
Chapter 8
Causality, Nonlocality, and Entanglement
in Quantum Mechanics

Why is the pilot-wave picture ignored in the text books? Should
it not be taught, not as the only way, but as an antidote to the
prevailing complacency? To show that vagueness, subjectivity,
and indeterminism, are not forced on us by experimental facts,
but by deliberate theoretical choice?

Bell (1987, page 160)

The material presented in previous chapters has dealt with some fundamental
elements of qm such as (non)locality, (non)causality, (in)determinism and the
(non)existence of trajectories. These elements have been at the core of some of the
most longstanding controversies, and also of the most thorough attempts to develop
alternative interpretations of the quantum formalism.

Among such reformulations, perhaps the best known one is the de Broglie-Bohm
theory. This represented the first serious attempt to recover for qm two notions
that are dear to (classical) physics, namely those of causality and of trajectory (or
realism, in a by now extended usage)—although at the high price of nonlocality. It
seems therefore appropriate to initiate the discussion on these subjects with a brief,
critical review of the de Broglie-Bohm theory. This will set the framework for a
fresh analysis of quantum (non)locality from the perspective of the sed theory as
developed in the preceding chapters.

8.1 Causality at Stake

Quantum indeterminism, as represented by the Heisenberg inequalities or the inher-
ently unpredictable specific outcome of a measurement, is for some a cause of
discomfort with the theory.When the status of qm as a fundamental theory of physics
is at stake, such trait is indeed hardly acceptable from a realist standpoint. The sim-
plest solution to the problem of quantum indeterminism consists in assuming that
there exist some variables that specify, along with the quantum-mechanical state
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vector, a dispersion-free state, i.e. a state for which the specific outcomes of a mea-
surement are fully determined. These hypothetical variables that restore determin-
ism are the so-called ‘hidden variables’ or ‘hidden parameters’. Of course, one must
assume that their existence is compatible with the quantum laws. And here sprouts
the problem...

8.1.1 Von Neumann’s Theorem

In 1932 the mathematician J. von Neumann published what constituted the first
formal textbook on quantum mechanics (English version: von Neumann 1932). The
book contains a theorem that was quickly accepted, and which half a century ago still
seemed to be in full force. This theorem—which stands even today as the archetype of
the ‘impossibility proofs’, more popularly known as ‘no-go’ theorems— asserts that
one cannot add hidden variables to render qm deterministic.1 Since qm is supported
by a vast amount of empirical evidence, a deterministic description of it happens to
be refuted by such evidence.

In 1952 a second round startedwith the publication byD. Bohmof two now classi-
cal papers (Bohm1952a, b; see alsoBohm1953) providing a specific counterexample
to von Neumann’s theorem. It was just a causal and deterministic description com-
pletely consistent with the quantum-mechanical formalism, built in terms of nonlocal
hidden variables. One should have expected such a result to immediately draw the
attention from physicists (and mathematicians and philosophers of science) eager to
find the error in von Neumann’s demonstration. However, this was not the case; the
large majority simply ignored Bohm’s results and took von Neumann’s conclusion
for granted.

In the proof of his theorem, von Neumann had introduced some postulates that
he considered of general validity. Starting with the expression

〈
Ĉ

〉
= tr (ρC) (8.1)

that defines the mean value of an operator Ĉ (associated with the observable C) in
the quantum state described by the density matrix ρ, it is straightforward to arrive at

〈
Â + B̂

〉
=

〈
Â
〉
+

〈
B̂

〉
, (8.2)

irrespective of the operators Â and B̂. Von Neumann then assumed that this additive
relation holds alsowhen themean values are calculated in dispersion-free states. And
since such states must yield one (well-defined) result from among the possible ones
predicted by the quantum state, the expectation values of Ĉ in a dispersion-free state

1 It is much less known that almost simultaneously and independently, a similar result was published
by Solomon (1933).
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are just the eigenvalues of Ĉ (Bell 1987, articles 1 and 4). Yet for noncommuting
Â and B̂ the eigenvalue of the sum Â + B̂ is not necessarily equal to the sum
of the corresponding eigenvalues,2 whence the relation (8.2) ceases to be true for
dispersion-free states.

Two years after the original publication of von Neumann’s theorem, Hermann
(1935) observed that this additivity assumptionwas too restrictivewithin the quantum
domain.3 Hermann’s criticism was largely ignored, as were the few other criticisms
raised much later, notably by Feyerabend (1956), and Mugur-Schächter (1964).4

The widely accepted proof that von Neumann’s theorem demanded revision came
only with the work of Bell (1966), who again observed that the theorem was mathe-
matically correct but not of general applicability, as the additivity postulate was too
restrictive.

The generally accepted conclusion at present is that the theorem is not general
enough to eliminate all kinds of hidden-variable theories (see e.g. Bub 2010); in
particular, it does not exclude nonlocal hidden variables, as Bohm’s work evinced.
Alternative versions of von Neumann’s theorem have been devised in the meantime
that escape from the previous criticisms, by Gleason (1957) for Hilbert spaces of
dimensionality greater than 2, Bell (1966), Kochen and Specker (1967), Belinfante
(1973), and Peres (1996), among others. In their turn, Gudder (1970) and Santos
(1975) have proved that qm does accept contextual hidden variables.

2 Take for example the spin projections along three different directions: Â = Ŝx , B̂ = Ŝy and
Ĉ = ( Â + B̂)/

√
2 = (Ŝx + Ŝy)/

√
2. If the system possesses spin 1/2, the eigenvalues of each

of these operators are the same and equal to ±1; clearly the eigenvalues of Ĉ are not the linear
combination (±1 ± 1)/

√
2.

3 Since Hermann’s argument is little known, and is just the same discovered by Bell 30 years later,
it seems of interest to transcribe it here: “Suppose we have an ensemble of physical systems, with
R and S physical quantities that can be measured on this ensemble; the expectation value of R
(Expt(R)) is the average value of all measurement outcomes that will be obtainedwhenmeasuringR
on all systems of the ensemble, and is also the value that is expected to be obtained when measuring
R on an arbitrary element of this ensemble. Von Neumann requires that for this expectation value-
function Expt(R), defined using an ensemble of physical systems and producing a number for every
physical quantity, Expt(R+ S) = Expt(R) + Expt(S). In words: The expectation value of a sum
of physical quantities is equal to the sum of the expectation values of both quantities. With this
assumption the proof of von Neumann either succeeds or fails.”
“For classical physics this requirement is trivial and also for those quantummechanical observables
that [commute]... Not trivial however is the relation for quantum mechanical quantities for which
indeterminacy relations hold. In fact the sum of two such quantities is not even defined: Because a
sharp measurement of one of them excludes sharp measurement of the other one and thus because
both quantities cannot have sharp values at the same time, the commonly used definition of the sum
of two quantities breaks down.”
4 Feyerabend noticed that the postulates used in vonNeumann’s derivation did not exclude dispersive
hidden variables.Now if the hidden variables added toqm had an irreducible dispersion, the quantum
variables themselves should continue to be dispersive and things remained essentially the same,
except that the theorem needed some reformulation. Mugur-Schächter, on her part, argued that
the demonstration was not as general as assumed, since it presupposes that the distribution of the
hidden variables (once more, distributed variables) has properties similar to those of the quantum
distribution.
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8.1.2 Bohm’s Counterexample

For historical fairness, the theory proposed by Bohm—causal quantum mechanics,
as he called it—should be named after de Broglie and Bohm, since L. de Broglie
proposed his pilot-wave theory already during the construction of quantum mechan-
ics as an alternative to both Heisenberg’s and Schrödinger’s routes to the new theory
(de Broglie 1926a, b, 1927a, b, c; see also de Broglie 1963).5 The pillars on which
de Broglie’s and Bohm’s theories rest are quite similar, although from the outset the
former was more ambitious. The theory proposed by de Broglie was an attempt to
arrive at qm through the study of the trajectories followed by electrons or photons
‘guided’ by the quantum field (hence the name of pilot-wave theory). De Broglie’s
initial work preceded the theories of Heisenberg and Schrödinger, and can therefore
be considered to be the first attempt to find a formulation for qm. Unfortunately the
author abandoned it around 1930, due to several unresolved difficulties, and with this
the search for quantum trajectories was left aside for a long time. A detailed discus-
sion of de Broglie’s theory, covering both the technical and the historical aspects,
can be seen in the excellent book by Bacciagaluppi and Valentini (2009); see also
Cushing (1992) and Bohm and Hiley (1995). In 1956, de Broglie himself published
a general discussion of his theory

As for Bohm’s theory, it is derived from qm—just the converse of what de
Broglie’s theory was designed for—so one can say that it is qm supplemented with
a guidance formula—a pilot formula that can be derived from within qm—which is
the entry point for the hidden variables. Thus Bohm’s theory represents an alternative
reading of qm rather than a different theory. Bohm himself insisted on this point:
his theory is totally consistent with qm, it is qm seen from a causal and determin-
istic stance. The theory was born precisely out of the drive to demonstrate that, in
defiance of von Neumann’s theorem, qm accepts a hidden-variable description that
makes it causal and deterministic. Yet even though Bohm’s formulation did provide
at its time a real counterexample to von Neumann’s theorem, it was largely left aside,
as mentioned earlier. An eloquent testimony of the reaction generated by Bohm’s
theory is given by F. Bopp in his summary of the discussions at a 1957 Conference
in Bristol (Jammer 1974, p. 256):

‘...we say that Bohm’s theory cannot be refuted, adding... that we don’t believe in it.’.

Hostility towards Bohm’s theory continued and still continues in many circles,
although much attenuated. An illustrative example is due to Pauli (1952), who in the
book in homage to de Broglie dismissed the de Broglie-Bohm approach as ‘artificial
metaphysics’ because this theory breaks the symmetric treatment of canonically con-
jugate variables. The theory developed in Chap. 4 shows that this violation is merely

5 Without pretending to undermine de Broglie’s credit for his seminal contribution, in most of
this book we shall refer to Bohm’s theory, for short, as is customary in present-day literature. An
alternative form of qm, similar to Bohm’s, had been proposed many years earlier by Madelung
(1927).

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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apparent, since the description in configuration space is the result of a free choice
rather than of necessity.

Since Bohm’s formulation is derived just from qm, its novelty might be ques-
tioned; however, this question would be out of place. Bohm’s approach has con-
tributed in various important ways to our understanding of quantum theory. Firstly,
it opened a door to the idea of the feasibility of hidden-variable theories. This stim-
ulated work on the subject, which led to important results and to a weakening of the
extended conviction that the quantumworld is elusory.Amost important contribution
is the insistence on a causal interpretation of qm, openly confronting the orthodox
interpretation in terms of quantum fluctuations and selections without an underly-
ing cause. A further merit is that it does not resort to the observer, as orthodox qm
does. If you want to perform a measurement, you should incorporate the instrument
into the description just as you would do in a classical context (an example of this
is given below in Sect. 8.2.3). Moreover, the variables used in Bohm’s formulation
allow for the introduction into qm of the notion of trajectory. In fact, the electron
remains all the time a corpuscle following a trajectory and never becoming a wave.
This additional touch of realism is another important virtue that is in want in the
usual renderings of qm. In discussing Bohm’s formulation more at depth in what
follows, we will find a new opportunity to cogently establish the meaning of several
of the most characteristic features of qm from a realist point of view, and to show
the many coincidences and some divergences with the theory discussed in this book.

AsBohm’s formulation gained acceptancewith time, the emphasis shifted towards
a full-fledged alternative to the orthodox interpretation, and the theory expanded its
aims. From a counterexample to von Neumann’s theorem it evolved into a causal
and realistic interpretation of qm that acquired some popularity.6 It has even been
presented as a quantum theory by itself, not based on the Schrödinger equation but
on its own principles [see e.g. Dürr and Teufel (2009)] and leading to the Schrödinger
equation as one of its major results.7 A very important extension of the theory is its
generalization to the many-body problem. Here also de Broglie was the originator,
having presented his many-body theory already at the 1927 Solvay Conference (de
Broglie 1928). Also since its 1952 revival by Bohm, the theory was presented as
a many-body corpus. There are works studying further possibilities, such as the
introduction of spin, the extension to the relativistic domain, (see e.g. Nikolić 2007;
Hernández-Zapata and Hernández-Zapata 2010), or the generalization to a statistical

6 The well-known book by Bell containing the collection of his articles on the foundations of qm
(Bell 1987) was very influential in the revival of Bohm’s theory. Bell appreciated the objective,
deterministic and causal aspects of the pilot-wave theory. It was the search for an answer to the
question: Is it that any hidden-variables theory is by necessity nonlocal? what prompted Bell’s work
leading to his now famous inequalities.
7 This is achieved by simply inverting the reasoning in the derivations. Two crucial postulates are
needed: one is of course the guidance equation; the second demand serves to introduce the quantum
potential VQ into Eq. (8.9) on the basis of an appropriately contrived argument. The simplest
procedure is to consider the quantum potential as an empirical—and thus phenomenological—
expression, and to proceed from there on. There exist all sorts of interpretations and ‘derivations’
of the quantum potential, as commented in footnote 4.14.
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situation (Bohm and Hiley 1996), usually treated bymeans of the density matrix, and
into other modern topics (Oriols and Mompart 2012). Extensive monographs on the
subject are Bohm and Hiley (1995), Holland (1993), Dürr and Teufel (2009), or the
introductory course Towler (2009); see also Passon (2005) and Thiounn (1965). For
another ‘branch’ of the theory see Floyd (2000). A related critical work on Bohm’s
theory is Dürr et al. (1992).

8.2 Essentials of the de Broglie-Bohm Theory

8.2.1 The Guiding Field

A straightforward derivation of Bohm’s theory starts with the introduction into the
Schrödinger equation

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + V ψ (8.3)

of the wave function ψ(x, t) written in polar form

ψ(x, t) = √
ρ(x, t)ei S(x,t), (8.4)

with ρ(x, t) and S(x, t) real functions. By separating Eq. (8.3) into its real and
imaginary parts one obtains the couple of equations

∂ρ

∂t
+ ∇ · ρv = 0, (8.5a)

�
∂S

∂t
+ �

2

2m
(∇S)2 + V − �

2

2m

∇2√ρ√
ρ

= 0, (8.5b)

where ρv = j is the probability current or particle flux, with [see Eqs. (4.57) and
(4.127)]

v(x, t) = �

m
∇S(x, t). (8.6)

Clearly the content of Eqs. (8.5a) and (8.5b) is the same as that of Schrödinger’s equa-
tion. However, in the causal interpretation a formal analogy with classical mechanics
is established, by taking v(x, t) as the velocity field of a single particle located at x,

dx
dt

= �

m
∇S(x, t)|x=x(t) , (8.7)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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and thus interpreting �S as the action function of the quantum problem. This action
differs from the classical one (Sc) in that the latter solves a true (classical) Hamilton-
Jacobi equation

∂Sc

∂t
+ 1

2m
(∇Sc)

2 + V = 0, (8.8)

whereas the (dimensionless) action S is governed by Eq. (8.5b), which can be rewrit-
ten as

�
∂S

∂t
+ �

2

2m
(∇S)2 + Veff = 0, Veff = V + VQ, (8.9)

with VQ the quantum potential or Bohm’s potential [already found, for example, in
Eqs. (2.80) and (4.86)],

VQ = − �
2

2m

∇2√ρ√
ρ

. (8.10)

In terms of the ‘effective potential’ Veff = V + VQ, Eq. (8.9) takes the form of
a Hamilton-Jacobi equation for the principal function S (Goldstein et al. 2002).
Equation (8.9) is thus interpreted as the quantum Hamilton-Jacobi equation, that is,
the quantum version of Eq. (8.8). According to this interpretation, the difference
between a classical problem and the corresponding quantum one is due the presence
of the function VQ (cf. the discussion in Sect. 4.4.1).8

Notice, however, that in contrast to the external (classical) potential V , VQ is not a
preestablished function of x; it depends on the evolution of ρ = ψψ∗, the dynamics
of which is in its turn determined by the quantum potential itself. Hence VQ applies a
kind of feedback on the particle, dependent on the distribution of particles, a feature
that endows the theory with highly nonclassical properties. It should come as no
surprise that the implications of this potential for the dynamics are far reaching, as
we know is just the case. In particular, the dependence of VQ on ρ endows Eq. (8.9)

8 The kinetic origin of the quantum potential is discussed in de la Peña et al. (2011). To the
varied proposals to derive the quantum potential cited in footnote 4.14, one should add those of
Dürr et al. (1992), and Ván and Fülöp (2003), as well as.the thermodynamic approach of Grössing
(2008, 2009). A somewhat bolder one is that of Floyd (2002), who proposes a trajectory description
based on a peculiar quantum potential containing derivatives of third order. An interesting point of
this theory is that it contains extra parameters that allow for a distribution of the velocity v, resulting
in amore realistic description. Salesi (1996) and Recami and Salesi (1998) propose that the quantum
potential can be derived by considering the energy associated with the internal zitterbewegung
(considered as the antecedent of the spin). A similar proposal is made by Esposito (1999), who
associates the quantum potential with the (internal) kinetic energy due to a generalized spin; see
also Yang (2006). For these authors, the notions of spin, zitterbewegung and quantum potential are
intimately related. Garbaczewski (1992) offers a nice derivation of the quantum potential as due
to the fluctuations of the momentum. In Carroll (2007, 2010), additional arguments are introduced
about the origin of the quantum potential, related to Fisher information.

http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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with a statistical content, and is responsible for the essential difference between (8.5b)
and a true Hamilton-Jacobi equation, which by definition describes the motion of a
congruency of (single) particles acted on by local potentials (a congruency refers to
a single-valued trajectory field).

The fact that in Bohm’s theory v stands for the velocity of a single particle, allows
for the introduction of the notion of trajectory into the description. Such trajectory
is described by the velocity field, determined by ψ according to Eq. (8.6) [see also
Eq. (4.125)],

v(x, t) = i�

2m

(∇ψ∗

ψ∗ − ∇ψ

ψ

)
. (8.11)

The wave function ψ is taken here as a physically real field—just as real as, say,
the electromagnetic field—that pervades the entire available space and guides the
particle according to (8.11), which is therefore known as the guidance (or pilot)
equation.9 The two basic physical elements of the theory are thus the wave (guiding
or pilot) field, determined by the Schrödinger equation, and the particle, with its
motion determined by the solution of Eq. (8.7), or rather by the solution of

m

(
∂

∂t
+ v · ∇

)
v = m

dv

dt
= −∇(V + VQ), (8.12)

obtained by applying the operator ∇ to Eq. (8.9). Notice that the operator

Dc = ∂

∂t
+ v · ∇, (8.13)

frequently called co-moving derivative (introduced in Sect. 2.3.1), coincides with
the the total time derivative when the latter is taken along the path determined by the
velocity field v (whence in the Bohmian approach Dcv is the actual acceleration of
the particle).

The solution of Eq. (8.7) depends on the initial condition x0 = x(t = 0). When
different values are assigned to x0, an ensemble of motions (for a given ψ) is deter-
mined; a statistical meaning is therefore ascribed to the field ψ by postulating that
the probability for a particle to be in the vicinity dx around x is given by

|ψ(x, t)|2 dx. (8.14)

This allows to establish contact with the probability interpretation of the density
ρ(x, t). Moreover, it can be shown that given the initial distribution ρ(x, 0), Eq.

9 The fieldψ differs in essence from those known to classical physics. In contrast to the gravitational
or the electromagnetic field, for example, it does not have a generating source. Moreover, it affects
the particle (by guiding it) but is not affected by it. This lack of reciprocity in the field-particle
influence led de Broglie (1956) (and afterwards Bohm himself) to regard the pilot-wave theory as
just a step towards a necessarily more developed theory. [See item 15 in Bell (1987)].

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_2
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(8.11) holds at any future time. The fact that the (ensemble of) initial positions x0 is
the only information required by the theory that is not contained in ψ(x, t), has led
to refer to such positions as the set of hidden variables of the theory. They are here,
but remain hidden to usual qm.

The pilot equation was introduced early in de Broglie’s work (1927, 1928) as
a law that unifies the Maupertuis principle of least action for the path of a particle
and Fermat’s principle of least time for a ray in optics; pt thus represents a law that
unifies mechanics and optics. That both principles led to the same Eq. (8.11) allowed
de Broglie to bring together the mechanical and undulatory aspects of the behavior
of a quantum particle, following his fundamental proposal of the dual behavior of
both, particles and photons. Equation (8.11) was therefore the starting point of de
Broglie’s theory (the pilot-wave theory). For Bohm, on the other hand, the point
of departure was Eq. (8.12), which represents the guidance principle applied to the
acceleration, not to the velocity, and which can be identified with Newton’s equation
of motion for a particle subject to the potential Veff. Of course, the presence of the
quantum potential in this latter modifies drastically the strictly classical (Newtonian)
interpretation of Eq. (8.12).

What is sometimes called Bohmian mechanics is the theory based on Eqs. (8.11)
and (8.3); it is a kind of mixture of the two theories (de Broglie’s and Bohm’s) that
leaves aside the initial motivations of both authors in favor of the formal aspects
of the theory. Notwithstanding its shortcomings (some of which will be discussed
below) Bohmianmechanics should be recognized for its success in restoring realism,
objectivity, determinism and causality for qm.

8.2.2 Quantum Trajectories

In the de Broglie-Bohm theory of motion a particle possesses an exact position x
and an exact velocity v at any given time. This endows the theory with one of its
main virtues, namely that of allowing for a phase-space trajectory (Holland 1993,
Vasudevan et al. 2008). Since the notion of trajectory is foreign to the usual quantum
description, it seems appropriate to comment on it here.

Textbooks on qm usually appeal to physical intuition to introduce some concepts,
yet very soon the physical intuition dissapears in favour of a dynamical description
carried out in an appropriateHilbert space. In this new (highlymathematical) context,
the notion of trajectory in physical space is dispensed of, avoided, or even negated.10

10 This assertion requires some qualification. It is not too difficult to find (both in orthodox textbooks
and in research papers, and of course also in popular works), arguments that bear implicitly or
explicitly on the notion of trajectory. For example, in discussions on van der Waals or molecular
forces a drawing is sometimes made of atoms with well-localized orbiting (point) electrons, and
the Hamiltonian is written accordingly. True, at some moment an average is taken, but nevertheless
the discussion refers, or at least seems to refer, to orbiting point particles. Another example is an
atom or a particle in a Stern-Gerlach experiment, which in every analysis is considered to follow a
definite trajectory.
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In general, the denial of quantum trajectories is rooted on a certain reading of the
uncertainty relations, so this kind of assertions is interpretation-dependent; valid only
within the Copenhagen interpretation broadly understood, and particularly embraced
by Bohr, as revealed in the following:

Bohr was also at the meeting. After I had tried many times to explain what I was doing
and didn’t succeed, I talked about trajectories, then I would swing back –I was being forced
back all the time. I said that in quantum mechanics one could describe the amplitude of each
particle in such and such a way. Bohr got up and said ‘Already in 1925, 1926, we knew
that the classical idea of a trajectory or a path is not legitimate in quantum mechanics: one
could not talk about the trajectory of an electron in the atom, because it was something not
observable.’ In other words, he was telling me about the uncertainty principle. It became
clear to me that there was no communication between what I was trying to say and what they
were thinking. Bohr thought that I didn’t know the uncertainty principle, and was actually
not doing qm right either. He didn’t understand at all what I was saying. I got a terrible
feeling of resignation. R. P. Feynman, taken from Towler (2009), lecture 6.

In contrast to the Copenhagen interpretation (where the quantum description is
taken to refer to a single particle), for the ensemble interpretation the Heisenberg
inequality �x�p ≥ �/2 says nothing about the impossibility for a single particle to
have a definite position andmomentum. It represents, instead, a statistical expression
relating the simultaneous dispersions of position and momentum in the ensemble.
Further, acknowledging the statistical essence of qm, the issue is not whether both x
and p are simultaneously distributed, but why their distributions are conditioned by
the Heisenberg inequality. We have found in Chaps. 3–5 an answer to this question,
involving the action of the zero-point field. Indeed, in the present approach the origi-
nal equation ofmotion refers to a stochastic process with a well-defined trajectory for
every realization of the field. However, when an ensemble of systems is considered,
the possibility to identify the single trajectories is lost.11 Our corollary is thus that
qm is unable to explicitly allude to the notion of trajectory, without this however
implying a negation of the existence of trajectories.

Historically speaking, the denial of quantum trajectories was not always the case.
Quite the opposite, as stated in Sect. 8.1.2, in his very first attempts to construct
modern quantummechanics—some ten years after Bohr’s model of the H-atom—de
Broglie was trying to describe the quantum trajectories when he proposed the guid-
ance formula v = �∇S/m. In the course of time, the notion of quantum trajectory has
found invigoration with the emergence of novel ideas from the consistent-histories
interpretation of quantum mechanics (see e.g. Griffiths 1993, Omnès 1994), the
quantum-trajectory method (Lopreore and Wyatt 1999, 2000), quantum optics (see
e.g. Brun 2002), and even from a study of the Dirac equation (Gull et al. 1993). The
Workshops onQuantumTrajectories held in 2008 and 2010 attest to the current inter-
est on the subject. Indeed, the possibility of tracing quantum trajectories has attracted
the attention of a vast number of investigators due to the valuable information that can
be effectively gained from their study. The related literature shows a growing trend,

11 It is this statistical treatment what engenders ‘indistinguishability’, and this occurrs regardless
of whether the system is classical or quantum. This, for instance, explains the use of the notion of
indistinguishability to solve the Gibbs paradox in classical statistical physics (see e.g. Mandl 1988).

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_5


8.2 Essentials of the de Broglie-Bohm Theory 277

and eventually such endeavour should bear important fruits. Hence, even though the
notion of trajectory in qm continues tomeet opposition among strongly Copenhagen-
minded physicists, it seems that we are still in a period of search and definition about
the physical principles of quantum theory, the trajectory issue being only a small part
of the picture.

From within sed, refined studies have been carried out to determine the trajec-
tories as predicted by the theory. Such studies demand a detailed simulation of the
zpf, instead of the hazard being introduced by hand through the use of distributed
initial velocities (Bohm’s theory) or of a white noise (stochastic mechanics). For this
purpose a background noise with spectrum proportional to ω3 has to be generated
and the full equation of motion (4.2) must be used. A most important example of this
kind of calculations is the work of Cole and Zou (2003, 2004a, b, c, d, 2009) on the
H-atom, which (nearly) reproduces the stationary quantum predictions as the result
of a statistical analysis of a long run of the ground-state orbit. It should be stressed
that these results are obtained by averaging the orbital motions, that is, by tracking
individual trajectories of electrons for a long time interval, in correspondence with
the discussions in Chaps. 4 and 5. Another most interesting example is given in
Huang and Batelaan (2012); here the authors study the details and statistics of the
trajectories followed by a classical oscillator immersed in the zpf, and exhibit
the mechanism by which the classical distribution of positions gets transformed
into the corresponding quantum distribution.

That quantum trajectories may differ greatly from classical trajectories should
be expected in advance. Popular illustrations such as the stylised atoms used in
postage stamps, logos and comic strips are of course very rude representations, far
from reality. The atomic orbits do not resemble planetary orbits; they are some-
thing much more complex due to the complex dynamics they obey. The best-known
graphs of quantum trajectories are perhaps those obtained within Bohm’s theory.12

Even if they cannot provide a detailed description, the studies of electron trajecto-
ries from Bohm’s perspective satisfactorily reproduce some central features of the
experimental results and offer an intuitive picture of the underlying dynamics. For
some physicists the notion of quantum trajectory is natural and is an interesting
consequence of the quantum potential (see e.g. Dewdney et al. 1993, Dürr et al.
1993); for others, their weirdness makes them unacceptable, or even surrealistic
(Englert et al. 1992, Aharonov and Vaidman 1996).

The trajectories predicted by Bohm’s theory are in general very complex, since
the quantum potential is an intricate function of ψ and ψ∗ that can vary very fast
with the coordinates, and thus along the path followed by the particle. Moreover,
the trajectories are normally quite sensitive to the initial conditions and to the full
distribution of particles.Amost popular example of aBohmian trajectory is presented
in Fig. 8.1, which shows the paths followed by electrons diffracted by two Gaussian
slits (taken from Philippidis et al. 1979). Another example is given in Fig. 8.2 (taken

12 Also Nelson’s theory and more generally the stochastic description of qm have been successfully
used to investigate quantum trajectories, as shown by the examples in Chap.2.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_2
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Fig. 8.1 Trajectories
scattered by two Gaussian
slits, according to Bohm’s
theory. The initial beams of
particles have a uniform
distribution at each slit.
Reprinted from Philippidis
et al. (1979) with permission
from Springer

from Dewdney and Hiley 1982), which shows the trajectories of electrons from
a Gaussian packet incident on a semitransparent barrier with a transmission ratio
of one-half. The pattern shows clearly how the outer particles are reflected before
reaching the barrier, whilst the ones closer to the barrier are mostly transmitted. In
the next section we will have opportunity to discuss this (nonlocal) feature in more
detail.13 Notice that individual particles do not conserve theirmechanical energy, but
change speed before reaching the barrier, as shown also in Chap.2. The total energy
is of course conserved, but since qm does not consider the energy of interaction with
the zpf, it loses accountability in instances as the present one.

As mentioned earlier, the Bohmian trajectories are described by individual parti-
cles having an instantaneous velocity v(x) as given by Eq. (8.6). Such interpretation
differs from the one developed in this book, according to which (8.6) refers to a local
mean velocity, obtained as a result of a (partial) averaging over the momentum space,
and hence containing statistical information about all the individual instantaneous
velocities at x. From the perspective adopted here, the stochastic field is responsible
for fluctuations around the mean motion, as shown for example in Figs. 2.1 and 2.2,
so that the actual velocity of a single particle varies at random from case to case and
should be expressed as14

vactual(x, t) = �

m
∇S(x, t) + �v, (8.15)

with�v a stochastic deviation that averages to zero. Consequently the sed approach
admits (random) trajectories that can mutually cross, an effect that the de Broglie-
Bohm theory, by its deterministic nature, cannot take into account. Indeed, a well-

13 Further examples can be seen in Holland (1993), Lopreore and Wyatt (1999, 2000)—who have
generated what they call the ‘quantum trajectory method’—; Suñé and Oriols (2000), Matzkin and
Nurock (2008), Sanz et al. (2002), Philippidis et al. (1982), and Kumar Chattaraj (2010).
14 In a variant of Bohm’s theory the idea of a fluid à la Madelung is entertained. By considering this
fluid to be subject to fluctuations, a random element is then added; see Bohm and Vigier (1954).
See also Wang (2006) for related work.

http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_2
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Fig. 8.2 A collimated beam of particles scattered by a barrier according to Bohm’s theory. Notice
that many particles are scattered before reaching the barrier. Reprinted from Dewdney and Hiley
(1982) with permission from Springer

known prediction of Bohm’s theory is that the (deterministic) trajectories never cross.
This is foreseeable, for particles that follow the (by form) classical rule, Eq. (8.12): the
crossing of classical trajectories at a point x wouldmean that at that point the velocity
(the local tangent) would not be a single-valued function. Illustrative examples of
crossing trajectories that go in line with the stochastic perspective can be seen in the
cited figures of Chap. 2.

The aforementioned difference between the meanings ascribed to v is reflected
also in the way Eq. (8.9) is read. Whereas in Bohm’s theory the statistical content
of this equation is encoded in the quantum potential VQ (via its dependence on
the probability density ρ), within our approach the analogy with the classical case
is more distant, due to the intrinsic statistical sense of the kinetic terms involved.
In addition, the fact that in Bohm’s theory the velocity v is identified with dx/dt
runs into a problem for stationary states with real (spatial) wave function, since
in such case ∇S = 0 and there is no flow of particles, as argued by Heisenberg
(1955). This sounds unconvincing, especially considering that in general (even for
stationary states) a nontrivial distribution ofmomenta is to be expected, so that a static
image seems incongruent with the theory. Of course, there still exists the diffusive
velocity u (see Sect. 4.5.1), although it is not recognized as a velocity in the usual
quantum account, nor in the causal interpretation. By contrast, if v refers to a mean

http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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local velocity, the result v = 0 only indicates that there are equally many particles
travelling in opposite directions. This restores consistency with the distribution of
the momenta.15

8.2.3 The Measurement Task in the Pilot Theory

The causal and realistic posture that characterizes the pilot theory can be extended
to cope with the measurement problem in a natural, objective and rational way: if
a measurement is to be performed, that means the system has been prepared by
inserting the measuring instrument, which has thus become an integral part of it. The
next step is therefore to solve the Schrödinger equation with the apparatus and its
gear included; the solution should give the statistical answer, and so themeasurement
problem should dissolve.

Let us illustrate how this is achieved, with the help of a simple example proposed
byBell (1987, article 17) and derived from the original theory presented by deBroglie
(1928) in the Fifth Solvay Conference 1927 (other, more elaborate and realistic
examples can be seen in the suggested literature). Suppose that a spin component is to
bemeasured, and that the ‘measurement’ is represented by an interactionHamiltonian
similar to the one proposed by von Neumann (1932) in his famous textbook (one-
dimensional notation is used for simplicity),

− i�gÔ
∂

∂x
. (8.16)

Here g is a coupling constant and Ô an appropriate spin operator (the observable to
be measured). Assume also that the particle is sufficiently massive so that the com-
plete Hamiltonian is very nearly represented by its interaction part. The Schrödinger
equation for the state |ψ〉 reads then

i�
∂

∂t
|ψ〉 = −i�gÔ

∂

∂x
|ψ〉 . (8.17)

Introduction of the spin eigenvectors |αn〉 such that Ô |αn〉 = On |αn〉 , allows to
express the state function in the form

15 Here it is in place to recall the argument against the Copenhagen interpretation raised by Einstein
(1953), considering the stationary states of an infinite one-dimensional square well potential. The
spatial part of the wave function can be written in the form ϕ = N sin kx . From Eq. (8.11) it
follows that v = 0, hence there is no flow velocity. However, by writing the wave function in the
form ψ = (N/2i)(eikx − e−ikx ), it can be interpreted as referring to two similar subensembles of
particles, traveling to the right and to the left, with velocities ±�k/m. Thus, it is the net (mean)
velocity that is null. Einstein used this example to argue that the statistical reading is the single one
that can be made in the limit of high energies. Since passing to this limit does not change the nature
of the problem, Einstein concluded that one should consider the wave function as describing an
ensemble, not an individual particle.
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|ψ(x, t)〉 =
∑

n

�n(x, t) |αn〉 . (8.18)

Substituting into Eq. (8.17) leads to

∂�n

∂t
+ gOn

∂�n

∂x
= 0, (8.19)

with solution

�n(x, t) = �n(x − vnt) (8.20)

with vn = gOn . Therefore the state is given by

|ψ(x, t)〉 =
∑

n

�n(x − vnt) |αn〉 . (8.21)

The result speaks for itself: the wavepackets �n(x − vnt) travel each with its own
velocity gOn , and thusmove apart with time. Eventually the overlap between packets
will be negligible so that they can be considered isolated from one another. A position
measurement corresponds then to a specific On and thus to a particular spin state
|αn〉, which contributes with the probability |�n|2. For example, when x is taken to
represent a radial direction, different positions correspond to different angles and the
example becomes an elementary model of a Stern-Gerlach experiment.

When the overlap between the different�n becomes negligible, there is no appre-
ciable interference between them. It thus appears as if the state has suffered an
effective, practically irreversible collapse, although subject at all times to a unitary
evolution. It is the approximation of treating the final packets as truly independent
which breaks the unitary dynamics, thus evoking a kind of ‘collapse’ (introduced by
hand) that does not correspond to any physical process, yet is useful as a practical
procedure to deal with the final state.16 One merit of the theory becomes thus clear:
there is no observer that ‘induces’ the wave collapse; no need for partial tracings;
no two laws of evolution but only the one that governs the dynamics all along the
process. The notion of collapse dissolves and no measurement theory is needed,
since now the measurement becomes a normal experiment, softly merged into the
conventional theory of quantum evolution. The conclusion is in full agreement with
the stance promoted by van Kampen (1988) and others: “The measuring act is fully
described by the Schrödinger equation for object and apparatus together...” In plain
words, quantum mechanics is more fitting without the addendum of the weighty
theory of measurement.

The rather elementary model just discussed illustrates well various fundamental
aspects of the meaning of ‘measurement of an observable’. The first one, remarkable

16 In the usual quantum theory of measurement, the process of extracting from (8.21) the observed
result �n (the reduction or collapse of the after-measurement state) is referred to as the problem of
objectification. See e.g. Mittelstaedt (2009).
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enough, is that every measurement (here of a spin component) ends up being a
position measurement. Thus, the breaking of the initial wave packet into several ones
as a product of the interaction, which separate in the course of time (until becoming
almost noninterfering) allows to identify the presence or absence of any component in
the initialwave packet. A second, fundamental aspect is that the description is entirely
objective and avoids dividing the world into undefined observed and observer, object
and subject—which is one of the most discomforting aspects of the usual quantum
theory of measurement (see e.g. Bell 1987; Wick 1995).

The amplitude of the nth component in Eq. (8.21) depends on the instrument
through the factor gOn . Thus one is tempted to conclude that the result of the mea-
surement is determined by both the system and the measuring apparatus (which here
is part of the enlarged system). In this direct sense, it is true. The probability with
which the packet �n contributes to |ψ(x, t)〉 is |�n(x − gOnt)|2 , which for t �= 0
is instrument-dependent. However, it is only in the relative weights of the states that
there is a dependence on the measuring device: if initially |�n(x)|2 is zero for a
given component, this component will never be registered in the output. Only those
components that contribute at t = 0 will have a chance to show up at later times. In
this sense, the end result depends exclusively on the system itself. In other words,
only predefined values are eventually observed, assuming the measuring instrument
does not directly affect the system itself.17

One of the reasons for the success of Bohm’s approach with the measurement
problem is the fact that it contains and uses the notion of quantum trajectory, as in
the above example, where the packets representing particles tend to separate.We have
here a nice and important instance of both the possibility of introducing this notion
into conventional qm , as already discussed, and the usefulness of such endeavor.
Even if, according to our perspective, a more detailed description exists that contains
fluctuations that are absent in Bohm’s’ theory, for many purposes such local mean
description suffices to give an approximate idea of how the quantum system behaves.

8.3 The Quantum Potential

As stated in Sect. 8.2.1, a key element in Eq. (8.5b) is the term VQ(x, t). It stands
as a sui generis potential, essentially different from any classical one in many ways,
on some of which we comment in the present section. Our purpose is both to show

17 The possibility that the result of a measurement depends on both the system under observation
and the measuring apparatus is also present at the classical level. A common example of the class
of nondisturbing classical procedures is a photocell detector that checks the presence or absence of
somebody before closing the door of an elevator. An example of the second class could be a ‘tail
or head’ detector for tossed coins which operates by inserting a card to stop and receive the coins.
Of course this second mechanism can be replaced with more elaborate optical procedures that do
not disturb the observed coins. This is a matter of the measurer’s skills and of the existing technical
possibilities.
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that essential features of the quantum system are linked to VQ , and to provide new
insights into its physical origin.18

Rather than starting from Eq. (8.4), we resort to the more general Eq. (2.81),

ia
∂ψ

∂t
= − a2

2m
∇2ψ + V ψ + (1 − λ)

a2

2m

∇2√ρ√
ρ

ψ,with ψ = √
ρei S, (8.22)

which is valid provided thefluxmomentumof the systemhas the structuremv(x, t) =
a∇S(x, t), with a constant. The procedure used at the beginning of Sect. 8.2.1 leads
then to a couple of equations involving the variables S and ρ: one is the continuity
Eq. (8.5a), the other is a generalized form of Eq. (8.5b),

a
∂S

∂t
+ a2

2m
(∇S)2 + V − λ

a2

2m

∇2√ρ√
ρ

= 0. (8.23)

The case of interest here corresponds evidently to a = �; however, the specific
value of a is irrelevant for the present purposes. As discussed in Sect. 2.4, what is
important is that Eq. (8.22) is linear in ψ if and only if λ = 1, that is, if Eq. (8.23)
involves an additional ‘potential’ given precisely by− (

a2/2m
)
(∇2√ρ/

√
ρ) (which

for a = � is the quantum potential). This establishes the following concomitance:
for a given purpose we can resort to the (Schrödinger) equation for ψ, or to the
equivalent (Hamilton-Jacobi-type) equation for (ρ, S)—the continuity equation is
merely a constraint, not a dynamical equation—, and the effects that arise from the
linearity of the former will be attributable to the term VQ in the latter. In the next
two sections we apply this parallelism—exploiting the linearity of the Schrödinger
equation—to draw conclusions about the role played by VQ in the dynamics of the
system. We shall thereafter inquire further into the physical meaning of VQ .

8.3.1 Linearity and Nonlocality

The most recognized feature of Bohm’s theory is its essential nonlocality. However,
almost every analysis on nonlocality that one finds in the physical literature is carried
out within the context of composite systems, the discussions on nonlocal effects in
single-particle systems being rather scarce.Apossible explanation for this rests on the

18 A first peculiarity of VQ is that it is independent of the field’s strength, or rather of the
intensity (∼ ρ) of the wave. This follows from the fact that VQ(ρ) = VQ(Aρ) for any constant
A, and indicates that the effects due to the particles do not depend on the number of particles
present; but on their distribution. That there are forces within the classical realm, particularly in
the hydrodynamical analogy, with similar peculiarities does not suffice to surmount the problem,
since in the hydrodynamical case there is a medium that supports and transmits the presure and the
stresses. By contrast, in the quantum single-particle problem we are not dealing with a collective
system; the ‘collection’ may be a conceptual ensemble, devoid of physical existence.

http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_2
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fact that since the epr paper, andmostly fromBell’s theoremon, the debates regarding
nonlocality have centered on bipartite (or multi-partite) quantum systems, to the
extent that the notion of nonlocality has become widely understood as synonymous
with violation of Bell’s inequalities,19 or as a manifestation of some sort of action
at a distance between the constituents of the system. Another reason may be that for
single-particle systems the notionof nonlocality is somewhatmore blurred and subtle.
In particular, there is apparently no room for actions at a distance simply because a
single particle has no partner to interact with! However, a look at Fig. 8.2—which
shows that as an effect of the barrier some particles are reflected before reaching
it—indicates that it does make sense to talk about nonlocal effects in single-particle
systems. As the alien element in the otherwise classical (single-particle) Eq. (8.5b),
VQ is to be blamed for the characteristic quantum properties of the system: hence it
must account also for its nonlocal properties.

The fact that VQ depends explicitly on the spatial distribution of particles could
be considered indeed as a sufficiently strong argument to ascribe to it the nonlocal
properties characteristic of quantum systems. However, a more detailed argument
goes as follows. Expressing the Schrödinger equation in the form Lψ = 0, with
L a linear operator, the determination of the (causal) Green function for L, call it
K (x, t |x′, t ′), suffices to express the solution in the form

ψ(x, t) =
∫

K (x, t |x′, t ′)ψ(x′, t ′) d3x ′, t ≥ t ′, (8.24)

with K = 0 for t < t ′. Equation (8.24) shows that ψ at any point x and time t
carries information regarding its previous value at all points of the available space.
A consequence of this is that every quantity that is determined by ψ bears in general
information about the whole setup. Therefore, the trajectory defined by the guidance
Eq. (8.11) reflects the presence of boundary conditions and of (possibly distant)
external potentials, for example. This accounts for some of the nonclassical effects
manifested in numerous Bohm trajectories; in particular, it explains why the particles
begin to gain or lose energy or deviate before reaching the barrier, as in Fig. 8.2, as
if ‘perceiving’ its effect in advance.20 This kind of behavior is the one we identify
as the quantum single-particle nonlocality, where the term ‘nonlocal’ means that the
dynamics of the particle in some region is affected by what happens in regions that
may be far away from it, without an intermediate recognized (external) agent.

In the de Broglie-Bohm interpretation the underlying cause for such nonlocal
behaviour is found in the quantum potential, which transmits, to each point, infor-
mation about the wave field in the entire space. Thus, a particle at a point where V
is constant (e.g., located at x < a in the barrier example) is not a free particle, but

19 Bell inequalities is a collective name referring to a number of inequalities (such as the chsh-type
inequalities) that involve correlations between variables of the constituents of a composite system
and are violated by qm, reputedly due to the nonlocal properties of the quantum description.
20 The transmitted particles are among those that gain enough energy to travel not through the
barrier, but over it (see e.g. Lopreore and Wyatt 1999).
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is acted upon by a quantum force −∇VQ(x, t). This force, being dependent on the
point x where it is exerted, acts of course locally; what is nonlocal is the information
it carries. There is no room for superluminal action at a distance. Moreover, since
in Bohm’s interpretation the field ψ is considered to be a physical entity, the nonlo-
cality appears as entirely admissible: the anticipated reflection of the particles is as
natural (and local) as it would be if there existed a real fluid, as was conceived by
Madelung. In this scenario some incident particles are reflected before reaching the
barrier simply because the reflected wave acts upon them (Holland 1993).

This explanation does not hold in the sed framework,where the correct description
of the entire (field plus particle) system has a local structure and quantum nonlocality
appears as a feature of the reduced quantum-mechanical description, rather than an
ontological property. At the end of Sect. 8.3.3 we comment on this point in more
detail.

8.3.2 Linearity and Fluctuations

Equation (8.24) is a direct consequence of the linearity of the Schrödinger equation.
Another most important property of the solutions of linear equations, is that they
satisfy the superposition principle. Let us apply it here to a free-particle system, by
superposing plane waves of different momenta to construct a Gaussian wave packet,
and use it to show that VQ is also linked to the presence of quantum fluctuations,
which appear as irreducible.

Consider the following one-dimensional packet of free particles of massm,

ψ(x, t) = 1√
2π

∫
φ(k)e−i(�k2t/2m)+ikx dk, (8.25)

where �k = p. If the initial wave function is

ψ(x, 0) =
(

1

2πσ2
0

)1/4

exp(−x2/4σ2
0), (8.26)

the distribution ρ(x, t) is a Gaussian centered at the origin,

ρ(x, t) = 1√
2πσ2

exp
(
−x2/2σ2

)
(8.27)

with

σ2(t) = σ2
x (t) = σ2

0 +
(

�t

2mσ0

)2

. (8.28)
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Fig. 8.3 Distribution of
particles ρ (solid lines, marked
with numbers) and quantum
potential VQ (dotted lines,
marked with letters) of Eqs.
(8.27) and (8.29) for three
different times t1 < t2 < t3.
Curves (1) and (a) correspond
to t1, (2) and (b) to t2, and (3)
and (c) to t3. Arbitrary units

A direct calculation gives for the quantum potential

VQ = �
2

8mσ4

(
2σ2 − x2

)
. (8.29)

Figure 8.3 shows ρ (solid line) and VQ (dotted line) for three different times, as
the spread of the packet is seen to increase. A first conspicuous property of VQ is that
it does not approach a constant value at the boundaries (x → ±∞), where the field
intensity, or rather the distribution of particles ρ, tends to zero.21 On the contrary, the
effect of the potential (8.29), as measured by the quantum force−∂VQ/∂x, increases
in those regionswhere the particles have a smaller probability to be. Indeed, it follows
from Eq. (8.29) that the exerted quantum force is repulsive and linear in x ; those
particles in the region x > 0 are ‘pushed’ to the right by such force, and those in
x < 0 are ‘pushed’ to the left, so the packet spreads continuously. In the frame of
the Hamilton-Jacobi-type equation, the dispersion is explained in mechanistic terms
as an effect of the quantum potential.

Further, from Eq. (8.29) it follows that

2m
〈
x2

〉 〈
VQ

〉 = �
2

4
, (8.30)

since σ2 = 〈
x2

〉
. This result (to be analyzed later for the general case) suggests a

strong relationship between the mean quantum potential and the irreducible momen-
tum fluctuations that lie at the root of the Heisenberg inequalities. It also exhibits
quantitatively what was said above in qualitative terms about the dispersive effect of
the quantum potential. Thus, in Bohm’s approach, the inherent dispersive nature of
quantum systems becomes causal, the quantum potential being the physical element
that causes it by exerting a (here) repulsive force on the particles.

21 This feature is not exclusive of the present example, but rather the general rule: VQ does not
decay as x → ±∞, i.e., at far distances from the particles.
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If at variance with Bohm’s interpretation, ψ is taken as a mathematical entity
that bears statistical information, but is unable to produce direct physical effects on
the particles, the spread of the wave packet cannot be understood in mechanistic
terms. It becomes explained instead in statistical terms: the ensemble is composed
of subensembles of particles traveling with different velocities [each contributing
with a probability |φ(k)|2, as follows from (8.25)]; the faster ones move forward
whereas the slower ones are left behind, so the packet spreads. In this scenario each
particle of the ensemble is always a true free particle, since no physical force acts
upon it. The quantum potential is the bearer of the statistical information regarding
the momentum dispersion, so that not only the spread of the packet becomes natural,
but so does Eq. (8.30), which implies a relation between the quantum potential and
the momentum fluctuations.

The spread of the packet induced by VQ given by Eq. (8.29) can be compensated
by an external harmonic potential, so as to ensure that the net force −∂Veff/∂x van-
ishes. Writing the external potential as V = mω2x2/2, such condition is guaranteed
provided the oscillator frequency is exactly ω = �/

(
2mσ2

)
. The effective potential

becomes thus

Veff = V + VQ = 1
2�ω. (8.31)

Under this condition there is no net force on the particle, the packet (8.5b) does not
spread and a stationary state is reached. This is the simplest example of a coherent
state, and serves also to explain the stability of the distribution of the ground state
of the harmonic oscillator (which is a Gaussian): it is an effectively free particle, in
the sense the no net force acts upon it. Moreover, Eq. (8.31) fixes a natural refer-
ence energy level—an observation that can be used to infer the existence of the zpf
underlying the Schrödinger (or Hamilton-Jacobi-type) description.

8.3.3 The Quantum Potential as a Kinetic Term

In Bohm’s theory the quantum potential is accepted as a natural entity that needs no
further explanation. Just as is the case with fundamental laws of nature, it is taken
as an expression of the structure and workings of the physical world, which physics
has the duty to discover and describe. Yet clarification of the deeper meaning of VQ

does have importance because in it resides a fundamental ingredient of the quantum
description. All quantum problems involve the quantum potential, even if normally
it remains concealed behind the veil of the Schrödinger equation.

The discussion in Chap.4 helps us elucidate the nature of the quantum potential
and understand, from a more fundamental perspective, why it is so intimately related
with the dispersive and nonlocal effects studied in the previous section. In particular,
by disclosing the origin of VQ it will become clear that when dealing with a quan-
tum problem one is (knowingly or unknowingly) taking into account much more

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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information about the behavior of the system in momentum space than is explicitly
acknowledged.

Let us for this purpose recall an alternative derivation of Eqs. (8.5a) and (8.5b)
that serves to emphasize the significance of both velocities v and u. We start from
Eq. (4.128), namely

p̂ψ = −i�∇ψ = m(v − iu)ψ, (8.32)

with u the diffusive velocity given by

u = �

2m
∇ ln ρ. (8.33)

From Eq. (8.32) it follows that the kinetic energy operator (1/2m) p̂2 applied to ψ
results in

p̂2

2m
ψ = 1

2

[(
mv2 − mu2 − �∇ · u

)
− i (�∇ · v + 2mv · u)

]
ψ. (8.34)

On the other hand, Eq. (8.4) gives

i�
∂ψ

∂t
=

(
−�

∂S

∂t
+ i

�

2

∂ ln ρ

∂t

)
ψ. (8.35)

Combining the last two expressions with Schrödinger’s equation

p̂2

2m
ψ + V (x)ψ = i�

∂ψ

∂t
(8.36)

gives an expression whose imaginary and real parts are, respectively, the continuity
Eq. (8.5a) and the dynamical law

�
∂S

∂t
+ 1

2

(
mv2 − mu2 − �∇ · u

)
+ V = 0. (8.37)

A comparison with Eq. (8.5b) (with
(
�
2/2m

)
(∇S)2 = (m/2) v2) allows to write

the quantum potential in a form that reveals its kinetic nature,

VQ = − 1
2

(
mu2 + �∇ · u

)
. (8.38)

In Bohm’s theory the term (m/2) v2 alone is identified with the total kinetic energy,
whereas the remaining terms in Eq. (8.5b) are taken as a ‘potential’ energy. This
latter form of separating the kinetic and potential terms is a consequence of reading
(8.5b) in a classical fashion, as if it were a true Hamilton-Jacobi equation. Equations

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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(8.34) and (8.38), by contrast, identify VQ with a contribution to the kinetic energy
due to the diffusive velocity u. These equations give for the mean kinetic energy

1

2m

〈
p̂2

〉
=

∫ (
1

2
mv2 + VQ

)
ρd3x = 1

2
m

〈
v2

〉
+ 〈

VQ
〉
, (8.39)

so with the help of Eq. (4.120), namely

〈
p̂2

〉
= m2

〈
v2 + u2

〉
, (8.40)

one gets

〈
VQ

〉 = 1
2m

〈
u2

〉
= 1

2mσ2
u. (8.41)

This is an interesting result: the mean quantum potential coincides with the mean
kinetic energy of diffusion. Since u(x) �= 0 whenever ρ(x) is not constant (which
happens in all cases of interest, when there is finite spatial dispersion), Eq. (8.41)
implies that

〈
VQ

〉
is strictly positive. From Eq. (8.40) we find σ2

p̂ = m2σ2
v + m2σ2

u
[which is Eq. (4.122)], whence

σ2
p̂ = σ2

p = σ2
mv + 2m

〈
VQ

〉
> σ2

mv, (8.42)

where σ2
mv stands for the variance of the flux momentum mv. Classically, this latter

coincides with the total momentum dispersion, σ2
p = σ2

mv. Therefore, (8.42) states
that the quantum momentum dispersion (normally) exceeds the classical one. The
result σ2

p > σ2
mv is immediate from (4.122), yet the inequality (8.42) is expressed

in terms of the (mean) quantum potential, thus confirming that the ‘quantumness’ of
the system is indeed encoded in VQ . From (8.42) it follows that the minimum value
of σ2

p is

(σ2
p̂)min = 2m

〈
VQ

〉
min , (8.43)

a result that exhibits the existence of irreducible momentum fluctuations of value
2m

〈
VQ

〉
min . Equation (8.30) corresponds to the particular case v = 0 (a stationary

bounded s state), when σ2
mv vanishes.

From the previous results and the Schwartz inequality it follows that

σ2
xσ2

p ≥ m2σ2
xσ2

u ≥ 1
4�

2. (8.44)

The diffusive velocity is therefore the one that determines the Heisenberg inequality,
by expressing the presence of diffusion in the quantum system.

With Eq. (8.40) rewritten in terms of local mean values (with 〈 p〉x = mv) one
obtains, after rearrangements,

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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∫
VQρd3x = 1

2m

∫ 〈(
p − 〈 p〉x

)2〉
x
ρd3x . (8.45)

From here it follows that up to an arbitrary term that averages to zero, 2mVQ plays the

role of 〈( p − 〈 p〉x
)2〉x = 〈 p2〉x −〈 p〉2x, the local mean deviation of the momentum

from its local mean value. This assigns a more fundamental meaning to VQ : it bears
information, at each point x, of the local fluctuations impressed upon the momentum
of the particle.

With this, Eq. (8.43) becomes natural from the point of view of sed. Indeed,
unavoidable fluctuations exist due to the zpf , the information about which is con-
tained in VQ . The quantum potential is the element that (re)incorporates the momen-
tum fluctuations impressed by the zpf into the dynamics governed by the Hamilton-
Jacobi-type equation.

In addition, the fact that VQ plays the role of a partially averaged quantity that
results from restricting the description to the configuration subspace of the particle,
explains the origin of its nonlocal effects, since at each point x, VQ bears statistical
information about the entire momentum space. The single-particle quantum nonlo-
cality, rather than an ontological property, appears thus as a semblance, an artifact of
the reduced statistical description, which would dissolve by going back to the full,
original phase-space description.

8.4 Nonlocality in Bipartite Systems

As mentioned at the beginning of Sect. 8.3.1, nonlocality is normally discussed in
relation with composite systems. Nonlocality in such context has gained so much
attention in the last decades, that huge numbers of papers and entire volumes have
been devoted to its study with different purposes and in many directions. The issue
has evidently not been exhausted, and it therefore seems pertinent to contribute to its
clarification from the perspective of the present theory. In this section we focus on a
two-particle systemas the simplest example that can be used to study the complexities
arising in composite systems, and resort to the tools developed so far to gain further
insight into (bipartite) entanglement and nonlocality.

The two-particle system is described by the Schrödinger equation

i�
∂ψ

∂t
=

(
− �

2

2m1
∇2

1 − �
2

2m2
∇2

2 + V

)
ψ, (8.46)

with a general (time-independent) external potential of the form V = V (x1, x2).
Substitution of

ψ(x1, x2, t) = √
ρ(x1, x2, t)ei S(x1,x2,t) (8.47)
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in (8.46) leads again to a couple of equations (corresponding to its real and its
imaginary part). The continuity equation is

∂ρ

∂t
+ �

m1
∇1 · (ρ∇1S) + �

m2
∇2 · (ρ∇2S) = 0, (8.48a)

whereas the dynamical law reads

�
∂S

∂t
+ �

2

2m1
(∇1S)2+ �

2

2m2
(∇2S)2− �

2

2m1

∇2
1
√

ρ√
ρ

− �
2

2m2

∇2
2
√

ρ√
ρ

+V = 0. (8.48b)

Comparison of Eq. (8.48a) with its one-particle version (8.5a), allows to identify the
flow velocity associated to particle i (i = 1, 2) with

vi = �

mi
∇i S, (8.49)

so that the continuity equation for the bipartite case reads

∂ρ

∂t
+ ∇1 · (ρv1) + ∇2 · (ρv2) = 0, or

∂ρ

∂t
+ ∇ · (ρv) = 0, (8.50)

where the last equation is written in the six-dimensional configuration space. On
comparing Eq. (8.48b) with Eq. (8.5b) one obtains for the quantum potential VQi

associated with particle i

VQi = − �
2

2mi

∇2
i
√

ρ√
ρ

= − �
2

4mi

[
∇2

i ρ

ρ
− 1

2

(∇iρ

ρ

)2
]

. (8.51)

Equation (8.48b) takes thus the form

�
∂S

∂t
+ 1

2
m1v

2
1 + 1

2
m2v

2
2 + VQ1 + VQ2 + V = 0. (8.52)

Application of the operator ∇i to Eq. (8.52) gives, with the aid of (8.49) (unless
explicitly stated, from now on we assume i, j = 1, 2 with i �= j when both indices
appear in the same expression),

miD(i)
c vi = −∇i V − ∇i

(
VQi + VQ j

) − 1
2m j∇iv

2
j , (8.53)

where D(i)
c stands for the co-moving derivative of particle i [see Eq. (8.13)],

D(i)
c = ∂

∂t
+ (vi · ∇i ) . (8.54)
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In the Bohmian approach, where vi = dxi/dt, D(i)
c vi equals the total derivative

dvi/dt and is taken as the actual acceleration of the particle describing the trajectory
xi (t). From the present perspective instead, according to which vi stands for a (par-
tially) averaged velocity, D(i)

c vi constitutes a statistical acceleration characterizing
the local flow. Hence miD(i)

c vi stands for a (local mean) representative force, already
much smoother than the actual (stochastic) one. Let us denote this force by Fi ; then
Eq. (8.53) reads

Fi = −∇i V − ∇i VQi − ∇i VQ j − 1
2m j∇iv

2
j (8.55)

= f ci + f qi i + f qi j + f fi j .

The second equality identifies the different forces that contribute to Fi . The first one,
f ci = −∇i V, is the classical force due to the external potential V , whereas the three
remaining terms

f qi i = −∇i VQi ,

f qi j = −∇i VQ j , (8.56)

f fi j = −1

2
m j∇iv

2
j ,

are of kinetic origin. This is obvious for f fi j—which originates in the flux kinetic

energy proportional to v2j—and becomes clear for the ‘quantum’ forces f qi i and f qi j
once the quantum potential (8.51) is written in the form

VQi = − 1
2

(
mi u2

i + �∇i · ui

)
, (8.57)

with ui the diffusive velocity associated wtih particle i ,

ui = �

2mi
∇i ln ρ. (8.58)

Equations (8.57) and (8.58) generalize the single-particle expressions (8.38) and
(8.33), and show that both f qi i and f qi j are due to a diffusive velocity.

The fact that f qi j and f fi j represent forces that are exerted at xi but originate in
quantities (velocities) associated with an (arbitrarily distant) point x j , suggests the
emergence of further nonlocal effects that add to the nonlocal features characteristic
of the single-particle case (which ensued from the term f q

i i ). In the following we
shall investigate some aspects of this new kind of nonlocality.
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8.4.1 Nonlocality and Entanglement

For simplicity, in what follows we shall assume that each particle is restricted to a
one-dimensional motion. The above equations thus give for the two contributions to
Fi due to the presence of particle j,

f qi j = − ∂

∂xi
VQ j =

(
m j u j + �

2

∂

∂x j

)
∂u j

∂xi
, (8.59)

f fi j = −m jv j
∂v j

∂xi
. (8.60)

Clearly, a necessary condition for the force f qi j to exist is that ∂i u j �= 0, and similarly

for f fi j , that ∂iv j �= 0. Let us determine the properties of those states ψ(x1, x2, t) for
which these conditions hold.

We start by writing the density ρ(x1, x2, t) and the phase S(x1, x2, t) of the wave
function (8.47) in the general form

ρ(x1, x2, t) = r1(x1, t)r2(x2, t)r(x1, x2, t), (8.61)

S(x1, x2, t) = s1(x1, t) + s2(x2, t) + s(x1, x2, t). (8.62)

With this, and using the one-dimensional version of Eqs. (8.49) and (8.58), we arrive
at

∂u j

∂xi
= �

2m j

∂2

∂x j∂xi
ln r(x1, x2, t), (8.63a)

∂v j

∂xi
= �

m j

∂2

∂x j∂xi
s(x1, x2, t). (8.63b)

Notice that m j∂i u j = mi∂ j ui and m j∂iv j = mi∂ jvi , two properties that will
be (and had been) freely used without explicit mention. According to Eq. (8.63a),
∂i u j = 0 if and only if r has the form r(x1, x2, t) = R1(x1, t)R2(x2, t), i.e., if and
only if ρ factorizes as

ρ(x1, x2, t) = ρ1(x1, t)ρ2(x2, t), (8.64)

with ρi the marginal distribution functions,

ρi (xi , t) =
∫

ρ(xi , x j , t)dx j . (8.65)

Analogously, Eq. (8.63b) implies that ∂iv j = 0 if and only if s decomposes as
s(x1, x2, t) = �1(x1, t) + �2(x2, t), which in its turn means that S has the additive
structure
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S(x1, x2, t) = S1(x1, t) + S2(x2, t). (8.66)

It is evident that with ρ and S given by (8.64) and (8.66), respectively, ψ =√
ρ exp(i S) factorizes as

ψ(x1, x2, t) = ψ1(x1, t)ψ2(x2, t), (8.67)

with ψi (xi , t) = √
ρi exp(i Si ). We are thus led to conclude that

ψ = ψiψ j ⇐⇒ ∂

∂xi
u j = 0 and

∂

∂xi
v j = 0, (8.68)

and consequently, that for a factorizable (separable) state the forces (8.59) and (8.60)
exerted at xi due to the presence of particle j vanish.

On the other hand, with ∂i u j = 0, VQi reduces to

VQi = − �
2

2mi

∇2
i
√

ρi√
ρi

= VQi (xi , t). (8.69)

If in addition ∂iv j = 0, consistency with Eq. (8.52 ) demands the external potential
to be of the form V (x1, x2) = V1(x1) + V2(x2). This shows that a separable state is
a consistent solution only for a system of noninteracting particles, and allows us to
write Fi as

Fi (xi , t) = − ∂

∂xi
Vi (xi ) − ∂

∂xi
VQi (xi , t). (8.70)

Therefore, wheneverψ factorizes as in (8.67), no force arises in the composite system
additional to those found in the single-particle case. In other words, in a factorizable
state the dynamics corresponds to that of a couple of independent particles, each
following its own laws. The nonlocalities are, then, those that correspond to single-
particle systems.

However, if at least one of the conditions for the velocities in (8.68) fails, the
wave function can no longer be factorized and hence it describes a nonseparable or
entangled state. According to the statement following Eq. (8.60), only in this case
the forces f qi j and f fi j may be different from zero. In other words, f qi j and f fi j are
conditioned by the existence of a nonfactorizable ρ or a nonfactorizable exp(i S),
respectively. This serves to identify the separate physical effects of the magnitude
and the phase of the wave function on the dynamics of the bipartite system. The
entanglement may be encoded either in the amplitude of ψ (if ∂i u j �= 0), or in its
phase (if ∂iv j �= 0), or in both; occasionally we will refer to amplitude entanglement
or phase-entanglement, respectively. The fact that eitherui , or vi , or both, may
depend on xi and x j , precludes the possibility of determining such velocities by
focusing on the subsystem i only. Instead, these dynamical variables pertain to the
bipartite system as awhole; they are associatedwith one of the subsystems but cannot
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be defined separately from the second one. We will come back to this point in Sect.
8.4.3.

Equations (8.61) and (8.62) allow us to write (for simplicity in what follows we
omit the time dependence)

vi = �

mi

[
∂si (xi )

∂xi
+ ∂s(x1, x2)

∂xi

]
, (8.71a)

ui = �

2mi

[
∂ ln ri (xi )

∂xi
+ ∂ ln r(x1, x2)

∂xi

]
. (8.71b)

These expressions display the extra contributions to vi and ui that are exclusively due
to entanglement, and which introduce the two-point dependence. Whenever there is
amplitude-entanglement (∂i ln r �= 0) the quantum potential (8.57) takes the form
VQi = VQi (x1, x2), the (total) quantum potential VQ = VQ1 + VQ2 acquires an
additional contribution that formally plays the role of an interaction potential, and
a generally nonzero term f qi j = −∂i VQ j depending on both x1 and x2 adds to Fi ,

which becomes a function of the form Fi (x1, x2, t).22 Analogouity, when there is
phase entanglement (∂i s �= 0), the flux kinetic energy associated with particle j
affects the particle located at xi , and a force f fi j results which also depends on the
position of both particles, leading again to a total force Fi (x1, x2, t).While giving rise
to the forces f fi j and f qi j , the entanglement may also modify the force f qi i = −∂i VQi ,
which for a nonfactorizable ρwill depend in general on the position variables of both
particles.

The ensuing two-point dependence of Fi brings out naturally the notion of nonlo-
cal effects, particularly when there is no (external) interaction between the particles.
This is the case, for example, if the particles interacted (got entangled) in the past,
or if the system is composed of identical noninteracting parties in a state described
by the superposition

ψ(x1, x2, t) = 1√
2
[φn(x1, t)φm(x2, t) ± φm(x1, t)φn(x2, t)] , (8.72)

despite the fact that V = V1 + V2. In the absence of an external interaction potential,
the issue of nonlocal effects due to entanglement has become so befogged that even
‘spooky’ actions at a distance—of unexplained physical origin, of course—have
been invoked. Nevertheless, considering for example that the Bohm particle that
follows the trajectory xi (t) with a velocity vi = dxi/dt is not the real, physical
particle, but rather a representative particle that at each point reproduces the statistical
dynamics of the appropriate subensemble, the spooky-action problem disappears.
The nonlocalities due to the two-point dependence of vi are not the result of a direct

22 The effective interaction potential introduced via VQ(x1, x2), which remains ‘hidden’ in the
depths of the Schrödinger equation, formally transforms the original noninteracting system into an
interacting one [see Eq. (8.52)]. By contrast, the possible nonfactorizability of exp(i S) does not
manifest itself as a formal interaction potential in Eq. (8.52). The nonlocal effect of this kind of
entanglement is manifested when a description in terms of forces is made, as we have seen.
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physical action between the real particles, but only an imprint (in configuration space)
of the presence of correlated fluxes. In the identical-particle case, as follows from
the results of Chap.7, it is clear that such correlations are rooted in the coupling of
both particles through common modes of the field. Of course, a similar mechanism
takes place, although less effectively, for nonidentical particles provided they have
common relevant frequencies.

It is clear from the above results that for a noninteracting system (V = V1 + V2),
the force Fi depends on both xi and x j only if at least one of the conditions (8.68)
fails. In such case the correlations that ensue from the two-point dependence of Fi are
ascribed to the entanglement of ψ. In particular, correlations between the diffusive
and flux velocities denote entanglement. To see this, observe that given a function
h(x1, x2), an integration by parts leads to

〈
∂h

∂xi

〉
=

∫
∂h

∂xi
ρdx1dx2 = −

∫
h

∂ρ

∂xi
dx1dx2 = −2mi

�
〈hui 〉 , (8.73)

under the assumption that hρ vanishes at infinity. This result is particularly useful
when h is one of the velocities v j or u j , since in such case, according to Eq. (8.68)
a nonzero value of any of the covariances23

〈
ui u j

〉
,

〈
uiv j

〉
(8.74)

implies entanglement of the state ψ. Moreover, depending on which of the covari-
ances is nonzero, one can determine whether there is entanglement encoded in either
the modulus of the wave function (

〈
ui u j

〉 �= 0), or its phase (
〈
uiv j

〉 �= 0), or both.
Quantum mechanics does not recognize in u a quantity with a particular physical

meaning (let alone a velocity with a diffusive connotation!), and something similar
goes frequently for the flux velocity v. Yet the above results, particularly (8.68),
indicate that these velocities play a significant role not only for the understanding
of several properties of single-particle quantum systems (as follows, for example,
from Chap.4), but also in the bipartite case in connection with entanglement. In the
following sections the velocities v and u are used for an analysis of certain aspects of
entanglement and nonlocality. Even though some of the conclusions are well known,
the method used to reach them is not, and this may help to get a fresh look at them.

8.4.2 Momentum Correlations

The entry point for nonlocality in the present description has been the two-point
dependence of ui and vi . Now, these velocities are connected with the momentum

23 We use here the term covariance to refer to a two-point momentum 〈F̂1Ĝ2〉, even if the product
〈F̂1〉〈Ĝ2〉 differs from zero. In the literature the term ‘correlation’ is frequently used for 〈F̂1Ĝ2〉,
so we use it here when convenient.

http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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operator p̂i by means of Eq. (8.32), which in the one-dimensional case reads

p̂iψ = −i�
∂

∂xi
ψ = mi (vi − iui )ψ = πiψ, (8.75)

where πi stands for the complex variable [cf. Eq. (4.130)]

πi = mi (vi − iui ). (8.76)

This suggests that the correlations (8.74) may be contained in the expectation value
of p̂i p̂ j . Applying the operator p̂ j to Eq. (8.75) one obtains

p̂ j p̂iψ = (
π jπi − i�∂ jπi

)
ψ. (8.77)

The properties m j∂i u j = mi∂ j ui and m j∂iv j = mi∂ jvi imply that ∂iπ j = ∂ jπi ,

whence Eq. (8.77) is symmetrical in i, j , as expected. Multiplying this equation from
the left by ψ∗ and integrating leads to

〈
p̂i p̂ j

〉 = mi m j
〈
viv j + ui u j

〉
. (8.78)

So even though the imaginary part of πi , ui , does not contribute to the mean value
of p̂i , it plays a central role in higher-order moments. This has already been pointed
out when calculating

〈
p̂2i

〉
[see also Eq. (8.40), or Sect. 4.5.2],

〈
p̂2i

〉
= m2

i

〈
v2i + u2

i

〉
. (8.79)

As discussed in Sect. 8.3.3, a nonzero value of
〈
u2

i

〉
indicates the presence of irre-

ducible momentum fluctuations; on the other hand, according to the discussion
following Eq. (8.73), a nonzero value of

〈
ui u j

〉
reflects entanglement and hence

a nonzero correlation
〈
p̂i p̂ j

〉
. Thus, the same physical entity, namely the velocity u,

bears information about two of the most characteristic quantum features, which now
appear as intimately related.24

Coming back to Eq. (8.78), the fact that for a factorizable ψ the mean value
〈u1u2〉 vanishes implies that any discrepancy between

〈
p̂i p̂ j

〉
and mi m j

〈
viv j

〉
is due

to entanglement, specifically due to the nonfactorizability of ρ. Moreover, (8.78)
leads to

1

mi m j

∣∣〈 p̂i p̂ j
〉∣∣ ≤ ∣∣〈viv j

〉∣∣ + ∣∣〈ui u j
〉∣∣ , (8.80)

which shows that a nonfactorizable ρ increases the upper limit of
∣∣〈 p̂i p̂ j

〉∣∣. This
result is in line with one of the main conclusions related with the violation of Bell’s

24 From this perspective, the conclusions reached regarding the dispersive and nonlocal features of
the quantum potential (a quantity that depends on u only) become evident.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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inequalitites, namely that entanglement introduces extra contributions to the cor-
relations, with no classical analogue. Here the source of such additional terms are
fluctuation-related velocities.

Before ending this section, it seems in place to add that the correspondence

p̂i → πi = mi (vi − iui ) (8.81)

discussed in Sect. 4.5.2, besides establishing the equivalence between the average of
the quantum operator p̂i and the average of the complex scalar function πi , works
also for the mean value

〈
p̂i p̂ j

〉
. Indeed, direct calculation shows that the covariance

of πi and π j , defined as

C(πi ,π j ) = 1
2

〈
π∗

i π j + πiπ
∗
j

〉
, (8.82)

is just Eq. (8.78), that is,

C(πi ,π j ) = 〈
p̂i p̂ j

〉 = mi m j
〈
viv j + ui u j

〉
. (8.83)

This shows that the local mean value of pi p j coincides, up to a term that averages
to zero, with mi m j

(
viv j + ui u j

)
.

8.4.3 The Whole and the Parts

The procedure that led to Eq. (8.77), introduced in Sect. 4.5.2, can be used to write
the mean value of the operator p̂n

i as an average of a scalar function, in the form

〈
p̂n

i

〉 = 〈
pn

i

〉 =
∫

Pi (πi , ∂
kn
i πi )ρ(x1, x2)dx1dx2, (8.84)

where Pi (πi , ∂
kn
i πi ), a real function of πi and its first n derivatives (kn = 0, 1, . . . n),

plays the role of the local—at point (x1, x2)—mean value of p̂n
i . It follows from

Eq. (8.84) that for any operator gi ( p̂i ) that can be expanded as a power series of its
argument, the quantumaverage

〈
gi ( p̂i )

〉
can also be obtained by averaging a c-number

Gi (πi , ∂
k
i πi ), the local mean value of the variable gi (pi ), as

〈
gi ( p̂i )

〉 = 〈gi (pi )〉 =
∫

Gi (πi , ∂
kn
i πi )ρ(x1, x2)dx1dx2. (8.85)

It is clear that if πi = πi (x1, x2), Gi will in general be also a two-point function; con-
sequently any dynamical variable defined through it will in general display nonlocal
features.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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According to Eq. (8.68), if the state is factorizable ∂ jπi = 0, i.e. πi = πi (xi ) and
Eq. (8.85) reduces to

〈
gi ( p̂i )

〉 = 〈gi (pi )〉 =
∫

Gi (πi , ∂
kn
i πi )ρi dxi , (8.86)

that is, an average weighted with the marginal probability distribution ρi (xi ). For
(8.85) to reduce to (8.86) irrespective of gi ( p̂i ), necessarily ∂ jπi = 0, which means
that the state is nonentangled. Therefore, the mean value of an arbitrary gi ( p̂i ) is just
the average of the local mean value of gi (pi ) at point xi weighted with the marginal
distribution ρi (xi ), if and only if the state is nonentangled. Otherwise stated, all the
information required to determine

〈
gi ( p̂i )

〉
can be obtained from observations on

system i only, if and only if the state is separable.
If, on the contrary, the state ψ is an entangled one, then the dependence of Gi on

x j precludes the possibility of expressing
〈
gi ( p̂i )

〉
in the form (8.86). In this case,

determining the mean value of an arbitrary variable gi (pi ) of one of the particles
requires information about the whole system; in particular, the marginal distribution
ρi is not enough and we must resort to the joint distribution function ρ(x1, x2).

The above observations provide an alternative way of looking at nonlocality in
composite systems without the notion of action at a distance: nonlocality, as a prop-
erty encoded in the entanglement of the state, reflects the impossibility of considering
each of the constituents of the system separately one from another, i.e., as nonsepa-
rability. It forces us to consider the system as a whole, rather than as composed of
two separate parts, well within the spirit of Bohm’s interpretation. By considering
the presence of the zpf, as was done in Chap. 7, this point of view is the single
natural one: there is a unique system, composed of field and particles, with certain
field modes playing a correlating function between particles.

8.4.4 Nonlocality and Noncommutativity

At variance with what occurred with 〈gi ( p̂i )〉, the mean value of a function of the
position operator only, fi (x̂i ), is blind to the nonfactorizability of ψ(x1, x2, t). This
follows from the fact that any fi (x̂i ) has a local mean value that is just the function
fi (xi ), and hence the average

〈
fi (x̂i )

〉 = 〈 fi (xi )〉 =
∫

fi (xi )ρ(x1, x2)dx1dx2 =
∫

fi (xi )ρi (xi )dxi (8.87)

does not exhibit nonlocal features, irrespective of the state. Therefore, a variable Ai

proper to a single particle exhibits nonlocality onlywhen such variable ismomentum-
dependent.25

25 When the operator Â does not correspond to a single particle, this statement ceases to be true.
For example, for Â = A1(x̂1)A2(x̂2), the entanglement is revealed in the covariance 〈A1A2〉 even

http://dx.doi.org/10.1007/978-3-319-07893-9_7
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This particular asymmetry between momentum and position variables is due to
the fact that the description is carried out in the configuration-space representation.
If the momentum representation is used instead, with

ψp(p1, p2, t) =
√

ρp(p1, p2, t)ei Sp(p1,p2,t), (8.88)

the p-local mean value associated with gi ( p̂i ) becomes the real variable gi (pi ),
26

whereas the p-local mean value for fi (x̂i ) is defined, in analogy with (8.75), via the
equation

x̂iψp = i�
∂

∂ pi
ψp = (ξi − iζi )ψp = χiψp, (8.89)

where ξi = �(∂Sp/∂ pi ) and ζi = (�/2)(∂ ln ρp/∂ pi ). An analysis entirely analo-
gous to the one carried out above leads to conclude that the complex function χi ,

which now plays the role of the previous πi , depends on both momenta p1 and p2 if
and only if ψp does not factorize as ψp = ψ1(p1, t)ψ2(p2, t). Under these circum-
stances, conclusions entirely similar to the previous ones apply, mutatis mutandi:
nonlocal effects in momentum space are manifested in connection with the p-local
mean value associated with f (x̂i ).

The above observations lead us to assert that once a representation in terms of
the eigenvalues of the operator x̂i is chosen to describe the evolution of the system,
the nonlocal features become manifest through those variables Âi that are functions
of the corresponding noncommuting operator p̂i , and vice versa. Thus, considering
that (for a spinless system) any dynamical variable is a function of the fundamental
variables x and p, it follows that the x-local mean value of Ai will exhibit nonlocal
features when [x̂i , Âi ] �= 0, whereas its p-local mean value will exhibit nonlocal
features when [ p̂i , Âi ] �= 0.27

The requirement of noncommutativity of operators for the disclosure of nonlocal-
ity can alternatively be shown as follows. Let {|αβ〉 ≡ |α〉i ⊗|β〉 j } be an orthonormal

(Footnote 25 continued)
though none of the variables is momentum-dependent. In fact, the point here is to show that the
present approach allows to reach conclusions about entanglement by focusing on single-particle
variables, rather than on correlations between variables of the two subsystems, as is customarily
done [see discussion following Eq. (8.96)].
26 The p-local mean value of a dynamic variable g is defined, in analogy with Eq. (4.50), as its
partial average over the configuration space, using the distribution Q,

〈g〉 (p1, p2) = 〈g〉p = 1

ρp

∫
gQ(x1, x2, p1, p2)dx1dx2.

27 The fact that the kind of variables that may exhibit nonlocality is representation-dependent
does not mean that the very existence of nonlocality is representation-dependent. Indeed, for any
entangled state |ψ〉 there will always be some variable exhibiting nonlocal features; which one
depends on the representation used to project |ψ〉.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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basis of the product Hilbert spaceH1 ⊗H2. One may write the expectation value of
Âi in the pure state |ψ〉 as

〈ψ| Âi |ψ〉 =
∫

〈αβ| ψ〉 〈ψ| α′β′〉 〈α′β′∣∣ Âi |αβ〉 dαdβdα′dβ′

=
∫

〈αβ| ψ〉 〈ψ| α′β
〉 〈

α′∣∣ Âi |α〉 dαdβdα′. (8.90)

If the basis {|α〉i } is selected such that its elements are the eigenvectors of an operator
âi satisfying [âi , Âi ] = 0, then

〈
α′∣∣ Âi |α〉 ∼ δ(α − α′), and (8.90) reduces to

〈ψ| Âi |ψ〉 =
∫

ρ (α,β) 〈α| Âi |α〉 dαdβ, (8.91)

where ρ (α,β) = |ψ (α,β)|2 and ψ(α,β) = 〈αβ| ψ〉 is the wave function in the
(α,β)-representation. Integration over β of the joint probability ρ (α,β) gives the
marginal probability ρi (α), so that Eq. (8.91) simplifies into

〈
Âi

〉
=

∫
〈α| Âi |α〉 ρi (α)dα. (8.92)

Equation (8.92) is usually read as saying that when projective measurements are
performed corresponding to a physical variable a such that âi |α〉 = α |α〉 with
[âi , Âi ] = 0, 〈 Âi 〉 can be obtained from the sole (local) inspection of system i,
and any nonlocality due to the possible entanglement of ψ(α,β) remains hidden.28

By contrast, if a different basis {|γ〉} is chosen for the representation, such that
[γ̂i , Âi ] �= 0, the above reduction cannot be made. Now, it is always possible to find
a basis {|α〉1} in which Â1, say, is diagonal; but then the basis in which B̂2 is diagonal
will not be {|α〉2} unless [ Â1, B̂1] = 0; therefore, entanglement shows up only when
dynamical variables Â1, B̂2 are considered such that [ Âi , B̂i ] �= 0.29,30

28 Equation (8.87) is just Eq. (8.92) with Âi = f (x̂i ), yet Eq. (8.86) differs from the structure of
(8.92). To see this consider in particular Eq. (8.84) with n = 1; then Pi (πi , ∂

k
i πi ) = mi vi (xi ) �=

〈xi | p̂i |xi 〉, so indeed (8.86) is not Eq. (8.92) for Â = ĝi and α = xi .
29 Notice that the use of a fixed representation for both elements of the composite system, i.e. {|α〉1},
{|β〉2}, is a matter of necessity when discussing entanglement. The same applies when considering
measurements on a system. In fact, given an (α,β)-representation, the distribution function ρ (α,β)

is defined as the joint probability density that determines the probability of obtaining the valuesα and
β when performing the projective measurements corresponding to the proyectors �α

A1
= |α〉 〈α|

∈ H1 and �
β
B2

= |β〉 〈β| ∈ H2, respectively. Thus the representation used is linked with the
variables that are measured in a certain experiment.
30 This conclusion is in line with the results obtained in Sect. 7.2.5. Specifically, the discussion
following Eq. (7.63) tells us that for entanglement to become manifest through a correlation, both
dynamical variables involved (i.e., F, G, the equivalent of A1, B2 in the present case) must have
nondiagonal elements in a given representation (the energy representation, in that case).

http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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The results obtained above disclose the tight relation between noncommutativity
and nonlocality that is well recognized in the literature (see e.g. Tsirelson 1980,
Landau 1987, Revzen et al. 1997), though generally limited to the context of
dichotomic operators. In particular, Landau shows that given two operators â and Â
inH1, and two operators b̂ and B̂ inH2, the (chsh) operator defined as

Ĉ = âb̂ + â B̂ + Âb̂ − Â B̂

= â(b̂ + B̂) + Â(b̂ − B̂), (8.93)

satisfies the following inequality,31

〈Ĉ〉2 ≤
〈(

â2 + Â2
)

(b̂2 + B̂2)
〉
+

〈
{b̂, B̂}

(
â2 − Â2

)〉

+
〈
{â, Â}(b̂2 − B̂2)

〉
+

〈[
â, Â

]
[B̂, b̂]

〉
. (8.94)

This result ensues exclusively from the fact that σ2
C = 〈Ĉ2〉 − 〈Ĉ〉2 ≥ 0. Landau, in

line with the usual treatments, considered operators â, Â, b̂ and B̂ such that

â2 = Â2 = I1, b̂2 = B̂2 = I2 (8.95)

(the typical example being the Pauli matrices). In such case Eq. (8.94) reduces to

〈Ĉ〉2 ≤ 4 +
〈[

â, Â
]
[B̂, b̂]

〉
, (8.96)

an expression that exhibits the significant role of (the covariance of) the commutators
in determining the maximum possible value of 〈Ĉ〉2. For commuting â and Â, or b̂

and B̂, the inequality gives
∣∣∣〈Ĉ〉

∣∣∣ ≤ 2,which is the limit established inBell’s theorem

(see e.g. Bell 1966, 1987). Thus, according to Eq. (8.96), the noncommutativity of
the operators involved is a necessary condition for the violation of Bell’s inequalities
(in the form of the chsh inequality, Clauser et al. 1969), as well as the nonnull
correlation between both commutators.

This observation that noncommutativity and covariance unequivocally signal the
nonlocal feature of a state goes nicely with our previous exposition. Our conclusions
above were drawn by focusing not on covariances between operators of the form
F̂i Ĝ j , but on the single-particle operators Âi , thus showing that some aspects of

31 Note that, as already remarked in connection with von Neumann’s theorem [see Eq. (8.2)], the
equality

〈Ĉ〉 = 〈âb̂〉 + 〈â B̂〉 + 〈 Âb̂〉 − 〈 Â B̂〉
does not hold in general if the operators in the terms of the sum do not commute. This important
restriction needs to be borne inmindwhen attempting to apply (8.94) [or (8.96)] to draw conclusions
about correlations. See e.g. Accardi (1984).
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nonlocality can be unveiled without resorting to nonlocal (i.e. i and j-dependent)
operators. In addition, our exposition applies to continuous-variable systems, con-
trary to the more usual approach that focuses on dichotomic variables, such as spin
projections, when discussing these matters. The natural question arises as to why
noncommutativity is required for entanglement (or nonlocality) to become evident.
To give an answer, let us put [â, Â] = i F̂1, and [B̂, b̂] = −i Ĝ2, with F̂1 and Ĝ2 two
Hermitian operators. Equation (8.96) thus reads

〈Ĉ〉2 ≤ 4 + 〈F̂1Ĝ2〉, (8.97)

and the inequality now states that
∣∣∣〈Ĉ〉

∣∣∣ will exceed the value 2 only if the variables

F̂1 and Ĝ2 are correlated. If one of the commutators in (8.96) vanishes, then 〈F̂1Ĝ2〉
is trivially zero, no information at all is obtained regarding any possible correla-
tion between the systems, and no conclusion can be drawn about entanglement. In
other words, (non)commutativity per se says nothing about nonlocality; it is required
merely as a useful way to specify which are the operators that may give evidence of
entanglement, via the correlation between F̂1 and Ĝ2. As stated above, in Chap.7
a similar definition of the appropriate operators was made, by specifying that only
those variables F1 and G2 that share relevant frequencies become correlated in such
a way as to disclose entanglement [see the discussion following Eq. (7.63)].

8.5 Final Remarks

Nonlocality is a weird trait of quantum mechanics that is considered to have been
revealed (and has been made popular) by the Bell inequalities. Bohm, on his side,
used it to develop an entire line of philosophy of nature based on a holistic picture of
the world. As a result, dominant voices today affirm that ‘Nature is nonlocal’. But,
is it? Or is it merely the (quantum) description that is nonlocal? There are of course
physicists (and even a few philosophers of science, see e.g. Brown and Harré 1988)
who cannot accept nonlocality as a trait of fundamental science, arguing that it is an
artifact of the formalism and our reading of it. The derivations presented in previous
chapters and lines above, add their own share.

Let us briefly elaborate on this point. There exist today several derivations of the
Bell inequalities; one that has become standard with time started with the famous
paper by Clauser et al. (1969) cited above and based on the expression (8.93). A
careful consideration of the known derivations allows one to verify that the Bell
inequalities are merely statistical relations: no physics is involved in their derivation,
just as no physics is involved in Eq. (8.96). It suffices to take the mean value of (8.93)
for a series of trials32 and determine its bounds, to arrive at the CHSH inequality.

32 With an eye put on note (31), making sure that the average is taken over the same distribution in
each term.

http://dx.doi.org/10.1007/978-3-319-07893-9_7
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In short, the Bell (or CHSH) inequalities by themselves say nothing about Nature.
The physics enters when the theorem is applied to a given physical system. Any
experimental violation means that at least some postulate used for the derivation, is
not satisfied by that system. It is usual to blame the physical demand of locality for
the violation of the inequalities.

Let us consider the case of a pair of noninteracting particles, discussed in Chap.7.
The results obtained there indicate that the nonlocality of the description—which
is made evident in the case of an entangled state—arises from the neglect of the
zpf.33 Since quantummechanics lacks of a fundamental explanation for the origin of
entanglement—it is the result of a basic postulate—, the physics behind the associated
nonlocality remains hidden. Even if our results on this problem are still limited, our
analysis suggests there is a real chance that a more refined description—in phase
space, for example— would allow to recover locality.
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