
Chapter 6
Beyond the Schrödinger Equation

The lack of a concrete picture [for the electron spin] is the most
satisfactory state of affairs.

W. Pauli,quoted in van der Waerden (1960) .

... I should like to preserve this ideal of the past, to describe
everything that happens in the world with distinct images. I am
ready to accept other theories, on condition that one is able to
re-express them in terms of clear and distinct images.

H. A. Lorentz, quoted in Bacciagaluppi and Valentini 2009.

In previous two chapters, the quantum behavior of matter has been shown to
emerge as a result of the permanent interaction with the random zero-point field.
Fundamental quantum results, such as the Schrödinger and the Heisenberg formal-
ism, have emerged within this framework. In this chapter, the theory developed so
far will take us beyond the realm of quantummechanics, in two important directions.

On the one hand, arriving at the Schrödinger (or Heisenberg) description meant
neglecting the radiative terms—the radiation reaction and the Lorentz force due to the
fluctuating vacuumfield—once they had played theirmain role in taking the system to
the quantum regime. Due consideration of these neglected terms will now allow us to
calculate the effects that they produce on the already quantized system. Specifically,
the (nonrelativistic) formulas of quantum electrodynamics for the atomic lifetimes
and the Lamb shift will thus be recovered. More generally, the mean evolution of
any integral of motion under a breakdown of the balance equations will be analyzed.

Another most relevant quantum phenomenon that cannot be predicted by the
Schrödinger theory is the spin of the electron. The second part of this chapter is
therefore devoted to an inquiry about the genesis of the electron spin from the per-
spective of the present treatment. Just as it gives rise to position, momentum and
energy fluctuations, the zpf is seen to induce an angular momentum resulting from
the instantaneous torque exerted by the Lorentz force on the particle. A close analysis
based on the separation of the modes of the zpf of given circular polarization reveals
the existence of a spin angular momentum of value �/2, as well as of a corresponding
magnetic moment with a g-factor of value 2, associated with the particle. This leads
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196 6 Beyond the Schrödinger Equation

us to the identification of the spin of the electron as a further emergent property,
generated by the interaction of the particle with the zpf.

6.1 Radiative Corrections. Contact with QED

It is today widely accepted that the fluctuations of the electromagnetic vacuum are
responsible for important observable physical phenomena that pertain to the realm
of quantum electrodynamics. Among their best known manifestations are the finite
atomic lifetimes. Indeed, the vacuum fluctuations are known to contribute, along
with radiation reaction, to the ‘spontaneous’ transitions of the excited states (see e.g.
Davydov 1965;Dalibard et al. 1982;Milonni 1994).Moreover, both the atomic Lamb
shift and the Casimir and van der Waals forces have been shown to be attributable
to changes in the energy of the vacuum field due to the presence of matter (see e.g.
Boyer 1968, 1969; Milonni 1994; Bordag et al. 2009).

Within the traditional framework of qm, the analysis of the radiative corrections
implies introducing by hand the quantized electromagnetic field (including its vac-
uum component) and using perturbative methods for the calculation of its effects. In
sed, by contrast, the field—both radiation reaction and the zpf—is there from the
very beginning. It is in fact an essential ingredient in any quantum system: both the
Schrödinger and the Heisenberg description have been obtained by considering its
influence to zero order in τ (or e2). Additional effects of this field on matter show
up explicitly in the equations for the averaged dynamical variables that ensue from
the generalized Fokker-Planck equation (see Sect. 4.2.1). It is therefore pertinent to
investigate how these neglected radiative terms can be brought back into the pic-
ture in a self-consistent approach, and to calculate the effects of such terms on the
quantum-mechanical system.

Strictly speaking, in order to find the exact solution of the problem of the parti-
cle subject to the radiation field one should revert to the original sed Hamiltonian
equations of motion, and study the evolution of the complete (particle plus field) sys-
tem into the quantum regime, without making approximations along the way. This
would indeed be the ideal way to proceed. However, as stated in Chap. 4, solving
this problem is beyond present possibilities. The practical solution, therefore, is to
use the present, more restricted approach: let the full system evolve into the quantum
regime, take the corresponding (Schrödinger) zero-order solutions, and use them to
calculate the effects of the radiative terms contained in the original equations. This
procedure leads to closed formulas for the most important radiative corrections to the
already quantized system, to lowest significative order in the fine-structure constant
α = e2/�c. The results obtained do not show any difference with respect to the
(nonrelativistic) qed predictions to the same order of approximation. However, in
contrast to qedwhere these corrections represent the main effects due to the vacuum
fluctuations, in sed they represent secondary effects, since the central effect of the
action of the vacuum radiation field is quantum mechanics itself.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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The calculation of radiative corrections has constituted a central component of
the program of sed. A number of significant results have been thus obtained in the
past, although with varying degrees of success and mostly restricted to the harmonic
oscillator.1 The derivations presented in this chapter are more general and therefore
applicable to the atomic case,where they lead to formulas that are directly comparable
to those of qed. 2

6.1.1 Radiative Transitions

In Chap. 4 we found that in the time-asymptotic, Markovian regime, the evolution
of the mean value of the particle Hamiltonian H( p, x) = (1/2m) p2 + V (x) is
determined by the Eq. (4.32), namely

d

dt
〈H〉 = τ 〈...x · p〉 − e2

m

〈
p · D̂

〉
, (6.1)

where the first term on the right-hand side represents the average power lost by the
particle through radiation reaction, and the second one represents the mean power
exchanged between the particle and the background field. Energy balance exists
if and only if (d 〈H〉 /dt) = 0. Under this condition, we found that the ensuing
description for the mechanical system is governed by a Schrödinger-like equation
(4.78), namely

− 2η2

m
∇2ψ + V ψ = 2iη

∂ψ

∂t
. (6.2)

The value of the parameter η was determined by imposing the balance condition

τ 〈...x · p〉0 = e2

m

〈
p · D̂

〉
0

(6.3)

for the particle in the ground state. The value of the right-hand side term depends,
through the diffusion operator D̂, on the spectral energy density of the field. By
introducing the value corresponding to the zpf,

ρ0(ω) = �ω3

2π2c3
, (6.4)

1 A representative list of related works along the years is Kalitsin (1953), Sokolov and Tumanov
(1956), Braffort et al. (1965), Braffort and Taroni (1967), Surdin (1970, 1974), Boyer (1968–1980),
Santos (1974), de la Peña and Cetto (1976–1979), Moore (1977, 1984), Jáuregui and de la Peña
(1981), Moore and Ramírez (1982), de la Peña and Jáuregui (1982) and Cetto and de la Peña
(1988a, b, c). See also Davies (1982) .
2 Previous versions of the material presented in this section can be found in de la Peña et al. (2010,
2012), Cetto and de la Peña (2012), and Cetto et al. (2012, 2013).

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4


198 6 Beyond the Schrödinger Equation

the correct result, namely η = �/2, was obtained. This made it clear that the
Schrödinger equation contains key information about the background field with
which the particle is interacting. Additionally, the result indicates that detailed energy
balance for a particle in its ground state takes place only when it is in equilibrium
with a field of spectral energy density equal to ρ0.

Now, for any stateψ that is solution of the Schrödinger equation, this latter predicts
d 〈H〉ψ /dt = 0 (provided that H does not depend explicitly on time)3. Yet, for a
stationary state ψn the equation

τ 〈...x · p〉n = e2

m

〈
p · D̂

〉
n

(6.5)

does not hold in general for states other than the ground one (see Sect. 6.1.4). This
could appear as contradicting the balance equation (6.1) applied to the n-state. How-
ever, the apparent contradiction is solved by observing that whereas d 〈H〉n /dt = 0
is a strictly quantum-mechanical expression, consistent with the Schrödinger equa-
tion which has been derived neglecting terms of order τ (or e2 ), the right-hand-side
terms in (6.1) represent the radiative terms —precisely those that were neglected in
the Schrödinger approximation. Now we shall take them into account. As a result,
when the particle or the radiation field or both are in an excited state, the energy
balance is broken in general, and radiative transitions take place. The finite lifetimes
of the excited states are accounted for by these radiative terms. The corresponding
rate of change is, therefore, not d 〈H〉n /dt, but a (radiative) correction of the latter,
which we denote as

d

dt
〈H〉nr = τ 〈...x · p〉n − e2

m

〈
p · D̂

〉
n
. (6.6)

For actual calculations it is simpler to use instead of Eq. (6.6) its alternative form,
namely

d

dt
〈H〉nr = τ 〈...x · p〉n + 1

m

〈
TrD pp〉

n , (6.7)

which ensues from Eq. (4.45) with G = H .
In Sect. 6.1.4 a similar analysis will be shown to apply to more general ‘classical’

integrals of motion, i.e., dynamical variables that are conserved in the absence of
the radiation terms. It is understood that all the calculations that follow involve the
radiative terms. Therefore, and for simplicity in the writing, the additional index r
will be dropped everywhere, except where it must be kept to avoid confusion.

3 That d 〈H〉ψ /dt = 0 can be easily verified resorting to the general form of the solution

ψ(x, t) =
∑

n

cne−iEn t/�ϕn(x).

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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6.1.2 Breakdown of Energy Balance

Instead of considering the mechanical system in its ground state, as was done for the
calculation of the parameter η in Sect. 4.4.4, we assume now that it is in an excited
state n, the background field still being in its ground state (the zpf). Then both terms
on the right-hand side of Eq. (6.7) must be recalculated. Since the quantum regime
has already been attained, the calculation of such terms is performed following the
same procedure as in Sect. 4.4.4. In particular, the mean value τ 〈 p · ...x 〉n is given, in
the one-dimensional case, for simplicity, by (see Eqs. (4.106) and (4.107))

τ (
.̂..
x p̂)nn = τ ( p̂

.̂..
x )nn = −mτ

∑
k

ω4
nk |xnk |2 , (6.8)

with ωnk = (En − Ek)/�.
For the second term on the right-hand side of (6.7), we proceed as in the Appendix

4D for the calculation for 〈D pp〉0 , just noticing that for negative values of ωkn it is
the second integral on the right-hand side of equation (D.8) that contributes to the
sum. One thus obtains

1

m

〈
D pp〉

n = −mτ
∑

k

ω4
nk |xnk |2 signωnk . (6.9)

This expression contains a mixture of positive and negative terms, whilst in (6.8) all
contributions have the same sign. As follows from equations (6.7)–(6.9), the net loss
of average energy per unit time is given by (recall that we are dropping the additional
index r that appears in (6.7))

d 〈H〉n

dt
= −mτ

∑
k

ω4
nk |xnk |2 (1 − signωkn)

= −2mτ
∑
k<n

ω4
nk |xnk |2 . (6.10)

The upshot is that there cannot be energy balance between the zpf and a particle in
an excited state—as was to be expected, since the zpf is the background radiation
field in its ground state. Only for n = 0 (hence all k > n) Eq. (6.10) gives zero,
which means that only the ground state of the particle is sustained by the zpf. Since
in (6.10) the transitions from state n to (lower-energy) states k take place without
the intervention of an external radiation field, we speak of ‘spontaneous’ transitions
(more on this in the following section). The corresponding average energy loss per
unit time in each such transition, Wnk , is obtained by writing the total average energy
loss as a sum of contributions from the various possible transitions,

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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d 〈H〉n

dt
=

∑
k

Wnk, (6.11)

whence
Wnk = −2mτω4

nk |xnk |2 . (6.12)

It is clear that expressions such as (6.10) have a meaning only in a statistical
sense. To understand this meaning we have to think of an ensemble of systems all
prepared initially in the same excited state n, and subject to the action of the zpf.
Then according to (6.10), the members of the ensemble have a certain probability
per unit time to make a transition to a lower-energy state k, which is determined by
the values of ωnk and |xnk |, i.e., by the specific properties of the system. However,
which transition will take place in every instance is impossible to predict with the
present statistical description.

Let us now inquirewhether there is any (excited or external) background fieldwith
which a mechanical system in an excited state n can be in equilibrium. The excited
background field is defined by its spectral energy density ρ(ω) = ρ0(ω)g(ω), with
g(ω) > 1 an even function, so that

d 〈H〉n

dt
= −mτ

∑
k

ω4
nk |xnk |2 (1 − g(ωkn)signωkn). (6.13)

This expression is the generalization of (6.10) for the general density ρ(ω). To find
the answer to the above question we observe that the terms within the parentheses
have different signs, depending on whether ωkn refers to an upward or a downward
transition (i.e., k > n or k < n). Therefore, there is no way that detailed balance can
be satisfied in general.

Nevertheless, there is a particular system that can coexist with the field in an
excited state, namely the harmonic oscillator. In this case, all |ωnk | that contribute to
the sum in (6.13) are equal in value and coincide with the oscillator frequency ω0.
Since for the harmonic oscillator,

|xnk |2 = �

2mω0

[
δk,n+1(n + 1) + δk,n−1n

]
, (6.14)

the first term on the right-hand side of Eq. (6.13) gives

− mτ
∑

k

ω4
nk |xnk |2 = − 1

2�τω3
0(2n + 1) (6.15)

and the second terms gives

mτ
∑

k

ω4
nk |xnk |2 g(ωkn)signωkn = 1

2�τω3
0g(ωn+1n) = 1

2�τω3
0gn(ω0), (6.16)
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because g(ωn+1,n) = gn(ω0). Therefore, detailed balance exists if gn(ω0) = 2n + 1;
in other words, if the harmonic oscillator in its excited state n is embedded in a
background field with spectral energy density

ρ(ω) = ρ0(ω)(2n + 1), (6.17)

there are as many absorptions as there are emissions per unit time, all with the same
frequency ω0, so that the average energy of the oscillator does not change. This result
should not come as a surprise, since this field has precisely an energy per normal
mode �ω0(2n + 1)/2, equal to the energy of the mechanical oscillator with which it
is in equilibrium.

6.1.3 Atomic Lifetimes: Einstein’s A and B Coefficients

We now investigate further implications of the absence of detailed balance. This can
be conveniently done by using Eq. (6.13) to calculate the average energy lost (or
gained) per unit time by the atom (or a mechanical system in general) prepared in an
arbitrary state n when it is subject to the action of a radiation field with an arbitrary
spectral energy density ρ(ω) = ρ0(ω)g(ω). It is convenient to write the adimensional
function g as g(ω) = 1 + ga(ω), in order to separate the contribution coming from
the additional background field, so that

ρ(ω) = ρ0(ω)g(ω) = ρ0(ω) + ρa(ω),

with ρa(ω) = ρ0(ω)ga(ω). (6.18)

Equation (6.13) thus writes as

d 〈H〉n

dt
= −mτ

∑
k

ω4
nk |xnk |2

[
1 − (1 + ga(ωnk))signωkn

]

= mτ
∑

k

ω4
nk |xnk |2

[
(ga)ωkn>0 − (2 + ga)ωkn<0

]
. (6.19)

The first term within the brackets in the second line of this equation, proportional to
ga, represents the absorptions (k > n) and the second one, proportional to 2 + ga,

the emissions (k < n). It is clear from this expression that there can be absorptions
only when the background field is excited so that there is an external component
ρa �= 0. This additional field can therefore be identified with the photonic radiation
field. The emissions, on the other hand, may be either ‘spontaneous’ (in presence
of just the zpf, as in the previous section) or else stimulated by the additional field,
represented by ga .

The coefficients appearing in the various terms determine the respective rates of
energy gain and energy loss; therefore, they must be directly related to Einstein’s A
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and B coefficientsfor the transition probabilities. We recall that the coefficient A is
defined as determining the time rate for spontaneous emissions (the term independent
of ga in Eq. (6.19)),

d

dt
〈H〉sp emn = −�

∑
k<n

ωnk Ank . (6.20)

Thus, Ank is the probability that the atom realizes a spontaneous transition from state
n to a lower state k during a unit of time, with a consequent loss of energy given by
�ωnk . In its turn, the coefficient Bem

nk , associated with the rate of energy loss due to
transitions induced (stimulated) by the external field, is defined through

d

dt
〈H〉ind emn = −�

∑
k<n

ωnk Bem
nk ρa(ωnk), (6.21)

whereas the coefficient Babs
kn , associatedwith the rate of energygain due to absorptions

induced by the external field, is defined according to

d

dt
〈H〉ind absn = �

∑
k>n

ωkn Babs
kn ρa(ωnk). (6.22)

The B coefficients are thus transition probabilities in presence of a photonic field
with spectral energy density ρa(ωnk). The total rate of energy change can therefore
be rewritten in the more transparent form

d 〈H〉n

dt
= d

dt
〈H〉sp emn + d

dt
〈H〉ind emn + d

dt
〈H〉ind absn

=
∑
k>n

�ωkn Babs
kn ρa(ωnk) (6.23)

−
∑
k<n

�ωnk
[
Ank + Bem

nk ρa(ωnk)
]
,

which can be recast, using (6.18), as

d 〈H〉n

dt
=

∑
k

� |ωnk |
[(

Babs
kn ρ0ga

)
ωkn>0

− (
Ank + Bem

nk ρ0ga
)

ωkn<0

]
. (6.24)

Comparison of this expression with Eq. (6.19) gives for the spontaneous emissions
coefficient

Ank = 4e2ω3
nk

3�c3
|xnk |2 , (n > k), (6.25)

which is just the respective qed formula (see e.g. Louisell 1973). In its turn, the
coefficients B are found to be
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Babs
kn = Bem

nk = 4π2e2

3�2
|xnk |2 ≡ Bnk . (6.26)

These results coincide with the respective formula of qed (or qm) (Louisell 1973).
It is important to note that the expressions for the coefficients Ank, and Bnk involve
each one the single frequency ωnk, which means that the transition between states
involves a resonance with a field component of that frequency—in line with the
results of Chap. 5—and a consequent exchange of energy given by �Enk = �ωnk .

The ratio of the A to the B coefficients is

Ank

Bnk
= � |ωnk |3

π2c3
= 2ρ0(ωnk). (6.27)

Notice in particular the factor 2 in this equation. Given the definition of the coeffi-
cients, one could have expected this ratio to correspond exactly to the spectral density
of the zpf, which would have meant a factor of 1 instead of the factor 2. This latter
seems to suggest that the zpf has double the ability of the rest of the electromagnetic
field to induce transitions. The correct explanation, however, is another: the structure
of Eq. (6.19) indicates that one should actually write 2ρ0 = ρ0 + ρ0. One of these
two equal contributions to spontaneous decay is due to the effect of the fluctuations
impressed on the particle by the field; the second one is the expected contribution
due to Larmor radiation. Not surprisingly, they turn out to be equal: it is precisely
their equality what leads to the exact balance between the two contributions when
the system is in its ground state, guaranteeing the stability of this state. Yet one
can frequently find in the literature that all the spontaneous decay is attributed to
one or the other of these two causes, more frequently to Larmor radiation. It is an
important result of both the present theory and quantum electrodynamics (provided
the symmetric operator ordering is used) that the two effects contribute equal shares.
Interesting related discussions can be seen in Davydov (1965), Fain (1966), Fain and
Khanin (1969), Dalibard et al. (1982), Milonni (1994).

The relation (6.27) and the equality of both coefficients Babs
kn = Bem

nk , were pre-
dicted by Einstein on the basis of statistical considerations in his 1916 paper on the
theory of radiation. It is pertinent to ask here at which point the quantization enters
in Einstein’s paper—a somewhat confused issue that comes to surface every now
and then.4 A current answer to this question is that quantization is introduced by
assuming discrete atomic levels. However, this is wrong, as Einstein and Ehrenfest
demonstrated some time after the initial paper, by redoing the calculationswith a con-
tinuous distribution of atomic levels (Einstein 1917) and recovering the old results.
The correct answer is that quantization enters through the assumption of a physical

4 The derivation of the Planck distribution from the A and B coefficients goes back to Einstein’s
1916 work. In Chap. 3 the same law was derived by considering the existence of the zpf. A strong
relation should therefore exist between these two different forms of arriving at Planck’s law. The
remark made reveals this relation: the A coefficient is proportional to the spectral density of the
zpf. Therefore, postulating the existence of ρ0 �= 0 or of A �= 0 are two different but equivalent
forms of treating the problem.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_3
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source that can generate ‘spontaneous’ transitions. This can be easily verified by
redoing the Einsteinian calculation but omitting the term that allows for spontaneous
emissions, which leads to absurd results, such as atomic coefficients that depend on
the temperature. On the other hand, it is interesting to observe that the omission of
the term associated with stimulated emissions in Eq. (6.19) (after introducing appro-
priate populations) leads to the approximate expression for Planck’s law that was
proposed byWien (Eq. 3.63), which is a fair approximation for low temperatures, so
it already contains a quantum seed.

It is easy to follow the procedure used by Einstein to arrive at the Planck distri-
bution from the A and B coefficients by focusing on just two states n and m, with
En− Em = �ωnm > 0 and respective populations Nn, Nm . For a system in thermal
equilibrium at temperature T , Einstein used the relation (kB stands for the Bolztmann
constant)

Nm/Nn = exp(En − Em)/kB T, (6.28)

leaving aside possible but inconsequential degeneracies. In line with Eq. (6.19) (first
with n = m and then with n) the number of absorptions (m → n transitions) is
proportional to Nmga(ωnm), and the number of emissions (n → m transitions) is
proportional to Nn[2 + ga(ωnm)]. From the equilibrium condition

Nmga = Nn (2 + ga) (6.29)

and Eq. (6.28) one thus obtains indeed Planck’s law (for the thermal field)

ga(ωnm) = 2

e(En−Em )/kB T − 1
. (6.30)

Notice that the equilibrium condition (6.29) implies detailed energy balance, since
the individual emissions and absorptions involve a same amount of energy, �ωnk .
Notice also that this result implies the Bohr rule (En − Em)/� = ωnm, which was
derived for the first time with this procedure.

6.1.4 A More General Equation for the Balance Breakdown

The procedure just used allows to calculate the rate of change of other dynamical
quantities that correspond to ‘classical’ conserved variables. For this purpose we go
back to Eq. (4.33), which holds for any dynamical quantity ξ(x, p) that is a ‘classical’
integral of motion (i.e., an integral of motion when the action of the radiation field
is turned off),

d

dt
〈ξ〉 = mτ

〈
...
x i

∂ξ

∂ pi

〉
− e2

〈
∂ξ

∂ pi
D̂i

〉
. (6.31)

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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In one-dimensional problems the only integral of motion is H, so that in order to
study the balance equation for ξ �= H it is necessary to analyze the more general,
multidimensional case. Since both the Hamiltonian H and ξ are constants of motion,
the corresponding operators, Ĥ and ξ̂, commute, which means that in the energy
representation the matrix associated with ξ̂ is diagonal, i.e.,

ξnk = ξnδnk, (6.32)

where the index n = (n′
H , n′′

ξ ) includes the quantum numbers corresponding to

eigenvalues for both Ĥ and ξ̂. If the system is in a state n, the (radiative) time
evolution of 〈ξ〉n is, according to Eq. (6.31),

d

dt
〈ξ〉nr = mτ

〈
...
x i

∂ξ

∂ pi

〉

n
− e2

〈
∂ξ

∂ pi
D̂i

〉

n
. (6.33)

As before, we omit the subindex r in the following. For the calculation of both terms
on the right-hand side we use the relation

i�
∂ξ̂

∂ pi
= [x̂i , ξ̂], (6.34)

whence (
∂ξ

∂ pi

)

kn
→ 1

i�
[x̂i , ξ̂]kn = 1

i�
xikn(ξn − ξk). (6.35)

This expression, together with
...
x ink = −iω3

nk xink , leads to

[.̂..x i ,
∂ξ̂

∂ pi
]nn = 1

�

∑
k

|xink |2 (ξk − ξn)
(
ω3

nk + ω3
kn

)
= 0, (6.36)

due to the antisymmetry of ωnk . This means that

(
.̂..
x i

∂ξ̂

∂ pi

)

nn

=
(

∂ξ̂

∂ pi

.̂..
x i

)

nn

, (6.37)

and hence no ambiguity in the operator ordering arises when calculating the first
term in Eq. (6.33), which reduces to

mτ

〈
...
x i

∂ξ

∂ pi

〉

n
→ mτ

(
.̂..
x i

∂ξ̂

∂ pi

)

nn

= −mτ

�

∑
k

ω3
nk |xnk |2 (ξn − ξk). (6.38)

For the second term in (6.33) we resort again to the Markovian approximation
and follow the same procedure as in appendix 4D, thus arriving at
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e2
〈

∂ξ

∂ pi
D̂i

〉

n
= 4πe2

3�2

∫ ∞

0
dωρ(ω)
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−∞
dt ′ cosω(t − t ′)

[
x̂ ′

i ,
[
x̂i , ξ̂

]]
nn

. (6.39)

Allowing for a possible additional (external) background field so that ρ(ω) =
ρ0(ω)g(ω), we get

e2
〈

∂ξ

∂ pi
D̂i

〉

n
= 2mτ

π�

∑
k

|xnk |2 (ξn − ξk)

∫ ∞

0
dω ω3g(ω)×

×
∫ t

−∞
dt ′ cosω(t − t ′) cosωnk(t − t ′)

= mτ

�

∑
k

|xnk |2 (ξn − ξk)

∫ ∞

0
dω ω3g(ω)[δ(ω + ωnk) + δ(ω − ωnk)]

= mτ

�

∑
k

|xnk |2 (ξn − ξk) |ωnk |3 g(ωnk). (6.40)

With (6.38) and (6.40), Eq. (6.33) becomes (recall that g(ωkn) = g(|ωkn|))
d

dt
〈ξ〉n = −mτ

�

∑
k

ω3
nk |xnk |2 (ξn − ξk)[1 − g(ωkn)signωkn]. (6.41)

This means that the zpf with spectral energy density ρ0(ω) (i.e. g(ω) = 1) guaran-
tees not only detailed energy balance, but more generally, detailed balance of any
(‘classical’) integral of motion of the form here considered, for a mechanical system
in its ground state (i.e., signωkn = +1 for all ωkn).

In analogy with Eq. (6.19), (6.41) can be rewritten as

d

dt
〈ξ〉n = mτ

�

∑
k

ω3
nk |xnk |2 (ξn − ξk)[(ga)ωkn>0 − (2 + ga)ωkn<0]. (6.42)

In terms of the Einstein coefficients given by (6.25) and (6.26) (expressed in three-
dimensional notation), this equation gives

d

dt
〈ξ〉n =

∑
ωkn>0

(ξk − ξn)ρa(ωnk)Bkn −
∑

ωkn<0

(ξn − ξk)[Ank + ρa(ωnk)Bnk] (6.43)

for the net change of 〈ξ〉 per unit time due to (upward and downward) radiative
transitions from state n to states k.
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6.1.5 Radiative Corrections to the Energy: The Lamb Shift

The calculations presented in previous pages confirm that the radiative terms
neglected in the process of deriving qm give rise to corrections to the solutions
of the (unperturbed, i.e. radiationless) Schrödinger equation. The Einstein A and
B coefficients for the lifetimes of atomic states pertain to this category. A further
important—even if smaller—radiative correction, one that represents a major suc-
cess of qed, is the shift of the atomic levels due to another residual effect of the
zpf. Indeed, the effective work realized by the fluctuating motions of the bound par-
ticle gives rise to a tiny modification of the mean kinetic energy, as is shown in the
following by means of a direct approach to the subject.

To calculate the radiative energy shift let us go back to the one-dimensional version
of Eq. (4.29) (where the subindex Q reminds us that the calculations are carried out
according to the quantum rules),

d

dt
〈xp〉Q = 1

m

〈
p2

〉
Q

+ 〈x f 〉Q + mτ 〈x ...
x 〉Q − e2

〈
xD̂

〉
Q

. (6.44)

As explained is Sect. 4.2.1, this equation is a time-dependent version of the virial
theorem, with radiative corrections included and the average values taken over the
ensemble instead of over time, as is customarily done. In line with the discussion
in Sect. 6.1.1, the correction 〈δT 〉nr (to lowest order in τ ∼ e2) to the mean kinetic
energy in the quantum state n, is given by

〈δT 〉nr = −mτ

2
〈x ...

x 〉n + e2

2

〈
xD̂

〉
n
, (6.45)

where the two average values on the right-hand side are calculated using the solu-
tions of the Schrödinger equation. We shall again dispose of the additional index r,
whenever this does not lead to confusion.

The first term on the right-hand side of (6.45), associated with the Larmor radia-
tion, can be approximated to lowest order in τ , by

− mτ

2
〈x ...

x 〉n = mτ

2
〈ẋ ẍ〉n = mτ

4

d

dt

〈
ẋ2

〉
n

= 0, (6.46)

and hence it does not contribute to the energy shift in the mean. Now, it is interesting
to note that when 〈x ...

x 〉 is calculated in quantum terms, there is an ambiguity in the
order of the factors (since (x̂

.̂..
x )nn �= (

.̂..
x x̂)nn), and only the symmetrized operator

(x̂
.̂..
x )S = 1

2 (x̂
.̂..
x + .̂..

x x̂) (6.47)

has a real and null mean value, in accordance with (6.46), which defines the rule of
correspondence in this case. The anti-Hermitian, antisymmetric combination

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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(x̂
.̂..
x )A = 1

2 (x̂
.̂..
x − .̂..

x x̂) (6.48)

is not devoid of physical meaning, however. To identify this, we write

〈δT 〉A
n ≡ −i

mτ

2
(x̂

.̂..
x )A

nn = 1

2
mτ

∑
k

|xnk |2 ω3
nk . (6.49)

In terms of the spontaneous-emission coefficient given by Eq. (6.25) we have (for
En > Ek)

〈δT 〉A
n = �

4

∑
k

Ank = �

4Tn
, (6.50)

where Tn = (
∑

k Ank)
−1 is the lifetime of state n against spontaneous decay. This

result shows that the expectation value of (x̂
.̂..
x )A furnishes a measure of the (inverse)

lifetime of the corresponding excited state—whereas the mean value of (x̂
.̂..
x )S rep-

resents a contribution to the energy shift (which turns out to be zero) for the same
state.

From Eq. (6.45) and the previous results, it follows that the correction to the
energy is due solely to the coupling of the (instantaneous) electric dipole moment of
the atom d = ex to the electric component of the background field, represented by
the second term in Eq. (6.45),

〈δT 〉n = e2

2

〈
xD̂

〉
n

= e

2

〈
dD̂

〉
n
. (6.51)

The calculation of this term is carried out in appendix A, and gives the result

e2

2

〈
xD̂

〉
n

= − 2e2

3πc3
∑

k

|xnk |2 ωkn

∫ ∞

0
dω

ω3

ω2
kn − ω2

. (6.52)

The radiative correction to the mean energy is thus (writing 〈δT 〉n = δEn and in
three dimensions, for comparison purposes)

δEn = e2

2

〈
x · D̂

〉
n

= − 2e2

3πc3
∑

k

|xnk |2 ωkn

∫ ∞

0
dω

ω3

ω2
kn − ω2

. (6.53)

This coincides with the formula derived by Power in 1966 for the Lamb shift on
the basis of Feynman’s argument of 1961. We recall that according to Feynman, the
presence of the atom creates a weak perturbation on the nearby field, thereby acting
as a refracting medium. The effect of this perturbation is to change the frequencies
of the background field in the vicinity of the atom from ω to ω/n(ω), n being the
refractive index. The shift of the zpf energy due to the presence of the atom is then
(Power 1966, see also Milonni 1994, Chap. 3)
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�En =
∑
k,λ

1

2

�ωk

n(ωk)
−

∑
k,λ

1

2
�ωk 
 −

∑
k,λ

[n(ωk) − 1]1
2

�ωk, (6.54)

and the refractive index is given in this approximation by (Davydov 1965, Chap. 9)

n(ωk) 
 1 + 4π

3�V

∑
m

|dmn|2 ωmn

ω2
mn − ω2

k

, (6.55)

where dmn = exmn is the electric dipole transition moment. After an integration
over the solid angle k̂ and summation over the polarizations λ = 1, 2, Power obtains
in the continuum limit for ωk the formula

�En = − 2

3πc3
∑

m

|dmn|2 ωmn

∫ ∞

0
dω

ω3

ω2
mn − ω2 , (6.56)

which coincides with the previous result, Eq. (6.53).
The observable Lamb shift (called also Lamb shift proper) is obtained by sub-

tracting from the total energy shift given by Eq. (6.53), the free-particle contribution,
δEfp, represented by this same expression in the limit of continuous electron energies
(when ωkn can be ignored compared with ω in the denominator),

δEfp = 2e2

3πc3
∑

m

|xnm |2 ωmn

∫ ∞

0
dω ω = e2�

πmc3

∫ ∞

0
dω ω. (6.57)

The last equality follows from the sum rule �m |xnm |2 ωmn = 3�/2m. The Lamb
shift proper of the energy level n is therefore given by

δELn = δEn − δEfp = − 2e2

3πc3
∑

k

|xnk |2 ω3
kn

∫ ∞

0
dω

ω

ω2
kn − ω2

, (6.58)

which again agreeswith the nonrelativisticqed formula.5 The logarithmic divergence
of the integral calls for the introduction of the usual (nonrelativistic) regularizing
cutoff ωC = mc2/�, which gives thus

δELn = 2e2

3πc3
∑

k

|xnk |2 ω3
kn ln

∣∣∣∣
mc2

�ωkn

∣∣∣∣ . (6.59)

5 In the denominator of Eq. (6.58) the term τ2ω4 due to Larmor radiation is missing (it has been
neglected because the calculation is performed to lowest order in e2). Its introduction is important
for some applications, in particular to get a valid expression for the refractive index in Eqs. (6.55)
and (6.58) (Sokolov and Tumanov 1956; de la Peña and Cetto 1977). This is a quite natural term
in both qed and sed.
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This is Bethe (1947) well known result. Note, however, that in the present approach
(as in Power’s) no mass renormalization was required.

The interpretation of the Lamb shift as a change of the atomic energy levels due
to the interaction with the surrounding zpf is fully in line with the general approach
of the present theory. It constitutes one more manifestation of the influence of the
particle on the near field, which is then fed back to the particle. An alternative way
of looking at this reciprocal influence is by considering the general relation between
the atomic polarizability α and the refractive index of the medium affected by it (for
n(ω) 
 1),

n(ω) = 1 + 2πα(ω). (6.60)

A comparison of this expression with Eq. (6.55) shows that

αn(ω) = 2

3�

∑
m

|dmn|2 ωmn

ω2
mn − ω2 , (6.61)

which is the Kramers-Heisenberg formula (see Davydov 1965). This indicates that
the Lamb shift can also be viewed as a Stark shift associated with the dipole moment
d(ω) = α(ω)E induced by the electric component of the zpf on the atom.

Let us recast Eq. (6.58) in a more familiar form, the one that is usual to find
in textbooks and more adapted to direct calculation. In doing so it is convenient to
introduce the energy En = �ωn and the abbreviated notation

Ink =
∫ ∞

0
dE E

(Ek − En)2 − E2
, (6.62)

so that (6.58) rewrites as (with α = 3mc2τ/2�)

δELn = − 2α

3πc2
∑

k

Ink |ωkn xnk |2 (Ek − En)

= − 2αIn

3πm2c2
∑

k

∣∣ pnk

∣∣2 (Ek − En)

= − 2αIn

3πm2c2
i�

∑
k

f nk · pkn, (6.63)

since pnk = iωnk xnk and f nk = iωnk pnk . We have assumed that Ink depends so
weakly on the index k that such dependence can be ignored; δELn becomes, with
f̂ = −∇V,

δELn = − 2αIn

3πm2c2
i� 〈n| f · p |n〉 = αIn

3πm2c2
i� 〈n| [∇V, p

] |n〉

= − �
2αIn

3πm2c2
〈n| ∇2V |n〉 . (6.64)
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For the Coulomb potential, ∇2V = 4πZe2δ3(r), so that only the wave function at
the origin contributes to the Lamb shift in the present approximation.

The main interest of (6.64), apart from convenience of calculation, lies in the
interpretation of the correction to the energy as due to fluctuations of the value of the
potential V resulting from assumed fluctuations δx of the instantaneous position of
the electron. Thus

V (x + δ(x)) = V (x) + δxi
∂V

∂xi
+ 1

2
δxiδx j

∂2

∂xi∂x j
V + · · · (6.65)

Assuming that the fluctuations are spherically symmetric on the average and sta-
tistically independent in orthogonal directions, so that in the mean δxi = 0,

δxiδx j = 1
3 (δx)2δi j , the average (over the set of fluctuations) of the above equation

becomes
V (x + δ(x)) = V (x) + 1

6 (δx)2∇2V + · · · (6.66)

Writing the energy shift (6.64) in terms of the expectation value of the deviation
V (x + δ(x)) − V (x), and neglecting higher-order terms,

δELn =
〈
V (x + δ(x)) − V (x)

〉
= 1

6 (δx)2
〈
∇2V

〉
= − �

2αIn

3πm2c2

〈
∇2V

〉
(6.67)

gives for the mean square displacement of x

(δx)2 = −2�
2αIn

πm2c2
= −2αIn

π
λ2

C , λC = �

mc
, (6.68)

where λC stands for the Compton wavelength. Thus

√
(δx)2

λC
=

√
−4αIn

π
∼ 10−1. (6.69)

Qualitatively, this result is in line with the well-known proposal in Welton 1948 to
identify the Lamb shift as a consequence of the fluctuations of the position of the
electron due to the interaction with the vacuum field (Milonni 1994). We see that the
fluctuations of x that give rise to the Lamb shift are smaller even in the mean than
the Compton wavelength, which is by itself a small quantity in comparison with the
Bohr radius aB = �

2/me2, λC = αaB (∼ 10−9 cm for the electron). The Lamb
shift is indeed a very small correction, so small that it requires the use of particularly
refined spectroscopy to be detected.6

6 There are several trembling motions of the electron, which should not be confused with each
other. On one hand there is the zitterbewegung, a relativistic trembling of the order of λC , with
a relatively well-defined frequency ∼2mc2/�. This leads to the notion that an electron cannot be



212 6 Beyond the Schrödinger Equation

It is interesting to observe that although the initial calculation of the Lamb shift
on the basis of Eq. (6.45) exhibits it as an additional kinetic energy, the expression
(6.64) describes it as the result of an extra potential energy. However, in both cases
it is the fluctuations of x which give rise to the correction. The reason for this is that
the fluctuations of the position variable generate both diffusion and extra potential
energy. The two descriptions are therefore equivalent forms of accounting for the
same process.

6.1.6 External Effects on the Radiative Corrections

By now it is clear that certain basic properties of the vacuum field—such as
the intensity of its fluctuations or its spectral distribution—are directly reflected
in the radiative corrections studied above. This means that a change in the properties
of the vacuum should lead in principle to a corresponding modification of these cor-
rections. The vacuum can be altered, for instance, by introducing material objects
that modify the boundary conditions and hence affect the distribution of the normal
modes of the field. Additionally, the background field can be modified by raising the
temperature of the system or by introducing external radiation. These changes lead
to observable effects on both the radiative lifetimes and the energy levels.

Such ‘environmental’ effects have been studied for more than 60 years, normally
within the framework of quantum theory. However, some calculations have been
made also within the framework of sed, in particular for the harmonic oscillator,
leading to comparable results (see e.g. Cetto and de la Peña 1988a, b).7 The formulas
derived in the previous sections provide an opportunity to study the more general
case, instead of restricting the calculations to the harmonic oscillator. The task is
facilitated and becomes transparent by the use of the present theory, because the
presence of the background radiation field is clear from the beginning.

6.1.6.1 External Effects on Atomic Lifetimes

In Sect. 6.1.3 we have already come across one observable effect of a change in the
background field: according to Eq. (6.19) the rates of stimulated atomic transitions
are directly proportional to the spectral distribution of the external (or additional)
background field, be it a thermal field or otherwise. In the case of a thermal field
at temperature T , in particular, with ga(ωnk) given by Eq. (6.30), the (induced)
transition rate from state n to state k becomes (with the help of Eqs. (6.4), (6.24) and
(6.26 ))

confined to a region in space smaller than a Compton wavelength. As just discussed, the fluctuations
of x associated with the Lamb shift are even smaller than λC .
7 Related topics in which sed has been very successful are the Casimir effect and the van der Waals
forces. The literature on this subject was iniciated with the old papers byMarshall (1965) and Boyer
(1968, 1969), and followed by an extensive series of works by these authors and several others. A
review of Boyer’s work on the subject is Boyer (1980a); a more extensive list of references is given
in The Dice. See also the literature at the end of the chapter.
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d Nnk

dt
= ρ0(ωnk)ga(ωnk)Bnk

= 4e2 |ωnk |3 |xnk |2
3�c3

1

e�|ωnk |/kB T − 1
. (6.70)

This result shows that no single Hamiltonian eigenstate is stable at T > 0 (as is well
known), because the thermal field induces both upward and downward transitions.
For downward transitions (ωnk > 0) one can rewrite Eq. (6.70) for comparison
purposes in terms of Ank as given by (6.25),

d Nnk

dt
= Ank

e�ωnk/kB T − 1
. (6.71)

This expression indicates that the effect of the thermal field on the decay rate is
barely noticeable at room temperature (kB T 
 0.025 eV), since for typical atomic
frequencies, the denominator inEq. (6.71) ranges between exp(−40) and exp(−400).
In fact, the temperature would have to be raised by several orders of magnitude to
obtain a noticeable effect on the lifetimes—but then other effects on atomic stability
due to such high temperatures would be dominant. On the other hand, the simple
addition of a high-intensity monochromatic field of frequency ωnk—such as that
produced by a laser—can have a visible effect on the emission rates, as is well
known. Such effect in fact lies at the basis of the functioning of the laser.

Also when the geometry of the system or the spectral distribution of the back-
ground field aremodified by the presence of nearby conducting objects, the transition
rates are affected accordingly. Assume, for simplicity, that the modified field is still
isotropic, with the density of modes of a given frequency ωnk simply reduced by
a (geometrical) factor g(ωnk) < 1. Then according to the results of Sect. 6.1.3 the
corresponding spontaneous and induced transition rates are reduced by this factor,
since both A and ρB are proportional to the density of modes. By enclosing the atoms
in a high-quality cavity that excludes the modes of this frequency, one can therefore
virtually inhibit the corresponding transition. For the more general, anisotropic case
the calculations are somewhat more complicated, without however leading to a sub-
stantial difference from a physical point of view. These cavity effects have been the
subject of a large number of experimental tests since the early works of Kleppner
(1981), Goy et al. (1983), and others. In those cases where observable effects were
predicted, the experiments have served to confirm the theoretical predictions.

Considering the essential role played by the background field in determining
the basic structure and quantum behavior of the atom, according to sed, one may
well wonder whether a geometric modification of this field (i.e., a change in the
distribution of single modes of certain frequencies) would not have an impact on the
basic behavior of the atom at the level of quantum mechanics. To respond to this
question, let us look back at the energy-balance condition (6.5),

τ 〈...x · p〉n = e2

m

〈
p · D̂

〉
n
. (6.72)
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We observe that any such alteration of the field modes affects both the radiation
reaction field and the zpf on an equal footing. The reason is that on each side of this
equation the field enters through its correlation function only (to lowest significative
order in the approximation). Therefore, both sides of the equation are identically
affected, and the equality continues to hold. This leads to an important conclusion,
namely that the (quantum-mechanical) stationary solutions of the Schrödinger equa-
tion (which must comply with the balance equation) are immune to such environ-
mental modifications of the background field.8 This can be considered a sign of the
robustness of the stationary quantum states.

6.1.6.2 External Effects on the Energy Levels

Let us now show how Eqs. (6.57) and (6.58) can be used to calculate the changes
in the energy shift produced by the addition of an (external or thermal) background
field. First we determine the shift δEn(ρ) produced by the total field ρ = ρ0 + ρa

(see Eq. (6.18)), following the same procedure that led to Eq. (6.53). Then, to the
corresponding free-particle contribution δEfp(ρ) and the corresponding Lamb shift
δELn(ρ) we subtract the original shifts (δEfp(ρ0) and δELn(ρ0)) produced by the zpf,
thus obtaining the formulas for the variations of the (first-order) corrections. The
calculation is straightforward using the cited equations, and the results are

�
(
δEfp

) = 4πe2

3�

∑
k

|xnk |2 ωkn

∫ ∞

0
dω

ρa

ω2 = e2�

πmc3

∫ ∞

0
dω

ρa

ρ0
ω, (6.73)

�(δELn) = − 2e2

3πc3
∑

k

|xnk |2 ω3
kn

∫ ∞

0
dω

ρa

ρ0

ω

ω2
kn − ω2

, (6.74)

for a homogeneous field. If, for instance, the additional field represents blackbody
radiation at a temperature T > 0, i.e., if ρa(ω, T ) = ρ0(ω)ga(ω, T ) with ga(ω, T )

given by (6.30), then Eq. (6.73) gives

�T
(
δEfp

) = 2α

πmc2
(kB T )2

∫ ∞

0
dy

y

exp y − 1
. (6.75)

8 A similar conclusion was arrived at in Cetto and de la Peña (1988a, b), where it was formulated
in terms of a fluctuation-dissipation relation for sed.
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With ∫ ∞

0
dy

y

exp y − 1
= π2

6
(6.76)

equation (6.75) gives for the change of the free-particle energy the amount

�T
(
δEfp

) = πα

3mc2
(kB T )2. (6.77)

Further, the formula for the change of the Lamb shift proper is given according to
Eq. (6.74) by

�(δELn) = − 4e2

3πc3
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k

|xnk |2 ω3
kn
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0
dω

ω

ω2
kn − ω2

(
1

exp(�ω/kB T ) − 1

)
.

(6.78)
These results coincide with those obtained within qed (Knight 1972; Zhou and
Yu 2010), and the corresponding thermal shifts have been experimentally observed
(see e.g. Hollberg and Hall 1984). From the point of view of sed (or qed) their
interpretation is clear: they represent additional contributions to the kinetic energy
impressed on the particle by the thermal field, according to the discussion at the
beginning of Sect. 6.1.5.

6.2 The Spin of the Electron

A most fundamental problem in quantum theory relates to the origin and nature of
the spin of the electron. Since this is a purely quantum phenomenon (albeit normally
considered of relativistic origin), the present theory should be expected to provide
an explanation for it, instead of merely taking it as one more intrinsic property of the
particle such as its mass or its electric charge.

Despite its importance for qm, the question about the origin and nature of spin
has received relatively little attention in sed. Indeed, during the initial period of
sed the electron was considered mainly as a spinless particle; to our knowledge
the only exception to this was the work of Braffort and Taroni (1967), showing the
existence of some effects due to spin. The 1980s saw the publication of a series of
phenomenological discussions by Moore and Ramírez (1982), Moore (1984), Cav-
alleri (1985) and Rueda (1993), focusing on the importance for quantum theory of
the appearance of (helical) vibrations that might be identified with the zitterbewe-
gung. By using an (otherwise classical) harmonic oscillator model for the electron
and separating the zpf into components of circular polarization, Jáuregui and de la
Peña (1981), de la Peña and Jáuregui (1982), derived the mean squared electron spin
angular momentum and its projections, within a numerical factor of order 1; see also
Sachidanandam(1983). Similarly, Barranco and coworkers 1989 studied the spin
and the magnetic moment of a (classical) particle subject to the zpf, using a simple
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composite particle model with two constituents bound by a harmonic force. More
recently, Muralidhar (2011) published a suggestive derivation of spin by assuming
that the zero-point energy of the (free) electron, considered as a classical particle, is
an energy of rotation within the region of space surrounding the particle. Specifically,
by expressing the zpf fluctuations as rotations on a complex plane, the spin angular
momentum appears in this model connected with the imaginary part of the rotations.

The various sed calculations, though based on classical models, have led in one
way or another to a result of order �

2 for the mean square value of the spin and of
order � for the spin projections. This strongly suggests the possibility of finding a
reasonable explanation for the electron spinwithin the present approach.Our analysis
of this possibility, presented in the following sections, exhibits the electron spin as
one more emergent property arising from the interaction of the electron with the zpf.

6.2.1 Unravelling the Spin

Let us again recall the equations for the averaged dynamical variables that ensue from
the generalized Fokker-Planck equation, derived in Sect. 4.2.1. We are interested, in
particular, in the balance equation for the angular momentum components

Li j = xi p j − x j pi , (6.79)

obtained from Eq. (4.28), namely

d

dt

〈
Li j

〉
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Mi j
〉
Q + mτ
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...
x j − x j

...
x i

〉
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〈
xi D̂ j − x j D̂i

〉
Q

. (6.80)

Here Mi j = xi f j − x j fi is a component of the momentum of the external force
(or torque), and the additional terms are due to radiation reaction and diffusion. For
simplicity let us consider that only the zpf is present and that the particle is in its
ground state, n = 0. Then, since the state is (truly) stationary, d

〈
Li j

〉
/dt = 0, and

Eq. (6.80) gives

〈
Mi j

〉
0 + mτ

〈
xi
...
x j − x j

...
x i

〉
0 − e2

〈
xi D̂ j − x j D̂i

〉
0

= 0. (6.81)

To lowest order in τ one may take

m
〈
xi
...
x j − x j

...
x i

〉
0 = d

dt

〈
Mi j

〉
0 − 〈

ẋi f j − ẋ j fi
〉
0 , (6.82)

which under stationarity reduces to

mτ
〈
xi
...
x j − x j

...
x i

〉
0 = −τ

〈
ẋi f j − ẋ j fi

〉
0 , (6.83)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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and Eq. (6.81) becomes thus

〈
Mi j

〉
0 − τ

〈
ẋi f j − ẋ j fi

〉
0 = e2

〈
xi D̂ j − x j D̂i

〉
0
. (6.84)

For central forces, Mi j = 0 and one may write fi = g(r)xi with g(r) a radial
function, whence

τ
〈
ẋi f j − ẋ j fi

〉
0 = τ

〈
g(r)

(
ẋi x j − ẋ j xi

)〉
0 = − τ

m

〈
g(r)Li j

〉
0 , (6.85)

which introduced in (6.84) leads to the balance equation for the angular momentum,

τ
〈
g(r)Li j

〉
0 = me2

〈
xi D̂ j − x j D̂i

〉
0
. (6.86)

Alternatively, in the Markovian limit equation (4.45) can be applied directly to G =
Li j , thus obtaining

mτ
〈
xi
...
x j − x j

...
x i

〉
0 =

〈
D px

i j − D px
ji

〉
0
. (6.87)

By combining this with Eqs. (6.83) and (6.85), we get a balance condition for the
angular momentum components,

τ
〈
g(r)Li j

〉
0 = −m〈D px

ji − D px
i j 〉0. (6.88)

Alternatively, one may take directly the (stochastic) equation of motion for a
central-force problem,

ṗi = fi + mτ
...
x i + eEi (t), (6.89)

where pi = mẋi , Ei (t) is the electric component of the zpf, and fi = g(r)xi . By
multiplying this equation by x j and anti-symmetrizing one gets

ṗi x j − ṗ j xi = mτ
(...

x i x j − ...
x j xi

) − e
(
xi E j − x j Ei

)
. (6.90)

Under stationarity, i.e. for the system in its ground state, one can perform the sub-
stitutions ṗi → fi and mxi

...
x j → −ẋi f j (valid to zero order in τ ), thus arriving

at

τg(r)Li j
(i) = −me

(
xi E j − x j Ei

)(i) = −me(x × E)
(i)
i j . (6.91)

This expression, which is equivalent to (6.86), shows that there is an angular momen-
tum L that results from the instantaneous torque exerted by the Lorentz force on
the particle. Since only the fluctuating component of x can contribute to the aver-

age (x × E)
(i)

(because Ei (t) is purely random), it is clear that all the angular
momentum thus generated is due to the random motion around the mean trajectory

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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followed by the particle; thus, it is independent of the system of coordinates, and has
an ‘internal’ (intrinsic) nature. This angular momentum will turn out to be a crucial
phenomenon in our proposal for the origin of the electron spin.

That the Lorentz force due to the background field exerts indeed a torque on the
particle, is explained by the following argument. It is experimentally observed that
the interaction of the electron with the radiation field takes place via the circular
polarized modes of the field (or modes of a certain helicity). This is known to be the
case for the photonic field, which, from the present perspective, is the excited state
of the radiation field, additional to the zero-point component. It is therefore natural
to assume that the same is true for the interaction of the electron with the modes of
the field in its ground state, i.e., the zpf. To analyze the effect of such interaction, one
should therefore consider the zpf as composedofmodes of both right- and left-handed
circular polarization. Taken separately, these modes will indeed induce, through the
Lorentz force, rotational (viz right- and left-handed) motions on the particle. The two
effects will tend to conceal each other when the ensemble of modes and of particles is
considered in its entirety; yet by focusing on one of the two subensembles of a given
polarization of the field modes, the effective rotation induced on the corresponding
particles should be disclosed. It is just this mean rotation present in each one of the
two separate subensembles what will be identified below with the two degrees of
freedom proper to each of the corresponding spin-1/2 states of the particle.

6.2.2 The Isotropic Harmonic Oscillator

As an example of application of the results of the previous section, let us consider the
simplest case, namely a spherical isotropic harmonic oscillator of natural frequency
ω0, in its ground state. In this case fi = −mω2

0xi so that g(r) = −mω2
0, and

Eq. (6.88) becomes 〈
Li j

〉
0 = 1

τω2
0

〈D px
ji − D px

i j 〉0. (6.92)

The calculation of the right-hand side is carried out in appendix B. The result, in
terms of the Cartesian components of x̂ and p̂, is

〈
Li j

〉
0 = 〈0| (x̂i p̂ j − x̂ j p̂i

) |0〉 . (6.93)

This convergence of results shows that indeed the fluctuations generate the angular
momentum Li j , as predicted by Eq. (6.92). Now, the numerical value

〈
Li j

〉
0 = 0

for the ground state represents the net (average) angular momentum induced on the
isotropic harmonic oscillator by the full zpf. According to the discussion following
Eq. (6.91), however, we should analyze separately the contributions arising from
each of the two circular polarizations, characterized by the (circularly polarized)
vectors
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εk± = 1√
2

(
εki ± iεk j

)
, (6.94)

with εki , εk j unit Cartesian vectors orthogonal to some axis k, assumed to be fixed.
We will therefore now consider a situation in which the particle (the oscillator) is

under the action of the background field of a given circular polarization with respect
to an axis k. Since according to the results in chapter 5 the response of the particle to
the field is linear, when the particle is acted upon the (circularly) polarized field the
appropriate variables to describe the system are the spherical variables (x+, x−, xk),
which are given, in accordance with (6.94), by,

x± = 1√
2

(
xi ∓ i x j

)
, (6.95a)

xi = 1√
2

(
x+ + x−)

, x j = i 1√
2

(
x+ − x−)

. (6.95b)

The nonzero matrix elements of the oscillator are xi01 = (
x+
01 + x−

01

)
/
√
2, and so

on. Further, since x±
10 = (

x∓
01

)∗
, Eq. (6.93) becomes

〈
Li j

〉
0 = mω0

(
x+
01x−

10 − x−
01x+

10

) = mω0

(∣∣x+
01

∣∣2 − ∣∣x−
01

∣∣2) . (6.96)

In the ground state,
〈
Li j

〉
0 = 0; hence the two terms,

∣∣x+
01

∣∣2 and ∣∣x−
01

∣∣2 , contribute
with equal magnitude and opposite sign to the k-th component of the total oscillator’s
angular momentum, as should be the case for a nonpolarized vacuum. These separate
contributions are

〈
Li j

〉+
0 = mω0

∣∣x+
01

∣∣2 ,
〈
Li j

〉−
0 = −mω0

∣∣x−
01

∣∣2 . (6.97)

Using xi01 = x j01 = √
�/(2mω0) for the harmonic oscillator, one gets

mω0
∣∣x±

01

∣∣2 = �

2
, (6.98)

whence the size of each separate contribution to the angular momentum in (6.96) is
just �/2. In order to distinguish this contribution from the (orbital) component of the
angular momentum we write

〈
Si j

〉± instead of
〈
Li j

〉±
0 , so that

〈
Si j

〉± = ±�

2
. (6.99)

Further, to study the square of the angular momentumwe take into account that L2

corresponds to a ‘classical’ integral of motion for central forces; thus from equation
(6.31) with ξ = L2, we get that for the (stationary) ground state, L2 satisfies the
equation
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mτ

〈
...
x i

∂L2

∂ pi

〉

0
= e2

〈
∂L2

∂ pi
D̂i

〉

0
. (6.100)

The approximation ṗk = fk allows us to write m
...
x k = −ω2

0 pk for the harmonic
oscillator. Further, since L2 = r2 p2 − (r · p)2 is a homogeneous function of p of
degree 2, we have

pi
∂L2

∂ pi
= 2L2. (6.101)

With these results Eq. (6.100) reduces to

〈
L2

〉
0

= −3mc3

4ω2
0

〈
∂L2

∂ pi
D̂i

〉

0
. (6.102)

The right-hand side of this equation is calculated in appendix C, and gives a result
different from zero—even for s-states. Dividing again the full ensemble into two
subensembles corresponding to different circular polarizations, one obtains

〈
L2

〉
0

=
〈
L2

〉+
0

+
〈
L2

〉−
0

, (6.103)

where each separate contribution to the mean square angular angular momentum is
given by 〈

L2
〉+
0

=
〈
L2

〉−
0

= 3

4
�
2. (6.104)

In terms of the notation introduced above (Eq. (6.99))—that distinguishes the (mean)
orbital angular momentum from the (mean) angular momentum induced by the cir-
cular polarizations of the zpf—Eq. (6.104) rewrites as

〈
S2

〉+ =
〈
S2

〉− = 3

4
�
2. (6.105)

The fact that the results in Eqs. (6.99) and (6.105) do not depend on the oscil-
lator’s frequency ω0, suggests that they hold in the general case, and for the free
particle in particular (see Sect. 6.2.3). Therefore, we can conclude that when the
transformation (6.95a, 6.95b) possesses physical meaning, so that the decomposi-
tions

〈
Li j

〉
0 = 〈

Li j
〉+
0 + 〈

Li j
〉−
0 and

〈
L2

〉+
0 = 〈

L2
〉+
0 + 〈

L2
〉−
0 make sense, equations

(6.99) and (6.105) tell us that there exists an angular-momentum component that
does not correspond to an orbital motion of the particle. It represents the angular
momentum derived from the interaction of the particle with a given circular polar-
ized mode of the zpf. For an electron, which (as stated above) interacts with the
radiation field via its circular polarized modes, the transformation (6.95) is indeed
physically meaningful; thus the angular momentum induced by the zpf can be
identified with the electron’s spin. The term ‘intrinsic’ usually attached to it, points
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to the permanence of this effect (the zpf is always and everywhere present), although
here appears as induced on (or acquired by) the particle.

We have thus disclosed the existence of the vector S (with k-component εi jk Si j )
that stands for the intrinsic spin-angular momentum of a charged particle for which
the circularly polarized modes of the zpf are physically relevant. In this form we
see that the theory does contain the elements to account for the spin of the electron.
The extension of these results to the general case (arbitrary potential), as well as the
construction of the quantum operator corresponding to the vector S, are left for the
following section.

One additional point merits consideration. According to these results a charged
particle acquires spin 1/2; so what can be said about scalar bosons? A possible
answer to this question is that the spin 1/2 is acquired by elementary particles, such
as the electron, whereas composite particles may acquire it or not, depending on their
structure and their specific interaction with the radiation field. Thus, bosons come
out to be composite structures, with an even number of elements (if of fermion type).

6.2.3 General Derivation of the Electron Spin

Let us now present a general procedure to derive the spin of the electron, based on
the Heisenberg formalism of qm developed in Chap. 5. According to the above dis-
cussion, our ansatz is that the electron spin is an angular momentum of the particle
generated by its interaction with the zpf, specifically with one of the circular polar-
izations of the field. In contrast with the previous section, here the electron is subject
to an arbitrary external central force, and in any given stationary state. Denoting with
the index n the set of quantum numbers that characterize the state of the particle,
including the orbital angular momentum and its projection along the z axis, we have
(for simplicity in the writing we use xi = x, x j = y, and xk = z)

〈
L̂ z

〉
n

= 〈n| L̂ z |n〉 =
∑

k

(
xnk pykn − ynk pxkn

)

= im
∑

k
ωkn (xnk ykn − ynk xkn) . (6.106)

To take into account that the electron responds to modes of a given circular polariza-
tion of the zpf, we transform again to the variables defined in Eqs. (6.95). Following
the same procedure that led to (6.96), Eq. (6.106) transforms into

〈
L̂ z

〉
n

= m
∑

k
ωkn

(∣∣x+
nk

∣∣2 − ∣∣x−
nk

∣∣2) . (6.107)

This expression can be rewritten as

〈
L̂ z

〉
n

= 〈Oz〉+n + 〈Oz〉−n , (6.108)

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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with 〈Oz〉±n given by (σ = ±)

〈Oz〉σn = σm
∑

k
ωkn

∣∣x±
nk

∣∣2 . (6.109)

On the other hand, from the commutator
[
x̂, p̂x

] = i� and xkn = x∗
nk it follows that

m
∑

k
ωkn |xnk |2 = 1

2� (6.110)

and the same for |ynk |2 . From (6.106) we obtain therefore

� = m
∑

k
ωkn

(∣∣x+
nk

∣∣2 + ∣∣x−
nk

∣∣2) = 〈Oz〉+n − 〈Oz〉−n , (6.111)

which combined with (6.108) gives

〈Oz〉σn = 1
2

〈
L̂ z

〉
n

+ σ 1
2�. (6.112)

This result helps to avoid a possible confusion about themeaning of equation (6.108).
It is simply 〈

L̂ z

〉
n

= 1
2

〈
L̂ z

〉
n

+ 1
2� + 1

2

〈
L̂ z

〉
n

− 1
2�. (6.113)

Thus the spin projection is contained in the orbital angular momentum 〈L̂ z〉n in
a dormant form, so to say. It is the quantity 〈Oz〉σn what contains both a part of
the orbital angular momentum and the spin associated with one or the other of the
polarization states, σ = ±.

To construct the (quantum) operator associated with the vector S, we proceed as
follows. Clearly the mean value 〈L̂ z〉n does not depend on σ, whereas the term σ�/2
does not depend on the set n; this shows that the operator L̂ z and the operator to be
associated with σ�/2 (which we shall call �̂z) belong to different Hilbert spaces.
Therefore, in order to express 〈Oz〉σn in (6.112) as the average of an operator, we
must extend the Hilbert space to include the dichotomous variable σ in addition to
the quantum index n. This we do by resorting to the product space H = Hn ⊗ H2,

with H2 a bidimensional vector space spanned by an orthonormal basis having as
elements the vectors {|σ〉} = {|+〉 , |−〉} . In terms of |nσ〉 = |n〉 ⊗ |σ〉, Eq. (6.112)
rewrites as

〈Oz〉σn = 1
2 〈nσ| L̂ z |nσ〉 + 1

2� 〈nσ| �̂z |nσ〉 , (6.114)

with �̂z an operator that has |σ〉 as eigenvector,

〈nσ| �̂z |nσ〉 = 〈σ| �̂z |σ〉 = σ. (6.115)

Expressing �̂z in the general form in terms of the Pauli matrices gives
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�̂z = a0I + az σ̂z + a+σ̂+ + a−σ̂−, (6.116)

where a± = (
ax ∓ iay

)
/
√
2, and σ̂+ = √

2 |+〉 〈−| , σ̂− = √
2 |−〉 〈+| are ladder

operators. Condition (6.115) imposed on �̂z gives a0 = 0, az = 1. Further, since
we are here considering the variables (x+, x−, z), the polarization vectors (6.94) fix
ẑ as the preferred axis, whence a± = 0, �̂z = σ̂z, and Eq. (6.114) becomes

〈Oz〉σn = 〈nσ|
(
1
2 L̂ + Ŝ

)
· ẑ |nσ〉 , (6.117)

with Ŝ the vector operator defined as Ŝz = �
1
2 �̂z, i.e.,

Ŝ = 1
2�σ̂. (6.118)

The identification of the operator Ŝ with the spin of the electron is thus justified. The
independence of 〈L̂ z〉n from σ and of 〈�̂z〉 from n, indicates that under the present
conditions, the fluctuations associated with the spin are not correlated with those
that characterize the kinematics of the particle in the configuration space: L and S
constitute independent dynamical variables. Of course the spaces of the spin and of
the orbital angular momentum may become connected by the presence of magnetic
fields, which here have been omitted.

It should be stressed that even if the orbital momentum L̂ and the spin Ŝ are both
contained in the same expression for the angular motions, Eq. (6.113), this does not
mean that the spin is treated here as an orbital angular momentum. Indeed, as is well
known, there are fundamental differences between L̂ and Ŝ. In particular, the mean
value of L̂ z, say, can be freely determined by adjusting external parameters, and may
acquire a whole spectrum of values. However, only the sign of the projection Ŝz can
be subject to external adjustment; its absolute value is determined by the fundamental
commutator through (6.110), which in its turn is fixed by the zpf. It is because of
the universal value of the commutator that the spin of the electron is the same for all
electrons under all circumstances, which reinforces its apparent ‘intrinsic’ nature.

The connection of the commutator
[
x̂, p̂x

] = i� with the spin of the electron
deserves a couple of additional comments. As pointed out in chapter 4, Planck’s
constant � is a direct measure of the size of the fluctuations, both those of the zpf and
those impressed by it on the particle. Specifically, since the commutator implies that

the fluctuations of x and px have a minimum value adjusted to the rule σ2
xσ

2
px

∣∣∣
min

=
�
2/4, one may write the numerical relation

∣∣∣〈±| Ŝz |±〉
∣∣∣ = 1

2� = σxσpx

∣∣
min , (6.119)

which emphasizes the fact that the value of the electron spin is determined by the
irreducible fluctuations of the phase-space variables x, px around the instantaneous
position of the particle.
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In qed the interaction of the electron with the vacuum leads to an effective radius
of the order of Compton’s wavelength λC . Similarly, in Chap. 9 we argue that the
fluctuating motion of the electron assigns to it an effective structure, a result similar
to that referred to in the discussion at the end of Sect. 6.1.5 above. From this point
of view, the electron can still be considered as ‘essentially’ pointlike, but simultane-
ously possessing an ‘effective’ (measurable) size. The small, rapid trembling of the
electron, taken as a (here nonrelativistic) zitterbewegung, suggests that it is tightly
linked with the spin of the electron.9 The appearance of an effective structure helps
also to get an understanding of another important quality of the electron, namely its
magnetic moment, a matter that is succinctly addressed in Sect. 6.2.5.

6.2.4 Angular Momentum of the Zero-Point Field

As a heuristic aid to our explanation of the spin of the electron, let us recall some
of the most basic properties of the angular momentum of the radiation field. Since
the detailed calculation is rather long, we present here a sketch of it (borrowing from
Mandel and Wolf 1995, Sect. 10.6).

The total angular momentum operator of the electromagnetic field is usually
defined as

Ĵ =
∫

V

(
r × P̂

)
d3r, (6.120)

where P̂ stands for the linear momentum density operator (ε0 is the electric perme-
ability of the vacuum)

P̂ = 1
2ε0

[
Ê (r, t) × B̂ (r, t) − B̂ (r, t) × Ê (r, t)

]
. (6.121)

The expression (6.120) for Ĵ can be decomposed into a term Ĵ L that depends on
r and can therefore be identified with the orbital angular momentum of the field,
plus a second term, Ĵ S, independent of r and thus interpreted as an intrinsic angular
momentum. Specifically,

9 The zitterbewegung is a phenomenon predicted by the Dirac equation for the electron. It consists
of an oscillation (a trembling) around the relativistic motion of amplitude of order λC and frequency
of order 2mc2/�. The nonrelativistic ‘zitterbewegung’ discussed here differs from the relativistic
jitter in that it involves nonrelativistic velocities and contains a wide spectrum of frequencies.

The often conjectured connection between spin and zitterbewegung was proposed for the first
time by Schrödinger (1930) and investigated more deeply by Dirac (1958) (see also Maddox
(1987)). Examples of related works, which include specific models of varying fortune, are Bhabha
and Corben (1941), Huang (1952), Corben (1968), Barut and Zhangi (1984), Hestenes (1985),
Hestenes (1990), Pavšič et al. (1993), Rodrigues et al. (1993), Rodrigues et al. (1998). Other mech-
anisms to generate zitterbewegung-like oscillations have been explored using relativistic models of
the electron. For instance, by considering within sed that the structure of the particle is related to
the difference between the centers of inertia and charge of the particle, it has been shown that the
electron responds to the random field by performing a zitterbewegung (see e.g. Rueda 1993; also
Cavalleri 1985, Cavalleri et al. 2010).

http://dx.doi.org/10.1007/978-3-319-07893-9_9
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Ĵ = Ĵ L + Ĵ S, (6.122)

where

Ĵ L = ε0

2

∫

V

3∑
i=1

{
Êi (r × ∇) Âi +

[
(r × ∇) Âi

]
Êi

}
d3r,

Ĵ S = ε0

2

∫

V

(
Ê × Â − Â × Ê

)
d3r, (6.123)

and Â stands for the electromagnetic vector potential operator. Equation (6.123)
shows that Ĵ S can give a result different from zero because the electromagnetic field
is a vector field (i.e., because it hasmore than one spatial component); this endows the
components Ĵ L and Ĵ S with very different properties andmeaning.We use a discrete
expansion in terms of plane waves, as is usual in qed (in the full three-dimensional
reciprocal space k, and with â†

kσ, âkσ creation and annihilation operators)

Â (r, t) = 1

V 1/2

∑
k,σ

(
�

2ωε0

)1/2 [
εkσ âkσ (0) ei k·r−iωt + h.c.

]
, (6.124)

with εkσ the orthogonal circular polarization vectors given by (6.94). Once the inte-
gration in (6.123) is carried out, Ĵ S reduces to

Ĵ S =
∑

k,σ=±1

�k̂σ
(
n̂kσ + 1

2

)
, (6.125)

with n̂kσ = â†
kσ âkσ the photon number operator in the basis of circular polarization,

and k̂ a unit vector in the direction of the wave vector k.Equation (6.125) is an expan-
sion in states of definite helicity, which assigns to individual photons a spin angular
momentum projection of value σ� = ±� along the direction k̂. Of major importance
for what follows is that in the absence of photons, with only the zpf present, each
mode of the vacuum state still contains a component of angular momentum, with
mean value given by

〈
Ĵ S

〉
vac

=
∑

k,σ=±1

�

2
k̂σ =

∑
k

1
2�k̂ −

∑
k

1
2�k̂. (6.126)

Therefore, a nonzero contribution to 〈 Ĵ S〉vac = ± 1
2�k̂ is associated with every

mode (k,σ) of the zpf. For the unpolarized field the contributions of the right- and
left-hand polarizations compensate each other (for each k), and 〈 Ĵ S〉vac vanishes.
This is the reason why the term 1/2 in Eq. (6.125) is frequently omitted.

Consider now particles that couple with the right or left circularly polarized
portions of the vacuum field. Equation (6.126) suggests that they acquire a com-
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ponent of angular momentum, just as they acquire energy or linear momentum, as a
result of the coupling.

The above decomposition (6.122) into orbital and spinorial components of the
radiation field possesses only a relative value. A detailed relativistic treatment of the
field (recall that the radiation field is relativistic) shows that only the total angular
momentum J satisfies a conservation law, but not its separate parts. The reason is
that such decomposition is in general neither covariant nor gauge invariant, so it lacks
a well-defined physical meaning. A detailed discussion of these matters can be seen
in Rohrlich (1965) .

6.2.5 Gyromagnetic Factor for the Electron

It was discovered experimentally that the g-factor associated with the spin magnetic
moment of the electron has an approximate value gS = 2, whereas for the orbital
magnetic moment the g-factor is gL = 1. This characteristic value of gS is incorpo-
rated into nonrelativistic quantum theory by hand, usuallywithout further elaboration
(it must be remarked that from the theory of Lande’s factor it follows that for L = 0,
g = 2; see Greiner 1998, Sect. 11.9). The issue is normally solved by resorting to
the Dirac equation, which predicts the value gS = 2 (plus corrections arising from
qed). Since the present theory produces the electron spin, it becomes of interest to
investigate the value predicted by it for the factor gS .

Traditionally the gyromagnetic ratio of the electron has not been a subject for
sed, due to the fact that the theory has paid little attention to the spin itself, as
mentioned earlier. An exception to this is the (quite elaborate) calculation made in
de laPeña and Jáuregui (1982) (see alsoThe Dice, Sect. 8.3.4), using as a startingpoint
the Fokker-Planck equation in the Markovian approximation. The problem studied
was a spherical harmonic oscillator of natural frequency ω0, subject to an external
homogeneous magnetic field B in the z -direction. In terms of the Larmor frequency
ωL = |e| B/2mc, the procedure led in the weak-field limit, when ωL � ω0, to a
total average energy given (in the present notation) by

Eσ = 1

2

[
3

2
�ω0 + ωL

(〈Lz〉 + 2Sσ
z

)]
, (6.127)

where the overall factor 1/2 comes from the fact that the average is taken over half
the ensemble, for a given value of σ. This expression contains already the correct
result gS = 2 in front of the term Sσ

z . To be precise, one should add that the referred
calculations were made using the methods characteristically employed in sed during
the eighties. Such methods led to the occurrence of some erroneous coefficients,
although the correct Eq. (6.127) was derived.

With the tools developed so far one can nowmake a straightforward calculation of
gS . For this purpose consider the electron acted on, in addition to the external force
f (x), by a static uniform magnetic field B = B ẑ. The contribution of the orbital

http://dx.doi.org/10.1007/978-3-319-07893-9_8
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angular momentum L to the Hamiltonian is given by

Ĥ = −μ̂ · B = −μz B, (6.128)

where μ̂ = −(gμ0 L̂)/� is the magnetic moment due to L̂, μ0 = |e| �/(2mc) is the
Bohr magneton (with −e = |e|), and gL = 1. Therefore the mean energy is

E = − e

2mc
B〈L̂ z〉 = μ0

�
B〈L̂ z〉. (6.129)

Consider a situation in which the spin projection along ẑ has a well-defined value,
say 〈Ŝz〉 = +�/2. This means that one should take into account only the action of
the subensemble of the zpf that corresponds to σ = +. Resorting to Eq. (6.112) to
write the contribution to 〈Lz〉 from the subensemble with σ = + as (〈L̂ z〉 + �)/2,
the component of E of interest is

E+ = μ0

�
B

(
1

2
〈L̂ z〉 + �

2

)
= μ0

2�
B

(
〈L̂ z〉 + 2〈Ŝz〉+

)
. (6.130)

An analogous result holds for the subensemble with σ = −, for which 〈Ŝz〉 = −�/2,

E− = μ0

�
B

(
1

2
〈L̂ z〉 − �

2

)
= μ0

2�
B

(
〈L̂ z〉 + 2〈Ŝz〉−

)
. (6.131)

The corresponding Hamiltonians describing each part of the magnetic interaction of
the electron are therefore Ĥ+

L S, Ĥ−
L S, with

Ĥ+
L S = μ0

2�
B

(
L̂ z + 2Ŝz

)
= Ĥ−

L S; (6.132)

thus the complete Hamiltonian (which includes both polarizations) reads

ĤL S = Ĥ+
L S + Ĥ−

L S = μ0

�
B

(
L̂ z + 2Ŝz

)
. (6.133)

This contains the correct g-factor of 2 for the spin of the electron. It is clear that such
value derives from the two degrees of freedom associated with the polarization of
the zpf.

The result (6.133) gives a precisemeaning to the operator appearing inEq. (6.117).
Indeed, from this latter equation one can write Ô = (L̂ + 2Ŝ)/2, whence

ĤL S = μ0

�
B ·

(
L̂ + 2Ŝ

)
= −μ̂ · B, (6.134)

with

μ̂ = −2μ0

�
Ô. (6.135)
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This directly relates Ô with the total magnetic moment operator of the atomic elec-
tron.

Since with the present results we have at hand the usual theory of the electron
spin, it is straightforward to incorporate it as usual to the Schrödinger equation and
thus arrive at the Pauli equation.

6.3 Concluding Comments

We have found that the theory predicts radiative corrections to the results derived
with the Schrödinger equation, which to lowest-order coincide with the correspond-
ing ones of nonrelativistic qed. This is not a coincidence, since both theories are
essentially equivalent in their physical content (to the order of approximation here
studied), although very different in their conceptual perspective. In addition, just as
the quantum-mechanical behavior at the Schrödinger (or Heisenberg) level ensues
from the interaction with the zpf, also the spin of the electron emerges as a result of
such interaction. This is a most noteworthy outcome, since in quantum mechanics
the spin is considered to be an innate property of the electron.

Appendix A

Contribution of Diffusion to the Energy Shift

In Sect. 6.1.5, Eq. (6.51) is obtained for the radiative shift of the energy level n.
To calculate its value in the Markovian approximation (which amounts to taking
e2D̂(t)Q to lowest order in e2, as explained in Chap. 4) we start from the expression
for D̂ in terms of the diffusion operators, Eq. (4.17),

e2D̂i = D pp
i j

∂

∂ p j
+ D px

i j
∂

∂x j
, (A.1)

with

D pp
i j = e2

∫ t

−∞
dt ′ϕ(t − t ′)

∂ p j

∂ p′
i
, D px

i j = e2
∫ t

−∞
dt ′ϕ(t − t ′)

∂x j

∂ p′
i
. (A.2)

We thus have (in one-dimensional notation)

e2xD̂Q = D ppx
∂Q

∂ p
+ D px x

∂Q

∂x
. (A.3)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Performing the integration over phase space we get

e2
〈
xD̂

〉
= e2

∫
xD̂Qdxdp =

∫ (
D ppx

∂Q

∂ p
+ D px x

∂Q

∂x

)
dxdp. (A.4)

Upon an integration by parts this becomes

e2
〈
xD̂

〉
= −

〈
D px + x

(
∂D pp

∂ p
+ ∂D pp

∂x

)〉
= − 〈

D px 〉 , (A.5)

where the last equality follows from Eq. (B.15) in Appendix 4B, namely

∂D pp
i j

∂ p j
+ ∂D px

i j

∂x j
= 0. (A.6)

For the calculation of 〈D px 〉n we resort to equation (B.14b) with 2η = �, which
gives

〈
D px 〉

n = ie2

�

∫ t

−∞
dt ′ϕ(t − t ′)

〈[
x̂(t), x̂(t ′)

]〉
n , (A.7)

so that

e2
〈
xD̂

〉
n

= − ie2

�

∫ t

−∞
dt ′ϕ(t − t ′)

〈[
x̂(t), x̂(t ′)

]〉
n . (A.8)

The mean value of the commutator is

〈[
x̂(t), x̂(t ′)

]〉
n = −2i

∑
k

|xnk |2 sinωkn(t − t ′).

Thus, with ϕ(t − t ′) given by Eq. (4.10), i.e.,

ϕ(t − t ′) = 4π

3

∫ ∞

0
ρ0(ω) cosω(t − t ′)dω, (A.9)

and ρ0 given by (6.4), Eq. (A.8) gives

e2
〈
xD̂

〉
n

= − 4e2

3πc3
∑

k

|xnk |2
∫ ∞

0
dω ω3

∫ t

−∞
dt ′ cosω(t − t ′) sinωkn(t − t ′).

(A.10)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Making the change of variable t − t ′ = s and introducing

∫ ∞

0
ds cosωs sinωkns = 1

2

∫ ∞

0
ds [sin(ωkn + ω)s + sin(ωkn − ω)s] (A.11)

= ωkn

ω2
kn − ω2

,

in Eq. (A.10) gives, finally,

e2

2

〈
x D̂

〉
n

= − 2e2

3πc3
∑

k

|xnk |2 ωkn

∫ ∞

0
dω

ω3

ω2
kn − ω2

. (A.12)

Appendix B

Angular-Momentum Components for the Harmonic Oscillator

In this appendix we calculate the right-hand side of Eq. (6.92) for the harmonic
oscillator in its ground state,

〈
Li j

〉
0 = 1

τω2
0

〈D px
ji − D px

i j 〉. (B.1)

With D px
i j given by Eq. (B.14b) in appendix 4B (and 2η = �), we get

〈D px
ji − D px

i j 〉Q = −2ie2

3πc3

∫ ∞

0
dω ω3

∫ t

−∞
dt ′ cosω(t − t ′)

〈[
x̂ ′

j , x̂i

]
− [

x̂ ′
i , x̂ j

]〉
.

(B.2)
For the ground state we have

〈[
x̂ j (t

′), x̂i (t)
] − [

x̂i (t
′), x̂ j (t)

]〉
0 (B.3)

= −2
∑

k

(
xi0k x jk0 − x j0k xik0

)
cosωk0(t − t ′),

where the summation is performed over all possible excited states k > 0 connected
to the ground state via the matrix elements xi0k . Inserting this expression into (B.2)
and resorting to Eq. (D.8) in appendix 4D, namely

∫ t

−∞
dt ′ cosω(t − t ′) cosωk0(t − t ′) = π

2
[δ(ω − ωk0) + δ(ω + ωk0)], (B.4)

we obtain (with ωk0 > 0)
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〈D px
ji − D px

i j 〉0 = 2e2

3mc3
∑

k

imω3
k0

(
xi0k x jk0 − x j0k xik0

)

= τ
∑

k

ω2
k0

(
xi0k p jk0 − x j0k pik0

)
. (B.5)

For the harmonic oscillator the only term that contributes to the sum is k = 1, with
ωk0 = ω0, whence Eq. (B.5) reads

〈D px
ji − D px

i j 〉0 = τω2
0

(
xi01 p j10 − x j01 pi10

) = τω2
0

〈
Li j

〉
0 . (B.6)

Thus Eq. (B.1) reduces to an apparent tautology on account of the dynamics.

Appendix C

Calculation of 〈S2〉

To find
〈
L2

〉±
for the harmonic oscillator in its ground state we use Eq. (6.102),

namely

− 2ω2
0τ

〈
L2

〉
0

= e2
〈
∂L2

∂ pi
D̂i

〉

0
. (C.1)

In order to calculate the right-hand side of this equation we proceed as in appendix
A. Specifically, we resort to Eq. (A.1) to write

e2
∂L2

∂ pi
D̂i Q = ∂L2

∂ pi
D pp

i j
∂Q

∂ p j
+ ∂L2

∂ pi
D px

i j
∂Q

∂x j
. (C.2)

Integration of this expression over phase space gives (after an integration by parts),

e2
〈
∂L2

∂ pi
D̂i

〉
=

∫ (
∂L2

∂ pi
D pp

i j
∂Q

∂ p j
+ ∂L2

∂ pi
D px

i j
∂Q

∂x j

)
dxdp (C.3)

= −
〈

∂

∂ p j

(
∂L2

∂ pi
D pp

i j

)
+ ∂

∂x j

(
∂L2

∂ pi
D px

i j

)〉

= −
〈

D pp
i j

∂2L2

∂ p j∂ pi
+ D px

i j
∂2L2

∂x j∂ pi

〉
,

where in the third line we used Eq. (A.6). Taking into account that for the isotropic
harmonic oscillator

∂ p j

∂ p′
i

= δi j cosω0(t − t ′),
∂x j

∂ p′
i

= δi j
1

mω0
sinω0(t − t ′), (C.4)
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equation (A.2) shows that the diffusion coefficients are diagonal,

D pp
i j = δi j e

2
∫ t

−∞
dt ′ϕ(t − t ′) cosω0(t − t ′) = δi j D pp,

D px
i j = δi j

e2

mω0

∫ t

−∞
dt ′ϕ(t − t ′) sinω0(t − t ′) = δi j D px ,

whence Eq. (C.3) reduces to

e2
〈
∂L2

∂ pi
D̂i

〉
= −

〈
D pp ∂2L2

∂ pi∂ pi
+ D px ∂2L2

∂xi∂ pi

〉
, (C.5)

where summation over i is understood.
Now, since L2 = r2 p2 − (r · p)2 , we have that

∂2L2

∂ pi∂ pi
= 4r2,

∂2L2

∂xi∂ pi
= 0, (C.6)

and (C.5) reads

e2
〈
∂L2

∂ pi
D̂i

〉
= −4e2

〈
r2

〉 ∫ t

−∞
dt ′ϕ(t − t ′) cosω0(t − t ′). (C.7)

With ϕ(t − t ′) given by (A.9), Eq. (C.7) becomes, for the ground state,

e2
〈
∂L2

∂ pi
D̂i

〉

0
= − 8�e2

3πc3

〈
r2

〉
0

∫ ∞

0
dω ω3

∫ t

−∞
dt ′ cosω(t − t ′) cosω0(t − t ′).

(C.8)
For the integral over t ′ we use Eq. (B.4), so that

e2
〈
∂L2

∂ pi
D̂i

〉

0
= −4�e2

3c3
ω3
0

〈
r2

〉
0
. (C.9)

The factor 〈r2〉0 is calculated in accordance with the quantum methods, giving

〈r2〉0 = 3〈x̂2〉0 = 3x01x10 = 3�

2mω0
.

Equation (C.1) becomes finally (Marshall 1965; de la Peña and Jáuregui 1982)

〈
L2

〉
0

= m�ω0

〈
r2

〉
0

= 3

2
�
2. (C.10)
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This value of
〈
L2

〉
0 takes into account the action of the whole zpf, with both states of

circular polarization active. Considering the action of a single state of polarization
σ = ±, we get 〈

S2
〉σ ≡

〈
L2

〉σ
0

= 3

4
�
2. (C.11)
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