation and that TRPM2 contributes to Ca2+ influx (Beck
et al. 2006; Feske et al. 2012). Furthermore, in murine TRPM2-deficient macro-
phages, the cytoplasmic Ca2+ elevation after H2O2 activation is completely
abolished, suggesting that the TRPM2 channel may constitute the principal Ca2+

pathway during early exposure to H2O2 (Zou et al. 2013).
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3.3 TRPM4 Channels

TRPM4 is a monovalent cation channel and is not Ca2+-permeable. However,
TRPM4, together with the potassium (K+) channels KCa1.3 and Kv3.1, regulates
calcium influx by controlling cell membrane potential, and thus, the driving force
for Ca2+ entry (Feske et al. 2012). TRPM4 is expressed in many cell types
including leukocytes. We and others have characterized the TRPM4 protein as a
Ca2+-activated, nonselective (CAN) cation channel (Launay et al. 2002; Nilius
et al. 2003) that is inhibited by intracellular ATP (Fleig and Penner 2004).
Although the TRPM4 channel is not directly required for Ca2+ entry, it acts as a
powerful regulator of intracellular Ca2+ levels after cell activation. Indeed, sub-
sequent to an increase of the [Ca2+]i, the opening of TRPM4 channels allows a
massive influx of Na+ and potent membrane depolarization, which together
decrease the electrical driving force for Ca2+ entry. Thus, TRPM4 prevents cellular
Ca2+ overload and is therefore important for SOCE regulation by providing a
negative feedback mechanism. In Jurkat T cells, the inhibition of endogenous
TRPM4 by RNAi or the overexpression of a dominant negative mutant form of
TRPM4 leads to an increase in Ca2+ influx and enhanced IL-2 production (Launay
et al. 2004). Bone-marrow-derived dendritic cells from TRPM4-deficient mice
show impaired migration after bacteria-induced inflammation, but no alteration of
maturation, emphasizing that the maturation and the migration of dendritic cells
are independently regulated (Barbet et al. 2008). Moreover, mast cells from
TRPM4-deficient mice show an increase in Ca2+ influx and more degranulation
than wild-type mice after FceRI activation. As expected, TRPM4-deficient mice
develop a more severe IgE-mediated passive cutaneous anaphylactic response
(Vennekens et al. 2007). Thus, ion channels that control Ca2+ influx are key
players in the regulation of the signal transduction of receptors expressed at the
surface of immune cells, including FcRs (Fig. 1).

4 Fc Receptor-Mediated Ca2+ Signaling

The aggregation of Fc receptors activates a battery of signaling molecules, some of
which are involved in the mobilization of intracellular Ca2+. However, how
antibodies or immune complexes generate Ca2+ signals in leukocytes is still not
fully understood, mainly due to the structural diversity of receptor subtypes and
the different pathways engaged (Nunes and Demaurex 2010). FcRs are versatile
molecules that, depending on the nature of the co-aggregated subunits, can deliver
a variety of signals to the cell. They share activation motifs with BCRs and TCRs,
and under appropriate conditions, can trigger cell responses using the same
transduction pathways as the antigen receptors.
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4.1 Activating FcRs

The defining feature of an activating FcR is the presence of an immunoreceptor
tyrosine-based activation motif (ITAM) in its intracytoplasmic domain (Reth
1989). Most subunits associated with immunoreceptors contain this ITAM trans-
duction motif including the TCR-associated CD3c, CD3d, CD3e, and f chains, the
BCR-associated Iga and Igb chains, DAP12, and several virally encoded trans-
membrane molecules. This signaling motif has also been found to be carried
directly by the FcR a chain in the case of the human FccRIIA or by transmembrane
adaptor molecules (c or b chain) (Blank et al. 1989; Nimmerjahn and Ravetch
2008). The cross-linking of activating FcRs by an immune complex initiates a
similar signaling pathway to that observed with the TCR or BCR, and starts by the
activation/dephosphorylation of src family protein kinases. These phosphorylate
both tyrosine residues of the ITAM, which is the docking site for the tandem SH2
domains of the Syk family kinases. Syk kinase phosphorylation is believed to be
central to FcR signal transduction and leads to the recruitment and phosphorylation
of various signaling molecules such as phosphatidylinositide 3-kinases (PI3K). The
production of phosphatidylinositol-3,4,5-trisphosphate (PIP3) by PI3K allows the
membrane recruitment of pleckstrin homology (PH) domain-containing molecules,
such as Bruton’s tyrosine kinase (Btk) and PLCc (Ravetch and Bolland 2001;
Billadeau and Leibson 2002; Nimmerjahn and Ravetch 2008). As seen following

Fig. 1 FceRI-mediated Ca2+ mobilization. The aggregation of FceRI by the IgE-antigen complex
triggers the liberation of Ca2+ stored within the endoplasmic reticulum. Subsequently, the Ca2+

ion dissociates from STIM1, which allows its relocation to the plasma membrane and the opening
of the ORAI1 channel. The increased intracellular Ca2+ concentration activates the TRPM4
channel, leading to massive Na+ entry. This potent membrane depolarization lowers the Ca2+

driving force, thereby reducing the Ca2+ influx and cellular activation
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TCR activation, the aggregation of FcRs such as FceRI leads to the phosphorylation
of PLCc, which generates IP3. IP3 freely diffused within the cell and increases the
Ca2+ concentration rapidly (through store release) followed by extracellular Ca2+

influx triggered by the membrane association of STIM1 and Orai1 (Fig. 1). The
increase in intracellular Ca2+ levels is often interpreted as a successful outcome of
FcR activation by the immune complex. The signaling pathway described earlier is
based on the activation of CRAC channels. Converging data obtained recently
using cells from mice or humans in which SOCE induction fails support this idea.
Indeed, NK cells purified from patients carrying the R91W single amino acid
substitution in Orai1, display defective SOCE after FccRIIIA cross-linking (Maul-
Pavicic et al. 2011). Also, a defect in at least one of the molecules implicated in
SOCE affects the activating capacity of FcR and subsequent cellular function.
Braun et al. have demonstrated that murine STIM1-deficient macrophages present
impaired FccR-induced Ca2+ entry and a strong diminution of IgG2a and IgG2b-
mediated phagocytosis (Braun et al. 2009). It has been further confirmed by another
study on IgG-opsonized zymosan internalization and phagosomal reactive oxygen
species (ROS) production in DMSO-differentiated HL-60 cells and neutrophils,
which concludes that FccR-mediated phagocytosis requires intracellular Ca2+ store
depletion for the bacterial-internalization phase. In addition, phagosomal ROS
production requires extracellular Ca2+ entry mediated by Orai1/STIM1 and relayed
by the S100A8-A9 Ca2+-binding proteins (Steinckwich et al. 2011).

However, Choi et al. have suggested an alternative pathway that is primarily
responsible for Ca2+ mobilization in the RBL mast cell line following the binding
of the IgE/antigen complex (Choi et al. 1996). The cross-linking of FceRI activates
sphingosine kinase (SK), which produces an alternative second messenger,
sphingosine-1-phosphate (S1P), for intracellular Ca2+ mobilization. The FceRI-
mediated Ca2+ signal can be suppressed using a competitive SK inhibitor, without
affecting Syk tyrosine kinase activation and the low-level production of IP3

(Daeron 1997). Furthermore, the aggregation of FccRI in IFN-c-treated monocytes
mobilizes a transient release of stored Ca2+ that involves the activation of phos-
pholipase D and results in the downstream activation of SK (Floto et al. 1997;
Melendez et al. 1998; Nunes and Demaurex 2010).

4.2 Inhibitory FcRs

FcRs provide a mechanism for lymphoid and myeloid cells to regulate the immune
response, especially when activating and inhibitory receptors recognize similar
ligands. Inhibitory receptors provide a good example of how cells regulate acti-
vating signals by simultaneously triggering an inhibitory signal, thus setting
thresholds for cell activation (Ravetch and Lanier 2000). Inhibitory receptors
contain an immunoreceptor tyrosine-based inhibition motif (ITIM) in their cyto-
plasmic domains.
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The first discovered and only known IgG Fc receptor bearing this inhibitory
motif is the FccRIIB. This receptor is highly conserved between mice and humans
and has been extensively studied as an ITIM-containing receptor promoting an
inhibitory signal. FccRIIB is broadly expressed on hematopoietic cells with the
exception of NK and T cells (Ravetch and Lanier 2000; Billadeau and Leibson
2002; Mackay et al. 2006; Nimmerjahn and Ravetch 2008; Nunes and Demaurex
2010). Its function is particularly well documented in B cells and its signaling
pathway may be extrapolated to other leukocytes bearing ITIM-containing
receptors. The simultaneous engagement of the BCR and FccRIIB results in the
phosphorylation of the tyrosine residue of the ITIM sequence by src family protein
tyrosine kinases (PTKs). This leads to the recruitment of the SH2-domain-con-
taining inositol 5-phosphatase SHIP. This phosphatase catalyzes the conversion of
the PI3K product PIP3 into PIP2. Btk, and PLCc are no longer recruited to the
plasma membrane, thus inhibiting the signal transduction mediated by the BCR
(Scharenberg et al. 2007) (Fig. 2). Choquet and colleagues were the first to
demonstrate that the co-cross-linking of membrane Igs and FccRIIB with an anti-
Ig antibodies triggered only a transient Ca2+ release from intracellular stores, but
not extracellular Ca2+ influx into B cells (Choquet et al. 1993). The mechanism of
Ca2+ influx abrogation via FccRIIB has been further deciphered by addressing the
role of Btk/Tec kinases in the regulation of Ca2+ homeostasis. As Btk plays a key
role in signal transduction in B cells, the co-cross-linking of the BCR and FccRIIB
has been shown to abrogate Btk-dependent intracellular Ca2+ mobilization
(Fluckiger et al. 1998) (Fig. 2).

Fig. 2 FccRIIB reduces Ca2+ mobilization. The co-aggregation of FccRIIB and the BCR
recruits and activates the phosphatase SHIP, which acts upstream of store-mediated Ca2+ release
and subsequently modulates Ca2+-dependent signal transduction
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The inhibitory signal mediated by the FccRIIB receptor is important for the
regulation of immune balance. A reduced or absent inhibitory signal in B cells
contributes to lowering the threshold for cell activation, and consequently induces
stronger B cell activation after BCR cross-linking and accelerates the onset
autoimmune disease (Mackay et al. 2006; Nimmerjahn and Ravetch 2008). In the
case of systemic lupus erythematosus (SLE), human and animal studies have
established a strong correlation between inhibitory FccRIIB and disease suscep-
tibility (Yuasa et al. 1999; Bolland and Ravetch 2000; Nakamura et al. 2000).
Interestingly, SLE B cells exhibit a greater BCR-mediated Ca2+ elevation than B
cells from normal individuals or patients with other systemic autoimmune rheu-
matic diseases (Liossis et al. 1996; Enyedy et al. 2001). However, the increase in
Ca2+ release from intracellular stores in SLE patients is not correlated with a
substantial increase in IP3 production. The molecular mechanism explaining the
increased Ca2+ mobilization in lymphocytes from SLE patients thus remains
obscure, and one can only speculate that there is an upregulation or gain-of-
function of STIM1 and/or ORAI1 in these lymphocytes (Tsokos 2008). In addition
to having a regulatory role on cell activation and the immune response, FccRIIB
plays an important role in the development of B cells and has emerged as a late
checkpoint for humoral immunity (Nimmerjahn and Ravetch 2008). The BCR-
independent aggregation (homo-oligomerization) of FccRIIB can induce the
apoptosis of B cells (Pearse et al. 1999; Nimmerjahn and Ravetch 2008) (Fig. 3).

Fig. 3 Homo-oligomerization of FccRIIB induces apoptosis. The oligomerization of FccRIIB by
the immune complex results in increased levels of B cell apoptosis, independently of SHIP.
Upstream signaling involving the Btk/JNK pathway activates cytochrome c release and
mitochondrial membrane depolarization. Cytochrome c can directly bind to the IP3 receptors,
causing sustained Ca2+ mobilization. The addition of Ca2+ leakage from disrupted mitochondria
and Ca2+ influx into the cell by Orai1 activation would lead to Ca2+ overload and apoptosis
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In DT40 chicken B cells expressing the mouse FccRIIB, the aggregation of the
inhibitory receptor independently of the BCR induces the activation of both cas-
pase 3 and 9 in association with the release of cytochrome c from mitochondria,
leading to apoptosis (Tzeng et al. 2005). During apoptosis, cytochrome c released
from mitochondria binds to IP3 receptors and deregulates Ca2+ homeostasis,
amplifying the FccRIIB-mediated programmed cell death (Boehning et al. 2003)
(Fig. 3). Indeed, the regulation of Ca2+ homeostasis is closely correlated with the
proapoptotic signal, and the control of Ca2+ mobilization by STIM1 is directly
involved in B cell fate (Melamed et al. 1998; Limnander et al. 2011).

4.3 ITAMi-Mediated Ca2+ Mobilization

Besides the inhibitory signal mediated by ITIM, we have described an alternative
immune regulatory function mediated by the ITAMs, named ITAMi (Pasquier et al.
2005). In contrast to the effects of ligand mediated co-aggregation, the binding of
FcaRI by IgA in the absence of antigen induces a potent SHP-1-dependent inhi-
bition of heterologous receptors (Blank et al. 2009). The intracellular increase in
Ca2+ influx was also assessed in the context of ITAMi, and although, the aggre-
gation of multiple FceRIs by IgE/antigen alone induces potent Ca2+ mobilization,
uncomplexed IgGs or anti-FccRIII F(ab0)2 binding of FccRIII reduces the Ca2+

mobilization mediated by aggregated FceRI (Aloulou et al. 2012).

5 Conclusions

The aggregation of Fc receptors recruits and activates a cluster of protein tyrosine
kinases, resulting in the production of IP3. In immune cells, the cytoplasmic dif-
fusion of IP3 induces an initial release of intracellular stored Ca2+ followed by a
much more potent influx of extracellular Ca2+ (through SOCE), which is regulated
by the molecular interaction of STIM1 and ORAI1. To maintain cellular integrity
and the ability of the cell to be activated subsequently, the Ca2+ signal returns to
basal levels in part through the modulation of the membrane potential by channels
such as TRPM4.
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Regulation of FceRI Signaling by Lipid
Phosphatases

Marcel Kuhny, Carolin N. Zorn and Michael Huber

Abstract Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin
that play a prominent role in allergic diseases. They express the high-affinity
receptor for IgE (FceRI), which when cross-linked by multivalent antigens triggers
the release of preformed mediators, generation of arachidonic acid metabolites,
and the synthesis of cytokines and chemokines. Stimulation of the FceRI with
increasing antigen concentrations follows a characteristic bell-shaped dose-
responses curve. At high antigen concentrations, the so-called supra-optimal
conditions, repression of FceRI-induced responses is facilitated by activation and
incorporation of negative signaling regulators. In this context, the SH2-containing
inositol-50-phosphatase, SHIP1, has been demonstrated to be of particular
importance. SHIP1 with its catalytic and multiple protein interaction sites provides
several layers of control for FceRI signaling. Regulation of SHIP1 function occurs
on various levels, e.g., protein expression, receptor and membrane recruitment,
competition for protein–protein interaction sites, and activating modifications
enhancing the phosphatase function. Apart from FceRI-mediated signaling, SHIP1
can be activated by diverse unrelated receptor systems indicating its involvement
in the regulation of antigen-dependent cellular responses by autocrine feedback
mechanisms or tissue-specific and/or (patho-) physiologically determined factors.
Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for
patients suffering from acute or chronic inflammation or allergies.
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1 Introduction

1.1 Mast Cells as Orchestrators of the Immune System

Mast cells (MCs) are hemopoietically derived, tissue-resident cells, which are
located in tissues proximal to the external environment, i.e., skin and mucosa of the
intestine and airways (Metz and Maurer 2007). One of their main functions is to act
as guards, alerting the body to invasion by bacteria, parasites, and viruses, and
initiating an inflammatory response (Echtenacher et al. 1996; Malaviya et al. 1996;
Pennock and Grencis 2006; Wang et al. 2012). On the pathophysiological side,
among others, MCs are involved as central effector cells in acute allergic disorders
(Galli et al. 2008). Here, MCs recognize multivalent allergens/antigens (Ags) via
IgE immunoglobulins, which are bound to high-affinity IgE receptors (FceRI) on
the surface of the MCs. Ag-induced cross-linking of the FceRI elicits several pro-
inflammatory responses, such as the release of preformed mediators (e.g., hista-
mine, proteoglycans, and proteases, such as chymases, tryptase, granzyme B, and
even active caspase-3 (Pejler et al. 2010; Pardo et al. 2007; Garcia-Faroldi et al.
2013; Zorn et al. 2013) from intracellular granules in a process called degranula-
tion, and the de novo production and release of arachidonic acid metabolites (e.g.,
leukotrienes and prostaglandins) as well as cytokines and chemokines (e.g., IL-6,
TNF-a, and MCP-1) (Turner and Kinet 1999). As a result, MCs play a central role
in the development of type I hypersensitivity reactions (Costa et al. 1997;
Feyerabend et al. 2011).

1.2 FceRI: Structure and Signaling

The FceRI on murine MCs and basophils consists of one a-subunit, one b-subunit,
and two disulfide-bridged c-subunits (abc2) (Blank et al. 1989). The FceRI
c-subunit also associates with other activating Fc receptors, and therefore, is called
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FcRc (Ravetch and Kinet 1991). The a-subunit, which contains only a short
cytoplasmic tail, binds to the constant Ce3 region of the IgE molecule via its second
extracellular immunoglobulin-like domain (Garman et al. 1998). The b-subunit and
the c-subunits harbor immunoreceptor tyrosine-based activation motifs (ITAMs) in
their cytoplasmic domains (Reth 1989). Upon receptor cross-linking the Src family
kinase (SFK) Lyn phosphorylates the ITAMs, which then are able to interact with
cytoplasmic proteins containing phosphotyrosine-binding SH2-domains (Turner
and Kinet 1999). Lyn has been shown to pre-associate with the b-subunit of the
FceRI (Yamashita et al. 1994; Vonakis et al. 1997). For completeness, it has to be
added that the FceRI on murine MCs requires the abc2 configuration for successful
surface expression (Blank et al. 1989), whereas the human FceRI can be expressed
in either ac2 or abc2 configuration on human MCs and basophils (Garman et al.
1998). However, the human b-chain exerts two important amplifier functions.
Compared to a human ac2 FceRI, presence of the b-chain enhances (i) stability and
surface expression as well as (ii) the activation mechanisms of the FceRI (Don-
nadieu et al. 2000; Dombrowicz et al. 1998). Finally, binding of IgE to the FceRI is
not a mere passive pre-sensitization step to confer Ag specificity to the MCs, but
rather it induces Ag-independent signaling events actively promoting MC survival
(Asai et al. 2001; Kalesnikoff et al. 2001; Yamaguchi et al. 1997).

As mentioned earlier, the IgE-bound FceRI has to be cross-linked by multi-
valent Ag for relevant activation, such as release of preformed mediators, to occur.
Initially, the SFK Lyn, which is constitutively bound to the b-chain of the FceRI,
phosphorylates the ITAMs of both b- and c-chains (Yamashita et al. 1994;
Vonakis et al. 1997). This enables the tandem SH2 domains of the cytoplasmic
tyrosine kinase Syk to interact with the doubly-phosphorylated ITAMs of the
c-chains. This stabilizes Syk in its active conformation, and initiates amplification
of several downstream signaling pathways necessary for MC activation (Costello
et al. 1996; Jouvin et al. 1994; Kihara and Siraganian 1994). Intriguingly, in B-
lymphocytes Syk acts as a double-specificity kinase. It phosphorylates the ITAM-
tyrosines and an adjacent serine residue of the Ig-a subunit of the B cell antigen
receptor (BCR) (Heizmann et al. 2010). The serine phosphorylation was shown to
attenuate Ag-triggered BCR activation. For FceRI signaling, threonine phos-
phorylation of FcRc was demonstrated to be necessary for full FcRc tyrosine
phosphorylation and Syk activation (Swann et al. 1999). It is tempting to speculate
that in MCs, Syk as a double-specificity kinase boosts its own activation via
positive feedback regulation.

An additional pathway crucial for MC activation is mediated by the SFK Fyn,
which phosphorylates the adaptor protein Gab-2, enabling its subsequent inter-
action with the lipid kinase phosphatidylinositol-3-kinase (PI3 K) (Parravicini
et al. 2002; Gu et al. 2001). PI3 K phosphorylates its substrate, phosphatidylino-
sitol-4,5-bisphosphate (PI-4,5-P2), to produce phosphatidylinositol-3,4,5-trisphos-
phate (PIP3) (Fig. 1), an important 2nd messenger for the regulation of different
cellular activation pathways (Marone et al. 2008). Deficiencies in Fyn, Gab-2 or
the p110d isoform of PI3 K have been demonstrated to result in abrogation or
severe attenuation of Ag-triggered MC degranulation as well as allergic
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hypersensitivity responses (Parravicini et al. 2002; Gu et al. 2001; Ali et al. 2004).
Additional support for the importance of PI3 K-mediated signaling for Ag-trig-
gered MC activation came from the analysis of bone marrow-derived MCs
(BMMCs) from mice deficient for the SH2-containing inositol-50-phosphatase,
SHIP1 (Fig. 2), which hydrolyses PIP3 to yield PI-3,4-P2 (Fig. 1) (Kalesnikoff
et al. 2003). Contrary to p110d-deficient BMMCs, SHIP1-deficient BMMCs are
much more prone to Ag-mediated degranulation than wild-type BMMCs. They
even degranulate under conditions where wild-type MCs do not, i.e., following
stimulation with Steel Factor (SF; also known as stem cell factor and c-kit ligand)
or IgE alone (Huber et al. 1998a, b). These studies established SHIP1 as an
important gatekeeper of MC degranulation.

Fig. 1 Control of the phospholipid composition by lipid kinases and phosphatases. The
phosphatidylinositol-3-kinase (PI3 K) converts PI-4,5-P2 into the second messenger PI-3,4,5-P3.
Two prominent lipid phosphatases limit the pool of PI-3,4,5-P3: (i) the inositol-30-phosphatase,
phosphatase and tensin homolog (PTEN), reverses the reaction catalyzed by PI3 K. (ii) the
inositol-50-phosphatase, SHIP1, limits the PI-3,4,5-P3 pool by removal of the phosphate group at
the 50-position of the inositol ring, thereby generating PI-3,4-P2

Fig. 2 Schematic representation of the structure of SHIP1. The central 50-phosphatase domain
of SHIP1 is N-terminally flanked by a pleckstrin homology-related (PH-R) domain that binds PI-
3,4,5-P3. Located at the C-terminal site of the phosphatase domain is a C2 domain, which
enhances the catalytic activity of SHIP1 when bound to PI-3,4-P2. Protein-protein interactions are
facilitated by a Src homology 2 (SH2) domain at the very N-terminus as well as by a C-terminal
proline-rich region, which also contains two NPxY motives. For details on the indicated
interaction partners see main text
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A further signaling pathway important for MC activation is represented by the
signaling enzyme PLC-c, which catalyzes hydrolysis of PI-4,5-P2 concomitantly
yielding the 2nd messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol
(DAG). While IP3 induces release of calcium ions from intracellular stores, DAG
is involved in the activation of various PKC isotypes. In particular, PKC-b has
been shown to be crucial for induction of FceRI-mediated effector functions
(Nechushtan et al. 2000; Fehrenbach et al. 2009). Release of calcium ions from the
endoplasmic reticulum (ER) is accompanied by a conformational change in the
calcium-binding protein STIM1 localized in the ER membrane, which then
interacts with and leads to the opening of the store-operated calcium channel
ORAI1 in the plasma membrane to allow for sustained calcium entry (Feske
2007). The activity of STIM1 has been shown previously to be indispensible for
Ag-triggered degranulation, proinflammatory cytokine production, and anaphy-
lactic responses (Baba et al. 2008).

2 The Lipid Phosphatase SHIP1 Regulates FceRI Signaling

MC activation, for instance degranulation in response to increasing Ag concen-
trations follows a bell-shaped dose-response curve, showing weak responses at
both low (sub-optimal) and high Ag (supra-optimal) concentrations (Huber 2013).
Interestingly, the kinetics of intracellular signaling do not reflect this curve.
Indeed, early overall protein tyrosine phosphorylation was slightly enhanced in
supra-optimally versus optimally stimulated MCs (Kepley et al. 1998; Gimborn
et al. 2005). In particular, tyrosine phosphorylation of SHIP1 increases with rising
Ag levels (Gimborn et al. 2005). This suggests that SHIP1 is involved in the
regulation of the descending part of the dose-response curve and, in fact, SHIP1-
deficient BMMCs only show weak or no reduction of degranulation in response to
supra-optimal antigen concentrations (Gimborn et al. 2005). A strong correlation
between SHIP1 phosphorylation and supra-optimal Ag signaling has also been
reported in human basophils (Gibbs et al. 2006).

Related to this, Lyn has been shown to phosphorylate and activate SHIP1 in
MCs and degranulation studies with Lyn-deficient BMMCs have revealed that
these cells do also not display the descending part of the bell-shaped degranulation
curve (Hernandez-Hansen et al. 2004). Interestingly, Lyn has been shown to
tyrosine phosphorylate PKC-d and complexes of Lyn with SHIP1 and PKC-d have
been reported (Song et al. 1998; Leitges et al. 2002). Relevant to this, Leitges et al.
observed augmented Ag-triggered degranulation in PKC-d-deficient BMMCs, in
particular in response to supra-optimal stimulus concentrations (Leitges et al.
2002). These data strongly suggest the existence of an inhibitory signalosome,
which appears to take action when MCs are stimulated by supra-optimal Ag
concentrations.
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2.1 Recruitment of SHIP1 to the Active FceRI

How would coupling between supra-optimally cross-linked FceRIs and such an
inhibitory signalosome be achieved? Intriguingly, tyrosine phosphorylation of the
b-subunit of the FceRI, which acts as amplifier of FceRI-mediated activation
signals (Dombrowicz et al. 1998; Donnadieu et al. 2000), is strongest in response
to high Ag concentrations (Gimborn et al. 2005; Draberova et al. 2004; Xiao et al.
2005). In this respect, in a very thorough study, Xiao et al. demonstrated that Lyn
is most active under supra-optimal conditions, resulting in pronounced tyrosine
phosphorylation of the b-subunit ITAM as well as SHIP1 along with suppressed
degranulation and cytokine production (Xiao et al. 2005). Importantly, there are
two differences between the b-chain and FcRc ITAMs, (i) the b-ITAM has a
shorter spacer between its two YXXL sequences and (ii) the b-chain ITAM
contains an additional tyrosine residue. Thus, the b-subunit may utilize Lyn to
negatively regulate downstream events in response to supra-optimal Ag concen-
trations via its unique ITAM (Xiao et al. 2005). This puts the FceRI b-chain and
Lyn at the center of initiation of suppressive FceRI-mediated signaling and SHIP1,
by controlling the PI3 K pathway amongst others, as one of the important
downstream regulators of this response. However, there are certainly more sig-
naling proteins involved in this process, such as PKC-d as mentioned earlier
(Leitges et al. 2002).

The reports showing that SHIP1 acts as gatekeeper of MC activation in general
and that SHIP1 particularly controls MC activation in response to supra-optimal
Ag concentrations suggests that the amount and activity of SHIP1 should be
decisive for the activity of MCs as well as basophils. In this line, fetal liver-derived
MCs from SHIP1 heterozygous mice degranulated significantly stronger in
response to FceRI crosslinking than corresponding wild-type MCs (Huber et al.
2002). Moreover, for a subpopulation of highly allergic donor basophils, termed
IgE(+) basophils, hyper-releasability was shown to be associated with low levels
of SHIP1 protein (Vonakis et al. 2001). In this line, in an in vivo study SHIP1-
deficient mice were found to show augmented anaphylactic response and systemic
MC hyperplasia. Importantly, these defects were convincingly demonstrated to be
due to loss of SHIP1 in MCs (Haddon et al. 2009). Though not shown for MCs or
basophils, several different missense mutations in SHIP1 have been described in
acute myeloid leukemia patients resulting in reduced phosphatase activity or
altered interaction with receptors and/or adaptor proteins (Luo et al. 2003; Brauer
et al. 2012). Assuming that such mutations would govern SHIP1 expression in
MCs or basophils, enhanced activation of these cells and thus pro-allergic phe-
notypes would most likely be the consequence.

116 M. Kuhny et al.



2.2 MicroRNAs Control SHIP1 Expression

Several lines of evidence have shown that posttranscriptional regulation is
involved in the modulation of SHIP1 expression and function. In particular
microRNA-155 (miR-155) was demonstrated to control stability of SHIP1 mRNA
thus leading to the reduction of SHIP1 protein content in cells exhibiting increased
amounts of miR-155 (O’Connell et al. 2009). SHIP1 has been demonstrated to be a
primary target of miR-155, for instance in response to LPS stimulation of primary
macrophages (O’Connell et al. 2009). Our preliminary data indicate induction of
miR-155 in LPS- and Ag-stimulated BMMCs (data not shown), suggesting a
regulatory role for miR-155 in diverse proinflammatory MC responses. Overex-
pression of miR-155 has been evidenced in several cancers of B-cell origin
(Vigorito et al. 2013), suggesting involvement of miR-155 in the process of
malignant transformation. Moreover, loss of SHIP1 expression measured in
CD34+ bone marrow cells of patients with high-risk myelodysplastic syndromes
was associated with enhanced expression of miR-155 and miR-210 (Lee et al.
2012). Interestingly, SHIP1 was proven to be a specific target of miR-210 as well
(Lee et al. 2012). In conclusion, these data show that SHIP1 expression can be
controlled by different miRs (miR-155 and miR-210) and that dysregulation of
these miRs can be involved in pathological developments. Thus, it is tempting to
speculate that MC- and basophil-driven proinflammatory and allergic diseases
might be aggravated by pathologically enhanced miR-155/-210 expression and
concomitant reduction in cellular SHIP1 protein levels.

2.3 Autocrine Signals Modulate SHIP1 Activity

Stimulation of MCs via the FceRI induces immediate release of preformed
mediators from secretory lysosomes as well as production and release of arachi-
donic acid metabolites (Mencia-Huerta et al. 1983). As shown in Fig. 3, factors
secreted in response to Ag stimulation are capable to elicit cytokine production in
BMMCs that have not been sensitized with IgE. Interestingly, the released factors
trigger a response that is negatively controlled by SHIP1. This experiment clearly
shows that the negative regulation by SHIP1 extends beyond FceRI signaling in
MCs. Furthermore, it is a good example for an often-neglected aspect particularly
of in vitro experiments: As a consequence of the Ag-triggered, rapid mediator
release, autocrine stimulation of receptors that are utterly unrelated to the FceRI
take place and their downstream signaling cooperates and modifies FceRI-derived
cellular responses. For instance, MCs deficient in p110c, the catalytic subunit of
class IB PI3 K, which is not directly involved in FceRI signaling, show impaired
responses to Ag-stimulation. This defect could be attributed to an autocrine
mechanism (Laffargue et al. 2002). Interestingly, such autocrine loops might have
the potential to bias the signaling cascade originating from the FceRI e.g. by
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priming the SHIP1 signalosome. The common model for the activation of SHIP1
was based on the recruitment of the molecule to the immediate proximity of the
respective receptor and thus to its substrate, PIP3. Recently, Zhang et al. found that
elevated levels of 30-50-cyclic adenosine monophosphate (cAMP) resulted in
enhanced activity of SHIP1 (Zhang et al. 2009) and subsequently, Ser440 within
the phosphatase domain was identified to be the target of cAMP-dependent protein
kinase A (PKA) (Zhang et al. 2010). These studies opened up the possibility that
stimulation via Ga(s)-dependent G protein-coupled receptors (GPCRs) might
enhance the activity of SHIP1 independent of direct recruitment to the FceRI-
proximal signalosome. cAMP-generation is driven by the adenylyl cyclase, a
downstream effector of Ga(s)-coupled GPCRs. In this context, prostaglandin E2

(PGE2) has been proposed as a negative regulator of effector functions in human
MCs (Kay et al. 2006). Feng et al. have outlined that the suppression of early and
late responses in MCs by PGE2 is dependent on the Ga(s)-coupled receptor EP2,
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Fig. 3 Autocrine/paracrine stimulation of mast cells can be controlled by SHIP1. Soluble factors
released from Ag-stimulated MCs elicit the production of the pro-inflammatory cytokine IL-6 in
recipient MCs previously not sensitized with IgE and thus blind for Ag. SHIP1-deficient (ko)
BMMCs show augmented IL-6 production compared to wild-type (WT) cells. Donor WT
BMMCs were preloaded with DNP-specific IgE (SPE7) over night. 209106 cells/ml were
stimulated with the Ag DNP-HSA for 30 min, cells were pelleted and different amounts of
supernatants were transferred to non-sensitized WT or SHIP1 ko recipient BMMCs. IL-6
production was assessed by ELISA after 4 h. Depicted are mean and SD of one representative
experiment
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leading to increased cAMP levels, and activation of PKA which, in turn, leads to
reduced MC responses by the induced cAMP early repressor, ICER (Feng et al.
2006). Though not investigated so far, PKA-activated SHIP1 may further attenuate
MC functions in this setting. However, conflicting data have been published in
murine BMMCs attributing PGE2 enhancing effects on IgE-mediated effector
functions (Gomi et al. 2000). In these cells, PGE2 appears to act via EP1 and EP3,
both coupled to Ga(q) (and Ga(i)) proteins, which signal, among others, via direct
activation of Btk (Bence et al. 1997). In this setting, PGE2 signaling via EP1 and
EP3 would reduce levels of cAMP and thus, PKA-dependent activation of SHIP1.
However, attenuated activity of SHIP1 would favor stabilization of PIP3 levels
and, in turn, Btk activity (Bolland et al. 1998). Though means of evidence are still
missing, the combination of these data clearly suggests that Ag-stimulated MCs
make use of and regulate SHIP1 in at least two waves, a direct one controlled by
FceRI-organized signalosomes and autocrine ones regulated by various receptor
types, such as GPCRs (Fig. 4). Though data on SHIP1 function downstream of
GPCRs are scarce, with respect to Ag-triggered cytokine secretion, SHIP1 has
been demonstrated to control NFjB and p38MAPK activation (Kalesnikoff et al.
2002), both well known to be crucial for gene transcription as well as mRNA
stability (Ronkina et al. 2010; Saccani et al. 2002).

2.4 The Adaptor Function of SHIP1 Provides Another Layer
of Regulation

How SHIP1 controls Ag-triggered MC activation/degranulation, in particular to
supra-optimal Ag concentrations, is not entirely clear. Because of its structure,
SHIP1 incorporates catalytic as well as adaptor functions (Fig. 2) (Rohrschneider
et al. 2000). Even on the basis of its catalytic activity two mechanisms could be
responsible. First, by hydrolyzing PIP3, SHIP1 would suppress various PIP3-
dependent molecules/pathways, one or more of them critically involved in Ca2+

mobilization and degranulation, such as the tyrosine kinase Btk (Bolland et al.
1998). Second, by hydrolyzing PIP3, PI-3,4-P2 is generated (Fig. 1), which is
known to specifically interact with PH-domains of certain signaling proteins, e.g.,
the adaptor proteins Bam32/DAPP1, TAPP1, and TAPP2 (Marshall et al. 2002).
Indeed, Bam32-deficiency results in augmented Ca2+ mobilization and degranu-
lation in response to supra-optimal Ag concentrations, suggesting that it represents
an effector of the SHIP1 signalosome (Hou et al. 2010). Intriguingly, compared to
wild-type BMMCs Bam32-deficient BMMCs show reduced Lyn and SHIP1
phosphorylation in response to Ag, indicating the presence of so far uncharac-
terized feedback mechanisms (Hou et al. 2010).

Concerning SHIP1’s adaptor or scaffolding function, increasing numbers of
interaction partners of SHIP1 have been and continue to be identified (Fig. 2).
SHIP1 contains an N-terminal SH2-domain, a centrally located 50-phosphatase
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domain, and a C-terminus containing several proline-rich sequences as well as two
NPxY motifs (Rohrschneider et al. 2000). The SH2-domain is able to bind to the
phosphorylated ITAMs of the FceRI b-chain and FcRc (Osborne et al. 1996;
Kimura et al. 1997). Three of the proline-rich motifs in SHIP1’s C-terminus show
good consensus for binding to SH3-domains of other proteins and several have
been experimentally verified, including Grb2, CIN85, and Src kinase (Wisniewski
et al. 1999; Kalesnikoff et al. 2003; Buchse et al. 2011). This suggests that Lyn via
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Fig. 4 SHIP1 as central negative regulator of MC effector functions. (1) Cross-linking of the
FceRI by multivalent Ag leads to the initiation of multiple signaling cascades. The SFK Lyn is
crucial for FceRI tyrosine phosphorylation within the ITAMs (black squares) and thus controls
early activation. At supra-optimal Ag concentrations SHIP1 gets recruited to the receptor and
activated by Lyn. Lyn and SHIP1 contribute to the down-regulation of MC signaling. (2) The
early response of the MCs is triggered by FceRI signaling, comprising the release of preformed
mediators from secretory lysosomes, but also the generation and release of arachidonic acid (AA)
metabolites. (3) As of now unidentified factors act back on MCs in an autocrine fashion. These
factors utilize, amongst others, G protein-coupled receptors (GPCRs). Depending on the type of
GPCR, activation of the adenylyl cyclase will lead to the generation of cAMP and subsequent
activation of the cAMP-dependent protein kinase A (PKA), which, in turn can activate SHIP1.
Thus, active SHIP1 can negatively regulate the signaling not only of the respective GPCR but,
most likely, also of the FceRI. (4) The late response of MCs comprises the de novo synthesis and
release of mediators such as cytokines and chemokines. The signals governing the specific
cellular response integrate the initial signals originating from the Ag-triggered FceRI plus the
autocrine feedback loops initiated by the early response. This scheme omits any stimulation that
originates from the environment, such as components of the extracellular matrix or microbial
products
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its SH3-domain can also interact with SHIP1 in the context of the inhibitory
signalosome. Recently, a pleckstrin homology-related domain has been identified
positioned N-terminal of the 50-phosphatase domain of SHIP1, which mediates
membrane localization of SHIP1 by binding to PIP3 (Ming-Lum et al. 2012 6436).

Finally, proteins containing the so-called phosphotyrosine-binding (PTB)-
domains, such as the adaptor proteins Shc and p62Dok1, have been found to bind
to SHIP1’s C-terminal NPxY motifs upon their phosphorylation (Lamkin et al.
1997; Ott et al. 2002; Tamir et al. 2000). Since Shc contains both an N-terminal
PTB-domain as well as a C-terminal SH2-domain, it was initially thought that Shc
recruited SHIP1 to the FceRI. However, analysis of SHIP1-deficient BMMCs
suggests a different binding order since FceRI-mediated Shc tyrosine phosphory-
lation is dependent on SHIP1 expression (Huber et al. 1998a). Thus, upon tyrosine
phosphorylation by Lyn, Shc might ‘‘tear’’ SHIP1 away from the receptor thus
limiting its suppressive capability. Shc, however, has also been proposed as a
linker between SHIP1 and PKC-d, binding SHIP1 via its PTB-domain and PKC-d
through its SH2-domain (Leitges et al. 2002). Shc is expressed as three isoforms
(p46shc, p52shc, and p66shc) with p46shc and p52shc being expressed ubiqui-
tously and p66shc showing a more restricted expression pattern, whereas p46shc
and p52shc are involved in Ras-MAPK activation in the context of epidermal
growth factor stimulation; p66shc appears to act rather inhibitory on this signaling
pathway (Migliaccio et al. 1997). p66shc is also expressed in MCs, and the study
of FceRI signaling in p66shc-deficient BMMCs has revealed that p66shc is lim-
iting Ag-triggered degranulation and pro-inflammatory cytokine secretion (Ulivi-
eri et al. 2011). Furthermore, p66shc was demonstrated to promote SHIP1
recruitment to the trans-membrane adaptor LAT offering a molecular mechanism
for p66shc’s negative regulatory function (Roget et al. 2008; Ulivieri et al. 2011).

The adaptor protein p62Dok1, a well-known interaction partner of the GTPase-
activating protein RasGAP, has also been shown to bind to SHIP1. It inhibits
p21Ras and hence, is a negative regulator of the canonical MAPK pathway (Erk1/2)
(Ott et al. 2002; Tamir et al. 2000). Conversely, Erk1/2 might positively regulate
FceRI-mediated MC degranulation via two different pathways. Pecht et al. have
reported that Erk1 is part of a feed-forward loop positively controlling Syk activity
upon FceRI triggering (Xu et al. 1999). Pharmacologic inhibition of the Erk kinase
MEK suppressed Ag-induced MC degranulation (Xu et al. 1999). This effect was
recently corroborated with novel MEK inhibitors with higher selectivity (Marschall
et al. 2012). Another mechanism by which Erk1/2 could positively regulate MC
degranulation is suggested by data from Pozo-Guisado et al. They demonstrated
that Erk1/2 phosphorylate STIM1, an important calcium sensor in the membrane of
the endoplasmic reticulum, and thereby positively modulate store-operated calcium
entry, which is mandatory for degranulation to occur (Baba et al. 2008; Pozo-
Guisado et al. 2010). Since the p62Dok1-SHIP1 interaction depends on SHIP1
tyrosine phosphorylation (Tamir et al. 2000) and this tyrosine phosphorylation is
enhanced upon supra-optimal FceRI triggering (Gimborn et al. 2005), Erk1/2
activity could be reduced, contributing to the lack of degranulation under such
conditions. Thus, by combining catalytic as well as adaptor functions SHIP1 has the
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potential to contribute to the regulation of MC activation under supra-optimal Ag
conditions in several ways.

2.5 Other Lipid Phosphatases

Two additional prominent PIP3 phosphatases are expressed in MCs that participate
in regulation of the PI3 K pathway, namely the 50-phosphatase SHIP2 and the 30-
phosphatase PTEN. SHIP2 was knocked-down by shRNA in BMMCs and this was
shown to result in stronger FceRI-induced degranulation at every Ag concentration
tested (Leung and Bolland 2007). However, the effect was most pronounced at
optimal Ag concentrations and only marginal at supra-optimal Ag concentrations.
PTEN, a prominent tumor suppressor, was also knocked-down by an shRNA
approach in human MCs and cells with reduced PTEN expression were shown to
react with stronger Ca2+ mobilization as well as degranulation in response to
FceRI crosslinking (Furumoto et al. 2006). Unfortunately, titration of crosslinking
Ag was not extended to the supra-optimal range and thus, at present no statement
can be made on PTEN’s role in repressing degranulation at supra-optimal Ag
concentrations. This analysis did proof, however, that PTEN (and not SHIP1 nor
SHIP2) is crucially involved in the ‘‘homeostatic’’ control of PIP3 levels in non-
stimulated MCs (Furumoto et al. 2006). In conclusion, these results suggest that
SHIP1, in particular, is involved in repressing supra-optimal Ag-induced degran-
ulation of MCs. Also of importance, the markedly augmented activation events of
Ag-triggered SHIP1-deficient BMMCs were measurable in the presence of normal
levels of SHIP2 and PTEN, again indicating the importance of SHIP1 as the
gatekeeper of MC activation.

3 Concluding Remarks

SHIP1 has been identified as a central inhibitory signaling protein in MCs as well
as basophils, two important allergic effector cells. Thus, addressing SHIP1 phar-
macologically could benefit patients with allergic diseases. In this line, small-
molecule SHIP1 activators have been identified, which stimulated SHIP1 activity
in intact MCs, thereby suppressing PI3 K-mediated signaling events and effector
functions. Moreover, these compounds were protective in mouse models of acute
and passive cutaneous anaphylaxis (Ong et al. 2007; Stenton et al. 2013). In
addition, the knowledge that SHIP1 is involved in the suppression of FceRI-
mediated effector functions, such as degranulation and cytokine production/
secretion (Gimborn et al. 2005; Fehrenbach et al. 2009), combined with the
information on SHIP1’s participation in inhibitory signalosomes in response to
supra-optimal Ag concentrations, suggests that the identification of novel SHIP1-
interacting proteins will reveal so far unknown regulators/suppressors of MC
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activation. In conclusion, the analysis of mast cell signaling triggered by supra-
optimal crosslinking is expected to hold great potential for identifying novel tar-
gets for pharmacologic therapeutic intervention to benefit patients with acute and
chronic allergic diseases.
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Part III
FcR Biology



Fc Receptors as Adaptive
Immunoreceptors

Marc Daëron

Abstract Most biological activities of antibodies depend on their ability to
engage Receptors for the Fc portion of immunoglobulins (FcRs) on a variety of
cell types. As FcRs can trigger positive and negative signals, as these signals
control several biological activities in individual cells, as FcRs are expressed by
many cells of hematopoietic origin, mostly of the myeloid lineage, as these cells
express various combinations of FcRs, and as FcR-expressing cells have different
functional repertoires, antibodies can exert a wide spectrum of biological activi-
ties. Like B and T Cell Receptors (BCRs and TCRs), FcRs are bona fide immu-
noreceptors. Unlike BCRs and TCRs, however, FcRs are immunoreceptors with an
adaptive specificity for antigen, with an adaptive affinity for antibodies, with an
adaptive structure and with an adaptive signaling. They induce adaptive biological
responses that depend on their tissue distribution and on FcR-expressing cells that
are selected locally by antibodies. They critically determine health and disease.
They are thus exquisitely adaptive therapeutic tools.
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1 Introduction: Antibodies, for the Best and for the Worst

In 1888, 8 years after Louis Pasteur showed that chickens can be protected from
avian cholera by the inoculation of an attenuated culture of the germs responsible
for this disease (Pasteur 1880), Jules Héricourt and Charles Richet found that
protective immunity can be transferred to naïve dogs by the serum of dogs
immunized with staphylococci (Héricourt and Richet 1888). In 1890, Emil von
Behring and Shibasaburō Kitasato found that naïve rabbits can be protected from a
lethal dose of diphtheria or tetanus toxin if injected with the serum of rabbits
immunized with this toxin (Behring and Kitasato 1890), and in 1901, von Behring
was awarded the very first Nobel prize in Medicine or Physiology ‘‘for his work on
serotherapy.’’1 The same year, while on board the yacht of Prince Albert the 1st of
Monaco, Charles Richet and Paul Portier discovered anaphylaxis when immu-
nizing dogs with minute amounts of toxins from sea anemones. They published
their provocative finding in 1902 (Richet and Portier 1902). Five years later,
Richet showed that anaphylactic hypersensitivity can be transferred to naïve dogs
by the serum of immunized dogs (Richet 1907). Richet was awarded the 1913
Nobel prize in Medicine or Physiology ‘‘for his work on anaphylaxis.’’2 It was
therefore the same scientist who demonstrated that immune serum can either

1 http://www.nobelprize.org/nobel_prizes/medicine/laureates/1901/behring-bio.html.
2 http://www.nobelprize.org/nobel_prizes/medicine/laureates/1913/richet-bio.html.
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protect or kill recipients, when challenged with deadly pathogens or harmless
doses of toxins, respectively.

One century later, we know that antibodies are responsible for these effects of
immune serum, and that antibodies are immunoglobulins present in milligrams per
milliliter in serum. Antibodies are the most abundant effector molecules of
adaptive immune responses for the best and for the worst. Antibodies, indeed,
protect from infectious diseases, they account for the long-term protection con-
ferred by vaccines and they are increasingly used for passive immunotherapy.
Antibodies are also responsible for diseases including allergies, hemolytic anemia
of the newborn and several autoimmune diseases. How can antibodies exert both
protective and pathogenic effects? One reason is that, by themselves, antibodies
exert no biological effects.

Antibodies specifically bind to antigens and thereby generate immune com-
plexes, but binding itself does nothing or very little to antigen. It was indeed found
recently that both the neutralization of viruses and the neutralization of bacterial
toxins, which have long been paradigmatic examples of biological properties of
antibodies due to the masking of specific sites on antigens, require more than
binding. They require the Fc portion of antibodies and depend on receptors for
antibodies (Joller et al. 2010; Mallery et al. 2010). For antibodies to affect antigens,
they indeed need not only to bind to antigen epitopes through their Fab portions, but
also to interact through their Fc portion with effector systems. These include soluble
molecules such as components of the enzymatic cascade of Complement, and cells
that express receptors for the Fc portion of antibodies (FcRs).

As FcRs can trigger positive and negative signals, as these signals control a
variety of biological activities in a given cell, as FcRs are expressed by cells of
many types, as these cells express various combinations of FcRs, and as FcR-
expressing cells have different functional repertoires, antibodies can exert a wide
spectrum of biological activities. Understanding how antibodies work is not only
an exciting endeavor to comprehend the complexity of immune responses, it is
also a requirement for whom aims at developing new vaccines or therapeutic
antibodies.

I will argue that FcRs are unique immunoreceptors with no predetermined
specificity, structure, signaling or biological properties. Actually, FcRs are not
functional until they are engaged by immune complexes on cell membranes. Then
and there, they can build up a multiplicity of superstructures capable of triggering
a wide functional repertoire of adaptive responses to the multitude of antigenic
stimuli.

2 FcRs, Immunoreceptors of the Third Type

The term ‘‘immunoreceptor’’ was coined following impassioned discussions at a
meeting held in Kecskemét, Hungary, in September 1994, to designate receptors
involved in antigen recognition and possessing intracellular tyrosine-based
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activation motifs. The term ‘‘Immunoreceptor’’ was rapidly adopted and used to
designate not only receptors containing such Immunoreceptor Tyrosine-based
Activation Motifs (ITAMs) (Reth 1989; Cambier 1995), but also receptors con-
taining Immunoreceptor Tyrosine-based Inhibition Motifs (ITIMs) that were soon
described (Daëron et al. 1995a). ‘‘Immunoreceptor’’ is a loose term. Its use became
even looser when ITIMs were found in innumerable molecules with no evident
link with immunity (Daëron et al. 2008).

Several ITAMs and one ITIM having been identified in their intracytoplasmic
domains, FcRs were promoted immunoreceptors, just like antigen receptors
expressed by B cells (BCRs) and antigen receptors expressed by T cells (TCRs).
The word forged the concept. FcRs ‘‘recognize’’ neither native antigens as BCRs
do, nor the association of antigen-derived peptides and Major Histocompatibility
Complex molecules expressed by antigen-presenting cells as TCRs do. FcRs,
however, ‘‘recognize’’ antigen-antibody complexes. Immune complexes are the
third form under which any given antigen can interact with and deliver signals to
cells of the immune system. FcRs are immunoreceptors of the third type.

Unlike BCRs and TCRs, whose expression is restricted to B and T lympho-
cytes, respectively, FcRs are widely expressed, including by most cells of the
myeloid lineage. Unlike lymphocytes, myeloid cells need neither to proliferate nor
to differentiate in order to be functional; they can perform a variety of biological
processes; they are abundant in the blood stream and ubiquitous. Myeloid cells are
the effectors of innate immunity. They are equipped with a variety of pattern-
recognition receptors for molecules that are widely shared by micro-organisms, but
they have no antigen receptors. Their FcRs, however, enable them to interact
specifically with antigens. When binding to FcRs, antibodies indeed endow these
cells with bona fide antigen receptors. Through FcRs, antibodies enroll myeloid
cells in adaptive immune responses. As a consequence, adaptive immunity uses the
same effector cells as innate immunity.

3 FcRs, Immunoreceptors with an Adaptive
Specificity for Antigen

Unlike BCRs and TCRs, which contain built-in antigen-specific subunits, FcRs
have no antigen-recognition structures. They have therefore no predetermined
antigen specificity. They can, however, adopt any antigen specificity. Specificity is
provided by antibodies that bind to FcRs (Fig. 1). The fact that antigen specificity
is dissociated from receptors enables FcR-expressing cells to act on any antigen
the adaptive immune system is confronted to and responds to by the production of
antibodies. Although devoid of antigen-recognition capability, FcRs can therefore
provide myeloid cells with the whole cognitive repertoire of B cells.

The specificity of individual BCRs and TCRs results from one combination of
variable gene segments among the many possible combinations that form the B
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and T cell potential repertoires. The specificity of individual FcRs is that of the
subset of antibodies of the B cell actual repertoire, which were synthesized by B
cell-derived plasma cells and which happened to bind to FcRs. The specificity of
BCRs and TCRs is selected a priori from a potential combinatorial diversity of
gene segments, whereas that of FcRs is selected a posteriori from an actual
diversity of proteins.

Unlike B and T cells which express BCRs or TCRs of one specificity only, FcR-
expressing cells can carry a multiplicity of antibodies of different specificities.
Antibody responses are indeed polyclonal. They generate antibodies against sev-
eral antigens, and antibodies against one antigen can be directed to several epi-
topes. As antibodies bind to FcRs irrespectively of the specificity of their Fab
portions, and as cells express large numbers of FcRs—from a few thousands to one
million per cell—every FcR-expressing cell can respond simultaneously to a
multitude of antigens.

4 FcRs, Immunoreceptors with an Adaptive Affinity
for Antibodies

Antibodies bind to FcRs with a variable affinity. The binding of antibodies to FcRs
is reversible and it obeys the mass action law (Kulczycki and Metzger 1974):

½Ab�½FcR� �
ka

kd

½Ab� FcR�

The affinity of FcRs is characterized by an affinity constant (Ka) which is the
quotient of an association constant (ka) divided by a dissociation constant (kd). The
affinity constant is a characteristic of the FcR.

High-  FcRs  FcRs

FcR FcR FcR

FcR FcR FcR

FcR FcR

ITAMs ITIM

AgAg

Fig. 1 Differential binding of antibodies and antigen to high-affinity and to low-affinity FcRs.
Antibodies bind first to high-affinity FcRs, then antigen binds to receptor-bound antibodies (left).
Antigen binds first to antibodies and form immune complexes that can then bind to low-affinity
FcRs (right). The order of events is different but the result is the same: FcRs are aggregated
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The binding of antibodies to FcRs depends on the Ka of receptors, but also on
the relative concentrations of ligands, i.e, the concentration of antibodies in the
environment and the density of receptors on the cell surface. It also depends on the
glycosylation of antibodies. Finally, the affinity of FcRs determines their speci-
ficity for immunoglobulin classes and subclasses.

4.1 High-Affinity and Low-Affinity FcRs

High-affinity FcRs can bind monomeric immunoglobulins in the absence of
antigen, i.e., not as immune complexes (Fig. 1). A proportion of high-affinity FcRs
may therefore be occupied in vivo. Antibodies however may dissociate from high-
affinity FcRs, which makes receptors available for binding other antibodies. The
dissociation constant of high-affinity FcRs therefore critically determines their
availability for other antibodies present in the environment. This can be exem-
plified by the murine high-affinity receptor for IgG2 FccRIV (Ka for
IgG2a ± 3 9 107 M-1). We found that this receptor is also a low-affinity receptor
for IgE (Ka ± 5 9 105 M-1), and we wondered whether this property is biolog-
ically meaningful. One indeed expects FccRIV to be saturated by IgG2 in vivo,
and thus unavailable for IgE. We found that the half life of IgG2 on FccRIV is of a
few minutes only at 37 �C, and that IgE immune complexes can perfectly replace
IgG2 on FccRIV in the presence of normal serum (Mancardi et al. 2008). On the
contrary, the extremely high affinity constant (Ka ± 109-1010 M-1) of FceRI, the
high-affinity receptors for IgE expressed by mast cells and basophils in mice and
humans, is due to an extremely low dissociation constant (Kulczycki and Metzger
1974). As a consequence, IgE antibodies remain bound to FceRI for extended
periods of time, in spite of their extremely low plasma concentration.

The affinity of low-affinity FcRs (Bruhns et al. 2009) is too low for enabling
them to bind monomeric antibodies. They can however bind antibodies as mul-
tivalent immune complexes with a high avidity (Fig. 1). As a consequence, in the
absence of antigen, low-affinity FcRs (e.g., FccRs) remain free in spite of the high
concentration of circulating immunoglobulins, (e.g., IgG). They are therefore
available for immune complexes whenever these come close enough. Immune
complexes bind to low-affinity FcR-expressing cells because antibodies are con-
centrated on multivalent antigens in immune complexes and because many anti-
bodies can bind at the same time to many FcRs on the same cell membrane. Once
bound to FcRs, immune complexes remain on low-affinity FcR-expressing cells
because antibodies that dissociate from individual FcRs are rapidly replaced by
other antibodies present in the complex. Antibodies that dissociate from FcRs and
remain bound to antigen can also engage FcRs that were not previously engaged.
The interactions of immune complexes with low-affinity FcRs are therefore at the
same time labile and stable; they are highly dynamic.
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4.2 Modulation of the Binding Avidity/Affinity with Which
Antibodies Bind to FcRs

When low-affinity FcRs interact with immune complexes, the concentration and
the composition of immune complexes therefore determine the avidity with which
these bind to receptors. Indeed, what matters for binding is the local concentration
of Fc portions. This concentration depends on the density of epitopes that are
present on the antigen molecule and that are recognized by antibodies involved in
the immune complex. Antibodies of the same specificity can therefore bind with
different avidities to the same FcRs when in complex with antigens that have a
high density of specific epitopes and when in complex with antigens that have a
low density of the same epitopes (Fig. 2).

An interesting situation is the interaction with FcRs of antibodies against cell
surface antigens. The possibility that target cells may express FcRs is rarely
considered. Antibodies are therefore viewed as binding in trans, to target cell
antigens via their Fab portions and to effector cell FcRs via their Fc portion. If
target cells express FcRs, antibodies can bind in cis, i.e., to target antigens via their
Fab portions and to FcRs via their Fc portion on the same cell (Fig. 3). Binding to
antigens located on the same membrane as FcRs markedly enhances the local
concentration of antibodies as they are concentrated in a plane rather than dis-
persed in a volume. Binding to FcRs is also enhanced by the local concentration,
i.e., the density, of specific epitopes on the cell membrane. Such an Fc-FcR cis
binding was demonstrated to trigger mast cell activation using alloantibodies
against MHC class I antigens expressed by the same cells (Daëron et al. 1975;
Daëron and Voisin 1978). It was extensively used to inhibit B cell activation using
anti-immunoglobulin IgG antibodies (Phillips and Parker 1983). One can expect
cis binding to apply for many monoclonal antibodies used for passive
immunotherapy.

The affinity with which immunoglobulins bind to FcRs further depends on the
glycosylation of their Fc portion (Arnold et al. 2007). Thus, each heavy chain of
IgG1 contains a single covalently attached biantennary N-glycan at the highly
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Fig. 2 Modulation of the
binding avidity with which
immune complexes bind to
FcRs. The binding avidity
varies with the density of
epitopes on antigen and with
the density of FcRs on cell
membranes
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conserved N297 residue in its CH2 domain. Point mutations of this glycosylation
site abrogate the ability of IgG antibodies to bind to FccRs. If engineered with
such a mutation (e.g., N297Q), aglycosylated antibodies therefore no longer engage
FccRs and they can be used as blocking-only molecules (Veri et al. 2007).
Noticeably, N297 mutations do not affect the binding of IgG to neonatal FcRs
(FcRn), which protect IgG from degradation.

4.3 Affinity Determines the Specificity of FcRs
for Immunoglobulins

The Ka of the various mouse and human FcRs spans over at least five Logs. High-
affinity FcRs, defined operationally by their ability to bind monomeric immuno-
globulins, have a Ka ranging from 107 to 1010 M-1. Low-affinity FcRs, defined as
being unable to bind monomeric immunoglobulins but as being able to bind
immune complexes, have a Ka ranging from 105 to 107 M-1 (Bruhns et al. 2009).

Most FcRs do not appear to be specific for one class or subclass of immuno-
globulins. Mouse FccRIIB and FccRIIIA bind mouse IgG1, IgG2a and IgG2b.
Likewise, human FccRIIA, FccRIIB, and FccRIIIA bind all four subclasses of
human IgG. However, the affinity of these three receptors is much lower for IgG2
and, to a lower extent, for IgG4 than for IgG1 and IgG3. Noticeably, human
FccRIIB has a lower affinity than any other FccR for all four subclasses of human
IgG (Bruhns et al. 2009). pIgR can bind both dimeric IgA and pentameric IgM

Two modes of interactions with FcRs of 
antibodies against cell surface antigens

Trans-binding

Cis-binding

Fig. 3 Trans- and cis-
interactions of antibodies to
cell surface antigens with
FcR-expressing cells.
Antibodies against antigens
expressed by cell membranes
can engage FcRs expressed
by neighboring cells (trans-
binding) or FcRs expressed
on the membrane of the same
cell (cis-binding)
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(Bakos et al. 1991). FccRIV are both high-affinity receptors for mouse IgG2a and
IgG2b and low-affinity receptors for mouse IgE (Mancardi et al. 2008). Likewise,
the murine low-affinity receptors for mouse IgG FccRIIB and FccRIIIA were found
to bind also mouse IgE (Takizawa et al. 1992). Whereas the affinity of these
receptors for mouse IgG1, IgG2a and IgG2b is between 3 9 105 and 3 9 106 M-1,
their affinity for mouse IgE is in the order of 2 9 104 M-1 only (Mancardi et al.
2008). This is an extremely low affinity, at the limit of nonspecificity.

This poses the question of the specificity of FcRs. As discussed above, FcRs
display a gradient of affinities for the various isotypes of immunoglobulins. This
gradient is extremely wide, and it seems continuous. The specificity of FcRs for
immunoglobulin classes and subclasses therefore appears more quantitative than
qualitative, and what determines the specificity of FcRs is a large enough differ-
ence of affinities for different immunoglobulins.

5 FcRs, Immunoreceptors with an Adaptive Structure

The structure of FcRs was determined and refined by biochemical, genetic and
proteomic approaches, as they became available. Altogether, these studies pro-
vided solid grounds for elaborating widely used 2D- and 3D-models of FcRs
(Garman et al. 1998; Maxwell et al. 1999; Sondermann et al. 1999; Ding et al.
2003). As such, however, these models represent FcRs as they are when they are
not functional. They show building blocks. Except FcRn, which bind IgG intra-
cellularly in acidified vacuoles (Rodewald and Kraehenbuhl 1984), functional
FcRs are receptors engaged on cell membranes by immune complexes. They are
superstructures made with these building blocks. FcR engagement indeed asso-
ciates various numbers of FcRs in various combinations to generate superstruc-
tures of various compositions.

5.1 FcRs as Building Blocks

Classically, FcRs have a structure similar to that of BCRs and TCRs. The vast
majority of them are made of 2–3 noncovalently associated subunits: a ligand-
binding subunit (FcRa) that has an affinity for various classes and subclasses of
immunoglobulins, and one or two ITAM-containing signaling subunits (FcRc and
FcRb) shared by multi-subunit FcRs (Fig. 1).

FcRa altogether form a family of polypeptides with 2–5 extracellular immu-
noglobulin-binding domains that have a secondary structure typical of Immuno-
globulin Superfamily (IgSF) molecules, a hydrophobic transmembrane domain
and a nonstructured intracytoplasmic domain of variable length. FcRa with dif-
ferent extracellular domains are the core structure of receptors for IgA (FcaR), IgG
(FccR and FcRn) and IgE (FceR) (Hulett and Hogarth 1994). Binding involves the
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hinge between the two juxta-membrane extracellular domains of FcRs and the
penultimate constant domain of immunoglobulin heavy chains. FcRn are unique
MHC class I-like molecules that bind the Fc portion of IgG with a high affinity
(Burmeister et al. 1994).

FcRc is a widely expressed homodimer made of two disulfide bond-linked
polypeptides highly conserved in mice and humans (Orloff et al. 1990). It is shared
by all activating multi-chain FcRs. FcRb is a 4-transmembrane domain polypeptide
that associates with multi-chain FcRs expressed in mast cells and basophils (Kinet
et al. 1988). Multi-chain FcRs must associate with at least one specific subunit in
order to be expressed. Most need FcRc (Lobell et al. 1993; Takai et al. 1994;
Letourneur et al. 1995). The expression of these receptors therefore depends on the
tissue distribution of FcRc, and FcRc-deficient mice have no activating FcR (Takai
et al. 1994). Mouse FceRI, but not human FceRI, also need to associate with FcRb
(Kinet 1999). As FcRb is expressed by mast cells and basophils only in both species,
the expression of FceRI is restricted to these cells in mice (Kinet et al. 1988), but not
in humans (Gounni et al. 1994, 2001; Joseph et al. 1997). FcRn do not associate with
FcRc or with another ITAM-containing subunit, but with b2 microblobulin and this
association is mandatory for FcRn to be expressed (Israel et al. 1995).

Few FcRs are single-chain receptors. FccRIIA and FccRIIC (in humans) and
FccRIIB (in mice and humans) have two extracellular domains that bind IgG with a
low affinity. Human FccRIIB and FccRIIC have the same extracellular domains.
FccRIIA and FccRIIC have the same intracytoplasmic domain (Ravetch and Kinet
1991). FccRIIA and FccRIIC contain one ITAM whereas FccRIIB contain one
ITIM. FccRIIA and FccRIIC are the only ITAM-containing single-chain FcRs.
FccRIIA were however reported to form homodimers constitutively on cell mem-
branes without delivering activation signals in the absence of ligand (Powell et al.
2006). FccRIIIB are glycosyl-phosphatidylinositol-anchored single-chain FcRs
unique to humans. They bind human IgG with a low affinity. FcRs for polymeric
immunoglobulins (pIgR) have 5 extracellular domains that bind dimeric IgA and
pentameric IgM. They are not known to associate with ITAM-containing subunits.

Other FcRs that do not associate with FcRc or FcRb, do not belong to the IgSF
but to the C-type lectin superfamily. These FcRs bind IgE (FceRII) (Conrad 1990).
Binding, however, does not involve the interaction of sugar residues, which are
abundant in the Fc portion of IgE, with the extracellular lectin domain of FceRII.
The affinity of FceRII for IgE is relatively low. However, FceRII are expressed as
homotrimers which can bind IgE immune complexes with a high avidity (Kilmon
et al. 2004). They are not known to associate with signaling subunits.

5.2 FcRs as Superstructures

Like BCRs and TCRs, FcRs are aggregated by plurivalent ligands. Unlike BCRs
and TCRs, however, FcRs form hetero-aggregates. Because BCRs and TCRs with
a single specificity are expressed on B and T cells, they can form homo-aggregates
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only, when engaged by naked antigen or peptide-MCH complexes, respectively.
FcRs can also form homo-aggregates when engaged by immune complexes made
with monoclonal antibodies of a single specificity as they are commonly used in
the laboratory. Engaging FcRs under these conditions has been instrumental for
establishing the binding parameters of FcRs and for elucidating the mechanisms of
signal transduction used by FcRs. This experimental situation, however, is an
artifact.

Immune responses are indeed not only polyclonal, but also pluri-isotypic. No
immunization procedure induces a single class of antibodies. Depending on the
concentration of antigen, depending on the adjuvant, depending on the route of
immunization, some isotypes of antibodies can be favored, but in all cases, the
overall isotypic pattern of the response is not markedly altered. Even when
immunizing mice with protocols that promote strong Th1 responses, such as one
injection of a high concentration of proteins in Freund’s complete adjuvant fol-
lowed by repeated injections of the same high dose of antigen in incomplete
Freund’s adjuvant, IgG1 antibodies remain, by far, the dominant isotype of anti-
bodies, and detectable levels of IgE antibodies can even be observed in serum
(Jonsson et al. 2011). As a consequence, immune complexes that form in vivo
contain antibodies of several classes and subclasses. As FcRs with different
specificities are co-expressed by most FcR-expessing cells, pluri-isotypic immune
complexes engage several types of FcRs on cell membranes. When aggregated
under physiological conditions, FcRs form hetero-aggregates.

The composition of FcR hetero-aggregates depends on multiple parameters. It
depends on the FcRs that are expressed by a given cell at a given time and in a
given place. it depends on the respective local concentration of antibodies of the
different isotypes. It depends on the nature and on the concentration of antigen
present in the environment (Fig. 4). FcR hetero-aggregates of different composi-
tions may have markedly different signaling properties.

6 FcRs, Immunoreceptors with an Adaptive Signaling

FcRs trigger no signal when binding immunoglobulins. They signal when aggre-
gated (Metzger 1992). The sequence of events that lead to receptor aggregation is
different for high-affinity and low-affinity FcRs (Fig. 1). Monomeric antibodies
bind first to high-affinity FcRs that are aggregated afterwards, when a plurivalent
antigen binds to receptor-bound antibodies. Antibodies bind first to antigen,
generating immune complexes that can bind to and, therefore, simultaneously
aggregate low-affinity FcRs. The result, however, is the same: receptor aggrega-
tion. The nature of signals depends primarily, but not exclusively, on molecular
motifs contained in the intracytoplasmic domains of FcRs or of their subunits.
FcRs can generate activation signals and/or inhibition signals.
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6.1 ITAM-Containing FcRs Generate Both Activation
and Inhibition Signals

ITAM-containing FcRs generate activation signals. FcRc-associated FcRs (FcaRI,
FceRI in human neutrophils, eosinophils and monocytes, FccRI, FccRIIIA and
FccRIV) contain two ITAMs. FcRs associated with both FcRc and FcRb (FceRI
and FccRIIIA in mast cells and basophils) contain three ITAMs. FccRIIA and
FccRIIC contain one ITAM only. FccRIIA, however, contain two ITAMs when
dimeric (Powell et al. 2006). The significance of the presence of several ITAMs in
immunoreceptors is unknown. One ITAM is enough as the aggregation of single-
chain chimeric molecules with the intracytoplasmic domain of FcRc, FcRb, TCRf
activated the transfected cells in which they were expressed (Daëron et al. 1995a),
although Iga and Igb triggered different Ca2+ signals in B cells (Choquet et al.
1994) Upon receptor aggregation, ITAMs are phosphorylated by src family
tyrosine kinases. This intracellular chemical perturbation initiates the constitution
of dynamic intracellular signalosomes, in which activation signals are generated.
Signalosomes build up on tyrosine-rich transmembrane adapter proteins that reside
constitutively in lipid-rich membrane microdomains (Bezman and Koretzky 2007).
Signals propagate intracellularly via various metabolic pathways that altogether
lead to gene transcription, activation of the lipid metabolism and membrane
alterations associated with exocytosis.

The composition of FcR superstructures isdetermined by: 
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Fig. 4 Adaptive FcR complexes formed on cell surfaces upon receptor engagement. FcR
complexes with variable compositions and sizes build up on cell membranes, depending on the
FcRs expressed on cells, the isotypic composition of the antibody response, the local
concentration of antibodies of the various classes and subclasses, the antigen specificity of
these antibodies and the local concentration of antigen
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ITAM-containing FcRs also generate inhibition signals. Inhibition signals
generated by activating FcRs such as FceRI can be readily observed when chal-
lenging mast cells sensitized with IgE antibodies by increasing concentrations of
specific antigen. Mast cell degranulation dose-dependently increases up to a
maximum. Degranulation thereafter decreases rapidly down to background levels.
This inhibition in excess of antigen has long been interpreted as resulting from a
reduced ability of antigen to aggregate efficiently FceRI (Wofsy et al. 1978).
Inducible phosphorylation of intracellular proteins, however, keeps increasing
beyond the optimal concentration of antigen. Moreover, inhibition in excess of
antigen is abrogated in mast cells from mice deficient for the SH2 domain-con-
taining inositol phosphatase SHIP1 (Gimborn et al. 2005). Finally, mast cells from
SHIP1-deficient mice display enhanced degranulation responses to optimal and
suboptimal antigen concentrations (Huber et al. 1998). FceRI therefore generate
SHIP1-dependent inhibition signals both when suboptimally or optimally aggre-
gated and when supra-optimally aggregated by antigen. Similar effects of SHIP1
deficiency were observed with other activating FcRs (Nakamura et al. 2002).
ITAM-containing FcRs therefore generate a mixture of activation and inhibition
signals (Malbec et al. 2004). Activation signals are dominant over inhibition
signals under physiological conditions.

6.2 ITIM-Containing FcRs Generate Inhibition Signals Only

FccRIIB are the only ITIM-containing FcRs. The same ITIM is present in the intra-
cytoplasmic domain of all murine and human FccRIIB isoforms (Daëron et al. 1995a).
FccRIIB are not tyrosyl-phosphorylated and they trigger no intracellular signal when
aggregated. They trigger negative signals when they are co-aggregated with activating
receptors by immune complexes (Daëron et al. 1995b). Under these conditions, the
ITIM of FccRIIB is phosphorylated by the same src-family tyrosine kinase that
phosphorylates ITAMs in activating receptors (Malbec et al. 1998). The SH2 domain
of SHIP1 having a high affinity for the phosphorylated FccRIIB ITIM (Bruhns et al.
2000), large amounts of SHIP1 are recruited and brought into signalosomes generated
by activating FcRs (Lesourne et al. 2001). FccRIIB therefore potentiate SHIP1-
dependent negative signals generated by ITAM-containing FcRs (Lesourne et al.
2005), and inhibition signals become dominant over activation signals.

6.3 The Modulation of Signaling by Hetero-Aggregation
of FcRs

Negative regulation of ITAM-containing FcRs by FccRIIB is one example of
hetero-aggregation that critically affects FcR signaling. It is a widely occurring
situation. Hetero-aggregation, whether the co-aggregation of different types of
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FcRs or the co-aggregation of FcRs with other immunoreceptors, is actually a rule,
rather than an exception, under physiological conditions.

Hetero-aggregation can involve activating FcRs only. This happens when pluri-
isotypic immune complexes engage FcRs for different immunoglobulin classes on
cells that express the corresponding ITAM-containing FcRs. One exemple can be
human skin mast cells sensitized with IgE antibodies and exposed to immune
complexes containing IgG antibodies against the same antigen. Due to the high
concentration of IgG antibodies, allergens are likely to be in complex with IgG
when they reach FceRI-bound IgE on tissue mast cells. Human skin mast cells
express FceRI and FccRIIA, but no FccRIIB (Zhao et al. 2006). As a result, FceRI
and FccRIIA are co-engaged on human mast cells. Activation signals by FceRI are
not identical as signals generated by FccRIIA because these receptors contain
different ITAMs. Both types of signals are expected to be integrated and to lead to
cell responses that may differ from signals generated by FceRI or by FccRIIA
alone.

Hetero-aggregation can involve inhibitory FcRs and activating FcRs of iden-
tical or different specificities for immunoglobulins. One example of hetero-
aggregation of FcRs of identical specificity is when human or mouse basophils are
challenged with IgG immune complexes. Basophils from both species co-express
ITAM-containing and ITIM-containing receptors for IgG: human basophils
express FccRIIA and FccRIIB, whereas mouse basophils express FccRIIIA and
FccRIIB. Basophils from both species, however, fail to be activated by IgG
immune complexes. The reason is that FccRIIB-dependent inhibition is dominant
over FccRIIA- or FccRIIIA-dependent activation in these cells (Cassard et al.
2012). An example of hetero-aggregation of FcRs of different specificities is when
the same cells are sensitized with IgE and challenged with IgG immune com-
plexes. Under these conditions, IgG immune complexes co-aggregate not only the
ITAM- and ITIM-containing FccRs, but also the ITAM-containing FceRI. In both
cells, FceRI-dependent responses are negatively regulated by FccRIIB (Cassard
et al. 2012). IgG antibodies therefore control IgE-mediated human and mouse
basophil activation.

Hetero-aggregation can involve FcRs and non-FcR immunoreceptors, for
instance when cells express one type of FcR only. Immune complexes can co-
engage these FcRs, whether inhibitory such as FccRIIB in B cells or activating
such as FccRIIIA in NK cells, with other immunoreceptors, whether activating
such as BCRs in B cells or inhibitory such as Killer cell Inhibitory Receptors with
a long intracytoplamsic domain (KIRLs) in NK cells. As a consequence, BCR
signaling is negatively regulated by FccRIIB in B cells (Phillips and Parker 1983;
Amigorena et al. 1992) and FccRIIIA signaling is negatively regulated by KIRLs
in NK cells (Moretta et al. 1997).

All the above considered, FcR signaling appears exquisitely susceptible to
control and/or to be controlled by other FcRs and/or by other immunoreceptors
that are co-engaged in FcR superstructures by immune complexes. Ensuing bio-
logical responses may therefore be tightly controlled as a function of antibodies
and antigen present in the environment.
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7 FcRs, Immunoreceptors that Induce Adaptive Biological
Responses

If biological responses triggered by FcRs depend quantitatively on the superstruc-
tures built-up on cell membranes by immune complexes, they depend qualitatively
on the cell types on which these superstructures form. FcRs do not induce unique
biological responses, but biological activities that can be induced by other receptors
in the same cell. However, unlike BCRs and TCRs, which induce both cell activation
and proliferation, ITAM-containing FcRs induce cell activation only.

7.1 Biological Responses Induced by Antibodies Depend
on the Tissue Distribution of FcRs

Superstructures that build-up on cell membranes depend on which FcRs are
available for immune complexes on the cell membrane, i.e., on the tissue distri-
bution of FcRs. Cells of hematopoietic origin express a combination of FcRs that
is typical of the cell type (Fig. 5).

FcRs are essentially expressed by myeloid cells of all types. Some are
expressed by some lymphoid cells such as B cells, NK cells and NKT cells. It is a
likely possibility that Innate Lymphoid Cells (ILCs) express FcRs, but which ILCs
express which FcRs has not been reported yet. A few nonhematopoietic cells, such
as some endothelial cells and some tumor cells (Cassard et al. 2002), also express
FcRs. FcRn are expressed by many cells including epithelial cells, monocytes,
macrophages, dendritic cells, neutrophils, hepatocytes (Ghetie and Ward 2000).

Activating FcRs are expressed by myeloid cells and by lymphoid cells with no
classical antigen receptor, i.e., NK cells (Perussia et al. 1989) and intraepithelial c/
dT cells of the intestine (Deusch et al. 1991; Sandor et al. 1992; Woodward and
Jenkinson 2001). They are not expressed by mature T and B lymphocytes. Lym-
phocytes therefore do not express more than one type of antigen receptor, and
activating FcRs do not interfere with lymphocyte activation triggered by clonally
expressed antigen receptors. Low levels of FccRIIIA were however found on a
subset of murine CD8 T cells and they efficiently triggered antibody-dependent
cell-mediated cytotoxicity (Dhanji et al. 2005).

FccRIIB are expressed by most myeloid cells and by B lymphocytes. NK cells
and T cells, which do not express FccRIIB, express several other inhibitory
receptors involved in cell-cell interactions (Long 1999). FccRIIB have a more
restricted tissue distribution in humans than in mice.

Few cells express one type of FcR only. These are B cells, which express
FccRIIB only in both mice and humans, and NK cells, which typically express
FccRIIIA only in both mice and humans. A SNP in the FCGR2C gene, however,
determines the expression FccRIIC by NK cells in � human donors (van der
Heijden et al. 2012). Other cells express several FcRs. All express IgG receptors
and, in humans, IgA receptors. Monocyte/macrophages express more types of
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FccRs than other hematopietic cells. FccRIIA are expressed by all these human
cells. Monocytes express higher levels of FccRIIA than other blood leukocytes.
Basophils express much higher levels of FccRIIB than other blood cells, including
B cells (Cassard et al. 2012).

Such a wide tissue distribution of FcRs endows antibodies with a wide spectrum of
biological properties. These depend on the functional repertoire of FcR-expressing
cells. All cell types can endocytose, some only can phagocytose, and even less can
transcytose. The many cells that express FcRn can pinocytose and release IgG
molecules that bound to FcRn intracellularly, thereby protecting them from lyso-
somal degradation. Some cells can expel granules that contain cytotoxic mediators,
other cells granules that contain vasoactive or pro-inflammatory mediators and
proteases. Many cells can synthesize cytokines, chemokines or growth factors of
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Fig. 5 Tissue distribution of FcRs and their engagement by antibodies of different classes. FcRs
expressed by the various cell types in mice and humans are differentially engaged by antibodies
of different classes. As a consequence, different cell types are involved
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different types. FcRs therefore are involved in a variety of biological functions. These
include pathogen clearance, toxin neutralization, antigen capture at the initiation of
antigen presentation, cytotoxicity, inflammatory responses.

7.2 Biological Responses Induced by Antibodies Depend
on FcR-Expressing Cells that are Selected by Antibodies

Due to the differential tissue distribution of FcRs, antibodies select FcR-expressing
cells involved in biological responses. FcRs therefore determine which cells are
engaged by specific classes and subclasses of antibodies. As discussed above, the
outcome depends on the functional repertoire of these cells. This can be exem-
plified by the analysis of cell types involved in systemic anaphylaxis.

Because IgE-induced passive systemic anaphylaxis (PSA) was abrogated in
FceRI-deficient mice (Dombrowicz et al. 1993), in mast cell-deficient mice
(Kalesnikoff and Galli 2010; Feyerabend et al. 2011), and in histidine decarbox-
ylase-deficient mice (Makabe-Kobayashi et al. 2002), histamine release by mast
cells triggered by the aggregation of FceRI upon binding of antigen to receptor-
bound IgE became the paradigmatic model of anaphylaxis. This widely accepted
interpretation forgot IgG-induced passive anaphylaxis described by Zoltan Ovary
in the 1950s (Ovary 1952a, b), before IgE antibodies were discovered (Ishizaka
et al. 1966). IgG1-induced PSA was later shown to depend on FccRIIIA (Miyajima
et al. 1997). Responsible cells, however, still remain unidentified as this reaction
was not abrogated in mast cell (Miyajima et al. 1997) or in basophil deficient mice
(Ohnmacht et al. 2010). More recently, we found that mice lacking FceRI and
FceRII or FccRIIIA developed active systemic anaphylaxis (ASA) as severe as did
wild-type mice, when immunized with antigen in complete Freund’s adjuvant and
challenged with antigen intravenously. Likewise, using quintuple FcR-deficient
(5KO) mice that express one activating FcR only, the high-affinity receptor for
IgG2 FccRIV expressed by monocyte/macrophages and by neutrophils, we
unraveled the unexpected role of neutrophils in ASA (Jonsson et al. 2011).

The reason explaining these seemingly discrepant findings is that each class or
subclass of antibodies does not select the same cell types (Fig. 5). IgE can engage
FceRI-expressing cells only, i.e., mast cells and basophils in mice, whereas IgG2
can engage FccRIV- and FccRI-expressing cells, i.e., monocyte/macrophages and/
or neutrophils, and IgG1 can engage the many cells that express FccRIIIA.

7.3 Biological Responses Induced by Antibodies Depend
on Populations of FcR-Expressing Cells

Because immune responses are pluri-isotypic and because cells of different types
share receptors for the same isotypes, antibodies select heterogeneous cell popu-
lations, rather than homogeneous single-cell populations, when in complex with
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antigen. These populations consist of a mixture of various FcR-expressing cells
that are either present or recruited by chemokines and/or proliferate in response to
growth factors, at the site of the reaction. Biological processes in which FcRs are
involved are therefore a resultant of the responses of the many cells that are
engaged in the reaction at a given place and at a given time.

If one keeps considering ASA as an example, most cell types that were indi-
vidually found to contribute to this reaction are present together in the blood
stream where antibodies circulate and into which the challenging antigen is
injected. The relative contribution of these cells therefore depends on the relative
concentrations of the different classes and subclasses of antibodies, on FcRs
expressed by these cells and on the interplay between FcRs.

IgG1 is the dominant isotype of antibodies following immunization by antigen
in Freund’s adjuvant, and FccRIIIA are the only activating FcRs with an affinity
for IgG1. Mouse mast cells (Malbec et al. 2007) and basophils (Cassard et al.
2012) express FccRIIIA. Mast cells are not expected to be numerous in blood.
Basophils are not expected to play a critical role either, as they express high levels
of FccRIIB that prevent IgG1-induced basophil activation (Cassard et al. 2012).
Other cells that express FccRIIIA are neutrophils and monocyte/macrophages.
IgG2 is much less abundant than IgG1. FccRI, FccRIIIA, and FccRIV are acti-
vating receptors that have an affinity for IgG2. IgG2-induced PSA was observed in
5KO mice that express FccRIV only and neutrophils was demonstrated to con-
tribute to this shock (Jonsson et al. 2011). IgE are between five hundred thousand-
and one million-fold less abundant than IgG1 antibodies. They can bind primarily
to FceRI, but also to FccRIV. As IgE-induced PSA was abrogated in 5KO mice,
FccRIV are unlikely to contribute to the part of ASA that depends on IgE. Mast
cells and basophils remain the likely candidates. These data altogether indicate
that IgE, IgG1, and IgG2 can all induce anaphylaxis when engaging FceRI,
FccRIIIA, and FccRIV on mast cells, basophils, and neutrophils, respectively.

Selective depletion experiments in wild-type mice could clarify the respective
roles of these cells in ASA. Neutrophil depletion markedly reduced ASA in wild-
type mice, basophil depletion resulted in a milder but significant reduction, and the
depletion of both basophils and neutrophils virtually abrogated the reaction.
Noticeably, ASA could be induced in mast cell-deficient mice, confirming the
expected insignificant contribution of these cells to ASA. Neutrophils and to a
lower extent basophils are therefore the main effectors of ASA, neutrophils being
involved via FccRIIIA by IgG1 and to a lower extend via FccRIV by IgG2, and
basophils being involved via FceRI by IgE.

8 FcRs as Adaptive Immunoreceptors in Health
and Disease

As discussed above, antibodies can trigger the release of potentially harmful—in
some cases, life-threatening—inflammatory mediators. They can also induce
destructive cytotoxic mechanisms. Antibodies are therefore potentially pathogenic.
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This may be the price to pay for having efficient antibodies in protective immunity.
The activating properties of antibodies are however (or therefore?) tightly con-
trolled by regulatory mechanisms. As a consequence, immune responses are
normally nonpathogenic.

Typically, the induction phase of adaptive immune responses is initiated in the
periphery, while effectors are generated centrally and diffuse throughout the body.
The antibody response is an example. Although they may be systemic as in ana-
phylaxis, many biological effects of the effector phase of immune responses take
place locally. They therefore depend on local conditions. As a consequence, they
are cell- or tissue-specific, pleiotropic and sometimes antagonistic. Below are
examples of opposite or unexpected effects, i.e., of the complexity of the FcR-
dependent effects of antibodies.

8.1 FcR-Dependent Induction and Inhibition of Immune
Responses by Antibodies

Antibodies are potent adjuvants. In spite of their low plasma concentration, IgE
antibodies enhance antigen presentation by B cells. IgE immune complexes indeed
engage B cell FceRII, leading to an efficient antigen presentation to T cells (Getahun
et al. 2005; Hjelm et al. 2006). As a result, IgE antibodies enhance the production of
all classes of antibodies. IgG antibodies also behave as adjuvants through the uptake
of antigen-IgG antibody complexes by dendritic cells via activating FccR. As a
consequence, both MHC class II presentation (Heyman 1990) and MHC Class I
cross presentation (Machy et al. 2000) are enhanced. Expectedly, activating FccR-
dependent presentation of antigen-antibody complexes is counterbalanced by
FccRIIB expressed by dendritic cells (Kalergis and Ravetch 2002).

FccRIIB, however, can promote ‘‘antigen presentation’’ to B cells by follicular
dendritic cells (Mond et al. 1995). FccRIIB expressed by these cells can indeed be
engaged by the Fc portion of immune complexes and prevent them from co-
engaging FccRIIB with BCRs on B cells (El Shikh et al. 2006). Antigen in
immune complexes bound onto follicular dendritic cells are thus more potent
inducers of antibody responses than free antigen, whether in vitro (Tew et al. 2001)
or in vivo (Wu et al. 2008; El Shikh et al. 2009).

Unlike immune responses to soluble antigen that are markedly enhanced by IgG
antibodies, immune responses to particulate antigens are well known to be sup-
pressed by IgG antibodies. Minute amounts of specific IgG can indeed suppress an
anti-heterologous erythrocyte immune response, whether primary or secondary.
This observation, first made in the 1960s (Henry and Jerne 1968), has been the
rationale for injecting Rh- mothers who have given birth to Rh+ babies with anti-
RhD antibodies, as a preventive treatment of hemolytic disease of the newborn.
When FcR-deficient mice became available, it was unexpectedly found that
FccRIIB-dependent negative regulation does not account for this feedback
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regulation by antibodies. This regulation was unaltered not only in FccRIIB-
deficient mice (Heyman et al. 2001), but also in mice lacking all FccR (Karlsson
et al. 1999). The mechanism behind inhibition remains unclear.

8.2 FcR-Dependent Prevention and Enhancement
of Viral Infection

Antiviral antibodies may profoundly affect viral infection by FcR-dependent
mechanisms. It was recently reported that the neutralizing effect of antibodies
depends on the interaction of their Fc portion with a unique intracellular FcR
named TRIM21, and the subsequent degradation of virus-antibody complexes by
the proteasome (Mallery et al. 2010). Classical activating FcRs are also needed to
clear influenza virus (Huber et al. 2001). Noticeably, the engagement of activating
FccR by unrelated immune complexes was found to inhibit the replication of HIV-
1 in primary human macrophages (David et al. 2006).

Rather than being protective, antibodies can favor or aggravate viral infection.
Anti-Spike antibodies, a viral protein which enables the severe acute respiratory
syndrome (SRAS) coronavirus to infect epithelial cells, can prevent these cells
from being infected. Anti-spike antibodies, however, can enable the infection of
human immune cells through their interaction with FccR (Jaume et al. 2011).
Likewise, antibodies may enhance HIV infection. Antibodies in complex with the
gp120 protein of HIV indeed bind to FccR (Fust 1997). Receptor aggregation that
ensues enables the internalization of antibody-HIV complexes and, as a conse-
quence, monocytes infection (Jouault et al. 1991).

Interestingly, FcRs may promote viral infection by inducing an antibody-
independent immunosuppression. Nucleoplasmid proteins of the measle virus were
indeed found to bind to murine and human FccRII, and this binding was found to
inhibit antibody production by human B cells. This mechanism was proposed to
account for the well-known immunosuppression associated with measles infection
(Ravanel et al. 1997).

8.3 FcR-Dependent Prevention and Enhancement
of Bacterial Infection

Specific antibodies are well known to neutralize bacterial toxins. Unexpectedly,
the neutralization of B. anthacis toxin was recently found to depend on the
engagement of FcRs (Abboud et al. 2010).

FcRs are involved in antibody-dependent clearance of bacteria such as
Legionella (Joller et al. 2010), Salmonella (Tobar et al. 2004) or Toxoplasma
(Joiner et al. 1990) through phagocytosis. FcRc-deficient mice fail to control
Leishmania major (Padigel and Farrell 2005) or Mycobacterium tuberculosis
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(Maglione et al. 2008) infection, whereas FccRIIB-deficient mice display an
enhanced resistance to these bacteria. FccRIIIA seem to play a predominant role in
protection (Thomas and Buxbaum 2008), but FccRI may contribute to protect
from Bordello pertussis infection (Ioan-Facsinay et al. 2002).

Like the measles virus, some bacteria can bind to FcRs expressed by immune
cells, even when not in complex with antibodies. This interaction facilitates
infection. Escherichia coli K1 express the outer membrane protein A (OmpA),
which binds to FccRI on macrophages. This binding has two consequences. It
facilitates the entry of bacteria into cells and it prevents the phosphorylation of
FcRc (Mittal et al. 2010). FccRI-deficient mice are resistant to E. coli infection.

8.4 FcR-Dependent Induction and Inhibition
of Allergic Reactions

IgE antibodies are well-known inducers of allergic reactions when engaging FceRI
expressed by mast cells and basophils in experimental animals and in human
patients (Dombrowicz et al. 1993, 1996; Wershil et al. 1987; Arimura et al. 1990;
Fung-Leung et al. 1996). One intriguing question is why mast cells, but not
basophils, account for IgE-mediated, FceRI-dependent PSA, and where are the
responsible mast cells located. The contributions to allergic symptoms of FceRI
expressed by eosinophils (Tanaka et al. 1995), monocytes (Maurer et al. 1994),
alveolar macrophages (Ochiai et al. 1996), neutrophils (Gounni et al. 2001) and
platelets (Joseph et al. 1997) in patients with high IgE levels can be expected to be
different in allergies that affect different tissues. They remain to be delineated.

Unlike the well-established role of FccRs in experimental anaphylaxis, the role
of FccRs in human allergies is far from being clear. The ability of human FccRs to
induce allergic reactions was demonstrated using transgenic mice (Jonsson et al.
2012; Mancardi et al. 2013). Both human FccRI and FccRIIA triggered IgG-
induced PSA and ASA. FccRIIA expressed by mast cells were also responsible for
IgG-induced PCA. Human skin mast cells express FccRIIA, but no FccRIIB (Zhao
et al. 2006). Interestingly, a mouse deficient for all endogenous FccR and trans-
genic for all human FccR underwent anaphylaxis following an injection of
aggregated human IgG (Smith et al. 2012).

Here again, the type of cells that express FccRs, and especially the FccRIIA/
FccRIIB ratio, has a decisive influence on the outcome. This ratio is high in human
neutrophils and these cells respond robustly to IgG immune complexes. In
accordance with this in vitro observation, the transfert of human neutrophils
restored anaphylaxis in FcRc-deficient mice (Jonsson et al. 2011). This ratio is
very low in human basophils, and these cells do not respond to the same immune
complexes. IgG receptors expressed by human basophils indeed function as
inhibitors of cell activation, and IgG immune complexes that co-engaged FccR
with FceRI on basophils inhibited IgE-dependent basophil activation in all normal
donors tested (Cassard et al. 2012).
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8.5 FcR-Dependent Induction and Inhibition
of Autoimmunity

Autoimune diseases that depend on autoantibodies involve an unbalance between
activating and inhibitory FcRs.

Activating FcRs account for the clinical expression of autoimunity in several
murine models. FcRc-deficient mice were protected from multiple sclerosis
(Robbie-Ryan et al. 2003), did not develop anti-platelet-induced thrombocytopenic
purpura (Fossati-Jimack et al. 1999) and displayed less lesions in a model of
Parkinson disease (He et al. 2002). FccRI (Nimmerjahn and Ravetch 2005),
FccRIIIA (Fossati-Jimack et al. 1999) and FccRIV (Nimmerjahn et al. 2005) were
found to contribute to platelet depletion, to systemic lupus erythematosus (Seres
et al. 1998), to experimental hemolytic anemia (Meyer et al. 1998; Syed et al.
2009), to glomerulonephritis (Fujii et al. 2003) and to arthritis (Ioan-Facsinay et al.
2002; Bruhns et al. 2003; Mancardi et al. 2011).

Autoantibodies induced thrombocytopenic purpura (Reilly et al. 1994) or
arthritis (Pietersz et al. 2009) in transgenic mice expressing human FccRIIA, and
the expression of human FccRI in FcRc-deficient mice restored joint inflammation
in the K/BxN model of rheumatoid arthritis (Mancardi et al. 2013) Autoantibodies
against myelin found in multiple sclerosis, and autaoantibodies against dopami-
nergic neurons found in Parkinson’s disease (McRae-Degueurce et al. 1988) are
thought to induce inflammation by activating FcR-expressing phagocytic cells.
Many cells of the central nervous system express FcRs, and immune cells are
recruited from the bloodstream into the brain in these disorders.

Conversely, FccRIIB prevent autoimmunity. FccRIIB-deficient C57BL/6 mice
spontaneously develop autoimmune diseases when ageing, with anti-DNA and
anti-chromatin antibodies, and they die of glomerulonephritis (Ravetch and Bol-
land 2001). Importantly, the partial restoration of FccRIIB levels on B cells in
lupus-prone mouse strains was sufficient to restore tolerance and to prevent dis-
ease, suggesting that minor alterations of FccRIIB expression may be sufficient to
induce autoimmunity (McGaha et al. 2005; Mackay et al. 2006). A polymorphism
in the transmembrane domain of human FccRIIB was found to decrease the ability
to translocate into lipd rafts and to inhibit BCR signaling (Kono et al. 2005).

8.6 FcR-Dependent Inhibition and Enhancement
of Tumor Growth

Anti-tumor antibodies can lead to a significant reduction of tumor mass when
injected in wt mice (Nimmerjahn and Ravetch 2005), but not in FcRc-deficient
mice (Clynes et al. 1998). FccRIIIA (Albanesi et al. 2012), but also FccRI
(Bevaart et al. 2006) and FccRIV (Nimmerjahn and Ravetch 2005) have been
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reported to participate to the reaction. The anti-tumor effects of anti-tumor anti-
bodies were markedly enhanced in FccRIIB-deficient mice (Clynes et al. 2000).
Antibody-dependent cell-mediated cytotoxicity is thought to account for these
in vivo effects (Koene et al. 1997) and, as discussed below, it has provided the
grounds for passive immunotherapy of cancer. The nature of effector cells is
unclear. Cell-depletion experiments suggested a role for monocytes/macrophages
(Otten et al. 2008) and possibly other myeloid cells, besides NK cells.

Anti-tumor antibodies can have an opposite effect and enhance tumor growth.
An intravenous injection of antibodies against antigen expressed by tumor cells
can indeed prevent the rejection of allogeneic tumor cells injected subcutaneously,
leading to the death of mice which, otherwise, clear their tumors within 2 weeks
(Voisin 1971). In spite of extensive investigation, the mechanism of this long
known enhancement phenomenon (Kaliss 1958) has remained largely unknown.
We recently found that enhancement is abrogated in FccRIIB-deficient mice
(Getahun et al. unpublished).

9 Conclusion: FcRs as Adaptive Therapeutic Tools

Antibodies appear as potent effector molecules. They are, however, not ‘‘magic
bullets’’ as they are sometimes viewed, in reference to Paul Ehrlich’s chemical
compounds with a selective affinity for pathogens (Strebhardt and Ullrich 2008).
As discussed in this review, their action is more subtle. They engage multiple
receptors with adaptative structures and signaling on a variety of cells with
adaptive functional responses, which enables immune responses to adapt to the
infinite varitions of antigenic stimulations. Taking into account the complexity of
interactions between antigens, antibodies, FcRs and cells occuring here and there
in the body is not only an exciting challenge, it has become a requirement for
understanding the pathogenesis of disease and for developing new therapeutic
tools. One can indeed exploit this complexity to ameliorate immunotherapy and to
conceive new antibody-dependent approaches of a variety of diseases.

In various immune diseases, symptoms are the local manifestations of a sys-
temic process. Allergies and autoimmune disorders, in which antigen is either
applied or present locally, are examples of such diseases. They develop at the
intersection of a plurality of systemic effectors and of a plurality of tissue effectors.
This may also apply to local or tissue-specific infections in which symptoms are
primarily due to the anti-pathogen immune response. Thus, if one takes the
example of allergies, the clinical manifestations of cutaneous allergies and of
respiratory allergies depend on effector cells present in the skin and in the respi-
ratory tract, respectively, and on target organs that do not respond identically to
inflammatory mediators secreted by effector cells. Better understanding the
polymorphism of allergies is a mean to better treat them.

Antibodies against molecules expressed by target cells have been increasingly
used for passive immunotherapy, aiming at engaging FcRs to induce phagocytosis
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and/or ADCC by FcR-expressing effector cells and destroy target cells. Thus, the
anti-CD20 antibody Rituximab has been used to kill CD20-expressing transformed
B cells (Manches et al. 2003), or B cells responsible for the production of path-
ogenic autoantibodies in rheumatoid arthritis (Shaw et al. 2003; Edwards et al.
2004). When binding to HER2, Trastuzumab not only inhibits the proliferation of
breast, ovary or lung cancer cells by preventing receptor dimerization (Yakes et al.
2002), it also induces tumor destruction by engaging activating FcRs on cytotoxic
cells (Clynes et al. 2000). Antibodies against molecules expressed by dendritic
cells can also enhance antigen presentation and, as a consequence, T-cell depen-
dent cytotoxicity against tumor cells. Unexpectedly, this effect was found to
involve FccRIIB (Li and Ravetch 2011). Indeed, when binding in trans to
FccRIIB-expressing cells by their Fc portion, anti-TNF receptors antibodies mimic
the effect of multimeric ligands and they aggregate TNF receptors much more
efficiently than when they do not (Li and Ravetch 2013).

Likewise, the therapeutic effect of Omalizumab, a monoclonal antibody
directed against the FceRI-binding site of IgE developed to prevent mast cell and
basophil sensitization by IgE in allergic patients, happened to be mediated by an
unanticipated mechanism. Omalizumab indeed forms IgE-anti-IgE complexes that
are rapidly degraded, probably through internalization. As a result, serum IgE
become undetectable (Djukanovic et al. 2004). As the half-life of FceRI is
decreased when they are not occupied by IgE, basophils and mast cells have a
markedly reduced FceRI expression.

The efficacy of therapeutic antibodies having been established, one can now
aim at enhancing their wanted effects while decreasing their unwanted effects. The
situation is simpler than in active immune responses because therapeutic anti-
bodies are directed against a single epitope, because they are mono-isotypic and
because most are humanized antibodies made by grafting antigen-specific variable
sequences onto the same human backbone (the constant domains of a well-know
human IgG1 in many cases). Thus, one can engineer therapeutic antibodies so that
they have specific properties. One can mutate the main glycosylation site (e.g.,
introduce a N297Q point mutation in the Fc portion) to generate antibodies that
can bind to target antigens without engaging FcRs except FcRn, which preserves
their half life (Veri et al. 2007). One can increase the half life of antibodies by
generating mutations that enhance the affinity of the Fc portion for FcRn (Ward
and Ober 2009). As a consequence, the plasma concentration of therapeutic
antibodies is increased (Dall’Acqua et al. 2006). One can either change the gly-
cosylation or generate mutations that enhance the affinity of antibodies for acti-
vating FcRs. Thus, mutations that remove fucose residues from the Fc portion of
antibodies, enhance their affinity for human FccRIIIA (Natsume et al. 2005; Niwa
et al. 2005). Conversely, one can generate antibodies with mutations in the Fc
portion that enhance the affinity of antibodies for inhibitory FcRs. Thus, anti-
human CD19 antibodies that bind to FccRIIB with a several hundred-fold higher
affinity than nonmutated antibodies, suppressed BCR-dependent activation of B
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cells from healthy donors or from SLE patients, reduced serum IgM, IgG, and IgE
levels in SCID mice engrafted with SLE PBMC, and increased survival of mice
engrafted with PBMC from a SLE patient (Horton et al. 2011). Likewise, anti-IgE
antibodies with an Fc portion having an increased affinity for FccRIIB further
reduced free and total IgE levels by preventing the generation of IgE-secreting
plasma cells (Chu et al. 2012).

A step forward may be to know which cell types and which FcRs will be
engaged by a given antibody, depending on the location of target cells or mole-
cules, and to use therapeutic antibodies that will preferentially engage the desired
FcRs on the appropriate effector cells. Phenotyping FcRs on effector cells in
individual patients and assessing their ability to activate these cells would indeed
be a progress toward personalized medicine.

Generating new vaccines remains a major challenge for immunologists. Anti-
bodies are responsible for the protective effects of the overwhelming majority of
vaccines. Neutralizing antibodies keep being thought to account for protection and,
in most cases, FcR-dependent mechanisms are ignored. Different strategies may be
necessary for vaccines against systemic infections and for local infections. Also, as
exemplified by anti-SARS coronavirus antibodies, one wants to prevent antibodies
from enabling the virus to infect FcR-expressing cells that are not infected in the
absence of antibodies (Jaume et al. 2011). No protective anti-cancer vaccine is
available yet, and efforts are being made to induce and/or amplify cell-mediated
cytotoxicity against tumor cells. The efficacy of passively administered therapeutic
anti-tumor antibodies, however, suggests that vaccines that would generate such
antibodies may be useful. Knowing how to induce antibodies with a therapeutic
benefit, but not antibodies with tumor enhancing properties will require that
mechanisms of antibody-dependent enhancement are understood.

Finally, if, as discussed here, antibodies can exert a whole array of biological
effects, one may stop thinking of vaccines only as a mean to kill, destroy or
remove unwanted molecules, cells or pathogens. We recently found that, when co-
engaged with a growth factor receptor, FccRIIB could inhibit the proliferation of
transformed tumor cells (Malbec and Daëron 2012). On the basis of this obser-
vation, vaccines could aim at co-engaging a variety of target antigens with
inhibitory receptors and interfere with pathogenic processes due to cell activation
or proliferation. This would extend the field of application of vaccines to diseases
other than infectious diseases and cancer, such as inflammatory diseases. Specific
immunotherapy of allergy is an example. It was proposed one century ago, and it
has being used since then. Its efficacy and indications, however, remain limited.
They might be markedly enhanced if the mechanisms behind this empirical
maneuver were better known and exploited.
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Abstract Immunoglobulins and Fc receptors are critical glycoprotein components
of the immune system. Fc receptors bind the Fc (effector) region of antibody
molecules and communicate information within the innate and adaptive immune
systems. Glycosylation of antibodies, particularly in the Fc region of IgG, has been
extensively studied in health and disease. The N-glycans in the identical heavy
chains have been shown to be critical for maintaining structural integrity, com-
munication with the Fc receptor and the downstream immunological response.

J. M. Hayes � G. P. Davey
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute,
Trinity College Dublin, Dublin, Ireland
e-mail: jehayes@tcd.ie

G. P. Davey
e-mail: gdavey@tcd.ie

E. F. J. Cosgrave
Pharmaceutical Life Sciences Group, Waters Corporation, 34 Maple St., Milford
MA 01757, USA
e-mail: Eoin_Cosgrave@Waters.com

W. B. Struwe
Chemistry Research Laboratory, Department of Chemistry, University of Oxford,
Oxford OX1 3TA, UK
e-mail: Weston.Struwe@Chem.ox.ac.uk

M. Wormald
Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford,
Oxford OX1 3QU, UK
e-mail: Mark.Wormald@bioch.ox.ac.uk

R. Jefferis
Department of Immunology, University of Birmingham, Birmingham, UK
e-mail: r.jefferis@bham.ac.uk

P. M. Rudd (&)
NIBRT-Glycoscience Group, NIBRT—The National Institute for Bioprocessing,
Research and Training, Foster Av. Blackrock, Dublin 4, Ireland
e-mail: pauline.rudd@nibrt.ie

M. Daëron and F. Nimmerjahn (eds.), Fc Receptors, Current Topics
in Microbiology and Immunology 382, DOI: 10.1007/978-3-319-07911-0_8,
� Springer International Publishing Switzerland 2014

165



Less is known about glycosylation of the Fc receptor in either healthy or disease
states, however, recent studies have implicated an active role for receptor asso-
ciated oligosaccharides in the antibody-receptor interaction. Research into Fc
receptor glycosylation is increasing rapidly, where Fc receptors are routinely used
to analyze the binding of therapeutic monoclonal antibodies and where glyco-
sylation of receptors expressed by cells of the immune system could potentially be
used to mediate and control the differential binding of immunoglobulins. Here we
discuss the glycosylation of immunoglobulin antibodies (IgA, IgE, IgG) and the Fc
receptors (FcaR, FceR, FccR, FcRn) that bind them, the function of carbohydrates
in the immune response and recent advances in our understanding of these critical
glycoproteins.

Keywords Immunoglobulin � Fc receptor �Glycosylation � Immunity �N-glycan �
O-glycan
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1 Introduction

Glycosylation is a key player in the immune response, in antigen recognition of
invading microorganisms and in ligand–receptor interactions that lead to cellular
and effector activities. Modification of proteins, lipids, and other organic molecules
by glycosylation creates a repertoire of glycovariants, some of which may confer
orthogonal functions on the proteins to which they are attached. Given the diversity
and ubiquity of glycan structures in almost all organisms it is not surprising that the
immune system has evolved to detect sugar epitopes from pathogenic sources. Toll-
like receptors (TLR) are a particularly good example of this pathogen associated
molecular pattern (PAMP) recognition. Endotoxin (lipopolysaccharide), an outer
membrane component of gram negative bacteria consisting of a polysaccharide and
lipid is sensed by TLR4 which signals to activate the innate immune system
(Takeda et al. 2003; Medzhitov et al. 1997; Chow et al. 1999). Mannan binding
lectin (MBL) is a C-type lectin that functions in pattern recognition of sugars from
pathogenic micro-organisms leading to activation of the lectin pathway and com-
plement system (Petersen et al. 2001). Macrophage mannose receptor (MMR) and
dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin
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(DC-SIGN) are also C-type lectins which recognize mannose type sugars on bac-
teria, viruses and fungi (Figdor et al. 2002). Galectins are widely distributed pro-
teins that bind galactose and its derivatives and function in cell–cell and cell–matrix
interactions and cell signaling (Barondes et al. 1994a, b). Dectin-1 is another C-type
lectin, which mediates various immune functions in response to fungal infection
(Brown and Gordon 2001; Ariizumi et al. 2000). This carbohydrate recognition of
pathogenic microorganisms by specific sugar binding proteins of the immune
system is a critical sensing and defense mechanism. Effective immunity also
requires the ability of cells to communicate with each other, to extravasate from
blood vessels to sites of infection and to fight the source of infection and maintain
normal cellular homeostasis, critical functions mediated by carbohydrates.

Immunoglobulins and their receptors (Fc receptors) are critical glycoprotein
components of the immune system that link the innate and adaptive arms of
immunity. Immunoglobulins are diverse glycoproteins in terms of their isotype,
antigen recognition, distribution/concentration, and effector responses. They can
be membrane bound in the form of surface immunoglobulins or soluble. Surface
immunoglobulins form part of the B-cell receptor (BCR) and are composed of
membrane bound immunoglobulin D (IgD) or immunoglobulin M (IgM). This
allows the antibody producing B-cell to detect specific antigens resulting in B-cell
activation and antibody production. In humans, there are five types of immuno-
globulin antibody: IgA, IgD, IgE, IgG, and IgM, each with specific structure,
function and activities. Each antibody monomer consists of two identical heavy
chains and two light chains, an Fc domain formed from the constant regions and
two antigen binding Fab domains formed from the variable regions but different
antibodies have variable numbers of immunoglobulin domains. Somatic hyper-
mutation in the variable regions allows antibodies to recognize a huge repertoire
(109) of antigens and the constant Fc region allows the antibody to interact with Fc
receptors on the surface of innate immune cells such as monocytes, neutrophils,
B-cells, macrophages and natural killer (NK) cells. The N-linked glycans present
on conserved asparagine containing sequons in the Fc region, particularly IgG are
essential for antibody structure and function.

Antibodies communicate with effector cells of the immune system through
interactions with membrane bound Fc receptors, which are complex glycoproteins
found on many cells types. These interactions induce effector responses including
phagocytosis, activation of the complement cascade, and antibody dependent cell-
mediated cytotoxicity (ADCC). Even though IgG antibodies bind to complement
receptors and C-type lectins for the purpose of this review we focus on the
interactions of immunoglobulins with Fc receptors. Fc receptors (FcaR, FceR,
FccR) are specific for a particular antibody isotype and direct specific immune
responses following binding of antibody-immune complexes. Fc receptors have
distinct functions but similar structures with familiar domains, architecture and
post-translational modifications (see Fig. 1). The IgD receptor is found on B-cells
and the recently discovered receptor for IgM (FclR) is expressed only in lymphoid
cells such as B- and T-lymphocytes in humans (Kubagawa et al. 2009; Ouchida
et al. 2012). There is an additional Fc receptor known as the neonatal Fc receptor

168 J. M. Hayes et al.



(FcRn), which is involved in recycling of IgG, maintaining the serum concen-
trations of the antibody where high concentrations are required to fight infection
(Ward et al. 2003). This receptor is also involved in placental transport of IgG
from mother to fetus and is critically important for the transfer of humeral
immunity to the baby, which cannot yet make IgG antibodies (Morphis and Gitlin

Fig. 1 Domain architecture of membrane bound Fc receptors. a Schematic representation of Fc
receptors showing extracellular, transmembrane and intracellular regions. Annotated features
associated with Fc receptors including glycosylation sites, transmembrane regions, intracellular
signaling motifs, domain structures and cleavage sites. b FccRI family showing domain structures
and annotated features. FccRIa contains an extra D3 domain, which confers the high-affinity
property of the receptor and two additional N-linked sites
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1970; Brambell 1966). Glycosylation in antibody-receptor interactions has tradi-
tionally focused on the function of the N-linked glycans of immunoglobulins, in
particular IgG, however, recent exciting discoveries have led to renewed interest
and focus on the role of Fc receptor glycosylation in the antibody interaction and
subsequent immune response.

Much of the available glycosylation data and information on antibodies and Fc
receptors come from studies involving IgG and FccRs. For this reason, in this
chapter we focus mainly on this particular antibody isotype and Fc receptor class.
We have chosen not to discuss in any detail IgD or IgM and the corresponding
receptors, as there is little glycosylation data available for these receptors. In
addition to IgG and FccRs, we also discuss the extensive glycosylation of IgA and
IgE and their receptors: FcaR and FceR. Where data are available, we discuss the
influence of glycosylation on the antibody interactions and immune response. The
biopharmaceutical industry is particularly interested in the crucial influence of
particular glycans, such as noncore-fucosylated structures, attached to therapeutic
monoclonal antibodies. An explosion of genomic, proteomic, and structural data
now exists and atomic resolution structures of antibody-receptor complexes are
available, which shed light on the mechanisms of interaction and the detailed
influence of the associated sugars. We discuss these structures and the ways in
which carbohydrates are involved in unique carbohydrate–carbohydrate and car-
bohydrate–protein interactions.

2 IgA-Mediated Immunity

Antibody-mediated innate and adaptive immunity at mucosal membranes and
secretions is largely facilitated by the activity of immunoglobulin A (IgA and
secretory IgA), an important class of the immunoglobulin family that provides
protection against pathogens at mucosal sites such as the gastrointestinal, genito-
urinary, and respiratory tracts (Macpherson et al. 2000). IgA comprises approxi-
mately 15 % of total body immunoglobulin and, in adults, is produced by the
majority of plasma B-cells in larger amounts than all of the other immunoglobulins
combined (66 mg/kg/day) (Kerr 1990). IgA, which is unlike other immunoglobu-
lins in that it forms a T-shaped structure exists in a number of forms or subclasses
(see Fig. 2a) (Boehm et al. 1999; Furtado et al. 2004). Serum IgA1 and IgA2 which
is more abundant in secretions differ by a thirteen amino acid sequence found in the
hinge region of IgA1 (van Egmond et al. 2001). This additional hinge region is
heavily O-glycosylated, protecting the antibody from bacterial proteolytic degra-
dation (see Fig. 2a). IgA2 does not have these O-linked sites but does contain two
additional N-linked sites making it is less susceptible to bacterial proteolysis.
Polymeric forms of IgA also exist, composed of 2–4 IgA monomers joined by a
16 kDa chain (J chain) (Kerr 1990). This form of IgA, which is found in secretory
fluids such as saliva, tears, colostrum, and gastrointestinal fluids, is known as
secretory IgA (SIgA). At mucosal sites such as the gastrointestinal tract, IgA exists
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Fig. 2 Immunoglobulin A, glycosylation and the FcaR complex. a Schematic representation and
molecular model of human IgA1 showing glycan sites and glycan site occupancy. The hinge
region of IgA is heavily O- and N-glycosylated which protects IgA from bacterial proteolysis.
Also shown is Fc glycosylation and extra C-terminal tail region glycosylation containing bi-
antennary glycans. b IgA1–FcaRI complex. Two FcaR molecules are bound to the IgA antibody
in the crystal structure. FcaR glycosylation and site occupancy is shown in red and IgA
glycosylation is shown in blue. IgA glycans (blue) appear on the external side of the Ca2 domain
of FcaRI. It is believed that the Fca glycan of IgA comes within 8 Å of the FcaR, indicating a
potential protein–carbohydrate or carbohydrate–carbohydrate interaction with the glycans of
FcaRI (red). The model is based on 1ow0 in the protein data bank
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primarily as SIgA and exhibits anti-inflammatory neutralizing properties. This
prevents unwanted immune responses against commensal bacteria or other per-
ceived antigens encountered in a normal diet.

SIgA is extensively N- and O-linked glycosylated (see Fig. 2). Both IgA1 and
IgA2 contain two N-linked sites per H chain, one in the Ca2 domain (Asn263) and
one in the C-terminal region (Asn459). The secretory component (SC) is also
heavily glycosylated with seven N-linked sites and an additional site in the J chain.
The IgA1 hinge region is heavily O-glycosylated. Comprehensive analysis of the
N- and O-linked glycans of IgA were described in several reports which identified
significant heterogeneity in both the N- and O-linked foms (Pierce-Cretel et al.
1981, 1982, 1989; Mizoguchi et al. 1982; Hughes et al. 1999). The total glyco-
sylation of SIgA was first reported by Royle et al. in (2003) from the antibody H, J
and SC peptide chains from pooled human serum IgA. A large variety of N- and
O-linked carbohydrate epitopes were described in the SC and hinge region of the H
chain respectively such as galactose in b(1,3) and b(1,4) linkage to GlcNAc,
fucose in a(1,2) linkage to galactose and a(1,3) and a(1,4) linkage to GlcNAc and
a(2,3) and a(2,6)-linked sialic acids (Royle et al. 2003). An abundance of sialy-
lated N-linked structures in the SC were identified with shorter truncated glycans
within the heavy chain region. Notably, all of the Lewis and sial-Lewis glycan
epitopes were identified conferring potential binding sites for lectins and bacterial
adhesins. These carbohydrate epitopes serve a dual role in protecting SIgA from
bacterial proteolysis and in ligand binding. In addition, SIgA glycans facilitate
binding to the lectin Mac-1(CD11b/CD18), which plays a role in FcaR-mediated
SIgA signaling (van Spriel et al. 2002). Glycosylation of the Fab regions of IgA
was reported by Mattu et al. (1998). Bi-antennary N-linked glycans were mainly
present in the Fc whilst N- and O-linked sugars with extensive sialylation (30 %)
were reported for the Fab regions (Mattu et al. 1998).

Serum IgA, which is present throughout the body following its synthesis by
plasma cells in the spleen, is distinct from SIgA which is present at secretory sites
such as gut associated lymphoid tissue (GALT). Glycosylation of the various
forms of IgA is also different, probably due to the differences in the 3D structures
of the individual proteins and the levels of the glycan processing enzymes at their
sites of production. Polymeric SIgA has several binding sites for antigen and due
to the differences in carbohydrate composition such as exposed GlcNAc and
mannose residues it can be internalized by dendritic cells following binding to
mannose receptor, whereas serum IgA cannot (Royle et al. 2003; Heystek et al.
2002). Large, complex, sialylated O-glycans in the hinge region differ between
serum IgA and SIgA and are also likely to play different roles in interactions with
bacterial adhesins. Interestingly, Royle et al. show that N-glycans on the H chains
of SIgA contain exposed mannose and GlcNAc residues that can be masked by the
SC (Royle et al. 2003). Disruption of the SC–H chain can reveal these exposed
terminal monosaccharides, which can then be recognized by lectin receptors on
dendritic cells and phagocytes to promote opsonisation and phagocytosis.

172 J. M. Hayes et al.



2.1 FcaR

IgA antibodies communicate with the immune system via interaction with FcaRs,
integral membrane proteins specific for the Fc region of the IgA molecule (see
Fig. 2b). Five structurally unrelated FcaRs have been described (Monteiro and van
de Winkel 2003). The polymeric IgA receptor (pIgR) is a member of the immu-
noglobulin superfamily, which binds dimeric SIgA and is expressed by mucosal
epithelial cells. Following SIgA binding, translocation of the IgA–pIgR receptor
complex across the epithelial cell delivers the antibody to the mucosal surface
(Mostov 1994). At the mucosal surface, the SC (part of the epithelial cell) is
cleaved and the remaining complex (IgA–J chain–SC) is secreted. Interestingly,
this peptide complex is assembled from two different cell types and represents one
of the few examples where a protein is assembled from two distinct cell types. The
polymeric IgA receptor also facilitates the secretion of IgM antibodies (Johansen
et al. 1999).

FcaRI (CD89) is a specific Fc receptor for IgA1 and IgA2 found on cells of
myeloid lineage such as macrophages, neutrophils, dendritic cells, and eosinophils
(Geissmann et al. 2001; van Egmond et al. 2000; Monteiro et al. 1993). Due to
alternative splicing, the FcaRI protein can exist in three different forms or splice
variants in vivo (Morton et al. 1996; Pleass et al. 1996). The FcaRI (a.1) isoform is
the full-length protein and is a 32 kDa single pass transmembrane receptor
(Maliszewski et al. 1990). However, due to extensive glycosylation on six
potential N-linked sites and seven potential O-linked sites and further heteroge-
neity which exists on these glycosylation sites the mature protein exists with a
molecular weight of between 50 and 100 kDa in vivo (Morton et al. 1996). FcaRI
can range in mass from between 55 and 75 kDa in the case of monocytes and
neutrophils to as high as 100 kDa in the case of eosinophils due to differential
glycosylation (Morton et al. 1996; van Egmond et al. 2001). Little information
exists as to the exact nature of the glycans found on FcaRI, however, deglyco-
sylation experiments using endoglycosidases confirmed the presence of extensive
glycosylation and also suggested that FcaR1 was differentially glycosylated. All of
the six potential N-linked sites have been the focus of recent investigations. Site-
directed mutagenesis of each N-linked site revealed no impact on FcaR binding of
IgA, with the exception of Asn58 (Xue et al. 2010). Mutagenesis of Asn58 to
Glu58 resulted in a near twofold increase in binding of IgA. This study also
investigated the role of sialylation on IgA binding and demonstrated a near four-
fold increase in affinity following neuraminidase treatment of mutagenized FcaR
and provided a clear indication that glycosylation of FcaR at position 58 is a key
factor in the binding affinity for IgA. The full role of FcaR glycosylation is
currently unclear but these recent experiments indicate that different glycans play a
role in the IgA interaction and that particular cell types glycosylate the receptor in
a cell-type specific manner. It remains a challenge to characterize FcaR glyco-
sylation, define its role and mechanism in binding IgA and control of downstream
immune responses.
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Serum IgA principally exists as a monomer and interacts with FcaRI leading to
immune effector responses (see Fig. 2b). The precise role of FcaR, however, is
still debated. FcaRI exists as a low affinity Fc receptor for IgA with an approxi-
mate Ka 106 M-1 that rapidly dissociates from the FcaRI–IgA complex (Wines
et al. 1999). In common with IgG binding to Fcc receptors, IgA immune com-
plexes bind more tightly to FcaR and with higher avidity than monomeric IgA (van
Egmond et al. 2001). Soluble glycosylated forms of FcaRI also exist with
molecular weights of approximately 30 kDa (25 kDa peptide sequence) and
50–70 kDa. The latter tightly associates with polymeric IgA, however, the func-
tion of soluble FcaRI is unclear (van Zandbergen et al. 1999; van der Boog et al.
2002). The crystal structure of the FcaR–IgA complex indicates that two FcaR
molecules bind one molecule of IgA (Herr et al. 2003) (see Fig. 2b). Unlike IgG or
IgE, IgA glycans appear on the external side of the Ca2 domain as opposed to
residing within the interstitial space of the Ca2 dimer. Herr et al., postulate that the
Fca glycan comes within eight angstroms of the FcaR, indicating a potential
protein–carbohydrate or carbohydrate–carbohydrate interaction (see Fig. 2b).
Structurally, FcaR resembles the Fc gamma receptors by having two extracellular
Ig-like domains, a single transmembrane pass, and a short cytoplasmic region.
FcaRI associates with the FcR gamma chain that contains an ITAM (immuno-
receptor tyrosine-based activation motif) (Morton et al. 1995). Signaling of FcaR
is dependent upon crosslinking of IgA immune complexes leading to receptor
clustering and localization to lipid rafts resulting in ITAM phosphorylation
causing increases in intracellular calcium levels and induction of NADPH oxidase
activity in neutrophils (Lang et al. 1999). Signaling via FcaRI following antigen
recognition by IgA leads to a multitude of effector responses such as ADCC,
phagocytosis of bacteria and yeast, superoxide generation and release of cytokines
and inflammatory mediators.

3 IgE-Mediated Immunity

When the body loses tolerance to commonly encountered foreign material
hypersensitivity can result and manifest as a number of disorders including atopic
dermatitis, allergic rhinitis, asthma, and food allergies. Hypersensitivity is largely
driven through immunoglobulin E (IgE) and mast cells, although debate exists
whether these two factors contribute to long term tissue rearrangement associated
with prolonged exposure to allergens (Galli and Tsai 2012). In addition to allergic
responses of the immune system IgE is also involved in anti-parasitic responses
such as in defense against helminths and parasitic worms (Gounni et al. 1994). IgE
is the least abundant immunoglobulin in human serum, typically found at very low
levels (150–300 ng/ml) and is most likely complexed with the high affinity
receptor for IgE, FceRI on mast cells and basophils (Dorrington and Bennich
1978). Like other immunoglobulins, IgE exists as a structure consisting of two
heavy and two light chains, however, it has a different domain structure and the
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hinge regions are more rigid than in other immunoglobulin classes (see Fig. 3a).
IgE is also heavily glycosylated with seven potential N-linked sites where car-
bohydrates comprise approximately 12 % of the antibody mass, making it the most
heavily glycosylated immunoglobulin (Arnold et al. 2004; Dorrington and Bennich
1978) (see Fig. 3a, b). Arnold et al. described the N-glycosylation of human serum
IgD and IgE and identified extensive oligomannose glycosylation, including Man3,
Man4, Man5, Man6, Man7, Man8, Man9, and additional hybrid structures. The total
glycan pool of IgE contained approximately 14 % high mannose structures, which
mediate extensive interaction with MBL (Arnold et al. 2004). A significant pro-
portion of glycans were found to be sialylated; mono-sialylated glycans accounted
for 39 % and di-sialylated glycans 36 % of the total glycan pool. This agreed with
oligomannose glycans and sialylated glycans previously reported on myeloma IgE
(Dorrington and Bennich 1978; Baenziger and Kornfeld 1974a, b). Complex
glycans were predominantly bi-antennary (97 %) with significant amounts of core-
fucosylation (68 %). Bisecting N-acetylglucosamine residues were present on
approximately 15 % of N-glycan structures. Site-specific glycosylation analysis of
IgE has been performed recently by Plomp et al. who describe an extensive
analysis of polyclonal IgE from three different sources. In all three samples of IgE
isolated from pooled serum of myeloma patients, myeloma nondiseased and
hyperimmune donors the Asn275 N-glycan site contained exclusively oligoman-
nose structures (Man2–Man9). The remaining Asn21, Asn49, Asn99, Asn146 and
Asn252 residues contained complex glycans which were bi-antennary core fu-
cosylated (98.5–100 %) mono-and di-sialylated structures for the non-myeloma
donors and interestingly, contained higher proportions of tri- and tetra-antennary
structures and lower bi-secting GlcNAc residues in the IgE myeloma patients. The
Asn264 N-glycan site was found to be unoccupied and Asn99, Asn252 and Asn275
only partially occupied (Plomp et al. 2013).

IgE N-glycans have functional importance, particularly the oligomannose car-
bohydrate at Asn275 which is homologous to Asn297 in IgG where the site
contains a complex-type oligosaccharide. Mutation of Asn275 resulted in the loss
of binding to the high affinity FceR1, indicating the importance of this N-linked
site (Nettleton and Kochan 1995). Enzymatic deglycosylation of IgE using
PNGase F severely decreased the reactivity of IgE for FceRI, suggesting that IgE
glycosylation affects both structure and function of the antibody molecule
(Bjorklund et al. 1999). Glycosylation also affects the binding of IgE to the low
affinity FceRII, particularly the glycan at Asn252 (Sondermann et al. 2013).
However, in other reports, glycosylation of IgE has been shown to have no effect
on the activity of either FceRI or FceRII and IgE deglycosylation was shown to
have the same activity as mock deglycosylated IgE, suggesting that antibody
glycosylation has only a limited affect (Vercelli et al. 1989; Basu et al. 1993). An
additional nondirect function of IgE glycosylation can be found in the activity of
galectins, a family of lectins that specifically bind b-galactoside. High affinity
binding of galectins to the glycans of IgE regulate the activity of IgE and have an
anti-allergic effect by blocking antigen complex formation (Niki et al. 2009).
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3.1 FceRI: The High Affinity Fc Epsilon Receptor

IgE-mediated immune responses are controlled via the Fc epsilon receptor (FceR).
The high affinity FceRI (Ka 1010 M-1) is a member of the immunoglobulin
superfamily and is found on mast cells, basophils, eosinophils, and Langerhans
cells where it triggers effector responses (Kraft and Kinet 2007). This can cause
allergic reactions to allergens following interaction of IgE immune complexes with
the FceRI on mast cells through degranulation and release of histamine, serine
proteases, proteoglycans, and inflammatory mediators. Human FceRI exists in two
forms, an abc2 tetramer and ac2 trimer in which the a subunits bind IgE and the bc

Fig. 3 Immunoglobulin E, glycosylation and the FceR complex. a Schematic representation and
molecular model of human IgE showing glycan sites and glycan site occupancy. IgE is the most
heavily gycosylated immunoglobulin with extensive glycosylation (shown in blue) in the Fc and
Fab regions. The role of IgE glycosylation in the interaction with the IgE receptor is debated with
some reports saying it is important and others suggesting it has minimal impact on the interaction.
b IgE–FceRI complex. In the case of FceRI glycans (red) do not appear to be involved at the
interaction site with IgE and may not participate in the binding of antibody but are instead
suggested to be involved in solubility and protein folding in the endoplasmic reticulum. Shown in
red is FceRI glycosylation and in blue is IgE glycosylation. The model is based on 1f6a in the
protein databank with hinge regions based on 1o0v and Fab regions from IgG
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subunits signal within the effector cell. FceRI is unique to Fc receptors; in that, it
contains the additional beta chain, which acts to amplify the signal (Kraft et al.
2004). Apart from this, it has a typical interaction with the FcR gamma chain
required for signaling within the effector cell. There are seven N-linked sites on
FceRI although little information exists as the occupation of these sites or the exact
nature of the glycans that reside here (see Fig. 3b). It was shown by Kanellopoulos
et al. and La Croix and Froese that the receptor expressed on basophilic cells
contains approximately 40 % of its weight due to carbohydrates, decreasing to
approximately 28 kDa, following PNGase F treatment (Kanellopoulos et al. 1980;
LaCroix and Froese 1993). Experiments using glycosylation inhibitors and
endoglycosidase enzymes suggested that both the high affinity FceRI and low
affinity FceRII receptors are composed of mainly complex glycans with only a
single oligomannose site. Even though O-linked sites exist these experiments
suggest that few O-linked glycans are present on either FceRI or FceRII. In the
crystal structure of FceRI carbohydrate density is indicated at three of the potential
seven N-glycan sites (Asn21, Asn42, and Asn166) although there is little infor-
mation as to the function of the glycans present at these sites (Garman et al. 2000).
However, studies have suggested that carbohydrates on FceRI are not required for
the binding interaction with IgE and are instead needed for efficient folding and
solubility of the receptor (Letourneur et al. 1995; Robertson 1993). In the crystal
structure, the glycans do not extend toward the top surface of the receptor where
the interaction with IgE is proposed to take place (Garman et al. 2000) (see
Fig. 3b). Mutation of the N-linked sites causes misfolding and absence of
N-glycosylation due to enzymatic deglycosylation affects neither the stability nor
IgE binding capacity of FceRI, again indicating that FceRI glycans do not par-
ticipate in the interaction with IgE (Letourneur et al. 1995).

FceRI can also bind galectin-3; a known regulator of immune responses through
carbohydrate interactions, resulting in crosslinking of receptor bound IgE or FceR
and activation of mast cells and basophils (Liu 2005). Galectin-3 is a lectin that
specifically binds b-galactose oligosaccharides and is a low affinity IgE receptor,
which can be found extracellular, cytoplasmic or nuclear where it can regulate IgE
mediated immune responses with anti-allergic activities and also inflammatory
mediator release (Chen et al. 2006; Frigeri et al. 1993). It has also been shown that
galectin-9 specifically binds IgE via a lactose residue and prevents IgE-immune
complex formation and mast cell degranulation and reduction of allergic responses
(Niki et al. 2009).

3.2 FceRII: The Low Affinity Fc Epsilon Receptor

FceRII (CD23) is the low affinity IgE receptor of B-cells, macrophages and den-
dritic cells where it regulates the production of IgE and participates in the elimi-
nation of intracellular pathogens (Maeda et al. 1992; Vouldoukis et al. 1995).
Unlike other FcRs CD23 is a C-type lectin. It is present either as a membrane bound
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trimer or can be released from the cell surface by proteases such as ADAM10 to
yield soluble forms (sCD23) (Dhaliwal et al. 2012). Alone, the soluble form of
CD23 has a low affinity for IgE compared to FceRI but when complexed as a
soluble trimer can significantly increase the avidity and binding levels. FceRII has a
distinct role in IgE regulation due to its expression on B-cells and it is thought to
contribute to both positive and negative regulation and differentiation of B-cells.
Little is known about FceRII glycosylation. There is a single N-linked glycosylation
site at Asn63 and potential O-linked sites. It was shown that a 45 kDa component of
CD23 was a glycoprotein containing a complex N-linked carbohydrate, several
O-linked carbohydrates, and several sialic acid residues (Letellier et al. 1988). In
addition, Letellier et al. show, by the use of N-glycosylation inhibitors, that the
production of IgE-binding factors, derived from proteolytic cleavage of FceRII are
increased in the absence of N-glycosylation, indicating that degradation of FceRII is
inhibited in the presence of N-glycans. Safrati et al. show that N-glycosylation
controlled the activity of sCD23 and when inhibited with tunicamycin switched IgE
binding factors from IgE potentiators to IgE suppressors (Sarfati et al. 1984, 1992).

4 IgG-Mediated Immunity

Immunoglobulin G (IgG) antibodies are critical glycoprotein components of the
immune system which detect invading microorganisms and tumor-associated
antigens and communicate this information to the innate and adaptive immune
systems. The IgG antibody is the most abundant antibody isotype found in serum
where it comprises approximately 75 % of total serum immunoglobulins. IgG
antibodies are further divided into different subclasses (IgG1, IgG2, IgG3, IgG4)
based on their abundance in serum. The subclasses differ particularly in the
structure of their hinge regions. Each forms a typical Y-shaped structure composed
of two heavy chains and two light chains organized into two Fab regions that bind
antigen and an Fc region that is recognized by the Fc receptor specific for IgG
(FccR) (see Fig. 4a). Interaction with the FccR on innate immune cells allows the
IgG molecule to communicate with the immune system and induce immune
effector functions such as ADCC, complement-dependent cytotoxicity (CDC) and
phagocytosis following opsonisation of target antigens (see Fig. 4b).

4.1 The Role of N-Glycans in IgG Biology

Like other immunoglobulins, IgG is glycosylated and the addition of N-linked
glycans to two conserved asparagine residues in each of the CH2 domains of the Fc
region is critical for the structure and function of the antibody (Krapp et al. 2003;
Arnold et al. 2007) (see Fig. 4a). In addition to glycosylation of the two canonical
Asn297 residues in the Fc region, N-linked glycans are present in some 20 % of
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the Fab regions in human IgG (see Fig. 4a). These glycans include bi-antennary
structures that are hyper-galactosylated, fucosylated, and extensively sialylated
(Mimura et al. 2007). N-linked glycans described in the Fc region of polyclonal

Fig. 4 Immunoglobulin G, glycosylation and the FccR complex. a Schematic and molecular
model representation of human IgG1 showing glycan sites and glycan site occupancy (shown in
blue). Shown is Fc glycosylation on conserved Asn297 residues containing bi-antennary glycans.
The bi-antennary glycans found on these conserved canonical asparagine residues are believed to
maintain the structural integrity of the Fc region of the antibody for binding and communication
with the FccR and also to participate in carbohydrate–carbohydrate interactions with the N-
glycans of the receptor. Fab glycosylation found in 20 % of IgG1 in the form of hyper-
galactosylated, fucosylated and extensively sialylated bi-antennary glycoforms is also shown.
b The IgG–FccRIIIa complex showing Fc glycans on Asn297 of human IgG1 (blue) and receptor
glycans on Asn196 of human FccRIIIa (red). Potential carbohydrate–carbohydrate interactions
are involved at the binding interface between antibody and receptor and participate in the
interaction, as has been shown for the soluble domain of FccRIIIa and afucosylated IgG. The
model is based on 1e4k in the protein data bank
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IgG typically display heterogeneity and are composed of a core heptasaccharide
defined by a chitobiose core (Man1GlcNAc2) with branching mannose residues in
both a(1–3) and a(1–6) linkage. Further processing by the addition of GlcNAc
residues in b(1–2) linkage, fucose, galactose, sialic acid, and bi-secting GlcNAc
forms the mature bi-antennary IgG Fc N-glycan (see Fig. 5). In total, human serum
IgG has been shown to contain up to 36 different N-glycan structures (Wormald
et al. 1997). Unusual glycosylation has also been observed on IgG in the form of
galactose linked b(1–4) to bisecting GlcNAc (Harvey et al. 2008). Microhetero-
geneity is also observed, where glycans on identical but opposing CH2 domains
have been shown to vary (Jefferis et al. 1990; Masuda et al. 2000). Thus, in an
otherwise symmetrical molecule, asymmetry can be introduced by differential
N-linked glycosylation at individual Asn297 sites.

Glycosylation of IgG plays a number of important roles. The a(1–6) arm of the bi-
antennary glycan extends along the hydrophobic face of the CH2 amino acid
backbone where the polar nature of the carbohydrate protects the underlying
hydrophobic polypeptide (Lund et al. 1995). The a(1–3) arm of the glycan extends
toward the interstitial space formed by the CH2–CH3 dimer. Here, the N-linked
glycans on opposite Asn297 residues interact and maintain the conformation of the
Fc domain and changes in Fc glycosylation can alter the Fc conformation and affect
the binding to Fc receptors (Jefferis et al. 1998; Krapp et al. 2003; Radaev and Sun
2001). Several lines of investigation have clearly indicated that changes to Fc gly-
cosylation affect binding affinity and loss of Fc glycosylation abrogates binding
altogether. Absence of glycosylation disrupts the structural integrity of the Fc
region, which is required for optimal binding to the Fc receptor. In addition to
maintenance of Fc structural integrity N-glycan monosaccharides play additional
roles. For instance, IgG glycoforms lacking galactose (IgG G0) bind to MBL to

Fig. 5 The most common core-fucosylated bi-antennary glycan found in the Fc region of IgG.
a Schematic representation of IgG bi-antennary glycan. b Cartoon representation of IgG bi-
antennary glycan. Symbols and linkage positions correspond to those shown in the schematic
representation. Human serum IgG has been found with up to 36 different N-glycan structures,
predominantly in the form of core-fucosylated bi-antennary structures, as shown in a and
b. Typically the N-glycan contains zero (IgG G0), one (IgG G1) or two (IgG G2) galactose
residues (shown in red in the schematic representation). The glycan shown in a and b is the fully
galactosylated/hypergalactosylated (IgG G2) form, however, in serum IgG1 it is the IgG G1 form
which predominates. In certain conditions such as rheumatoid arthritis IgG G0 forms have been
been detected in higher abundance which can effect downstream FccR binding and immune
function
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activate complement (Malhotra et al. 1995), galactose residues are involved in
placental transport of IgG and IgG galactosylation is increased in pregnant women
(Simister 2003). Sialic acids have been implicated in the anti-inflammatory effects
of intravenous IgG (IVIg) and desialylation abrogates this property in knockout mice
(Kaneko et al. 2006). However, recently the mechanism of IVIg has been questioned
and it has been shown that the interaction between DC-SIGN and IgG is not glycan
dependent where Yu et al. challenge the idea that DC-SIGN directly binds to IVIG,
suggesting that DC-SIGN is unlikely to be the receptor. (Yu et al. 2013).

To fucosylate or not to fucoyslate?
Core-fucosylation of IgG has been the subject of intensive research ever since
afucosylated IgG was shown to exhibit improved binding to activating Fc gamma
receptor and enhanced ADCC (Shields et al. 2002; Okazaki et al. 2004; Mori et al.
2004; Yamane-Ohnuki et al. 2004; Kanda et al. 2007; Natsume et al. 2005; Iida
et al. 2006; Satoh et al. 2006; Ferrara et al. 2006a, b). With such a significant
impact on immune effector function, the biopharmaceutical industry has vigor-
ously pursued the generation of afucosylated monoclonal antibody therapeutics.
Genetic elimination of fucosyltransferase 8 (FUT 8) in Chinese hamster ovary
cells has been a successful approach for the prevention of core fucosylated IgG
(Yamane-Ohnuki et al. 2004). Alternative methods such as the overexpression of
b(1,4)-N-acetylglucosaminyltransferase III (GnTIII) as a means of eliminating the
substrate for fucosyltransferase and modification of enzymes involved in the N-
linked glycan biosynthetic pathway have also been developed with significant
success (Umana et al. 1999; von Horsten et al. 2010; Zhou et al. 2008). The
majority of approved mAb therapeutics that target ADCC have been engineered
for use in anti-cancer therapies where the mAb targets a cell surface receptor
associated with a particular tumor. In this situation, the absence of core a(1–6)-
linked fucose has been associated with improved cytolytic activity and efficacy of
the mAb (Shields et al. 2002; Nimmerjahn and Ravetch 2005). This has been most
commonly studied in B-cell lymphomas where the monoclonal antibody (ritux-
imab) recognizes the cell surface receptor CD20 on B-cells and induces natural
killer (NK) mediated ADCC. Another very successful anti-tumorigenic mAb is
herceptin, which targets the Her2 receptor expressed on some breast cancer
tumors. Due to the remarkable success of this approach, industry has moved
toward generation of cell lines with genetic modifications that directly influence
core fucosylation.

4.2 Role of Glycosylation in FccR Biology

IgG antibodies communicate with the immune system via interaction with the
plasma membrane bound Fcc receptors found on innate immune cells. FccRs are
typically single pass transmembrane glycoproteins belonging to the immuno-
globulin-like superfamily (IgSF), defined by characteristic domains based on two
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sheets of antiparallel b-strands (Williams and Barclay 1988) (see Fig. 6). The
FccR family is broadly categorized into three groups: FccRI, FccRII, and FccRIII.
Variability is observed within each group at the genomic, transcriptomic, and
proteomic level where multiple genes, transcripts, and polymorphic variants all
contribute to FccR complexity. Functionally, the individual FccR groups coordi-
nate distinct functions. The FccRI family are characterized by their high affinity
(109 M-1) for IgG while the remaining families are low affinity (106 M-1)
receptors. Extensive variability is also observed in the cytoplasmic domain of each
receptor, where signaling can be either through association with the c-chain dimer
(for FccRI and FccRIII) or through integrated signaling motifs (for FccRII). Sig-
naling occurs through either an immunotyrosine-like activation motif (ITAM) for
activating FccRI, FccRIIa, FccRIII or an immunotyrosine-like inhibitory motif
(ITIM) for inhibitory FccRIIb.

Emerging from the shadows of IgG and Fc glycosylation is the growing com-
plexity of Fcc receptor biology and the role of these receptors in health and disease.
While intensive efforts have been directed towards manipulating IgG glycosylation
for enhanced biological activity, Fcc receptors have traditionally been used in a
limited role to investigate monoclonal antibody safety and efficacy. However, this
is no longer the case and the complexity of Fcc receptor biology and the role of
glycosylation is becoming increasingly evident. Research into the glycosylation of
Fcc receptors was initiated over three decades ago, however it is only now that are
we beginning to appreciate the precise function of the carbohydrate moieties in
relation to IgG binding and associated biological activity. Surprisingly, due to the

Fig. 6 FccRs are structurally homologous with an extra D3 domain in FccRIa. Structural
alignment of human FccRs shows structural homology between family members (FccRIa,
FccRIIa, FccRIIb, FccRIIIa, FccRIIIb). Glycosylation site number varies significantly between
two and seven sites between family members with two extra N-linked sites in the D3 domain of
FccRIa. This extra domain of FccRIa is responsible for its high affinity nature and the two N-liked
sites within this domain may also contribute to the high affinity nature of the receptor
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difficulty in obtaining sufficient amounts of material for analysis very little is known
about the glycosylation of Fcc receptors as they occur in their natural environments,
bound to the cell surface membranes of lymphocytes such as neutrophils, mono-
cytes, macrophages, B-cells and NK cells. Each Fcc receptor contains at least two
N-linked glycosylation sites with up to seven potential sites observed in the high
affinity FccRIa. The vast majority of glycan data exists for FccRIIIa. We now have
structural information which shows how human FccRIIIa associated sugars are
involved in carbohydrate–carbohydrate interactions with the Asn297-linked sugars
of afucosylated human IgG1 (Ferrara et al. 2011). Glycosylation data have also
been reported for recombinant soluble human FccRIIa and FccRIIIa (Takahashi
et al. 1998, 2002) and recently glycan data have been described for the family of
recombinant receptors: FccRIa, FccRIIa, FccRIIb, FccRIIIa, and FccRIIIb
expressed in the murine cell line NS0 (Cosgrave et al. 2013). Interestingly, agly-
cosylated Fcc receptors expressed in E. coli and purified from inclusion bodies still
appear to retain the ability to bind IgG (Sondermann and Jacob 1999; Sondermann
et al. 2000; Maenaka et al. 2001) which brings into question the exact nature of Fcc
receptor glycosylation in IgG binding.

In the light of the emerging importance of Fcc receptor glycosylation in IgG
function there is a critical need for detailed knowledge of the glycosylation state of
natural FccRs of immune cells. One likely possibility is that an Fcc receptor
demonstrates differential glycosylation depending on the cell type. Ample evi-
dence of this was provided by Edberg et al. (1990); (Edberg and Kimberly 1997).
Knowledge that Fcc receptor glycosylation changes depending on the immune cell
will help to understand the associated immunological outcomes. Following cyto-
kine-mediated immune activation, innate effector cells are known to up-regulate
Fcc receptors as has been shown with IFN-c and monocytes (Fleit and Kobasiuk
1991; Fairchild et al. 1996). In this case, changes in Fcc receptor glycosylation due
to immune cell activation may shed light on glycoform preferences for improved
IgG binding. Resting or inactive innate effector cells may glycosylate Fcc recep-
tors in a manner that promotes dissociation as a mechanism to avoid inadvertent
activation. Upon stimulation with appropriate mediators, Fcc receptor glycosyla-
tion may change to recruit and retain circulating antibodies. Rapid upregulation of
Fcc receptor expression is likely to have an impact on glycosylation. The question
is does this ‘‘activated’’ Fcc receptor glycoform have an improved or dampened
interaction with IgG or does a change in FccR glycosylation disrupt or modify cell
surface interactions? It is therefore of paramount importance to characterize nat-
ural Fcc receptor glycosylation. Of equal importance is to learn how immune
responses alter Fcc receptor glycosylation. Immune activation may induce the
expression of Fcc receptors with improved binding, possibly through altered
glycosylation. The glycosylation may also promote engagement of other mole-
cules that work to extend the presence of receptors on the cell surface. An example
of this could be the role of galectin in cellular distribution and trafficking of the
epidermal growth factor receptor (EGFR) (Merlin et al. 2011; Liu et al. 2012).
During an immune response, the preferable scenario for the innate effector cell is
to express the Fcc receptor on the cell surface to scavenge for IgGs. In fact, it is
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most likely that glycosylation changes to promote cross-linking of antibodies. If
binding improves and dissociation is reduced, then Fcc receptors will become
occupied by antibodies which may not be involved with a specific immune
response. Perhaps more likely is a situation in which clustering of the Fcc
receptors is improved as this will more readily lead to immune cell activation.
Another possibility is that glycosylation of inhibitory FccRs may change to reduce
interaction with IgGs. This would effectively eliminate inhibitory Fcc receptors
from cluster points and in the process alter the A/I ratio and induce cell activation.
Alternatively, situations of immune tolerance may see glycosylation of inhibitory
FccRIIb change to promote binding and retention/clustering of autoantibodies.

4.3 FccRI (CD64)

The FccRI family is the high affinity Fcc receptor and is structurally distinct from
FccRII and FccRIII by the presence of a third extracellular D3 domain (see Fig. 6).
This additional domain has been shown to account for the high affinity property of
the FccRI family (Harrison and Allen 1998; Allen and Seed 1989; Lu et al. 2011).
FccRIa is primarily expressed by monocytes and macrophages although myeloid
cell lines induced with cytokines such as IFN-c are capable of FccRI expression
(Fairchild et al. 1996). The FccRI family is the only Fcc receptor class capable of
appreciably binding monomeric IgG in vivo (Bruhns et al. 2009). Similar to the
FccRIII family, FccRI requires the interaction with the c-chain homodimer for cell
surface expression and signal transduction (van Vugt et al. 1996; Ernst et al. 1993).

FccRIa is a 374 amino acid protein with seven potential N-glycosylation sites. In
the absence of post-translational modifications, FccRI is a 42.6 kDa single pass
transmembrane protein with short cytoplasmic region. At present, little is known
about the site occupancy of these N-glycosylation sites or the carbohydrates that
reside there. A study of neutrophil FccRIa did, however, reveal that the receptor is
heavily glycosylated with approximately 30 % of its weight due to carbohydrates.
There are a larger number of glycosylation sites associated with this receptor in
comparison to other members of the FccR family, largely due to the extra D3
domain, which contains two putative N-linked sites. The crystal structure of soluble
extracellular FccRIa observed and modeled N-glycans at six asparagine residues
(Asn59, Asn78, Asn152, Asn159, Asn163, Asn195) but little information as to the
exact nature of the carbohydrates exists (Lu et al. 2011). As this is the high affinity
receptor for IgG it is likely that the glycans that reside on the N-glycosylation sites
in this extra domain will play a role in the interaction with IgG. Further studies are
needed to investigate this assumption. Recombinant FccRIa expressed in murine
cells was heavily glycosylated with multiantennary structures, core and outer arm
fucosylation with predominantly neutral and mono-sialylated glycans and smaller
amounts of di- and tri-sialylated structures. In addition, large amounts of the
immunogenic carbohydrates gal-a(1,3)-gal(a-gal) and N-glycolylneuraminic acid
(NGNA) were discovered (Cosgrave et al. 2013).
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4.4 FccRII (CD32)

The FccRII family of Fc receptors are structurally and functionally distinct from
FccRI and FccRIII primarily due to an integrated signaling motif located in the C-
terminal cytoplasmic region of the protein. FccRII is categorized into FccRIIa,
FccRIIb, and FccRIIc, where six transcripts in total have been described
(Warmerdam et al. 1993; Qiu et al. 1990). Two transcripts arise from the FccRIIa
gene (FccRIIa1 and FccRIIa2), where FccRIIa2 is believed to be a soluble form of
FccRIIa. Three separate transcripts arise from FccRIIb (FccRIIb1, FccRIIb2, and
FccRIIb3) and only one arises from FccRIIc. With the exception of FccRIIa2, all
transcripts give rise to single pass transmembrane glycoproteins. Due to the sig-
nificant differences in biological function between FccRIIa and FccRIIb, each will
be discussed separately.

4.4.1 FccRIIa

FccRIIa is a 40 kDa single pass transmembrane glycoprotein capable of potent
inflammatory response activation. The FccRIIa family is comprised of FccRIIa1
and FccRIIa2, where the latter is believed to represent a soluble form of the
receptor (van den Herik-Oudijk et al. 1994). Structurally, FccRIIa demonstrates
significant homology to FccRIIb in the extracellular domain with approximately
92 % amino acid identity, however, significant differences are present in both the
transmembrane and cytoplasmic domains where FccRIIa contains an activatory
ITAM motif and FccRIIb has an inhibitory ITIM motif. FccRIIa is the most widely
expressed FccR, found on neutrophils, eosinophils, B lymphocytes, platelets
(Rosenfeld et al. 1985), mast cells (Sylvestre and Ravetch 1996), Langerhans cells
(Schmitt et al. 1990), placental endothelial cells (Sedmak et al. 1991), and den-
dritic cells (Sallusto and Lanzavecchia 1994).

The low affinity FccRIIa is a 317 amino acid protein with two N-linked gly-
cosylation sites. Glycosylation of this receptor expressed in insect cells was
reported to be uncharged suggesting no sialylation of N-glycans (Sondermann
et al. 1999). Glycosylation was also reported to have no effect on binding of IgG.
Powell et al. reported that expression of FccRIIa in CHO cells was found to
display micro-heterogeneity resulting from extensive sialylation on both N-linked
sites while the same receptor derived from baculovirus infected inset cells con-
tained only simple Man3 glycan structures (Powell et al. 1999). FccRIIa expressed
in NS0 cells contained complex glycosylation with multiantennary structures,
extensive core and outer-arm fucosylation and immunogenic a-gal and NGNA,
similar to FccRIa (Cosgrave et al. 2013). However, little is known as to the site-
occupancy of the N-linked sites or the function of FccRIIa glycosylation. In
addition, there is no information currently available relating to natural FccRIIa
glycosylation.
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4.4.2 FccRIIb

FccRIIb is a 34 kDa (peptide mass) single pass membrane glycoprotein and is the
most widely expressed FccR. In contrast to other FccRs, FccRIIb contains an
inhibitory signaling motif (ITIM) in its cytoplasmic tail. FccRIIb has a rare
polymorphism resulting from an SNP, causing an amino acid change at position
232 to an isoleucine (Li et al. 2003). The functional consequence of this variation
is the failure of FccRIIb to associate in lipid rafts, thereby losing the ability to
dampen immune cell activation through activatory Fc receptors. This has been
shown in SLE (Floto et al. 2005; Kono et al. 2005). Two isoforms of FccRIIb,
referred to as FccRIIb-1 and FccRIIb-2, exist as a result of alternative splicing and
are expressed differentially depending on the cell type, FccRIIb-1 is exclusively
expressed on B-cells and FccRIIb-2 is expressed on all other FccR cell types,
except NK cells (Nimmerjahn and Ravetch 2008). FccRIIb is a 310 amino acid
protein containing three potential N-glycosylation sites. Similar to other FccRs
little information exists as to the site occupancy or nature of glycosylation at these
sites. To our knowledge, the only FccRIIb glycan data come from a recombinant
form expressed in murine cells. In common with other FccRs expressed from this
source FccRIIb contained multiantennary structures, limited sialylation and
extensive immunogenic carbohydrate epitopes (Cosgrave et al. 2013). No infor-
mation is currently available relating to natural FccRIIb glycosylation.

4.4.3 FccRIIc

FccRIIc is believed to have occurred from a unequal genetic cross-over event that
effectively brought the 50 region of FccRIIb to the 30 region of FccRIIa (Warmerdam
et al. 1993). Interestingly, functional FccRIIc has been identified on NK cells, where
four separate mRNA transcripts were isolated from NK cells (Metes et al. 1998).
Four distinct isoforms of the protein exist with molecular weights ranging from 25.9
to 35.5 kDa and 234–323 amino acids. There are also three potential N-linked sites
although no information exists as to the glycosylation of this protein.

4.5 FccRIII (CD16)

4.5.1 FccRIIIa

The biology of the FccRIII family has been the subject of intensive focus, largely
due to the role of activating FccRIIIa in NK cell activity and ADCC. FccRIIIa
demonstrates unique structural characteristics by requiring association with the
c-chain dimer (similar to FccRI) and further association with the f-chain when
expressed by NK cells, where it has been demonstrated that FccRIII expression
requires association with an accessory chain (Kinet 1992; Hibbs et al. 1989).
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FccRIIIa expresses two immunoglobulin-like C2-type domains (similar to FccRII).
Perhaps most interesting is the diversity within the two FccRIII family members:
FccRIIIa and FccRIIIb. The extracellular domains of both receptors are nearly
homologous with the exception of six amino acids. Interestingly, a key residue at
position 203 influences whether FccRIII becomes a single pass membrane bound
receptor (Phe203) or membrane-associated through a GPI-anchor (Ser203).
FccRIIIa is widely distributed across the hematopoietic system, found on cells
such as monocytes and NK cells but has different properties depending on the cell
such as altered sensitivity to trypsin (Perussia and Ravetch 1991). There is
emerging evidence that FccRIIIa is expressed by cdT cells and contributes to
disease progression of multiple sclerosis by ADCC dependent means (Chen and
Freedman 2008), although FccR expression in any form by T-lymphocytes is a
widely debated subject.

Most of our knowledge of FccR glycobiology comes from the low affinity
activating FccRIIIa of monocytes and NK cells. FccRIIIa is a 254 amino acid protein
with five potential glycosylation sites. Early seminal work on FccRIIIa glycosyla-
tion was performed by Edberg et al. who showed that cell type specific glycoforms
of the receptor existed that exhibited differential ligand binding (Edberg et al. 1989,
1990). Using lectin-binding experiments FccRIIIa from NK cells was shown to
display N-glycans of predominantly oligomannose type while the same receptor
expressed by monocytes displayed complex type oligosaccharides. Furthermore,
removal of high mannose oligosaccharides from FccRIIIa resulted in a change in the
binding of aggregated IgG (Kimberly et al. 1989). Edberg et al. also showed that the
receptor expressed by monocytes was distinct from that displayed by NK cells
(Edberg and Kimberly 1997) and that FccRIIIa on NK cells has the ability to bind
monomeric IgG whereas FccRIIIa on monocytes lacks this ability. Interestingly, at
physiological IgG concentrations, FccRIIIa is saturated but can more easily be
displaced by competing molecules (Mab3G8) than the NK cell equivalent. This data
suggests that monocytes utilize FccRIIIa differently than NK cells and it is con-
vincing to attribute this difference in FccRIIIa and IgG binding to glycosylation.
Interestingly, these discoveries suggest that differential glycosylation potentially
plays a role in influencing Fc-FccR affinity, and therefore immune cell activation.

More recently, a huge amount of proteomic and glycomic information has been
described for recombinant forms of FccRIIIa and importantly the N-linked glycan
site occupancy of the receptor. Two N-linked sites of FccRIIIa directly regulate the
binding of IgG. Mutagenesis of the N-linked glycan at Asn162 significantly
reduced the binding of IgG1, demonstrating a dependence of this interaction on
FccRIIIa glycosylation at this particular site (Ferrara et al. 2006b) (see Fig. 4b). In
addition, the N-linked glycan at position Asn45 was shown to have an inhibitory
role in IgG binding, where removal of the N-linked site at this position dramati-
cally improved the binding of IgG1 (Shibata-Koyama et al. 2009). It has been
proposed that the glycan at position 45 within the D1 domain of FccRIIIa acts to
stabilize the D2 domain and protect it from intracellular proteolytic degradation.
As a consequence, the Asn45 occupied site exhibits a reduced binding affinity of
afucosylated IgG1 to FccRIIIa. A site-specific analysis of recombinant FccRIIIa

Glycosylation and Fc Receptors 187



expressed in HEK293 and CHO cells was performed by Zeck et al., who showed
that specific types of glycans were found on particular N-linked sites including
multi-antennary structures, sialylation, and core-fucosylation. Significant charac-
teristics of the expression host were reported, such as LacdiNAc (HexNAc–
HexNAc) structures from HEK293 cells, and the authors also report on the effect
on IgG binding of larger HEK293 glycans compared to smaller CHO glycans
located on the same sites (Zeck et al. 2011). Although these are non-natural
sources it does provide evidence for site-specific glycans, which may mediate the
IgG interaction. Recently, it was shown at the molecular level that a unique
carbohydrate–carbohydrate interface was involved in the interaction between
afucosylated IgG1 and FccRIIIa, which explained the increased affinity for afu-
cosylated antibody through lack of steric hindrance, which is present for core-
fucosylated forms (Ferrara et al. 2011) (see Fig. 4b). Glycosylation of recombinant
FccRIIIa from NS0 cells has also been described (Cosgrave et al. 2013).

4.5.2 FccRIIIb

FccRIIIb is a GPI-anchored protein present on macrophages and neutrophils and
has no currently known cytosolic signaling domain. FccRIIIb activation and
crosslinking on neutrophils have been shown to cause neutrophil degranulation
and generation of reactive oxygen intermediates, which can in turn increase
FccRIIa activation by increasing avidity and efficiency (Salmon et al. 1995). These
cooperative FccR effects show the potential for synergistic FccR activation. In
addition, FccRIIIb has been shown to associate with complement receptor 3 (CR3)
in fibroblast transfectants, highlighting the potential for inter-receptor interactions
and activation (Poo et al. 1995).

More information is available for FccRIIIb glycosylation than for the other
FccRs, with the exception of FccRIIIa. FccRIIIb expressed on neutrophils is a 233
amino acid protein with six potential N-linked sites that contain oligomannose
glycans that influence the properties of the IgG-receptor binding interactions
(Kimberly et al. 1989). The apparent molecular weight of FccRIIIb varies from
50 kDa to 80 kDa due to differential glycosylation (Ravetch and Perussia 1989;
Scallon et al. 1989; Edberg et al. 1989; Huizinga et al. 1990). Furthermore, the NA
polymorphic variations (NA1 and NA2) of FccRIIIb are also believed to dem-
onstrate heterogeneity in glycosylation (Kimberly et al. 1989). Galon et al. (1997)
expressed soluble human FccRIIIb in both E. coli and baby hamster kidney (BHK)
cells and observed a decrease in binding affinity due to the presence of N-linked
glycans (Galon et al. 1997). However, N-linked carbohydrates were not deter-
mined. N-linked glycans were reported for FccRIIIb from BHK cells by Takahashi
et al., who described multi-antennary structures containing up to four GlcNAc
residues and minimal sialic acid capping (Takahashi et al. 2002). Glycosylation of
recombinant FccRIIIb from murine cells was also described and similar to BHK
cells consisted of multiantennary structures and incomplete sialic acid capping and
similar to other receptors expressed in murine cells with extensive immunogenic a-
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gal and N-glycolylneuraminic acid carbohydrate epitopes (Cosgrave et al. 2013).
Site-specific and natural glycosylation information is currently not available for
FccRIIIb.

5 FcRn: The Neonatal Fc Receptor

The neonatal Fc receptor (FcRn) is unlike the other Fc receptors and is more
similar in structure to MHC class I. The mature FcRn receptor consists of a
complex of two subunits: p51 and p14 (b2-microglobulin) and forms an MHC
class-l-like heterodimer (Simister and Mostov 1989; Burmeister et al. 1994a, b).
The receptor is located in numerous tissues and organs, such as the vascular
endothelium and myeloid derived antigen presenting cells (APC), such as mono-
cytes, macrophages, and dendritic cells where it functions in the transfer of IgG
from mother to fetus (Simister 2003; Simister and Mostov 1989). This process is
critical for transferring humeral immunity from mother to child. The receptor is
found in the placenta to help facilitate this critical process. FcRn is also involved
in recycling of IgG and regulates its serum half-life, maintaining its serum con-
centration and regulating IgG homeostasis (Ward et al. 2003; Antohe et al. 2001;
Roopenian and Akilesh 2007). Only at acidic pH, such as in endocytic vacuoles
will FcRn bind IgG, releasing it at physiological pH. By recycling IgG from acidic
endosomes and releasing it back at the cell surface FcRn increases the half-life of
IgG, which is needed at high serum concentration to fight infection. FcRn can also
bind IgG immune complexes resulting in transport to lysosomes in dendritic cells
for antigen presentation (Qiao et al. 2008; Yoshida et al. 2004).

FcRn contains a single N-linked glycosylation site in the a2 domain in the 365
amino acid large subunit (p51). Human and rat FcRn differ by the number of
N-glycan sites, rat FcRn has four sites in the a1, a2, a3 domains, whereas the
human receptor has a single glycosylation site (Asn125). The crystal structure of
rat FcRn revealed that the carbohydrate on Asn128 is at the interaction site for IgG
and is possibly involved in the IgG interaction (Burmeister et al. 1994a). The
glycan moiety makes contact with the Fc region of the IgG molecule and has been
postulated to help stabilize the complex formation through a carbohydrate inter-
action with IgG (Vaughn and Bjorkman 1998). Recently, information became
available on the glycosylation of human and rat FcRn expressed in canine MDCK
II cells which showed that the receptor from both sources contained both oligo-
mannose and complex glycans and that following EndoH removal of high man-
nose structures the size of the glycoprotein was reduced from 52 to 37 kDa (Kuo
et al. 2009). However, the exact monosaccharide compositions were not reported.
Kuo et al. report increased surface expression of FcRn following the introduction
of additional N-glycan sites to the protein and show that carbohydrates are
involved in the direction of IgG transport by FcRn and that direction of transport
mediated by human FcRn is reversed by the addition of N-glycan sites, making it
more like the rodent form.
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6 Closing Remarks

Immunoglobulins and Fc receptors are complex glycoproteins and key compo-
nents of both the innate and adaptive immune systems. Glycosylation of immu-
noglobulins (IgA, IgD, IgE, IgG) has been well studied and the sugars attached to
the conserved asparagine residues in the Fc region are undeniably critical to the
antibodies function and its communication with the immune system. Exciting
discoveries that show individual monosaccharide residues of Fc N-glycans mod-
ulate binding of antibodies to immunoglobulin receptors on immune effector cells
and drive particular immune responses is intriguing and has led to an explosion of
research into the influence of glycosylation in antibody mediated responses. Core-
fucosylation and its influence on activating FccRs and antibody mediated anti-
tumor activities have led to huge industrial interest into antibody glycosylation.
Molecular mechanisms at atomic level for such interactions are now being elu-
cidated. Therapeutic antibodies have had remarkable success in the treatment of
many diseases, from cancer to autoimmune disorders and glycosylation is integral
and crucial to past and future successes. Emerging now from the shadows of
antibody glycosylation are the Fc receptors. It is true to say that we do not yet fully
understand the role of these critical receptors in health and disease, particularly the
role of glycosylation. Glycosylation of Fc receptors is far more complex than for
antibodies and we have very little information as to how these receptors are
glycosylated in their natural environment, by cells such as macrophages, B-cells
and NK cells. Even though significant information on how these receptors are
glycosylated was revealed more than 30 years ago it is fair to say that we are just
beginning to understand the true importance of receptor glycosylation in the
interaction with antibody and downstream immunological response. It is intriguing
to consider the role that sugars could play when a particular immune cell
encounters antibody immune complexes and the potential control mechanisms
mediated by carbohydrates. It remains a challenge for the future to gain a more
complete understanding of the glycosylation of antibody Fc receptors in both
activated and dormant states and in both healthy and disease situations. Fc
receptors for IgA at mucosal surfaces, for IgE in allergic reactions and defense
against parasites, IgG in infection and anti-tumor activities and other antibody-
mediated responses is becoming more and more critical to successful future
clinical therapies and successes.
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Antibodies as Natural Adjuvants

Birgitta Heyman

Abstract Antibodies in complex with specific antigen can dramatically change
the antibody response to this antigen. Depending on antibody class and type of
antigen, [99 % suppression or [100-fold enhancement of the response can take
place. IgM and IgG3 are efficient enhancers and operate via the complement
system. In contrast, IgG1, IgG2a, and IgG2b enhance antibody and CD4+ T cell
responses to protein antigens via activating Fcc-receptors. IgE also enhances
antibody and CD4+ T cell responses to small proteins but uses the low-affinity
receptor for IgE, CD23. Most likely, IgM and IgG3 work by increasing the
effective concentration of antigen on follicular dendritic cells in splenic follicles.
IgG1, IgG2a, IgG2b, and IgE probably enhance antibody responses by increasing
antigen presentation by dendritic cells to T helper cells. IgG antibodies of all
subclasses have a dual effect, and suppress antibody responses to particulate
antigens such as erythrocytes. This capacity is used in the clinic to prevent
immunization of Rhesus-negative women to Rhesus-positive fetal erythrocytes
acquired via transplacental hemorrage. IgG-mediated suppression in mouse
models can take place in the absence of Fcc-receptors and complement and to date
no knock-out mouse strain has been found where suppression is abrogated.
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1 Introduction

Antibodies have been known to regulate antibody responses against the antigens
with which they form complexes since the 1890s (von Behring and Wernicke
1892). All classes and subclasses, except IgD, have been reported to exert
immunoregulatory functions (reviewed in Uhr and Möller (1968), Heyman (2000),
Hjelm et al. (2006)). In studies of antibody-mediated feedback regulation, the most
common protocol is to immunize control mice with antigen and the experimental
group with preformed specific antibodies followed by antigen. Immunizations are
usually done intravenously without adjuvants. Typically, mice immunized with
both antibodies and antigen have a considerably enhanced or suppressed antibody
response against the antigen in question (Fig. 1). Although antibody feedback
regulation is antigen-specific, the response not only to the epitopes recognized by
the antibody but also to other epitopes present on the same antigen will be
modulated. The ability of low doses of allogeneic antibodies to suppress specific
antibody responses has been used successfully in Rhesus prophylaxis. Women
with the RhD-negative blood group, carrying RhD-positive fetuses, can become
immunized against fetal erythrocytes acquired via transplacental hemorrhage.
Since maternal IgG-antibodies are actively transported across the placenta, IgG
anti-RhD may damage fetal erythrocytes, causing hemolytic disease of the new-
born. Passive administration of IgG anti-RhD to RhD-negative women during
pregnancy or immediately after delivery inhibits active production of IgG anti-
RhD. This treatment has decreased the incidence of hemolytic disease of the
newborn dramatically since its introduction in the 1960s (Clarke et al. 1963;
Urbaniak and Greiss 2000). Antibodies can also have the opposite effect and act as
natural adjuvants. Enhancement of antibody responses can be caused by IgM, IgE,
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and IgA. IgG has a dual effect and enhances antibody responses to proteins and
suppresses responses to erythrocytes. Current knowledge suggests that IgM and
IgG3 primarily depend on complement activation for their adjuvant effects
whereas IgG1, IgG2a, IgG2b, and IgE depend on FcRs (Fc-receptors). The
mechanism behind IgA-mediated enhancement is not understood and owing to the
limited number of studies (Klaus 1979; Coulie and Van Snick 1985) will not be
discussed further. This review will focus on the adjuvant effect of antibodies in
murine in vivo models.

2 IgM and Enhancement of Antibody Responses

The ability of specific IgM to enhance antibody responses to erythrocytes was
discovered in the 1960s (Henry and Jerne 1968). Small amounts of IgM admin-
istered intravenously to mice together with suboptimal doses of SRBC (sheep red
blood cells) causes enhanced SRBC-specific primary and memory responses
(Henry and Jerne 1968; Heyman et al. 1982; Heyman and Wigzell 1985; Youd
et al. 2002; Ding et al. 2013). IgM preferentially enhances responses to large
antigens such as erythrocytes (Henry and Jerne 1968; Heyman et al. 1982; Ding
et al. 2013; Dennert 1971), malaria parasites (Harte et al. 1983) and KLH (keyhole
limpet hemocyanine) (Coulie and Van Snick 1985; Youd et al. 2002; Ding et al.
2013; Enriquez-Rincon and Klaus 1984), whereas responses to small proteins like
OVA (ovalbumin) are difficult to enhance. Antigens administered with IgM are
localized to splenic follicles more efficiently than antigens administered alone
(Dennert 1971; Link et al. 2012). IgM administered with SRBC-OVA does not

Antigen

Antigen

Antibody

Control group:

Experimental group:

Immune response:

100%

<1% or
1,000-10,000%

Fig. 1 Antibody feedback regulation. The most commonly used protocol for studying antibody
feedback regulation is to immunize mice with preformed antibodies in close temporal
relationship to the specific antigen. Depending on antibody class and type of antigen, the active
antibody response in the experimental group can either be completely suppressed or enhanced
several hundred-fold
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enhance proliferation and activation of OVA-specific transgenic CD4+ T cells
(Ding et al. 2013) whereas IgM enhanced T helper cell induction after immuni-
zation with malaria parasites (Harte et al. 1983). Specific IgM, was recently shown
to influence B cell selection in germinal centers and to govern the affinity matu-
ration (Zhang et al. 2013).

2.1 Complement and IgM-Mediated Enhancement

A likely explanation for why IgM only enhances responses to large antigens is that
complement-activation is required. In order for IgM to bind C1q and start the
classical complement cascade, it must change its conformation from the planar
form assumed in serum to a staple form. This conformation change presumably
requires binding to a large antigen. The conclusion that IgM-mediated enhance-
ment requires complement activation is based on several observations. First, it was
found that monoclonal IgM with a pointmutation in the IgM heavy chain leading
to inability to bind C1q, lost its enhancing effect (Heyman et al. 1988). This was
confirmed using IgM from a knock-in mouse (Cl13) carrying the same point
mutation as the monoclonal IgM (Ding et al. 2013; Rutemark et al. 2011).
Additionally, monomeric IgM, which cannot activate complement, lost its ability
to enhance (Youd et al. 2002). Indirect evidence for the importance of complement
activation is that depletion of C3 or lack of CR1/2 (complement receptors 1 and 2)
abolished IgM-mediated enhancement (Heyman et al. 1988; Applequist et al.
2000; Rutemark et al. 2012).

2.2 Fc-Receptors and IgM-Mediated Enhancement

An alternative to the complement pathway for IgM to influence immune responses
would be via Fc-receptors for IgM. A FclR (TOSO/FAIM3), expressed in mice
exclusively on B cells, was recently identified (Kubagawa et al. 2009; Shima et al.
2010). Mice lacking FclR have reduced antibody responses, reduced development
of germinal centers and elevated levels of autoantibodies (Ouchida et al. 2012;
Honjo et al. 2012). Importantly, IgM from Cl13 mice, unable to activate com-
plement and to enhance antibody responses, bound equally well to FclR as did
wild-type IgM (Ding et al. 2013). This observation strongly argues against that
enhancement of antibody responses by specific IgM is mediated by FclR.

Non-immune IgM, present in naïve mice, appears to play a role for the gen-
eration of normal antibody responses. This is evidenced by the finding that mice
lacking secretory IgM have impaired antibody responses which can be rescued by
transfusion of IgM from normal mouse serum (Ehrenstein et al. 1998; Baumgarth
et al. 2000). Such non-immune IgM does not seem to enhance antibody responses
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via complement activation since Cl13 mice have normal antibody responses
(Rutemark et al. 2011). Possibly, natural IgM enhances antibody responses
through FclRs.

2.3 Summary

The most likely mechanism behind IgM-mediated enhancement of antibody
responses is increased localization of antigen on FDC (follicular dendritic cells) in
germinal centers. This idea is supported by a number of observations, the first being
the correlation between the antigen amount detected in the spleen and the magni-
tude of the IgM-enhanced antibody response (Dennert 1971). Marginal zone (MZ)
B cells continuously shuttle between the MZ and the B cell follicles (Cinamon et al.
2008; Arnon et al. 2013) and have been shown to deposit antigen onto FDC (Link
et al. 2012; Ferguson et al. 2004; Heesters et al. 2013). B cells express high levels of
CR1/2 and FDC express CR1 (Donius et al. 2013). As mentioned above, IgM-
mediated enhancement of antibody responses is dependent on complement acti-
vation by IgM as well as on the presence of CR1/2 (Youd et al. 2002; Ding et al.
2013; Heyman et al. 1988; Applequist et al. 2000; Rutemark et al. 2012). Recently,
it was directly demonstrated in vivo that passively administered SRBC-specific
IgM binds to SRBC in the circulation and causes massive deposition of C3 on the
erythrocytes as early as 60 s after immunization (Ding et al. 2013). These obser-
vations are compatible with the hypothesis that MZ B cells bind the complement-
opsonized antigen via complement receptor 2 and transport it to follicles where it is
captured by CR1+ FDC and presented to germinal center B cells.

3 IgG-Mediated Suppression of Antibody Responses

IgG, passively administered together with erythrocytes, can completely suppress a
primary antibody response (Henry and Jerne 1968; Enriquez-Rincon and Klaus
1984; Heyman and Wigzell 1984; Karlsson et al. 1999). Priming of T helper cells
does not seem to be affected (Karlsson et al. 1999; Getahun and Heyman 2009).
Interestingly, administration of IgG several days after the antigen can terminate a
primary antibody response (Chan and Sinclair 1973; Karlsson et al. 2001).

3.1 Complement and IgG-Mediated Suppression

IgG2a, IgG2b, and IgG3 can activate complement. Murine IgG1 is generally a poor
complement activator. However, some monoclonal IgG1 antibodies do activate
complement and when the suppressive ability of one complement-activating and
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one non-complement-activating IgG1 clone was compared, they were equally
efficient (Heyman et al. 1988). Moreover, IgG can suppress in mice lacking C1q or
CR1/2 (B.H. unpublished data). Therefore it seems unlikely that complement-
activation by IgG is required for its capacity to suppress antibody responses.

3.2 Fc-Receptors and IgG-Mediated Suppression

Whether or not the Fc part of the IgG molecule is required for suppression has been a
matter of debate. Some investigators find that suppression is abrogated when F(ab0)2

fragments are used (Enriquez-Rincon and Klaus 1984; Sinclair 1969; Brüggemann
and Rajewsky 1982) whereas others report efficient suppression by F(ab0)2 frag-
ments (Karlsson et al. 1999; Tao and Uhr 1966; Cerottini et al. 1969). As an alter-
native way to determine whether FcRs were required, mice lacking various FccRs
were used. IgG can suppress anti-SRBC responses equally well in wild-type controls
as in mice lacking FccRIIB (FccRIIB-/-), FccRI + FccRIII + FccRIV
(FcRc-/-), FccRII + FccRI + FccRIII + FccRIV (FccRIIB 9 FcRc double
knock-outs), or the neonatal Fc-receptor, FcRn (b2 m-/-) (Karlsson et al. 1999,
2001; Brinc et al. 2008). These observations suggest that FccRs do not play a major
role for the ability of IgG to suppress antibody responses.

3.3 Summary

Although used since the 1960s to prevent Rhesus immunization in RhD-negative
women (Clarke et al. 1963), the mechanism behind IgG-mediated suppression of
responses to erythrocytes remains poorly understood. No knock-out mouse strain
where IgG-mediated suppression is impaired has been found and from obser-
vations in mouse models it appears that neither FccRs nor complement are
required. Epitope masking and antigen elimination are two mutually not exclu-
sive possibilities for how IgG can suppress antibody responses. IgG bound to an
antigen may competitively inhibit binding of naïve low affinity B cells to the
same epitope and thus prevent them from being activated. Alternatively or in
parallel, antigen with IgG as a ‘‘tag’’ may be subjected to increased (FccR- and
complement-independent) phagocytosis or be transported to areas where immune
recognition is ineffective. Mathematical modelling of antibody feedback sup-
pression suggests that epitope masking together with rapid elimination of antigen
best explain the experimental data (Na et al. 2006). More extensive reviews of
IgG-mediated suppression can be found in (Heyman 2000, 2003, 2013; Brinc and
Lazarus 2009).
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4 IgG1-, IgG2a-, and IgG2b-Mediated Enhancement
of Antibody Responses

Early studies demonstrated that hyperimmune sera, presumably mainly containing
IgG, could enhance both primary antibody responses and induction of memory
(Uhr and Möller 1968; Heyman 2000). Thus, in addition to the more well-known
role of IgG as an immunosuppressor, IgG can enhance antibody responses. The
outcome of the regulation seems to depend on the structure of the antigen with
which IgG forms an immune complex. A given hapten-specific monoclonal IgG,
administered with haptenated erythrocytes, suppressed the erythrocyte-specific
antibody response while the same antibody administered with haptenated proteins,
enhanced the protein-specific response (Enriquez-Rincon and Klaus 1984; Wie-
rsma et al. 1989). The adjuvant effects of IgG antibodies has mainly been dem-
onstrated against protein antigens, including KLH which is a large protein with a
molecular weight [1,000 kD.

Studies with monoclonal IgG demonstrated that all murine subclasses can
enhance primary antibody responses to e.g. KLH, OVA, and BSA (bovine serum
albumin) (Coulie and Van Snick 1985; Enriquez-Rincon and Klaus 1984; Wiersma
et al. 1989, 1990; Wernersson et al. 1999; Whited Collisson et al. 1984; Diaz de
Ståhl 2001, 2003; Getahun et al. 2004; Hjelm et al. 2005). Since IgG3 has a
different mode of operation than the other subclasses, it will not be discussed
further in this section. Also secondary responses and induction of memory are
enhanced by IgG1, IgG2a, and IgG2b (Klaus 1979; Coulie and Van Snick 1985;
Diaz de Ståhl 2001) (Fig. 2). The magnitude of the enhancement is impressive,
sometimes being more than a 1,000-fold (Coulie and Van Snick 1985; Wernersson
et al. 1999). Both IgG1- and IgG2a-responses are upregulated, indicating that there
is no Th1/Th2 scewing (Diaz de Ståhl 2001). IgG also increases the frequency of
somatic hypermutation in germinal centers (Nie et al. 1997) and the proliferation
and activation of antigen specific CD4+ T cells (Getahun et al. 2004; Terres et al.
1974; Hamano et al. 2000; de Jong et al. 2006).

4.1 Complement and IgG1-, IgG2a-, and IgG2b-Mediated
Enhancement

A correlation between the ability of IgG to enhance antibody responses and the
ability of individual monoclonal IgG antibodies to activate complement has been
reported (Klaus 1979; Coulie and Van Snick 1985; Wiersma et al. 1989). Although
this suggested that IgG-mediated enhancement depended on complement activa-
tion, subsequent studies show that IgG antibodies unable to activate complement
can enhance as efficiently as complement-activating control IgG (Wiersma et al.
1990). Moreover, IgG2b can enhance in mice depleted of C3 (Wiersma et al. 1990)
and IgG2a can enhance in mice lacking CR1/2 (Applequist et al. 2000). These data
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point to a complement-independent pathway for IgG-mediated enhancement. An
alternative explanation for the weak enhancement by IgG1, interpreted to depend
on lack of complement activation (Coulie and Van Snick 1985; Wiersma et al.
1989), could be that this subclass has a stronger binding to the inhibitory FccRIIB
than do IgG2a and IgG2b (Nimmerjahn and Ravetch 2005). Therefore, an
enhancing effect via activating FccRs may have been downregulated by FccRIIB
and therefore disguised.

4.2 Fc-Receptors and IgG1-, IgG2a-, and IgG2b-Mediated
Enhancement

Neither IgG1, IgG2a, nor IgG2b are able to enhance antibody or CD4+ T cell
responses in FcRc-/- mice (Wernersson et al. 1999; Diaz de Ståhl 2001; Getahun
et al. 2004; Hamano et al. 2000). Since these mice have a normal complement
system, the observations support the conclusion that FccRs rather than comple-
ment is of primary importance for the enhancement. Nevertheless, complement
may play a role in situations where the aggregation status/size of the antigen
favours complement activation.

An interesting question is which role FccRIIB plays in IgG-mediated
enhancement. This receptor negatively regulates receptors which operate via
ITAMs (immunoreceptor tyrosine-based activation motifs), e.g. FccRI, FccRIII,
FccRIV, and FceRI (Daëron and Lesourne 2006). However, FccRIIB is expressed
on FDC (Qin et al. 2000) where it may capture IgG-immune complexes, possibly
leading to enhancement of antibody responses. Interestingly, FccRIIB-/- mice

Fig. 2 IgG-mediated
enhancement of primary
responses and priming for a
recall response. Mice were
immunized intravenously
with 20 lg BSA-TNP (Ag)
alone or with a mixture of 20
lg BSA-TNP and the
indicated amounts of TNP-
specific monoclonal IgG2a.
After 56 days, all animals
were boosted subcutaneously
with 20 lg BSA in phosphate
buffered saline. IgG anti-BSA
was measured in ELISA
(From Diaz de Ståhl 2001)
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given TNP-specific IgG1, IgG2a, or IgG2b together with BSA-TNP have a sig-
nificantly higher antibody response than corresponding wild-type animals
(Wernersson et al. 1999; Getahun et al. 2004). Thus, IgG-mediated enhancement
does not require FccRIIB. Moreover, FccRIIB negatively regulates responses to
IgG-antigen complexes as revealed by the enhanced enhancement seen in
FccRIIB-/- mice (Fig. 3). This observation further strengthens the conclusion that
IgG1, IgG2a, and IgG2b enhance via activating FccRs, as these can be negatively
regulated by FccRIIB. In contrast, IgG3- and IgE-mediated enhancement of
antibody responses is not further enhanced in FccRIIB-/- mice (Wernersson et al.
1999; Getahun et al. 2004; Diaz de Ståhl et al. 2003) (Fig. 3b). This is to be
expected since IgG3- and IgE-mediated enhancement is mediated by CR1/2 and
CD23 respectively and neither of these receptors signal via ITAMs. Not only
primary antibody responses, but also recall responses and induction of germinal
centers is considerably higher in FccRIIB-/- than in wild-type animals after
immunization with IgG-immune complexes (Getahun et al. 2004). Noteworthy is
that although FccRIIB inhibits responses to IgG-antigen complexes, the responses
are far from completely suppressed (Fig. 3), showing that FccRIIB downmodu-
lates rather than completely turns off the response. This observation is in line with
the finding that IgG-mediated suppression of responses to SRBC, which is often
close to a 100 %, is not mediated by FccRIIB (Karlsson et al. 1999, 2001).

Fig. 3 Enhanced IgG2a-mediated enhancement in FccRIIB-deficient mice. Wild-type and
FccRIIB-deficient mice were immunized intravenously with 20 lg BSA-TNP alone or with 50 lg
of TNP-specific IgG2a (a) or IgE (b) and 20 lg BSA-TNP. IgG anti-BSA was measured in
ELISA. Asterisks indicate statistical differences between mice of the same strain given antigen
alone and mice given antibody/antigen complexes. Asterisks within parantheses indicate
statistical differences between FccRIIB-deficient mice and wild-type mice given antibody/antigen
complexes (From Getahun et al. 2004 (Copyright 2004. The American Association of
Immunologists, Inc.))
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4.3 Summary

The most likely mechanism explaining why IgG1, IgG2a, and IgG2b are able to
enhance responses to protein antigens is that these immune complexes are captured
by FccR+ dendritic cells, endocytosed and efficiently presented to CD4+ T cells
which in turn induce antibody production by B cells. This scenario is supported by
the crucial role of activating FccRs (Wernersson et al. 1999; Diaz de Ståhl 2001;
Getahun et al. 2004; Hamano et al. 2000), which must be expressed on bone
marrow-derived/CD11c+ cells (Diaz de Ståhl 2001; de Jong et al. 2006), and by the
strong upregulation of specific CD4+ T cell responses (Getahun et al. 2004; de
Jong et al. 2006).

5 IgG3-Mediated Enhancement of Antibody Responses

Murine IgG3 is the major subclass in responses against T cell-independent type 2
antigens but only constitutes a small fraction of the response against T cell-
dependent protein antigens (Perlmutter et al. 1978; Rubinstein and Stein 1988). As
the last amongst the IgG subclasses, IgG3 was found to be able to enhance anti-
body responses against small proteins like OVA and BSA (Diaz de Ståhl et al.
2003; Hjelm et al. 2005). In analogy with IgG1, IgG2a, and IgG2b, IgG3 has a
dual effect and suppresses responses against SRBC (Heyman and Wigzell 1984;
Brüggemann and Rajewsky 1982). Also the development of germinal centers is
enhanced by IgG3 (Zhang et al. unpublished) whereas the effect on induction of
memory and secondary responses has not yet been examined. IgG3-mediated
enhancement of CD4+ T cell proliferation is very modest in vivo and absent
in vitro (Hjelm et al. 2005).

5.1 Complement and IgG3-Mediated Enhancement

IgG3-mediated enhancement is severely diminished in C3-depleted mice and in
mice lacking CR1/2 (Diaz de Ståhl et al. 2003).

5.2 Fc-Receptors and IgG3-Mediated Enhancement

Enhancement by IgG3 works well in FcRc-/- mice and in mice selectively lacking
FccRI (Diaz de Ståhl et al. 2003; Hjelm et al. 2005), the latter being the only Fc-
receptor shown to bind IgG3 (Gavin et al. 1998). IgG3 enhances well in FccRIIB-/-

mice (Diaz de Ståhl et al. 2003) and the level of enhancement is not higher than in
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wild-type mice (Diaz de Ståhl et al. 2003). Thus, IgG3-mediated enhancement is not
dependent on Fc-receptors and is not negatively regulated by FccRIIB.

5.3 Summary

It appears that enhancement by IgG3 resembles enhancement by IgM more than it
resembles enhancement by IgG1, IgG2a, or IgG2b. Both IgM and IgG3 require
complement and CR1/2 but do not seem to depend on FcRs whereas the situation
is the reverse for IgG1, IgG2a, and IgG2b. Moreover, IgM and IgG3 have minor
effects on CD4+ T cell proliferation (Ding et al. 2013; Hjelm et al. 2005) whereas
IgG2a is an efficient upregulator of CD4+ T cells (Getahun et al. 2004). A possible
explanation for the preferential use of complement by IgG3 but not by the other
IgG subclasses, could be the different strategies used to activate complement. IgG1
is often unable to fix C1q whereas IgG2a and IgG2b requires that two IgG mol-
ecules aggregate to achieve sufficient avidity for binding C1q. For this to happen,
high concentrations of specific IgG are required. IgG3 on the other hand has the
capacity to self-aggregate and when one IgG3 molecule binds to a surface, other
IgG3 molecules are attracted and bound via Fc-mediated cooperativity (Cooper
et al. 1991; Greenspan and Cooper 1992). These different modes of C1q fixation
indicate that lower concentrations of specific IgG3 than of IgG2a and IgG2b are
required to activate the complement system.

The mechanism behind IgG3-mediated enhancement is probably the same as
for IgM-mediated enhancement: immune complexes become opsonized with
complement and bind to complement receptor 2 on MZ B cells which transport
them from the marginal zone to B cell follicles and deposit the antigen onto CR1+

FDC (Zhang et al. in press).

6 IgE-Mediated Enhancement of Antibody Responses

IgE was identified as a new antibody class by two laboratories in the 1960s (Ishi-
zaka et al. 1966; Johansson and Bennich 1967). Studying reaginic antibodies from
ragweed-sensitive patient sera, Ishizaka and colleagues found that these antibodies
did not react with antibodies against any of the known immunoglobulin classes and
named the new antibody cE-globulin (Ishizaka et al. 1966). At Uppsala University
Hospital, a patient with a plasma cell tumor (multiple myeloma) secreting anti-
bodies of a hitherto unknown antibody class was diagnosed and the myeloma
protein was called myeloma-IgND (Johansson and Bennich 1967). Subsequently,
the two research groups agreed to call the new antibody class IgE (Bennich et al.
1968). Whereas IgE is most well-known for causing allergic disease, its biological
function is probably to defend us against parasites and possibly also against toxins
(Palm et al. 2013; Marichal et al. 2013). A role for IgE in immune regulation was
established when it was found that monoclonal TNP-specific IgE antibodies,
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administered to mice together with TNP-BSA, induced a much higher BSA-specific
IgG response than did antigen alone (Heyman et al. 1993). The enhancement could
be more than a 100-fold (Heyman et al. 1993; Gustavsson et al. 1994, 1998;
Westman et al. 1997) and both primary antibody responses and priming for a
memory response was affected (Gustavsson et al. 1994). IgE upregulates responses
to BSA, OVA, and tetanus toxoid, but not to KLH or SRBC (Gustavsson et al. 1994;
Fujiwara et al. 1994). Not only IgG responses, but also IgM, IgA, and IgE responses
are enhanced (Gustavsson et al. 1994; Westman et al. 1997). There appears to be no
skewing towards a Th1 or Th2 response since production of both IgG1 and IgG2a is
upregulated (Gustavsson et al. 1994; Hjulström et al. 1995). In parallel with
enhancing antibody responses, IgE causes an increase in proliferation and activa-
tion of specific CD4+ T cells (Getahun et al. 2005; Hjelm et al. 2008; Carlsson et al.
2009; Henningsson et al. 2011) (Fig. 4).

6.1 Fc-Receptors and IgE-Mediated Enhancement

IgE does not activate complement, but binds to several Fc-receptors: FceRI with
high affinity (Metzger 1991), and FceRII (or CD23) (Lawrence et al. 1975),
FccRIIB, FccRIII, and FccRIV (Takizawa et al. 1992; Mancardi et al. 2008) with

Fig. 4 IgE enhances antibody and T cell responses. Wild-type mice were adoptively transferred
with spleen cells from DO11.10 mice containing 3 9 106 OVA-specific (KJ1-26+) transgenic
CD4+ T cells. The next day, these mice were immunized intravenously with 20 lg OVA-TNP
alone or with 50 lg IgE anti-TNP and 20 lg OVA-TNP. The number of OVA-specific T cells
were determined in flow cytometry 3 days (a) or 2–7 (b) days after immunization. The IgG anti-
OVA response was measured in ELISA (b) (From Getahun et al. 2005 (Copyright 2005. The
American Association of Immunologists, Inc.))
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low to intermediate affinity. Somewhat surprisingly, the ability of IgE to enhance
antibody and CD4+ T cell responses depends only on CD23. This is evidenced by
the severely impaired enhancement in CD23-/- mice (Fujiwara et al. 1994;
Getahun et al. 2005; Gustavsson et al. 2000) and the unperturbed enhancement in
FcRc-/- (lacking FceRI as well as activating FccRs) (Wernersson et al. 1999;
Hjelm et al. 2005) and FccIIB-/- (Wernersson et al. 1999; Getahun et al. 2004)
mice. IgE-mediated enhancement is intact in IL-4-/- mice (Hjulström et al. 1995).
This indicates an important role of the CD23a isoform, which is constitutively
expressed on B cells and FDC, rather than of the IL-4-dependent CD23b isoform
(Rao et al. 1987; Maeda et al. 1992; Kondo et al. 1994; Yu et al. 2003). Experi-
ments in CD23-/- mice after transfer of isolated B cells or in bone marrow
chimeras, have established that expression of CD23 on B cells is sufficient for
enhancement of both antibody and T cell responses (Getahun et al. 2005; Gu-
stavsson et al. 2000).

In vitro, B cells can take up IgE-antigen complexes via CD23 and present
antigenic peptides to CD4+ T cells (Kehry and Yamashita 1989; Pirron et al. 1990;
Carlsson et al. 2007). In vivo, IgE-antigen complexes induce a potent proliferation
of T cells (Getahun et al. 2005; Carlsson et al. 2007). In addition, CD23+ B cells in
the blood capture IgE-antigen complexes and rapidly transport them to splenic B
cell follicles (Hjelm et al. 2008). Based on these data, the requirement of CD23+ B
cells in IgE-mediated upregulation of immune responses in vivo could be
explained either by enhanced presentation or enhanced transport of IgE-antigen
complexes. When the antigen presenting capacity of B cells and CD11c+ cells
obtained from mice immunized with IgE-antigen complexes was tested, it was
found that only CD11c+ cells, and not B cells, could activate CD4+ T cells ex vivo
(Henningsson et al. 2011). Moreover, the ability of IgE to activate CD4+ T cells in
CD23-/- mice could be rescued by MHC-incompatible CD23+ B cells which are
unable to present antigen to T cells (Henningsson et al. 2011). This suggested that
CD23+ B cells transport and CD11c+ cells present the antigen.

6.2 Summary

A likely scenario for how IgE upregulates antibody and T cell responses is that
CD23+ recirculating B cells capture IgE-antigen complexes in the blood and
transport them to the follicles. The antigen is then delivered to CD11c+ dendritic
cells and presented to T cells which in turn help B cells to produce specific anti-
bodies. Where and how the antigen transfer takes place is not known. Neither is it
evident which biological role IgE-mediated enhancement plays. IgE is present in
very low concentrations in normal serum but production of virus-specific IgE has
been demonstrated during viral infections (Alexeyev et al. 1994; Welliver 2003). It
is feasible that this takes place more often than is currently understood, and that
immune complexes formed between IgE and virus are rapidly transported to splenic
follicles, constituting a way for the immune system to enhance anti-viral responses.
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Another speculative idea is that CD23 captures antigen independently of IgE.
Unlike other FcRs, CD23 does not belong to the super-Ig family but is a type II
integral membrane protein with a calcium-dependent lectin domain in the C-ter-
minal end of the extracellular part (Bettler et al. 1989). Other members of the C-
type lectin family interact with exogenous ligands, some of which are expressed on
pathogens (McGreal et al. 2005). Should CD23 also be able to bind pathogens
directly, rapid transport of antigen to splenic follicles could take place without the
presence of specific IgE.

7 Concluding Remarks

The adjuvant effects of antibodies are likely to play an important role in normal
antibody responses. IgG, produced in a primary response and still present at the
time of a second antigen encounter, will act to induce a strong recall response and
add to the effect of long-lived memory lymphocytes. Regulation by IgG is
extremely complex with many subclasses binding to various FccRs (co-expressed
on different immune cells) and in addition often able to activate complement. IgG
also has dual effects, suppressing responses to large antigens while enhancing
responses to protein antigens. In order for IgG antibodies to be used as adjuvants in
clinical settings, careful selection of well-defined monoclonals will therefore be
required. In primary antibody responses, IgM seems to play a role as mice lacking
secretory IgM have impaired responses. The role of specific IgM, acting via
complement, in inducing primary responses is enigmatic given the normal anti-
body responses seen in knock-in mice with mutant IgM unable to activate com-
plement. The last enhancing isotype, IgE, may play a biological role provided
certain pathogens induce early IgE responses thereby starting the formation of an
immune complex.
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IgA, IgA Receptors, and Their
Anti-inflammatory Properties

Sanae Ben Mkaddem, Ivy Christou, Elisabetta Rossato,
Laureline Berthelot, Agnès Lehuen and Renato C. Monteiro

Abstract Immunoglobulin A (IgA) is the most abundantly produced antibody
isotype in mammals. The primary function of IgA is to maintain homeostasis at
mucosal surfaces and play a role in immune protection. IgA functions mainly
through interaction with multiple receptors including IgA Fc receptor I (FcaRI),
transferrin receptor 1 (CD71), asialoglycoprotein receptor (ASGPR), Fca/lR,
FcRL4, and DC-SIGN/SIGNR1. In this review we discuss recent data demon-
strating anti-inflammatory functions of IgA through two receptors, the FcaRI and
DC-SIGN/SIGNR1 interactions in the regulation of immunity. Serum monomeric
IgA is able to mediate an inhibitory signal following the interaction with FcaRI. It
results in partial phosphorylation of its FcRc-ITAM and the recruitment of the
tyrosine phosphatase SHP-1, which induces cell inhibition following the formation
of intracellular clusters named inhibisomes. In contrast, cross-linking of FcaRI by
multimeric ligands induces a full phosphorylation of the FcRc-ITAM leading to
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the recruitment of the tyrosine kinase Syk and cell activation. In addition, secre-
tory IgA can mediate a potent anti-inflammatory function following the sugar-
dependent interaction with SIGNR1 on dendritic cells which induces an immune
tolerance via regulatory T cell expansion. Overall, the anti-inflammatory effect of
serum and secretory IgA plays a crucial role in the physiology and in the pre-
vention of tissue damage in multiple autoimmune and inflammatory diseases.

Keywords Immunoglobulin A � ITAMi � Inflammation � FcaRI � SIGNR1
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1 Introduction

Immunoglobulin A (IgA) is the most abundant antibody isotype produced in the
body and the predominant antibody (Ab) class present in mucosal areas such as
gastrointestinal tract, the respiratory tract, and the vaginal tract where it has a
crucial role in the immune responses. It exists in multiple molecular forms and two
subclasses (Pabst 2012). The antibody IgA can occur as a monomer, but also in
dimeric or even polymeric forms through interactions with the joining chain
(J-chain). All these different forms are mainly found in the circulation, while
secretory IgA (SIgA) is mainly found at mucosal surfaces. SIgA is generated by the
binding of dimeric IgA via the J-chain to the polymeric immunoglobulin receptor
(pIgR) at the basolateral side of the epithelium, which is subsequently transported
to the luminal side. IgA is then released at the mucosal surface (lumen) by cleavage
from the pIgR. In this process part of the pIgR, called the secretory component
(SC), remains attached to the IgA molecule, and together they form the molecule
SIgA. SIgA promotes immune exclusion by entrapping dietary antigens and
microorganisms in the mucus, downregulates the expression of pro-inflammatory
bacterial epitopes on commensal bacteria, and, in general, promotes the mainte-
nance of appropriate bacterial communities within specific intestinal segments
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(Fagarasan et al. 2002; Peterson et al. 2007; Phalipon et al. 2002). In addition, SIgA
blocks or sterically hinders microbial components involved in epithelial attach-
ment, mediates intra-epithelial neutralization of incoming pathogens and microbial
inflammatory products, and facilitates antigen sampling by binding to microfold
(M) cells, an epithelial-like cell type specialized in antigen capturing (Norderhaug
et al. 1999; Kadaoui and Corthesy 2007; Mantis et al. 2002; Huang et al. 2005).

Mouse and human IgA biology differ in several aspects. In human serum, IgA
occurs mainly in a monomeric form, while in mice polymeric IgA is the main form
in serum. Furthermore, human IgA, but not mouse IgA, is divided into closely
related subclasses, IgA1 and IgA2, of which the later one is less susceptible to
proteolytic degradation. In serum, the subclass IgA1 is dominant, while in
secretions the main isoform found is IgA2, although both IgA1 and IgA2 can be
detected as SIgA (Woof and Kerr 2006).

IgA has been described to interact with various host receptors, which are pIgR
(Mantis et al. 2011), FcaRI (CD89) (Monteiro and van de Winkel 2003), trans-
ferrin receptor (CD71) (Moura et al. 2001), asialoglycoprotein receptor (ASGPR)
(Kerr et al. 1995), Fca/lR (Yang et al. 2013), FcRL4 (Wilson et al. 2012), and
DC-SIGN/SIGNR1 (Diana et al. 2013) although cell signaling after ligand binding
is not yet well elucidated for some of these receptors. However, the FcaRI (CD89),
a receptor expressed by neutrophils, monocyte/macrophages, dendritic cells,
eosinophils, and Kupffer cells, has recently been demonstrated to induce either
inhibitory or activating signals (Monteiro and van de Winkel 2003). Balance of
these signals is considered to be important for the role of IgA in preserving
homeostasis and tolerance at systemic sites (Blank et al. 2009). In mucosal areas in
steady-state conditions, only a few dendritic cells are positive for FcaRI, and
macrophages are negative (Smith et al. 2001). Intriguingly, this receptor has not
been identified in mice, but it is expressed in rats, cows, goats, and monkeys
(Morton et al. 1999).

2 IgA Structure and Metabolism

In contrast to other human immunoglobulin classes, which are exclusively present
in a monomeric (m) form (IgG, IgD, and IgE) or in a polymeric form (IgM), IgA is
found in both forms with a characteristic distribution in various body fluids: mIgA
dominates in blood, but IgA in almost all external secretions is polymeric (Woof
and Mestecky 2005). The molecular mass of a mIgA is 160 kDa. Due to the
flexibility of both Fab fragments, the molecule may assume the Y- or T-shaped
configuration (Boehm et al. 1999). Human IgA heavy (H) a1 and a2 chains
contain one variable (V) region domain and three constant (C) region domains.
IgA a chains display several important structural differences, compared with H
chains of other isotypes; such differences include a unique hinge region between
the Ca1 and Ca2 domains and the extension of the a chain C terminus by 18
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amino acids that is essential for the ability of IgA to bind J-chain and form
polymers (Low et al. 1976). Dimeric IgA interact with the pIg receptor (pIgR)
expressed on epithelial cells. This binding allows for selective transport of pIgA
through the epithelial cells (Woof and Mestecky 2005). Comparative structural
studies of the amino acid sequences of IgA1 and IgA2 H chains revealed major
differences in their hinge regions. The IgA2 H-chain hinge region is shorter due to
a deletion of 13 amino acids in the hinge region. The extended hinge region of
IgA1 may add sequential flexibility of the Fab fragments and thereby increases the
antigen-binding ability of IgA1 molecules. The amino acid sequence of the hinge
region in IgA1 is reminiscent of that of mucins; serine (Ser) and threonine (Thr)
residues provide up to six potential sites for the attachment of O-linked glycans.
The hinge region of human IgA1 is the only known substrate that is susceptible to
the selective proteolytic cleavage by numerous and heterogeneous IgA-specific
proteases produced by pathogenic bacteria such as Streptococcus pneumoniae,
Haemophilus influenzae, Neisseria gonorrhoeae, N. meningitidis, and others
(Vidarsson et al. 2005). Although the hinge region is present in IgA of other
vertebrate species (e.g., cows, pigs, dogs, mice, and rabbits), it exhibits a low
degree of sequence homology, glycosylation, and susceptibility to bacterial IgA1-
specific proteases, compared to human IgA1 (Mestecky et al. 2005). Notably, IgA
molecules of the above-mentioned species structurally resemble human IgA2.

3 Functional Role of IgA

IgA is the class of antibodies that shows the highest daily new synthesis and, at a
concentration of about 2–3 mg/ml, is the second most prevalent antibody in the
serum after IgG (Woof and Kerr 2006). IgA are differentially distributed between
the systemic and mucosal immune system and play a key role in immune pro-
tection (Mantis et al. 2011; Bakema and van Egmond 2011). SIgA plays an
important role in different functions in the mucosal immune system. While high-
affinity IgA antibodies (from T cell-dependent pathways) are thought to protect
intestinal mucosal surfaces against invasion by pathogenic microorganisms, low-
affinity IgA antibodies (from T cell-independent pathways) are important to
confine commensal bacteria to the intestinal lumen (Pabst 2012). Serum mono-
meric IgA (mIgA) is thought to play a minor role in systemic immune responses.
The major role of serum mIgA in physiology is to promote a powerful anti-
inflammatory effect. It has been demonstrated by several groups more than
30 years ago that in the absence of antigen, serum IgA is capable to downregulate
many cell responses (Blank et al. 2009; Bakema and van Egmond 2011). However,
the molecular basis for such an action remained elusive until recently with the
discovery of the ability of FcaRI to mediate inhibition through the ITAM of their
associated FcRc chain (see below). IgA is classically known for neutralizing toxins
and bacteria (viruses) at mucosal surfaces (Williams and Gibbons 1972; Mazanec
et al. 1993) by interfering with their motility, by competing for epithelial adhesion
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sites, and by improving the viscoelastic properties of the airway secretions
(Puchelle et al. 1980). The secretory component (SC) protects SIgA from prote-
olytic degradation and is involved in establishing local interactions with bronchial
mucus, thereby contributing to the ‘‘trapping’’ and removal of the antigen
(‘‘immune exclusion’’) (Phalipon and Corthesy 2003).

4 FcaRI Expression and Structure

FcaRI expression begins as early as the promyelocytic stage in differentiation
(Monteiro and van De Winkel 2003). FcaRI expression is restricted to cells of the
myeloid lineage including neutrophils, eosinophils, most of monocytes/macro-
phages, interstitial dendritic cells, Kupffer cells, and cell lines corresponding to
these cell types. Tonsilar, splenic and alveolar macrophages all express FcaRI, in
contrast to the lack in intestinal mucosal macrophages (Smith et al. 2001). FcaRI
expression is constitutive and independent of the presence of IgA ligand, since
the receptor is expressed at similar levels on cells from IgA-deficient patients
(Chevailler et al. 1989).

Several anti-FcaRI (CD89) mouse monoclonal antibodies (mAb) have been
generated (Bakema and van Egmond 2011) (Fig. 1a). Most of them recognize
nonpolymorphic determinants on FcaRI (Monteiro and van de Winkel 2003). The
CD89 mAb epitopes on FcaRI have been characterized (52). Monoclonal Ab that
bind in the EC1 domain of FcaRI (e.g., My43 and MIP8a) can block IgA binding,
whereas those that bind in EC2 do not (Fig. 1a).

The level of FcaRI expression on cells varies between 57,000 molecules on
monocytes and 66,000 on neutrophils (Kubagawa et al. 1997). A number of
cytokines and other agents modulate FcaRI expression. FcaRI expression levels
are upregulated on neutrophils in response to formyl-methionyl-leucyl-phenylal-
anine (FMLP), interleukin 8, and tumor necrosis factor a (TNF-a) (Monteiro and
van de Winkel 2003). Expression of FcaRI on monocytes and monocyte-like cell
lines can be upregulated by phorbol esters, calcitriol, lipopolysaccharide (LPS),
TNF-a, granulocyte-macrophage colony stimulating factor (GM-CSF), and IL-1b
(Monteiro and van de Winkel 2003). FcaRI is downregulated by transforming
growth factor (TGF-b), interferon c, suramin, and by its ligand (Monteiro and van
de Winkel 2003).

The FcaRI gene is located in the distal part of the q-arm on chromosome 19, at
19q13.4 (Kremer et al. 1992). The molecular structure of FcaRI classifies this FcR
as a member of the Ig gene superfamily. It is distantly related to other FcR genes
(*20 % homology) such as the FccR and FceRI genes, that are all located on
chromosome 1 (Wines et al. 1999). Interestingly, FcaRI is more homologous
(*35 %) to another family of receptors, the so-called leukocyte receptor cluster,
that includes the killer-inhibitory/activatory (KIR/KAR)-related immunoreceptors,
the Ig-like transcripts (ILTs), the leukocyte and monocyte/macrophage Ig-like
receptors (LIRs, MIRs) (Monteiro and van de Winkel 2003). FcaRI is also closely
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related to the bovine Fcc2R and human and mouse platelet-specific collagen
receptor (GPVI) (Jandrot-Perrus et al. 2000). It is noteworthy that no mouse
homologue for FcaRI has been identified, in spite of intensive efforts to find one.

Two isoforms have been identified on human phagocytes, the FcaRI a.1, and
a.2 (Patry et al. 1996). While the a.1 isoform is expressed by several blood cells of
myeloid lineage, the a.2 isoform is exclusively expressed by alveolar macro-
phages. FcaRI a.1 represents a type I, 287-amino acid protein containing a 21
amino acid hydrophobic leader that is removed during processing to form the
mature 266 amino acid FcaRI a.1 full-length glycoprotein (Maliszewski et al.
1990). FcaRI is composed of two extracellular Ig-like domains, a predicted
transmembrane region and a cytoplasmic tail devoid of recognized signaling
motifs. The protein core has a predicted Mr of 30 kDa and bears five potential
N-linked glycosylation sites, and several putative O-glycosylation sites. Mature
cell surface FcaRI display heterogeneous glycosylation with Mr ranging from 50
to 100 kDa, depending on the cell type (Monteiro et al. 1990). Deglycosylation
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Fig. 1 a Schematic representation of immunoglobulin A (IgA) binding to the FcaRI–FcRc-chain
complex in a 2:1 stoichiometry. Two FcaRI bind each Fca fragment at their Ca2 and Ca3
junctions via extracellular domain 1 (EC1). The FcRc chain containing its intracellular
immunoreceptor tyrosine-based activation motif (ITAM) is shown. Sites recognized by
monoclonal antibodies and C-reactive protein recognizing different ECs of FcaRI are depicted.
b DC-SIGN/SIGNR1 and secretory IgA (SIgA) representation. DC-SIGN/SIGNR1 is a type II
transmembrane protein with a short aminoterminal cytoplasmic tail, a neck region, and a single
carboxyl terminal carbohydrate recognition domain (CRD; or C-type lectin domain), and is
expressed on immature monocyte-derived DCs. DC-SIGN recognizes both internal branched
mannose residues as well as terminal di-mannoses, a1-3 and a1-4 fucosylated glycan structures
and certain N-aceltylglucosamine containing molecules on self proteins and/or pathogens. SIgA–
SIGNR1 interaction depends on mannose residues and the presence of secretory component. A
tyrosine residue is found in its intracellular tail representing a potential site for ligand signaling,
but its implication in SIgA response remains to be demonstrated
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experiments using endoglycosydase F or O, indeed, confirmed a heterogeneous
FcaRI glycosylation with two molecular species, one of 32 and a second of
34 kDa, possibly attributable to inaccessibility of some carbohydrates FcaRI a.2
has a deletion in the extracellular domain of 22 amino acids and a backbone of
28 kDa (Monteiro and van de Winkel 2003).

The FcaRI binding site for IgA has been located in the membrane-distal EC1
domain (Morton et al. 1999; Wines et al. 1999). This represents a unique feature
among the ‘‘two-domain type’’ FcR since FccR and FceRI all bind their respective Ig
ligands via the membrane-proximal EC2 domains. It is noteworthy that the closely
related bovine Fcc2R and p58 KIR molecules also bind their ligand (bovine IgG2 and
HLA molecules, respectively) via their EC1 domain (Monteiro et al. 1990). The high
degree of similarity between FcaRI and p58 KIR proteins allowed a three-dimen-
sional model of CD89 to be proposed based on the solved structure of KIR.

FcaRI is a low-to-moderate affinity receptor for IgA (Ka approximately
5 9 106 M-1). Rapid dissociation of the FcaRI:IgA complex (t1/2*25 s) using
recombinant soluble FcaRI suggests monomeric IgA binds transiently to cellular
FcaRI, whereas IgA immune complexes bind avidly (Wines et al. 1999). FcaRI
binds IgA1 and IgA2 molecules at the boundary between the Ca2 and Ca3
domains (Carayannopoulos et al. 1996).

Whether or not mouse IgA binds to human FcaRI has been controversial. Initial
studies used erythrocytes coated with mouse IgA myeloma MOPC-315 to detect
human IgA receptors (Lum et al. 1979). Although later studies by others failed to
observe binding of mouse IgA to human FcaRI (Pleass et al. 1999), recent studies
using plasmon resonance (Biacore) have shown that mouse IgA can bind to human
recombinant FcaRI but with a very low avidity (Berthelot et al. 2012). This may
explain data obtained from human CD89 transgenic (Tg) mice in which mouse IgA
interacts with human CD89 on cells and in the circulation as soluble receptors
(Launay et al. 2000).

5 Janus-like Functions of the FcaRI Molecule

The ligation of FcRs by Ig and antigen can trigger numerous cellular effector
functions including phagocytosis, antibody-dependent cellular cytotoxicity, and
the secretion of cytokines or other inflammatory mediators (Nimmerjahn and
Ravetch 2008). Thus, FcRs provide a crucial link between the humoral and the
cellular arms of the immune system. Some FcRs, such as FcaRI, when associated
with the ITAM-bearing adaptor FcRc, can act as bifunctional receptors. Its sig-
naling can be activating as well as inhibitory. This depends on the ligand and
subsequent configuration (involving Syk or SHP-1 phosphatase) of the ITAM,
resulting in an activating or an inhibitory ITAM motif.

Cross-linking of FcaRI by IgA immune complexes or polymeric IgA requires
the association of FcaRI with the FcRc subunit and initiates ITAM-dependent
cellular responses (Launay et al. 1999). The FcRc-chain ITAM consists of a
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conserved stretch of paired tyrosines and leucines separated by seven amino acids
in a consensus sequence (YxxLx6-7YxxL). The Src kinase Lyn phosphorylates the
tyrosines within the associated FcRc ITAM. These then serve as ‘‘docking’’ sites
for the recruitment of the tyrosine kinase Syk, which facilitates the activation of
multiple targets, such as the PI3K, and induces the downstream release of IP3 and
diacylglycerol to trigger calcium release, the activation of Raf-1–MEK–MAP
kinases signaling pathways and subsequently cell activation (Monteiro and van de
Winkel 2003). Of note, depending on the cell type or cell stimulation, FcaRI
activation may trigger specific signaling and functional responses (Monteiro and
van de Winkel 2003; Bakema and van Egmond 2011) (Fig. 2a).

It has been recently demonstrated that ITAMs can also propagate inhibitory
signals when they are in a conformation that we have named inhibitory ITAM
(ITAMi) (Blank et al. 2009; Pinheiro da Silva et al. 2008; Pasquier et al. 2005).
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Fig. 2 Simplified scheme of FcaRI signaling pathways. a ITAM signaling pathway: Cross-
linking of FcaRI by immunoglobulin A (IgA) containing immune complexes results in full
phosphorylation of ITAM tyrosines within the FcRc chain by Src kinase Lyn. These then serve as
‘‘docking’’ sites for recruitment of Syk, phospholipase (PLC)-c, which facilitates activation of
multiple (and subsequential) targets such as PI3K, PLC-c, following the activation of
multimolecular adapter protein complex. This results in cellular functions such as phagocytosis,
Ab-dependent-cellular cytotoxicity, respiratory burst, degranulation, antigen-presentation, and
release of cytokines and inflammatory mediators. b Inhibitory ITAM (ITAMi) signaling pathway:
Triggering of FcaRI by monomeric serum IgA results in partial phosphorylation of FcaR-
associated ITAM tyrosines by receptor-associated Src family kinases, resulting in a transient
recruitment of Syk followed by a stable SHP-1 recruitment and formation of inhibisome clusters
(gray rectangle), which impair phosphorylation of Syk, LAT, and ERK. These inhibitory signals
allow the dephosphorylation of other signaling pathways activated by engagement of
heterologous activating receptors, such as FceRI
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The inhibitory ITAM (ITAMi) pathway takes place in the absence of receptor
coaggregation and without an immunoreceptor tyrosine-based inhibitory motif
(ITIM), which is known for inhibiting immune responses. All forms of IgA can
interact with the FcaRI, but they differ in their binding capacities. Monomeric IgA
only binds with low affinity to the FcaRI and activates the ITAMi signaling, which
does not lead to cell activation or degranulation/oxidative burst (in the case of
granulocytes) (Pasquier et al. 2005) and in parallel, inhibits the activation of
heterologous receptors (such as other Fc receptors, cytokine receptors, chemokine
receptors, and TLRs) (Monteiro 2010) (Fig. 2b). Targeting of FcaRI by mIgA
transduces an ITAMi signaling characterized by a transient Syk recruitment fol-
lowed by the recruitment of tyrosine phosphatase-1 (SHP-1) to the FcRc ITAM
and the movement of FcaRI to lipid rafts (Pasquier et al. 2005; Kanamaru et al.
2008; Pfirsch-Maisonnas et al. 2011). After raft recruitment, both inhibitory and
activating receptors and the inhibitory molecular effector (SHP-1) can be found in
intracellular clusters that we have called ‘‘inhibisomes.’’ These clusters play a
crucial role in the inhibition of different signaling pathways induced by the het-
erologous receptors. Therefore, similar to ITIM-mediated signals, downregulation
of the response of the heterologous activating receptor, that is also recruited into
rafts, involves the association of inhibitory receptors with the tyrosine phosphatase
SHP-1 (Pfirsch-Maisonnas et al. 2011). Thus, both IgA-induced activating and
inhibiting signals depend on FcaRI–FcRc-chain ITAM, but differ in the recruit-
ment of tyrosine kinases versus tyrosine phosphatases, respectively. As such, it has
been proposed that the cross-linking of FcaRI during infection with IgA-opsonized
pathogens results in pro-inflammatory responses, whereas naturally occurring
serum IgA (which is not complexed with an antigen) induces inhibitory signals
through the FcaRI, in order to dampen excessive immune responses (Blank et al.
2009). Indeed, anti-FcaRI Fab treatment, by initiating ITAMi signaling suppressed
manifestations of allergic asthma and glomerulonephritis in FcaRI transgenic mice
immunized with anti-IgE immune complexes or anti-glomerular basement anti-
bodies (Pasquier et al. 2005; Kanamaru et al. 2008).

6 Tolerogenic Role of Secretory IgA Through SIGNR1

In a similar manner to mIgA, SIgA has also a powerful anti-inflammatory effect
due to its ability to interact with DC through SIGNR1 receptor. SIGNR1 is a
mouse homolog of DC-SIGN, a C-type lectin receptor that was recently described
as a receptor for human SIgA on the cell surface of DC (Baumann et al. 2010).
Similar to its interaction with DC-SIGN (Baumann et al. 2010), SIgA–SIGNR1
interaction is dependent on sugars, notably on mannose residues, on Ca2+ and the
presence of the secretory component (Fig. 1b). In our recent study (Diana et al.
2013), we showed that SIgA prevents the activation of the immune system by
regulating the function of mouse bone-marrow-derived DC (BMDC) through
SIGNR1. Preincubation with SIgA inhibits the maturation and the production of
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pro-inflammatory cytokines by BMDC, which instead harbor a tolerogenic phe-
notype and produce large amounts of IL-10. Importantly, BMDC pretreated with
SIgA promote the expansion of IL-10-secreting Foxp3+ Treg cells. Moreover,
in vivo injection of SIgA-DC, loaded with self-peptides, prevents the development
of autoimmune diseases, such as experimental autoimmune encephalomyelitis and
type 1 diabetes. Although there are no data on SIgA–DC-SIGN interaction in
inducing tolerance, it is interesting to note that triggering of DC-SIGN by anti-DC-
SIGN fusion proteins can induce DC tolerogenic activity through IL-10 secretion
(Caparros et al. 2006). Therefore, these data suggest that SIgA interaction with
lectin-like receptors such as SIGNR1/DC-SIGN has a hitherto unknown regulatory
function in the bloodstream, which opens new therapeutic avenues for the treat-
ment of autoimmune and inflammatory diseases.

7 Pathological Role of IgA

Several inflammatory diseases are associated with increased serum IgA levels and
IgA immune complexes (Bakema and van Egmond 2011; Monteiro 2010). These
disorders include IgA nephropathy (IgAN), Henoch-Schönlein purpura (HSP),
ankylosing spondylitis, Sjögren’s syndrome, alcoholic liver cirrhosis, celiac dis-
ease, inflammatory bowel disease, dermatitis herpetiformis, and AIDS (Monteiro
and van de Winkel 2003). IgAN is the most common IgA-associated disease,
characterized by the deposition of polymeric IgA1 in the kidney. It has been
recently shown (Berthelot et al. 2012) that mice expressing both human IgA1 and
CD89 display features of IgAN with circulating and mesangial deposits of IgA1
and soluble CD89 (sCD89) complexes resulting in kidney inflammation, hema-
turia, and proteinuria. Mice expressing IgA1 alone have endothelial but not
mesangial IgA1 deposits. Interestingly, transglutaminase 2 plays an essential role
in mesangial IgA-sCD89 deposition in IgAN, possibly through their ability to
cross-link the mesangial IgA1 receptor, the transferrin receptor or CD71 (Berthelot
et al. 2012). Moreover, soluble CD89, which is only present in patients complexed
with IgA, also binds CD71 directly and independently of IgA. Moreover, several
groups suggest that the O-glycan side chains in the hinge of the glomerular IgA1
are highly under galactosylated in IgAN favoring interaction with CD89 and CD71
(Monteiro and van de Winkel 2003; Moura et al. 2004). Together, these findings
indicate that multiple interactions between different actors are required for disease
development.

At the other end of the spectrum, IgA deficiency, characterized by decreased or
absent levels of serum IgA, has been shown to be the most common primary
immunodeficiency with up to 1 in 200 individuals affected in some ethnic groups
(Hammarstrom et al. 2000; al-Attas and Rahi 1998). In line with the previously
mentioned inhibitory and anti-inflammatory functions of IgA, it is well documented
that IgA-deficient individuals have recurrent mucosal infections and an increased
incidence of allergy or autoimmune disease, especially idiopathic thrombocytopenic
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purpura and arthritis. It is estimated that 50–77 % of IgA-deficient patients expe-
rience recurrent infections while around 30 % of the patients have an autoimmune
disease or allergic symptoms (Jacob et al. 2008). Despite the deficiency of serum
IgA FcaRI is expressed on the cells of IgA-deficient patients (Monteiro and van de
Winkel 2003). This could be interpreted that in the absence of its natural ligand
(serum monomeric IgA) FcaRI receptor may not be able to induce immune cell
inhibition (Jacob et al. 2008), thus favoring autoimmunity development.

8 IgA as Therapeutic Agent

Overall, IgA and FcaRI play a significant double function in vivo by maintaining
immune homeostasis in systemic and mucosal compartments. Naturally occurring
serum IgA induces inhibitory signals to dampen excessive immune responses,
whereas cross-linking of FcaRI during infection with IgA-associated pathogens
results in pro-inflammatory responses. The manipulation of the FcaRI function
may thus offer novel promising therapeutic strategies for the treatment of
inflammation. The potential of IgA mAbs as immunoregulators has mainly been
investigated in in vitro experiments due to the absence of FcaRI in mice. However,
the increasing availability of transgenic mouse models will greatly facilitate the
assessment of these antibodies in preclinical models prior to clinical trials. Cur-
rently, two human FcaRI transgenic mouse models are available. In the first mouse
model the FcaRI is preferentially expressed on neutrophilic granulocytes (van
Egmond et al. 1999), while in the second model the receptor is mainly expressed
on monocytes/macrophages (Launay et al. 2000; van Egmond et al. 1999). For
example, using the first model, dimeric IgA (dIgA), which is produced in the
lamina propria, but neither SIgA nor IgG, was able to induce neutrophil recruit-
ment via leukotriene B4 (van der Steen et al. 2009). Using these models with
complementary FcaRI expression on the key players of innate immune responses
will allow to study the specific role of the receptor in these cells during inflam-
matory responses. Moreover, the timing of therapeutic intervention can be decided
depending on whether the receptor is shown to mainly participate in neutrophil-
dependent inflammatory responses (acute phase) or monocytes/macrophages-
dependent responses (chronic phase).

One of the main limitations of treating patients with IgA is that the therapeutic
efficacy of the antibody lies in the concentration, thus high antibody quantities are
needed to observe a therapeutic effect compared to monoclonal antibodies. Nowa-
days, with the development of human IgA knock-in mouse model, higher quantities
can be produced using standard hybridoma technology (Duchez et al. 2010).
Alternatively, optimized approaches in IgA purification, such as incorporation of
glutamine synthetase selection vectors into the producer cells (Beyer et al. 2009) or
identification of IgA-binding peptides using phage display (Hatanaka et al. 2012),
will allow the isolation of serum human IgA in higher quantities and with no
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interfering contaminations. Once these difficulties are surmounted, then IgA-spe-
cific therapy could be performed.

Alternative to IgA, FcaRI can be modulated to obtain anti-inflammatory
treatment by harnessing ITAMi-induced inhibitory signaling as it was demon-
strated to prevent disease development in several inflammatory disease mouse
models. For example, we have previously tested whether FcaRI targeting using
anti-FcaRI Fab fragments (ITAMi signaling due to monovalent targeting) could
prevent the development of asthma. FcaRI transgenic mice (expressing human
FcaRI on monocytes/macrophages) were sensitized with allergen, followed by a
challenge with an allergen/methacholine leading to bronchial hyper-reactivity.
Pretreatment of FcaRI Tg animals with anti-FcaRI Fab considerably reduced
symptoms when compared to animals treated with isotype control Fab antibodies
(Pasquier et al. 2005). Similarly, we demonstrated the therapeutic potential of anti-
FcaRI Fab treatment for the inhibition of inflammatory responses in kidney
inflammatory models such as nephrotoxic nephritis or the ureteral obstruction
model of renal tubular interstitial fibrosis (Kanamaru et al. 2008). Treatment with
anti-FcaRI Fab impaired inflammatory cell infiltration and fibrosis development
(Kanamaru et al. 2008), whereas cross-linking of the receptor worsened these
diseases (Blank et al. 2009). Interestingly, direct analysis of blood monocytes
showed that treatment with anti-FcaRI Fab prevented the activation of monocytes
from both healthy subjects and patients suffering from IgAN, induced by several
stimuli including LPS, TNFa, and MCP-1 (Kanamaru et al. 2008). These findings
demonstrated that anti-FcaRI Fab could be used as a new therapeutic tool to
prevent the progression of renal inflammatory diseases. Further studies are now
required to determine whether monomeric IgA treatment may also be beneficial to
prevent or reverse an established inflammatory disease.

9 Concluding Remarks

Receptors for IgA play a significant role in vivo in maintaining the immune
homeostasis in systemic and mucosal compartments. In this review, we summa-
rized the current knowledge on two types of IgA receptors, focusing on FcaRI
(CD89) and DC-SIGN/SIGNR1. These receptors appear to play an important role
in immunity by linking the IgA to either anti-inflammatory or inflammatory
responses. A role for specific IgA receptors has been implicated in a variety of
pathological conditions. Recent studies support a role for IgA antibodies and
FcaRI-directed molecules as therapeutics for human disease.
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Humanized Mice to Study FccR Function

Stylianos Bournazos, David J. DiLillo and Jeffrey V. Ravetch

Abstract Passive immunotherapy represents a promising therapeutic intervention
for a number of neoplastic, chronic inflammatory, and infectious diseases, with
several monoclonal antibodies currently under development or already in use in the
clinic. While Fab–antigen interactions play a crucial role in the activity of an
antibody, it has become clear that Fc-mediated effector functions are involved
during antibody-mediated activities in vivo. A complete understanding of the
contributions of effector activities mediated by an antibody during its in vivo
function is required for the development of antibodies with improved therapeutic
efficacies. Animal models that are commonly used for the preclinical evaluation of
antibodies include murine and non-human primate species, whose FccRs present
substantial structural, functional, and genetic variation compared with their human
counterparts. Therefore, the use of such animal models provides limited information
on the role of human IgG Fc–FccR interactions during the in vivo activities of
antibodies intended for human therapeutics. In this chapter, we describe the
development and evaluation of an FccR-humanized mouse model for the study of
human FccR function in vivo. In this model, endogenous mouse FccR genes have
been deleted and human FccRs are expressed as transgenes that faithfully recapit-
ulate the unique pattern of human FccR expression. Evaluation of the in vivo
activities of a number of cytotoxic or therapeutic antibodies using FccR-humanized
mice provided useful insights into human IgG Fc effector function. This mouse
model has become a vital preclinical model for testing therapeutic human antibodies
to treat malignancies, autoimmunity, inflammation, and infectious disease.
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1 Introduction

Over the past several decades, significant technical advances have resulted in the
development of highly specific, well-tolerated monoclonal antibodies with
remarkable efficacy against a number of neoplastic, chronic inflammatory, and
infectious diseases (Casadevall et al. 2004; Chan and Carter 2010; Nimmerjahn
and Ravetch 2007, 2012). While the activity of an antibody had been previously
thought to be the result solely of the interaction of its Fab domain with the
respective antigen, substantial evidence from the clinical use of monoclonal
antibodies as well as from animal models strongly support the conclusion that Fc
effector activity is crucial for the in vivo activities mediated by antibodies. For
example, diminished in vivo antibody activity has been reported in the absence of
FccR expression, as in the case of FccR knock-out mice or when antibodies were
expressed as IgG subclass variants, including human IgG4 or IgG2, that exhibit
minimal capacity for FccR interactions (Nimmerjahn and Ravetch 2005; Hessell
et al. 2007; Corti et al. 2011). Similarly, modulation of the affinity of an antibody
for particular classes of activating or inhibitory FccRs through Fc domain engi-
neering of the amino acid backbone or its associated N-linked glycan structure
greatly influences the in vivo activity of an antibody, as evidenced in a number of
animal disease models (Dilillo et al. 2014; Smith et al. 2012; Bournazos et al.
2014; Horton et al. 2010; Li and Ravetch 2011; Natsume et al. 2009a, b; Shields
et al. 2002; Shinkawa et al. 2003). Furthermore, allelic variants of human FccRIIa
and FccRIIIa that exhibit differential affinity for IgG have been previously shown
to represent predictive factors of the therapeutic outcome for antibody-based
therapeutics (Mellor et al. 2013; Zhang et al. 2007; Tamura et al. 2011).

2 Obstacles in Studying in Vivo Fc Effector Function

Given the substantial role of Fc–FccR interactions during the in vivo activities of
antibodies, the development of strategies to systematically study the Fc-mediated
effector activities of antibodies intended for human therapeutics is of extreme
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importance. The preclinical development of antibodies is typically performed in
murine or non-human primate disease models, which may provide insights into the
Fc-mediated effector function of antibodies. Indeed, the FccR family is conserved
among species, and the murine or non-human primate FccRs are highly struc-
turally and functionally homologous to their human counterparts. For example,
among the various species, FccRs are broadly classified as either activating and
inhibitory, depending on their capacity to mediate immunoactivating or immu-
nosuppressive signals following IgG engagement, and share highly conserved
signaling components (ITAM and ITIM motifs for activating or inhibitory FccRs,
respectively) (Nimmerjahn and Ravetch 2006).

Despite such similarities, murine and non-human primate models present a
number of fundamental differences that do not precisely mirror the structural
diversity and unique expression patterns observed for human FccRs on human
cells. For example, FccRIIc and FccRIIIb are uniquely expressed in humans and
are absent from other species, including non-human primates. This is due to the
unique genomic organization of the human FccR locus, which is the result of gene
duplication of the ancestral locus through non-homologous recombination that
gave rise to human FCGR2C and FCGR3B genes encoding for FccRIIc and
FccRIIIb, respectively (Qiu et al. 1990). Additionally, expression patterns of
FccRs also differ between mice, non-human primates and humans (Table 1). For
example, murine monocyte-derived dendritic cells express FccRI, FccRIIb,
FccRIII, and FccRIV, whereas human monocyte-derived dendritic cells express
only FccRIIa and FccRIIb. Likewise, neutrophils from non-human primates
express FccRI, FccRIIa, and FccRIIb whereas human neutrophils express FccRIIa,
FccRIIb, and FccRIIIb.

An additional determinant that further complicates this situation is the sub-
stantial genetic variation—either in the form of single nucleotide polymorphisms
or copy number variants—that has been described for almost all human FccR
genes. Such variation greatly influences either FccR expression or the affinity of
the FccR for human IgG, thereby affecting the in vivo Fc effector functions of
antibodies (Bournazos et al. 2009). Indeed, FccR genetic variants have been
associated with susceptibility to infection or autoimmune disease, and the clinical
outcome of therapeutic antibodies (Mellor et al. 2013; Bournazos et al. 2009).
Although no polymorphisms have been reported for mouse FccRs, several poly-
morphic variants have been described for non-human primate FccR genes, par-
ticularly FccRIIa and FccRIII, and it is unknown how such variation affects the
capacity of these receptors to interact with human IgG (Nguyen et al. 2011; Rogers
et al. 2006). It is therefore clear that any results obtained from such animal models
cannot be directly extrapolated between species or precisely predict human IgG
Fc-mediated effector function.

Previous attempts to study human FccR–IgG interactions utilized in vitro
assays with human FccR-expressing cells. As expected, such strategies completely
fail to recapitulate the complexity of the in vivo IgG Fc-mediated effector activity
and do not reflect the diversity of cellular populations that participate during an
in vivo response. An alternative model that combines the presence of human
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FccR-expressing cells and the complexity of the in vivo conditions is the use of
murine models with reconstituted human leukocyte progenitor cells. Such models
(i.e., mice reconstituted with human CD34+ cells or PBMCs) have been recently
developed and used mainly for the study of infectious diseases, like HIV and HCV,
for which murine species are resistant (Dorner et al. 2011; Horwitz et al. 2013;
Klein et al. 2012). Apart from the cost as well as the reconstitution variability they
present, such reconstituted humanized murine models are severely immunocom-
promised (Rag1/2-/- or SCID and cytokine common c chain-/-), lack functional
lymphoid cell compartments (T, B, and NK cells) and present defects in myeloid
effector cell function and development. Additionally, the concurrent presence of
murine- and human-derived FccR-expressing effector cells do not allow for an
accurate evaluation of human antibody interactions, given the capacity of human
IgG to also engage certain classes of murine FccRs (Pietzsch et al. 2012). For this
reason, the development of novel in vivo strategies are required to precisely
address the contribution of Fc-mediated effector function, especially given the
ever-increasing number of antibody-based therapeutics being developed for the
treatment of infectious, neoplastic, and chronic inflammatory diseases.

3 FccR-Humanized Mice

3.1 Development of FccR-Humanized Mice

FccR engagement represents a crucial step in determining the in vivo activity of an
antibody, as it mediates a number of diverse pro-inflammatory, immunomodula-
tory or other effector activities by the various FccR-expressing leukocyte popu-
lations (Nimmerjahn and Ravetch 2006). Given the substantial interspecies

Table 1 Comparison of FccR expression pattern among humans, murine, and non-human
primate species

FccRI FccRIIa
(mFccRIII)

FccRIIb FccRIIc
(human only)

FccRIIIa
(mFccRIV)

FccRIIIb
(human only)

B cells Human – – ++++ – – –
Rhesus – – -/+ –
Mouse – – ++++ –

Monocytes Human +++ ++ +++ – -/++ –
Rhesus ++++ + + -/+
Mouse +++ ++ +++ ++

Neutrophils Human – +++ + – – +++++
Rhesus ++++ ++++ ++ –
Mouse ++ ++ + +++

NK cells Human – – – ++ +++ –
Rhesus – – – +
Mouse – ++ – –
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structural, functional, and genetic variation, the in vivo Fc effector activities of
human antibodies cannot be precisely evaluated in vivo, as conventional animal
models fail to reflect the unique pattern of human FccR expression as well as FccR
structural and functional diversity.

To overcome this problem, several attempts have been made to introduce
human FccR as transgenes and study the in vivo effects of human antibodies in
human FccR transgenic mice (Li et al. 1996; Heijnen et al. 1996; McKenzie et al.
1999). More recently, an in vivo mouse model that faithfully recapitulates the
unique pattern of human FccR structural and functional diversity has been
developed (Smith et al. 2012). This model involved the generation of a mouse line
in which all mouse FccR genes have been deleted and human FccR genes have
been introduced as BAC transgenes to be expressed under the control of their
endogenous promoters and regulatory elements. Mice deficient in all classes of
mouse FccRs were generated by targeted deletion of the genes encoding the a
chain of the FccRs, which mediates IgG binding. In contrast, these mice retained
the FccR c chain, which acts as the accessory signaling subunit for certain classes
of FccRs. The introduction of human FccR genes as BAC transgenes ensured that
the correct expression pattern and cell-type specificity. Indeed, as summarized in
Table 2, FccR-humanized mice demonstrate a cellular pattern of expression
similar to that observed in human cells (Smith et al. 2012). Furthermore, as pre-
viously reported for human cells, the expression of particular classes of human
FccRs, such as FccRI, has been shown to be modulated by cytokines (such as
IFN-c) in FccR-humanized mice, suggesting that FccR expression regulation is
conserved between this humanized mouse strain and humans. Additionally, FccR-
humanized mice exhibit no functional or developmental defects, develop normally
and exhibit physiological reproductive capacity. Lymphoid tissue development
and architecture is normal and they are capable of mounting a normal immune
response against immunization with various antigens (Smith et al. 2012).

3.2 Evaluation of Antibody-Mediated Effector Function
in FccR-Humanized Mice

The FccR-humanized mouse model has now been used to assess passively
administered antibodies in the context of inflammation, neoplastic disease, and
infectious disease. Further, FccR-humanized mice have become an important
preclinical platform to test Fc modifications that modulate the FccR-mediated
effector functions of therapeutic human antibodies in vivo, such as point mutations
in the human IgG1 Fc that allow for selective and enhanced engagement of spe-
cific human FccRs. Examples of such Fc-modified human IgG1 antibodies that
have been tested in FccR-humanized mice include the S239D/I332E (SDIE)
mutant (enhances the affinity of the Fc for all human FccRs), the G236A/S239D/
A330L/I332E (GASDALIE) mutant (which selectively enhances the affinity of the
Fc for FccRIIa and FccRIIIa), the S267E (SE) and S267E/L328F (SELF) mutants
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(which selectively enhance the affinity of the Fc for the inhibitory FccRIIb), and
the N297A mutant (which abrogates all FccR engagement) (Smith et al. 2012).
Thus, FccR-humanized mice have now been used to compare human IgG-medi-
ated effector function mediated by a variety of Fc-engineered antibodies in mul-
tiple disease models (Table 3).

As an example of human FccR-mediated inflammation, passive administration
of mouse anti-platelet monoclonal antibody clone 6A6 is a model of idiopathic
thrombocytopenic purpura (ITP) and results in the rapid and acute depletion of
blood platelet numbers in wild-type mice in an FccR-dependent manner. Whether
a human IgG1 version of the 6A6 antibody was also capable of platelet depletion
in the context of the full array of human FccRs was tested in FccR-humanized
mice (Smith et al. 2012). Indeed, passive administration of huIgG1 6A6 antibody
efficiently and rapidly depleted platelets in FccR-humanized mice, but not in mice
lacking FccR expression. The administration of an equivalent dose of the
GASDALIE Fc variant of the 6A6 antibody, which selectively increases Fc
engagement to activating FccRIIa and FccRIIIa, increased platelet depletion by
1.5-fold. A second model of inflammation has also been tested in FccR-humanized
mice: type III hypersensitivity reactions mediated by immune complexes. Anti-
body immune complexes generated by heat-aggregation of IgG initiate an ana-
phylactic response when administered intravenously to mice (Finkelman et al.
2005). Thus, heat-aggregated human IgG administered to FccR-humanized mice
led to rapid anaphylaxis, as demonstrated by a dramatic decrease in core body
temperature (Smith et al. 2012). Such anaphylaxis was not seen in mice lacking the
expression of any FccRs, and only a modest anaphylaxis was seen in wild-type
mice. These studies demonstrate that FccR-humanized mice serve as a reliable
animal model for human antibody-mediated inflammation.

Table 2 Expression profile of human FccRs in humans and FccR-humanized mice

FccRI FccRIIa FccRIIb FccRIIIa FccRIIIb

B cells – – + – – Human
– – + – – Humanized FccR mice

T cells – – – – – Human
– – – – – Humanized FccR mice

Monocytes + + + – – Human
+ + + – – Humanized FccR mice

Neutrophils – + + – + Human
– + + – + Humanized FccR mice

NK cells – – – + – Human
– – – + – Humanized FccR mice

Macrophages – + + + – Human
– + + + – Humanized FccR mice

Dendritic cells – + + – – Human
– + + – – Humanized FccR mice
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FccR-humanized mice have also been used to assess the activities of immu-
notherapeutic human antibodies in the context of neoplastic disease. The first
tumor studies to be carried out in FccR-humanized mice utilized the B16 mela-
noma tumor model. Passive treatment with murine TA99 monoclonal antibody,
specific for the gp75 (TRP75) tumor antigen expressed by B16 melanoma tumor
cells, clears B16 lung metastases in an activating FccR-dependent manner
(Nimmerjahn and Ravetch 2005). When administered to FccR-humanized mice
bearing B16 tumors, human IgG1 TA99 antibody successfully cleared *40 % of
tumor metastases, while the antibody had no effect in mice lacking any FccRs
(Smith et al. 2012). Further, no effect on metastases was seen when a human IgG1
mutant that does not engage FccRs (N297A mutation) was used. However, an Fc-
engineered GASDALIE mutant TA99 antibody (Fc modified for enhanced
engagement of FccRIIa and FccRIIIa) augmented tumor clearance by twofold and
cleared [80 % of metastases (Smith et al. 2012). Similarly, the FccR-dependent
depletion of B cells and CD4+ T cells by human IgG1 versions of anti-CD40 and
anti-CD4 antibodies, respectively, has been demonstrated in FccR-humanized
mice. Further, the activities of these human IgG1 antibodies have been augmented
using Fc mutants that enhance interactions with activating FccRs (SDIE and
GASDALIE mutants, respectively) (Smith et al. 2012). Thus, these studies
establish FccR-humanized mice as an important model for testing cytotoxic tumor-
specific human antibodies for FccR-mediated effects in vivo.

Because the expression pattern of human FccRs in FccR-humanized mice
recapitulates the pattern seen in humans (Table 2), this mouse model also repre-
sents an invaluable model to test human therapeutic immunomodulatory antibodies
that engage immune receptors to regulate immune system function. Many such
immunomodulatory antibodies have anti-tumor activities. For example, agonistic
anti-CD40 monoclonal antibody is a potent anti-cancer immunotherapeutic that
boosts the activation of cytotoxic CD8 T cells to increase anti-tumor activity.
Recently, the mechanism of action of agonistic anti-CD40 antibody has been
shown to be absolutely dependent on its engagement with the inhibitory FccR,
FccRIIb (Li and Ravetch 2011). Co-administration of a human IgG1 anti-CD40
antibody with a dendritic cell-targeted anti-OVA immunization strategy showed a
modest anti-OVA CD8+ T cell response in mice humanized for FccRIIa and
FccRIIb, but no anti-OVA CD8+ response was seen when the FccR-null binding
N297A mutant of anti-CD40 antibody was used (Li and Ravetch 2011). However,
the anti-OVA CD8+ T cell response was boosted greater than 12-fold when the SE
Fc variant (enhances Fc interactions with FccRIIb) of anti-CD40 antibody was co-
administered during immunization. These results were recapitulated in FccR-
humanized mice as well (Smith et al. 2012), and correlated with survival after
challenge with OVA-expressing tumor cells (Li and Ravetch 2011). Similar results
were seen when human IgG1 and SE mutant anti-CD40 antibodies were admin-
istered to FccRIIa/FccRIIb-humanized mice challenged with either CD40+ or
CD40- tumors cells in the absence of immunization. Parallel studies in FccRIIb-
humanized mice using anti-DR5 antibodies, which also require engagement of
inhibitory FccRIIb for their in vivo anti-tumor and hepatotoxic effects,
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demonstrated enhanced tumor clearance using Fc-engineered anti-DR5 antibody
with enhanced affinity for FccRIIb (Li and Ravetch 2012). Thus, FccR-humanized
mice are an ideal platform for testing immunomodulatory antibodies for use as
anti-tumor therapeutics.

FccR-humanized mice have also been used to test antibody effector function in
the context of infectious disease. Recent studies have demonstrated that broadly
neutralizing anti-influenza hemagglutinin (HA) antibodies require interactions with
activating FccRs for their ability to mediate passive protection against lethal
influenza challenge in vivo (Dilillo et al. 2014). In addition, a chimeric human IgG1
anti-HA monoclonal antibody (clone 6F12) protected FccR-humanized mice from
lethal influenza virus challenge in a dose-dependent manner. Since anti-HA anti-
body required interactions with activating FccRs to mediate protection in vivo,
whether Fc-engineering the anti-HA antibody Fc to enhance interactions with
activating human FccRs was assessed. Selectively engaging activating human
FccRIIa and FccRIIIa with GASDALIE mutant anti-HA antibody augmented
in vivo protection during viral challenge by approximately twofold (Dilillo et al.
2014). Similar studies using anti-anthrax toxin neutralizing antibodies in FccR-
humanized mice have also been performed, in which a chimeric human IgG1 version
of an anti-anthrax protective antigen (PA) antibody (clone 19D9) was generated
(Bournazos et al. 2014). The ability of this antibody to protect FccR-humanized
mice from lethal B. anthracis challenge was dependent on human FccR expression,
since protection was only seen in FccR-humanized mice and not in mice lacking
FccRs. Further, Fc-engineering this anti-PA neutralizing antibody to selectively
enhance interactions with human activating FccRs (GASDALIE mutant) resulted in
augmented protection against B. anthracis challenge. Thus, FccR-humanized mice
are an ideal model system for testing neutralizing antibodies for human FccR
effector-mediated function during protection against a variety of pathogens.

4 Limitations and Conclusions

While FccR-humanized mice represent a powerful tool for assessing the contri-
butions of human FccRs during human antibody-mediated effector function
in vivo, some limitations exist. For example, human target antigens to which
therapeutic antibodies bind must be expressed as transgenes in mice and crossed
onto the FccR-humanized background in order to assess the therapeutic potential
of antibodies directed at host-expressed targets. Examples of such therapeutic
antibodies with anti-tumor activities include anti-CD20, anti-Her2, anti-EGFR,
anti-CD40, anti-CTLA-4, and anti-PD-1 antibodies. Alternatively, since FccR-
humanized mice are fully immunocompetent, studies with antibodies targeting
tumor antigens must utilize mouse tumor cell lines expressing the human tumor
antigen. Another limitation to the FccR-humanized mouse model is that repeated
or long-term administration of human IgG will result in an anti-human IgG
response that will confound experimental results. Thus, the introduction of a
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human IgG1 knock-in transgene into FccR-humanized mice would resolve this
situation by tolerizing the mice to human IgG1 administration.

Currently, FccR-humanized mice only express one class of human FccRs, and
therefore do not take into account the array of other receptors for human IgG.
Future versions of FccR-humanized mice will include deletions of these receptors
and human transgenes to replace them. For example, the neonatal Fc receptor,
FcRn, regulates antibody half-life in vivo, and the interaction between the Fc and
FcRn can be manipulated to increase antibody half-life through Fc-engineering.
Several IgA receptors, including FcaRI (CD89), the Fca/lR, and the polymeric Ig
receptor, as well as the high and low affinity IgE receptors, FceRI and CD23
respectively, are alternative Fc receptors with important biological functions whose
human counterparts may be expressed in mice. In addition, human DC-SIGN,
which engages sialylated IgG molecules to mediate anti-inflammatory activities, is
another candidate human Fc receptor for inclusion in the humanized mouse model.
Thus, future iterations of FccR-humanized mice will include other classes of FccRs
to even more fully recapitulate the variety of immunoglobulin-binding proteins
expressed by humans. Regardless, FccR-humanized mice are a powerful tool that
will facilitate investigations into the consequences of human FccR engagement by
human antibodies that engage a variety of targets in vivo models of inflammation,
malignancy, and infectious disease.
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FcRn: From Molecular Interactions
to Regulation of IgG Pharmacokinetics
and Functions

Dilip K. Challa, Ramraj Velmurugan, Raimund J. Ober
and E. Sally Ward

Abstract The neonatal Fc receptor, FcRn, is related to MHC class I with respect
to its structure and association with b2microglobulin (b2m). However, by contrast
with MHC class I molecules, FcRn does not bind to peptides, but interacts with the
Fc portion of IgGs and belongs to the Fc receptor family. Unlike the ‘classical’ Fc
receptors, however, the primary functions of FcRn include salvage of IgG (and
albumin) from lysosomal degradation through the recycling and transcytosis of
IgG within cells. The characteristic feature of FcRn is pH-dependent binding to
IgG, with relatively strong binding at acidic pH (\6.5) and negligible binding at
physiological pH (7.3–7.4). FcRn is expressed in many different cell types, and
endothelial and hematopoietic cells are the dominant cell types involved in IgG
homeostasis in vivo. FcRn also delivers IgG across cellular barriers to sites of
pathogen encounter and consequently plays a role in protection against infections,
in addition to regulating renal filtration and immune complex-mediated antigen
presentation. Further, FcRn has been targeted to develop both IgGs with extended
half-lives and FcRn inhibitors that can lower endogenous antibody levels. These
approaches have implications for the development of longer lived therapeutics and
the removal of pathogenic or deleterious antibodies.
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ECs Endothelial cells
FcRn Neonatal Fc receptor
GBM Glomerular basement membrane
HCs Hematopoietic cells
HIV Human immunodeficiency virus
HSV Herpes simplex virus
ICs Immune complexes
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1 Introduction

The neonatal Fc receptor (FcRn), as the name indicates, was first described for its
role in the transfer of IgG from mother’s milk across the neonatal gut epithelial
barrier into the neonatal bloodstream (Brambell 1970). It is also referred to as a
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major histocompatibility (MHC) class I-related receptor since it shares structural
similarity with MHC class I (Simister and Mostov 1989). FcRn belongs to the class
of Fc receptors that bind to immunoglobulin G (IgG). However, FcRn differs from
other members (collectively referred as FccRs) of this class in multiple ways: (1)
FcRn is expressed in hematopoietic cells (HCs) as well as non-HCs (Borvak et al.
1998; Zhu et al. 2001; Akilesh et al. 2007; Perez-Montoyo et al. 2009), whereas
FccR expression is primarily confined to cells of hematopoietic origin (Nimmerjahn
and Ravetch 2008; Hogarth and Pietersz 2012); (2) the cytoplasmic domain of FcRn
lacks the ability to signal intracellularly (Kuo et al. 2009), whereas FccRs (except
human FccRIIIB) or their subunit (c chain) have immunoreceptor tyrosine-based
activatory or inhibitory motifs (ITAMs or ITIMs) in their cytoplasmic domains,
which can mediate intracellular signaling (Nimmerjahn and Ravetch 2008; Hogarth
and Pietersz 2012); (3) the key function of FcRn involves recycling and transcytosis
of IgG (Roopenian and Akilesh 2007; Ward and Ober 2009; Kuo et al. 2010), while
FccRs regulate the immune complex-mediated effector functions of innate immune
cells (Nimmerjahn and Ravetch 2008; Hogarth and Pietersz 2012).

Two primary and very well-studied functions of FcRn include the regulation of
IgG homeostasis and IgG transport across cellular barriers (Ward and Ober 2009).
FcRn is expressed in many different cell types, some of which can be found in all
organs of the body (Akilesh et al. 2007; Perez-Montoyo et al. 2009). As a result,
the functions of FcRn are not localized to a single organ or cell type, an attribute
required for regulating the homeostasis and transport of the ubiquitous immune
molecule, IgG. FcRn also regulates the homeostasis of albumin (Chaudhury et al.
2003), although the binding site on FcRn is different for the two molecules
(Andersen et al. 2006; Oganesyan et al. 2014) and hence they do not compete with
each other for FcRn binding. Recently, FcRn has been shown to also play an
important role in the regulation of renal filtration (Akilesh et al. 2008; Sarav et al.
2009) and antigen presentation (Qiao et al. 2008; Baker et al. 2011). In this review,
we discuss data that elucidate the mechanisms through which FcRn performs these
multiple functions. The well-defined role of antibodies in autoimmunity (Na-
parstek and Plotz 1993) and the emergence of IgG-based therapeutics (Chan and
Carter 2010; Scott et al. 2012) have motivated the development of many FcRn-
targeting therapies that have shown promise in preclinical studies. These studies
will also be reviewed.

2 FcRn Biology

FcRn exists as a heterodimer of the MHC class I-like heavy chain and b2micro-
globulin (b2m), which are noncovalently associated (Simister and Mostov 1989).
Association with b2m is required for the expression and normal functioning of
FcRn (Claypool et al. 2002). The MHC class I-like heavy chain includes gly-
cosylated a1–3 domains, a transmembrane domain and a *42 amino acid
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cytoplasmic tail (Kuo et al. 2009). Crystallographic studies of a rat FcRn-rat Fc
(IgG2a) complex revealed that the a2 domain residues (Glu117, Glu118, Glu132,
Trp133, Glu135, and Asp137) and Ile1 of b2m combined with the carbohydrate of
rat FcRn interacts with residues (Ile253, His310, His435, and minor role for
His436) at the CH2–CH3 interface of rat Fc (Martin et al. 2001). The role of
His433 of the Fc region in these interactions is contentious (Raghavan et al. 1995;
Medesan et al. 1997; Kim et al. 1999; Shields et al. 2001). The stoichiometry of
the interaction between FcRn and Fc or IgG is 2:1, as shown by equilibrium gel
filtration or sedimentation equilibrium assays (Sanchez et al. 1999; Schuck et al.
1999). The FcRn:Fc (or IgG):FcRn interaction is asymmetric, with different dis-
sociation constants for the two binding sites (Schuck et al. 1999). This, combined
with a recent three-dimensional structure of human FcRn bound to an engineered
human Fc fragment (Oganesyan et al. 2014), indicate that occupancy of the ‘first’
site on IgG results in conformational changes that reduce the affinity of FcRn for
the second site. Further, the FcRn-IgG interaction is highly pH-dependent, with
relatively high affinity binding at acidic pH (\6.5) and no detectable binding at
physiological pH (7.4) (Raghavan et al. 1993; Popov et al. 1996). Site-directed
mutagenesis studies have shown that the pH-dependence is imparted by His310
and His435 of human Fc (Raghavan et al. 1995) (or His310, His435, and His436 of
rodent Fc (Medesan et al. 1997)), which get protonated at acidic pH. These pos-
itively charged histidines can then form a salt bridge with the corresponding
residues of the FcRn heavy chain (Martin et al. 2001). However, the crystal
structure of the complex of human FcRn bound to an engineered human Fc
fragment (M252Y/S254T/T256E) was recently solved, which indicates that
His310 of human Fc is the most important histidine residue for pH-dependent
binding (Oganesyan et al. 2014).

Studies using mutated versions of FcRn have localized the endocytosis and
transcytosis signals within the cytoplasmic tail of FcRn, which include the con-
served motifs tryptophan (Trp311) and dileucine (Leu322, Leu323) (Newton et al.
2005). A calmodulin-binding site in the membrane proximal region of human
FcRn has also been identified that controls the transcytosis and half-life of FcRn in
epithelial cells in a calcium-dependent manner (Dickinson et al. 2008). Also,
rodent FcRn has three extracellular N-glycan moieties that are absent in human
FcRn, which has only one N-linked glycan common to both human and rodent
FcRn (Kuo et al. 2009). Interestingly, when human FcRn is rodentized in terms of
N-glycan moieties, its steady-state distribution changes (from basolateral) to the
apical membrane and its predominant direction of transcytosis (basolateral to
apical) is reversed, resulting in the transport of IgG from the apical to basolateral
side (Kuo et al. 2009).

Although recent data suggests a slightly different picture (see Sect. 3.1), in the
past it was hypothesized that FcRn in vascular endothelial cells (ECs) is most
important for recycling of IgG, since these cells form a large surface area that is in
contact with the bloodstream. Therefore, FcRn trafficking with respect to IgG
recycling has been extensively studied in ECs (Ober et al. 2004a, b; Prabhat et al.
2007; Gan et al. 2009). The recycling process has been characterized in human
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FcRn-Green Fluorescent Protein (GFP)-transfected human microvasculature ECs
(HMEC-1), using live-cell fluorescence imaging (Ober et al. 2004b). In these
studies, fluorescently labeled wildtype (WT) human IgG1 was used to trace the
path of recycling IgG, and a mutated variant (H435A), which binds to FcRn with
negligible affinity at both physiological and acidic pH, was used to track IgG that
does not bind to FcRn. Based on the results from these and subsequent studies
(Ober et al. 2004a; Prabhat et al. 2007; Gan et al. 2009, 2013), a model for FcRn
recycling/transcytosis has been constructed, which can be summarized in three
steps (Fig. 1): (1) Cells nonspecifically pinocytose extracellular fluid including
IgG into adaptor protein containing pH domain, PTB domain, and leucine zipper
motif 1 positive (APPL1+) vesicular transport carriers (TCs), which then fuse with
sorting endosomes. The acidic environment in these compartments facilitates IgG
binding to FcRn. (2) FcRn-IgG complexes are sorted into recycling or transcytotic
TCs. These TCs subsequently fuse with the plasma membrane, followed by the
release of IgG into the serum or interstitial space due to the physiological (near-
neutral) pH. (3) Meanwhile, the sorting endosomes mature to late endosomes,
which deliver their luminal contents to lysosomes, resulting in the degradation of
any IgG that failed to be recycled by FcRn.

FcRn-mediated transcytosis has also been extensively studied using Madin–
Darby canine kidney (MDCK) cells (Claypool et al. 2004; Tesar et al. 2006),
which form polarized monolayers when cultured in vitro, a property necessary for
studying transcytosis. In human FcRn-transfected MDCK cells, FcRn localizes
predominantly to apical intracellular compartments, with surface expression
primarily on the basolateral side. Importantly, FcRn was demonstrated to trans-
cytose IgG in both basolateral to apical and apical to basolateral directions, the
latter being dominant (Claypool et al. 2004). What factors define whether IgG is
recycled or transcytosed? Although this question has not been answered com-
pletely, studies have identified molecular effectors for these processes which
include Rab GTPases and motor myosin Vb (Myo Vb). Rab GTPases are regulated
by GTP-GDP exchange cycles, and in combination with soluble NSF attachment
protein receptors (SNAREs) can regulate the merging of different organellar
membranes (Somsel and Wandinger-Ness 2000; Miaczynska and Zerial 2002;
Jahn et al. 2003). Also, when active, Rab GTPases can activate or recruit effector
molecules such as kinases, phosphatases, motors, etc. Consequently, these proteins
control multiple intracellular trafficking processes (Stenmark 2009; Agola et al.
2011). On the other hand, myosin motors are mechanical, enzymatic motors,
which generate energy by hydrolyzing ATP to drive cargo along actin filaments
(Hammer and Sellers 2012). Rab11 GTPase associates with FcRn during recycling
in HMEC-1 cells (Ward et al. 2005), and regulates recycling in MDCK cells
(Tzaban et al. 2009), whereas Myo Vb and Rab25 GTPase are involved in
bidirectional transcytosis in MDCK cells (Tzaban et al. 2009).
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3 Functions of FcRn

3.1 IgG Homeostasis

IgG and albumin constitute *80 % of total serum protein with mean concentra-
tions as high as 10 and 40 mg/ml, respectively (Dati et al. 1996). The primary
reason for the high abundance of these proteins is their extraordinarily long serum

Fig. 1 FcRn-mediated recycling and transcytosis of IgG. Cells internalize IgG through fluid-
phase pinocytosis into tubulovesicular TCs, which subsequently fuse with sorting endosomes.
The acidic pH in these compartments favors the binding of IgG to FcRn. FcRn with bound IgG
sorts into TCs, which either recycle or transcytose to the plasma membrane. The near-neutral pH
on the plasma membrane results in the release of IgG from FcRn into the extracellular fluid
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half-life. IgG has a serum half-life of *22 days in humans (Spiegelberg and
Fishkin 1972) and *8 days in mice (Vieira and Rajewsky 1988; Ghetie et al.
1996). Multiple studies have convincingly shown that the extended half-life of IgG
(and albumin) is FcRn-mediated. The first in vivo evidence for this came from
studies using b2m-deficient knockout (KO) mice, which do not express functional
FcRn in addition to having other defects such as CD8+ T cell deficiency. In these
mice, IgG has an extremely short half-life (Ghetie et al. 1996; Israel et al. 1996;
Junghans and Anderson 1996). Later, similar conclusions were obtained using
FcRn KO mice (Roopenian et al. 2003), which are more specific tools than b2m
KO mice for studying FcRn biology. In addition, based on archived blood samples
a study has identified two deceased humans (with familial hypercatabolic hypo-
proteinemia), who were analogous to b2m KO mice, i.e., b2m expression was
almost completely inhibited in these patients (soluble b2m levels in their serum
were \1 % of normal) due to a point mutation in the leader peptide of their b2m
gene (Wani et al. 2006). IgG and albumin levels were abnormally low in their
serum, also indicating a role for FcRn in humans in protecting IgG and albumin
from catabolism.

As mentioned earlier, FcRn is expressed in many different cell types across the
body. In adult humans, FcRn expression can be found in skin microvasculature,
retinal, and placental ECs (Antohe et al. 2001; Ober et al. 2004b; Powner et al.
2014), monocytes, macrophages, dendritic cells (DCs) (Zhu et al. 2001), T and B
lymphocytes (van Bilsen et al. 2010), keratinocytes (Cauza et al. 2005), hepato-
cytes (Andersen et al. 2012), epithelial cells of intestine (Israel et al. 1997;
Dickinson et al. 1999), mammary gland (Cianga et al. 2003), kidney (Haymann
et al. 2000), lung (Spiekermann et al. 2002), eye (Powner et al. 2014) and the
female genital tract (Li et al. 2011). In adult mice, FcRn has been localized to
vascular ECs of some, but not all organs (Akilesh et al. 2007), macrophages, DCs
(Akilesh et al. 2007; Perez-Montoyo et al. 2009), B cells (Perez-Montoyo et al.
2009) and epithelial cells of kidney (Akilesh et al. 2008), alveolus (Spiekermann
et al. 2002), intestine (Akilesh et al. 2007), choroid plexus (Akilesh et al. 2007),
eye (Kim et al. 2008), and the female genital tract (Li et al. 2011). It is not clear in
which cell types/organ FcRn is crucial for persistence of IgG (and albumin).
Experiments using bone marrow chimeras of WT and FcRn KO mice revealed that
FcRn in HCs and non-HCs contribute almost equally to IgG homeostasis (Akilesh
et al. 2007; Kobayashi et al. 2009). Subsequent studies using Cre-loxp technology-
based cell type-specific FcRn KO mice demonstrated that FcRn-expressing ECs
and HCs are the major sites of IgG homeostasis (Perez-Montoyo et al. 2009).

The relative contribution of different cell types to IgG recycling depends on
many factors, including the number of FcRn-expressing cells within each group,
FcRn expression levels, the rate of pinocytic/phagocytic activity and the concen-
tration of IgG in the respective microenvironments. Also, the relative contribution
of cells might change during inflammation, since toll-like receptor (TLR) ligands
and proinflammatory cytokines have been shown to modulate FcRn expression. In
particular, CpG oligodeoxynucleotide (TLR9 ligand), lipopolysaccharide (TLR4
ligand), tumor necrosis factor (TNF)-a and interleukin-1b have been shown to
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upregulate FcRn expression in intestinal epithelial cells and/or monocytes (Liu
et al. 2007b). By contrast, interferon-c has been shown to downregulate FcRn
expression in intestinal epithelial cells and monocytes (Liu et al. 2008). Deter-
mining the contribution of each cell type to IgG protection, and how this changes
under inflammatory conditions, will aid in developing accurate pharmacokinetic-
modeling tools required for optimizing the delivery of IgG-based therapeutics.

3.2 Transport of IgG Across Cellular Barriers

3.2.1 IgG Transfer from Mother to Fetus or Neonate

IgG is the only immunoglobulin subclass that is actively transported from mother
to fetus/neonate. Although both mother-to-fetus and mother-to-neonate transfer of
IgG can occur in rodents and humans, the former is dominant in humans while the
latter plays a major role in rodents.

In mice, FcRn expression in the yolk sac mediates the materno fetal transfer of
IgG (Medesan et al. 1996). However, at birth, the concentration of IgG in the
serum of neonatal mice is only 20–30 % of that in adult mice (Appleby and Catty
1983) and hence, IgG transport during gestation in mice is considered to be of
relatively low importance. In rodents, the transfer of passive immunity in the form
of IgG primarily occurs postnatally (Appleby and Catty 1983). Upon ingestion of
IgG-containing maternal milk, IgG, and other milk proteins reach the proximal
small intestine (the stomach is less acidic in neonates). Acidic pH in the duodenum
allows IgG to be selectively endocytosed by enterocytes in an FcRn-dependent
fashion (Jones and Waldmann 1972; Rodewald and Abrahamson 1982; Rodewald
and Kraehenbuhl 1984). Internalized IgG is then transcytosed across the cell to the
basolateral membrane, where the physiological, near-neutral pH results in the
release of IgG from FcRn into the intestinal tissue. IgG can subsequently transfer
into the blood through the lymphatics. Coincidentally, in rodents, FcRn expression
in enterocytes rapidly decreases at around weaning age (Martin et al. 1997; Ak-
ilesh et al. 2007).

In newborn infants, the concentration of IgG in the serum is at levels similar to
those observed in mothers (Salimonu et al. 1978). This indicates that maternofetal
transport of IgG (during the third trimester of pregnancy) is extremely efficient in
humans. The transport is mediated by FcRn expressed in syncytiotrophoblasts
(Leach et al. 1996; Simister et al. 1996; Firan et al. 2001), which constitute the
continuous, multinucleate epithelium separating the mother from fetus. On the
apical side, the brush border surface of syncytiotrophoblast is bathed in maternal
blood, whilst the basolateral membrane faces fetal blood capillaries. In brief, the
maternal serum containing IgG is pinocytosed into the endosomes of syncytio-
trophoblasts, followed by IgG transcytosis to the fetal side (basolateral mem-
brane), where the near-neutral pH enables IgG dissociation from FcRn.
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3.2.2 Transport of IgG to Sites of Pathogen Encounter
and Immune Activation

The mucosal surfaces of the airways, urogenital tract, and intestine are the primary
sites where a multicellular organism such as a mammalian species interacts with
the environment. These surfaces employ multiple mechanisms to protect against
invasion of pathogens or harmful agents, which include (McGhee and Fujihashi
2012): (1) a polarized epithelial cell barrier, (2) secretions (containing anti-
microbial substances including IgA, IgG and IgD) toward the apical (environment)
side of the epithelial cell layer and (3) mucosa-associated lymphoid tissue
(MALT), positioned on the basolateral side (beneath) of the epithelial barrier.
MALT is primarily composed of innate (DCs, macrophages, etc.) and adaptive (T
and B cells) immune cells, however, the composition of MALT varies significantly
at each mucosal surface. Importantly, CD103+ DCs in the lamina propria (LP, part
of MALT in the gut) extend processes through the epithelial cell barrier into the
intestinal lumen and capture antigens. The DCs then carry the captured antigen to
the mesenteric lymph nodes (MLNs) where they present antigenic peptides to T
cells (Schulz et al. 2009). An analogous function of antigen sampling has been
shown to be performed by FcRn in intestinal epithelial cells in mice (Yoshida et al.
2004). In this study, transgenic mice expressing human FcRn (under the control of
endogenous human promoter) and human b2m in the absence of endogenous
mouse FcRn expression were used because, as mentioned earlier, intestinal epi-
thelial cells in WT mice downregulate FcRn expression at around weaning age
(Akilesh et al. 2007), whereas intestinal epithelial cells in adult humans continue
to express FcRn (Israel et al. 1997; Dickinson et al. 1999).

In these human FcRn transgenic mice, intravenously delivered anti-ovalbumin
(OVA) IgG reached the luminal fluid of the small intestine within a few hours, but
such transport of anti-OVA IgG into small intestinal fluid was substantially lower
in FcRn KO mice. Further, intragastrically administered IgG-OVA complexes
were transported into the LP in human FcRn transgenic mice (but not in FcRn KO
mice) and subsequently, OVA+ DCs were detected in the MLNs. Notably, intra-
venous delivery of anti-OVA IgG and oral delivery of OVA lead to the expansion
of OVA-specific CD4+ T cells in the MLNs of human FcRn transgenic mice.
A similar FcRn-mediated phenomenon was seen to occur in the nasal mucosa
(Yoshida et al. 2004). These observations clearly establish two FcRn-dependent
immune functions: (1) FcRn contributes to the humoral immune response at
mucosal surfaces by transporting IgG from the basolateral side of the epithelial
cell barrier to mucosal secretions on the apical side (site of antigen or pathogen
encounter). This can explain how IgG reaches mucosal fluids of the nasal cavity
(*300 lg/ml (Hanson and Brandzaeg 1980) and rectum (*800 lg/ml; (Koz-
lowski et al. 1997). (2) FcRn can mediate the delivery of antigen (in the form of
immune complexes) from the mucosal surface to the corresponding MALT where
T cells can be stimulated. These mucosal immune functions of FcRn have also
been demonstrated in a mouse model of colitis induced by Citrobacter rodentium
infection (Yoshida et al. 2006). Importantly, this study highlighted the importance
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of FcRn-mediated delivery of anti-pathogen IgG to the intestinal lumen, demon-
strating that this antibody can prevent the attachment of C. rodentium to epithelial
cells, an essential step in the initiation/progression of infection by this pathogen
(Bry and Brenner 2004).

Unlike most mucosal surfaces where IgA is found in higher concentrations than
other immunoglobulin subclasses (Woof and Mestecky 2005), in the human
female genital tract IgG is the predominant immunoglobulin subclass (Johansson
and Lycke 2003). With respect to this, a recent study has shown that bidirectional
transcytosis of IgG can be carried out by FcRn expressed by female genital tract
epithelial cells of humans (in vitro) and the female genital tract of mice (in vivo)
(Li et al. 2011). Also, this study showed that intraperitoneal-delivery of anti-herpes
simplex virus-2 (HSV-2) IgG conferred higher protection against vaginal infection
of HSV-2 in WT mice than in FcRn KO mice. In order to account for the higher
rate of IgG catabolism in FcRn KO mice, a 1.4 to 2.8-fold greater amount of anti-
HSV-2 IgG was used in the KO mice. The lower level of protection observed in
FcRn KO mice was attributed to an absence of FcRn-mediated transfer of IgG to
the genital mucosal surface. However, improved mouse models lacking FcRn
expression specifically in epithelial cells (such a model would be expected to have
normal IgG catabolism) would be valuable tools to determine the role of FcRn-
mediated IgG transcytosis in vaginal infections.

Interestingly, another recent study has indicated that FcRn can aid the transfer
of human immunodeficiency virus (HIV)-1 across the epithelial cell barrier of
genital mucosa (Gupta et al. 2013). In this in vitro study, the acidic pH on the
apical side (as is the case for cervicovaginal secretions/fluid) enhanced FcRn-
mediated transcytosis of HIV-1 (in complex with anti-virus IgG) across the epi-
thelial cell barrier, releasing viable virus toward the basolateral side. Although this
FcRn-mediated process can enhance viral entry into the genital tissue, IgG-coated
viral particles will be primarily taken up by FccR-expressing cells (primarily
professional antigen presenting cells (APCs)) in the MALT, where they could
induce subsequent T cell activation. However, it remains to be determined whether
FcRn can contribute to viral dissemination or clearance during this process.

3.3 Maintenance and Regulation of Renal Filtration

Blood is filtered in nephrons, the functional units of kidneys, to form urine.
Nephrons are made up of different kinds of tubules, each performing a different
function (Fig. 2a). The head portion of the nephron, called the glomerular capsule,
performs filtration, and the following proximal convoluted tubule (PCT) performs
reabsorption of salt, water, glucose, albumin, etc. Blood, destined for filtration
flows into glomerular capillaries (enclosed by the glomerular capsule), where
filtration occurs, and the resultant filtrate flows into the lumen of the glomerular
capsule. For filtration to occur, the plasma has to pass through three layers of filters
(Fig. 2b) with increasing size selectivity (Fox 2011). The first filtration barrier is
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Fig. 2 FcRn-mediated functions in the kidney. a Schematic structure of nephron. b Plasma from
glomerular capillaries passes through three different filters before flowing into the lumen of the
glomerular capsule. During this process, IgG and albumin accumulate at the GBM or slit
diaphragm and IgG (and possibly albumin) is cleared by FcRn in podocytes. c The filtrate that
forms in the glomerular capsule contains significant amounts of albumin and flows into the lumen
of the PCT, where FcRn in epithelial cells mediates transcytosis of albumin from the filtrate into
the interstitial space in the kidney
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formed by fenestrated ECs of glomerular capillaries. These fenestrae are large but
charged, which may prevent bulky proteins from crossing the barrier. The second
barrier is formed by the glomerular basement membrane (GBM), which has small
and charged pores and lies immediately below the glomerular capillaries.
Underneath the GBM lie specialized epithelial cells called podocytes, which have
long extensions (foot processes) that wrap around the GBM. The foot processes
interdigitate forming narrow slits, and are bridged by extracellular structures,
referred to as slit diaphragms (Pavenstadt et al. 2003). The foot processes of
podocytes along with associated slit diaphragms constitute the third filtration
barrier. The pore size of the slit diaphragm is equal to or less than the size of
albumin (Wartiovaara et al. 2004).

Considering the fact that *180 L of glomerular filtrate is generated per day, it
is very likely that albumin and IgG (which constitute *80 % of serum proteins)
accumulate at the GBM and/or slit diaphragm, resulting in the clogging of these
biological filters. Hence, it has been hypothesized that a mechanism is in place to
clear the filters of these accumulated proteins. In this context, a study has shown
that FcRn in podocytes functions to remove accumulated IgG at the GBM (Akilesh
et al. 2008). The role of renal FcRn in this process was confirmed primarily based
on the observation that age-dependent glomerular accumulation of IgG is higher in
FcRn KO mice by comparison with WT mice, despite the fact that serum IgG
levels are significantly lower in FcRn KO mice. Based on the pattern of IgG
accumulation observed in the glomerulus, podocytes were suggested to be the
primary cells that clear the accumulated IgG. Also, the study shows that the
protein-elimination function of podocytes is saturable. This finding might explain
how immune complex deposition occurs in the kidneys of systemic lupus ery-
thematosus (SLE) patients, which leads to nephritis.

The glomerular filtrate flowing into the PCT contains significant amounts of
albumin, most of which is reclaimed by PCT epithelial cells (Russo et al. 2007).
Importantly, these epithelial cells express high levels of FcRn (Akilesh et al.
2007). It has now become clear that FcRn in PCT cells is responsible for retrieval
of albumin (Fig. 2c). The role of FcRn in this process is primarily based on two
observations (Sarav et al. 2009). First, FcRn KO mice excrete more albumin in
urine than WT mice. Second, in FcRn KO mice that were transplanted with one
WT kidney (after nephrectomy of one native kidney) serum albumin levels
increased, whereas WT mice transplanted with a KO kidney developed hypoal-
buminemia. Also, based on the localization of exogenously added, labeled albumin
in the kidneys of unmanipulated mice and transplant chimeras, it was suggested
that albumin is reclaimed by the epithelial cells of the PCT. In this context, FcRn
performs bidirectional transcytosis in human proximal tubular epithelial cells
(Kobayashi et al. 2002). Hence, it is logical to assume that albumin reclaimed by
the cells of the PCT would be transcytosed into the interstitium of kidneys, fol-
lowed by drainage of albumin into the lymphatics and entry into the circulation. In
addition, in the same study (Sarav et al. 2009), experiments using kidney trans-
plant chimeras showed that renal FcRn aids elimination of IgG from plasma into
urine. However, the mechanism through which IgG elimination occurs is unclear.
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3.4 Possible Role in Clearing IgG from Immune-Privileged
Sites

Some sites in the body are considered immune-privileged because immune sur-
veillance at these sites is limited or absent. These sites include the central nervous
system (CNS), eye, fetus/placenta, and testis. Complex blood–tissue barriers exist
at these sites that limit or restrict the entry of immune cells and molecules from the
blood into the tissue. In the CNS, one such barrier is the blood–brain barrier
(BBB), which is formed by ECs that line the cerebral microvessels, basal lamina,
and astrocytic endfeet (Abbott et al. 2006). Adjacent ECs of the BBB are con-
nected through tight junctions, which only allow the passage of small hydrophobic
molecules. IgG is large and hydrophilic in nature and hence its entry through the
BBB is highly restricted. The concentration of IgG in a tissue relative to plasma is
1:500 for brain and 1:10 for most nonleaky tissues (Wang et al. 2008).

FcRn is expressed by BBB ECs in both mice (Akilesh et al. 2007) and rats
(Schlachetzki et al. 2002). The presence or absence of FcRn in human BBB ECs
has not been reported. However, we have observed FcRn expression in the human
BBB endothelial cell line hCMEC/D3 (Sripad Ram, Raimund Ober, E. Sally
Ward, unpublished). In rats, one study has shown that intracerebrally injected IgG
is rapidly effluxed out of the CNS into the blood (Zhang and Pardridge 2001). It
was also shown that this efflux or reverse transcytosis of labeled IgG can be
blocked by intracerebral injection of excess unlabeled IgG, indicating a role for an
Fc receptor in this process. Another recent study in rats has confirmed that FcRn
mediates efflux of IgG from brain to blood (Cooper et al. 2013). In this study, 24 h
following intracranial injection of two mutant IgGs, N434A (similar to WT IgG
except that it has increased binding to FcRn at pH 6) and H435A (has negligible
binding to FcRn at pH 6 and 7.4), N434A levels in the brain decreased, whereas
H435A levels remained almost unchanged in comparison to their levels at 5 min
postinjection.

In mice, data exist to both support (Deane et al. 2005) and refute (Garg and
Balthasar 2009; Abuqayyas and Balthasar 2013) the role of FcRn in mediating IgG
efflux from brain. In one study that supports such a role, centrally delivered anti-
Ab IgG and anti-Ab IgG-Ab complexes were transported out of the brain, and this
was blocked by simultaneous delivery of anti-FcRn IgG or the use of FcRn KO
mice (Deane et al. 2005). By contrast, a study has shown that the brain to blood
exposure ratio of intravenously delivered IgG is similar in WT and FcRn KO mice
(Abuqayyas and Balthasar 2013). Additional work is required to unambiguously
determine the role of FcRn in IgG transport across the BBB. Further, FcRn is
expressed by (ECs) of retinal vasculature, and may play a role in excluding IgG
from the eye across the blood–retinal barrier (Powner et al. 2014).
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3.5 Role in Antigen Presentation

Professional APCs (DCs, macrophages, and B cells) can present antigens to CD8+

and CD4+ T cells in the context of MHC class I and MHC class II, respectively. In
general, intracellular antigens are proteasomally processed and presented on MHC
class I molecules, and extracellularly derived antigens are processed in lysosomes
and presented on MHC class II molecules (Neefjes et al. 2011). Under some
circumstances, extracellular antigens are processed by proteasomes or within
phagosomes and presented on MHC class I molecules. This type of antigen pre-
sentation can only be carried out by DCs (Kurts et al. 2010) and possibly mac-
rophages (Houde et al. 2003; Asano et al. 2011) and is referred to as cross-
presentation.

Importantly, all professional APCs in both mice and humans express FcRn (Zhu
et al. 2001; Perez-Montoyo et al. 2009; van Bilsen et al. 2010). Professional APCs,
except B cells, also express activating FccRs, which in the presence of IgG-based
immune complexes (ICs) mediate activation of APCs (Nimmerjahn and Ravetch
2008; Hogarth and Pietersz 2012; Guilliams et al. 2014). Further, antigens in the
form of ICs are more efficiently internalized (through activating FccRs) by APCs
than soluble antigens and hence lead to more efficient T cell activation. With
respect to this, a role similar to that played by FccRs has been shown to be
performed by FcRn (Qiao et al. 2008; Kobayashi et al. 2009). In one such study
(Qiao et al. 2008), multimeric OVA ICs containing either WT IgG or a mutated
IgG (IHH, no binding to FcRn at physiological and acidic pH, but no change in
binding to FccRs) were used in mouse CD4+ T cell proliferation assays in the
presence of either WT or FcRn KO DCs. In these assays, the proliferation of OVA-
specific CD4+ T cells decreased when DCs lacked FcRn or when ICs comprising
IHH antibodies were used by comparison with that observed using WT DCs or ICs
containing WT antibodies, respectively. These observations indicate a role for
FcRn in IC-mediated antigen presentation. Similar observations were made using
human cells, and also when in vitro-loaded (with ICs containing WT or IHH
antibodies) WT or FcRn KO DCs were injected into WT mice. Based on the
observed trafficking patterns of ICs and FcRn, it was demonstrated that FcRn
rapidly transports WT ICs to lysosomes, leading to enhanced antigen presentation
and T cell proliferation. In the assays described above, it is possible that some ICs
would presumably cross-link FccRs, leading to DC activation and cytokine
secretion, which in turn would upregulate MHC class II and the associated
invariant chain (Simmons et al. 2012; Guilliams et al. 2014). Invariant chain has
been shown to also associate with FcRn and target it to late endosomes or lyso-
somal compartments (Ye et al. 2008). Hence, the invariant chain might have a role
to play in diverting FcRn-bound ICs to lysosomes in APCs.

Recently, FcRn has also been shown to play a role in the cross-presentation of
IC-derived antigens (Baker et al. 2011). In this study, mouse DCs pulsed with ICs
comprising WT or IHH antibodies complexed with OVA (similar to those
described above) were injected into WT mice that had also received labeled
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OVA-specific CD8+ T cells. The antigen in this case is exogenous and hence CD8+

T cells will only be stimulated if the antigen is cross-presented. The proliferation
of CD8+ T cells was found to be many fold higher when WT IgG ICs were used in
comparison to the proliferation observed with IHH IgG ICs, highlighting the
importance of FcRn in IC-mediated cross-presentation. Interestingly, only
CD8-CD11b+ DCs, but not CD8+CD11b- DCs (shown to be the major mediators
of cross-presentation of soluble and tumor antigens (Hildner et al. 2008)) were
able to efficiently cross-present IC-derived antigen to CD8+ T cells. Using IgG-
opsonized, OVA-containing beads (IC-beads), it was also shown that the FcRn+

phagosomes formed upon WT IgG IC-bead internalization by DCs had many
features that facilitated cross-presentation by comparison with phagosomes formed
by IHH IgG IC-beads. The features included lower pH, persistence of antigen in
the phagosomes and enrichment of components of the cross-presentation
machinery such as the transporter associated with antigen processing 1 (TAP1) and
MHC class I. Finally, the authors suggest that ICs are internalized by DCs in an
FccR-dependent fashion, followed by the transfer of ICs from FccRs to FcRn in
acidic, endosomal compartments followed by cross-presentation. Taken together,
FcRn is indicated to be important for the presentation of IC-derived antigen to both
CD4+ and CD8+ T cells.

4 FcRn-Targeted Therapies

Monoclonal antibodies (mAbs), due to their specificity and long half-lives, are
considered to be one of the most effective and safe therapies for many diseases.
Currently, there are almost 350 mAbs that are either in early development or Food
and Drug Administration (FDA)-approved for the treatment of inflammatory dis-
orders, cancers, infectious diseases, and solid organ transplant rejection (Mahmud
et al. 2010; Reichert 2013). As mentioned in the previous sections, FcRn functions
to regulate the levels and many functional activities of IgGs. As a result, many
therapies (mostly IgG-based) have been developed that target FcRn, and have
shown promise in treating animal models of autoimmune diseases and cancer.
FcRn-targeting therapies can be broadly classified into two distinct categories: (1)
mAbs with extended half-life, which will have applications in any disease where
mAbs can be used therapeutically and (2) agents that deplete endogenous anti-
bodies, which will have applications in antibody-mediated pathologies and other
situations in which antibody clearance is indicated.

During the last decade or so, a significant component of Fc-engineering efforts
has focused on developing IgG mutants that vary in their binding to FcRn and have
enhanced in vivo half-life, with an aim to boost the efficacy and/or reduce the
dosing frequency of IgG-based therapies. The first report demonstrating that Fc
engineering can be used to generate IgGs with increased in vivo persistence came
from a study in which a mutated mouse IgG1 Fc (T252L/T254S/T256F) was
produced using random mutagenesis and phage display. This mutated Fc fragment
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has increased binding to mouse FcRn at acidic pH, but negligible binding at
physiological pH, resulting in an extended half-life in mice by comparison with
WT mouse IgG1-derived Fc (Ghetie et al. 1997). Subsequently, many engineered
human IgGs have been developed with increased in vivo half-life, as validated in
nonhuman primates (Hinton et al. 2004, 2006; Dall’Acqua et al. 2006; Yeung et al.
2009). Among these mutants, YTE (human IgG1—M252Y/S254T/T256E),
exhibits *4 fold increase in half-life relative to WT human IgG1 in nonhuman
primates, which is the longest half-life extension reported to date (Dall’Acqua
et al. 2006). Another mutant, HN (human IgG1—H433K/N434F), with increased
pH-dependent binding to (human) FcRn has been shown to be more active than
WT human IgG1 in FcRn-mediated transcytosis across the ex vivo human placenta
(Vaccaro et al. 2006). Also, a recent study has shown that IgG with enhanced half-
life has increased antitumor activity than WT IgG in tumor xenograft studies in
mice (Zalevsky et al. 2010). Finally, based on the in vivo half-lives of various IgG
mutants that were Fc-engineered with respect to their FcRn binding, it is clear that
while an increase in IgG affinity toward FcRn at acidic pH is important, retention
of low affinity at physiological pH is equally important to allow exocytic release
from cells (Prabhat et al. 2007) and consequent persistence of an IgG (Dall’Acqua
et al. 2002; Vaccaro et al. 2006; Yeung et al. 2009).

Autoantibodies lead to pathology in autoimmune diseases such as SLE, neu-
romyelitis optica, myasthenia gravis, and multiple sclerosis (Sherer et al. 2004;
Conti-Fine et al. 2006; Jarius and Wildemann 2010; Popescu and Lucchinetti
2012). Also, antibodies can mediate rejection of organ allografts (Colvin and
Smith 2005). Currently, approved treatments for depleting antibodies in such
diseases, in a nonspecific manner, include plasmapheresis and high dose
intravenous immunoglobulin (IVIG) (Orange et al. 2006; Winters 2012). Both
these treatment modalities may lead to side effects or complications, but more
importantly, the cost of these treatments is high (Heatwole et al. 2011; Winters
et al. 2011). Hence, efforts have been undertaken to develop alternatives. IVIG
lowers endogenous or pathogenic antibody levels only when used in high doses,
which is essential for saturating FcRn (Hansen and Balthasar 2002; Li et al. 2005).
Alternatively, FcRn can be saturated or blocked using low doses of agents that
bind to FcRn with very high affinity. In the case of half-life extension, retention of
low affinity towards FcRn at physiological pH limits the extent to which the
affinity at acidic pH can be increased (Ward and Ober 2009; Yeung et al. 2009).
Such a limitation is not relevant to the generation of effective FcRn blockers, and
in fact, high affinity binding to FcRn at physiological pH is desirable in this case
since it will enable the engineered antibody to be efficiently endocytosed by FcRn-
mediated uptake into cells (Vaccaro et al. 2005; Prabhat et al. 2007). This in turn
will result in increased competition with endogenous antibodies with respect to
FcRn binding. One such Fc-engineered antibody is MST-HN (M252Y/S254T/
T256E/H433K/N434F). Antibodies of this class have been shown to rapidly
decrease endogenous antibody levels in mice and are called Abdegs (for antibodies
that enhance IgG degradation) (Vaccaro et al. 2005). In a serum transfer model of
arthritis in mice, Abdegs were able to reduce swelling and inflammation in the
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joints in both therapeutic and prophylactic disease settings (Patel et al. 2011).
Importantly, by comparison with Abdegs, 25–50 times higher amounts of IVIG
were required to achieve similar therapeutic effects. Recently, Abdegs were also
shown to ameliorate disease in a passive model of antibody-mediated experimental
autoimmune encephalomyelitis by mediating both the rapid clearance and
reducing the accumulation of encephalitogenic antibodies in the CNS (Challa et al.
2013).

Antibodies that bind to FcRn through their variable domains have also been
developed that can block FcRn-mediated recycling of IgGs. Anti-rat (4C9) and
anti-human (DVN24) antibodies specific for FcRn were shown to reduce the levels
of exogenously administered tracer antibody in rats and human FcRn transgenic
mice, respectively (Getman and Balthasar 2005; Christianson et al. 2012). Simi-
larly, another anti-rat FcRn IgG, 1G3, was shown to reduce pathogenic antibody
levels and disease symptoms in both passive and active models of myasthenia
gravis in rats (Liu et al. 2007a). On the downside, antibody-based, FcRn blockers
have short in vivo half-lives due to strong binding to FcRn at physiological pH,
which results in increased accumulation in FcRn-expressing cells and reduced
exocytic release (Dall’Acqua et al. 2002; Vaccaro et al. 2006; Liu et al. 2007a;
Perez-Montoyo et al. 2009). Peptide-based FcRn blockers have also been devel-
oped. In particular, SYN1436, a dimer of an FcRn-binding peptide was able to
significantly reduce the levels of exogenously added human IgG in human FcRn
transgenic mice and endogenous antibody in nonhuman primates (Mezo et al.
2008). These peptide-based agents would be expected to exhibit an in vivo half-
life that is lower than that of antibody-based FcRn blockers, primarily due to renal-
mediated clearance. As a result, PEGylation has been employed to improve the
in vivo pharmacokinetics and efficacy of such peptide-based FcRn blockers (Mezo
et al. 2011).

5 Concluding Remarks

It is clear that in addition to playing a role in the homeostasis of IgG and albumin,
FcRn mediates IgG transport to inaccessible sites (fetus, neonate, or mucosal
surfaces) and possibly excludes IgG from immune-privileged sites. This knowl-
edge offers opportunities for engineering antibodies for modulation of the intrinsic
half-life and transport of the antibody itself or, through FcRn inhibition, altering
the dynamics and levels of endogenous antibodies. Further, FcRn regulates kidney
filtration of its ligands and contributes to antigen presentation to both CD4+ and
CD8+ T cells. Although functions for FcRn at multiple different sites have been
identified, the role of FcRn in other specialized cells such as hepatocytes and
keratinocytes remains poorly defined.
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Human FcR Polymorphism and Disease

Xinrui Li, Andrew W. Gibson and Robert P. Kimberly

Abstract Fc receptors play a central role in maintaining the homeostatic balance in
the immune system. Our knowledge of the structure and function of these receptors
and their naturally occurring polymorphisms, including single nucleotide polymor-
phisms and/or copy number variations, continues to expand. Through studies of their
impact on human biology and clinical phenotype, the contributions of these variants
to the pathogenesis, progression, and/or treatment outcome of many diseases that
involve immunoglobulin have become evident. They affect susceptibility to bacterial
and viral pathogens, constitute as risk factors for IgG or IgE mediated inflammatory
diseases, and impact the development of many autoimmune conditions. In this
chapter, we will provide an overview of these genetic variations in classical FccRs,
FcRLs, and other Fc receptors, as well as challenges in achieving an accurate and
comprehensive understanding of the FcR polymorphisms and genomic architecture.
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1 Introduction

Highly homologous in their extracellular sequences, members of the Fc receptor
family have both structural differences as well as allelic variations which impact
biological properties and their respective roles in pathophysiology. Investigation
over the last two decades has demonstrated regulatory and/or coding single
nucleotide polymorphisms (SNP) that change receptor biology through one of
three mechanisms: quantitative receptor expression, ligand affinity, or signaling
capacity. Emerging data have also demonstrated copy number variation (CNV) in
the classical low affinity Fc receptors for IgG. Many of the SNPs and CNVs are
associated with pathogenesis, severity, and/or treatment outcome in a range of
immune-mediated diseases. Signaling and biology of Fc receptors are discussed in
Chapter X and Y. In this chapter, we discuss the germ line variations in the genes
encoding Fc receptors and how these variations impact receptor function and
association with disease.

2 Human FcR Polymorphisms: Location and Functional
Implications

2.1 Single Nucleotide Polymorphisms

Numerous single-nucleotide polymorphisms have been identified through Fc
receptor sequence analysis, particularly within the classical low-affinity FccR
cluster located on the long arm of chromosome 1. The allele frequencies of these
genetic variants, many of which have not been characterized for function, may
differ across different ancestry groups. The more thoroughly studied SNPs with
known functional relevance and disease association are presented in Tables 1 and 2.

2.1.1 FccRIIa (FCGR2A)

A nonsynonymous polymorphism (519G [ A, rs1801274) in exon 4 encoding the
membrane proximal Ig-like domain of FCGR2A leads to an arginine (R) to his-
tidine (H) change at position 131 and alters receptor affinity for ligand. The R131
and H131 alleles are co-dominantly expressed. The FccRIIa-H131 allele readily
binds human IgG2 while the R131 allele does not effectively bind IgG2 (Salmon
et al. 1992; Parren et al. 1992). Studies with IgG3 suggest that the H131 allele may
bind IgG3 with moderately greater affinity than the R131 allele (Parren et al. 1992;
Bredius et al. 1994). Crystallographic analysis and molecular modeling studies
suggest that the H131R position is on the contact interface between receptor-IgG
(Maxwell et al. 1999). As the most broadly expressed FccR across a range of cell
types in humans, the variation in ligand affinity has functional relevance in
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determining cellular interactions with IgG antibodies, including the clearance of
IgG2 immune complexes. For example, neutrophils from FccRIIa-H131 homo-
zygous donors are much more effective than neutrophils from R131 homozygous
donors in phagocytosing IgG2-opsonized particles (Bredius et al. 1993).

Several FCGR2A SNPs, including rs1801274 encoding R131H (International
Consortium for Systemic Lupus Erythematosus 2008), as well as several variants
in non-coding regions, including rs10919543 (Saruhan-Direskeneli et al. 2013),
rs12746613 (Raychaudhuri et al. 2009), rs10800309 (McGovern et al. 2010; Asano
et al. 2009), rs6658353 (Lessard et al. 2013), and rs6427609 (Kettunen et al.
2012), have been associated with disease phenotypes in various genome-wide
association studies (GWAS). These disease association studies, based on high
through put genotyping technologies, suggest that variation in FccRIIa biology
may contribute to a number of human disease phenotypes. However, not all
variants identified through such studies have an obvious function or relationship to
biological processes, and direct inference of pathophysiology requires further
study. In some cases, SNP-based associations may be tagging linkage disequi-
librium (LD) blocks. Given the segmental duplication in the classical low affinity
FCGR cluster and the consequent high degree of genomic sequence homology,
this region is not technically amenable to efficient genotyping with array-based
strategies. Thus, genotyping coverage in genome-wide association studies is not
optimal because of difficulty in accurate probe design and position assignment.

2.1.2 FccRIIb (FCGR2B)

Some nonsynonymous coding SNPs in the FcR cluster affect the signaling capacity
of the expressed receptor. In the FCGR2B gene locus, a nonsynonymous T [ C
SNP (rs1050501) encodes an isoleucine (I) to threonine (T) substitution at position
187 in the transmembrane domain; this variant is also known as I/T232 when the
signal peptide is included in the numbering (Kyogoku et al. 2002; Li et al. 2003).
The FccRIIb-187threonine allele, which is less efficient in trans-locating into lipid
rafts in the plane of the cell membrane, may result in decreased quantitative
participation of FccRIIb in the assembly of lipid raft-based signaling complexes
with a resultant decreased inhibitory potential (Kono et al. 2005; Floto et al. 2005).

Su et al. identified a promoter haplotype (rs3219018) in FccRIIb that alters
receptor expression (Su et al. 2004). The less common promoter haplotype (–
386C-120A) showed increased binding of transcription factors GATA4 and Yin-
Yang 1, leading to higher receptor expression than found with the more frequent
haplotype (–386G-120T) (Su et al. 2004a, b; Blank et al. 2005). Of note, sequence
analysis of these promoter variants has revealed nearly identical sequence in the
proximal promoter region of FCGR2C, thus underscoring the important consid-
eration of the potential for expression of both receptors.
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2.1.3 FccRIIc (FCGR2C)

FCGR2C, often considered a pseudogene, has received less attention than other Fc
receptors. The nonsynonymous SNP (202T [ C, rs10917661) in its first extra-
cellular domain changes the common allele (202T), which encodes a translation
termination codon at residue position 13, to 202C, which encodes an open reading
frame (ORF) for glutamine. The FccRIIc-ORF allele produces an ITAM-con-
taining activating receptor that has been detected on NK cells (Metes et al. 1998,
1999; Stewart-Akers et al. 2004) and B cells (Li et al. 2013). Functionally, NK
cells bearing the ORF allele are capable of clearing anti-FccRII coated particles
through reverse antibody-mediated cellular cytotoxicity (ADCC) (Ernst et al.
2002; Breunis et al. 2008). On B cells, the FccRIIc-ORF allele counterbalances the
negative feedback of FccRIIb on BCR signaling, resulting in enhanced B cell
responsiveness including upstream signaling events such as tyrosine kinase
phosphorylation and calcium transients, and integrated cell programs such as
antibody production (Li et al. 2013).

2.1.4 FccRIIIa (FCGR3A)

Similar to FccRIIa, FccRIIIa also has co-dominantly expressed alleles that affect
receptor affinity for ligand. In the second extracellular domain of FCGR3A, a point
substitution of T to G at nucleotide 559 (rs396991) changes the phenylalanine (F)
at amino acid position 158 to valine (V). The FccRIIIa-158V allele (also known as
176 V when the leader sequence is included) displays higher affinity for IgG1 and
IgG3 relative to the 158F (176F) allele. The 158 V form is also capable of binding
IgG4, while the 158F allele is not (Wu et al. 1997; Koene et al. 1997). NK cells
from FccRIIIa-158 V (high binder) homozygous donors exhibit increased calcium
influx, greater CD25 expression, and faster apoptosis than those cells from
FccRIIIa-158F (low binder) homozygous donors (Wu et al. 1997).

2.1.5 FccRIIIb (FCGR3B)

The GPI-anchored FccRIIIb, mainly expressed on neutrophils, has three different
allotypic variants, known as NA1, NA2, and SH. The neutrophil antigen (NA)
variants NA1 and NA2 are a product of five nonsynonymous SNPs in the first Ig-
like domain, with an asparagine to serine switch at amino acid position 65
resulting in altered glycosylation and reduced affinity in the NA2 allele (Ravetch
and Perussia 1989; Salmon et al. 1990). FccRIIIb-NA1 exhibits higher affinity and
more efficient phagocytosis of IgG1 and IgG3 opsonized particles compared to the
NA2 allele (Salmon et al. 1990). The SH allele results from an alanine to aspartic
acid substitution at position 78 and is observed in the context of the NA2 allele
(Bux et al. 1997). The exact function of the SH allele is not yet known.
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2.1.6 FcaRI (FCAR)

FCAR (CD89) encodes the human IgA receptor FcaRI. A common SNP
(844A [ G) was identified through direct sequencing of the coding region of
FCAR (CD89) (Jasek et al. 2004; Wu et al. 2007). This transition changes amino
acid codon 248 in the cytoplasmic domain from serine to glycine, resulting in
enhanced cellular functions. For example, when equivalently stimulated with
human IgA, neutrophils homozygous for the FcaR-G248 allele produce signifi-
cantly higher levels of IL-6 compared to neutrophils from homozygous FcaR-S248
individuals. In the absence of FcR c-chain pairing, FcaR-S248 allele fails to
induce pro-inflammatory cytokines. In contrast, FcaR-G248 maintains signaling
capacity even without the FcRc, producing both IL-6 and TNFa. The increased
activity of the G248 form may reflect, at least in part, its enhanced association with
the Src family kinase, Lyn (Wu et al. 2007).

2.1.7 FceRI (FCER1A/B/G)

The high affinity Fc receptor for IgE, FceRI, has SNPs in the promoter region of the
receptor a-chain (FCER1A). Through mutational screening of the proximal pro-
moter, -95T [ C (also referred to as -66) and -344C [ T (also referred as –335)
SNPs have been identified in several ethnicities (Shikanai et al. 1985; Hasegawa
et al. 2003; Potaczek et al. 2006). Functionally, the -95T allele has greater GATA-
1 binding, increased transcription of FCER1A message, and enhanced FceRI protein
expression on mast cells compared to the -95C allele (Hasegawa et al. 2003;
Nishiyama 2006). Similarly, the -344C to T transition increases the binding of
Myc-associated zinc finger (MAZ) transcription factors, resulting in increased
protein expression (Kim et al. 2006; Bae et al. 2007). Furthermore, these two SNPs
affect proximal promoter activity in an additive manner, with the highest activity
attributed to the -95T-344T haplotype (Kanada et al. 2008).

The other two subunits of the IgE receptor, the FceRIc and FceRIb, have also
been screened for genetic variations. Although the FCER1G gene is highly con-
served (Wu et al. 2002), the FCER1B gene (also named MS4A2) contains several
SNPs in the promoter region. The -426C-654T haplotype has higher binding of
Yin-Yang 1 and higher transcription activity relative to the -426T-654C haplo-
type (Nishiyama et al. 2004).

The low affinity receptor for IgE, FceRII (CD23), carries a functional SNP at
position 62 in exon 4, resulting in an arginine (R) to tryptophan (W) substitution.
The less common W62 allele is resistant to proteolytic shedding while the com-
mon R62 allele is known to be cleaved by a wide range of proteases and shed from
cell surface (Meng et al. 2007). Soluble FceRII has mitogenic properties, pro-
moting the survival and differentiation of germinal center B cells (Liu et al. 1991).
In vitro experiments have also suggested that the R62 W SNP affects IgE pro-
duction through affecting Erk phosphorylation, which results in altered B cell
responsiveness to IL-4 (Chan et al. 2014).
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2.1.8 FcRLs

The FCRL genes encoded at the autoimmunity-linked 1q23 locus are highly
polymorphic with SNPs and many mRNA splice isoforms identified for each gene
locus. However, proteins corresponding to most of the splice isoforms have not
been identified (Davis et al. 2002). Numerous SNPs have been identified within the
FCRL coding regions, introns, the upstream promoter and the downstream non-
coding regions. With the exception of the FCRL3 -T169C promoter SNP
(rs7528684), which alters an NF-kB binding site and results in increased expres-
sion of the FCRL3 mRNA and protein in PBMC, CD19 + B cells and CD8 + T
cells subsets (Kochi et al. 2005; Gibson et al. 2009; Chu et al. 2011), little is
known about functional correlates in FCRL family SNPs. Nevertheless, many
studies have identified association between autoimmune disease and genetic var-
iation in FCRL genes suggesting an important role in disease. Several case-control
studies of FCRL3 polymorphisms in autoimmunity are summarized in a recent
review (Chistiakov and Chistiakov 2007).

2.1.9 FcRn (FCGRT)

Although no common functional SNPs have been identified to date in FCGRT, the
gene that encodes the neonatal Fc receptor, FcRn, a variable number of tandem
repeats (VNTR) region in the promoter region consists of one to five repeats of a
37-bp motif (VNTR1-VNTR5) (Sachs et al. 2006). VNTR3 is the most common
allele in Caucasian and Asian populations, followed by VNTR2. In vitro experi-
ments have shown that VNTR3 has stronger transcriptional activity compared to
VNTR2, resulting in more FcRn expression. Under acidic conditions, monocytes
homozygous for VNTR3 showed increased IgG binding capacity compared to
monocytes derived from VNTR2/VNTR3 heterozygous individuals (Sachs et al.
2006).

2.2 Copy Number Variations (CNVs)

Allotyping individual for the NA1 and NA2 alleles of FCGR3B led to the earliest
observed copy number variation (CNV) in the classical low affinity FCGR cluster.
Lack of both alleles identified FCGR3B deficiency (Clark et al. 1990; Huizinga
et al. 1990), and duplication of the gene was inferred when all three alleles of
FCGR3B (NA1, NA2 and SH) were simultaneously detected in the same indi-
vidual (Koene et al. 1998). Copy number variation of FCGR3B correlates with the
expression level of FccRIIIb and with the capacity of neutrophils to phagocytose
immune complexes (Willcocks et al. 2008).
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CNV has also been reported for FCGR2C and FCGR3A. Because FCGR2C and
FCGR3B are adjacent in the genome (Fig. 1), CNV of both genes is highly cor-
related (de Haas et al. 1995; Reilly et al. 1994). Copy number of the FCGR2C-
ORF allele correlates with FccRIIc expression levels and consequently, activation
status of NK cells (Breunis et al. 2008) and B cells (Li et al. 2013). Similarly, CNV
of FCGR3A correlates with FccRIIIa expression on NK cells (Breunis et al. 2009).

3 Human FcR Polymorphisms: Association with diseases

The central role of Fc receptors in supporting an appropriate humoral immune
system has been demonstrated by numerous ex vivo and in vivo studies, in both
human and model animals. Often one allele enhances activation and/or net
immune system activity while the second allele tends to be less effective in elic-
iting responses, such as clearance and processing of immune complexes or anti-
body opsonized particles. Thus, functional FcR polymorphisms may significantly
influence effector cell functions, thus providing diversity in host responses perti-
nent to many infectious, inflammatory and autoimmune diseases. For many SNPs,
however, especially when they are in noncoding regions, the direct impact on
biological function is not known and the potential influence on pathophysiology is
ambiguous. An understanding of these associations and their implications for
disease processes awaits further insight into the pertinent genomic architecture of
the overall immune response.

3.1 Infectious Diseases

3.1.1 Infection with Encapsulated Bacteria

Often working in synergy with the complement system, FccR-mediated clearance
of antibody-coated microbes and FccR-triggered inflammatory cytokine release
are important mechanisms in eliminating infectious agents. Since human IgG2 is

Fig. 1 Genomic structure of the classical low-affinity FCGR cluster. Identical colors represent
sequence homology. Figure adapted from Li et al. (2009)
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relatively inefficient in initiating the complement cascade, the FccRIIa-131H allele
is the primary leukocyte receptor capable of effectively clearing IgG2-coated
microbes, which is important in host defense against encapsulated bacteria such as
Streptococcus pneumonia, Hemophilus influenza, and Neisseria meningitidis
(Bredius et al. 1993; Jefferis and Kumararatne 1990; Endeman et al. 2009; Pla-
tonov et al. 1998; Jansen et al. 1999). In the context of Strep pneumonia pneu-
monia, the FccRIIa-131R allele, which fails to bind IgG2, may be over-
represented in bacteremic patients, and in one study, the most severely infected
bacteremic patients, who died within 1 week of hospitalization, were all homo-
zygous for the R131 allele (Yee et al. 2000). Similarly, the FccRIIa-131R allele is
associated with increased infection by Hemophilus influenza and Neisseria men-
ingitidis in multiple bacterial respiratory diseases and sepsis (Endeman et al. 2009;
Platonov et al. 1998; Sanders et al. 1994; Bredius et al. 1994; Yuan et al. 2005). Of
note, FccRIIa also binds C-reactive protein with allele sensitivity reciprocal to
IgG2 (Stein et al. 2000). High levels of CRP during infection may contribute to the
clearance of IgG2-coated microbes by the R131 allele by opsonizing encapsulated
bacteria and subsequently activating the complement mediated clearance (Weiser
et al. 1998), which may compensate, at least in part, for the lack of FccR-IgG2
mediated clearance in patients with the R131 allele.

3.1.2 Periodontitis

Periodontitis, an infectious disease caused by pathogenic anaerobic bacteria in the
periodontium and the corresponding host response, is influenced by a combination
of behavioral, environmental and genetic factors. Several types of FccR-bearing
cells are found in periodontal tissues, including neutrophils, lymphocytes and
dendritic cells (Yuan et al. 1999). Functional studies largely focused on neutro-
phils have demonstrated that neutrophils homozygous for the FccRIIa-131H allele
were more efficient in bacterial phagocytosis, degranulation and elastase release
(Nicu et al. 2007). In the same study the homozygous FccRIIa-H131 patients also
showed more bone loss than those with the H/R or R/R allotypes. Kobayashi et al.
has also reported that neutrophils carrying the FccRIIIb-NA2 allele showed lower
reactivity to IgG1/IgG3 coated periodontopathic bacteria and induced weaker
oxidative burst (Kobayashi et al. 2000).

Association studies calculating the clinical relevance of FccR polymorphisms
in periodontitis have reported mixed results, complicated by the difference in size
and ethnicity of the population studied and the inconsistent definitions of disease
stage and progression. A recent meta-analysis aggregating 17 studies reported
modest association of FccRIIa-131R with aggressive periodontitis in Asians, rel-
atively strong association of the FccRIIIb-NA1/NA2 polymorphism with both
aggressive and chronic periodontitis, and a statistically insignificant relationship
between the FccRIIIa-F158 V and periodontitis (Song and Lee 2013). In studies of
the distribution of the inhibitory FccRIIb variants, significant enrichment of the
FccRIIb-232T allele in patients with aggressive periodontitis compared to both
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chronic periodontitis patient and healthy control groups occurs in Japanese peri-
odontitis patients (Yasuda et al. 2003). Furthermore, the composite genotype of
FccRIIb-232T plus FccRIIIb-NA2 was strongly associated with aggressive peri-
odontitis. The large number of B cells (Yuan et al. 1999) and the elevated antibody
level (Horino et al. 1989) in periodontal lesions, as well as our understanding of
the biology of the FccRIIb-232T allele make the link between FccRIIb-232T and
periodontitis biologically plausible.

Besides the well-known polymorphisms, several other SNPs in the FccR cluster
have been identified in association with periodontitis. For example, the FCGR2B-
nt645 + 25A/G (rs2125685) SNP in intron 4 was reported in Japanese patients and
was related to changes in receptor expression level and severity of periodontitis
(Sugita et al. 2012). A little studied SNP in FCGR3A (rs445509) was associated
with chronic periodontitis in a Chinese population (Chai et al. 2010). Further study
of these variants may elucidate their function and contribution to disease.

3.1.3 Virus Infection

Variants influencing Fc receptor function are also relevant in host defense
mechanisms for virus infections. Dengue virus may co-opt Fcc receptors for cell
entry when the antibody-opsonized virus particles are phagocytized by FccR-
bearing myeloid cells, establishing infection in the phagocytes (Moi et al. 2010;
Littaua et al. 1990; Garcia et al. 2011). Several studies have suggested the
FccRIIa-R131 allele may have a protective effect in Dengue virus infection (Loke
et al. 2002; Garcia et al. 2010). The FccRIIa-R131H SNP is one important factor
in host defense, as it is also reported to be relevant in infections with A/H1N1
influenza (Zuniga et al. 2012), severe acute respiratory syndrome (SARS)- coro-
navirus (Yuan et al. 2005), and Epstein–Barr virus (Diamantopoulos et al. 2013).
In human immunodeficiency virus (HIV) infection, patients with homozygous low
affinity R131 allele showed the highest rate of disease progress (Forthal et al.
2007). The FccRIIIa-V158F genotype also correlates with the development of
Kaposi’s sarcoma in HIV-infected patients (Forthal et al. 2007; Lehrnbecher et al.
2000).

3.2 Inflammatory and Autoimmune Diseases

3.2.1 Vasculitides

The vasculitides are a group of disorders that involve inflammation of the blood
vessels. Although the etiology of vasculitis is often not clear, vascular inflam-
mation can be immunologically mediated, triggered by immune complexes, anti-
neutrophil cytoplasmic antibodies, anti-endothelial cell autoantibodies as well as
by cell-mediated processes. The classification of the vasculitides is typically based
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on the size of the affected vessel. Granulomatosis with polyangiitis (GPA), for-
merly known as Wegener’s granulomatosis, is a type of neutrophil mediated
vasculitis affecting small and medium sized vessels. GPA is often characterized by
the presence of anti-neutrophil cytoplasmic antibodies (ANCA) (Nolle et al. 1989).
Engagement of both ANCA target and Fc receptors on myeloid cells by ANCA
elicits production of interleukin-8, a neutrophil chemotactic factor, and a series of
effector programs such as oxidative burst, degranulation and release of neutrophil
extracellular traps (NETs) (Ralston et al. 1997; Porges et al. 1994; Kessenbrock
et al. 2009; Sangaletti et al. 2012). No clear association between GPA suscepti-
bility and the FccRIIa allotype has been demonstrated although some evidence
suggests a relationship to the likelihood of relapsing disease (Edberg et al. 1997;
Tse et al. 1999, 2000). FccRIIIb, the numerically predominant FccR on neutro-
phils, is the major receptor interacting with anti-PR3 IgG ANCA (Kocher et al.
1998), and FCGR3B CNV has been associated with GPA (Fanciulli et al. 2007).
The FccRIIIb-NA1 allele, known to induce stronger neutrophil activation than the
NA2 allele (Salmon et al. 1990), has similar allele frequencies in GPA and healthy
populations, suggesting no role in overall disease risk. However, the presence of
the NA1 allele is associated with the development of severe renal damage in GPA
patients (Neira et al. 1996; Kelley et al. 2011).

The recent identification of IgA ANCA in GPA, in addition to IgG ANCA, led
to the investigation of the involvement of FcaRI in GPA pathogenesis. Indeed, the
FcaRI-248G variant, which induces an augmented inflammatory response to IgA,
was associated with overall susceptibility to GPA, as well as predisposition to
severe renal disease (Kelley et al. 2011).

Kawasaki disease affects medium-sized blood vessels most commonly in
children under 5 years of age. Genome wide association studies have identified an
association between Kawasaki disease and the FCGR2A locus with the 131H
variant conferring elevated disease risk (Shrestha et al. 2012; Onouchi et al. 2012).
It is reasonable to speculate the FccRIIa-131H bearing leukocytes are more pro-
inflammatory in the setting of Kawasaki disease, although direct experimental
evidence waits to be established. One might also anticipate an association between
IgG receptor variants and intravenous immunoglobulin (IVIG), the only proven
therapy for Kawasaki disease. Indeed, in Japanese patients, those with the
FccRIIa-131H allele responded more efficiently to IVIG administration. Patients
with the 131R allele were more likely to develop coronary lesions even after
treatment (Taniuchi et al. 2005). Consistent with the notion that tilting the immune
system towards inflammation might be associated with disease expression, the
FCGR2C-ORF SNP was recently reported to be enriched in Kawasaki disease
patients (Breunis et al. 2013).

Takayasu’s arteritis is a rare form of large vessel vasculitis. A recent GWAS in
Turkish and North American Takayasu’s arteritis patients identified a noncoding
SNP in the FCGR2A/FCGR3A locus (rs10919543) as a susceptibility marker,
which appeared to have a regulatory effect on FCGR2A transcript expression
(Saruhan-Direskeneli et al. 2013).
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Several other forms of chronic inflammatory diseases have been reported to
have associations with the FCGR cluster. The FCGR2A/2C region has been related
to susceptibility to ulcerative colitis, one sub-phenotype of inflammatory bowel
disease, in two GWA studies (McGovern et al. 2010; Asano et al. 2013). In
addition to the well-known FccR-R131H variant, the rs10800309 variant in this
locus awaits further work to determine potential functional relevance.

3.2.2 Systemic Lupus Erythematosus

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by
autoantibodies and immune complexes. Although the etiology of SLE is unknown,
many genes play a role in the susceptibility to and severity of the disease, and
GWAS and candidate genes studies have identified the FCGRs as important
contributors to the SLE diathesis (Harley et al. 2009).

A GWAS study of Europeans confirmed the association of FCGR2A (rs1801274;
519G [ A encoding R131H) with SLE (International Consortium for Systemic
Lupus Erythematosus 2008). This nonsynonymous SNP is a risk factor for lupus
nephritis and systemic lupus erythematosus in African Americans (Salmon et al.
1996; Edberg et al. 2002), Caucasians (Manger et al. 2002; Karassa et al. 2002;
Magnusson et al. 2004; Kyogoku et al. 2004) and Asians (Siriboonrit et al. 2003; Lee
et al. 2002; Chu et al. 2004), as well as for myasthenia gravis in Caucasians
(Weersma et al. 2010; van der Pol et al. 2003). Homozygosity for the transmem-
brane 187T variant of FccRIIb is also associated with SLE susceptibility in Japanese
(Kyogoku et al. 2002), Chinese (Chu et al. 2004) and Thais (Siriboonrit et al. 2003).
Interestingly, the 187T allele has a lower frequency in European Americans and is
not associated with SLE in either this ancestry group or in African Americans where
the frequency of 187T is similar to that of Asians (Li et al. 2003; Magnusson et al.
2004). Whether this difference represents, less statistical power for detection of
association in these groups or an epistatic effect is not certain. The FccRIIb-187T
allele may be a risk factor for anti-GBM disease in Chinese (Zhou et al. 2010) while
a promoter haplotype, 2B.4 (-386C -120A), which alters FCGR2B gene expres-
sion is associated with SLE (Su et al. 2004). In a second patient population,
homozygosity of the -386C allele alone (also referred to as -343C) affirmed an
association of promoter variants with SLE (Blank et al. 2005). CNV in this receptor
cluster, including the FCGR2C-ORF allele, may be associated with SLE in patients
of European and African ancestry (Li et al. 2013).

The low IgG binding FccRIIIa-158F is associated with SLE and with lupus
nephritis (Wu et al. 1997; Karassa et al. 2002; Jonsen et al. 2007; Dong et al. 2013) in
multiple ancestry groups including Europeans, African Americans (Edberg et al.
2002; Koene et al. 1998), Chinese (Chu et al. 2004), and Japanese (Kyogoku et al.
2002). Interestingly, homozygosity for the high IgG binding –158 V allele is a
significant predictor of end-stage renal disease in a multiethnic group of SLE patients
(Alarcon et al. 2006). Both FccRIIIb CNV and NA1/NA2 alleles may be associated
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with SLE in UK Caucasians (Willcocks et al. 2008), Thais (Siriboonrit et al. 2003),
Japanese (Hatta et al. 1999), and Spanish (Gonzalez-Escribano et al. 2002).

The -169C [ T SNP (rs7528684) in FCRL3, which alters an NFjB binding
site and is associated with FCRL3 mRNA and surface protein expression, is
associated with autoimmunity in some ethnic groups. Associated with SLE, RA,
and AITD in Japanese (Kochi et al. 2005; Gibson et al. 2009), this variant is not
associated with these conditions in other ethnicities suggesting that it is not
a general autoimmunity risk factor (Chistiakov and Chistiakov 2007). The
-169C [ T SNP is not associated with SLE in Chinese (You et al. 2008), Koreans
(Choi et al. 2006), or Mexican patients with childhood-onset SLE (Ramirez-Bello
et al. 2013), but the association with the presence of autoantibodies in Polish SLE
patients suggests a possible role in production of autoantibodies (Piotrowski et al.
2013). Results of meta-analyses differ on whether the -169C [ T is associated
with SLE in different ethnicities (Breunis et al. 2013; Mao et al. 2010; Song et al.
2013), and the mechanism(s) through which this variant may contribute to SLE
remains unclear.

3.2.3 Rheumatoid Arthritis and Juvenile Idiopathic Arthritis

Evidence for the contributions of the classical low-affinity Fcc receptors to
Rheumatoid Arthritis suggests that several polymorphisms may be associated with
RA manifestations in different ethnic groups, although associations are not always
consistent. While GWAS indicated that FCGR2A is associated with RA (Ray-
chaudhuri et al. 2009), candidate gene studies suggest the FCGR3A is associated
with RA (Morgan et al. 2000; Morgan et al. 2003) and a role for FCGR2C is
unclear.

The -169C [ T promoter SNP in FCRL3 is associated with RA in Caucasians
and Chinese (Thabet et al. 2007; Eike et al. 2008; Maehlen et al. 2011; Wu et al.
2010), with JIA in Mexicans (Ramirez-Bello et al. 2013), and with JIA in Nor-
wegian patients (Eike et al. 2008). This SNP has been correlated with increased
FCRL3 surface expression on Tregs of patients with erosive RA (Bajpai et al.
2012), and the -169CC genotype may be correlated with radiographic severity in
Korean RA patients (Han et al. 2012). A more detailed review of Fc receptor
associations and reheumatoid arthritis is discussed in Chapter XX.

3.2.4 Spondyloarthropathies

The rs2777963T [ C, rs14335A [ G and rs10489674C [ T polymorphisms in
FCRL4 have been associated with susceptibility and severity of ankylosing
spondylitis (AS) in Han Chinese (Zeng et al. 2012). Similarly, in FCRL5 two
nonsynonymous SNPs, rs12036228C [ T and rs6427384T [ C in exon 5 and
exon 7, respectively, and their C-T haplotype were found to be associated with
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ankylosing spondylitis in HLA-B27 positive Han Chinese, suggesting a role in AS
(Tang et al. 2009). However, the role, if any, of these SNPs in FCRL4 and 5
expression or function is unclear.

3.2.5 Diabetes Mellitus and Autoimmune Endocrinopathies

Several studies have found association between autoimmune endocrinopathies and
SNPs in FCRL family members, although potential underlying mechanisms
remain elusive. In a recent study of Type 1 Diabetes (T1D) the C-allele of FCRL1
rs4971154 was strongly associated with the presence of the IA-2A autoantibody in
serum suggesting a role in production of autoantibodies (Mao et al. 2010).
Although the FCRL3 -169C [ T SNP was not associated with T1D in several
studies of Caucasians (Eike et al. 2008; Owen et al. 2007; Duchatelet et al. 2008),
a recent study of 8,506 T1D patients in the United Kingdom found a strong
negative association between the C allele and anti-IA-2A autoantibody- positive
T1D (Mao et al. 2010). The mechanism of association remains unclear.

In autoimmune thyroid disease, Owen et al. found modest association of the
3’UTR C [ A SNP rs2282288 with Grave’s Disease in Europeans (Owen et al.
2007). The -169TT promoter genotype of rs7528684 was associated with
remission in Japanese AITD patients (Inoue et al. 2012), and with protection
against Grave’s Disease in Chinese (Gu et al. 2010). A potential role for FCRL3 in
production of autoantibodies is supported by the observations that the
rs11264798C [ G and rs7528684C [ T SNPs are associated with thyroid perox-
idase autoantibody (TPOA) positivity in GD and anti- IA-2A positivity in T1D
(Plagnol et al. 2011), while the rs7522061T [ C SNP is associated with anti-876
ZnT8A positivity (autoantibody to the zinc transporter 8 in islet cells) in T1D
patients (Howson et al. 2012).

3.2.6 Multiple Sclerosis

The FCRL3 -169C [ T SNP (rs7528684) has been associated with multiple
sclerosis in a Spanish cohort (Martinez et al. 2007; Matesanz et al. 2008). While
the T allele of the nonsynonymous coding SNP (rs7522061), which results in the
N28D change, was found to be protective in Spanish, the G allele was a risk factor
for MS in patients in the United Kingdom (Matesanz et al. 2008).

3.2.7 Inflammatory Bowel Disease

Despite its association with many autoimmune disorders in different ethnicities,
the -169C [ T SNP appears not to be associated with risk for ulcerative colitis,
Crohn’s disease or primary sclerosing cholangitis (Eike et al. 2008), or with
Inflammatory Bowel Disease (Martinez et al. 2007).
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3.3 Allergic Diseases

Allergic diseases are a type of hypersensitivity characterized by mast cell activation
and IgE-mediated inflammation. The high-affinity IgE receptor expressed on mast
cells, FceRI, has long been considered a candidate gene in allergic diseases.
Multiple studies have established a consistent genetic association between allergies
and the promoter variants of FceRI a-chain. The -66T [ C and/or the -315C [ T
SNPs are associated with atopic dermatitis, chronic urticaria, asthma, and high
serum IgE levels (Hasegawa et al. 2003; Potaczek et al. 2006; Kim et al. 2006; Bae
et al. 2007; Zhou et al. 2012; Niwa et al. 2010). The -66T [ C SNP was high-
lighted as the strongest hit in two GWA studies with high IgE levels (Weidinger
et al. 2008; Granada et al. 2012). These genetic findings may be explained by
functional studies that have demonstrated that both SNPs amplify transcription
activity, increasing FceRI expression on mast cells and basophils (Hasegawa et al.
2003; Kanada et al. 2008), and the well-established observation that surface FceRI
expression correlates positively with circulating IgE levels (MacGlashan 2005).
Similarly, several SNPs in the FceRI b-chain are associated with allergic inflam-
matory diseases such as atopy, asthma, and nasal allergy (Nishiyama et al. 2004;
Zhang et al. 2004; Laprise et al. 2000; Nagata et al. 2001; Li and Hopkin 1997;
Hizawa et al. 2000; Kim et al. 2006, 2007; Yang et al. 2014). Functional properties
of these SNPs are not known.

The low-affinity IgE receptor on B cells, FceRII (CD23), is important in reg-
ulating IgE production and B cell differentiation. The R62W alteration in the
FCER2 gene, that yields increased IgE binding and augmented ERK signaling
(Chan et al. 2014), is associated with elevated serum IgE levels and an increased
risk of severe asthma exacerbation in children (Laitinen et al. 2000; Koster et al.
2011; Tantisira et al. 2007). A promoter SNP in the FCER2 gene, rs3760687,
associated with increased total serum IgE (Sharma et al. 2014), may alter the
activity of the transcription factors Sp1 and Sp3, leading to modulation of FceRII
expression (Potaczek et al. 2009).

Even though IgE and IgE receptors have been known to be the major players in
allergic inflammation, allergen-specific IgG and FccRs also play a role (Kaneko
et al. 1995; Jonsson et al. 2012; Williams et al. 2012; Lau et al. 2005; Bruhns et al.
2005). In a candidate gene study, both the FccRIIa-R131H and the FccRIIb-I187T
SNPs have been associated with atopy (Wu et al 2014). In this context, it is
conceivable that FccRIIa-H131 allele may clear allergen-IgG2 immune complexes
more efficiently, preventing inflammation and tissue damage. Whether allergen-
specific IgG2 levels vary in accordance with FccRIIa polymorphisms is unknown.
Furthermore, the FccRIIb-187T allele may not be as effective in negatively reg-
ulating BCR function, resulting in increased B cell IgE production. Crosstalk
between FccRIIb and FceRI on mast cells is also a possibility.
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4 Association with Response to Antibody Therapy

The efficacy of therapeutic monoclonal antibodies used in autoimmune diseases to
induce ADCC and deplete autoreactive B lymphocytes from circulation depends,
at least in part, on the strength of the interaction of activating FccRs with the
therapeutic antibody on the opsonized target cells. The FccRIIIa -158F/V poly-
morphism influences the efficacy of rituximab treatment, which targets the CD20
surface protein on B cells, with patients homozygous for the high binding -158 V
allele showing the best response (Robledo et al. 2012; Cooper et al. 2012). The
precedent that alleles which alter binding and function of FccRIIa and FccRIIIa
may affect the efficacy of antibody therapy is an important principle in antibody-
based therapeutics. A more extensive discussion of the role of Fc receptors in the
use of therapeutic antibodies is presented in Chapter XX, ‘‘FcR and therapeutic
antibodies’’.

5 Conclusions

Genetic variations in human Fc receptors, through their impact on antibody-
mediated mechanisms, contribute to individual and population-based host defense
and susceptibility to a range of human diseases. Fc receptor polymorphisms
modulate the effectiveness of immune system in defense against invading patho-
gens by regulating immune cell activities. They also impact the handling of
immune reactants and the threshold of immune tolerance. Complex clinical phe-
notypes, such as autoimmunity or allergy, involve multiple genetic and environ-
mental factors, and the subtle regulatory effects of various naturally occurring
polymorphisms are compounded in their impact over time. Accurate assessment of
the contributions of Fc receptor polymorphisms to immune system function and
clinical phenotype requires a careful understanding of the genomic structure,
sequence homology, and known physiological responses of Fc receptors in addi-
tion to well phenotyped study populations for adequately powered association
studies. Such studies have provided important insights into pathogenetic mecha-
nisms and potential novel therapeutic approaches.
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Bridging Autoantibodies and Arthritis:
The Role of Fc Receptors

Hanane el Bannoudi, Andreea Ioan-Facsinay
and René E. M. Toes

Abstract Autoantibodies represent a hallmark of Rheumatoid arthritis (RA),
which is a chronic inflammatory autoimmune disease characterized by inflam-
mation and damage in the joints. Anti-Citrullinated Protein Antibodies (ACPA) are
the most prominent autoantibodies present in RA patients. These autoantibodies
have been intensively investigated during the last 20 years due to their diagnostic
and predictive value. Furthermore, they are believed to be involved in mediating
the damage associated with RA. Antibodies of the IgG isotype interact with the
immune system via Fcc receptors expressed on immune cells as well as nonim-
mune cells. These receptors, therefore, form the bridge between Fcc receptor-
positive cells and antibodies complexed to antigen allowing the modulation and
activation of cellular immune responses that are involved in immune defense
against invading microorganisms. However, in case triggered by antibodies against
self-antigens, they can also play a pivotal role in the induction and perpetuation of
autoimmune diseases such as RA. Mouse models have been indispensably
important for understanding the role of Fcc receptors in the development of
arthritis. Here we discuss the contribution of autoantibodies to the pathogenesis of
arthritis in preclinical animal models, as well as RA, in relation to their interaction
with the different (immune inhibitory and activating) Fcc receptors.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by
inflammation in the joint, leading to the damage of cartilage and bone. It affects
approximately 1 % of the general population (Gabriel 2001).

The pathogenesis of RA is not fully understood. Infiltration of immune cells (B
cells, T cells, macrophages, and neutrophils) into the synovial tissue, together with a
systemic presence of autoantibodies constitute the hallmark of RA. The infiltrating
immune cells are considered to be an important source of cytokines, such as
Interleukin-6 (IL-6), Tumor Necrosis factor a (TNF-a), and other pro-inflammatory
cytokines. The produced cytokines will provide an inflammatory loop, by activating
immune cells, stromal cells, or osteoclasts and/or by attracting additional immune
cells, which will ultimately result in severe inflammation in the joints.

Development of RA is associated with the presence of certain human leukocyte
antigen (HLA) alleles, pointing to a contribution of T cells to disease susceptibility
(Gregersen et al. 1987). In addition, the presence of autoantibodies in most RA
patients and the efficacy of B cell-depleting therapies points to a prominent role of
B cells in the pathogenesis of RA.

Rheumatoid factor (RF) and Anti-Citrullinated Protein Antibodies (ACPA) are
the most well-described autoantibodies in RA. RF autoantibodies are directed
against the Fc region of IgG molecules, whereas ACPA are antibodies directed
against proteins containing the posttranslationally acquired amino acid citrulline.
The presence of these autoantibodies, in particular ACPA is associated with severe
disease (Nishimura et al. 2007; Schellekens et al. 2000; Visser et al. 1996).

Autoantibodies have long been believed to be involved in the pathogenesis of
RA. Their main effector functions are mediated by the Fc region, which can
interact with the complement system and Fc receptors. Fc receptors are expressed
on a variety of immune cells and represent the link between humoral responses and
cellular effector functions. For each class of antibody, a distinct class of cell-bound
Fc receptor has been described: Fcc receptors for IgG antibodies, Fca receptors for
IgA, Fce receptors for IgE, and Fca/l receptor for IgA/IgM.

Several studies have elegantly shown the importance of antibodies in the
development of arthritis in various preclinical arthritis models. By using geneti-
cally modified mice, it was shown that both the complement system and Fcc
receptors (FccR) play a role in mediating the pathogenic function of antibodies in
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arthritis. In this review, we will not address the role of the complement system to
arthritis development and progression, but focus on several aspects related to the
autoantibody systems present in RA and their (potential) impact to contribute to
disease pathogenesis through interaction with Fcc receptors.

2 Autoantibodies in Rheumatoid Arthritis

2.1 Acpa

ACPA are present in a high percentage of RA patients and display a high disease
specificity. ACPA have been shown to be a collection of antibodies directed
against different citrulline-containing proteins. Some of these antibodies exhibit a
significant level of cross-reactivity toward a variety of citrullinated proteins, while
others seem to be rather specific. Analyses of sera from individuals at different
stages of the disease (pre-clinical, pre-RA, RA) suggested that the fine-specificity
of ACPA changes and broadens especially in the pre-RA stage, leading to a
response against a large number of proteins in established disease (Ioan-Facsinay
et al. 2011; van der Woude et al. 2010). Despite several studies extensively
characterizing the ACPA response and the citrullinated antigens present in the
joints of RA patients (e.g., vimentin, fibrinogen, etc.) (van et al. 2010; Wegner
et al. 2010) the antigen(s) responsible for the induction of the citrullinated protein-
specific B cell response are yet unknown.

ACPA, like RF, can be present years before the manifestation of the clinical
symptoms associated with RA (Nielen et al. 2004) and can be detected systemi-
cally, as well as locally in synovial fluid (Kunkel et al. 1961a, b; Winchester et al.
1970). However, their presence is relatively more abundant in synovial fluid
compared to serum. Furthermore, ACPA-producing B cells have been found to be
present in peripheral blood as well as synovial fluid of RA patients (Amara et al.
2013; Bellatin et al. 2012; Kerkman et al. 2013), pointing to the local production
of these antibodies. Interestingly, the presence of ACPA is predictive for a more
aggressive disease course, resulting in a more severe joint damage (Meyer et al.
2006; van der Helm-van Mil AH et al. 2005). Together, these observations have
led to the hypothesis that ACPA may have a pathogenic role in RA (Kuhn et al.
2006; Seeling et al. 2013). The beneficial effects observed with B cell depleting
(anti-CD20) therapy and the effects of ACPA on osteoclastogenesis and bone loss
support this hypothesis (Cohen et al. 2006).

Citrullination is a posttranslational modification whereby the amino acid arginine
is modified into the amino acid citrulline. This process is mediated by Peptidyl
Arginine Deiminases, enzymes that are encoded by genes harboring genetic vari-
ations that have been identified as risk factor for RA-development (Suzuki et al.
2003). Both the specificity of the ACPA-response for RA and the genetic associa-
tions in the genes encoding the enzymes creating the antigens recognized by ACPA,
implicate a contribution of the ‘‘anti-citrulline’’ response to RA pathogenesis.
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2.2 Anti-Carbamylated Protein Antibodies

Recently, a new category of antibodies in RA patients, anti-Carbamylated Protein
(anti-CarP-antibodies) has been identified. Anti-CarP antibodies recognize carb-
amylated proteins containing a posttranslationally acquired homocitrulline-residue
that is generated from a lysine residue upon exposition to cyanate.

Anti-CarP antibodies represent an autoantibody-family that is partially cross-
reactive to citrullinated proteins. Forty five percent of RA patients harbor IgG
autoantibodies recognizing carbamylated antigens in serum. Interestingly, anti-CarP
autoantibodies are present in approximately 20 % of ACPA-negative RA patients.
The presence of Anti-Carp autoantibodies is, like the presence of ACPA, predictive
for disease development in subjects at risk to develop RA, as well as for a more
severe disease course in patients suffering from established arthritis (Shi et al. 2011).

3 Fcc Receptors

Fcc receptors are cell surface glycoproteins that belong to the immunoglobulin
superfamily. They interact with the Fc-part of IgG antibodies. In mice, four dif-
ferent classes of Fcc receptors have been described: FccRI, FccRII, FccRIII, and
FccRIV. In humans, 6 different Fc gamma receptors have been identified: FccRI,
FccRIIA, FccRIIB, FCcRIIC, FccRIIIA, and FccRIIIB. FccRI is a high affinity
receptor being able to bind monomeric IgG. All FccRs can bind IgG complexed to
antigen, so-called immune-complexes. FccR are very homologous and share
structural similarities. Likewise, a high molecular homology has been described
for murine and human FccRs, such as for FccRI and FccRIIB. The remaining
members of the low affinity receptors share some similarities between mouse and
human: mouse FccRIII is related to human FccRIIA and mouse FccRIV is highly
homologous to human FccRIIIA (Nimmerjahn et al. 2005; Ravetch et al. 2001).

With the exception of FccRII (mouse and human) and human FccRIIIB, all Fcc
receptors are composed of a ligand-binding a chain associated with a dimer of
covalently linked FcRc chains. The latter is responsible for the intracellular sig-
nalling of FccR, as well as for their surface expression. The intracellular domain of
the FcRc chain contains an immunoreceptor tyrosine-based activation motif
(ITAM), which mediates cellular activation. In contrast, the intracellular domain
of FccRIIB contains an immunoreceptor tyrosine-based inhibition (ITIM) motif
rendering it capable of inhibiting cellular activation induced via cell-activating
receptors (Daeron et al. 1997). Human FccRIIIB is an exception as this receptor is
anchored in the membrane via a GPI-link and thus lacks an intracellular domain.

Animal models have been indispensable for the study of the role of FccR in
regulating immune responses. Different animal models for arthritis have been
developed. In some of the models, disease development is dependent on the
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presence of antibodies against an antigen present in the joint. This antigen is either
an autoantigen (murine collagen in collagen-induced arthritis or collagen antibody-
induced arthritis (CAIA), glucose-6-phosphate isomerase (GPI) in K/BxN model
or K/BxN serum transfer model, murine proteoglycan in proteoglycan-induced
arthritis (PGIA)) or a foreign antigen injected in the joint, against which antibodies
were elicited previously through immunization (mBSA in antigen-induced
arthritis) or passive antiserum transfer (lysozyme in immune complex-mediated
arthritis). Not surprisingly, Fcc receptors have been found to be relevant for dis-
ease development in these models, albeit their relative contribution can be different
in different models. Establishing the individual role of each FccR for disease
development has been challenging due to their redundant function and cellular
expression. Moreover, the effector pathways initiated by FccR and the comple-
ment system upon binding of immune complexes (ICs) are highly redundant and a
cross-talk between these two systems often occurs. Therefore, the development of
mice deficient for individual or well-defined combinations of FccR has been
instrumental in investigating the role of these molecules in arthritis.

Collagen-Induced Arthritis (CIA) is a frequently used animal model for RA.
CIA can be readily induced in mice with MHC haplotype H-2q and H-2r.
Immunization of these mice with bovine collagen type II (CII) results in the
induction of an antibody response cross-reactive with murine collagen. These
antibodies are sufficient for the induction of arthritis and transfer of these anti-
bodies into a naïve mice is able to transfer disease, independently of B and T cells
(Stuart et al. 1983). The CAIA, in which one or a combination of a few collagen-
specific antibodies is injected into naïve mice, is a passive model for arthritis, in
which the effector phase of the disease can be investigated (Terato et al. 1992).
Similar to CIA, PGIA is an arthritis model in which immunization with human
proteoglycan leads to generation of antibodies cross-reactive to murine proteo-
glycan. These antibodies will induce disease by binding to their target in the joint
and initiate inflammation (Mikecz et al. 1996).

Another widely used model of arthritis is the K/BxN model in which a self-
antigen, GPI presented on the NOD MHC molecule H2-Ag7 is recognized by the
KRN TCR transgenic T cells, leading to activation of GPI-specific B cells and
subsequent arthritis. Similar to the CIA model, serum transfer from diseased K/
BxN mice can transfer disease to naïve mice, even in the absence of T and B cells
(Korganow et al. 1999).

Antigen-induced arthritis (AIA) is a model in which mice are immunized sys-
temically with methylated BSA (mBSA) leading to generation of BSA-specific
antibodies and are subsequently injected with BSA in the knee. Formation of ICs in
the knee will lead to arthritis (Hunneyball et al. 1986). Immune complex-induced
arthritis (ICA) is similar to AIA, except that the mice are passively immunized
against lysozyme by being injected with lysozyme-specific antiserum, followed by
injection of the target antigen, lysozyme, in the knee (van Lent et al. 1992).

The findings regarding the role of FccR-deficient mice in these most frequently
used models of arthritis will be further discussed.
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3.1 Activating Fcc Receptors in Mouse Models of Arthritis

Activating FccR are expressed on a diversity of immune cells such as monocytes,
macrophages, neutrophils, mast cells, basophils, platelets, and NK cells (Nim-
merjahn et al. 2006a, b).

These FccR can induce, upon binding of ICs, a plethora of cellular effector
functions such as antibody-dependent cellular cytotoxicity, degranulation,
phagocytosis as well as the release of inflammatory cytokines. Interestingly, it has
been shown that antigens, when complexed in antigen-antibody complexes pro-
mote a stronger T-cell-mediated immune response as compared to the antigen
alone. This is explained by an enhanced DCs maturation and antigen presentation
following triggering of FccR by ICs (Regnault et al. 1999; Schuurhuis et al. 2002).

Intriguingly, FccR are not only involved in the activation of ‘‘conventional’’
immune cells, but have also been shown to have a direct effect on osteoclast
precursors, by affecting osteoclastogenesis. Remodeling of bone can result in bone
erosions. This is directly relevant to RA as bone erosions are one of the hallmarks
of RA. Bone remodeling can be modulated through the FccR-mediated release of
cytokines by classical immune cells that can subsequently modulate osteoclast
development and activity. However, more recently, it was shown that FccR
expressed on osteoclasts enhance bone destruction by direct binding of autoanti-
bodies resulting in enhanced osteoclasts generation and bone resorption (Seeling
et al. 2013).

In most mouse models of arthritis, the absence of the FcRc chain results in
strongly diminished or absent disease, indicating that the FcRc chain associated
activating receptors, FccRI, III and IV are involved in the development of the
disease. In the CIA model, disruption of the common gamma chain (FcRc) in
arthritis-susceptible DBA1 mice results in the protection from CIA. Although both
knockout and wildtype mice develop similar anti-CII-antibody titers and collagen-
specific proliferative responses of splenocytes, they show a clear difference in the
development of CIA, indicating that FccR are crucially involved in the effector
phase of the disease (Kleinau et al. 2000). Likewise, FcRc chain KO mice are
protected against arthritis in the CAIA model (Kagari et al. 2003) and PGIA
(Kaplan et al. 2002), the K/BxN serum transfer models (Ji et al. 2002) as well as
immune-complex-mediated-arthritis (ICA) (Blom et al. 2000). In the AIA model,
expression of the FcRc chain is crucial for the chronic phase of cartilage
destruction, although it does not affect the early phase of cartilage degradation
(initial 7 days of disease) (van Lent et al. 2000).

These findings obtained underlie the significance of the activating Fcc receptors
in arthritis development in those models that crucially depend on the contribution
of antibodies. The relative contribution of the individual activating FccR has been
addressed using well-defined KO mice lacking one or more activating Fcc
receptors. These studies showed a differential involvement, depending on the
models used (Boross et al. 2008; Diaz de et al. 2002; Ioan-Facsinay et al. 2002;
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Kagari et al. 2003; Kaplan et al. 2005; Kleinau et al. 2000; Nabbe et al. 2003;
Nandakumar et al. 2003; van Lent et al. 2001, 2006).

FccRIII is generally considered to be the most prominent FccR in mediating
inflammation and is critically required for (early) onset of arthritis, whereas FccRI
is predominantly involved in cartilage destruction in some models.

FccRIII plays a prominent role in most models described above, except the AIA
model. Elegant studies using cell-specific FccR deficient mice have indicated that
FccR are engaged in different stages of the disease and on different immune cells.
In the K/BxN model, FccRIII is required for access of pathogenic antibodies to the
joints (Binstadt et al. 2006), while expression of a FcRc chain-dependent receptor
on neutrophils (other than FccRIII) is required for migration of neutrophils into the
joint (Monach et al. 2010). As FccRIII-deficient mice were largely protected
against arthritis in this model, while mice lacking FccRIII specifically on neu-
trophils developed the disease, it is likely that FccRIII on other cells in the joint,
possibly mast cells, essentially contributes to the disease. Also, a contribution of
other FcRc chain-dependent receptors should be considered (discussed below).

In the CIA model, arthritis has been shown to be crucially dependent on neu-
trophils and macrophages and FccRIII. Interestingly, adoptive transfer of
FccRIII+ macrophages into FccRIII-deficient mice restores the susceptibility to
arthritis (Andren et al. 2006), indicating that FccRIII on macrophages is essential
for disease development.

Similar to the previous models, in mice lacking FccRIII, the influx and acti-
vation of inflammatory cells was reduced as was the cartilage destruction in the
ICA model. FccRIII ko mice were also resistant to PGIA-induced arthritis (Kaplan
et al. 2005).

In the passive K/BxN model, arthritis is abrogated in mice lacking the FcRc
chain (Kyburz et al. 2000), but is not totally abolished in mice lacking FccRIII,
suggesting that FccRI and FcRIV are also involved in the induction of arthritis (Ji
et al. 2002). Their contribution was investigated in two elegant studies using mice
deficient for several Fc receptors (Boross et al. 2008; Mancardi et al. 2011). These
studies indicated that FccRIV was sufficient for arthritis induction in K/BxN mice,
in the absence of all other FccR (Mancardi et al. 2011). Moreover, neutrophils and
monocytes/macrophages were required for arthritis in these ko mice (Mancardi
et al. 2011). While these studies suggested no role of FccRI in the K/BxN model of
arthritis, one publication showed that FccRI can play a role in the CIA model, in
the absence of FccRIII and FccRII (Boross et al. 2008). This indicates that the
involvement of FccRI is probably secondary to that of FccRIII and becomes
evident only at high titer collagen-specific antibodies, such as are found in the
FccRII ko mice with CIA (Boross et al. 2008).

FccRI is the predominant Fcc receptor involved in the induction of arthritis in
the AIA model. Interestingly, inflammatory cell influx is unchanged in the absence
of FccRI/II/III in these mice compared with FccRII deficient mice, indicating an
involvement of either FccRIV or complement in this process (van Lent et al.
2006). However, cartilage destruction was greatly reduced in the FccRI-deficient
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mice (Ioan-Facsinay et al. 2002) and unchanged in FccRIII ko mice (van Lent
et al. 2000), suggesting a major role of FccRI in this model.

FccRIV is not only expressed on macrophages/monocytes and neutrophils but
also on osteoclasts. These cells differentiate from monocytes following stimulation
via receptor activator of nuclear factor-kappa B ligand (RANKL) and are
responsible for the bone destruction. It is becoming apparent that FccRIV can have
a role in the regulation of osteoclasts maturation. FccRIV expressed on immature
osteoclasts is upregulated during maturation and upon autoantibody triggering
results in further enhancement of the osteoclast differentiation. Noteworthy, tar-
geted depletion of FccRIV on osteoclasts protects mice from antibody-dependent
bone destruction and reduces the number of osteoclasts in the inflamed joints.
Together indicating the potency of FccRIV to directly contribute to bone-erosions
during arthritis (Seeling et al. 2013).

FccRIIA is the most widespread human activating FccR but is not expressed on
murine cells. In order to understand its potential role in the development of RA,
transgenic mice bearing the human FccRIIA gene have been generated. Intro-
duction of the FccRIIA gene confers higher susceptibility to CIA and CAIA (Tan
et al. 2005). In CAIA, FccRIIA promotes a severe and a rapid arthritis develop-
ment possibly by enhancing the production of TNF-a by macrophages, which is a
prototypic pro-inflammatory cytokine indisputably implicated in the pathogenesis
of RA. This could indicate that FccRIIA contributes to the development of arthritis
by decreasing the activation threshold of, for example macrophages, leading to
overproduction of pro-inflammatory cytokines such TNF-a (Tan et al. 2005). More
recently, another study has shown that expression of FccRIIA on neutrophils is
sufficient to restore susceptibility to arthritis in the K/BxN serum transfer model, in
mice lacking all endogenous activating FccR (Tsuboi et al. 2011), indicating a
crucial role for neutrophils in this model.

3.2 Inhibitory Fcc Receptor in Mouse Models for Arthritis

The inhibitory receptor FccRIIB is the most broadly distributed FccR. It is
expressed, among others, by monocytes, macrophages, B cells, neutrophils, baso-
phils, mast cells, and dendritic cells (DCs) (Daeron et al. 1997; Malbec et al. 2002;
Ravetch et al. 2001). The ligand binding site located on the extracellular portion is
similar to that of activating receptors, however, the cytoplasmic domain is different.
The intracellular portion contains an ITIM motif to which the function of the
receptor is attributed. FccRIIB has a central role in maintaining tolerance by reg-
ulating the humoral response, which is remarkably enhanced in FccRIIB-deficient
mice upon antigen challenge. Due to its inhibitory function, FccRIIB has gained
considerable attention in the study of autoimmune diseases such as RA. Its role in
the development of CIA is well established. Deletion of FccRIIB renders mice with
either a permissive or a nonpermissive background susceptible to CIA (Kleinau
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et al. 2000; Yuasa et al. 1999). The importance of FccRIIB in arthritis inhibition is
further confirmed in the PGIA, K/BxN, AIA, and CAIA arthritis models (Corr et al.
2002; Kaplan et al. 2002; Nandakumar et al. 2003; van Lent et al. 2001).

FccRIIB is believed to maintain an appropriate immune response and to prevent
arthritis development by regulating antibody production and excessive cell med-
iated immune responses. When this regulation is disturbed, mice become sus-
ceptible for the development of arthritis. Abrogation of the FccRIIB leads to a
heightened production of pathogenic antibodies in most models of arthritis
(Kaplan et al. 2002; van Lent et al. 2001; Yuasa et al. 1999). Indeed, the
expression of the FccRIIB on B cells was found to be crucial for the protection
against arthritis indicating a role for FccRIIB in maintaining B cell tolerance/
responsiveness (Brownlie et al. 2008). Likewise, FccRII has a major role at the
level of effector cell function, as macrophages of FccRIIB knockout mice show a
hyper-responsiveness to IgG ICs stimulation resulting in an augmented production
of pro-inflammatory cytokines (Yuasa et al. 1999). This dual function of FccRII is
probably the underlying mechanism for the increased susceptibility of FccRIIB
deficient mice for arthritis in most models studied (Corr et al. 2002; Kaplan et al.
2002; Nandakumar et al. 2003; van Lent, Nabbe et al. 2001)

3.3 Human Fcc Receptors

A hallmark feature of RA is the presence of autoantibodies directed against dif-
ferent antigens (Ioan-Facsinay et al. 2011). The high prevalence of autoantibodies
can give rise to the formation of antibody antigen complexes. Indeed, ICs can be
found in the circulation as well as in the affected joints of RA patients (Kunkel
et al. 1961a, b; Winchester et al. 1970; Zhao et al. 2008). Their presence is
associated with a more severe disease suggesting a possible contribution of ICs in
the pathogenesis of RA (Meyer et al. 2006; van der Helm-van Mil et al. 2005). ICs
can elicit effector functions through interaction with FccRs. In vitro formed ICs
containing ACPA directed against citrullinated fibrinogen as well as ICs obtained
from synovial fluid of RA patients have an inflammatory potential via their ability
to activate macrophages to produce the pro-inflammatory cytokine TNF-a in a
FccRII dependent manner. The IgG content of the ICs correlates with TNF-a
levels pointing to a contribution of FccRs (Clavel et al. 2008; Laurent et al. 2011;
Mathsson et al. 2006). Interestingly, neutrophils present in the synovial fluid of RA
patients exhibit an activated phenotype and ICs have been considered to be their
major activating factor (Robinson et al. 1994).

The balance of activating and inhibitory FccR is proposed to be disturbed in RA
patients. The expression level of FccRI, FccRIIA, and FccRIII is reported to be
increased in synovial macrophages, neutrophils, monocytes, and monocyte-
derived macrophages of RA patients. This altered expression could lead to an
enhanced production of TNF-a following stimulation with ICs (Blom et al. 2003;
Quayle et al. 1997; Wijngaarden et al. 2004).

Bridging Autoantibodies and Arthritis 311



Considering its major role in regulating humoral and cellular immune responses
in mice, one could predict that the expression of the inhibitory receptor FccRIIB is
decreased on immune cells of RA patients. Indeed, the expression of FccRIIB on B
cells as well as the percentage of B cells expressing FccRIIB are reported to be
lower in RA patients compared to healthy controls (Prokopec et al. 2010).
Although the expression of FccRIIB in RA patients was low, it was still able to
inhibit the proliferation of B cells following a suboptimal stimulation with IgG
anti-l. However, the extent of the inhibition was reduced compared with B cells
from control individuals expressing higher levels of FccRIIB (Prokopec et al.
2010). Furthermore, in contrast to the expression of the activating Fcc receptors,
the expression of the inhibitory FccRIIB on DCs is reported to be increased in RA
patients having lower disease activity. This high expression of FccRIIB was
proposed to enable DCs to inhibit TLR mediated pro-inflammatory response, to
suppress T cells proliferation and to promote a Th2 response and regulatory T cell
development following stimulation with ICs (Wenink et al. 2009).

4 Association Between Fcc Receptor Genes and RA

Fcc receptors are encoded by several genes on chromosome 1 (Nimmerjahn et al.
2006a, b; Su et al. 2002). Variations in genes encoding Fcc receptors are con-
sidered as modifying factors for disease-susceptibility or outcome in various
autoimmune diseases (Myhr et al. 1999; Tan et al. 2000). Genetic variations like
single nucleotide polymorphism (SNP) and copy number variation (CNV) have
been reported to have biological consequences on the function of FccR-complex.
An SNP is a variation in a DNA sequence occurring as a result of a single
nucleotide difference between paired chromosomes. CNV is defined as an alter-
ation in the number of a certain sequence of DNA (1 kb) when compared with a
reference genome. Normally each gene has two copies, however, it is becoming
apparent that genes can have more or less than two copies.

Several studies have reported conflicting results on the potential contribution of
CNV in the Fcc-region, most likely as a consequence of the high-sequence
homology in this region, making it challenging to perform genetic studies in FccR-
region (Thabet et al. 2009). Therefore, there is currently no consensus on the
possible contribution of FccR-CNV on disease susceptibility or severity.

Likewise, also most studies with respect to other genetic variations in the FccR-
region in relation to RA-susceptibility and severity should be taken with caution as
opposing findings have been reported.

FccRIIA and FccRIIIA have been considered as possible disease modifying
genes in RA (Alizadeh et al. 2007; Milicic et al. 2002; Morgan et al. 2000, 2003;
Thabet et al. 2009). These genes harbor SNPs in the region encoding IgG binding
site of the FccRIIA and FccRIIIA receptors leading to the rise of two receptors
with different binding capabilities to IgG ICs (Koene et al. 1997; Parren et al.
1992; Warmerdam et al. 1991). The higher affinity binding variant of FccRIIA has
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a histidine at position 131, whereas the low affinity binding receptor has an
arginine at position 131(Salmon et al. 1992). FccRIIIA containing a valine (V) at
position 158 is a high binding receptor whereas FccRIIIA with a phenylalanine (F)
at position 158 is a low binding receptor (Ravetch et al. 1989).

Patients homozygous or heterozygous for FccRIIA arginine allele have been
reported to suffer from a more severe disease RA as compared to individuals
homozygous for FccRIIA histidine allele. The presence of the low binding
receptors on immune cells might contribute to the development of a severe disease
via their impaired ability to clear ICs (Brun et al. 2002). Likewise, the risk for
developing RA is reported to be increased especially in individuals homozygous
for FccRIIIA-158 V allele (Morgan et al. 2000). However, these findings are not
consistent as other studies have found no association between FccRIIA, FccRIIIA
genes and RA (Kyogoku et al. 2002a, b; Morgan et al. 2006; Nieto et al. 2000).

By analogy, FccRIIIB gene has two common polymorphic forms, Neutrophils
antigen 1(NA1) and NA2, which differ in five nucleotides that result in four amino
acid differences. The presence of FccRIIIB-NA2 is reported to increase the level of
association between FccRIIIA-V158 and RA compared to FccRIIIA-158F where
RA patients with nodules showed the strongest association (Morgan et al. 2006).

An SNP in the gene region encoding for the inhibitory receptor FccRIIB
(Ile232Thr) has been characterized as well (Kyogoku et al. 2002a, b). The pres-
ence of this variant is associated with an increased radiological joint damage and
was found not to be linked to the susceptibility to RA. Therefore, it is mainly
considered as a marker for RA disease severity (Radstake et al. 2006).

Most importantly, a recent large, meta-analyses incorporating many genome
wide association studies involving more than 100,000 subjects probably provides
the best evidence for an association between the FccR-region and RA. In this
study, no association between RA and, for example, the common polymorphic
forms of FccRIIB and FccRIIIB has been reported, indicating that former studies
indicating a potential association between FccRIII and RA should be taken with
great caution. However, this study did reveal an association between an SNP near
the FccRIIA gene (OR 1.13; 95 % CI: 1.08–1.19), providing relevant evidence for
a contribution of the FccRIIA gene in RA susceptibility (Okada et al. 2014).

5 Conclusion

Since the discovery of the Fcc receptors, considerable efforts have been made to
understand their role in the development of RA. Using mouse models we have
gained great knowledge about the role of these receptors in the maintenance of
tolerance and the induction of arthritis and bone damage in preclinical animal
models. Although we are still far from fully understanding of the relative contri-
bution of different FccR to development and progression of RA, current evidence
clearly points to a contribution of FccR in the pathogenesis of autoantibody-
positive RA.
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The FccR of Humans and Non-human
Primates and Their Interaction
with IgG: Implications for Induction
of Inflammation, Resistance to Infection
and the Use of Therapeutic Monoclonal
Antibodies

P. Mark Hogarth, Jessica C. Anania and Bruce D. Wines

Abstract Considerable effort has focused on the roles of the individual members
of the FccR receptor (FccR) family in inflammatory diseases and humoral
immunity. Recent work has revealed major roles in infection and in particular HIV
pathogenesis and immunity. In addition, FccR functions underpin the action of
many of the successful therapeutic monoclonal antibodies. This emphasises the
need for a greater understanding of FccR function in humans and in the NHP
which provides a key model for human immunity and preclinical testing of anti-
bodies. We discuss recent key aspects of the human FccR receptor biology and
structure to define differences and similarities in activity between the human and
macaque Fc receptors. These differences and similarities nuance the interpretation
of infection and vaccine studies in the macaque. Indeed passive IgG antibody
protection in lentivirus infection models in the macaque provided early evidence
for the role of Fc receptors in anti-HIV immunity that have subsequently gained
support from human vaccine trials. None-the-less the diverse functions and cellular
contexts of FccR receptor expression ensure there is much still to understand of the
protective and deleterious effects of FccRs in HIV infection. Careful comparative
studies of human and non–human primate FccRs will facilitate our appreciation of
what attributes of HIV specific IgG antibodies, either acquired naturally or via
vaccination, are most important for protection.
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1 Introduction

In its broadest context inflammation is a homoeostatic process that involves tissue
damage and, under normal circumstances, resolution or repair. In the context of the
humoral immune system inflammation induced by antibodies is frequently used to
resist and resolve infection.

One of the major mechanisms by which antibodies induce inflammation and
control the response is through antibody engagement of specific cell-surface
receptors—the Fc receptors (FcR). These receptors are essentially receptors for
immune complexes and are primarily, though not exclusively, expressed on innate
immune cells, thereby linking the humoral immune system with a cell based effector
arm. Since antibodies have a large number of significantly different biological roles
in vivo, the interaction between FcR and the different antibody classes is one of the
most fundamentally important in immunity and initiates a wide range of immuno-
logical and inflammatory responses (Daeron and Lesourne 2006; Hogarth 2002;
Hogarth and Pietersz 2012; Hulett and Hogarth 1994; Ravetch 2010).

Under normal circumstances antibody engagement of activating type Fc recep-
tors, FccRI (also known as CD64), FccRIIa, IIb, IIc (CD32a, b, c), FccRIIIa, IIIb,
(CD16a, b) induce a cell-based inflammatory response manifest by different bio-
logical phenomena. These include phagocytosis of opsonised particles (bacteria),
antibody dependent killing (ADCC) of large opsonised targets, including opsonised
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virus-infected normal cells and perhaps transformed cells. Additional responses
include the activation of platelets in situ, mast cell and neutrophil degranulation and
the release of inflammatory mediators (eicosanoids, histamines or superoxide)
effecting the local tissue environment and the signalling to other leukocytes via
cytokine and chemokine release.

These Fc receptor dependent pro-inflammatory reactions, mediated by so-called
activating FccR, are also modulated by immune complex co-engagement with the
inhibitory FccR, FccRIIb. As locally or systemically potent as these inflammatory
responses can be, under normal circumstances they are well regulated with minimal
sequelae.

However, if insufficiently regulated the immune complex: Fc receptor inter-
action can induce serious pathological inflammation leading to morbidity and even
death. This is most spectacularly evident in life-threatening IgE dependent allergic
reactions, mediated through the high affinity IgE receptor, FceRI. The IgG Fc
receptors, FccRs, are also major contributors to chronic inflammation caused by
IgG immune complexes in systemic lupus erythematous (SLE) and related dis-
eases. Genome wide association studies (GWAS) as well as analysis of individual
Fc receptor polymorphisms frequently indicates significant disease association in
inflammatory bowel disease, rheumatoid arthritis, a number of vasculitides and
systemic lupus erythematous (SLE) (Harley et al. 2008; Lessard et al. 2013;
McGovern et al. 2010; Meziani et al. 2012; Willcocks et al. 2008).

The FccRs are key components of both immune complex induced inflammatory
processes and the regulation of immune responses (Daeron and Lesourne 2006;
Hogarth 2002; Hogarth and Pietersz 2012; Hulett and Hogarth 1994; Ravetch
2010). FccR dependant responses induced by immune complex binding not only
occur at the effector level, for example ADCC, phagocytosis or mediator release,
but also have major roles in shaping B and T cell adaptive immune responses. This
role of the inhibitory FccR in the regulation of B cell responses is well charac-
terised (Cambier 2013), but FcR working cooperatively with pattern recognition
receptor uptake of immune complexes by antigen presenting cells also drives
T cell responses (Means et al. 2005; Amigorena 2002).

In an practical context, the successful harnessing of these same inflammatory or
regulatory processes has underpinned the spectacular success of the monoclonal
antibody (mAb) therapeutics industry. The harnessing of pro-inflammatory FccR
dependent effectors forms the basis for some of the successful targeting of cancer
cells. In vitro studies largely implicate ADCC or phagocytosis in the protective
pro-inflammatory effect reviewed in Hogarth and Pietersz (2012). Conversely anti-
inflammatory therapeutics include the harnessing of the inhibitory FccRIIb by
antibodies targeting activating type immunoreceptors but whose Fc portions have
been engineered to selectively or preferentially engage FccRIIb. This results in a
stable co-clustering of an activating type immunoreceptor with the inhibitory
FccRIIb (Chu et al. 2012, 2013; Horton et al. 2011).

The roles of the FccR in autoimmune inflammation especially in mouse models
of inflammation have been extensively reviewed elsewhere (Hogarth 2002;
Hogarth and Pietersz 2012; Mihai and Nimmerjahn 2013; Ravetch 2010). In this
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review we will focus on the new aspects of the role of human Fc receptors in
inflammation, especially their emerging role in infection, particularly HIV. We
will also compare the human and non-human primates (NHP), in particular
macaque species, Fc receptors and their interaction with IgG. This is especially
significant in the light of the use of NHP as models of human immunity and in
particular as preclinical models in the testing of immunogenicity and immunity of
vaccines and human therapeutic monoclonal antibodies (mAbs).

2 The Human FccR Family

The receptors for IgG, FccR are the most genetically diverse FcR. Six major IgG
FccRs are known, these include FccRI, FccRIIa, IIb, IIc, FccRIIIa, and FccRIIIb.
Additional functionally relevant splice variants have also been identified. These
receptors have been well characterised in human, and mice, but surprising little is
known of the FccR of NHP. Many aspects of the human and mouse receptors have
extensively reviewed, in particular the genetics and biochemistry (Hulett and
Hogarth 1994; Hogarth 2002), models of inflammation (Hogarth 2002; Takai
2005; Ravetch 2010; Mihai and Nimmerjahn 2013) and the signalling using
Immunoreceptor Tyrosine-based Activation Motif (ITAM) and Immunoreceptor
Tyrosine-based Inhibitory motif (ITIM) (Waterman and Cambier 2010; Daeron
and Lesourne 2006; Cady et al. 2008). However it is important to emphasise
certain unique aspects as follows.

2.1 FccRI

FccRI is the high affinity receptor for IgG which efficiently binds monomeric IgG
and small immune complexes. This function could be important for binding
antigen opsonised with limiting amounts of antibody, for example early in a
developing immune response where antibody levels are low (Barnes et al. 2002;
Gavin et al. 1998a, b). Whilst its high affinity for IgG ensures it can interact with
monomeric IgG for extended periods. The readily measurable off rate (Gavin et al.
1998b; Bruhns et al. 2009) suggests that in vivo it is likely to be freely exchanging
with other circulating monomeric IgG. FccRI is induced on monocytes, macro-
phages, neutrophils, dendritic cells and masts cells in pro-inflammatory environ-
ments (Table 1) and reviewed in (Hogarth and Pietersz 2012). Mouse studies
suggest this provides an important link between antibody responses and antigen
presentation for T cell mediated immunity (Gavin et al. 1998a; Barnes et al. 2002)
which are supported by human in vitro studies of immune complexes (Sallusto and
Lanzavecchia 1994).
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2.2 FccRII

FccRIIa, FccRIIb and FccRIIc are encoded by three related genes. The extracel-
lular domains of FccRIIa and FccRIIb are highly related (95 % identity) but the
cytoplasmic tails are distinct, containing an activating ITAM or inhibitory ITIM
respectively. FccRIIc is expressed in only 20 % of the population and appears to
be the product of a crossover between FccRIIb and FccRIIa. As a result its
extracellular domains are most highly related to FccRIIb and its ITAM containing
cytoplasmic tail to FccRIIa (van der Heijden et al. 2012).

FccRIIa is unique to primates (Hibbs et al. 1988). It is the most widespread and
abundant of the activating IgG receptors, being present on all leukocytes and
platelets with the exception of T, B and NK cells (Table 1) (Hogarth and Pietersz
2012; Hogarth 2002).

Table 1 FccR distribution and expression in human and NHP leukocytesa

FccRI FccRIIa FccRIIb FccRIIc FccRIIIa FccRIIIb

T cells Human ¯ ¯ + ¯ +b –
Macaque •c

¯ • • • ¯
d

B cells Human ¯ ¯ ++ ¯ ¯ ¯
Macaque • ¯ + • ¯ ¯

d

NK cells Human ¯ ¯ ¯ +e ++ ¯
Macaque • ¯ • • ++ ¯

d

Macrophages Human +f +++ ++ • + ¯
Macaque • • • • + ¯

d

Monocytes Human +f +++ + ¯ ++ ¯
Macaque • +++ • • + ¯

d

Neutrophils Human +f +++ +g • + ++h

Macaque • +++ • • ¯ ¯
d

Eosinophils Human +f ++ • • ¯ •
Macaque • • • • • ¯

d

Basophils Human ¯ ++ ++ ¯ ¯ +
Macaque • • • • • ¯

d

Mast cells Human +f ++i + ¯ ++ •
Macaque • • • • • ¯

d

Platelets Human ¯ ++ ¯ ¯ ¯ –
Macaque • ++ • • • ¯

d

+++ Strong, ++ Moderate, + Weak, - No expression
a Macaque data comprised from rhesus, cynomolgus and pigtail, See text for detail
b cd T cells
c • = Not tested
d No gene expressed
e Expressed in only 30 % of humans
f Induced upon exposure to cytokines
g Conflicting results
h GPI-linked
i Unstimulated cord blood—derived mast cells
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FccRIIa has several unique properties. It is the only FcR, and indeed one of the
few immunoreceptors, that contains the activating ITAM in its cytoplasmic tail,
i.e. ligand binding domains and ITAM are in the one polypeptide. Despite its
clearly defined role in ITAM dependant signalling, additional studies have
revealed its capacity to also participate in inhibitory function (Cady et al. 2008,
2010; Waterman and Cambier 2010).

The role of this receptor in the development and regulation of inflammation
emerged initially from the use of recombinant ectodomains of FccRIIa in acute
models of immune complex Type-III hypersensitivity (Ierino et al. 1993). These
initial studies were subsequently expanded in human FccRIIa transgenic mice
(Ierino et al. 1993; Tan Sardjono et al. 2003, 2005; Pietersz et al. 2009).

Furthermore, crystallographic and mutagenesis evidence also suggests that this
receptor exists in dimeric states (Maxwell et al. 1999; Powell et al. 2006;
Ramsland et al. 2011) that are necessary for optimal signalling function. This
property appears to be unique among Fc receptors, as similar organisation of other
FccR is lacking. Indeed immune complex induced signalling by other FcR does
not appear to require assembly of an organised quaternary state and aggregation
alone is sufficient (Metzger 1992).

FccRIIb is the archetypal inhibitory receptor whose ITIM based inhibitory
function exerts a powerful effect on ITAM signalling pathways. It is expressed in
most leukocytes including B cells, monocytes, macrophages, basophils, mast cells
and controversially on neutrophils (Hogarth and Pietersz 2012) see also (Cassard
et al. 2012) and (Jonsson and Daeron 2012) (Table 1). It is absent from platelets
and most T cells but expression on CD8 memory T cells has been recently reported
(Starbeck-Miller et al. 2014).

The inhibitory function of FccRIIb requires co-recruitment or aggregation with
an activating receptor. This leads to the subsequent recruitment of the inositol
phosphatase SHIP, as well as the protein tyrosine phosphatases SHP1 and SHP2,
which ensures potent modulation of ITAM generated signals from FceRI,
FccRIIIa, FccRIIa and also the B cell antigen receptor (Daeron et al. 1995; Daeron
and Lesourne 2006; Cady et al. 2008).

2.3 FccRIII

FccRIIIa is the most abundant FccR on NK cells and also cd Tcells, which are
major mediators of ADCC (Table 1). On myeloid cells it is readily detected on
macrophages and mast cells. It is also largely absent from circulating CD14+ blood
monocytes, however a small subset is defined by the presence of FccRIIIa where it
has a major role in phagocytosis as it does in tissue macrophages (Hogarth and
Pietersz 2012).

FccRIIIb is an enigmatic lipid anchored FccR, which is it is closely related to
FccRIIIa. Despite a lack of cytoplasmic peptide tail its cell activating signalling
function is dependent on src kinases. Additional evidence suggests that it also
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requires FccRIIa for effective signal transduction (Naziruddin et al. 1992).
FccRIIIb is expressed primarily and abundantly on neutrophils and possibly
basophils (Jonsson and Daeron 2012; Cassard et al. 2012) and despite its abundant
presence on human cells on human neutrophils and is almost certainly absent from
the macaque genome see below (Table 1).

3 Interaction of Human IgG with Human Fc Receptors

3.1 The Structural Basis of FccR: IgG Interactions

All human FccR bind human IgG1 and human IgG3 albeit with different affinities
ranging from nanomolar for the high affinity FccRI, to low micromolar for the low
affinity receptors, FccRII and FccRIII. By contrast the binding of IgG2 or IgG4 is
more selective. Complexes of IgG2 are bound only by FccRIIa, specifically by the
‘‘low responder’’ FccRIIa allelic polymorphism form containing histidine at
position 131 (FccRIIa-His131). The presence of arginine in the corresponding allele
(FccRIIa-Arg131) impairs IgG2 binding. Interestingly, IgG4 complexes are bound
poorly by the low affinity FccRs, but monomeric IgG4 binds readily to the FccRI
(Table 4) (Hogarth and Pietersz 2012; Bruhns et al. 2009).

Our understanding of human FccR interactions with IgG is largely derived from
the analysis of interaction with human IgG1. Mutagenesis studies of FccR
(Maxwell et al. 1999; Hulett et al. 1995, 1999) or of IgG1 (Burton and Woof 1992;
Duncan et al. 1988; Shields et al. 2001, 2002) together with more recent crys-
tallographic studies of FccRIIa and FccRIII (Radaev et al. 2001; Ramsland et al.
2011; Sondermann et al. 2000; Mizushima et al. 2011; Ferrara et al. 2011) have
revealed how IgG1 interacts with the FccR.

The crystallographic analysis indicates that the low affinity FccRs interact
asymmetrically with the IgG1. The receptor ‘‘inserts’’ between the heavy chains of
one IgG1 molecule adjacent to the hinge (Fig. 1). The major contact surface with
IgG occurs in the second extracellular domain and is formed primarily by the BC
loop, C’E loop and the FG loop as well is the ‘‘Trp sandwich’’ formed from two
tryptophan residues of the inter-domain linker and BC loop of the FccR (Table 2).

In the IgG, the five principal sites of interaction with FccRs (Fig. 1) are: the
lower hinges (Leu234-Leu235-Gly236-Gly237) of both heavy chains; the hinge
proximal FG loop (Ala-Leu-Pro329 Ala-Pro) in heavy chain A and hinge proximal
(Asp265) B/C loop (Ser-Val-Asp265-Val-Ser) in heavy chain B. The fifth site is the
glycan of Chain A linked to Asn297. These sequences are identical in human IgG3
and also remarkably in all macaque IgGs, (Table 3) but are critically different in
human IgG2 and IgG4 (Hogarth and Pietersz 2012).

Whilst the contacts between IgG1 and FccRIIa or FccRIII are similar, the
principal difference in FccRIII is the more extensive interactions with the N-glycan
of the heavy chain Asn297. The greatly enhanced binding of defucosylated IgG1 to
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FccRIII, which greatly improves ADCC and possibly therapy with mAbs, results
from a local effect involving the adjacent Tyr296 (Ferrara et al. 2011; Mizushima
et al. 2011) and/or the generation of unique interactions between the N-linked
glycans of the receptor and defucosylated IgG1.

Structural knowledge of the interaction of IgG with the high affinity FccRI is
lacking. Mutagenesis studies of IgG and FccRI, taken together with the structure
of an unliganded FccRI (Lu et al. 2011), indicated that many of the interactions of
IgG and the high affinity FccR are likely to be similar to the low affinity FccRs.
But clearly differences exist to account for the higher affinity particularly of IgG4
which binds very poorly to the low affinity receptors (Bruhns et al. 2009; Powell
et al. 1999).

The extent to which the interaction of IgG2 and IgG4 with FccR follows the
‘‘canonical rules’’ of IgG1 binding is not clear (Table 3). Sequence differences in
the lower hinge of IgG2 (Pro234-Val235-Ala236-Gly237) or IgG4 the lower hinge
(Phe234-Leu235-Gly236-Gly237) are clearly distinct from the Leu234-Leu235 -Gly236

-Gly237 of IgG1 and IgG3. However, mutagenesis of the Leu235 of IgG4 ablates
FccR binding, suggesting that like IgG1, the lower hinge in IgG4 is essential
for FccR binding. However, other major structural changes to the CH2 FG loop
(Gly-Leu-Pro329-Ser-Ser) of IgG4 (Fig. 1 and Table 3) suggests it cannot interact
with the critical tryptophans of the ‘‘Trp sandwich’’ in FccRII or FccRIIIb, which
is absolutely essential for the binding of IgG1 and IgG3 (Davies et al. 2014;
Rispens et al. 2014).

Fig. 1 Fc receptor interaction sites in human IgG1. The residues shown are key contacts in the
Fc of heavy chain A and heavy chain B. Note that the Fab fragment in chain B has been removed
for clarity and the structure shown is based on the FccRIIa structure of (Ramsland et al. 2011) and
similar interactions are apparent for Fc: FccRIII (Sondermann et al. 2000; Radaev et al. 2001)
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3.2 Polymorphism Influences FccR Binding of IgG
and Susceptibility to Disease

The binding of human IgG by FccR, subsequent signal transduction and their roles
in human inflammation is confounded by genetic polymorphism which affects IgG
binding and/or alter effector functions, e.g. the balance of activation over inhibition.
Such polymorphisms are highly significant in human inflammatory and infectious
diseases.

By comparison to NHP (see below) the human FccR show relatively limited
polymorphism. However, several clinically significant polymorphisms are known.
In human FccRIIa, the so-called ‘‘low/high responder’’ polymorphism is deter-
mined by the presence of histidine or arginine at position 131, respectively (Tate
et al. 1992; Warnerdanm et al. 1990). It is associated with susceptibility to
autoimmune diseases including SLE (Karassa et al. 2002) rheumatoid arthritis
(Alizadeh et al. 2007) Guillian-Barre syndrome (van Sorge et al. 2005), suscep-
tibility to gram negative infection (Sole-Violan et al. 2011; Domingo et al. 2002),
susceptibility to HIV (Brouwer et al. 2004; Forthal et al. 2007), the clinical out-
come of antibody therapy in some malignancies (Bibeau et al. 2009; Cartron et al.
2002; Weng and Levy 2003) and also controversially with resistance to malaria
(Giha et al. 2012; Maiga et al. 2014).

How these polymorphisms manifest themselves in disease processes is not
entirely clear. Certainly, the FcR based effector function of IgG2 is dependent on
this polymorphism, as the avid binding and specificity for IgG2 is determined by
FccRIIa -His131. Clearly in situation dominated by an IgG2 response altered
effector function as a consequence of altered FccRIIa interaction may account for
lack of responsiveness. Such a situation is plausible in responses to encapsulated
gram negative infections where IgG2 can be the dominant immunoglobulin in the
humoral response. Indeed homozygozity for the FccRIIa-Arg131 is a risk factor in
poor response to meningococcal disease (Domingo et al. 2002). The structural
studies of the high and low responder FccRIIa suggest that the IgG:FccR inter-
action is more readily accommodated by the smaller histidine side chain compared
to the longer arginine side chain (Ramsland et al. 2011).

Clinically significant polymorphisms have also been identified in FccRIIIa and
FccRIIIb. FccRIIIa-Val/Phe158 and the FccRIIIb-NA1/NA2 polymorphisms
affects IgG binding and are associated with disease susceptibility in inflammatory
diseases. FccRIII Val158 (FccRIIIa-158 Val158) confers a higher affinity than
Phe158 (FccRIIIa-Phe158) (Tables 2 and 4). Allele distribution is skewed in SLE
patients (Koene et al. 1998), rheumatoid arthritis (Alizadeh et al. 2007), Wegeners
Granulomatosis (Dijstelbloem et al. 1999) and can affect the outcome of mAb
therapy (Weng and Levy 2003). Alleles of FccRIIIb are also associated with
autoimmune disease, including Guillain Barre Syndrome (van Sorge et al. 2005),
ANCA+ vasculitis (Tse et al. 2000) and in infectious disease especially when
co-inherited with risk alleles of FccRII (Fijen et al. 1993).
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Whether a simple alteration to affinity and/or specificity of an activating FccR
for IgG is alone sufficient to account for disease susceptibility is unclear. However,
polymorphism in FccRIIb has a profound effect on signal transduction and the
capacity of this inhibitory receptor to modulate responses (Li et al. 2003). Sub-
stitution of threonine at position 232 for isoleucine in the membrane spanning
region alters the receptors capacity to localise to lipid micro-domains in the
membrane, which in turn affects the extent of its inhibitory activity. This poly-
morphism is associated with autoimmune disease and also with protection from
severe malaria which is reflected in differences in allele frequency in European
versus Africans (Clatworthy et al. 2007). Relatively small alterations to the capacity
of this receptor to modulate activating pro-inflammatory signals can have signifi-
cant effects on activating receptor function. It is likely that such differences reflect a
possible imbalance in the regulation of inflammation, which is pro-survival in
environments of intense infectious disease pressure but becomes an autoimmunity
risk in the absence of such pressure.

4 FccR and Resistance or Susceptibility to HIV

Many of the principles of Fc receptor function that have emerged from experi-
mental systems in vivo and in vitro as well as genetic analysis of immune complex
induced inflammatory disease may also inform as to the role of FcRs in human
infection. Here we will focus on the resurgent interest in the role of antibodies and
Fc receptor function in HIV immunity.

Table 4 Relative binding avidity of complexes of human IgG subclasses to Fcc receptors in
human and macaquea

Receptor Species IgG1 IgG2 IgG3 IgG4

FccRI Human ++++ - ++++ +++
Macaque +++ +++ +++ +++

FccRIIa Human-R131 ++ ± ++++ ±

Human-H131 ++ ++ ++++ ±

Macaque ++ ++ ++ ++
FccRIIb Human +± - + ±

Macaque + ++ + ±

FccRIIIa Human-V158 ++ ± ++ ±

Human-F158 + - - ±

Macaque ++ + ++ ±

FccRIIIbb Human + - ++ -

+++ Strong, ++ Moderate, + Weak or — No avidity of Fc receptor
a Binding values for FccRI are based on are monoclonal IgG binding to cells or SPR (BIAcore )
analysis. Binding of FccRII and FccRIII is based on binding of immune complexes to cell
expressed receptor or SPR (BIAcore) analysis of monoclonal IgG. See references (Warncke et al.
2012; Trist et al. 2014; Powell et al. 1999; Maenaka et al. 2001; Bruhns et al. 2009) for details
b Macaques do not express FccRIIIb
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More than 30 million people are infected with HIV. Currently what constitutes
immunity to HIV and how this is generated is unknown but occurs by experi-
mentum naturae in elite controllers and some highly exposed but unaffected
individuals (Autran et al. 2011; International et al. 2010; Lichterfeld and Yu 2012).
Although antiretroviral treatments have improved the outlook for many HIV
patients, understanding the antibody response is now a focus of understanding the
acquisition of controlling immunity and is key to developing improved vaccination
strategies to confront the HIV pandemic (Doria-Rose et al. 2014).

Recent in human studies in vitro and in vivo in human clinical trials and in
macaques, provide increasing evidence for a critical role of antibody in effective
immunity and resistance to HIV (Barouch et al. 2013a, b; Gomez-Roman et al.
2005; Hessell et al. 2007, 2009; Moog et al. 2014). There is clear evidence to the
effectiveness of HIV antibodies, including broadly neutralising antibodies
(bNAbs), in preventing transmission and in control of viral replication being
dependant on the engagement of appropriate FcR dependant effector mechanisms.
Indeed the most promising vaccine trail in humans, the Thai RV144 trial, resulted
in modest protection of the vaccinated group in which only weak CTL and neu-
tralising antibody responses were elicited (Haynes et al. 2012; Rerks-Ngarm et al.
2009). Rather the FcR mediated antibody activity correlated with protection
sparking interest in understanding how these receptors mediate antibody protection
against HIV (Waltz 2012).

The use of bNAbs and mutants that ablate FccR binding have also implicated
FccR effector function is important in HIV immunity. Indeed bNAbs at concen-
trations insufficient for complete neutralisation are none-the-less active in trig-
gering antibody dependent cell-mediated viral inhibition (ADCVI) by
macrophages or other cell types and ADCC primarily by NK cells (Hessell et al.
2009). Ablation of the ‘general’ FccR binding activity of the IgG1 NAb b12 by
mutation of the lower hinge residues of the Leucine 234 and Leucine 235 to
alanine (Leu234-Leu235 to Ala234-Ala235 mutant) greatly reduced its protection of
macaques against SHIV in (Hessell et al. 2007) demonstrating a dominance of FcR
mediated cellular functions over neutralisation for protection in this in vivo model.

However antibodies act in concert with different Fc receptors on different
cells and so may be protective or deleterious in different contexts. While IgG
opsonisation has been shown to protect macaques from SIV/SHIV challenge
(Gomez-Roman et al. 2005; Hessell et al. 2007, 2009), IgG can also facilitate the
transcytosis of antigens across the mucosal epithelium of the genital tract by
engaging the transport receptor FcRn. In this setting the non-neutralising IgG HIV
antibodies may be undesirable, and sub-neutralising titres of NAbs may be similar,
in binding FcRn in the low pH of the human female genital tract and so trans-
porting infective virus across the epithelium and promoting transmission of
infection (Gupta et al. 2013).

The poor fidelity of HIV reverse transcription gives rise to the rapid generation
of virus variants and immune selection on these includes CTL responses and
neutralising antibodies. However some mutations do not fit either criteria, sug-
gesting they do affect non-neutralising antibody binding and so implicates other
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antibody effector functions in the control of HIV infection (Chung et al. 2011;
Isitman et al. 2012).

Despite this awareness of the importance of FcRs in antibody immunity to HIV
there is a lack of definition of the FcR dependent mechanisms underlying antibody
resistance to HIV. There is emerging knowledge of how protection involves
particular FcRs on particular leukocytes and by what of several possible processes
such as, phagocytosis, ADCC, ADCVI (Peressin et al. 2014) protection is medi-
ated and how these are all affected by FcR polymorphisms. A number of studies
have shown that HIV infection both alters FccR expression and functionality on
monocytes, macrophages, dendritic cells and NK cells (Kedzierska et al. 2003;
Lichtfuss et al. 2012; Ludlow et al. 2012; Dugast et al. 2011; Leeansyah et al.
2007). To date the interaction of broadly effective HIV antibodies with human
FcRs is relatively focussed on ADCC via NK cell FccRIIIa but the role of other
FccR and leukocytes becoming more apparent (Kramski et al. 2012). Importantly,
the evidence to date suggests that each activating FccR has plays some role,
protective and interestingly in some instances deleterious, in HIV infection.

4.1 FccRI

FccRI is induced on in pro-inflammatory environments, including the acute phase
of HIV infection (Dugast 2011). Interestingly macrophage mediated inactivation
of HIV treated with infected patient antibodies is inhibited by blocking FccRI
(Holl et al. 2004). Furthermore, the expression of FccRI in an HIV infectable Hela
cell (CD4+, CCR5+ and CXCR4+) showed a potent inhibition of infection by anti-
gp41 antibodies. In contrast there was no effect by the expression of FccRIIa or
FccRIIIa (Perez et al. 2009). FccRI has a specialised function in endocytosis
(Barnes et al. 2002) and inactivation of toxins (Abboud et al. 2010) which may
relate to its mechanism of HIV inactivation. It has been proposed that the
expression of FccRI by infected macrophages may result in the increased local
concentration of NAb which can then bind virus and inhibit cell to cell spread
(Peressin et al. 2014).

4.2 FccRII

The activities of the Fc receptor pair FccRIIa and FccRIIb determine cell acti-
vation by antibody. These two key Fc receptors are reported to be a determinate of
antibody mediated protection in slow progressors (Ackerman et al. 2013b). These
two forms have opposing functions, FccRIIa activates myeloid immune cells that
engage protective antibodies. In contrast, FccRIIb inhibits cell activation by
antibodies and so regulates normal antibody responses. However in infectious
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disease and vaccination this regulation can negatively limit the cell mediated
protection by anti-pathogen antibodies.

The efficacy of protection afforded by anti-HIV antibodies is thus likely to be
determined by the breadth of the response in covering virus variants and the
engagement of activating Fc receptors.

Just as genetic polymorphisms of the two most abundant human IgG Fc
receptors FccRIIa and FccRIIIa profoundly affect interaction with IgG and the
induction of effector responses in inflammation or in therapeutic anti-cancer
antibodies in patients so it is also clear that polymorphisms in FcRs are known to
contribute to degree of anti-HIV immunity individual humans (Forthal et al. 2007;
French et al. 2010). Indeed the histidine/arginine131 FccRIIa polymorphism is
reported to affect AIDS progression as Arg131 homozygous HIV infected indi-
viduals more rapidly decline to CD4 counts\200/mm3 (Forthal et al. 2007) and in
a vaccine study the His131 homozygous patients showed better control of virus
replication (French et al. 2010). In both studies anti-gp120 IgG2 antibodies were
observed and proposed to confer some protective activity in the FccRIIa His131

homozygous patients.
In contrast to these studies indicating protective roles for IgG2, IgG2 replete

and depleted sera from the Vax004 trial (Forthal et al. 2011) demonstrated a role
for IgG2 in inhibiting the internalisation of HIV-VLPs by monocytes. A differing
functional importance FccRIIa on monocytes and antigen presenting cells may
underlie the differing roles of IgG2 in these studies. A study of controller and non-
controller HIV patient cohorts showed controller patients, particularly those
lacking protective HLA-B57 developed IgG2 responses to HIV gag proteins. One
proposed mechanism is that FccRIIa mediates antigen presentation of IgG2
opsonized gag proteins (French et al. 2013).

Dysfunction of the gut barrier in HIV infection leads to the translocation of
microbial products and systemic immune activation. A recent study has shown that
CD16+ monocytes from HIV infected patients have increased capacity to produce
IL-23 in response to LPS/TLR4 stimulation (Manuzak et al. 2013). Fc receptors
are likely to play a role in this systemic immune activation since cross talk
between FcRs and pattern recognition receptors can shape immune responses by
together setting the nature of co-stimulation and the cytokine milieu under which T
cell immunity develops. Specifically FccRIIa and TLR4 co-recruitment by IgG
opsonised bacteria stimulates dendritic cell secretion of IL-23 p19 essential for
increased Th17 development (den Dunnen et al. 2012).

4.3 FccRIIIa

Although protection in the RV144 trial correlated with NK cell mediated ADCC
activity, it is yet unclear by which mechanisms and in what settings FccRIIIa is
important for protection. A recent study in macaques using a bNAb (b12) opti-
mised for FccRIIIa binding and so ADCC showed no increased protection to a
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mucosal SHIV challenge (Moldt et al. 2012). Indeed vaccinees in the non-
protective VAX004 trial with the Val158 polymorphism of FccRIIIa were at greater
risk of infection than the placebo group (Forthal et al. 2012), thus FccRIIIa may
not play a protective role against transmission. Indeed although FccRIIIa is cou-
pled to an ITAM containing FcR gamma subunit and is generally considered an
activating receptor, low stoichiometric ligand binding can result in partial phos-
phorylation of the ITAM tyrosines and phosphatase SHP1 recruitment and
inhibitory signalling (Aloulou et al. 2012). This may adversely influence some
cellular antiviral mechanisms particularly as HIV particles express few envelope
spikes (*14) and so can only be opsonised at low valency (Klein and Bjorkman
2010). Hence ADCC by NK cells may be a mechanism of FccRIIIa mediated
protection (Forthal et al. 2005; Forthal and Moog 2009) while in other settings this
FcR may exacerbate infection. Indeed the CD16+ population of monocytes is
highly susceptible to HIV infection which is attributed to high levels of CCR5 and
low APOBEC3G activity (Ellery et al. 2007) but may also be affected by uptake of
IgG opsonised virus.

A number of studies suggest FccRIIIa mediated ADCC by NK cells may be a
major defense against HIV by the destruction of IgG opsonised infected cells.
Lambotte et al. (2013) showed significantly higher ADCC capable antibody
responses in controller patients than viremic patients and this difference was clearer
when the controller patients were stratified by HLA-B57 expression. Controller
patients lacking the protective HLA-B57 presumably have a lower CD8+ cytotoxic
T cell mediated immunity to HIV gag and these also had the highest level of ADCC
active antibodies. A study of antibodies from HIV+ subjects in an ADCVI assay
found antibodies from controller individuals more potently activated donor NK
cells for multiple effector functions, including degranulation and secretion of both
IFNc and TNFa, compared to antibodies from all other HIV+ subjects. The serum
IgG from HIV infected subjects, and more particularly controllers, showed
increased proportion of agalactosyl IgG. Most importantly, purified gp120 specific
IgG from HIV+ individuals compared to their bulk serum IgG showed a marked
increase in the proportion proportion of agalactosyl and non-fucosylated IgGs, but
without clear differences between the different HIV+ groups (Ackerman et al.
2013a). Non-fucosylated IgG is of particular interest as it has 100-fold enhanced
affinity for FccRIIIa that translates to a correspondingly increased activity in ADCC
(Ferrara et al. 2011; Shields et al. 2002).

Antibodies active in ADCC in an NK assay will also be potentially active in a
number of cellular effector functions (Moog et al. 2014) but the virus itself testifies
to the potential importance of ADCC in controlling infection as it evades ADCC
by the action of its accessory protein Vpu. Vpu is proposed to target the interferon
induced protein tetherin, which otherwise inhibits viral particle release, so infected
cells are more easily opsonised and targeted for ADCC (Alvarez et al. 2014). A
study examining the activity of sera from a cohort of long term slow progressors
(LTSP) and non-LTSP HIV infected patients in a NK/FccRIIIa mediated ADCC
assay mapped activity to linear epitopes using HIV peptides. Similar numbers
from both cohorts reacted with envelope derived peptides but unexpectedly the
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TLSP cohort showed significantly higher number of responses to accessory pro-
teins including Vpu (Wren et al. 2012). Thus Vpu itself may be a target for ADCC
but this study did not examine if these antibodies further enhance ADCC by
inhibiting Vpu activity and increasing target expression on the infected cell by
tetherin-mediated surface trapping of nascent virus.

5 Non-human Primate (Macaque) FccRs

NHP particularly macaque species, serve as experimental and preclinical safety
models of human immunity, antibody responses and effector functions in infection,
notably HIV. Additionally, they are utilised as models of vaccine responses and in
particular for preclinical evaluation of complex mechanisms of action and phar-
macokinetics of mAb. However, the design and interpretation of experimental data
is often based on the assumption that NHP Fc receptors and their antibody
interactions faithfully mimic those of humans. Yet, despite an abundance of
studies of human FcR and human IgG structure and function, there is a remarkable
paucity of information on NHP FcR IgG interaction. This lack of systematic and
comprehensive investigation of NHP Fc receptors is surprising given prominence
of NHPs as models of human immunity, their use in evaluation of vaccines and
preclinical testing models of therapeutic biologicals particularly mAb.

Analyses to date indicate that, as a first approximation, macaque and human
FccR share sequence similarity and many similar properties, as do the macaque
IgG subclasses. However there are very significant differences in specificity and
affinity for human IgG subclasses and surprising differences in tissue expression.
These differences may also be confounded by the use of different model systems
in vitro; different ligand formats and the use of different species and even in
different populations of a single species, for example the Indian and Chinese
rhesus macaques for which differences are known (Scinicariello et al. 2004).

This section focusses on analyses of FcR of the three commonly used species of
macaque: M. mulatta the rhesus macaque, M. fasicularis the cynomolgous
macaque and M. nemestrina the pigtail macaque.

5.1 Sequence Comparison of Human and Macaque IgG
and FccRs. Specificity of Human FccR are Not
Equivalent in Macaque Species

As in humans, all three macaque species express high and low affinity IgG Fc
receptors—FccRI (high affinity receptor), FccRIIa and FccRIIb, as well as FccRIII
(low affinity receptors). Considerable sequence identity is apparent between these
receptors and their human orthologues. It is greatest in the high affinity receptor
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(95 identity % for FccRI) (Table 2) (Nguyen et al. 2011) (Hogarth and Trist
unpublished) whereas sequence diversity is greatest in the low affinity receptors,
especially FccRIIa (85 %) (Nguyen et al. 2011; Trist et al. 2014).

Cynomolgus macaque FccRI binds human IgG1, IgG3, IgG4, with high
affinity, as does human FccRI, though the affinity of IgG4 appears lower in the
cynomolgus FccRI relative to the other subclasses (Tables 2 and 4) (Warncke
et al. 2012). Meanwhile, the human IgG binding profile of cynomolgus FccRIIIa is
also similar to human FccRIII-Val158 allele, showing considerably greater binding
of human IgG1 and IgG3 but not IgG2 or IgG4 (Tables 2 and 4).

However, the greatest differences in the binding of human IgG between human
and macaque FccR occur in interactions with FccRIIa and FccRIIb. The human
IgG binding profile of the inhibitory FccRIIb is most dramatically different from
human in cynomolgus and pig-tail macaque (Warncke et al. 2012; Trist et al.
2014). The macaque FccRIIb has a broader IgG specificity than human FccRIIb,
as macaque FccRIIb avidly binds human IgG2. This surprising difference in
specificity is primarily due to the presence of histidine at position 131 in macaque
FccRIIb. By contrast, arginine is present in this position in human FccRIIb which
precludes interaction with the human IgG2. This difference in specificity is also
manifest in the ‘‘high and low responder’’ allelic forms of FccRIIa (see above and
Tables 2 and 4). Interestingly many non-human and human primates, including
rhesus macaques, also have histidine in this position and presumably can bind
human IgG2 (Trist et al. 2014).

Macaque FccRIIa binds human IgG1 IgG2 and IgG3. The presence of histidine
at position 131 in the macaque receptor is responsible for the specific binding of
IgG2 (Trist et al. 2014). However, the binding of human IgG1 and IgG2 is
impaired by comparison to the binding of their human counterparts but IgG3
binding is unaffected (Tables 2 and 4) (Trist et al. 2014).

The impaired binding of human IgG1 and IgG2 to FccRIIa results from the
replacement of the Leu159 and Phe160 in human FccRIIa, with Pro259 Tyr150 in
macaque FccRIIa. These residues of the G-strand do not contact IgG, but impinge
directly on the ‘‘Trp sandwich’’ and Tyr157 of the FG loop, resulting in reduced
contact with the Pro329 and the lower hinge of IgG respectively (Trist et al. 2014).
These amino acids are conserved in FccRIIa of all three macaque species
(Jacobsen et al. 2011; Nguyen et al. 2011; Trist et al. 2014; Warncke et al. 2012)
but are not in other NHP. Pro159 Tyr160 are also present in all macaque inhibitory
FccRIIb, however any effect on IgG binding is unknown (Table 2).

The impaired binding of human IgG1 and IgG2 by macaque FccRIIa, but avid
binding of IgG2 by macaque FccRIIb, shows there is a distinct hierarchy of
binding of IgG2 and IgG1 in macaque FccRIIa and FccRIIb compared to humans
(Warncke et al. 2012; Trist et al. 2014). As a consequence of these differences,
particularly the relatively greater binding to the inhibitory FccRIIb, antibody
effector functions in macaques in vivo, especially of IgG2, may not entirely
recapitulate human effector responses (Trist et al. 2014).
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5.2 Polymorphisms in Macaque FccR

Polymorphism in human Fc receptors can be functionally important, affecting IgG
binding and/or signal transduction as discussed above (Tate et al. 1992; Warner-
danm et al. 1990). Despite the relatively limited sequence data available from
pigtail macaque (Trist et al. 2014), rhesus macaque (Nguyen et al. 2011) and
cynomolgus macaques (Jacobsen et al. 2011) it is clear that macaque Fc receptors
exhibit extensive polymorphism. This high level of polymorphism, results in
individual variation in as much as 5 % of the amino acid content of the receptors.
FccRIIa appears to be the most polymorphic with at least eight alleles defined in
10 pigtail macaques (Trist et al. 2014) and seven alleles in rhesus macaque
(Nguyen et al. 2011); allelic forms of FccRI, FccRIII are also known (Nguyen
et al. 2011) and (Trist and Hogarth unpublished). Interestingly, FccRIIb appears to
be the least polymorphic receptor (Nguyen et al. 2011; Scinicariello et al. 2004).

However, the functional significance of these polymorphisms has only been
investigated in pigtail macaque where hypo-functional receptors encoded by
FccRIIa alleles have been identified (Trist et al. 2014). Thus polymorphism results
in the substitution of proline for the critical histidine at position 131 of the IgG
binding site and effectively ablates human IgG1 and IgG2 binding and profoundly
reduces the binding of IgG3 (Table 2). Interestingly the binding of macaque IgG is
also largely ablated.

In other macaque species and NHPs, polymorphic residues occur in, and
around, the IgG binding sites or structurally significant regions of FccRIIa
(Table 3) (Trist et al. 2014). These include altered glycosylation sites in rhesus
macaques and baboons at Asp/Asn128 adjacent to Phe129, which in human FccRIIa
is a critical to IgG binding (Ramsland et al. 2011). Similarly, in marmoset a
possible N-glycosylation is present at position 133. Whist as yet uncharacterised,
previous experience with the human FccR shows that alterations in N-glycosylation
affect FccR structure and ligand binding properties (van Sorge et al. 2003) and
thereby affect FccR function.

Polymorphism also results in variation in the cytoplasmic tail particularly of
FccRIIa in rhesus and pigtail macaque (Nguyen et al. 2011; Trist et al. 2014).
These include sequence variation in the ITAM around the canonical tyrosine
residues of the motif but whether this is any functional impact is presently
unknown.

5.3 Comparison of Macaque and Human IgG

Like humans, rhesus and cynomolgus macaques, and presumably pigtail macaque,
have four IgG subclasses; IgG1 IgG2 IgG3 IgG4. However, unlike human IgG
subclasses the macaque IgG lack the sequence diversity in regions that in human
IgG1 are necessary for the interaction with FccR. Thus the lower hinge (Leu234
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-Leu235-Gly236-Gly237) and the adjacent segments of Cc2, BC loop containing
Asp265 as well as the FG loop containing the Pro329 (Table 3) (Jacobsen et al.
2011; Scinicariello et al. 2004; Warncke et al. 2012) of the macaque IgG sub-
classes are identical to each other and to human IgG1 in these regions with the
exception of a Gly327 of macaque IgG3 and/or IgG4 (Table 3).

The observation that the lower hinge sequence of all macaque IgG classes is
identical to human IgG1 is surprising given the variation in this segment in the
human IgG and its influence on binding to human FccR (Bruhns et al. 2009;
Powell et al. 1999). It is perhaps not surprising then that the macaque IgG sub-
classes all showed similar receptor binding characteristics, as determined by SPR
using biacore analysis (Warncke et al. 2012). What is surprising however is that
despite these modest differences in receptor binding characteristics, the subclasses
behave differently in experimental models using whole cells expressing FccR
which shows that IgG1 and IgG3 have potent activity but IgG2 and IgG4 do not
(Jacobsen et al. 2011).

Apart from the lack of sequence diversity in the FccR binding regions, there are
several other significant differences between the macaque and human IgG sub-
classes. The hinge of macaque IgG3 is encoded by a single exon which in human
IgG3 is encoded by multiple homologous exons. This results in a shorter hinge
region in the macaque which potentially renders it less flexible than its human
counterpart. Importantly, this increased flexibility in human hinge region is
thought to confer enhanced HIV-neutralizing ability (Scinicariello et al. 2004;
Scharf et al. 2001).

Macaque IgG4 also exhibits significant structural difference from human which
are likely to impart a significantly different effects on function. The half molecule
exchange, commonly referred to as Fab arm exchange, is a unique property of
human IgG4 (van der Neut Kolfschoten et al. 2007) but is unlikely to occur in
macaques. Human IgG4 possess a serine at position 228 in the core hinge (Cys226

-Pro227-Ser228-Cys229) which destabilises the adjacent inter heavy chain disulphide
bonds. This results in the exchange of heavy chains and their attached light chain
between individual IgG4 molecules to produce bi-specific antibodies (van der Neut
Kolfschoten et al. 2007). However both cynomolgus and rhesus IgG4 (and all IgG
subclasses) have proline in this position (Jacobsen et al. 2011; Scinicariello et al.
2004) which stabilises the disulphide bonds preventing the exchange. Thus IgG4 in
macaques is likely to retain a classical FcR activating function, rather than the
‘‘anti-inflammatory’’ action of the half molecule exchanged human IgG4 (van der
Neut Kolfschoten et al. 2007; Warncke et al. 2012). Whether such binding dif-
ferences are indeed reflected in differences in biological responses remains to be
determined, particularly as substantial sequence differences are apparent in the
cytoplasmic tails of NHP FccR. Thus, it is a formal possibility that differences in
the IgG binding to Fc receptors are ‘‘compensated’’ by differences in signal
transduction or receptor expression on cells.
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5.4 Divergent Tissue Expression Profiles of Human
and Macaque FccR

The tissue distribution of FccR in macaques has not been as comprehensively
studied as humans. Analysis to date indicates that although macaque FccR
expression is similar to human, key differences have been identified in pigtail
macaque (Trist et al. 2014) (Hogarth unpublished), in rhesus macaque (Rogers et al.
2006; Choi et al. 2008) and cynomolgus macaque (Table 1) (Warncke et al. 2012).

Flow cytometry shows FccRIIIa is present on macaque NK cells and monocytes
(Webster and Johnson 2005; Choi et al. 2008). FccRIIa is present on monocytes;
macrophages, neutrophils and platelets; (Mahan et al. 1993; Trist et al. 2014;
Warncke et al. 2012) by PCR FccRIIb is present in B cells and classical CD14+

monocytes (Hogarth unpublished).
The major difference between human and macaque receptor expression is

observed for FccRIII which is absent from macaque neutrophils (Warncke et al.
2012; Rogers et al. 2006; Trist et al. 2014). Only one FccRIII gene is observed in
the rhesus macaque genome which likely encodes an ortholog of human FccRIIIa,
rather than the GPI-anchored FccRIIIb. The lack of FccRIII expression may be
off-set by increased expression of FccRIIa on neutrophils (Trist et al. 2014).
FccRIIIb appears to expressed on other NHP neutrophils (Rogers et al. 2006).

6 Conclusions

In the three decades since their molecular cloning the human Fc receptors have
emerged as one of the key receptor families in human immunity initiating a wide
range of immunological and inflammatory responses which is reflective of the
large and diverse roles of antibodies in vivo.

Lessons learned from the considerable investigations of FccR roles in the
activation or regulation of antibody induced autoimmune inflammation are likely
to be equally applicable in understanding newly emerging importance of anti-
bodies in other diseases including HIV. A growing body of evidence suggests
antibodies and FccR functions may be keys to the development of effective
immunity which suggests also that successful vaccines may well depend on the
thorough understanding of Fc receptor functions.

Similarly this knowledge of pro- and anti-inflammatory effects of antibodies
mediated through FccR has not only provided mechanistic explanations for anti-
body function but has also provided the basis for the deliberate manipulation of
effector responses by appropriately engineered mAbs.

There is a considerable reliance on outbred populations of NHP, particularly
macaques, as an animal model of human immunity, viral pathogenesis as well as
the preclinical development of vaccines and therapeutic antibodies. Despite this
there is a surprising lack of systematic analysis of NHP FcR functions and until
recently, little understanding of the interaction of human IgG with NHP FccR.
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Whilst NHP are a robust model of human immunity there are clear differences
in interaction of human IgG subclasses with human FccR compared to those of the
macaque FccR. Furthermore the existence of a non-functional or hypo-functional
receptors as a result of the surprising polymorphism in macaque FccR adds
complexity to the modelling of human IgG behaviour in vivo. The possibility that
FccR effector responses, normally attributable to human IgG may not be faithfully
reflected in macaques suggests that prudent design of experiments or testing and
data interpretation is required.

A mechanistic understanding of immune process induced or modified by the
interaction of IgG and FccR in normal and pathological immunity will assist in the
understanding the natural history of effective immune responses in infection and
greatly assist the development of active, vaccine based protection, and passive
antibody therapies.
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FccRIIB as a Key Determinant
of Agonistic Antibody Efficacy

Ann L. White, Stephen A. Beers and Mark S. Cragg

Abstract Fc gamma Receptor (FccR) IIB (CD32B) is an immunoreceptor
tyrosine inhibitory motif (ITIM)-bearing Fc receptor that is involved in abrogating
the signalling and function delivered from other receptors; archetypally those
arising from other, activatory, FccR and from the B cell receptor (BCR) for
antigen. In the context of immunotherapy, it has convincingly been shown to limit
a variety of clinically important therapeutic monoclonal antibodies (mAb) such as
rituximab and trastuzumab in preclinical models. However, recent exploration of
so-called immunomodulatory mAb, for example agonist mAb directed against
various members of the TNFR super-family, has cast new light on the ability of
FccRIIB to regulate immune responses and immunotherapy. These data, accu-
mulated by several independent groups, have shown the seemingly paradoxical
ability of FccRIIB to augment or even be absolutely required for the activity of
this class of mAb. In this review we highlight the key role of FccRIIB in regulating
agonistic mAb, detail the likely mechanism of action and propose new ways in
which this information may be exploited therapeutically.
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1 Introduction

Fc gamma Receptor (FccR) IIB (CD32B) is the solitary inhibitory receptor of the
FccR family in mice and humans (reviewed in (Nimmerjahn and Ravetch 2007a,
b; Bruhns et al. 2009)). It is inhibitory by virtue of the immunoreceptor tyrosine
inhibitory motif (ITIM) in its cytoplasmic tail (Muta et al. 1994; Ono et al. 1996;
Bolland et al. 1998; Okada et al. 1998) which serves to abrogate signalling ini-
tiated from a selection of activatory receptors, principally the B cell receptor
(BCR) for antigen (Sato and Ochi 1998; Enyedy et al. 2001; Li et al. 2003;
Radstake et al. 2006) and the other, activatory members of the FccR family
(Daeron et al. 1995; Desai et al. 2007; Flores et al. 2009), thereby limiting their
activity. Engagement of FccRIIB typically results in activation of SHIP and SHP-
1, with the former largely responsible for aborting productive signalling (Muta
et al. 1994; Ono et al. 1996; Bolland et al. 1998; Okada et al. 1998). The details of
the negative signalling, which is transduced by engaging FccRIIB, is reviewed
elsewhere (Daeron and Lesourne 2006).

In the context of monoclonal antibody (mAb) immunotherapy, FccRIIB has
been shown to limit the effects of a variety of clinically important mAb such as
rituximab and trastuzumab. In their seminal paper Clynes and Ravetch showed that
genetic deletion of FccRIIB in mice augmented therapy, whereas loss of the
activatory FccR, through deletion of the c chain, abrogated it (Clynes et al. 2000).
This paradigm remained largely unaltered for a decade and has been confirmed
in numerous studies of both normal and malignant target cell depletion (Green
et al. 2002; Uchida et al. 2004; Gong et al. 2005; Hamaguchi et al. 2006; Kaneko
et al. 2006; Nimmerjahn and Ravetch 2007a; Minard-Colin et al. 2008; Beers et al.
2010). Furthermore, this concept explains the observed efficacy with which
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different mAb isotypes delete target cells (Ravetch and Bolland 2001; Nimmerjahn
and Ravetch 2005, 2006) through their differential abilities to engage FccR
(reviewed in (Bruhns et al. 2009)) leading to the description of the activatory:
inhibitory (A:I) ratio as key in determining mAb potency (described in (Nim-
merjahn and Ravetch 2005), and (Nimmerjahn et al. 2005)). The relationship
between FccR and mAb isotype in mice is clear with mIgG1 binding FccRIIB and
a single activatory FccR (FccRIII), whereas mIgG2a engages all activatory FccR
efficiently and with enhanced affinity to both FccRI and FccRIV, resulting in a far
higher A:I ratio and better depleting capacity. Although not directly translatable to
humans, due largely to the fact that humans have a larger, more complex repertoire
of FccR and that human mAb isotypes do not possess the level of binding to the
inhibitory FccRIIB found with mIgG1, these key concepts have stimulated the
development of so-called third generation mAb. These engineered mAb, as typi-
fied by the anti-CD20s (Lim et al. 2010), have been designed with altered FccR-
binding properties through various means of Fc engineering (reviewed in (Kellner
et al. 2013)). The first glycomodified anti-CD20 mAb (GA101, GazyvaTM obin-
utuzumab) (Mossner et al. 2010) has just been approved for use in previously
untreated CLL (Roche 2013). This mAb has a higher A:I ratio based upon its
enhanced affinity for FccRIIIA (Ferrara et al. 2006) and FccRIIIB (Golay et al.
2013) whilst its binding to other FccR remains largely unchanged. Whether further
iterations will involve mAb with reduced FccRIIB binding and whether this will
further improve clinical activity on the basis of an improved A:I ratio remains to
be seen.

In addition to progress with these so-called direct targeting mAb, the recent
exponential explosion in therapeutic mAb development (reviewed in (Reichert and
Dhimolea, 2012), has uncovered a new class of reagents; immunomodulatory
mAb. Rather than binding directly to the tumour these agents engage key cells of
the immune system such as T cells, dendritic cells and macrophages (reviewed in
(Weiner et al. 2010). They can be sub-divided into agonists and antagonists or
check-point blockers. The agonistic mAb bind to immune receptors such as CD40,
CD27, 4-1BB (CD137) and OX40 (CD134) that are physiologically activated by
trimeric ligands to stimulate or initiate immune responses. In contrast, antagonists
or check-point blockers target receptors or their ligands that limit immune
responses such as CTLA-4 (CD152), PD-1 (CD279) and PD-L1 (CD274)
(reviewed in (Lee et al. 2012) and (Vonderheide and Glennie 2013)). Although
both approaches are able to lead to clearance of tumour, agonistic immunostim-
ulatory mAb offer the further possibility of activating antigen-specific responses
thereby reducing the potential toxicity associated with widespread immune acti-
vation. Intriguingly, this new class of immunostimulatory mAb has begun to
challenge the A:I paradigm as for some of them, such as anti-CD40, it has become
clear that FccRIIB promotes rather than inhibits their immune stimulatory and
therapeutic activity.

FccRIIB as a Key Determinant of Agonistic Antibody Efficacy 357



2 The Start of the Breakdown

More than a decade ago, observations inconsistent with the A:I paradigm were first
reported relating to the anti-Fas (CD95) mAb, Jo2. Xu et al. found that hepato-
toxicity elicited by Jo2 was dependent on the expression of FccRIIB in the liver
(Xu et al. 2003). Following Jo2 treatment, wild-type mice die from acute liver
failure, a response which is exacerbated in c chain -/- mice, whereas FccRIIB -/-
mice survive. In vitro FccRIIB, but not FccRI and FccRIII enhanced Jo2-mediated
apoptosis of Fas expressing target cells and toxicity was attributed to the
expression of Fas on hepatocytes and FccRIIB on hepatic sinusoidal endothelial
cells (Fig. 1a). Interestingly, in the same study, FccRI and FccRIII were shown as
essential for the apoptosis-inducing activity of a non-hepatotoxic anti-Fas mAb
HFE7A. The authors concluded that, ‘‘by interacting with the Fc region of ago-
nistic Abs, FccRs can modulate both the desired and undesired consequences of
Ab-based therapy.’’ This early study was perhaps the first to signal the clear
dependence many mAb have on engaging the appropriate FccR for achieving their
desired therapeutic activity and also the complexity involved in understanding key
modes of action.

3 Further Along the TRAIL

Further mAb targets assessed for their anti-tumour effects and FccR-dependency
were the TNF-related apoptosis-inducing ligand (TRAIL) receptors. TRAIL binds
a number of receptors (reviewed in (Ashkenazi 2002)) with DR4 and DR5 in
humans and DR5 in mice demonstrated as having considerable anti-tumour
potential.

Early studies provided a clear indication that Fc:FccR interactions were critical
for regulating the efficacy of these reagents (Chuntharapai et al. 2001). In vitro,
DR4 mAbs displayed a requirement for further cross-linking for the induction of
apoptosis. In a colon cancer xenograft system a mAb of mIgG1 isotype induced
apoptosis in tumour cells causing tumour regression, whereas the mIgG2a isotype
switch variant of the same mAb was much less effective. Similar observations
were made with other DR4 mAbs of different isotypes in vivo.

Like the human mAb, the agonistic anti-mouse DR5 mAb, MD5-1, was shown to
exhibit potent anti-tumour effects through a cross-linking dependent ability to
induce tumour cell apoptosis in this case provided by biotin:streptavidin conjuga-
tion (Takeda et al. 2004). As with rituximab, successful treatment of 4T1tumours
was initially shown to depend on activatory FccR expression, with therapeutic
responses equivalent in FccRIIB -/- and wild-type mice. However, in a subsequent
study the same authors demonstrated that an intact B cell compartment was critical
for the therapeutic activity of this same mAb, whereas CD11c+ dendritic cells were
dispensable. As the authors themselves stated, ‘‘These data are intriguing and
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Fig. 1 Role of FccRIIB in regulating agonistic antibodies. FccRIIB has the potential to alter the
therapeutic efficacy of agonistic mAb through various routes: a With mAb directed to death
receptors such as DR4,5 and Fas, FccRIIB presented on an accessory immune cell (B cell, DC,
etc.) results in potent receptor cross-linking mimicking ligand-induced multimerisation, eliciting
apoptosis in the target cell. b With mAb targeting costimulatory immune receptors, such as CD27
and CD40, FccRIIB triggers receptor cross-linking to drive potent intracellular signalling and
strong immune activation. These mAb may be engaged by FccRIIB in either a cis or trans format.
When engaged in trans, interaction with FccRIIB on an accessory cell, resultant receptor cross-
linking elicits productive immune responses. However, in a cis orientation, signalling does not
result in powerful immune stimulation, potentially due to the concurrent inhibitory signalling
arising from FccRIIB in the same cell. c With direct targeting mAb such as rituximab, cis
interaction with FccRIIB on the target cell surface leads to internalisation of the receptor and
abrogation of therapeutic anti-cancer activity. Further impairment of activity occurs through trans
FccRIIB engagement on the effector cell
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establish an important platform on which to further explore the mechanism by
which small numbers of B cells entering tumours might enable anti-DR5–mediated
tumour apoptosis’’ (Haynes et al. 2010). In vitro, B cells were confirmed to trigger
tumour cell apoptosis by virtue of their FccR. As B cells only express FccRIIB this
provided further evidence that the inhibitory FccRIIB was responsible for affording
the therapeutic potential of agonistic TRAIL mAb (Fig. 1a) an observation at odds
with their original findings (Takeda et al. 2004).

Wilson et al. subsequently examined this issue for the human DR5-agonistic
antibody drozitumab (Wilson et al. 2011). As seen previously, FccR promoted
DR5-mediated tumour-cell apoptosis. However, drozitumab was effective when
engaged by either activatory or inhibitory FccR. In the same study similar
dependency was indicated for CD40 mAb (see below), whereas rituximab as
anticipated was fully reliant upon activatory FccR expression. The question of
FccR requirement by these mAb was most recently revisited by Li et al. (Li and
Ravetch 2012), who demonstrated that the anti-tumour efficacy of these mAb had
an absolute requirement for FccRIIB. Taking all of these data together it is clear
that FccRIIB can be, and often is, sufficient and necessary for the functioning of
DR5 mAb with individual differences likely related to the model under study.

4 CD40 as a Target

A similar situation is observed with another TNFR family member, CD40. Anti-
CD40 mAb can mimic the activities of the physiological ligand (CD154) in pro-
moting the formation and survival of germinal centres in vivo (Liu et al. 1989;
Paulie et al. 1989) as well as the proliferation of B cells in vitro (Banchereau et al.
1991). In addition to B cells (Clark and Ledbetter 1986), CD40 is expressed on
other APC such as dendritic cells (Hart and McKenzie 1988; Schriever et al. 1989)
and macrophages, various non-immune cells (Galy and Spits 1992) and many
tumours (Paulie et al. 1985; Eliopoulos and Young 2004).

Inevitably, the presence of CD40 on B cell lymphomas and studies suggesting it
was a useful target to induce cell cycle arrest and apoptosis led to its consideration
as a target for clinical use. In xenograft models of human B cell lymphoma treated
with anti-CD40 mAb (Law et al. 2005; Oflazoglu et al. 2009) efficacy was shown
to be dependent on activatory FccR. However, in addition to this direct targeting
activity, anti-CD40 mAb were also shown to be particularly effective substitutes
for T cell help, capable of powerful humoral (Dullforce et al. 1998) and cellular
immunostimulatory activity (French et al. 1999). The cytotoxic T lymphocyte
(CTL) responses induced in mouse models result in curative anti-tumour effects
with the generation of long-term immunological memory enabling protection from
tumour re-challenge. It is exactly these properties that are the holy grail of cancer
immunotherapy. However, it was only recently that the in vivo requirements for
anti-CD40 mAb to elicit ant-tumour and/or immunostimulation were established,
with two independent groups demonstrating that FccRIIB provides the requisite
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cross-linking function (Fig. 1b) (White et al. 2011; White et al. 2013), (Li and
Ravetch 2011, 2013). As such, anti-CD40 mAb of the mIgG1 isotype, which
interacts well with FccRIIB, elicits potent immunostimulatory and anti-tumour
effects in various model systems, whereas mIgG2a reagents do not. Importantly,
membrane redistribution of the FccR is required for this cross-linking function, as
when it is prevented by actin polymerisation inhibitors, the effects are abrogated
(Wilson et al. 2011).

5 What is Special About FccRIIB?

We believe that one of the contributing factors relating to the capacity of FccRIIB
to cross-link mAb in vivo reflects its expression pattern. In support of this, when
expressed at the appropriate level and location, activatory FccR can also provide
effective cross-linking for anti-CD40 mAb both in vitro and in vivo (see below).
FccRIIB is expressed by antigen presenting cells (APC): It is the only FccR on B
cells and is expressed alongside activatory FccR on other APC (Jonsson et al.
2013). Given that CD40 and other TNFR are highly expressed in lymphoid tissues
and on APC, it is perhaps logical that FccRIIB is ideally suited to provide cross-
linking for agonistic anti-TNFR mAb. For anti-CD40 mAb cross-linking is med-
iated in trans by FccRIIB on adjacent cells (White et al. 2011, 2013, 2014; Li and
Ravetch 2013) and, although previously debated, recent results (White et al. 2011,
2014) have established that reverse signalling through the FccRIIB ITIM (Fig. 1)
does not play a role. This suggests that although cis interactions are likely to occur
on B cells for example, they do not lead to CD40-mediated activation perhaps due
to the simultaneous delivery of an inhibitory signal from the ITIM of FccRIIB as
has been demonstrated for FccRIIB and the B cell receptor (Phillips and Parker
1983; Fong et al. 2000) (Fig. 1b).

In a therapeutic setting, B lymphoma cells themselves can provide the FccRIIB
required for effective CTL responses (Li and Ravetch 2013; White et al. 2014).
This lymphoma-dependent cross-linking might give an alternative explanation for
earlier observations demonstrating that effective therapy was dependent on the
presence of large established tumours previously thought to reflect a required
antigenic load (Tutt et al. 2002). It may relate instead to an insufficient density of
cells needed for effective cross-linking.

6 Optimising FccR Interations

When considering how these mechanistic findings can be translated to the clinic it
is important to recognise that none of the human IgG isotypes bind with high
affinity to FccRIIB as monomers (Bruhns et al. 2009). Given this, what isotype
might be best used for cross-linking-dependent agents in humans? Some have
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suggested boosting Fc:FccRIIB interactions through antibody engineering (Li and
Ravetch 2011; Mimoto et al. 2013). Although this should lead to enhanced
FccRIIB-dependent cross-linking, these reagents would still be limited by
FccRIIB availability in vivo. An additional concern with this approach is the
potential for FccRIIB-dependent hepatotoxicity detailed above (Xu et al. 2003). A
more productive avenue might be to develop reagents with FccR-independent
innate cross-linking ability. This could conceivably lead to a class of drugs with
defined activity and predictable toxicity irrespective of FccR expression and
availability in vivo, leading to a broader applicability, independent of the local
microenvironment.

7 Cross-linking Strategies for Clinical Translation

Agonistic mAb-based reagents which can act through FccR-independent cross-
linking have been championed by numerous groups over the years but for various
reasons, such as poor half-life and linker instability, have usually faltered. How-
ever, with the availability of more stable cross-linking molecules and a better
understanding of the biological factors underpinning productive in vivo activity it
is perhaps time to revisit such approaches. We have recently demonstrated that
multimeric forms of anti-CD40 are powerful agonists capable of inducing sig-
nificant humoral and cellular immune responses in murine models and that they
can produce cures in an established B cell lymphoma model under circumstances
where direct targeting mAb are entirely ineffective. Similarly, potent FccR-inde-
pendent anti-tumour efficacy was demonstrated with a TRAIL-receptor binding
multimeric construct that displays high inherent cross-linking capacity (Gieffers
et al. 2013).

8 Cross-linking Versus Deletion

The data described above highlight the importance of the local environment in
determining the effector mechanisms and FccR dependency of therapeutic mAb. It
therefore follows that changing the microenvironment will influence these factors.
We recently tested this hypothesis and showed that when the TLR agonist Poly:IC
is administered to mice, local activatory FccR expression is increased and the
mIgG2a isotype of anti-CD40 that under normal circumstance is not active
becomes immunostimulatory in an activatory FccR-dependent way (White et al.
2014). As well as inducing apoptosis, direct targeting of tumour cells through
TNFRs expressed on their surface (for example DR5 in breast cancer (Takeda
et al. 2004) or CD40 in B cell lymphoma (Law et al. 2005)) can also elicit
therapeutic responses through target cell deletion. Manipulating FccR expression
profiles in this manner may therefore provide the optimal situation whereby both
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tumour cell deletion as well as either stimulation of tumour immunity or target cell
apoptosis can be achieved with a single agent. Interestingly, the mIgG2a isotype
does not trigger deletion of the CD40+APCs in this situation, indicating that either
CD40 or the APC itself is a poor target for deletion or that there are not sufficient
effectors present.

Whether cross-linking-driven agonistic activity or activatory FccR-mediated
deletion is the most effective clinical approach may need to be determined
empirically for each mAb target and therapeutic context. Many factors, for
example epitope specificity, are likely to affect the balance between these mech-
anisms. Not all cell surface proteins make good targets for deleting mAb and in
some cases deletion may be unwanted, such as with anti-CD40 mAb that bind
APC. The optimal FccR binding profile may also be dependent on the desired
cellular target and the available FccR repertoire when multiple cell types express
the target antigen. A striking example of this is the different mechanisms by which
anti-CD40 provides therapy for lymphoid and pancreatic tumours. In lymphoma
models, anti-CD40 mAb induce a robust CD4-independent antigen-specific CD8
response that is able to clear tumour and generate immunological memory (French
et al. 1999; Tutt et al. 2002). In contrast, in patients with metastatic pancreatic
adenocarcinoma and in mouse models of this disease anti-CD40 is found to be
dependent on the production of cytotoxic macrophages (Beatty et al. 2011). The
important question is thus what mAb properties are required in these different
settings and how they might be predicted to maximise patient responses.

9 Anti-tumour Therapy Versus Immune Response

In addition to its central role in anti-tumour responses induced by mAb directed
against CD40, DR4 and DR5, we have recently found that FccRIIB is similarly
required for the immunostimulatory activity afforded by the systemic adminis-
tration of mAb directed against co-stimulatory TNFRs expressed on T cells, such
as 4-1BB, CD27 and OX40 (Fig. 1b) (unpublished observations). However, a
recent study showed that a mAb directed against the T cell costimulatory receptor,
GITR, requires activatory FccR and not FccRIIB engagement for therapeutic
efficacy in pre-clinical cancer models (Bulliard et al. 2013). A similar situation is
evident with anti-CD27 reagents (He et al. 2013) which have their T-cell stimu-
lating activity most enhanced by mIgG1 isotypes (with cross-linking afforded by
FccRIIB) but which require activatory FccR-engaging mIgG2a isotype for their
anti-tumour activities (Vitale et al. 2012; He et al. 2013) (and unpublished
observations) (Fig. 2).

These counterintuitive observations are currently explained by the ability of the
anti-GITR mAb to directly deplete Treg in the tumour microenvironment. Other
studies have suggested a similar mechanism of action for anti-CD27 (Roberts et al.
2010; Burris 2013) and the checkpoint blocker anti-CTLA-4 (Selby 2013; Simpson
et al. 2013). These latter mAb have achieved impressive clinical success over the
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last 3 years with the anti-CTLA4 mAb, ipilimumab, now approved for the treat-
ment of metastatic melanoma (Hodi et al. 2010; Topalian et al. 2012; Brahmer
et al. 2012). For these agents one would imagine that interaction with FccRIIB
would be detrimental to their therapeutic activity as cross-linking is likely to

Fig. 2 Requirements for FccR engagement in cancer immunotherapy versus immune stimula-
tion. A number of agonistic mAb have now been assessed in terms of their FccR requirements for
stimulating immune and anti-cancer responses. These data indicate that FccRIIB is the optimal
FccR for stimulating and augmenting immune receptor clustering and potent immune responses
(both humoral and T-cell mediated). However, for optimal anti-cancer responses with some
targets (e.g. GITR) it appears that activating FccR are required, likely through their ability to
delete Tregs. The dissection of these aspects is complex as many of the same molecules are
expressed on both Teff and Treg. It is important therefore that the Treg express higher levels of
the target receptor than the Teff and also that A:I ratio within the tumour is permissive for
deletion (i.e. activatory FccR are elevated). Potentially a cocktail of mAb, with one optimally
deleting Treg and another optimally stimulating productive T cell responses may produce the
most effective anti-cancer responses
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propagate inhibitory downstream intracellular signalling. Indeed, in mouse models
a mIgG2a variant of anti-mouse CTLA4 is an effective therapeutic agent, whereas
the mIgG1 version is not (Selby 2013). However, as with GITR, this isotype effect
appears to reflect the ability of mIgG2a to direct depletion of CTLA4-expressing
Treg in the tumour microenvironment (Selby 2013; Simpson et al. 2013) (Fig. 2).
It appears that two properties are crucial for these effects; (1) that the Treg dif-
ferentially express higher levels of the target molecule than the Teff (seen with
CTLA4 (Selby 2013; Simpson et al. 2013) as well as other receptors—unpublished
data); and that (2) the local tumour environment upregulates the appropriate ac-
tivatory FccR, affording tumour-specific deletion of the Treg (Fig. 2).

10 More than Deletors?

Although these impressive data relating to Treg depletion are provocative, we
should not ignore the potential of checkpoint blockers such as anti-CTLA4, to
promote immune stimulation directly by overcoming deleterious inhibitory effects
on effector T cells and it seems likely that a combination of immune stimulation
and Treg depletion may provide optimal therapeutic efficacy (Peggs et al. 2009). In
addition, although Treg depletion has been demonstrated for anti-CTLA4 and anti-
GITR mAb it does not necessarily follow that mAb directed against other check
point blockers, such as PD-1, will work by the same mechanism. Indeed, in early
phase clinical trials objective responses to the anti-PD-1 mAb BMS-936558 were
observed only in patients whose tumours expressed the ligand for this receptor,
PD-L1 (Topalian et al. 2012), and similar therapeutic effects were achieved with
an anti-PD-L1 mAb (Brahmer et al. 2012), suggesting that blockade of the
inhibitory pathway (rather than Treg depletion) was responsible for the clinical
effects. Of note, the anti-CTLA4 mAb, ipilimumab is a fully human IgG1 that
would be expected to work well for depletion, whereas BMS-936558 is an IgG4
that would not. Interestingly, when ipilimumab and BMS-936558 were given in
combination to patients with advanced melanoma, therapeutic effects were much
more striking and rapid, with objective responses in [50 % of patients treated at
the maximum tolerated dose, all with a tumour reduction of at least 80 %
(Wolchok et al. 2013). This truly impressive clinical effect indicates each mAb is
likely to be operating differently and supports the approach of targeting multiple,
complementary, mechanisms of action.

11 Other Diseases, Other Paradigms?

The potential for FccRIIB interaction should also be considered when these agents
are used for other, non-cancer, therapeutic indications. For example, checkpoint
blockers have been investigated as agents to overcome T cell exhaustion in chronic
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viral infections (Ha et al. 2008; Palmer et al. 2013). In this context both activatory
and inhibitory FccR interaction would be predicted to be detrimental and isotypes,
such as human IgG4, that show little FccR interaction (Bruhns et al. 2009) may be
the appropriate choice. In contrast, FccRIIB engagement may be desirable under
certain conditions, for example agonistic targeting of checkpoint blockers for the
amelioration of autoimmune conditions. Thus, for each mAb and target multiple
mechanisms may contribute to activity, and different mechanisms may be required
for different indications.

12 Direct Targeting Antibodies as Agonists

Another consideration is how FccRIIB interacts with other classes of agonistic
antibody. For example, rituximab has long been recognised as capable of trans-
mitting intracellular signals into target cells and therefore can be classed as an
agonist (reviewed in (Cragg et al. 2005)). Importantly, these signals are only
delivered in the context of further cross-linking which we previously proposed was
due to the ability of CD20 to interact with and ‘‘hijack’’ the signalling properties of
the BCR (Walshe et al. 2008). In vivo, such properties, if present, would be
delivered by FccR-expressing effector cells. This conjecture has been made pre-
viously and was implied largely to relate to engagement by activatory FccR.
However, given our recent findings that FccRIIB can engage with and become
activated by rituximab on the surface of malignant B cells (Lim et al. 2011b) a new
aspect of this paradigm should be considered. Although FccRIIB expression and
interaction is clearly detrimental for therapeutic activity, as it drives internalisation
of the tripartite CD20: rituximab: FccRIIB complex on the target cell surface (Lim
et al. 2011b), it should not be forgotten that the cross-linking of CD20 is what
elicits signalling downstream from this molecule and also from FccRIIB itself
(Fig. 1c). Engagement of FccRIIB occurs with rituximab when presented at the
cell surface in both cis and trans as measured by phosphorylation of the FccRIIB
ITIM (Lim et al. 2011a; Vaughan et al. 2013). Therefore, it may be timely to re-
examine the consequence of these interactions, at least in the context of target cells
in which FccRIIB is co-expressed with the target antigen such as lymphoma.

13 Conclusions and Further Considerations

Taking all of the data together the present evidence clearly indicates that for
agonistic mAb, particularly those targeting members of the TNFR superfamily that
require trimerisation as a prerequisite for function, engagement with FccR leading
to higher order multimerisation is critical for eliciting their desired effects. The
data indicate that any FccR will do in these circumstances, with the observed FccR
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dependence for different mAb and targets arising from the mAb isotype, the
locality of mAb binding and the nature and level of FccR expressed in this
environment.

Two additional comments might be ventured. First, as with all paradigms it is
the exception that makes the rule. Several examples of mAb exist targeting a
variety of receptors that do not display any requirement for FccR. Examples of
these ‘‘superagonistic’’ reagents include mAb targeting CD40 (CP870,893 devel-
oped by Pfizer; unpublished observations), TRAIL (reviewed in (Haynes et al.
2010), and CD28 (CD28.1 (Nunes et al. 1993)). Notably, these mAb do not require
additional cross-linking for function, perhaps indicating they have an inherent
epitope-dependent propensity for receptor multimerisation (manuscript in
preparation).

The second consideration concerns whether more than cross-linking is impor-
tant, i.e. does FccRIIB signalling have any role? Recent studies indicate this not to
be the case for several TNFR but whether it is true for all remains to be seen. In
order to test whether engagement and signalling downstream of the FccRIIB is
important in therapeutic situations with other mAb, an ITIM mutant akin to the
NOTAM ITAM (de Haij et al. 2010) mutant mouse may be required. Alterna-
tively, use of agonist or antagonistic mAb directed to FccRIIB itself, such as
generated by us previously (Williams et al. 2012; Williams et al. 2013) (and
unpublished data) may be informative in this respect if used in combination with
other therapeutic mAb.

In summary, it is clear that engagement of FccRIIB is a critical regulator of
agonistic mAb efficacy. For canonical direct targeting mAb such as rituximab, this
activity is largely detrimental either in trans through engagement of FccRIIB on
effector cells, reducing their anti-tumour activity or through cis interaction leading
to down-regulation of the mAb:target complex (Fig. 1c). For agonistic mAb tar-
geting members of the TNFR super-family, such as CD40, CD27, Fas, DR4 and 5,
FccRIIB engagement appears beneficial for triggering the immediate downstream
activities of these receptors; Immune stimulation, or apoptotic cell death,
respectively. However, it is also clear that multiple additional factors must be
taken into account before we can make clear conclusions regarding the optimal
strategy for exploiting these mAb therapeutically, particularly with mAb which
can potentially elicit both cross-linking-independent Treg depletion and cross-
linking-dependent immune stimulation.

The concepts developed through studying direct targeting mAb and employing
the principles of the A:I ratio has served us well for the last decade. No doubt, the
next decade will see us update these rules to accommodate the immunomodulatory
mAb as we continue to refine and improve them for therapeutic use.
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Fc Receptor-Dependent Mechanisms
of Monoclonal Antibody Therapy
of Cancer

Jantine E. Bakema and Marjolein van Egmond

Abstract Targeted therapies like treatment with monoclonal antibodies (mAbs)
have entered the arsenal of modern anticancer drugs. mAbs combine specificity
with multiple effector functions that can lead to reduction of tumour burden. Direct
mechanisms of action, including induction of apoptosis or growth inhibition,
depend on the biology of the target antigen. Fc tails of mAbs have furthermore the
potential to initiate complement-dependent lysis as well as immune effector cell-
mediated tumour cell killing via binding to Fc receptors. Natural killer cells can
induce apoptosis via antibody-dependent cellular cytotoxicity (ADCC), whereas
macrophages are able to phagocytose mAb-opsonized tumour cells (antibody-
dependent cellular phagocytosis; ADCP). Finally, neutrophils can induce non-
apoptotic tumour cell death, especially in the presence of immunoglobulin A (IgA)
antitumour mAbs. In spite of promising clinical successes in some malignancies,
improvement of mAb immunotherapy is required to achieve overall complete
remission in cancer patients. New strategies to enhance Fc receptor-mediated
mechanisms of action or to overcome the immunosuppressive microenvironment
of the tumour in mAb therapy of cancer are therefore currently being explored and
will be addressed in this chapter.
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1 Introduction

Cancer is still one of the major causes of death in Western society in spite of
significant progress to treat malignancies in the last decades. Continuous efforts to
further advance the therapeutic arsenal remain therefore essential. The use of
monoclonal antibodies (mAbs) as drugs to specifically target tumour cells or the
tumour microenvironment is rapidly increasing, and mAbs have been included as a
mainstream strategy to treat cancer patients (Scott et al. 2012; Sliwkowski and
Mellman 2013). For instance, treatment with the anti-CD20 mAb rituximab has
significantly improved clinical outcome of patients, and addition of rituximab to
chemotherapy is now the gold standard to treat specific B cell malignancies
(Amoroso et al. 2011). This unprecedented success prompted the development of a
multitude of new antitumour mAbs, which are continuously modified to reduce
immunogenicity and improve efficacy (Weiner et al. 2012).

Most clinically approved mAbs are unmodified chimeric or human(ised) anti-
bodies of the immunoglobulin G (IgG) isotype. However, a multitude of novel
antibody formats to potentiate effector functions are currently developed. These
include for instance antibody-drug or radioisotype conjugates, bispecific biother-
apeutics, glycoengineered mAbs with enhanced immune effector function or the
use of different antibody isotypes. Additionally, therapeutic success may be
increased by combination therapies or applying a different timing of therapy.

Several mAbs target the tumour environment or modulate immune responses.
Bevacizumab (Avastin), for example targets vascular endothelial growth factor
(VEGF), which interferes with angiogenesis, whereas the anti-Cytotoxic T-Lym-
phocyte Antigen 4 (CTLA-4) mAb Ipilimumab blocks the inhibitory mechanism
of T lymphocytes. Most mAbs are, however, directed against tumour-associated
antigens that are expressed by tumour cells and induce tumour cell killing via
multiple mechanisms. Antitumour mAbs can have direct effects on tumour cells as
they may induce programmed cell death (apoptosis) or sensitise tumour cells for
chemotherapy (Glennie et al. 2007). Others, including anti-epidermal growth
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factor receptor (EGFR) mAbs, interfere with ligand binding and thereby reduce
proliferation (Benvenuti et al. 2007). Furthermore, IgG mAbs can initiate com-
plement-dependent cytotoxicity (CDC) as its Fc region binds C1q, which activates
the complement cascade through the classical pathway. This leads to both depo-
sition of C3b on mAb-coated tumour cells, thereby further opsonising target cells,
and to catalysation of the C5-C9 membrane attack complex (MAC) that induces
tumour cell lysis (Kolev et al. 2011). Polymorphisms in the C1QA gene were
shown to correlate with clinical responses in patients with follicular lymphoma
after rituximab treatment, supporting the contribution of CDC to therapeutic
efficacy (Racila et al. 2008). Finally, the Fc domain of antibodies interacts with Fc
receptors. Consequently, mAbs recruit Fc receptor- expressing immune effector
cells, which can result in tumour cell death and which is the focus of this chapter.

2 Fc Receptor-Mediated Mechanisms of Action

2.1 Fc Receptor-Mediated Killing of Antibody-Opsonised
Tumour Cells

Two different Fcc receptor polymorphisms that affect affinity for IgG have been
described to associate with clinical success of mAb therapy in cancer. An arginine
(R) to histidine (H) amino acid substitution at position 131 in FccRIIa (FccRIIa-
131H/R) or a phenylalanine (F) to valine (V) substitution at amino acid position
158 in FccRIIIa (FccRIIIa-158 V/F) improved clinical response rates to rituximab
(anti-CD20), cetuximab (anti-EGFR) or trastuzumab (anti-HER-2) therapy in
lymphoma, colorectal or breast cancer, respectively (Weng and Levy 2003;
Musolino et al. 2008; Bibeau et al. 2009). The impact of Fcc receptor polymor-
phisms on clinical success of mAb monotherapy or as adjuvant to chemotherapy
has recently been reviewed in detail by (Overdijk et al. 2014).

Cancer models in several Fc receptor knockout mice served to firmly establish
the role of Fc receptor-mediated mechanisms in efficacy of antibody immuno-
therapy. Anti-gp75 mAb therapy was unable to prevent melanoma development in
FcRc chain deficient mice (lacking activating receptors FccRI, FccRIII and
FccRIV) (Clynes et al. 1998). Similarly, therapeutic efficacy of the clinically
relevant mAbs rituximab and trastuzumab was lost in FcRc chain-/- mice (Clynes
et al. 2000). Murine FccRIII was not involved in therapeutic efficacy, whereas both
FccRI and FccRIV have been implicated in a melanoma lung metastases model
(Bevaart et al. 2006; Nimmerjahn and Ravetch 2005). FccRI and FccRIV proved
redundant in a liver metastases model as presence of either receptor was sufficient
for eradication of tumour cells after mAb therapy, but absence of both abrogated
therapeutic success (Otten et al. 2008; Clynes et al. 2000). Furthermore, tumour
development was more effectively prevented after treatment with antitumour
mAbs in mice that were deficient for the inhibitory receptor FccRII (Clynes et al.
2000).
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These studies unequivocally established the importance of Fc receptors for
tumour elimination, but did not solve the main mechanisms of mAb therapy.
Results with the anti-CD52 mAb Campath-1H (alemtuzumab) in a murine adult T
cell leukaemia model supported the induction of antibody-dependent cellular
cytotoxicity (ADCC), although the induction of apoptotic signalling in tumour
cells after antigen clustering by antibody could not be excluded (Zhang et al.
2003). It was demonstrated that Fcc receptor-mediated cross-linking of agonistic
antibodies against death receptor 5 (drozitumab) promoted apoptosis in tumour
cells (Wilson et al. 2011). A mouse model in which Fcc receptors were expressed
normally (allowing apoptosis induction via cross-linking of membrane-bound
antibodies on tumour surfaces), but signalling via FcRc chain was abrogated
(hampering induction of antibody-dependent killing), demonstrated that antibody-
dependent killing, and not apoptosis induction was a main mode of action for anti-
CD20 mAbs (de Haij et al. 2010).

2.2 Effector Immune Cells for Killing of mAb-Opsonized
Tumour Targets

Most mAbs that are currently used in the clinic are of IgG1 isotype, which are
effective at engaging Fcc receptors on immune effector cells like natural killer
(NK) cells, macrophages and neutrophils (Fig. 1). Traditionally, cytotoxic activity
of mAbs in clinical responses has been mostly attributed to NK cells (Zamai et al.
2007). Activation of NK cells through Fcc receptors results in the killing of mAb-
opsonized target cells via ADCC, which leads to apoptosis of tumour cells. In vitro
ADCC assays showed that NK cells (the most prominent effector cell in peripheral
blood mononuclear cells (PBMC) that are commonly used in cytotoxicity exper-
iments) are effective in killing tumour cells in the presence of IgG1 mAbs
(including rituximab or ofatumumab (anti-CD20), trastuzumab (anti-HER-2),
alemtuzumab (anti-CD52) or cetuximab (anti-EGFR) (Overdijk et al. 2014). An
anti-EGFR mAb of the IgG2 subclass (panitumumab) was, however, ineffective in
recruiting NK cells as effector cells (Schneider-Merck et al. 2010). After trast-
uzumab treatment of patients with HER-2 positive mamma carcinoma increased
numbers of tumour-associated NK cells were observed. Furthermore, enhanced
expression of Granzyme B—one of the cytotoxic molecules of NK cells—was
found, supporting a role for NK cell-induced ADCC in breast cancer after mAb
therapy (Arnould et al. 2006). Efficacy of cetuximab, trastuzumab or rituximab
therapy was furthermore dependent on the 158 V/F polymorphism in FccRIIIa,
which is the most prominent Fcc receptor on NK cells (Weng and Levy 2003;
Musolino et al. 2008; Bibeau et al. 2009). As NK cells with expression of
FccRIIIa-158 V have better ability to induce ADCC, improved clinical responses
have mainly been attributed to enhanced activation of NK cells (Hatjiharissi et al.
2007).
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However, macrophages proved extremely efficient in killing malignant cells in
the presence of tumour-specific mAbs via antibody-dependent cellular phagocy-
tosis (ADCP). Thus, macrophages, which also express FccRIIIa, may play a major
role in therapeutic successes of mAb therapy. Although in vitro ADCP in the
presence of anticarcinoembryonic antigen (CEA), HER-2, epithelial cell adhesion
molecule (EpCAM), human epithelial mucin (MUC)-1, CD20, CD30 and CD40
has been described, macrophages are likely especially efficient in removing cir-
culating tumour cells (Akewanlop et al. 2001; Ashraf et al. 2009; Bologna et al.
2013; Huls et al. 1999; Lefebvre et al. 2006; Oflazoglu et al. 2009, 2007; Rafiq
et al. 2013; Watanabe et al. 1999; Overdijk et al. 2012). Macrophage depletion
abrogated therapeutic efficacy of anti-CD20 mAb in a murine lymphoma model
(Minard-Colin et al. 2008; Uchida et al. 2004). Furthermore, anti-CD30 or anti-
CD40 mAbs were less effective in preventing outgrowth of a Hodgkin-derived cell
line in SCID mice when macrophages, but not NK cells or neutrophils, had been
depleted (Oflazoglu et al. 2009, 2007). Recently, using intravital microscopy
Montalvao et al. demonstrated that liver macrophages (Kupffer cells) were
responsible for trapping of circulating normal and malignant B cells in the liver
and subsequent ADCP after anti-CD20 mAb therapy (Montalvao et al. 2013).
Clinical responses to rituximab therapy have been correlated with the 131H/R
polymorphism in human FccRIIa (Weng and Levy 2003). As macrophages, but
not NK cells express FccRIIa, a prominent role for macrophages as effector cell in
anti-CD20 mAb therapy is supported.

Fig. 1 Fc receptor-mediated effector mechanisms. Opsonization of tumour cells with mAbs
results in killing by different immune effectors cells via distinct mechanisms. Macrophages
execute antibody-dependent cellular phagocytosis (ADCP), whereas NK cells induce classical
antibody-dependent cellular cytotoxiciy (ADCC), resulting in apoptosis. It has not yet been
completely elucidated how neutrophils kill tumour cells, but it has been demonstrated that
neutrophils can induce necrosis and a form of cell death that is associated with autophagic
characteristics
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It is less clear whether macrophages also play a role in tumour cell killing in
solid malignancies. In contrast to classically activated macrophages with cytotoxic
properties, it was demonstrated that macrophages in most malignancies including
ovarian cancer and breast carcinoma, favour a so-called alternatively activated M2
phenotype (Lewis and Pollard 2006; Mosser and Edwards 2008). As such, they are
considered pro-tumorigenic as they secrete multiple growth, angiogenic and
immunosuppressive factors, and presence of macrophages has been correlated with
poor prognosis and clinical outcome of patients (Leek et al. 1996). Nonetheless,
tumour-associated macrophages (TAM) that were isolated from mouse breast
carcinomas had ADCP capacity in the presence of anti-CD142 mAbs (Grugan
et al. 2012). Moreover, in vivo depletion of macrophages abrogated successful
anti-CD142 mAb therapy for prevention of breast carcinoma outgrowth and
metastasis, suggesting that mAb therapy was able to re-polarise M2 macrophages
into potent cytotoxic effector cells. By contrast, whereas Kupffer cells were very
effective in eliminating circulating tumour cells via ADCP, they were ineffective
in killing tumour cells in established (micro-) metastases, as visualised with
intravital microscopy (Gül et al. 2014).

It has not yet been elucidated to which extent, if any, neutrophils contribute to
current therapeutic successes. Their overall ability to recognise and kill tumour
cells is limited, but is enhanced in the presence of antitumour mAbs (van Egmond
and Bakema 2013). In animal models, it was shown that neutrophil depletion
reduced therapeutic activity of alemtuzumab (Campath-1H) in a CD52+ xenograft
tumour model (Siders et al. 2010). Similarly, rituximab was less effective in
reducing lymphoma development after depletion of neutrophils, supporting the
involvement of neutrophils as cytotoxic effector cells (Hernandez-Ilizaliturri et al.
2003). It was furthermore recently demonstrated that efficacy of trastuzumab
treatment in a human breast carcinoma xenograft model was abolished after
neutrophil depletion (Albanesi et al. 2013).

The mechanism(s) through which neutrophils kill tumour cells is not yet fully
understood. It was demonstrated that induction of tumour cell killing requires
close contact between tumour cells and neutrophils, suggesting the release of toxic
components (van Spriel et al. 2003). Complement receptor 3 (CR3) was essential
for intimate spreading of neutrophils on tumour cells and the formation of
‘immunological synapses’ or ‘cytotoxic synapses’ (van Egmond et al. 1999; van
Spriel et al. 2003). The in vivo formation of cytotoxic synapses between neutro-
phils and tumour cells after mAb treatment was recently shown (Hubert et al.
2011).

Neutrophils produce a plethora of cytotoxic molecules including proteases,
oxidative metabolites and defensins that may be involved in tumour cell killing
(Amulic et al. 2012). However, neither deficiencies in proteases (elastase or
myeloperoxidase), nor in reactive oxygen species (gp47phox or gp91phox-NADPH
oxidase complex) affected in vivo therapeutic success (Albanesi et al. 2013).
Similarly, absence of cytokines (tumour necrosis factor–a or interferon-c) or
inhibition of metalloproteases did not alter efficacy of mAb therapy. The ability of
neutrophils to induce apoptosis in tumour cells was demonstrated, although the
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mechanisms have not been elucidated (Horner et al. 2007; Stockmeyer et al. 2003).
The presence of granzymes and perforin—used by NK cells to induce apoptosis—
has been reported by some groups, but disputes by others (Grossman and Ley
2004; Hochegger et al. 2004; Metkar and Froelich 2004; Wagner et al. 2004).
Additionally, two non-apoptotic cell death pathways have been reported after
incubation of tumour cells with neutrophils in the presence of mAbs. Induction of
necrosis occurred in a relatively small population of tumour cells, whereas auto-
phagic characteristics were observed in most tumour cells (Bakema et al. 2011).
Autophagy is generally regarded as a cell survival mechanism as it will generate
energy for a distressed cell, but it has been proposed as an alternative cellular
suicide pathway under excessive stress conditions (Mizushima et al. 2008). It is,
however, still under debate whether autophagic cell death is a distinct cell death
pathway or whether characteristics of autophagy are involved in a yet uncharac-
terized separate pathway (Shen et al. 2012). Nonetheless, targeting neutrophils
may represent an attractive approach to trigger non-apoptotic cell death in tumour
cells that have mutations in apoptotic pathways.

3 Opportunities to Improve mAb Therapy of Cancer

Notwithstanding the initial success of treating haematological malignancies with
mAbs, therapeutic accomplishments to target solid tumours remain somewhat
disappointing. For instance, trastuzumab is only effective when HER-2 is over-
expressed, which is the case in *20–25 % of the patients with breast cancer.
Additionally, anti-EGFR mAbs are used to treat patients with head and neck
cancer or colorectal cancer. However, mutations in the K-RAS signalling pathway
seriously interfere with therapeutic success (Benvenuti et al. 2007). Furthermore,
even when patients respond to mAb therapy, a substantial proportion of cancer
patients fail to achieve complete remission or experience relapse. While direct
mechanisms of mAbs are fully dependent on the biology of the target antigen, and
as such are difficult to influence except by selecting a different target antigen,
immune effector functions are mechanisms that can be improved upon. Thus,
optimising Fc-mediated functions will enhance the effectiveness of therapeutic
mAbs, and may significantly improve their antitumour activity in patients (Reic-
hert and Dhimolea 2012).

3.1 Antibody Protein and/or Glycoengineering

Advances in protein and glycoengineering have enabled the production of ‘‘next
generation’’ mAbs that may potentially be more efficacious compared to unmod-
ified parental mAbs. Importantly, altering Fc glycosylation—in particular core-
fucosylation—increases both binding of IgG to Fcc receptors and enhances
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antitumour activity of IgG (Ferrara et al. 2011; Paz-Ares et al. 2011). A non-
fucosylated anti-CD20 mAb (obinutuzumab) enhanced ADCC, recruited neutro-
phils as effector cells, and showed clinical efficacy in patients with rituximab-
refractory disease (Alduaij and Illidge 2011; Bologna et al. 2011; Golay et al.
2013). Similarly, the defucosylated anti-C–C chemokine receptor type 4 (CCR4)
mAb mogamulizumab effectively induced ADCC of Adult T-cell leukaemia/
lymphoma cells by NK cells, and showed clinical efficacy in patients with relapsed
disease (Ishida et al. 2012). Alternatively, amino acid substitutions in the Fc
domain were shown to significantly increase affinities for FccRIIIa or FccRIIa, and
enhanced effector functions (Lazar et al. 2006; Richards et al. 2008). Structural
analysis of FccRIII binding to IgG1 revealed that FccRIII contacts different amino
acids on the two Fc polypeptide chains (Sondermann et al. 2000). Interestingly, it
was recently demonstrated that Fc heterodimers with asymmetrical mutations had
more stability in the CH2 domain, and were more effective in inducing ADCC (Liu
et al. 2013).

In addition to modified antibodies, a variety of novel antibody formats are in
development (Reichert and Dhimolea 2012). These include antibody-drug conju-
gates, in which a cytotoxic agent is coupled to a mAb. For example, Brentuximab
vedotin is a FDA approved anti-CD30 mAb conjugated to monomethylauristatin E
(MMAE), and used as treatment for relapsed Hodgkin’s disease (Perini and Pro
2013). After receptor mediated internalisation, MMAE is released into the cytosol,
where it induces G2/M-phase growth arrest and cell death through the induction of
apoptosis (Francisco et al. 2003). However, antibody-drug conjugates do likely not
involve Fcc receptor-induced effector mechanisms, and as such are not addressed
in detail (for review, see (Sievers and Senter 2013)).

Bispecific antibodies (BsAbs) are mAbs which are engineered to recognise two
different targets to yield more effective therapeutics. Several BsAbs formats have
been developed with varying degrees of success (reviewed by (May et al. 2012)).
BsABs differ in their dual binding capacity. They can simultaneously bind cell
surface receptors on the tumour and can recruit cells of the immune system.
Generation of optimal functioning BsAbs in terms of stability and pharmacokinetic
features in a practical and cost-effective manner has been challenging in the past as
it relied on chemical linkage of two different mAbs. BsAbs have been developed to
either specifically target FccRIIIa on NK cells and macrophages or FccRI on
myeloid effector cells. Two FccRI BsAbs, based on chemically linking of Fab’
fragments (anti-HER-2 9 anti-FccRI and anti-EGFR 9 anti-FccRI) have been
tested in clinical trials for treatment of advanced breast cancer. Although well
tolerated, neither induced significant antitumour effects, which may have been due
to poor half life (for review, see (Curnow 1997; van Egmond and Bakema 2013).
An anti-CD30 9 FccRIIIa BsAb did show clinical responses in patients with
Hodgkin’s disease in Phase I studies, but therapeutical development was halted
due to low production yield and high immunogenicity (Hartmann et al. 2001).

Implementation of recombinant antibody technology has revived the BsAbs field,
resulting in multiple bispecific biotherapeutic formats (e.g. tandem single chain Fv,
diabodies, Triomabs and BiTes) (May et al. 2012). One advantage of BsAbs is the
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possibility of recruiting cytotoxic T cells, which are effective in killing tumour cells,
but normally not involved in ADCC. A HER-2 9 CD3 BsAb (targeting HER-2+

tumour cells and T cells) had superior in vivo activity compared with parental
antibody pairs (Sen et al. 2001). The T cell-engaging CD19/CD3 BiTE (blinatu-
momab) was shown to transiently tether cytotoxic T cells to CD19 positive target B
cells and demonstrated high response rates in patients with non-Hodgkin lymphoma
(Topp et al. 2011). Furthermore, catumaxomab (CatmAb) is a bispecific tri-func-
tional antibody directed against epithelial cell adhesion molecule (EpCAM) and
CD3, and approved as intraperitoneal therapy for the treatment of malignant ascites
in patients with EpCAM-positive carcinomas (Sebastian 2010). Interestingly, Cat-
mab additionally recruits dendritic cells, macrophages and NK cells via its Fc part.

3.2 IgA as Therapeutic mAb

The most abundant effector cell population in the circulation consists of neutro-
phils. Moreover, whereas adoptive transfer of dendritic cells, NK cells or cytotoxic
T cells requires ex vivo expansion, activation or differentiation, neutrophil num-
bers are easily amplified in vivo by treating patients with granulocyte-colony
stimulating factor (G-CSF) or granulocyte/macrophage-colony stimulating factor
(GM-CSF) (van Egmond and Bakema 2013). Thus, a formidable source of cyto-
toxic effector cells for mAb therapy can be recruited by targeting neutrophils. They
express Fcc receptors as well as the IgA Fc receptor FcaRI (CD89). Interestingly,
it has been demonstrated that FcaRI is the most potent Fc receptor to induce
tumour cell killing via a plethora of antitumour IgA mAbs (EpCAM, HER-2,
EGFR, HLA class II, CD20, CD30 and CEA (Bakema et al. 2011; Deo et al. 1998;
Huls et al. 1999; Valerius et al. 1997; Lohse et al. 2011). Furthermore, cross-
linking of FcaRI, but not of Fcc receptors mediates release of leukotriene B4
(LTB4)—a potent neutrophil chemoattractant (van der Steen et al. 2009). Con-
sequently, targeting FcaRI led to neutrophil accumulation into tumour cells col-
onies in vitro, which were destroyed (Otten et al. 2005, 2012).

In vivo studies with IgA mAbs have, however, been hampered due to
unavailability of suitable models as mice are deficient for FcaRI. Additionally,
ineffective production of sufficient human IgA antitumour mAbs limited in vivo
studies in the past. With the generation of human FcaRI transgenic mice (Launay
et al. 2000; van Egmond et al. 1999), and improvement of IgA production pro-
cesses (Beyer et al. 2009) in vivo efficacy of IgA as antitumour mAbs is currently
under investigation. Injection of naked plasmid DNA encoding anti-CD20 IgA2
mAbs effectively prevented the development of B cell lymphoma (Pascal et al.
2012). In vivo antitumour activity of IgA2 EGFR mAbs against peritoneal A431
metastases was demonstrated, although FcaRI+ macrophages were the likely
effector cells in this model. Furthermore, IgA2 anti-EGFR mAbs prevented
development of lung metastases, supporting the potential of targeting FcaRI for
effective antibody therapy of cancer (Boross et al. 2013).
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3.3 Overcoming Immunosuppressive Properties of Tumours

Many tumours express immune inhibitory molecules or secrete anti-inflammatory
mediators that limit the efficacy of antibody immunotherapy. Thus, understanding
the tumour microenvironment may lead to development of strategies that change
the immunosuppressive nature of the tumour. For instance, tumour cells can cir-
cumvent CDC via expression of complement regulatory proteins (e.g. CD46,
CD55 or CD59). A novel CD59 inhibitor (ILYd4) enhanced rituximab-mediated
CDC in vitro, suggesting ILYd4 may be used as adjuvant in mAb therapy (You
et al. 2011). It was furthermore shown that CD47+ tumours are more resistant to
antibody therapy in vivo as CD47 interacts with the inhibitory receptor signal
regulatory protein-a (SIRPa; CD172a) that is expressed on myeloid cells. Anti-
gp75 mAbs were more effective in preventing melanoma lung metastases in mice
with an inhibitory signal-deficient mutant SIRPa (Zhao et al. 2011). Similarly, co-
treatment of blocking anti-CD47 mAbs and rituximab enhanced ADCP of non-
Hodgkin lymphoma cells by macrophages (Chao et al. 2010). Thus, interfering
with the CD47-SIRPa pathway enhances antitumour mAb therapy.

Antitumour immune responses within the tumour microenvironment can be
suppressed by a variety of infiltrating leukocytes, including regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSC) and alternatively activated M2
macrophages. Tregs express the immune suppressor molecule CTLA4. Through
inhibition of CTLA4, Tregs are no longer able to suppress antitumour immune
responses, resulting in an increased number of effector immune cells and antigen
presenting cells (O’Day et al. 2007). The anti-CTLA4 mAb ipilimumab was a
breakthrough in the treatment of metastatic melanoma as it increased overall
survival of patients with unresectable stage III and IV disease (Hodi et al. 2010).
Interestingly, it was recently demonstrated that selective depletion of Tregs by Fcc
receptor-dependent mechanisms (in particular FccRIV), contributed to the efficacy
of anti-CTLA4 therapy in vivo (Simpson et al. 2013; Bulliard et al. 2013)

Suppressive mechanisms also include the secretion of cytokines such as
interleukin 10 (IL-10) and transforming growth factor-b (TGF-b). An IL-10–
producing B cell subset (B10 cells) was shown to limit efficacy of anti-CD20 mAb
therapy in vivo through inhibition of monocyte/macrophage activation, which was
counterbalanced by treatment with a toll-like receptor 3 agonist (Horikawa et al.
2011). Addition of proinflammatory cytokines to a mAb treatment regime may
furthermore overcome the immunosuppressive tumour environment. It was shown
that combining IL-2 and trastuzumab increased ADCC of breast cancer cells by
NK cells ex vivo (Repka et al. 2003). Other immunostimulatory cytokines that
activate NK cells are IL-15 and IL-18. IL-15 was demonstrated to enhance rit-
uximab induced ADCC, even in the presence of TGF-b (Moga et al. 2011).
Additionally, IL-18 augmented IFN-c production by NK cells after activation
through Fcc receptors, and synergistically promoted regression of human lym-
phoma xenografts after treatment with rituximab (Srivastava et al. 2013).
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In situ release of danger signals may also lead to activation of immune effector
cells and initiation of antitumour immune responses. Both chemotherapy and
radiotherapy have been shown to enhance efficacy of antibody therapy, putatively
through induction of antitumour responses (Shuptrine et al. 2012). Alternatively,
recruiting neutrophils may be an attractive approach to release danger signals and
to initiate adaptive immune responses in situ. Whereas previously regarded as end-
stage cells without the ability for protein synthesis, it is now clear that neutrophils
can produce a multitude of cytokines, chemokines and metabolites, which influ-
ence other immune and non-immune cells (Mantovani et al. 2011). It was dem-
onstrated that neutrophils promote NK cell proliferation, survival and cytotoxic
capacity, whereas NK cells in turn release IFN-c and GM-CSF, which activates
neutrophils and prolongs survival (Costantini and Cassatella, 2011; Jaeger et al.
2012). Additionally, cross-talk between neutrophils and T helper 17 (Th17) was
reported as neutrophils secrete the Th17 chemokines CCL2 and CCL20, and Th17
cells release the prototypic neutrophil chemokine CXCL8 in turn (Pelletier et al.
2010). IL-17 also initiates G-CSF production by epithelial cells, which is a neu-
trophil growth factor. Neutrophil depletion led to reduced recruitment of CD4+ T
cells as well as decreased CD8+ T cell activation in mouse tumour models, further
supporting that neutrophils are involved in T cell function (Fridlender et al. 2009;
Suttmann et al. 2006). Interestingly, it was proposed that neutrophils act as danger
sensors by communicating presence of inflammation to dendritic cells. Release of
TNF-a by neutrophils led to dendritic cell maturation with concomitant induction
of T cell proliferation and polarisation into a Th1 phenotype (van Gisbergen et al.
2005a, b). It was also reported that neutrophils can transfer antigens into dendritic
cells, resulting in specific T cell responses (Megiovanni et al. 2006). In vitro
neutrophil migration into tumour colonies after targeting FcaRI (but not Fcc
receptors) resulted in release of the proinflammatory cytokines TNF-a and IL-1b.
Additionally, targeting neutrophil FcaRI led to cross-talk with endothelial cells as
the latter released CXCL8, resulting in enhanced neutrophil migration into tumour
colonies (Otten et al. 2012). Subsequently, increased neutrophil migration into and
destruction of tumour colonies was observed. Thus, a combination therapy that
includes G-CSF and targeting of FcaRI on neutrophils may lead to recruitment of
proinflammatory neutrophils into solid tumours, which may overcome the
immunosuppressive micromilieu.

3.4 Changing Timing of mAb Therapy

It has been investigated whether mAbs can be used in an adjuvant setting, for
instance after surgery of colorectal cancer. Addition of anti-EGFR mAbs to che-
motherapy failed to improve outcome of patients with resected stage III disease
(van Loon and Venook 2011). However, in these trials mAb therapy was usually
given weeks after surgery. We recently identified a novel approach, based on the
finding that mAb therapy is particularly effective in eliminating circulating tumour
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cells. At the time of colorectal surgery disseminated tumour cells can be detected
in peripheral blood of the majority of patients, which is correlated with poor
prognosis (Rahbari et al. 2010; Wind et al. 2009). Surgical removal of the primary
tumour is the only therapy that can provide long-term disease free survival of
patients with colorectal cancer. We, however, previously demonstrated that sur-
gery, paradoxically, enhances the development of liver metastases, as it promotes
binding of circulating tumour cells to the liver vasculature (van der Bij et al. 2008).
Surgery and systemic exposure to bacterial products that are released after
colectomy were shown to activate Kupffer cells, leading to release of reactive
oxygen species and damage to the vascular bed of the liver (Gul et al. 2011).
Subsequently, circulating tumour cells can adhere and grow out into metastases.
We now show that Kupffer cells are not very effective in arrest of circulating
tumour cells in the absence of mAbs, even though they are able to sample small
particles of tumour cells (Gül et al. 2014). Treatment with antitumour mAbs
however results in rapid phagocytosis of tumour cells by Kupffer cells, which is
dependent on the presence of FccRI and FccRIV (Otten et al. 2008; Gül et al.
2014). ADCP of circulating tumour cells prevented the development of liver
metastases, whereas depletion of Kupffer cells abrogated therapeutic efficacy
(Otten et al. 2008; van der Bij et al. 2010; Gül et al. 2014). Thus, the annual 1.2
million patients that undergo resection of colorectal cancer may greatly benefit
from preoperative mAb adjuvant therapy, as this may eliminate circulating tumour
cells at the time of surgery.

Fig. 2 Opportunities for
improvements of antibody-
based anticancer therapy
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4 Concluding Remarks

Antitumour mAbs have become an important addition for the treatment of cancer,
and will continue to be included as novel treatment modalities in the years to
come. After binding to the target antigen, mAbs can initiate a plethora of effector
functions that can lead to killing of tumour cells. Based on in vitro and in vivo
evidence as well as clinical studies in which therapeutic success depended on Fc
receptor polymorphisms, it is clear that antibody- Fc receptor inactions play a
prominent role to achieve eradication of the tumour. Nonetheless, there is ample
room for improvements, as mAbs have not yet lived up to their full promise of
being the magic bullets as was optimistically proposed in the last decades.
Improvements may include optimising interactions of mAbs with Fc receptors by
(glyco-) engineering, recruiting different effector cell populations like cytotoxic T
lymphocytes or neutrophils, or changing the timing of treatment (Fig. 2). Addi-
tionally, combination therapies that overcome the immunosuppressive tumour
environment may further advance the potential of mAbs as revolutionary drugs for
the treatment of cancer.
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Sweet and Sour: The Role
of Glycosylation
for the Anti-inflammatory
Activity of Immunoglobulin G

Sybille Böhm, Daniela Kao and Falk Nimmerjahn

Abstract The importance of immunoglobulin G (IgG) molecules for providing
long-term sterile immunity as well as their major contribution to tissue inflam-
mation during autoimmune diseases is generally accepted. In a similar manner,
studies over the last years have elucidated many details of the molecular and
cellular pathways underlying this protective activity in vivo, emphasizing the role
of cellular Fc receptors recognizing the constant antibody fragment. In contrast,
the active anti-inflammatory activity of IgG, despite being known and actually
identified in human autoimmune patients more than 30 years ago, is much less
defined. Recent evidence from several independent model systems suggests that
IgG glycosylation is critical for the immunomodulatory activity of IgG and that
both monomeric IgG as well as IgG immune complexes can diminish Fc receptor
and complement dependent inflammatory processes. Moreover, there is increasing
evidence that IgG molecules also modulate B and T cell responses, which may
suggest that IgG is centrally involved in the establishment and maintenance of
immune homeostasis.
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1 Introduction

The notion that immunoglobulin G (IgG) molecules can trigger two completely
opposing effects, that is tissue inflammation and resolution of inflammation at the
same time, has sparked the interest to decipher the molecular and cellular path-
ways underlying this dual activity (Durandy et al. 2009; Negi et al. 2007; Schwab
and Nimmerjahn 2013; Seite et al. 2008). Although it is well known that the pro-
inflammatory phase of normal immune as well as of many autoimmune responses
are followed by a resolution phase in which pro-inflammatory processes are
stopped and replaced by a phase of tissue repair and ultimately the return to the
steady state, we are far from understanding the molecular and cellular pathways
underlying this final phase of an immune response. With respect to the pro-
inflammatory activity of IgG, it is generally accepted that the IgG Fc-fragment is
critical for initiating effector functions including the release of reactive oxygen
species, chemokines, cytokines such as TNFa, IL1, and IFNc, phagocytosis,
complement activation, and antibody-dependent cellular cytotoxicity (ADCC),
which are all involved in establishing and maintaining tissue inflammation
(Hogarth and Pietersz 2012; Nimmerjahn 2013; Takai 2002). On a cellular basis,
this is achieved by binding of the IgG Fc fragment to Fcc receptors (FccR), which
are broadly expressed on cells of the innate immune system including basophils,
eosinophils, mast cells, monocytes, macrophages, and neutrophils. In addition,
certain IgG subclasses including mouse IgG2a, IgG2b, and IgG3 and human IgG1
and IgG3 can activate the classical complement pathway via C1q resulting in the
generation of the pro-inflammatory anaphylatoxins C3a and C5a, which can trigger
innate immune effector cell recruitment (Carroll 1998). Furthermore, deposition of
C3b on target cells enables their recognition through C3b receptors expressed on
phagocytic cells, which also will result in removal of the opsonized antigen via
phagocytosis. Despite this capacity to activate the complement system via the
classical pathway, in the majority of mouse model systems of autoimmune dis-
eases or therapeutic antibody activity, IgG binding to cellular FccRs was dem-
onstrated to be responsible for autoantibody pathology (Beers et al. 2009;
Nimmerjahn et al. 2007; Nimmerjahn and Ravetch 2005; Sylvestre et al. 1996;
Sylvestre and Ravetch 1994; Clynes and Ravetch 1995; Kaneko et al. 2006a). Of
note, however, in several model systems, such as inflammatory arthritis, nephro-
toxic nephritis, and skin blistering diseases, the alternative complement pathway
was also involved in tissue inflammation in addition to the FccR pathway (Mihai
and Nimmerjahn 2012; Schmidt and Gessner 2005). In brief, FccRs are a protein
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family which can be distinguished by two major factors (Fig. 1). The first is their
differential affinity for the individual IgG subclasses, with FccRI being a high
affinity receptor with the capacity to bind to select IgG subclasses (IgG2a in mice
and IgG1, IgG3, and IgG4 in humans) as IgG monomers (Hogarth and Pietersz
2012; Nimmerjahn and Ravetch 2006; Takai 2002). All the other receptors can
only bind IgG in the form of immune complexes, corresponding to their lower
affinity for the different IgG subclasses. Second, there is one inhibitory FccR,
FccRIIB, in mice and humans which is very broadly expressed together with
activating FccRs and thereby may set a threshold for cell activation by immune
complexes as demonstrated by several studies (Bolland and Ravetch 1999; Daeron
and Lesourne 2006; Smith and Clatworthy 2010). Depending on the experimental
model system and IgG subclass responsible for the respective effector function,
different activating FccRs have been shown to be responsible for IgG activity
(Nimmerjahn and Ravetch 2006). The genetic studies in mouse model systems are
supported by reports from human patient cohorts showing enhanced therapeutic
antibody activity if patients carry allelic variants of activating FccRs with a higher
affinity for the therapeutic antibody (Cartron et al. 2002; Musolino et al. 2008;
Weng et al. 2004; Weng and Levy 2003). As the details of the involvement of the
activating FccRs for the pro-inflammatory activity of IgG will be the focus of
several other reviews in this volume, we will not describe this in further depth and
direct the reader to the reviews of DiLillo et al. and Bakema and van Egmond, for
example.

2 The Impact of IgG Glycosylation on Antibody Activity

Several studies over the last years have emphasized the importance of IgG gly-
cosylation for modulating its activity in vivo (Arnold et al. 2007; Dalziel et al.
2014). Thus, the genetic or enzymatic removal of this moiety results in a loss of
both the pro- and the anti-inflammatory activities of IgG (Arnold et al. 2007;
Ghirlando et al. 1999; Krapp et al. 2003; Rudd et al. 2001; Walker et al. 1989;
Schwab and Nimmerjahn 2013; Shields et al. 2001). Whereas most immuno-
globulin isotypes, such as IgA, IgM, and IgE contain multiple N-linked sugar
moieties, IgG has only one single sugar domain attached to the IgG Fc fragment at
the asparagine 297 (N297) residue in the CH2 domain. This sugar moiety is
confined within the hydrophobic space between the two IgG heavy chains and
consists of a heptameric biantennary structure (Fig. 2). The core of this domain is
made up of a conserved array of N-acetylglucosamine and mannose residues. In
contrast to this core structure, there is a great variability with respect to the
presence of branching fucose and N-acetylglucosamine residues and terminal
galactose and sialic acid residues. Thus, in humans and mice more than 30 dif-
ferent IgG glycoforms were identified in the serum, which may result in several
hundreds of different individual IgG glycovariants if one considers that the two
individual IgG Fc fragments may contain different sugar domains (Arnold et al.

Sweet and Sour: The Role of Glycosylation 395



2007). It is known for a long time that this IgG glycosylation status is not stable
but can change during inflammation. Glycoforms lacking terminal sialic acid and
galactose residues (the so-called G0 glycoforms), for example, increase during
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acute inflammation, which may be caused by autoimmune diseases, viral and
bacterial infections, or during the course of vaccinations with certain adjuvants
(Fig. 2) (Kaneko et al. 2006b, Mehta et al. 2008; Parekh et al. 1988; Tomana et al.
1988; Dube et al. 1990; Holland et al. 2002; Scherer et al. 2010). Apart from
inflammation, IgG-G0 glycoforms increase during aging, which correlates with the
increasing likelihood to develop an autoimmune disease (Arnold et al. 2007; Bohm
et al. 2012). Conversely, IgG-G0 glycoforms decrease during pregnancy which
correlates with the reduced incidence of flares in pregnant women with arthritis
(van de Geijn et al. 2009). Although there is evidence that IgG-G0 glycovariants
may have an enhanced pro-inflammatory activity via gaining the capacity to bind
to MBL (Malhotra et al. 1995; Rademacher et al. 1994), which is the first com-
ponent of the lectin pathway of complement activation, studies performed in MBL
knockout mice showed that the lectin pathway may not be a dominant factor
responsible for the activity of these glycoforms at least in these animal models
(Nimmerjahn et al. 2007). In a similar manner, the ability of an IgG3 rheumatoid
factor antibody derived from lupus prone MRL-lpr mice to induce kidney damage
upon deposition in glomeruli was not different if the antibody was in the G0 or G1/
G2 glycoform (Otani et al. 2012). Moreover, the hemolytic ability of red blood cell
specific antibodies inversely correlated with the amount of G0 glycoforms (Hadley
et al. 1995; Kumpel et al. 1995). In humans, high levels of MBL are rather
associated with milder pathology in rheumatoid arthritis, also arguing against a
major involvement of this pathway for enhancing autoimmune inflammation (van
de Geijn et al. 2008, 2011; Garred et al. 2000). Taken together, no clear picture
with respect to an enhanced activity of agalactosyl antibodies is emerging. As we
will discuss later, the galactosylation as well as the sialylation state may, however,
confer the antibody with an immunomodulatory and anti-inflammatory activity.

The most convincing evidence that the specific IgG glycosylation status can
have a dramatic impact on the pro-inflammatory activity of IgG was demonstrated
for IgG glycoforms lacking branching fucose residues. In mice and humans, this
results in a 10- to 50-fold enhanced affinity of IgG for mouse FccRIV and human
FccRIIIA, respectively (Figs. 1, 2) (Ferrara et al. 2011; Nimmerjahn and Ravetch
2005; Shields et al. 2002; Shinkawa et al. 2003). Consistent with this increased
affinity these IgG glycovariants showed an enhanced cytotoxic or phagocytic
activity in mouse tumor and autoimmune model systems and in a variety of
immunodeficient mouse strains xenotransplanted with human tumor cells (Nim-
merjahn and Ravetch 2012). The first glycoengineered tumor-specific antibodies,
lacking branching fucose residues have now completed the clinical testing phase
and have been approved for general use in human therapy of cancer.
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3 The Role of Sialic Acid for the Anti-inflammatory
Activity of Intravenous Immunoglobulins

It is well known since more than three decades that IgG itself can have an
immunomodulatory activity and is able to suppress IgG-driven autoimmune dis-
eases such as ITP (Imbach 2012; Imbach et al. 1981). This type of therapeutic
intervention is known as IVIg therapy, which is the intravenous infusion of IgG
pooled from several thousand donors at 1–3 g/kg (Bayry et al. 2011b; Imbach
2012; Schwab and Nimmerjahn 2013). Whereas the most obvious explanation for
this capacity to block the effector phase of autoantibodies would have been an
inhibition of autoantibody binding to activating FccRs, reports published over the
last decade argue against this simple scenario as the major pathway (Nimmerjahn
and Ravetch 2007). In brief, monomeric IgG even if infused at high doses may not
be able to interfere with the binding of immune complexes to activating FccRs.
Moreover, IVIg activity was demonstrated to be independent of the small amount
of IgG dimers present in most IVIg preparations and can be recapitulated with the
IgG Fc fragment in mice and humans (Crow et al. 2001; Tremblay et al. 2012;
Anthony et al. 2008a; Kaneko et al. 2006b; Samuelsson et al. 2001; Debre et al.
1993). Finally, IgG glycovariants with enhanced therapeutic activity have a
reduced affinity for most activating FccRs (Anthony et al. 2008a, b; Anthony and
Ravetch 2010; Kaneko et al. 2006b; Schwab et al. 2012a; Scallon et al. 2007).
Nonetheless, some studies imply a role of activating FccRIII most likely on
dendritic cells or macrophages as being a part of IVIg-mediated immunomodu-
lation, although other studies demonstrated that IVIg-dependent amelioration of
ITP and nephrotoxic nephritis were not impaired in FccRIII-deficient mice
(Kaneko et al. 2006a; Park-Min et al. 2007; Schwab et al. 2012a; Siragam et al.
2006; Huang et al. 2010). Thus, model system-specific effects may underlie these
different experimental results.

In contrast to activating FccRs, the inhibitory FccRIIB was shown to be
required for IVIg activity by several groups in different model systems (Fig. 3).
Mice deficient for the inhibitory FccRIIB were no longer protected by IVIg
therapy from the induction of ITP, nephrotoxic nephritis, epidermolysis bullosa
acquisita, and inflammatory arthritis (Huang et al. 2010; Bruhns et al. 2003;
Kaneko et al. 2006a; Samuelsson et al. 2001). As sialic acid-rich IgG also shows a
reduced binding to FccRIIB, not a direct induction of signaling via IVIg binding to
FccRIIB, but a more indirect pathway involving this receptor was likely to be
involved. Several studies demonstrated that FccRIIB becomes upregulated on
innate immune effector cells and B cells following IVIg infusion in mice (Bruhns
et al. 2003; Kaneko et al. 2006a, b; Samuelsson et al. 2001). This finding was
confirmed in human patients with chronic inflammatory demyelinating polyneu-
ropathy (CIDP), a disease in which autoantibodies against neuronal tissue cause a
progressive nerve inflammation and paralysis (Tackenberg et al. 2009). Similar to
the Guillain-Barré syndrome, which is an acute form of this disease, IVIg infusion
is a licensed first-line treatment for CIDP allowing to directly study IVIg-mediated
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immunomodulatory effects in human patient populations. In parallel to the
upregulation of FccRIIB, a downregulation of the activating FccRIV was observed
in a mouse model of nephrotoxic nephritis upon IVIg treatment, supporting the
notion that IVIg induces a higher threshold for activation of innate immune
effector cells via immune complexes (Fig. 3) (Kaneko et al. 2006a). More recently,
a novel TH2 cytokine pathway involving IL33, which in turn leads to the release of
IL4 was shown to be involved in the upregulation of FccRIIB in a model of
inflammatory arthritis (Anthony et al. 2011). Thus, mice deficient in the IL4
receptor were no longer protected by IVIg therapy and it was further demonstrated
that IL33 was responsible for the IL4 release by basophils. Indeed, IL4 is well
known to have the capacity to upregulate FccRIIB on myeloid effector cells. As
will be discussed later in this chapter, this pathway may not be involved in
upregulation of FccRIIB on B cells, as IL4 induces a reduction of FccRIIB on this
cell type (Rudge et al. 2002). In contrast to inflammatory arthritis, IVIg-mediated
protection from ITP was demonstrated to be independent of this TH2 cytokine
pathway and of basophils (Crow et al. 2007; Schwab et al. 2012a). Despite these
differences in the cellular players involved in the anti-inflammatory pathway some
common denominators of IVIg activity have become apparent, one of which is the
need for IgG glycosylation.

The first evidence that IgG glycosylation may play a role in the anti-inflamma-
tory and immunomodulatory activity of IVIg was provided in 2006 and confirmed
by several studies thereafter in a variety of model systems of autoimmune disease
(Kaneko et al. 2006b; Anthony et al. 2008a, b, 2011; Schwab et al. 2012a, b). By
using either PNGaseF treated and hence aglycosylated or neuraminidase treated and
hence asialylated IVIg, it was demonstrated that the capacity of IVIg to suppress
inflammatory arthritis was lost in the absence of IgG glycosylation or sialylation,
respectively (Kaneko et al. 2006b; Schwab et al. 2012a). A more detailed analysis
demonstrated that especially 2,6 linked terminal sialic acid residues were respon-
sible for this amelioration of joint inflammation, allowing to generate a recombinant
IVIg replacement by using a highly sialylated monoclonal human IgG1 Fc fragment
(Anthony et al. 2008a). This IVIg replacement was able to suppress inflammatory
arthritis at a 30-fold lower dose than untreated IVIg, further demonstrating that at
least for the studied model systems the polyclonal nature of the IgG preparation is
dispensable. As about 15–20 % of serum IgG can contain an additional sugar moiety
in the IgG variable region, which is exposed on the surface of the IgG molecules and
has a high level of terminal sialic acid residues, it was critical to determine whether
this F(ab)2 attached sugar moiety plays a role in the immunomodulatory activity as
well (Arnold et al. 2007). Of note, however, enriching IVIg for sialic acid residues in
the IgG variable region had no impact on activity, whereas enriching the IgG Fc
fragment for high levels of sialic acid increased the immunosuppressive activity
(Guhr et al. 2011; Kaneko et al. 2006b). This is in line with results showing that it is
not the sialic acid residues themselves, which are sufficient for the anti-inflamma-
tory activity, but rather the IgG amino acid backbone itself (Kaneko et al. 2006b).
Indeed, other serum proteins such as fetuin or transferrin, which also carry a bi-
antennary sugar structure with high levels of sialic acid residues did not show
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therapeutic activity. Although the crystal structure of highly sialylated IgG did not
show major structural alterations, a recent study using different biophysical methods
suggests that high levels of sialic acid may impact IgG structure (Crispin et al. 2013;
Sondermann et al. 2013). According to this, the IgG Fc fragment may acquire a
closed structure if high levels of terminal sialic acid residues are present in the sugar
moiety. This may explain earlier data showing that sialic acid-rich IgG binds with
lower affinity to the family of canonical FccRs in mice and humans (Kaneko et al.
2006b; Scallon et al. 2007). While having a reduced capacity to bind to classical
FccRs, these IgG glycovariants gain the capacity to bind to SIGNR1, which belongs
to the family of C-type lectins and can recognize pathogens such as HIV (Anthony
et al. 2008b). Consistent with these in vitro binding data, IVIg was no longer able to
protect SIGNR1-deficient mice or mice injected with a blocking SIGNR1-specific
antibody from the development of inflammatory arthritis or ITP (Fig. 3) (Anthony
et al. 2008b, 2011; Schwab et al. 2012a). In mice, a major cell population expressing
SIGNR1 are marginal zone macrophages in the spleen. Supporting an important role
of this macrophage subpopulation, mice deficient in MCSF1 or Rag1, which either
have a reduced number of these macrophages or a disorganized splenic structure, did
not respond to IVIg therapy in a model of inflammatory arthritis (Anthony et al.
2008b; Bruhns et al. 2003). With respect to the human system, the most closely
related human protein to SIGNR1 is DC-SIGN, which has a different expression
pattern. Most forward, DC-SIGN is abundantly expressed on dendritic cells, which
largely lack SIGNR1 expression in mice. Reconstituting SIGNR1 deficient mice
with human DC-SIGN expression was able to restore IVIg activity, indicating that
not necessarily the cell population but especially the features of the receptor mol-
ecule being able to recognize sialic acid-rich IgG is a key element of the anti-
inflammatory pathway. This concept is corroborated by the fact that in contrast to
the critical requirement of the spleen for IVIg activity in the inflammatory arthritis
model, IVIg-mediated amelioration of ITP was independent of the spleen (Fig. 3)
(Schwab et al. 2012a). A similar lack of requirement of splenic resident cells can be
observed in human ITP patients, who respond well to IVIg therapy even after
splenectomy.

As the two sugar moieties attached to the N297 residue in the IgG Fc fragment
may differ in composition, or potentially even contain two terminal sialic acid
residues each, it was critical to determine which of these combinations are actually
present in IVIg preparations enriched for sialic acid-rich IgG glycoforms via the
lectin SNA. This analysis revealed that the dominant IgG glycoforms enriched via
SNA contained maximally one sialic acid residue in each of the two sugar moieties
and suggest that this sialic acid residue was mostly present in the 1,3 branch in the
majority of sugar domains (Stadlmann et al. 2009; Wormald et al. 1997). Fully
processed IgG glycovariants containing two sialic acid residues in each sugar
moiety were virtually absent from this preparation suggesting that especially the
IgG glycovariant containing a single sialic acid residue on the 1,3 sugar arm was
critical for the anti-inflammatory activity at least within an IVIg preparation
(Stadlmann et al. 2009; Bohm et al. 2012). This is consistent with results dem-
onstrating that enriching IgG molecules for glycovariants containing F(ab)2-linked
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sugar moieties, which can be generated through de novo generation of N-linked
glycosylation sites during somatic hypermutation and which carry sialic acid
residues mostly attached to the 1,6 sugar arm, do not have any enhanced thera-
peutic activity (Guhr et al. 2011; Kasermann et al. 2012).

The general importance of IgG Fc-sialylation for IVIg activity in vivo was
demonstrated more recently in two model systems of ITP, inflammatory arthritis
and a model of epidermolysis bullosa acquisita (EBA), in which collagen type VII
specific autoantibodies induce a widespread skin blister formation (Schwab et al.
2012a, 2014; Kasperkiewicz et al. 2012a, b). Importantly, this also holds true for
therapeutic treatment conditions where IVIg is administered after autoimmune
disease is established, which closely reflects the clinical situation (Schwab et al.
2014). Thus, sialic acid-deficient IVIg was no longer able to block ITP, inflam-
matory arthritis, and EBA if administered during ongoing autoimmune disease. As
demonstrated before for IVIg treatment of ITP under therapeutic conditions,
FccRIIB was essential for IVIg activity in inflammatory arthritis and EBA
(Fig. 3). An interesting difference with respect to preventive treatment conditions
became apparent with respect to the requirement for SIGNR1, however. Although
an initial delay of IVIg activity was observed in models of EBA and inflammatory
arthritis, ultimately IVIg was able to ameliorate autoantibody tissue inflammation
independently of SIGNR1 (Schwab et al. 2014). One possible explanation for this
differential requirement for SIGNR1 may be that once inflammation is established
other molecules with the capacity to bind sialic acid-rich IgG may take over this
function. A candidate receptor with such an activity may be DCIR (dendritic cell
immunoreceptor), another C-type lectin receptor expressed on dendritic cells,
which was identified most recently as another potential receptor involved in the
anti-inflammatory activity of IVIg (Dalziel et al. 2014). Of note, there are data
suggesting that by increasing the autoantibody dose IVIg may also have the
capacity to suppress ITP independent of the sialic acid-rich IgG fraction within the
IVIg preparation (Leontyev et al. 2012). Whether an according increase in the dose
of sialic acid-rich IVIg may be sufficient to regain therapeutic activity was not
studied, making it hard to fully appreciate the results obtained in this experimental
model system. The use of a rat-derived platelet-specific antibody as a surrogate for
a naturally arising autoantibody cannot explain these results as a recent study using
the same ITP model system demonstrated an absolute requirement for sialic acid-
rich IgG glycoforms for IVIg activity (Schwab et al. 2014). Ultimately, human
clinical trials or humanized mouse model systems at a pre-clinical stage will
provide conclusive evidence if these findings are of relevance for the human
immune system. The essential role of sialic acid-rich glycoforms for preventive
and therapeutic treatment regimens in model systems of ITP, inflammatory
arthritis, and epidermolysis bullosa acquisita, however, strongly argue for a gen-
eralized importance of this IgG glycoform as an immunomodulatory molecule. As
we have discussed before, this model is also supported by epidemiologic data in
humans, showing that the level of sialic acid-rich IgG glycoforms seems to be
closely regulated during different stages of an immune response, with strongly
reduced levels being present during acute inflammation (Schwab and Nimmerjahn
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2013). Further along these lines, there is convincing data showing that the path-
ogenicity of mouse rheumatoid factor antibodies, that is antibodies specific for
other antibody isotypes, which results in the deposition of large amounts of
immune complexes in the lungs and kidneys of affected animals, is critically
determined by the level of IgG sialylation (Otani et al. 2012). Interestingly,
sialylation did not affect the antigen specificity, that is the binding of the IgG3
autoantibody to other serum IgG isotypes, but rather modulated its capacity to
precipitate at temperatures below 37 �C. Thus, despite the generation of immune
complexes in the blood, they no longer became deposited in the glomeruli of the
kidneys (Otani et al. 2012).

4 Impact of Sialic Acid-Rich IgG on the Adaptive
Immune System

Besides the well-established inhibitory effect of IVIg on cells of the innate immune
system, there is accumulating evidence that IVIg may also modulate the adaptive
immune response. As indicated before, several groups observed an upregulation of
FccRIIB on mouse and human B cells upon IVIg infusion (Nikolova et al. 2009;
Tackenberg et al. 2009). This finding is of great interest, as the inhibitory Fc
receptor may be an important checkpoint for maintaining humoral tolerance and
prevent the production of autoantibodies by B cells. Moreover, there is very recent
data that sialic acid containing IgG glycovariants in the form of immune com-
plexes may be able to interfere with T cell-mediated delayed type hypersensitivity
(DTH) reactions arguing for a broad impact of IVIg on the adaptive immune
response.

4.1 Impact of IVIg Therapy on B Cells

The first evidence that IVIg therapy may regulate the threshold for B cell acti-
vation was noted by Tackenberg and colleagues in human patients with chronic
inflammatory demyelinating polyneuropathy (CIDP), who receive IVIg as a first-
line treatment to suppress the autoantibody mediated inflammation of the
peripheral nervous system (Tackenberg et al. 2009). As had been demonstrated for
human SLE patients before, this study confirmed that also CIDP patients showed a
lower level of FccRIIB expression on B cells and failed to upregulate the receptor
on memory B cells (Mackay et al. 2006; Tackenberg et al. 2009). Together with
studies demonstrating that a nonfunctional allele of the inhibitory FccRIIB, which
can no longer associate with lipid rafts due to the exchange of the isoleucine
residue 232 for a threonine residue (I232T), is associated with SLE development in
several human SLE cohorts, this suggests that FccRIIB is involved in maintaining
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humoral tolerance (Willcocks et al. 2010; Schwab et al. 2014; Chu et al. 2004;
Kyogoku et al. 2002; Kono et al. 2005; Floto et al. 2005). Moreover, the treatment
of patients with common variable immunodeficiencies with IVIg resulted in B cell
proliferation and immunoglobulin synthesis (Bayry et al. 2011a). Reversely, a
block of B cell proliferation and induction of B cell apoptosis was noted with
human B cells in in vitro assays (Seite et al. 2010). Regardless of these different
outcomes on B cell survival, these results suggest that IVIg can have a direct effect
on the B cell response.

Whereas FccRIIB counterbalances signals triggered by activating FccRs on
cells of the innate immune system, it regulates signaling pathways initiated via the
B cell receptor (BCR) on B cells. A possible situation where such a co-cross-
linking of FccRIIB with the BCR could occur is during the germinal center
reaction in which B cells are selected for their antigen specificity and BCR affinity
in the presence of immune complexes which are presented on the surface of
follicular dendritic cells (Espeli et al. 2012). Thus, the threshold set by FccRIIB
binding to IgG antibodies present in these immune complexes may ensure that B
cells only become activated if the BCR has a very high affinity for the antigen
(Lehmann et al. 2012; Smith and Clatworthy 2010). Consistent with this model,
mice deficient for FccRIIB develop an SLE-like autoimmune disease characterized
by the loss of humoral tolerance and a glomerulonephritis depending on the mouse
genetic background (Bolland and Ravetch 2000; Bolland et al. 2002; Boross et al.
2011; McGaha et al. 2008; Fukuyama et al. 2005). Furthermore, CIDP and SLE
patients, most autoimmune prone mouse strains, and the majority of wild mouse
strains have a lower expression level of this receptor, which is due to promotor
polymorphisms resulting in reduced transcription of the gene (Pritchard et al.
2000; Espeli et al. 2012; Su et al. 2004a, b, 2007). Restoring the level of FccRIIB
expression either ubiquitously or selectively on B cells has been shown to block
autoantibody production and reduce pathology in autoimmune prone mouse strains
or in models of induced autoimmune disease, strongly supporting the concept that
FccRIIB is a gatekeeper of humoral tolerance (Brownlie et al. 2008; McGaha et al.
2005). Providing direct evidence that FccRIIB may have a related function in the
human immune system, a study using immunodeficient mice reconstituted with
human hematopoietic stem cells expressing either the fully functional or the
functionally impaired FccRIIB-232T variant, demonstrated a loss of humoral
tolerance and the production of autoantibodies typical for human rheumatoid
arthritis and SLE in the humanized animals (Baerenwaldt et al. 2011). Thus,
restoring FccRIIB expression levels on B cells in autoimmune patients via IVIg
therapy may reinstate the threshold for B cell activation and reduce the production
of autoantibodies in the long term.

Apart from a function on mature B cells, restoring FccRIIB expression may
also have an effect on the antibody producing plasma cell itself. The situation on
plasma cells is unique in the way that this B cell subset no longer expresses the
BCR but high levels of FccRIIB (Baerenwaldt et al. 2011). In the absence of
simultaneous activating signals, the isolated cross-linking of the inhibitory
FccRIIB may induce a pro-apoptotic signal, which has been shown to be
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independent of the classical ITIM-dependent signaling pathway (Pearse et al.
1999; Tzeng et al. 2005). There is evidence that cross-linking of FccRIIB on
plasma cells in the bone marrow, may result in the death of a proportion of plasma
cells occupying a limited number of niches, which allow plasma cell survival. By
this mechanism, niches may become available for supporting the survival of new
plasma cells, which have been generated during a subsequent immune response
(Xiang et al. 2007; Radbruch et al. 2006). Quite interestingly, the lower level of
FccRIIB expression on B cells in autoimmune prone mice also correlates with a
higher amount of plasma cells, suggesting that these cells may be more resistant to
being eliminated via this pathway. Thus, normalizing FccRIIB expression by IVIg
treatment may allow restoring the FccRIIB-dependent pro-apoptotic pathway on
autoantibody producing plasma cells, which may result in the elimination of these
cells via circulating immune complexes.

With respect to the mechanism of FccRIIB upregulation on B cells, several
open questions remain. While recent studies have demonstrated that IVIg can
directly interact with B cells, it is still unclear which receptor is responsible for this
binding. As we have discussed before, a direct binding to FccRIIB seems unlikely,
as sialic acid-rich IgG has a strongly reduced affinity for this Fcc receptor (Kaneko
et al. 2006b). In vitro experiments with human B cells demonstrated that sialic
acid-rich IgG may bind to B cells via CD22, a cell surface molecule broadly
expressed on mouse and human B cells with a known specificity for sialic acid
residues (Fig. 1) (Seite et al. 2010; Jellusova and Nitschke 2011). In CD22
knockout mice, however, IVIg was still able to bind to B cells suggesting that
other or additional proteins may be involved in this binding (Schwab et al. 2012b).
This may also be due to the fact that CD22 is usually occupied with ligands present
on proteins on the same cell, such as other CD22 molecules or the B cell receptor.
More recently, CD23, which is the low affinity receptor for IgE expressed on B
cells, was suggested to be another candidate receptor with the capacity to bind
sialic acid-rich IgG (Fig. 1) (Sondermann et al. 2013). CD23 is a prime example
demonstrating that proteins, which have been identified as members of the C-type
lectin family member due to their capacity to recognize sugar structures directly,
can also bind ligands (IgE) via direct binding to the protein backbone and hence
independent of carbohydrates. Future studies using CD23 knockout mice will be
necessary to determine if CD23 is indeed the critical link explaining how IVIg
modulates B cell functions and upregulates FccRIIB.

4.2 Inhibition of the T Cell Response by Sialylated IgG

More recently, a feedback of sialylated antibodies on the T cell response was noted
as well. Injection of IgG1 antibodies specific for the model antigen ovalbumin was
able to reduce the severity of ovalbumin-dependent T cell-mediated delayed type
hypersensitivity (DTH) reactions including allergic asthma, if they contained high
levels of terminal sialic acid residues (Oefner et al. 2012). Compared to the
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immediate hypersensitivity reactions, which develop within minutes after antigen
encounter and depend on antibody mediated cross-linking of Fc receptors on mast
cells for example, DTH reactions take days to develop and are dependent on
antigen uptake and processing by dendritic cells followed by recognition of T-
helper cells, which in turn release pro-inflammatory cytokines, resulting in tissue
inflammation. In contrast to the IVIg-mediated suppression of antibody responses,
however, the antigen specificity of the injected antibodies was critical in this
model system. Thus, injection of antibodies of the same IgG subclass and carrying
a similar degree of sialylation but a different antigen specificity were not able to
suppress an ovalbumin-dependent DTH response, suggesting that the formation of
immune complexes with sialic acid-rich ovalbumin-specific antibodies with
ovalbumin was somehow involved in this immunoregulatory process. Moreover, a
much lower amount of sialic acid-rich IgG was necessary to reduce the DTH
response, again arguing for the formation of immune complexes (Oefner et al.
2012). Similar results were obtained in a model of ovalbumin-dependent allergic
airway inflammation, where the pre-injection of OVA-specific IgG1 antibodies
reduced the recruitment of eosinophils to the lung following an intranasal chal-
lenge with the antigen. A potential pathway how the sialic acid-rich antibodies
might ameliorate DTH reactions was provided by experiments showing that sialic
acid-rich IgG immunocomplexes were able to inhibit dendritic cell maturation
which might limit their capacity to activate T-helper cells and thereby limit the
release of pro-inflammatory cytokines (Oefner et al. 2012). Again in contrast to the
IVIg-induced immunomodulatory pathway, the inhibitory FccRIIB was not
required for this inhibition of DC maturation, consistent with the reduced affinity
of sialic acid-rich IgG1 for the inhibitory FccRIIB (Kaneko et al. 2006b; Oefner
et al. 2012). An involvement of dendritic cells and regulatory T cells (Treg) in the
anti-inflammatory pathway of IVIg activity was shown by several other studies
(Bayry et al. 2003). Thus, IVIg (or IgG in general) was demonstrated to contain
epitopes in its Fc fragment with the capacity to expand regulatory T cells (so-
called Tregitopes) (De Groot et al. 2008; Ephrem et al. 2008). Upon uptake of IVIg
via dendritic cells and processing of IgG in endosomal compartments, this would
lead to the loading of these peptide sequences onto MHC class II molecules, which
then enables the expansion of Tregs. More recently, a receptor called dendritic cell
inhibitory receptor (DCIR) was shown to be essential for the IVIg dependent
induction of Tregs. This receptor specifically recognized highly sialylated IgG
species within the IVIg preparation, providing further evidence that enriching IVIg
for its sialic acid-rich glycoforms may not only enhance its capacity to modulate
the effector phase of IgG activity but also enhance the generation of Tregs,
resulting in a more potent suppression of pro-inflammatory T cell responses
(Dalziel et al. 2014).

Quite interestingly, a similar inhibition of a DTH reaction was observed if mice
were pre-immunized with the model antigen in the absence of adjuvants or if T
cell-independent antigens such as TNP-LPS or TNP-Ficoll were used (Hess et al.
2013; Oefner et al. 2012). It is well established that a successful T cell-dependent
vaccination with protein-based antigens usually requires co-stimulatory signals
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which may be provided via Toll-like receptor ligands as present in complete
Freunds’ adjuvant or more directly by co-injection of CD40-specific antibodies,
for example. In the absence of such co-stimulatory signals, only a limited pro-
liferation of T cells occurs, and most of these antigen-specific T cells are no longer
detectable after one week, consistent with a concept of tolerance induction by
deletion of potentially self-reactive T cells in the absence of infection or inflam-
mation and/or by the induction of regulatory T cells (Yamazaki et al. 2008). With
respect to effects on antibody glycosylation, immunization of mice with T cell-
dependent antigens in complete Freunds’ adjuvant was shown to result in the
production of IgG antibodies with low levels of terminal sialic acid residues,
which therefore lose their ability to trigger anti-inflammatory pathways (Kaneko
et al. 2006b; Hess et al. 2013; Oefner et al. 2012). This reduction in IgG sialylation
was absent in interferon-c receptor and interleukin 17 receptor double knockout
mice, suggesting that these two cytokines are involved in changing IgG sialylation
patterns (Hess et al. 2013). Of note, an involvement of these cytokines in altering
IgG glycosylation was not observed with human B cells in an in vitro culture
system (Wang et al. 2011). Here only the treatment with all-trans retinoic acid
(ATRA) resulted in a production of antibodies with a reduced level of sialic acid,
whereas treatment with IFNc and IL21 rather increased galactosylation and/or
sialylation and IL17 had no measurable effect on IgG glycosylation (Wang et al.
2011).

With respect to the antibody response induced in the absence of co-stimulatory
signals, largely IgG antibodies with no reduction in terminal sialic acid residues
compared to serum IgG during steady-state conditions were produced. As dis-
cussed for the monoclonal antibodies before, transfer of these serum antibodies
protected mice from a subsequent DTH response in a sialic acid-dependent
manner. Apart from the effect noted with respect to the activation of dendritic
cells, also a suppression of subsequent B cell responses was noted, although again
independent of FccRIIB. Further studies will be critical to understand this
immunomodulatory effect in greater detail and it will be important to understand
whether previous studies describing antigen-dependent negative feedback loops on
antibody production by B cells are also dependent on specific IgG glycoforms
(Heyman 2000).

5 The Role of Galactose in the Anti-inflammatory Activity
of Immune Complexes

More recently, another residue of the IgG heavy chain sugar moiety was identified
to be important for a novel immunomodulatory activity of IgG immune com-
plexes. As we have discussed before, immune complexes are well known to have a
potent pro-inflammatory activity as polymeric IgG acquires the capacity to ligate
low affinity FccRs on cells of the innate immune system and to activate the
classical complement pathway (Fig. 1). The activated complement components

408 S. Böhm et al.



C3a and C5a recruit a variety of innate immune effector cells including monocytes
and neutrophils, which will further enhance inflammation. With respect to com-
plement activation, individual IgG subclass members differ in their capacity to
trigger the classical complement pathway. Whereas in mice IgG2a and IgG2b are
most potent in triggering complement activation, in humans IgG1 and IgG3 have
this capacity. Mouse IgG1, in contrast, does only have a very low affinity toward
C1q and hence has a very limited ability to initiate the complement cascade.
Indeed, mouse IgG1 activity is usually abrogated in mice deficient in the activating
FccRIII (Nimmerjahn and Ravetch 2006). Although not being able to initiate the
complement pathway, IgG1 glycovariants in the form of immune complexes were
able to actively block the effector pathways triggered by complement activation
(Karsten et al. 2012). Thus, IgG1 carrying high levels of terminal galactose resi-
dues (IgG–G2; Fig. 2) interfered with the recruitment of neutrophils in a C5a-
dependent model of peritonitis. Moreover, injection of these immune complexes
abrogated the formation of skin blisters induced by the injection of collagen-type
VII specific antibodies in a passive model of epidermolysis bullosa acquisita,
consistent with the co-dominant role of C5 and activating FccRs in autoimmune
diseases such as nephritis, inflammatory arthritis, peritonitis, skin blistering dis-
eases, and immune complex-dependent alveolitis (Mihai and Nimmerjahn 2012;
Karsten et al. 2012).

Of note, IgG2a immune complexes did not suppress neutrophil recruitment
irrespective of their level of galactosylation, suggesting that not only the glyco-
sylation state but also the IgG subclass is critical for this activity. Interestingly, this
effect was dependent on the inhibitory FccRIIB, as mice deficient for this receptor
did not respond to high galactose IgG1 immune complexes. This may be consistent
with earlier studies demonstrating that mouse IgG1 has an about 10-fold higher
affinity for the inhibitory FccRIIB compared to IgG2a (Ravetch and Nimmerjahn
2008). Whether high levels of galactose further enhance this affinity for FccRIIB,
remains to be established. In vitro studies revealed that the immune complexes
blocked neutrophil migration through an FccRIIB mediated reduction of MAP
kinase and calcium-dependent signaling pathways initiated via the C5aR. Apart
from the requirement for FccRIIB, which has the capacity to directly interact with
IgG1 immune complexes, this immunomodulatory pathway was also shown to be
dependent on the Dectin-1 (clec7a), yet another C-type lectin family member.
Dectin-1 has an intracellular ITAM motif and is co-expressed with FccRIIB on
neutrophils, but cannot interact with IgG immune complexes directly. Upon high
galactose IgG1 immune complex binding, however, an interaction of Dectin-1 and
FccRIIB was noted, providing a possible explanation for the co-dominant role of
both receptors in the modulation of complement pathway-dependent effector
functions (Karsten et al. 2012).

Considering previous studies, showing that C5a may be critical to allow the
upregulation of activating FccRs on innate immune effector cells, such as tissue
resident macrophages, one may expect a more generalized immunomodulatory
activity of these high galactose immune complexes in diseases such as inflam-
matory arthritis for example (Schmidt and Gessner 2005; Syed et al. 2009). Taken
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together, high galactose IgG1 immune complexes may block the local C5a-
dependent positive feedback loop, which seems critical to allow a full-blown
activation of the innate immune system.

6 Conclusion

Taken together, experiments over the last eight years have firmly established the
capacity of IgG to mediate immunoregulatory and most notably potent anti-
inflammatory activities. New studies investigating the anti-inflammatory activity
of monomeric IgG have provided convincing evidence that sialic acid-rich IgG
glycoforms within the IVIg preparation are broadly required for its ability to
suppress a wide variety of autoimmune diseases under preventive and therapeutic
treatment conditions. These studies have also demonstrated that the molecular and
cellular players in the downstream pathway may vary, but finally converge on the
important function of FccRIIB to inhibit the activation of innate immune effector
cells. Future studies will need to show the direct relevance of this pathway for the
human immune system either directly in human clinical trials or in small animal
models reflecting the complexity of the human immune system. More recently, an
inhibitory effect of sialic acid-rich immune complexes on T cell-dependent DTH
reactions was demonstrated. This effect was independent of FccRIIB, dependent
on the antigen specificity of the antibody and may require the modulation of
dendritic cell activity. Finally, IgG1 immune complexes containing high levels of
galactose had a potent activity to inhibit complement mediated recruitment of
innate immune effector cells, which required the inhibitory FccRIIB and Dectin-1.
Despite these intriguing findings, we are only at the beginning of understanding
how these novel immune complex-dependent immunomodulatory pathways and
the increasing numbers of C-type lectin family members involved in these activ-
ities work precisely.
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