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1.1  Introduction

Food security is a major issue in the global policy agenda. In the next 40 years, 
demand for cereal production is predicted to increase by 60 % as the population 
rises from the current 6.6 to 8.7 billion by the year 2050 (Bengtsson et al. 2006). 
In a world where population growth exceeds food supply (Malthus 1817), a second 
green revolution is necessary. But the challenges in overcoming the constraints in 
food production are complex. The ongoing change in climate mostly due to anthro-
pogenic activities causes increases in carbon dioxide (CO2) emissions (Peters et al. 
2011), further exacerbating the agricultural land deterioration due to increasing 
temperature (Kissoudis et al. 2014). Increasing temperature in turn leads to higher 
evapotranspiration, drought intensification, and increasing soil salinization (Munns 
and Tester 2008; Zhao and Running 2010). Though the existing data on the impact 
of climate change on pathogen spread are inconclusive, evidence points to increased 
reproductive potential and geographic expansion leading to interactions with more 
hosts and new virulent pathogenic strains (Garrett et al. 2006). An analysis of the 
natural disasters that resulted in more than a billion dollars in the USA in the past 
three decades clearly shows that both the frequency and intensity of these events are 
increasing (Fig. 1.1). Hence, the chances of plants encountering new combination 
of stresses in the future are likely to be higher. It thus behooves upon plant scientists 
working on stress resistance to consider the combination of stresses that are likely 
to co-occur under field conditions.
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1.2  Importance of Combined Stress

Literature is replete with studies on plant responses to stresses. PubMed search us-
ing keywords “stress” and “plants” in title and abstract field alone identified nearly 
15,300 citations while “combined stress” and “plants” retrieved 480 citations. A 
closer inspection of the latter search revealed only around 180 original articles that 
actually dealt with the combination of two or more stresses in plants. A listing of 
primary research articles on combined stress in various plant species is given in 
Table 1.1.

The combined occurrence of drought and heat in the USA from 1980 to 2012 was 
shown to cause fivefold more damage when compared to drought alone (Fig. 1.2). 
Increase in global surface temperature is a major indicator of global warming (Van 
Vuuren et al. 2008). This rise in mean global temperature is attributed to increases 
in the greenhouse gases such as CO2 and air pollutants such as ozone (O3) that 
have been brought about by anthropogenic activities. For the first time in recorded 
history, the average level of CO2 has topped 400 parts per million (ppm) for an 
entire month in April 2014 according to the Scripps Institution of Oceanography. 
Efforts to control CO2 emissions on a global scale will be difficult to enforce given 
the political and economic implications surrounding such legislations. More than 
400 ppm of CO2 may thus be the new reality for crop plants in the future.

Fig. 1.1  The US billion-dollar weather and climate disaster time series from 1980 to 2011. 
(Adapted from reference Smith and Katz 2013)
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Stress combination Plant species (references)
Drought + heat Arabidopsis (Koussevitzky et al. 2008; Rizhsky et al. 2004; Vile 

et al. 2012; Wolfe and Tonsor 2014), tobacco (Cvikrova et al. 
2013; Rizhsky et al. 2002), wheat (Keles and Oncel 2002; Prasad 
et al. 2011; Rampino et al. 2012; Szucs et al. 2010; Yang et al. 
2011), Sorghum (Johnson et al. 2014), Carissa spinarum (Zhang 
et al. 2010), lotus (Sainz et al. 2010), soybeans (Simon-Sarkadi 
et al. 2005), Jatropha (Silva et al. 2010); barley (Rollins et al. 
2013); poplar (Centritto et al. 2011); prosopis (Delatorre et al. 
2008)

Drought + chilling Sugarcane (Sales et al. 2013), maize (Aroca 2003)
Drought + high light Arabidopsis (Estavillo et al. 2011; Giraud et al. 2008), Haberlea 

rhodopensis (Georgieva et al. 2010), rice (Zhou et al. 2007), 
watermelon (Nanasato et al. 2005), pearl millet and Sorghum 
(Masojidek et al. 1991); Nerium oleander (Demmig et al. 1988)

Drought + heavy metals Red maple (de Silva et al. 2012); Populus cathayana (Han et al. 
2013); oak (Sardans and Penuelas 2007); Stackhousia tryonii 
(Bhatia et al. 2005)

Drought + ozone Birch (Paakkonen et al. 1998), beech (Nunn et al. 2007), Medi-
cago truncatula (Iyer et al. 2013), Quercus (Alonso et al. 2014), 
poplar (Bohler et al. 2013), Dactylis glomerata, and Ranunculus 
acris (Wagg et al. 2012); wheat (Biswas and Jiang 2011; Herbin-
ger et al. 2002), spruce (Karlsson et al. 1997; Kivimaenpaa et al. 
2003); Pinus halepensis (Manes et al. 2001; Fontaine et al. 2003)

Drought + salinity Barley (Ahmed et al. 2013a, b, c); Sesuvium portulacastrum 
(Slama et al. 2008)

Drought + soil compaction Tobacco (Alameda et al. 2012)
Drought + nutrients Maize (Kandianis et al. 2013; Makumburage and Stapleton 

2011); wheat (Wei et al. 2013); potato (Germ et al. 2007)
Drought + UV Maize (Makumburage et al. 2013); wheat (Feng et al. 2007; Zhao 

et al. 2009); Arabidopsis (Comont et al. 2012; Schmidt et al. 
2000); barley (Bandurska et al. 2012); peas (Nogues et al. 1998); 
Populus cathayana (Lu 2009); willows (Turtola 2006); soybeans 
(Sullivan and Teramura 1990)

Drought + high CO2 Potato (Barnaby et al. 2014); maize (Sicher and Barnaby 2012); 
Phaseolus vulgaris (Medeiros and Ward 2013); Viguiera discolor 
(Oliveira et al. 2013); eucalyptus (Crous et al. 2012; Duursma 
et al. 2011; Lewis et al. 2013; Zeppel et al. 2011); maize and sor-
ghum (Allen et al. 2011; Kakani et al. 2011; Leakey et al. 2006); 
pepper (del Amor et al. 2010); populus (Bobich et al. 2010); 
cucumber (Li et al. 2008); oak and pine (Schwanz et al. 1996)

Drought + pathogens/pest Arabidopsis (Atkinson et al. 2013; Anderson et al. 2004); tobacco 
(Ramegowda et al. 2013); rice (Campo et al. 2012); Alnus fruti-
cosa (Rohrs-Richey et al. 2011); beet and rice (Xu et al. 2008)

Salinity + heat Tomato (Rivero et al. 2014); poplar (Behnke et al. 2013); Arte-
misia (Wen et al. 2005) Swietenia macrophylla (Rahman et al. 
2013)

Table 1.1  Primary research studies of combined stresses in various plant species
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Stress combination Plant species (references)
Salinity + ozone Alfalfa (Maggio et al. 2009); chickpea (Welfare et al. 2002); rice 

(Welfare et al. 1996); wheat (Zheng et al. 2012)
Salinity + pathogens Rice (Xiong and Yang 2003)
Salinity + nutrients Barley (Talbi Zribi et al. 2011); Hordeum maritimum (Talbi 

Zribi et al. 2012); spinach (Kaya et al. 2001); soybeans (Grat-
tan and Maas 1988); peanuts (Silberbush and Ben-Asher 1989); 
Crithmum maritimum (Labidi et al. 2011); broccoli (del Carmen 
Martinez-Ballesta 2008)

Salinity + high CO2 Arabidopsis (Kanani et al. 2010); Spartina maritima (Mateos-
Naranjo et al. 2010a); barley (Perez-Lopez et al. 2009, 2012); 
pepino (Chen et al. 1999); melon (Mavrogianopoulos et al. 1999); 
citrus (Garcia-Sanchez et al. 2006); olive (Melgar et al. 2008); 
aster (Geissler et al. 2009, 2010); tomato (Takagi et al. 2009); 
Spartina densiflora (Mateos-Naranjo et al. 2010b)

Heat + ozone Birch (Kasurinen et al. 2012; Maenpaa et al. 2011; Riikonen et al. 
2009, 2013); spruce (Riikonen et al. 2012); populus (Hartikainen 
et al. 2009); bean (Albertine and Manning 2009); radish (Kleier 
et al. 2001)

Heat + light Sunflower (Hewezi et al. 2008); Brassica (Diaz et al. 2007), oats 
(Quiles 2006); seagrass (York et al. 2013); apple (Chen et al. 
2008); grapes (Greer and Weedon 2012); Arabidopsis (Burgos 
et al. 2011; Lokhande et al. 2003; Vasseur et al. 2011); Dunaliella 
salina (Haghjou et al. 2009); Phragmites australis (Loreto et al. 
2006); wheat (Monneveux et al. 2003); spruce (Mahoney et al. 
1998)

Heat + UV Wheat (Zheng et al. 2011); cucumber (Caldwell 1994)
Heat + high CO2 Tomato (Li et al. 2014b); Kentucky bluegrass (Song et al. 2014); 

aspen (Sun et al. 2013); soybeans (Sicher 2013); rice (Madan 
et al. 2012); eucalyptus (Loveys et al. 2006); bell pepper (Aloni 
et al. 2001; Karni and Aloni 2002); Abutilon theophrasti (Ziska 
2001); cotton and tobacco (Crafts-Brandner and Salvucci 2000)

Temperature + pathogens Arabidopsis (Szittya et al. 2003; Yang and Hau 2004; Zhu et al. 
2010); tomato (de Jong et al. 2002)

Ozone + high CO2 Soybeans (Ainsworth et al. 2008; Gillespie et al. 2012); populus 
(Kets et al. 2010); wheat (Mishra et al. 2013)

Ozone + UV Linseed (Tripathi and Agrawal 2013a, b); birch (Pliura et al. 
2008); Elymus athericus (van de Staaij et al. 1997)

Ozone + pathogens Tobacco (Ye et al. 2012); soybeans (Bilgin et al. 2008); Beech 
and spruce (Luedemann et al. 2005)

Chilling + high light Tomato (Wang et al. 2008); cotton (Kornyeyev et al. 2001; Pay-
ton et al. 2001)

Chilling + pathogens Arabidopsis (Yang et al. 2010)
UV + heavy metals Brassica campestris (Shukla et al. 2008); Pisum sativum (Srivas-

tava et al. 2012)
UV + pathogens Arabidopsis (Kunz et al. 2006); tea (Gunasekera et al. 1997); cab-

bage (Brown et al. 2001); tobacco (Yalpani et al. 1994)

Table 1.1 (continued) 
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Here is an example to illustrate the importance of considering more than a single 
stress. A recent study indicated that rising CO2 levels increased the estimated yield 
levels of soybeans during 2002–2006 by 4.34, 7.57, and 5.10 %, in the USA, Brazil, 
and China, respectively (Sakurai et al. 2014). However, there are other studies using 
the free-air concentration enrichment (FACE) technology that consider the increas-
ing levels of ozone, the most abundant air pollutant that will negate the fertilizing 
effects of CO2 and predict a less-than-expected yield due to the increasing levels of 
CO2 (Long et al. 2005, 2006).

Stress combination Plant species (references)
High CO2 + high light Chlorella (Kozlowska-Szerenos et al. 2004)
Nutrient + pathogens Arabidopsis (Amtmann et al. 2008)
Drought + heat + high 
light

Hibiscus (Munoz and Quiles 2013); Rosa meillandina (Paredes 
and Quiles 2013); wheat (Sharma and Singhal 1993)

Drought + high light + UV Arabidopsis (Poulson et al. 2006)
Drought + heat + virus Arabidopsis (Prasch and Sonnewald 2013)
CO2 + temperature + UV Cowpea (Singh et al. 2010); soybeans (Koti et al. 2005); birch 

(Lavola et al. 2013)
Ozone + light Trifolium subterraneum (Vollsnes et al. 2009)
CO2 + temperature + 
drought

Eucalyptus (Roden and Ball 1996)

UV + nutrients Vigna radiata (Agrawal et al. 2006); wheat (Shukla et al. 2002)
CO2 + ozone + insects Soybeans (Casteel et al. 2008)
CO2 + temperature + 
insects

Soybeans (Niziolek et al. 2013)

Table 1.1 (continued) 
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Fig. 1.2  A meta-analysis of naturally occurring disasters in the USA. Losses due to weather-
related disasters (excluding tornadoes, hurricanes, and wildfires) occurring between 1980 and 
2011 that exceeded more than a billion dollars were included in this analysis. Damage costs were 
normalized to the 2013 US dollar value. Raw data for this analysis were from reference (Smith 
and Katz 2013)
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1.3  Which Combination of Stresses to Study?

This begs the question which combination of stresses to study. As indicated earlier, 
plants are continually challenged by diverse array of biotic and abiotic agents from 
seed germination to senescence. We can envisage considering those stresses that 
are most likely to co-occur under field conditions and whose combined impact can 
adversely affect the final yield.

Stress Matrix Approach Mittler and coworkers have advocated the use of a stress 
matrix showing different combinations of potential environmental stresses that can 
affect crops. The use of colors to indicate potential positive and negative interactions 
provides a visually appealing schema for depicting combined stresses (Fig. 1.3). It 

Fig. 1.3  The stress matrix. Different combinations of potential environmental stresses that can 
affect crops in the field are shown in the form of a matrix. The matrix is color-coded to indicate 
stress combinations that were studied with a range of crops and their overall effect on plant growth 
and yield. References for these studies are given in the text and in Table 1.1. (Adapted from Suzuki 
et al. (2014) and modified from Mittler (2006))
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should be noted that this is a vast oversimplification of the complexity involved in 
combined stress scenarios. For example, Medicago truncatula cultivar Jemalong is 
sensitive to ozone and drought when the stresses were applied singly (Puckette et al. 
2007). The combined application of drought and ozone in Jemalong evoked a very 
different transcriptome and metabolic response that manifested as a stress-tolerant 
phenotype (Iyer 2013). To test whether this observation can be extended to other 
legumes, we used the soybean cultivar Forrest that is sensitive to drought and ozone 
when applied singly. The combined application of drought and ozone for a period of 
3 days was detrimental for Forrest plants (Fig. 1.4). Thus, based on single-case stud-
ies, it is naïve to interpret the interactions between stress combinations as positive 
or negative. Biswas and Jiang (2011) reported that, under conditions of combined 
ozone and drought stress, the ozone-sensitive modern winter wheat	cultivar	( Triti-
cum aestivum L. cv. Xiaoyan 22) improved its tolerance against ozone, while the 
ozone-tolerant	primitive	wheat	( Turgidum ssp. durum) lost ozone tolerance. Crops 
show wide variability in their phenotypic responses to stresses and this includes 
both the intra- and inter-specific variation (Biswas et al. 2008; Brosche et al. 2010).

Fig. 1.4  Combined ozone and drought stress in two soybean cultivars. Cultivar Forrest (sensitive 
to ozone, sensitive to heat) and Essex (tolerant to ozone, tolerant to heat) were simultaneously 
exposed to 75–100 ppb of ozone and higher temperature of 37 °C for 3 h a day for 3 consecutive 
days. Photographs were taken at the end of the combined ozone and heat treatment on day 1 (A), 
day 2 (B), day 3 (C), 24 h after the end of the treatment (E), and 10 days of post-recovery in a 
growth chamber (F)
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Furthermore, it has been shown that the order in which the stress combinations 
are applied may evoke a different response. An early drought could lead to a de-
crease in stomatal conductance and a subsequent protection against a later ozone ex-
posure while the appearance of drought during preexisting ozone stress would suffer  
under the appearing sluggishness of stomata, initially caused by ozone (Paoletti and 
Grulke 2010).

Plants can show varied responses to stresses depending on their developmental 
stage. This adds an additional layer of complexity in the analysis of plant stress 
studies. If a field is affected by stress at a very early stage of development (e.g., 
seedling stage), a farmer may be able to undertake second planting and still recover 
his losses. On the other hand, a severe stress in field during the reproductive stage of 
development will not be amenable for such amends. It has been reported that most 
plants of agronomic importance are gullible to abiotic stresses during reproductive 
stages with detrimental consequences to the yield (Barnabas et al. 2008). Interest-
ingly, the consequences to yield in response to stresses are not considered in most 
studies involving model plants like Arabidopsis. The usefulness of model plants for 
understanding plant stress responses can be greatly increased by assessing impact 
of stress on seed yield and seed quality. From an agronomic perspective, the most 
important aspect of plant stress interactions will be to understand its impact on the 
final yield.

1.4  Omics of Combined Stress

A detailed review of the transcriptome studies on combined stresses in plants has 
been reported (Jambunathan et al. 2010). A few proteomic studies on the combined 
stresses have been reported. This includes drought and ozone in poplar (Bohler 
et al. 2013), drought, and heat in Arabidopsis, barley, Carissa spinarum (Koussev-
itzky et al. 2008; Rollins et al. 2013; Zhang et al. 2010), toxic compounds like mer-
cury and salinity in Suaeda salsa (Liu et al. 2013), high temperature and humidity in 
Portulaca oleracea (Yang et al. 2012). Interestingly, transcriptomic and proteomic 
analysis of several different combined stresses in several different plant species 
converges on the antioxidant defense machinery as a key pathway. The observed 
higher antioxidant capacity and/or lower accumulation of the reactive oxygen 
species (ROS) seems to be a mechanism operative in plants tolerant to combined 
stresses (Iyer et al. 2013; Koussevitzky et al. 2008; Ahmed et al. 2013b; Perez-
Lopez et al. 2009; Rivero et al. 2014; Sales et al. 2013). Omics approaches have 
also shown that there are unique transcription factors, hormone-responsive genes 
and osmolytes that are differentially expressed in response to different combined 
stresses (Iyer et al. 2013; Atkinson et al. 2013; Rasmussen et al. 2013; Rizhsky et al. 
2004). An apparent gap in the knowledge is the lack of information on posttran-
scriptional gene regulation by microRNAs in response to combined stresses. In fact, 
a comprehensive analysis of transcriptome, proteome, metabolome, and miRNome 
even in response to a single stress has not been reported. Such integrated omics 
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studies of combined stresses imposed during reproductive stages of crop develop-
ment are warranted.

DNA cytosine methylation and histone modifications such as methylation and 
acetylation affect transcription especially in response to changes in environment 
(Mirouze and Paszkowski 2011). Epigenetic modifications involving chromatin-
regulated gene activation govern priming responses (Conrath 2011) and widespread 
alterations in DNA methylation have been reported in response to biotic and abiotic 
stresses (Bilichak et al. 2012; Dowen et al. 2012). The knowledge of epigenetic 
modifications in the wake of combined stresses is relatively unknown and is worthy 
of further investigations. It has been speculated that epigenetic modifications in re-
sponse to a stress may predispose plants to a subsequent stress by either sensitizing 
or desensitizing. Such acclimation/predisposition may provide a novel avenue for 
preparing seeds for stressful environments (Kissoudis et al. 2014).

1.5  Phenotypic Responses to Stresses

From an agronomic point of view, the definition of plant sensitivity to stresses can 
be misleading. For example, crops can be sensitive to ozone with reference to vis-
ible foliar damage at early stages of growth but may not have a net impact on the 
grain yield during harvest. In rice and wheat, plants with least visible foliar symp-
toms showed maximum yield losses (Picchi et al. 2010; Sawada and Kohno 2009) 
and this was explained on the basis of stomatal closure response. Cultivars in which 
ozone causes stomatal closure prevent the influx of ozone and reduce the extent of 
foliar injury. Thus, based on the damage to leaves, these cultivars are resistant to 
ozone. However, prolonged stomatal closure affects carbon fixation and in turn the 
amount of assimilates required for grain filling. Thus, with reference to yield these 
cultivars are ozone sensitive. Other mechanisms for the negative effect of ozone 
could be due to the reduction of new growth (McKee and Long 2001), reduced root 
biomass (Grantz et al. 2006), reduced phloem translocation efficiency, or reduced 
carbon portioning to grains over synthesis of protective chemicals (Betzelberger 
et al. 2010).

It is important to understand the differences between sensitive and resistant re-
sponses that can differ depending on the stress. Let us consider the example of 
ozone exposure. The visible injury symptoms due to ozone are mostly assessed by 
damage to foliage. In sensitive plants, they appear as small chlorotic or necrotic le-
sions on leaves that can coalesce into larger patches of injured area, and such leaves 
usually senesce early. This reduces the effective biomass that in turn will take a toll 
on crop yields (Wilkinson et al. 2012). The same necrotic lesions on the foliage 
in response to avirulent pathogen infections are termed as hypersensitive response 
and the plant is considered to be resistant to the pathogen. The characterization of 
the same phenotype as being resistant with respect to one stress and as sensitive 
response to another stress is important to bear in mind while considering the com-
bination of biotic and abiotic stresses.
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1.6  Contrasts Between Laboratory and Field Studies

In several recent reviews, the limitations of single stress studies in controlled con-
ditions compared to field conditions have been examined (Mittler and Blumwald 
2010; Suzuki et al. 2014). The study of combined stresses in the laboratory is ad-
vocated so that the molecular pathways for tolerance to stresses that prevail under 
field condition can be identified. Most of the studies on combined stresses so far 
have been conducted under growth chamber or greenhouse conditions (Suzuki et al. 
2014). Here, we have contrasted the combined stress studies in laboratory condi-
tions versus the field conditions (Fig. 1.5). Combined stresses dealing with edaphic 
factors can be conducted effectively in greenhouse conditions. This includes the 
combinations of drought and nutrients, drought and salinity, drought and soil patho-
gen/pests such as nematodes. Combined stress experiments that involve interactions 
between climate change factors including CO2, ozone, and temperature extremes 
(heat or cold) are ideal for growth-chamber studies. But the main constraint here 
is the number of large-sized plants that can be accommodated in such chambers. If 
greenhouse space and infrastructure for regulating gaseous mixtures (for example, 
CO2 and ozone) are available, it provides an ideal platform for conducting controlled 
combined stress analysis of climate change variables and edaphic factors. Several 
reviews have examined the advantages and disadvantages of open-top chambers 
(OTCs), FACE systems, and screen-aided CO2 control (SACC; Ainsworth et al. 
2008; Li et al. 2007). Though FACE and OTCs provides an opportunity to examine 
the impact of climate change factors in actual field environment, it will be hard to 
use these facilities in combined stress scenarios such as drought or temperature 
stress. Rainout shelters can be constructed for studying drought in combination with 
other climate change factors in a FACE but may be expensive.

Fig. 1.5  Comparisons between growth chamber, green house, and field studies for analyzing the 
effects of combined stresses in plants



1 Consideration of Combined Stress 11

1.7  Advances in Phenomics

Following the enormous advances in the sequencing technologies, it has now be-
come routine to sequence large collections of accessions or mapping populations 
in a plant species (Lam et al. 2010; Li et al. 2014a; Weigel and Mott 2009). The 
major bottleneck currently in utilizing the genome sequence deluge is the ability to 
procure reliable phenotype data. Over the past decade field, phenotyping has made 
rapid strides by utilizing remote-sensing technologies for crop monitoring (Furbank 
and Tester 2011). The field of phenomics described as a “high-throughput plant 
physiology” makes use of noninvasive imaging, infrared thermography, spectrosco-
py, robotics, image analysis, and high-performance computing. Several successful 
phenotyping screens for single stresses such as drought, UVB have been reported in 
model plant systems (Jansen et al. 2010; Woo et al. 2008) as well as in crop plants 
(Chapuis et al. 2012; Honsdorf et al. 2014; Sirault et al. 2009).

For UV stress and temperature extremes, the photosynthetic light-harvesting ap-
paratus is often the first site of damage. UV stress can result in oxidative damage to 
the photosystems, perceived as a loss of efficiency of light harvesting, that can be 
exploited as a screening tool for tolerance to UVB exposure (Jansen et al. 2010). In 
the case of temperature extremes, the effects on photosynthesis and even changes 
in membrane lipid properties can lead to immediate effects on chlorophyll fluores-
cence (Armond et al. 1980).

Digital imaging in visible wavelength regions provides information on plant size, 
and also on the color of the plants. This information enables the quantification of 
senescence arising from nutrient deficiencies or toxicities, or pathogen infections. 
Germanium, a toxic analog of boron, was tested in a mapping population of barley 
to identify a Quantitative Trait Loci (QTL) at the same locus as previously identi-
fied for boron tolerance using a visual score of symptoms (Schnurbusch et al. 2010).

Near-surface reflectance spectroscopy was used to monitor the leaf nitrogen and 
chlorophyll content and epoxidation state of xanthophyll cycle pigments in field-
grown soybean plants exposed to ozone (Ainsworth et al. 2014). This study shows 
that the leaf optical properties can be monitored using remote-sensing techniques to 
assess ozone damage and provide a promising tool for elucidating ozone tolerance 
in plants.

The examples mentioned above demonstrate the utility of the phenomics tools for 
precisely monitoring the physiological impacts of single stresses such as drought, 
salinity, nutrient deficiency, and air pollutants. It is conceivable that these tools will 
be harnessed for the analysis of combined stresses in the future.

1.8  Strategies for Improving Tolerance to Combined 
Stresses

Two major strategies can be envisaged for improving the tolerance to combined 
stresses (Fig. 1.6). First strategy involves the meta-analysis of whole genome  
expression studies in response to various biotic and abiotic stresses that can be  
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accessed through programs like Genevestigator (Zimmermann et al. 2004). Re-
cent advances in computational tools such as co-expression modules and machine-
learning approaches provide novel means for identifying the candidate genes for 
engineering broad-spectrum resistance based on gene expression data (Shaik and 
Ramakrishna 2013, 2014). Genetic components that potentially regulate the resis-
tance to multiple stresses will be utilized for developing transgenic crops. Examples 
of genes for this strategy include stress-inducible transcription factors, receptor-like 
kinases, flavonoid metabolism, redox homeostasis, and chromatin modifications.

The same meta-analysis strategy can be adapted for gene pyramiding that has 
been successfully deployed for resistance to various plant pathogens (Joshi and 
Nayak 2010). In the case of combined biotic and abiotic stresses, the pyramided 
genes can be defense genes such as R-genes, pre-invasion defenses (such as callose 
deposition), nonhost resistance genes in combination with genes in the hormone 
signaling pathways, antioxidant defenses, or ion homeostasis (Fig. 1.6; Kissoudis 
et al. 2014).

A second strategy for improving plant tolerance to combined stresses involves 
the screening of large collections of germplasm in conjunction with genome-wide 
association mapping (Huang and Han 2014). In recent years, genotyping data for 
large collections of crop germplasms are becoming available in the public domain 
(Hao et al. 2012; Li et al. 2013; Song et al. 2013; Yu and Buckler 2006; Zhang et al. 
2014). A reliable phenotypic evaluation of germplasm to various stress combina-
tions of interest can be performed. The genotypic information from public domain 
can be exploited to precisely identify genomic regions associated with the traits of 
interest. The recent assembly and characterization of association mapping panels 
in various crop plants, development of improved statistical methods, user-friendly 
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Fig. 1.6  Strategies for building tolerance to combined stresses in plants. A compendium approach 
for identifying key regulatory factors or by pyramiding key genes important in co-occurring stress 
scenarios that can be transferred into desired cultivars by genetic engineering. Another strategy 
will be to use genome-wide association mapping to identify novel germplasm containing alleles 
favorable for imparting tolerance to combined stresses and use naturally occurring variation for 
developing cultivars with improved resistance to multiple stresses via marker-assisted breeding
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tools for association mapping (e.g., GWAPP for Arabidopsis; TASSEL) and suc-
cessful association of candidate genes have begun to realize the power of candidate-
gene association mapping.

1.9  Conclusions/Perspectives

Studies of stress combinations that naturally occur under field conditions must be 
a priority for researchers working on abiotic and biotic stresses. Studies of such 
combined stresses should exploit the naturally occurring variation in the germplasm 
of crop plants to identify novel sources of resistance or tolerance. While impos-
ing stress combinations, it is important to consider the plant developmental stages 
that can have the most detrimental agronomic consequences and conduct surveys 
of germplasm during these critical stages. Phenomic screening using noninvasive 
high-throughput phenotyping platforms will provide a wide spectrum of observa-
tions that span metabolic, physiological, and biochemical parameters. Though the 
initial costs are high for these setups, the long-term benefits are beyond compari-
son. Finally, integrating data from multiple omics platforms in conjunction with the 
phenotyping data will provide a cogent view of the responses to combined stresses 
in different genotypes. This is crucial for identifying the elite germplasm that can 
tolerate multiple stresses and provide maximum yields.
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