
Chapter 9
The Zero-Point Field Waves (and) Matter

Students should not be taught to doubt that electrons, protons
and the like are particles... The waves cannot be observed in any
way than by observing particles.

Mott (1964)

The electron is either here, or there, or somewhere else, but
wherever it is, it is a point charge.

Feynman et al. (1965)

So far in our exploration of the fundamentals of qm we have paid null attention to
the very concept that gave rise to wave mechanics, the de Broglie wavelength and
the associated undulatory behavior of matter—certainly one of the most mysterious
properties of the quantum world. The notion of the quantum corpuscle as something
that possesses intrinsic wave properties, which preclude the possibility of describing
it as a localized entity, is widely extended. What we intend to show in the present
chapter, by contrast, is that the fundamental wave properties associatedwith quantum
particles can be understood without renouncing the notion of localized corpuscles.

Of course, formal manipulations of the results obtained in previous chapters allow
to ascertain the wave content of quantum mechanics and eventually arrive at de
Broglie’s wavelength. But such procedure would appear to reduce it to a mere math-
ematical artifact,without providing a clue about its physical content, andmore deeply,
without throwing light about the nature of the de Broglie wave. It seems therefore
obligatory to pay closer attention to this most significant entity.

In line with the spirit of the theory exposed in the present volume, the zpf should
be expected to play an important role in the elucidation of de Broglie’s wave, and
more generally in the explanation of the undulatory properties of matter. It would be
even surprising if the zpf did not in some way or another impress its wave properties
on the particles embedded in it. However, such possibility has only been occasionally
explored within sed; therefore, this chapter contains the results of some of the initial
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310 9 The Zero-Point Field Waves (and) Matter

investigations into the territory of the quantum waves, which obviously deserves
further exploration.1

9.1 Genesis of de Broglie’s Wave

We recall that in de Broglie’s theory of matter waves,2 an oscillation of Compton’s
frequency

ωC = m0c2

�
(9.1)

is associated with a corpuscle at rest (m0 stands for the rest mass). If the particle
moves with respect to the laboratory with velocity v along some axis, the frequency
ω in this latter reference frame is Doppler-shifted according to the formula

ω = γωC (1 + β), (9.2)

with

γ =
(
1 − β2

)−1/2
, β = v/c. (9.3)

The shift γβωC in Eq. (9.2) can be rewritten as (m = γm0)

γβωC ≡ ωB = 2πc
mv

h
= 2πc

λB
, (9.4)

and therefore

λB = h

mv
= h

p
. (9.5)

Equation (9.5) is the well-known expression for the de Broglie wavelength, which
originates in the Doppler shift of the frequency ωC . In de Broglie’s theory, a physical

1 Previous versions of the material presented in the first part of this chapter can be found in de la
Peña and Cetto (1992, 1994), Cetto and de la Peña (1955a, b), and The Dice.
2 Detailed, first-hand expositions of de Broglie’s theory can be found in de Broglie (1926, 1956,
1963). Modern presentations by one of its advocates made in Selleri (1990). A most elaborate
development of a variant of de Broglie’s theory for the relativistic electron is the geometrical
mechanics developed by Synge (1954). An informed historical discussion of de Broglie’s work up
to the 1927 Solvay conference is given in Bacciagaluppi and Valentini (2009). MacKinnon (1976)
presents a detailed analysis and improvement of de Broglie’s derivation in his thesis. Another
detailed discussion of de Broglie’s phase waves is presented in Espinosa (1982).



9.1 Genesis of de Broglie’s Wave 311

wave with the wavelength λB becomes a central entity, directly related with the
moving particle; yet the nature of such wave remains unspecified.3

Within the quantum formalism it is customary to introduce the expression (9.5) as
a means to assign wave properties to the quantum corpuscle. Practical applications
of the de Broglie wavelength are contained in almost any textbook, largely in the
form of restrictions on λB associated with atomic stationarity conditions, fromwhich
(quantized) spectra are extracted.DeBroglie’swavelength appears also in connection
with particle diffraction patterns, notably the electron equivalent of Young’s double-
slit experiment, and in the optics of electron microscopy. However, discussions on
the nature and origin of the de Broglie wave (not just the wavelength λB) are found
only rarely. In the following sections we dig into such matters, with the intention to
throw some light on the concept of de Broglie’s wave.

9.1.1 The de Broglie ‘Clock’

The first point that deserves attention in any attempt to understand the de Broglie
wave relates to the physical origin of the oscillations of frequencyωC associated with
the particle in its rest frame, which constitute a sort of ‘clock’ in de Broglie’s theory.
In this regard we recall that according to qed (see e.g. Milonni 1994, Chap. 11), the
interaction of an electron with the electromagnetic vacuum dresses the particle and
endows it with an effective size, estimated between (λCrc)

1/2 = λC (α/2π)1/2 �
λC/30 and λC , where rc = e2/(mc2) = (α/2π)λC is the classical electron radius
and λC is the Compton wavelength

λC = 2πc

ωC
= h

m0c
. (9.6)

In terms of λC , Eq. (9.5) takes the form

λB = λC

γβ
= λC

√
c2

v2
− 1, (9.7)

which means that for nonrelativistic motions λB is usually much larger than Comp-
ton’s wavelength.

From the point of view of sed, it is also natural to consider the charged particle
immersed in the vacuum field as endowed with an effective size of the order of the
Compton wavelength λC .4 As a result, the particle decouples from the components

3 In Surdin (1979) it is proposed to consider that de Broglie’s wave is of electromagnetic nature, in
some undefined way associated with the electromagnetic zpf.
4 A crude way to reach the same conclusion is the following. From the Heisenberg inequality
one obtains σ2

x ≥ (�2/4σ2
p),whence theminimum dispersion in the position variable determines an
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of the radiation field with wavelengths smaller than λC (and frequencies larger than
ωC ), so that the Compton frequency appears as a cutoff frequency. Any specific
model for the charge with structure (real or effective) would be arbitrary at this
stage, but also unnecessary, since our present purpose is limited to the introduction
of the appropriate cutoff, which we accept to be of the order of ωC .

The characteristic equation of motion for a free particle with structure (real or
effective) acted on by the zpf and radiation reaction has complex roots, giving rise
to oscillations of a very high frequency.5 This frequency is determined basically by
the size of the particle rather than by the details of its structure, so the phenomenon
is quite general; for an (effective) radius of order λC the frequency is of the order of
ωC . In a classical context, these high-frequency oscillations are transient, related to
initial motions, momentary disturbances and the like. However, when the particle is
in permanent interaction with the random background field, as is the present case,
things change essentially. The electromagnetic environment not only puts the particle
into resonance and makes it radiate, but it is also constantly knocking the particle,
so that the high-frequency oscillations become continuously renewed and acquire
a permanent (though fluctuating) character. It is appealing to identify these fine
oscillations of frequency ωC with the zitterbewegung, of which we have here an
informal rendering.

In short, even if the particle is initially conceived of as pointlike—which sounds
somewhat extreme for a physical, rather than mathematical element— it behaves
as an object with some structure that performs, in addition to any other motion, a
sustained oscillation with a frequency of about ωC . In this way the vacuum field
provides the physical sustenance for the de Broglie clock.

Because of its oscillating behavior, the particle at rest is continuously radiating
at the frequency ωC , a process that in a stationary state must be compensated by
absorption from the vacuum field. This means that the particle interacts intensely
with the modes of frequency ωC , as measured in its proper frame, and that these
modes sustain the jitter. The specific mechanism of this interaction is irrelevant for
the kinematics that follow; what is important is that the particle interacts selectively
with a narrow band of modes of the field of frequencies around ωC .

Let us assume for simplicity that the particle motion is restricted to one dimen-
sion, along some axis x̂′

.This means that in its proper frame (denoted with S′) the
components of the zpf of interest are the two plane waves of frequency ωC travelling
in opposite directions. The resulting (standing) wave is thus the superposition

ϕ′(x ′, t ′) = e−i(ωC t ′−k′+·x′+θ+) + e−i(ωC t ′−k′−·x′+θ−) + c.c., (9.8)

(Footnote 4 continued)
effective radius a ∼ (σx )min. Such minimum value is achieved for the largest σ2

p, which in the

nonrelativistic regime can be limited by m2
0c2. This results in a ∼ (�/m0c).

5 A detailed discussion can be seen in de la Peña et al. (1982), and The Dice, Sects. 3.4 and 7.3.3.
In this latter it is shown that the selfcorrelation of the position coordinate of a harmonic oscillator
contains a permanent oscillatory contribution of a frequency determined by the cutoff (Eq. 7.101),
and with a value that is not too far from the Compton frequency.

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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where

k′± = ±kC x̂′
, kC = ωC/c, (9.9)

and θ± are statistically independent random phases, in accordance with the results
of Chap. 4. In the laboratory frame (denoted by S) where the particle is seen to move
with velocity v = v x̂′, the frequency ωC and the wave vectors k′± transform in such
a way that the phases appearing in (9.8), being a relativistic scalar, remain the same.
This means that if ω± and k± stand, respectively, for the frequency and the wave
vector as seen in S of the plane waves traveling in the positive and negative direction
along the axis x̂′, then

ωC t ′ − k′± · x′ = ω±t − k± · x. (9.10)

The expressions for the frequencies ω± and the wave vectors k± read (see, e.g.,
Jackson 1975, Sect. 11.3)

ω± = γωC (1 ± β) , (9.11)

k± = ±γkC (1 ± β) x̂ = ±k± x̂,

and the standing wave ϕ′(x ′, t ′) in S′ has therefore the following form in S,

ϕv(x, t) = e−i(ω+t−k+x+θ+) + e−i(ω−t+k−x+θ−) + c.c. (9.12)

In terms of the frequencies

ωA = ckA = 1
2 (ω+ + ω−) = γωC , (9.13a)

ωB = ckB = 1
2 (ω+ − ω−) = γβωC = βωA, (9.13b)

Equation (9.12) becomes

ϕv(x, t) = 4 cos (ωAt − kB x + θ1) cos (ωBt − kAx + θ2) , (9.14)

with θ1,2 ≡ 1
2 (θ+ ± θ−). This result, to which we shall return below, represents

the standing wave of the zpf that activates the de Broglie clock, as seen from the
laboratory frame.

9.1.2 Energy, Frequency and Matter Waves

In order to relate ϕv(x, t) with the de Broglie wave, let us resort to the relativistic
expression for the energy

http://dx.doi.org/10.1007/978-3-319-07893-9_4


314 9 The Zero-Point Field Waves (and) Matter

E2 = m2
0c4 + c2 p2. (9.15a)

From Eqs. (9.1) and (9.4) we obtain

�ωC = m0c2, (9.15b)

�ωB = cp, (9.15c)

which together with (9.13a) and (9.13b) allows us to recast Eq. (9.15a) as

E2 = �
2
(
ω2

C + ω2
B

)
= �

2ω2
C

(
1 + γ2β2

)
= �

2ω2
Cγ2 = �

2ω2
A. (9.16)

It follows that

E = �ωA = �γωC , (9.17)

and the relation for the energy (9.15a) becomes equivalent to

ω2
A = ω2

B + ω2
C . (9.18)

Formula (9.17) exhibits the energy as a manifestation of a vibration of very high
frequency, so that energy and frequency become two aspects of the same reality, as
is strongly expressed by Eq. (9.18). This suggests that all forms of energy are essen-
tially the same thing, namely vibrations (energy is motion!). Under the consideration
thatωB refers to an electromagnetic wave, the successive discoveries by Planck (cap-
tured in the quantum relation E ∼ ω), by Einstein (Eq. (9.15a)) and by de Broglie
become integrated into the general law (9.18), which is simultaneously relativistic
and quantum. In addition, this equation shows that de Broglie’s frequency can be
understood as a measure of the deviation of the actual frequency of vibration of the
particle in the laboratory (ωA) from its reference value (the Compton frequency ωC ),

i.e., ωB = (
ω2

A − ω2
C

)1/2
.

Taken together, Eqs. (9.15c) and (9.17) associate the wave number kB = p/� and
the frequency ωA = E/� with a particle having momentum p and energy E . Such
quantities are thus the natural ones to characterize a ‘matter’ wave associated with
the moving corpuscle. The dispersion relation for such wave is therefore given by
the relation E = E(p), whence from Eqs. (9.15a) and (9.17) it follows that the group
velocity vg of the matter wave is

vg = ∂E
∂ p

= v. (9.19a)

On the other hand, the phase velocity is just

vp = E
p

= mc2

p
= c2

v
. (9.19b)
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Notice that the sole specification of the wave number and the frequency of the matter
wave (kB and ωA, respectively) could suggest to identify it with a simple wave of
the form cos(ωAt − kB x + α) (with α constant). However, such wave does not
comply with the above expression for vg. This stresses the importance of the correct
dispersion relation, and clearly indicates that the matter wave must be more complex
than a simple oscillation.

9.1.3 The de Broglie Wave

We see that the intimate connection between energy and frequency not only brings in
the notion of amatter wave associatedwith themoving corpuscle, but also determines
its group and phase velocities. Two immediate questions arise, about its identification
and about its physical reality. Is the matter wave simply a mathematical artifact, con-
veniently put in correspondence with the physical corpuscle, or is it a truly physical
wave? In this section we briefly tackle this issue.

From the above discussion we know that the matter wave is not simply cos(ωAt −
kB x + α), but this wave modulated so that there is a wave traveling with velocity v;
hence it must be a wave of the form

cos(ωAt − kB x + α) × f (x − vt). (9.20)

In Eq. (9.14) we have precisely this kind of wave. Indeed, with ωB/kA = v, ϕv(x, t)
is found to have just the structure of (9.20),

ϕv(x, t) = 4 cos (ωAt − kB x + θ1) cos [kA (x − vt) − θ2] . (9.21)

Taking a snapshot of (9.21) at t = 0 gives

ϕv(x, 0) = 4 cos (kAx − θ2) cos (kB x − θ1) . (9.22)

Since kB = βkA < kA, ϕv(x, 0) represents a rapid spatial oscillation with an
amplitude that is modulated by a wave of wavelength λB = 2π/kB; that is, the
wavelength of the (spatial) modulation (envelope) is precisely de Broglie’s λB . Let
us now assume that instead of a snapshot we take a video with the position fixed at
x = 0; this gives

ϕv(0, t) = 4 cos (ωAt + θ1) cos (ωBt + θ2) . (9.23)

The fact that ωB = βωA < ωA, implies that the amplitude of the higher-frequency
wave (the carrier) is modulated by an oscillation of frequency ωB . In other words,
the frequency of the (temporal) envelope coincides with the de Broglie frequency.

We are now in a position to identify the whole structure ϕv(x, t) with the ‘matter
wave’, or de Broglie wave. Recognizing the origin of ϕv(x, t) in the zpf, we con-
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clude that the de Broglie wave represents a physically real wave, as ‘seen’ from the
laboratory. Since the spatial modulation of ϕv(x, t) travels with velocity v, to an
observer in S it appears to keep company to the particle, as if surrounding and ‘guid-
ing’ it along its motion—thus calling to mind the idea behind the guidance formula
in de Broglie’s theory. Both entities, particle and wave, appear thus as an indissoluble
couple, yet each of them has a well-defined and complementary nature; in particular,
the particle remains always a corpuscle, a nonextended object (though with some
structure), in contrast with the always extended ϕv(x, t). Notice that, even though
from this perspective the particle is an intrinsically localizable object, its specific
position within the matter wave’s wavelength is not determined.

Consideration of the zpf seems thus to be a natural means to incorporate not
only the de Broglie wavelength, but also the de Broglie wave, into the narrative of
quantum mechanics.6 An additional relation between λB , the vacuum field, and the
dynamics of the particle, can be obtained rewriting Eq. (9.4) in the form

ωBλB = 2πc. (9.24)

This relation characterizes an electromagnetic wave in vacuum, with de Broglie’s
wavelength and with a linear momentum equal to pB = �ωB/c, which, according
to Eq. (9.15c), �ωB = cp, coincides with the momentum p of the particle,

p = pB . (9.25)

Consequently, while the particle travels ‘sitting’ on the de Broglie wave, it bears
the same momentum as the zpf modes of frequency ωB; such modes thus acquire
special relevance for themoving particle. In this sense it is natural to associate the zpf
modes of wavelength λB also to the moving corpuscle—bearing in mind, however,
that de Broglie’s wavelength λB does actually originate in the background field. De
Broglie’s formula should then be recast in the form

λB = h

pB
, (9.26)

representing a genuine wave formula written in terms of parameters pertaining to a
wave only, without reference at all to the particle. From this perspective, it is via
the condition (9.25) that the wave property is transferred to the particle, so that
λB = h/p. That the modes of the zpf having frequency ωB (and wavelength λB)

turn out to be of particular importance for the dynamics of the particle will be further
discussed in Sect. 9.3, in relation with matter diffraction.

6 Or rather, into the ontology of quantum mechanics. We see in the wave function of quantum
mechanics an abstract object that lives in a mathemathical configuration space. By contrast, the de
Broglie wave associated with the zpf modulations should be understood as a real wave in three-
dimensional space. They are therefore two objects of an entirely different nature.
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9.2 An Exercise on Quantization à la de Broglie

In this sectionwe resort to the deBrogliewave constructed above to showbymeans of
an example how it can be applied to analyze some properties of stationary, bounded,
one-dimensional quantum motions. With this aim let us consider a benchmark case
and examine the stationary description of a particle trapped in an infinite square
potential well of width a. In this case there is no net flux and the particles will be
performing periodical back and forth motions inside the box. In order to construct
the de Broglie description for this situation, one must take into account not only
the ϕv(x, t), representing the wave associated with a particle that travels in the +x
direction with velocity v, but also the reflected wave ϕ−v(x, t) that travels in the −x
direction with the same speed. We therefore take the superposition

ϕ(x, t) = ϕv(x, t) + ϕ−v(x, t). (9.27)

As follows fromEq. (9.11), with the substitution v → −v the frequencyω± becomes
ω∓, and similarly for k± = ω±/c. We shall assume that the phases θ± in Eq. (9.12)
are the same in both components (they both refer to the same wave). Taking all this
into account, Eq. (9.27) reads

ϕ(x, t) = e−iθ[e−i(ω+t−k+x)+e−i(ω+t+k+x) +e−i(ω−t−k−x)+e−i(ω−t+k−x)] + c.c,
(9.28)

which reduces to

ϕ(x, t) = 4
[
cos (ω+t + θ) cos k+x + cos (ω−t + θ) cos k−x

]
. (9.29)

This standing wave inside the well is consistent with the condition of zero flux
velocity.Unlike the deBrogliewave, the superpositionϕ(x, t)does not travelwith the
particle, but reflects the periodicity of the motion. Further, since ϕ(x, t) corresponds
to a stationary situation, it means that it is periodic in x with period a,

ϕ(x, t) = ϕ(x + a, t). (9.30)

This stationarity condition applied to Eq. (9.29) leads to

k± = 2π

a
n±, n± = 0, 1, ... (9.31)

Notice that for v 	= 0 we have k+ > k− (see Eq. (9.11)), whence n+ > n−. From
here and Eqs. (9.13a), (9.13b) it follows that

1
2 (k+ − k−) = kB = π

a (n+ − n−) ≡ π
a n, n = 1, ..., (9.32a)

1
2 (k+ + k−) = kA = π

a (n+ + n−) ≡ π
a N , N = 1, ... (9.32b)



318 9 The Zero-Point Field Waves (and) Matter

Equation (9.32b), together with (9.15c), gives

p = �kB → pn = �π

a
n, (9.33)

whence

nλB = 2a. (9.34)

One can recognize here the well-known statement that the well can accommodate
an integer number of half-de Broglie’s wavelengths under stationarity, in agreement
with usual phenomenology.Notice that the result arises as a consequence of imposing
the stationarity condition on the wave ϕ(x, t) that reflects the periodicity of the
corpuscle’s motion. Equations (9.33) and (9.34) mean that the dynamics and the de
Broglie wave have become conformed to the geometry of the system.

Notice that Eq. (9.33) follows also from (9.25), under conditions of stationarity
of the standing waves of the zpf inside the well. In other words, the quantization
implied by Eq. (9.33) can be seen as a result of the presence of the vacuum field and
the identification p = pB, a relation that plays thus the role of a quantization rule.

Let us now turn to Eq. (9.32b), which together with λA = 2π/kA gives

NλA = 2a. (9.35)

According to this expression, also an integer number of half-wavelengths λA must be
accommodated inside the well to attain stationarity. However, since kB/kA = β =
n/N , in the nonrelativistic regime n 
 N . Comparison between Eqs. (9.34) and
(9.35) thus indicates that the wave with λA inside the well has many more nodes that
thewavewithλB . In terms of the deBrogliewave, this is explained by recalling that at
any given time, ϕv(x, t0) represents a rapid oscillation of wavelength λA modulated
by an oscillation of wavelength λB � λA (cf. Eq. (9.22)). Physically, this reflects
the fact that the particle inside the box is not simply performing a uniform motion
with (mean) velocity v (like a classical particle would do), but that such motion is
superposed to a vibration at the high frequency ωA ∼ ωC . As mentioned earlier, this
oscillation, the zitterbewegung, constitutes an echo—the laboratory frame—of de
Broglie’s clock.

The above results can be somewhat completed to get a more detailed picture of
what is happening inside the well. The formula for the energy En associated with the
smooth motion of the particles follows directly from Eq. (9.33),

En = p2n
2m

= π2
�
2

2ma2 n2, n = 1, ... (9.36)

Since the particles are being perfectly reflected at the walls of the well, it has sense
to define the period of the (mean) motion in state n as
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τn ≡ 2a

vn
= 2πn

�

2En
, (9.37)

which suggests to introduce a mechanical frequency ωmec
n such that

ωmec
n τn = 2πn. (9.38)

With this definition, Eq. (9.37) gives

En = �

2
ωmec

n , ωmec
n = π2

�

ma2 n2, vn = π�

ma
n = v1n. (9.39)

In state n the particle surveys in the mean n times the distance that corresponds to
the fundamental state n = 1. This result relates the index n in pn to the number
of complete cycles performed by the component n during the time that the slowest
component (for n = 1) completes one cycle.

The first relation in (9.39) looks akin to the substance of sed, and states that the
energy of the particle in the state n coincides with the energy of the modes of the zpf
of frequency ω mec

n . Further, direct calculation gives

λBnωmec
n = 2πvn, (9.40)

with λBn = h/pn . This relation defines a geometric wave inside the well, moving
with the particle; it has the de Broglie wavelength and the mechanical frequency
ωmec

n . This latter can be related with the de Broglie frequency by a comparison of
Eqs. (9.24) and (9.40), resulting in

ωmec
n = βnωBn . (9.41)

For nonrelativistic motions, we verify that the de Broglie frequency is very high
compared with the frequency of the dominant motion. In contrast, the de Broglie
wavelength is considerably larger than the Compton wavelength (see Eq. (9.7)).

Unlike the resonance frequencies studied in Chap. 5, which are the frequencies
of transition between states, the ωmec

n (n = 1, 2, ...) are related directly to the per-
manence in the respective state n. They remain hidden to qm, not being part of its
ontology, its epistemology, or its semantics. Equation (9.39) together with Bohr’s
rule shows that there exists a relation between the transition and the permanence
frequencies,

ωnm = �
−1(En − Em) = (ωmec

n − ωmec
m )/2. (9.42)

To the extent to which the definition En = �ωmec
n /2 has a meaning, such relationship

may be significant. The factor 2 is specific of the present example, of course.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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9.3 Undulatory Properties of Matter

Because of their wave-like properties, quantum corpuscles are often not ‘seen’ as
particles—or waves—but as another sort of entity, such as ‘wavicles’ (Eddington
1928), ‘microparticles’ (Blokhinsev 1953/1964), ‘quantons’ (Bunge 1967, 1973),
‘smearons’ (Maxwell 1981), ‘wavelets’ (Barut 1993), andwhat not.7 A fewexamples,
taken from among scores of them, of the kind of contrasting points of view to which
the consideration of the wave properties of matter is prone to lead, may be seen in
Diner et al. (1983), Agazzi (1988), andCombourieu andRauch (1992). Leaving aside
particular details, what the existence of so many and diverse approaches evinces is
that the undulatory properties of matter are among the most perplexing and least
understood aspects of the quantum world.

To pay attention to the wave-like properties of matter, let us appeal to one of the
simplest and at the same time most revealing quantum experiments, that of electrons
passing through two parallel slits made on a screen. The amazing result is well
known, and popularized by the Tonomura et al 1989 experiment, which has been
seen by many thanks to the web (www.hitachi.com/rd/portal/research/em/movie.
html; see also Bach et al. 2013). It is important to draw attention to this experiment
(and earlier ones, such as those described in Jönsson (1961), and Matteucci and
Pozzi (1978), since all of them reveal that a single electron does not give rise to the
diffraction pattern: it merely produces a spot (seemingly at random) on the screen.
The diffraction pattern, a wave-like phenomenon, results from the addition of tens
of thousands of events, and hence depicts the statistical distribution of electrons
on the screen. The Schrödinger equation, which refers to the wave properties of
particles, describes just this statistical behavior. It cannot provide in general a detailed
description of the wanderings of an individual electron. It is devised to describe the
multitude, notwhat each and every electron is doing.And it certainly does not provide
a physical explanation for the diffraction pattern.

Let us now look from the present sed perspective at the problem of particle
diffraction by the pair of parallel slits. One should start by considering that the the
zpf is not immune to the presence of the slits. The Casimir effect, as well as the cavity
effects on atomic lifetimes and energy levels, are well-known instances that remind
us that zpf must satisfy the same boundary conditions as any other electromagnetic
field in the presence of matter [see e.g. Boyer (1980) and references therein; Cetto
and de la Peña (1988a, b)]. And indeed, Fig. 9.1 shows an image of the zpf diffracted
by two parallel slits, opened on an infinite, totally reflecting plate; the wavelentgth
of the field modes has been chosen to be of the order of the distance between slits.
This is the kind of field that the electrons ‘feel’ when traveling in the neighborhood
of the screen. The partially reorganized electric forces act on the particles, and one

7 The term wavelet refers to localized nonspreading solutions of massless wave equations that move
like massive quantum particles. Wavelets are seen as a bridge between classical point particles and
the waves of qm; the mass of the particle is determined by the internal frequency of the wavelet,
much as the ‘internal clock’ in the Broglie’s theory.

www.hitachi.com/rd/portal/research/em/movie.html
www.hitachi.com/rd/portal/research/em/movie.html
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Fig. 9.1 Contour map of the real part of the Ex component of the zero-point field of wavelength
0.9l, diffracted by two slits separated a distance 1.1l, pierced on a conducting plate; l is the width
of the slits. Reprinted from Avendaño and de la Peña (2005) with permission from Elsevier

should therefore expect to get on the screen a footprint of the diffracted field, traced
out by the electrons.

The detailed dynamics of the particles travelling in a diffracted field like the one in
figure reffig1 needs still to beworked out. However, according to the discussion in the
previous section, one may reasonably assume that the electrons with a momentum p
will be particularly affected by the diffracted modes that satisfy the condition (9.25),
pB = p (i.e., the modes of wavelength λB = h/p), and guided by them towards the
screen along the preferred directions determined by Bragg’s law. This would give
shape to an interference pattern superimposed on the noisy background. Thus, the
particle needs to ‘know’ nothing about the existence of the slits: it is the background
field what carries the required information and operates accordingly on the particles.
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The picture that emerges reminds us of the image suggested by J. Clauser some time
ago: “If a bunch of surfers pass through a breakwater with two entrances, you’ll see
the two-slit pattern later on the beach in surfer flesh!” (quoted inWick (1995), p. 116).
And indeed, for over 80yearswehavebeenobserving interferencepatterns in electron
flesh. The electrons maintain their corpuscular identity all along the experiment,
and there is no need of particle self-interference. Since the diffracted field exists
even in the absence of the electrons, it might be possible to put this explanation to
experimental test. The observation of the diffracted field with independence from the
presence or absence of the electrons would demonstrate that it is the field, not matter,
what is diffracted. An initial exposition of these matters is given in Avendaño and de
la Peña (2010). An example of the kind of results that such an explanation can afford
is shown in Fig. 9.2. This figure shows some preliminary results obtained again by
numerical calculation (Avendaño and de la Peña 2005, and work in preparation), for
the trajectories followed by electrons in the double-slit experiment. The fluctuating
component of the diffracted field has been suppressed to highlight the guiding effect
of the field. The momentum p of the particles has been selected according to the
law p = pB and the kinetic energy of the electrons has been assumed to remain
constant, i.e., the particles are deflected without changing their speed. Even if in the
real situation the trajectories may be not as smooth, the figure offers a clear image of
the behavior one may expect for the particles under the action of the diffracted zpf.
In particular, it is distinctly seen that on its way to the distant screen, each particle
crosses a single time a single slit, and behaves as a localized corpuscle all along its
journey.8

Particle diffraction patterns have been obtained experimentally also with neutrons
and other neutral particles, as is well known from crystallography and has been con-
firmed by the famous experiments by Rauch and colleagues [Rauch et al. (1974); a
detailed review is Greenberger (1983)]. This means that the sed explanation should
not be restricted to charged particles. As suggested in Chap. 4, a possible answer
to this observation is that all known particles, including the neutral ones, have elec-
tromagnetic interactions. An interaction with the zpf through the coupling of the
electric dipole moment, the magnetic moment, or any other multipole, is able in
principle to lead to results that are similar to the ones obtained from electric charge
coupling, although details such as the relaxation times may vary; such differences,
however, are irrelevant for the performed experiments, which proceed very slowly
in comparison.

The double-slit experiment affords an opportunity to give a more precise meaning
to the assertion that the Schrödinger equation predicts only the wavelike behavior
of quantum corpuscles. That such statement requires qualification can be illustrated
with the aid of Fig. 9.3. This figure shows the numerical solution of the Schrödinger
equation for the problem of two ideal slits, at different distances from the plane

8 The results obtained with this numerical experiment are similar to those obtained by Couder and
Fort (2006) in their macroscopic Young-type experiment, showing clearly that the bouncing droplet
goes through either one of the two slits but the associated wave passes through both slits, and the
interference of the resulting waves is responsible for the trajectory of the walker.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Fig. 9.2 Trajectories followed by electrons in a realistic simulation of a two-slit experiment. The
particles are uniformly distributed in the beam behind the slits. The diffracted modes of the field
have momentum pB and the momentum of the particles is p, with p = pB . Figure courtesy of
J. Avendaño, adapted from Avendaño and de la Peña (2010)

that contains the slits. The solution shows that sufficiently close to the slits the
Schrödinger equation predicts a corpuscular behavior of the particles, whereas the
wavelike behavior corresponds to the Fraunhofer (far) region. For intermediate dis-
tances both aspects are simultaneously manifested. Here we have an example of
coexistence of corpuscular and wavelike manifestations, which reminds us of Ein-
stein’s reading of Eq. (3.71) as an expression of these two complementary aspects in
the case of light.

9.4 Cosmological Origin of Planck’s Constant

Let usmake a detour from the line of inquiry followed so far in this chapter, and direct
our attention to another interesting question directly related with the zpf, namely:
what fixes the scale � of the zpf fluctuations? Being the zpf of cosmological origin,
it sounds natural to assume that � should be linked in any way to other universal
constants.

To find an answer to this question let us consider a world made of just harmonic
oscillators, representing both matter and the modes of the zero-point radiation field.
Such a crude model should be appropriate for the purpose of performing an order-
of-magnitude estimate of certain quantities of interest for our present intent. Since
the thermal (photonic) background radiation is of no interest here, we assume that all

http://dx.doi.org/10.1007/978-3-319-07893-9_3
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Fig. 9.3 Numerical solution of the Schrödinger equation for two slits, shown as function of the
distance from the plane of the slits. At very short distances the solution resembles the one that
corresponds to particles, whereas at very far distances a Fraunhofer diffraction pattern is observed.
The distance from the slits to the screen is given by −y. Figure courtesy of J. Avendaño

elementary oscillators of a given frequency, irrespective of their nature, are in their
ground state. According to the image developed in this book, the charged (matter)
oscillators (electric dipoles) are radiating and contributing to the backgroundfield, but
they are also absorbing energy from the field. The random field so regenerated should
coincide with the vacuum field at each frequency under the assumption of a universe
in equilibrium.We herewith espouse a sort of cosmological principle associated with
sed, or, if preferred, a kind of electromagnetic Mach principle: the field produced
at a given point by all dipoles in the Universe should equal the random field acting
at that point on the particles themselves. This requirement establishes a relationship
between cosmological and atomic constants; in other words, it establishes the scale of
quantum fluctuations. Planck’s constant becomes thus determined by cosmological
parameters (de la Peña and Cetto 1984, 1997).9

A parallel reasoning, but dealing entirely with the gravitational field, has been dis-
cussed by Calogero (1997) in an interesting essay restricted to order-of-magnitude
considerations. In that work, the identification of the unavoidable gravitational fluc-
tuations with the quantum fluctuations of atomic systems is shown to lead to a rela-
tionship between atomic and cosmological constants. One should recall also a similar
attempt made in Puthoff (1991) within sed, also on the basis of a self-regenerating
model. The basic idea in Puthoff’s paper is much in line with the one studied here,

9 Recently we have become aware of a similar proposal by Mavrychev (1967), in which the author
reaches a comparable result.
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although in our rough estimate we refrain from resorting to any specific cosmolog-
ical model. Still we leave aside any problem related with the infinite gravitational
effects of the zero-point field, just as is done in qed (and in cosmology) with all
vacuum fields, simply because nobody knows yet how to solve this so-much studied
and poorly understood problem (see e.g. Weinberg 1989). By equating the radiation
field predicted by the model at a given point with the corresponding component of
the zero-point field, Puthoff obtains a prediction for the baryonic mass density of
the Universe, which establishes a relation between atomic constants and the Hub-
ble constant. This relation happens to correspond essentially to the one discussed in
Weinberg (1972) book (Sect. 16.4), which is usually taken as a numerical coinci-
dence, of unknown origin and meaning.

Consider, then, the radiating dipoleα (α = 1, 2, . . . , N ) of frequencyω located at
the position rα; we take the origin of coordinates at our place. The Fourier amplitude
of the electric field produced by this oscillator at the origin is

Eα(ω) = −k2nα × (nα × pα)
eikrα

rα
, k = ω

c
, (9.43)

where pα = (e/2)(q0α + i q̇0α/ω) is the (complex) amplitude of the dipole moment
pαe−iωt , and nα = rα/rα is the unit vector in the direction of rα. Since the mean

energy of the oscillator is �ω/2, one has
〈
q2
0α + q̇2

0α/ω2
〉

= �/mω, where the

average is taken over the set of oscillators of frequency ω, so that we write

pα = e

2

√
�

mω
Bα (9.44)

and consider the components Biα of Bα to be statistically independent complex
random variables with zero mean and second moments given by

〈
Biα B∗

jβ

〉
= δαβδi j ,

〈
Biα B jβ

〉 = 0. (9.45)

With these assumptions the mean square of Eq. (9.43) is (omitting the index α)

〈|E(ω)|2〉 = �e2

4mc4
ω3

r2
〈|n × (n × B)|2〉 = �e2

2mc4
ω3

r2
, (9.46)

since 〈|n × (n × B)|2〉 = 〈
B · B∗ − (n · B)(n · B∗)

〉 = 2. We have taken into
account that the field amplitudes produced by statistically independent oscillators
are uncorrelated.

To evaluate the average energy content 〈E(ω)〉 of the radiation field of frequency
ω at the origin, we integrate Eq. (9.46) over a spherical volume of radius R, assuming
an isotropic and homogeneous distribution of oscillators, of which there are n(ω) of
frequency ω and a total number N = ∑

ω n(ω):
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〈E(ω)〉 = n(ω)

4π

∫
V
〈|E(ω)|2〉dV = �e2ω3R

2mc4
n(ω). (9.47)

The cosmological postulate asserts that this energy should correspond to the zpf
energy of a mode of frequency ω, i.e., �ω/2 ; one thus obtains

n(ω) = mc4

e2ω2R
. (9.48)

To estimate the total number of oscillators we integrate over all frequencies, using
the rule V −1 ∑

ω → (2π2c3)−1
∫

dω ω2, which gives

N =
∑
ω

n(ω) = mc4

e2R

∑
ω

1

ω2 → mcV

2π2e2R

∫ �

0
dω = mc�V

2π2e2R
. (9.49)

Since the integral is divergent we have introduced a cutoff frequency � for the
material oscillators. Indeed, the material oscillators are transparent at arbitrarily
high frequencies; one can consider a cutoff around the pair-creation (Zitterwebe-
gung) frequency � = 2mc2/� as physically meaningful (see also the discussion in
Sect. 9.1.1), so that (9.49) becomes

N

V
= m2c2

π2α�2R
, (9.50)

where α = e2/�c stands for the fine-structure constant. Here V must be taken as
the volume of the visible part of the Universe, as this is the part that contributes to
the radiation field, and thus N/V is to be identified with the cosmological density of
charged particles, which multiplied by m N (the nucleon mass or any typical baryon
mass) gives for the baryonic density of the Universe the estimate

ρ � m2m N c2

π2α�2R
. (9.51)

Before proceeding further let us add a couple of remarkswith regard to this expres-
sion. Firstly, we have not taken into account any absorption process, the reason being
that we are dealing with the zpf, which is not absorbed by matter in equilibrium with
it. Of course it is scattered by matter, but for a uniform and homogeneous universe
the final distribution remains the same. Therefore Eq. (9.51) needs no correction
from Thomson scattering.

The second comment refers to the simplicity of the model. The intention here is
to make a qualitative test of the sed cosmological principle, and for such purpose the
present rough estimate should suffice. For example, a somewhat more realistic model
would take into account the expansion of the Universe, which produces a redshift,
so that instead of the original frequency ω radiated when the Universe had a scale
factor R(t), the red-shifted frequency
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ω0 = R(t)

R0
ω (9.52)

should be used, where the subindex 0 refers to the presentmoment and place of obser-
vation. Thus, if ν(ω) represents the spatial density of oscillators of local frequency
ω at a distance r from us, instead of Eq. (9.47) one should write

〈E(ω)〉 = e2�

2mc4
ω3
0 R3

0

∫ R0

0

ν(ω0R0/R(t))

R3(t)r2
r2dr, (9.53)

where, using Weinberg’s (1972) notation, one must put dr = (
√
1 − kr2/R(t))dt.

To go further one would have to specify the cosmological model; however, any
reasonable choice for R(t)would only change the numerical factors, without altering
the essential contents of Eq. (9.51). Thus, up to such numerical factors we take the
former result (9.51) as a reasonable relation among the relevant constants of nature.

Let us try to draw some conclusion from Eq. (9.51). For this purpose we first
introduce an auxiliary (representative) mass defined as

m̄ =
(

m2m N

π2α

)1/3

� 30m. (9.54)

where m is the mass of the electron. Equation (9.51) can then be rewritten in the
form (we put R = R0, and add the subindex 0 to mark the present values of the
cosmological parameters)

ρ0R3
0

m̄
= m̄2c2R2

0

�2
=

(
R0

λm̄

)2

, (9.55)

where λm̄ is the Compton wavelength (divided by 2π) associated with the mass
m̄,λm̄ = �/m̄c. We recognize in each side of Eq. (9.55) one of the ‘large numbers’
of cosmology, which are (H0 is the present value of Hubble constant, H0 = c/R0,

and G stands for the gravitational coupling constant)

N1 = �c

Gm2
N

∼ 1

6
1039, (9.56)

N2 = mc2

�H0
= mcR0

�
= R0

λm
∼ 1

3
1039, (9.57)

N3 = ρ0c3

m N H3
0

= ρ0R3
0

m N
∼ 1079. (9.58)

Except for the differences in the masses, Eq. (9.55) reads
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N3 = N 2
2 , (9.59)

which is one of the well-known numerical coincidences among these large numbers.
The surprising content of this expression is that it relates cosmological parameters
with Planck’s constant, which is a highly nontrivial result (remember that Weinberg
(1972) qualifies Eq. (9.59) as mysterious). The second independent relation among
these numbers, which can be taken to be N1N2 � N3, does not involve Planck’s
constant and can be obtained from cosmological models, such as the Friedmann
model.

We conclude that the sed Cosmological Principle, namely that the energy of
the vacuum fluctuations corresponds to the energy radiated by all dipoles of the
Universe in a self-regenerating process, seems to hold and serves to explain the
relation N3 = N 2

2 up to a constant factor of at most a few orders of magnitude.
Let us now recast Eq. (9.51) in a different form. In terms of the dimensionless

gravitational coupling constant αG = Gmm N /�c it reads

αG R0 � 3π

8
αλm, (9.60)

which we write simply as

αλm � αG R0, (9.61)

where the value of the common length l = αλm = e2/mc2 = r0 equals the classical
electron radius. It seems interesting to observe that Eq. (9.61) can be extended to
include nuclear forces by taking the coupling constant of order 1, αN � 1, and a
characteristic lenght RN � �/mπc, (mπ is the pion mass), which gives a numerical
value � αλm/2, so that

αG R0 � αλm � αN RN � r0. (9.62)

Equation (9.61) explains why Calogero’s gravitational arguments and the present
electromagnetic ones lead to equivalent results. This is another form of saying that
it should be feasible to represent the effects of the zero-point field as a fluctuating
metric field, a possibility that was already studied by Einstein himself (1924). It is
interesting to observe that Eq. (9.59) (or Eq. (9.61)) cannot be obtained solely from
the usual quantum formalism; it is within the conceptual frame of sed where the
cosmological principle leading to Eq. (9.59) finds its natural place.10

To end this detour, we note that Eq. (9.55) can be written in the form

� =
(

m̄3c2

ρ0R0

)1/2

. (9.63)

10 For some enriching comments of differing nature on the zpf see Ibison (2003), and Dasgupta
and Roy (2007).
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This suggests speculating that the fluctuations of matter density at cosmological
scales may produce local fluctuations on the value of �. Whether this has any sense
at all is a question that we leave to cosmologists.
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