
Chapter 3
The Planck Distribution, a Necessary
Consequence of the Fluctuating
Zero-Point Field

With this chapter we initiate our analysis of the implications of considering the
fluctuating zero-point radiation field (zpf) as a fundamental constituent of an other-
wise classical system. As announced in the introductory chapter, our journey starts
with a fresh look at a simple though physically (and historically) relevant system,
namely the electromagnetic radiation field in equilibrium with matter at temperature
T . The blackbody problem, the one that gave birth to quantum mechanics, is thus
revisited, taking into account the zpf. The mere existence of this nonthermal field is
shown to have far-reaching consequences. In particular, by performing a thermody-
namic and statistical analysis of an ensemble of harmonic oscillators of frequency ω
representing the modes of the radiation field of the respective frequency, we find that
Planck’s law, as well as irreducible (quantum) fluctuations, arise as necessary conse-
quences of allowing for the presence of the pervarsive zpf, without any assumption
of discreteness.

3.1 Thermodynamics of the Harmonic Oscillator

Let us start by considering a one-dimensional harmonic oscillator of frequency ω,

with the Hamiltonian given by1

H = (p2 + ω2q2)/2. (3.1)

For amaterial oscillator ofmassm = 1, q and p stand for the oscillator’s position and
momentum, respectively. Now, of relevance for our purposes is that amonochromatic
mode of frequency ω of the radiation field is equivalent to a harmonic oscillator of
that same frequency. In this case H refers to the energy of such mode, and q and p
represent its quadratures.

1 This first part of the exposition borrows from thework ofBoyer (1969b, 2003),who has contributed
substantially to the analysis of the Planck distribution from a perspective akin to the one developed
here. See also Boyer (1969a, 1976, 1983, 1984, 2010a, b, 2012), Marshall (1965), and Theimer
(1971).
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68 3 The Planck Distribution

Several basic properties of the harmonic oscillator can be derived from the
structure of (3.1), and thus hold irrespective of the oscillator’s nature. In particu-
lar, for a given constant energy U, the trajectory in phase space is the ellipse

p2 + ω2q2 = 2U, (3.2)

and its area gives the action

J = 1

2π

∮
pdq = 1

2πω

∮ √
2U − ω2q2 d (ωq) = U

ω
. (3.3)

The action J is an adiabatic invariant of the harmonic oscillator (see e.g. Landau and
Lifshitz (1976), Sect. 49; José and Saletan (1998), Sect. 6.4), which means that it
remains constant under a slow change of the frequency. Therefore, the change dU
in the energy concomitant with the slow change dω is given by

dU = Jdω = U

ω
dω, (3.4)

so that the work dW done by the system on the external device effecting the change
of frequency is

dW = −U

ω
dω. (3.5)

From here it follows that if S(T,ω) stands for the entropy of the system when this
latter is in thermodynamic equilibrium at temperature T , for a reversible process one
may write

T d S(T,ω) = dU (T,ω) + dW = dU (T,ω) − U

ω
dω, (3.6)

consequently

T

(
∂S

∂T

)
ω

dT + T

(
∂S

∂ω

)
T

dω =
(

∂U

∂T

)
ω

dT +
[(

∂U

∂ω

)
T

− U

ω

]
dω. (3.7)

Since the changes in the variables T and ω are independent, this relation naturally
splits into the pair of equations

T

(
∂S

∂ω

)
T

=
(

∂U

∂ω

)
T

− U

ω
, (3.8)

T

(
∂S

∂T

)
ω

=
(

∂U

∂T

)
ω

. (3.9)
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We utilize these two relations by taking the partial derivative of the first one with
respect to T and of the second one with respect to ω, and combine the results to get

(
∂S

∂ω

)
T

= − 1

ω

(
∂U

∂T

)
ω

. (3.10)

Substitution into Eq. (3.8) gives

(
∂U

∂ω

)
T

− U

ω
= −T

ω

(
∂U

∂T

)
ω

. (3.11)

The solution of this equation can be found by writing U = ω f (T,ω) to cancel the
term U/ω, whence

ω

T

(
∂ f

∂ω

)
T

= −
(

∂ f

∂T

)
ω

. (3.12)

This equation holds for any function f of the single variable ω/T , as can be easily
verified; hence Eq. (3.11) admits the general solution

U = ω f (ω/T ). (3.13)

Equation (3.13) is indeed a very important result: it is Wien’s law, which establishes
the general form of the mean energy U of any harmonic oscillator as a function of its
frequencyω and the temperature T . This lawwill be at the basis of our considerations
below.2,3

We now present some additional results concerning the thermodynamics of the
harmonic oscillator that will be useful below. The Helmholtz free energy F takes
the form

F(T,ω) = −kB T φ(ω/T ), (3.14)

where kB is Boltzmann’s constant and φ is a thermodynamic potential from which
the thermodynamic functions of the oscillator can be determined. In particular the
mean equilibrium energy becomes

2 Wien’s law is a fundamental law of physics, since only simple and very general principles are
required for its derivation. It is valid in classical as well as in quantum physics, and is even consistent
with relativity, so it was the appropriate law to herald the 20th century. To get a better feeling of
its fundamental nature, a derivation based solely on dimensionality arguments can be found in
Sommerfeld’s classical book on Thermodynamics (Sommerfeld 1956). Simple clear discussions
of Wien’s law can be seen in two highly pedagogical papers: Piña and de la Selva (2010), and del
Río-Correa (2010).
3 We recall that for the derivation of his law, Wien studied the Doppler effect of the modes of an
adiabatically disturbed radiation field in thermal equilibrium (see e.g. Milonni 1994).
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U (T,ω) = kB T 2
(

∂φ

∂T

)
ω

= −kBω
dφ(z)

dz
, (3.15)

with z = ω/T . Comparison with Wien’s law gives

f (z) = −kB
dφ

dz
. (3.16)

Finally, the entropy is also a function of the variable z,

S(z) = kBφ(z) + z f (z). (3.17)

These results suffice for our purposes.

3.1.1 Unfolding the Zero-Point Energy

In the low-temperature limit T → 0, Eqs. (3.13) and (3.15) give for the mean energy

E0 ≡ U (0,ω) = ω f (∞) = −kBω
dφ

dz
(∞) = Aω, (3.18)

so that the zero-point energy E0—the mean energy of the oscillator at absolute tem-
perature T = 0—is determined by the value that the function f (z) (or dφ/dz) attains
at infinity.4 In the usual thermodynamic analysis the value of the constant A = f (∞)

is arbitrarily chosen as zero, so there is no athermal energy. However, the more gen-
eral (and more natural) solution corresponds to a nonnull value of A. In the case
of the radiation field oscillators, this represents a physically more reasonable choice
than a vacuum that is completely devoid of electromagnetic phenomena. By taking
A to be nonzero we attest the existence of a zero-point energy that fills the whole
space and is proportional to the frequency of the oscillator,5,6

4 Some textbook demonstrations of Wien’s law cast doubt about extending its validity to the limit
T = 0. That Eq. (3.13) holds also at T = 0 is explicitly demonstrated in Cole (1990).
5 That the only spectrum consistent with relativity (and hence with electromagnetic theory) cor-
responds to E0(ω) ∼ ω , has been demonstrated independently by several authors. The earliest of
such demonstrations are those in Marshall (1963), Santos (1968), and Boyer (1969b). See also Cole
(1990), Milonni (1994), Chap. 2; and The Dice, Chap. 4. The present thermodynamic calculation
leads to the same expression, Eq. (3.18). Further, the Schrödinger equation provides a similar pre-
diction for the ground-state energy of a particle in a harmonic oscillator potential. Here we have a
vivid example of the intrinsic unity of physics, reinforcing the idea that it refers to different aspects
of a single reality.
6 Taking A = 0 is equivalent to putting the boundary condition for the solutions of Maxwell’s
equations at infinity in the past equal to zero, i. e. no radiation. The choice A �= 0 replaces this
unnatural boundary condition by a zero-point field at infinity, simultaneously restoring time-reversal
symmetry in electrodynamics.
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E0 = Aω = 1
2�ω. (3.19)

The value of A (with dimensions of action) must be universal because it determines
the equilibrium spectrum at T = 0, which, according to Kirchhoff’s law, has a
universal character. We have put it equal to �/2 in order to establish contact with
present-day knowledge. However, it must be stressed that the presence of the Planck
constant here does not imply any quantum connotation. In addition, it should be
noticed that many of the results to be obtained in the present chapter do not depend
on the precise value of E0, the only requirement being in such instances that it be
different from zero.

A nonnull value of A means a violation of energy equipartition among the oscilla-
tors, since the equilibrium energy becomes now a function of the oscillator frequency.
Though at this stage such violation can strictly be assured only at T = 0, the result
suggests that the physics ensuing from the existence of E0 �= 0 necessarily transcends
classical physics. This opens up interesting possibilities that will be explored along
this chapter.

In concluding this section, let us note that the existence of a zero-point energy
provides a natural energy scale, which, along with kB T , suggests to introduce the
dimensionless quantity

z̊ = 2E0
kB T

= �

kB
z = �ω

kB T
. (3.20)

Thiswill be the natural dimensionless variable of the thermodynamic functions, since
the potential φ in Eq. (3.14) is a dimensionless function of z and can therefore be
expressed as a function of z̊.

3.2 General Thermodynamic Equilibrium Distribution

Our aim is to find the average energyU per oscillator in an ensemble of such systems
when equilibrium has been reached at a fixed temperature T . For this purpose we
first follow the standard description of a canonical ensemble (Pathria 1996). In this
case, the probability that a member of the ensemble is in a state with energy between
E and E + dE can be written in the general form

Wg(E)dE = 1

Zg(β)
g(E)e−βEdE, (3.21a)

Zg(β) =
∫

g(E)e−βEdE, (3.21b)

where β = 1/(kB T ), Zg(β) is the partition function that normalizes Wg(E) to unity,
and g(E) is a weight function representing the density of states with energy E . The
mean value 〈 f (E)〉 of any function f (E) is thus
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〈 f (E)〉 =
∫

Wg(E) f (E)dE . (3.22)

For f (E) = E , (3.22) gives the mean energy

U = 〈E〉 =
∫
EWg(E)dE . (3.23)

Equation (3.21a) constitutes the general form of a Boltzmann distribution.7 In par-
ticular, the corresponding classical distribution for the harmonic oscillator is obtained
from (3.21a) with g(E) given by Pathria (1996)

gclassic(E) = 1

sω
, (3.24)

where s is a constantwith dimensions of action, so g has the dimension of (energy)−1.
In this case one gets from the above equations

Wcl(E) = Wgcl(E) = e−βE∫
e−βEdE ; (3.25a)

Zcl(β) =
∫

gcl(E)e−βEdE = 1

sβω
; (3.25b)

〈E〉 = U = − 1

Zcl

d Zcl

dβ
= 1

β
= kB T . (3.25c)

From the last equation it follows that U (T = 0) = 0. This means that to allow for
a zero-point energy, a form for g(E) different from that given by Eq. (3.24) must be
used. The specific structure of this g(E) consistent with a zero-point energy for the
harmonic oscillator will be determined below.

3.2.1 Thermal Fluctuations of the Energy

Equations (3.21a, 3.21b) and (3.22) lead to a series of important and general results.
With f (E) = Er , r a positive integer, it follows that (the prime indicates derivative
with respect to β)8

7 This form of writing Wg(E) was used, for example, by Einstein (1907) in his early work on the
specific heat of solids. He considered the distribution in (3.21a) assuming from the start a form
for the function g(E) equivalent to (3.82) below, as was dictated by the quantization discovered by
Planck. Here we proceed in the opposite sense, by allowing the theory to determine g(E).
8 The present discussion draws closely from de la Peña and Cetto (2002), de la Peña et al. (2008,
2010a, b), Valdés-Hernández et al. (2010), Valdés-Hernández (2010).
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〈Er 〉′ = − Z ′
g

Zg

〈Er 〉 − 1

Zg

∫
Er+1g(E)e−βEdE = − Z ′

g

Zg

〈Er 〉 − 〈
Er+1

〉
, (3.26)

and further, from (3.21b),

〈E〉 = U = 1

Zg

∫
Eg(E)e−βEdE = − Z ′

g

Zg
. (3.27)

These two expressions combined give the recurrence relation

〈
Er+1

〉
= U

〈Er 〉 − 〈Er 〉′ , (3.28)

which can be extended to any continuous function h(E) to obtain

− 〈h(E)〉′ = 〈Eh(E)〉 − U 〈h(E)〉 . (3.29)

Thus − 〈h(E)〉′ is given in general by the covariance of h(E) and E .
Equation (3.28) with r = 1 gives a most important expression for the energy

variance,

σ2
E ≡

〈
(E − U )2

〉
=

〈
E2

〉
− U 2 = −dU

dβ
, (3.30)

which can be rewritten as the well-known relation (Mandl 1988)

σ2
E = −dU

dβ
= kB T 2

(
∂U

∂T

)
ω

= kB T 2Cω (3.31)

in terms of the specific heat (or heat capacity) Cω .9 Because Cω is surely finite at
low temperatures, the right-hand side of this expression is zero at T = 0, whence

σ2
E (T = 0) = 0, (3.32)

which shows that the description provided by the distribution Wg does not allow
for the dispersion of the energy at zero temperature. The fact that Wg offers a ther-
modynamic description that admits thermal fluctuations only, and has no room for
temperature-independent fluctuations, is an important shortcoming, as is clear when
we consider a collection of harmonic oscillators (such as those of the electromag-
netic field in equilibrium inside a cavity) which are endowedwith a zero-point energy
given by (3.19). Indeed, for such system the distribution Wg leaves out the fluctua-
tions of the nonzero nonthermal component of the energy. We continue to work here

9 Cω coincides with the specific heat at constant volume, so the usual notation in this context is CV .
Still, we employ the subindex ω since we are considering ω to be a fixed parameter.
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with the thermodynamic description, but later on we shall introduce a full-fledged
statistical description that overcomes this limitation.

3.2.2 Some Consequences of the Recurrence Relation

The recurrence relation (3.28) and the Wien law can be recast into other interesting
forms as follows. First we observe that the equation

〈Er 〉 = 1

Zg(β)

∫
Erg(E)e−βEdE, (3.33)

with the substitutions E = E0ε (ε dimensionless), and z̊ = 2E0β, gives
〈Er 〉 = Er

0 fr (E0, z̊), (3.34)

where fr (E0, z̊) is defined as

fr (E0, z̊) =
∫

εrg(E0ε)e−z̊ε/2dε∫
g(E0ε)e−z̊ε/2dε

.

As follows fromEq. (3.34), fr is an adimensional function, hence it can be expressed
as a function of the adimensional parameter z̊ only. For the harmonic oscillator we
use Wien’s law to write E0 = Aω, so that Eq. (3.34) reads

〈Er 〉 = ωr Ar fr (z̊), (3.35)

which is a generalization of Wien’s law for any power r.
On the other hand, the general recurrence relation between the moments of the

energy, Eq. (3.28), can be rewritten as follows, using Eq. (3.31),

〈
Er+1

〉
= U

〈Er 〉 − d

dβ

〈Er 〉 = U
〈Er 〉 + σ2

E
d

dU

〈Er 〉 , (3.36)

or
〈
Er+1

〉
=

(
U + σ2

E
d

dU

) 〈Er 〉 . (3.37)

Successive iterations of this equation yield

〈Er 〉 =
(

U + σ2
E

d

dU

)r−1

U. (3.38)
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This reveals U + σ2
E (d/dU ) as a kind of ‘raising’ operator for the higher moments

of the energy, beginning with the first moment 〈E〉 = U . It is clear that for σ2
E (U )

even in U , the moments 〈Er 〉 (U ) have the parity of r.
The second centered moment of the energy is σ2

E = 〈
(E−U )2

〉 ; for the third one
we obtain

〈
(E−U )3

〉
=

〈
E3

〉
− 3Uσ2

E − U 3

= σ2
E

d

dU

〈
(E−U )2

〉
, (3.39)

and by induction it can be seen that this last result generalizes into

〈
(E−U )r 〉 = σ2

E
d

dU

〈
(E−U )r−1

〉
(3.40)

for any integer r ≥ 1. This equation shows that at T = 0, all centered moments are
zero because of (3.32); hence the energy is exactly E0, and its distribution function
reduces to δ(E − E0) in this thermodynamic analysis.

3.3 Planck’s Law from the Thermostatistics
of the Harmonic Oscillator

3.3.1 General Statistical Equilibrium Distribution

It now becomes necessary to extend our description so as to allow for nonthermal
fluctuations of the zero-point energy of the field, which are excluded by Wg . This can
be achieved by paying attention to the statistical distribution of the energy Ws(E).
Since for every frequency the field contains a huge number of modes, the central
limit theorem applies (Grimmett and Stirzaker 1983; Papoulis 1991) and hence the
field amplitude of frequency ω follows a normal distribution. This means that the
energy distribution follows the simple law

Ws(E) = 1

U
e−E/U , (3.41)

with ∫
Ws(E)dE = 1,

∫
EWs(E)dE = U, (3.42)

and the corresponding energy dispersion is given by (the subscript s denotes averages
taken with respect to Ws , to be distinguished from those calculated with Wg)10

10 This is a well-known statistical result, established for the first time by Lorentz for the thermal
radiation field. A simple demonstration is given in Vedral (2005). Inclusion of the zero-point
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(
σ2
E
)

s
= U 2. (3.43)

This (exponential) distribution of the energy [subject to the constraints (3.42)] has
the property of maximizing the statistical entropy Ss , defined as

Ss = −kB

∫
Ws(E) ln cs Ws(E)dE, (3.44)

where cs is an appropriate constant with dimension of energy. Since the entropy is
usually interpreted as a measure of the disorder present in the system (see e.g. Callen
1985; Mandl 1988), the maximal entropy property means maximum disorder, which
is the natural demand for a system constituted by a huge number of independent
components once equilibrium has been reached.

From Eq. (3.43) we see that Ws allows indeed for zero-point fluctuations, since
at T = 0

(σ2
E )s

∣∣∣
0

= U 2(T = 0) = E2
0 , (3.45)

which means that there is a nonthermal contribution to the energy fluctuations, with
variance E2

0 . The thermal contribution σ2
ET

to the energy fluctuations at any tem-

perature is obtained by subtracting from the total ones this nonthermal term E2
0 .

This is true because the thermal and nonthermal fluctuations have an entirely dif-
ferent source, so they are statistically independent, with a null correlation [see the
discussion following Eq. (3.90)]. That is,

σ2
ET

= (σ2
E )s − E2

0 , (3.46)

whence

σ2
ET

= U 2 − E2
0 . (3.47)

Recalling that σ2
E in Eq. (3.31) stands for the thermal fluctuations of the energy, we

can combine this latter with (3.47) and write (omitting the subindex T )

σ2
E = U 2 − E2

0 = −dU

dβ
. (3.48)

Before studying the consequences of this relation we observe that the distribu-
tion (3.41) leads to recurrence relations incorporating the nonthermal fluctuations.
Indeed (3.41) gives for the moments of the energy

(Footnote 10 continued)
component does not modify this statistical property, since the argument to establish it remains in
force.
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〈Er 〉
s = r !Ur , (3.49)

and making reiterative use of this equation one obtains

〈Er 〉
s = U

〈
Er−1

〉
s
+ (σ2

E )s
d

dU

〈
Er−1

〉
s
. (3.50)

Thus a sophisticated form of writing (3.49) in terms of a raising operator is

〈Er 〉
s =

(
U + (σ2

E )s
d

dU

) 〈
Er−1

〉
s
, (3.51)

a result analogous to the previous recurrence relation (3.38), but now including the
zero-point fluctuations. A much simpler, alternative form of this relation is

〈Er 〉
s = rU

〈
Er−1

〉
s
. (3.52)

3.3.2 Mean Energy as Function of Temperature;
Planck’s Formula

We note from Eq. (3.48) that knowledge of the variance σ2
E as a function of U is

enough to determine U (β). Indeed, an integration of this equation—which articu-
lates both thermodynamic and statistical information via Eqs. (3.31) and (3.46),
respectively—

dU

dβ
= E2

0 − U 2(β) (3.53)

gives the function U (β). Subject to the condition U → ∞ as T → ∞, the result is

U (β) =
{

1
β , for E0 = 0;
E0 coth E0β, for E0 �= 0.

(3.54)

Although the case E0 = 0 can of course be obtained from the last expression in the
limit E0 → 0, it is more illustrative to treat the two cases separately. As seen from
Eq. (3.54), the mean energy as a function of the temperature depends critically on
the presence of E0. For E0 = 0 the classical energy equipartition is recovered,

Ucl = β−1 = kB T, (3.55)

whereas for E0 = �ω/2 Planck’s law is obtained,
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UPlanck(ω, T ) = 1
2�ω coth 1

2�ωβ. (3.56)

By taking the limit T → 0, we verify that UPlanck includes the zero-point energy,11

UPlanck(β → ∞) = 1
2�ω = E0. (3.57)

This establishes Planck’s law as a physical result whose ultimate meaning—or
cause—is the existence of a fluctuating zero-point energy of the field oscillators.

It is important to stress that Planck’s law has been obtained without the introduc-
tion of any explicit quantum or discontinuity requirement. Equation (3.53) results
from a thermostatistical analysis of the field modes, based on the properties of Wg

and Ws , together with Wien’s law, which opens the door to their zero-point energy
Aω. This leads us to conclude that Wien’s law with A �= 0 in Eq. (3.18) consti-
tutes an extension of classical physics into the quantum domain—as evidenced by
the quantum properties of the harmonic oscillator that ensue from Planck’s law (see
below). Thus, strictly speaking, Wien’s law stands as a precursor of Planck’s, and
should be considered historically to contain the first quantum law.

The demonstration that the law that gave rise to quantum theory stems from the
existence of a fluctuating zero-point energy, brings to the fore the crucial importance
of this nonthermal energy for the understanding of quantum mechanics or, more
generally, of quantum theory.

A brief comment on the thermal fluctuations of the energy seems in place before
ending this section. We have seen that for E0 �= 0 the thermal energy dispersion is
given by

σ2
ET

(U ) = U 2 − E02 (U = UPlanck), (3.58)

whereas in the classical case (E0 = 0),

σ2
ET

(U ) = U 2 (U = Ucl). (3.59)

Whilst in the latter case the thermal fluctuations of the oscillator’s energy depend
solely on its (purely) thermal mean energy, Ucl, in the former case Eq. (3.58)
relates the thermal fluctuations with the total mean energy UPlanck, which includes
the temperature-independent contribution. The statistical description initiated in
Sect. 3.3.1 will be resumed below, in Sect. 3.6.

11 Planck’s law without zero-point energy (the first relation derived by Planck) is obtained by fixing
the constant of integration precisely as −E0, so that U (β) = E0 coth E0β − E0. The existence of the
zero-point energy remains hidden with this choice.

An additional comment is in place here. At first sight it would seem plausible to take the constant
of integration in the first line of Eq. (3.54) as E0, so that the resulting function,U (ω, T ) = kB T +E0
is apparently consistent with both the existence of a nonthermal energy and Wien’s law. However,
such choice must be discarded since this U cannot be obtained as a limit case of E0 �= 0.
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3.4 Planck, Einstein and the Zero-Point Energy

The previous discussion suggests separating the average energyU Planck (which as of
now will be denoted simply byU ) into a thermal contributionUT and a temperature-
independent part E0,

U = UT + E0, (3.60)

so that Eq. (3.58) becomes

σ2
E = U 2

T + 2E0UT . (3.61)

The first term in Eq. (3.60)

UT = E0 coth E0β − E0 = 2E0
e2E0β − 1

, (3.62)

with E0 = �ω/2, is Planck’s law without the zero-point energy. At sufficiently low
temperatures UT takes the form

UT (β → ∞) = 2E0e−2E0β . (3.63)

This is the (approximate) expression suggested byWien at the end of the 19th century,
and considered for some time to be the exact law for the blackbody spectral distrib-
ution. Equations (3.63) and (3.61) represent the germ of quantum theory, since it is
precisely on their basis that Planck and Einstein advanced the notion of the quantum
(for the material oscillators and for the radiation field, respectively). The following
pages contain a discussion of their respective points of view and of the relations
between these and our present notions based on the reality of the zero-point energy.
A remarkable relationship will thus be disclosed.

3.4.1 Comments on Planck’s Original Analysis

In his initial studies on the radiationfield in equilibriumwithmatter, Planck (1900a, b)
used as point of departure the expression for the derivative of the entropy12

∂S

∂U
= 1

T
. (3.64)

In line with the views and knowledge of his time, Planck recognized only the thermal
energy, soU should be replaced here byUT . In the high-temperature limit the relation
(3.64) led him to write (putting UT (T → ∞) = kB T )

12 An early account of the material in this and the following two subsections is presented in
de la Peña and Cetto (2002), and de la Peña et al. (2010a, b).
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∂2S

∂U 2
T

= ∂

∂UT

(
kB

UT

)
= − kB

U 2
T

. (3.65)

For low temperatures Planck usedWien’s result (3.63), assuming it to afford an exact
description of the properties of the equilibrium field. He thus wrote

UT = 2E0e−2E0β = 2E0e−2E0/kB T = 2E0e−2(E0/kB )(∂S/∂UT ), (3.66)

whence

∂S

∂UT
= − kB

2E0 ln
UT

2E0 , (3.67a)

∂2S

∂U 2
T

= − kB

2E0UT
. (3.67b)

Not surprisingly, Eqs. (3.65) and (3.67b) give different results, since different tem-
perature regimes were used in each case. As the simplest possibility Planck assumed
that the description for arbitrary temperatures could be obtained by interpolating
Eqs. (3.65) and (3.67b) and consequently he proposed the relation

∂2S

∂U 2
T

= − kB

U 2
T + 2E0UT

. (3.68)

This equation leads directly to Planck’s lawwithout the zero-point term [Eqs. (3.62)],
a result that Planck (against his will) interpreted, as is well known, as due to the
quantization of the energy exchanged between the material oscillators of the cavity
and the equilibrium radiation field.13

13 The rationale behind Planck’s reading of his formula is the following. If the system composed
by the walls of the cavity (represented by a collection of material oscillators) and the enclosed
radiation field exchanges energy not continuously but by lumps (which he called quanta) of value
n�ω (n = 1, 2, 3, . . .), then the mean equilibrium energy is

U =
∑∞

n=0 n�ωe−βn�ω∑∞
n=0 e−βn�ω

.

Performing the summations with the aid of the relation
∑∞

n=0 xn = 1/(1 − x), one gets

U = �ω

e�ωβ − 1
,

which is just the UT in Planck’s theory. If by contrast a continuous exchange of energy is assumed
instead of a discrete one, the sum above must be replaced by an integral from 0 to ∞. The reader
can easily check that in this case the result is the classical formula UT = 1/β = kB T .
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3.4.2 Einstein’s Revolutionary Step

A few years later, Einstein argued that even though Eq. (3.68) was empirically con-
firmed (through Planck’s law), its full meaning remained to be clarified. For this
purpose Einstein chose also to take Eq. (3.64) as a safe point of departure, whence
he wrote

∂2S

∂U 2
T

= ∂

∂UT

1

T
= − 1

T 2Cω
, (3.69)

or

kB T 2Cω = −kB

(
∂2S

∂U 2
T

)−1

. (3.70)

Equation (3.70) combined with (3.68) and (3.31) gives

kB T 2Cω = −dUT

dβ
= σ2

E = U 2
T + 2E0UT , (3.71)

which is the same as (3.61). Einstein recognized the disagreement between this result
and the classical expression σ2

E = U 2
T . As is well known, it is here where he made his

most—according to him (Rigden 2005), his only—revolutionary step in physics. He
interpreted the first term on the right-hand side of (3.71) as due to the fluctuations of
the thermal field produced by the interference among its modes of a given frequency.
This interpretation follows from considering the limit of (3.71) at high temperatures,
at which UT � E0 and therefore σ2

E = U 2
T , as was predicted by Lorentz on the basis

of Maxwell’s equations and is discussed in relation with Eq. (3.43). Einstein thus
saw in this term a direct manifestation of the wavelike nature of light.

As for the second term in (3.71), which in the context of classical thermodynamics
is completely unexpected, the fact that it leads to the quantum theory of Planck led
Einstein to interpret it in terms of light quanta (Einstein 1905a, b), seeing in the
expression 2E0UT a manifestation of discrete properties of the radiation field, as
follows. According to Planck, the average energy exchanged between n material
oscillators (representing the walls of the cavity) of frequencyω and the radiation field
is�U = �ω〈n〉, and contributes with σ2

�U = 2E0�U = �
2ω2〈n〉 to the fluctuations

of the field, as follows from (3.71). For Einstein, the linearity of the variance in
〈n〉 suggested a Poisson distribution of n independent events, each corresponding
to an exchange of energy equal to �ω = 2E0.14 It is the interpretation by Einstein
of the linear term as representing a discrete or ‘corpuscular’ contribution, with each

14 A Poisson distribution refers to the probability of n independent discrete events taking place
simultaneously, and has the form

Pa(n) = e−a an

n! .

It is easy to verify that for this distribution the mean of n is 〈n〉 = a and its variance is precisely
σ2

n = 〈n〉 .
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corpuscle being an independent packet of energy �ω,what gave birth to the notion of
the photon (see Vedral 2005 for a simple derivation). It is clear from Eq. (3.71) that
the discrete structure of the field will manifest itself only at very low temperatures,
when the linear term dominates over the quadratic, wavelike one. However, it is
important to stress, as Einstein did as of 1909, that the two terms coexist at all
temperatures, and thus, both particle and wave manifestations of light coexist at
all temperatures (Einstein 1909). This observation is sometimes ignored to argue
that they are mutually exclusive, although there exist both theoretical arguments
and experiments that demonstrate the possible coexistence of the two aspects of the
behaviour of light.15

3.4.3 Disclosing the Zero-Point Field

It is important to note that no zero-point energy was considered by either Planck or
Einstein in their analysis of Eqs. (3.68) and (3.71), respectively. Instead, as stated
above, Planck interpreted the term 2E0UT in Eq. (3.68) as a result of the discontinu-
ities in the processess of energy exchange betweenmatter and field (more specifically
in the emissions, as of 1912). Einstein in his turn saw in 2E0UT a manifestation of
the corpuscular nature of the field, and thus pointed to it as the key to Planck’s law.
Now, from the point of view proposed here the consideration of the zero-point energy
gives rise to a third understanding of Eq. (3.71) that does not depend on the notion
of quanta. The elucidation of U 2

T as the result of the interference of the modes of
frequency ω of the thermal field suggests to interpret 2E0UT as due to additional
interferences, now between the thermal field and a zero-point radiation field of mean
energy E0 (per mode of frequency ω) that is present at all temperatures. As is by now
clear, Eq. (3.71) lacks the extra term E2

0 representing the nonthermal fluctuations,
just because the thermodynamic description has no room for them; this shortcoming
has been overcome with the introduction of the distribution Ws , Eq. (3.41).

From this new perspective the notion of intrinsic discontinuities in the energy
exchange or in the field itself is unnecessary to explain either Planck’s law or the
linear term in Eq. (3.71); it is the existence of a (fluctuating) zero-point radiation field
(zpf) what accounts for that law. This could of course not be Planck’s or Einstein’s
interpretation because the zero-point energy (and more so the zero-point field) was
still unknown at that time, even though their results were consistent with its existence.

The concept of a zero-point energy of the radiation field appeared for the first
time in 1912, in a work where Planck attempted another derivation of his law, moti-
vated by his well-known uneasiness with the idea of introducing discontinuities in

15 Graded realizations of complementarity relations (wave-like or particle-like behavior) have been
under close scrutiny during the last decades; see e.g. Jaeger et al. (1995), Englert (1996), Engert
and Bergou (2000), Liu et al. (2009), Flores and de Tata (2010) (see also Ghose and Home 1996).
The general validity of Einstein’s fluctuation formula (3.71) had been verified experimentally since
earlier times; see Aldemade et al. (1966), Kattke and van der Ziel (1970). The authors are grateful
to M. D. Godfrey for drawing their attention to these references.



3.4 Planck, Einstein and the Zero-Point Energy 83

our theoretical descriptions (Planck 1912). Some time thereafter Einstein and Stern
(1913) used the idea of a zero-point energy, although applied to molecules, i.e., to
mechanical oscillators. Unfortunately the authors were obliged to use the (incorrect)
value �ω for this energy; this along with other difficulties led Einstein to abandon
such line of research.16 Shortly thereafter the notion of a zero-point field was born
anew, when Nernst made his visionary proposal (Nernst 1916), as briefly mentioned
in the preface.

3.5 Continuous Versus Discrete

We have just seen how three alternative approaches provide three quite different
readings of the same quantity, U 2

T + 2E0UT . In these approaches, either the zero-
point energy (of a continuous field) or the energy quantization is identified as the
notion underlying the Planck spectral energy distribution. Therefore the next logical
step is to inquire about the relation between the zero-point energy and quantization.
Is quantization inevitably linked to Planck’s law, or is it merely the result of a point
of view, of a voluntary but dispensable choice?

3.5.1 The Partition Function

An answer to the above question is found from an analysis of the partition function
obtained from (3.54). As follows from Eq. (3.27), Zg(β) can be determined by direct
integration of

U = −d ln Zg(β)

dβ
, (3.72)

with U (β) given by the second of Eq. (3.54). The result is

Zg = C

sin hE0β , (3.73)

where C is a numerical constant whose value is determined by requiring the classical
result Zg = (sβω)−1 [Eq. (3.25b)] to be recovered in the limit T → ∞. This leads
to C = E0/sω = �/2s, so that

Zg(β) = E0
sω sinh E0β . (3.74)

16 More detailed discussions of these points, from a modern perspective, are presented in Milonni
(1994); see also Boyer (1969a) and Jiménez et al. (1980).
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On the other hand, from Eqs. (3.15) and (3.72) the thermodynamic potential φ can
be written in the form

φ = ln Zg. (3.75)

This along with Eq. (3.17) gives for the entropy (up to an additive constant, and
writing S = Sg)

§g = kB ln Zg + U

T
= kB ln �

s − kB ln(2 sinh E0β) + kBβU, (3.76)

which in the zero-temperature limit reduces to

Sg(β → ∞) = kB ln
�

s
. (3.77)

To set the origin of the entropy at T = 0 one must take s = �,17 hence the partition
function takes the form

Zg(β) = 1

2 sin hE0β . (3.78)

3.5.2 The Origin of Discreteness

Once we have determined the partition function Zg we are in position to discuss
the discontinuities characteristic of the quantum theory, which are hidden in the
continuous description given by the distribution Wg . To this endwe expand Eq. (3.78)
and write (see Santos 1975; Theimer 1976; Landsberg 1981 for related discussions)

Zg = 1

2 sinh E0β = e−βE0
1 − e−2βE0 =

∞∑
n=0

e−βE0(2n+1) =
∞∑

n=0

e−βEn , (3.79)

where

17 This is a most significant quantum result. In the quantum statistical description the finite quantity
�
3 plays the role of a minimal element of volume in phase space. This idea was introduced formally

for the first time by Planck in his early studies of the blackbody spectrum (Planck 1900a, b). Later, in
1924, Bose assumed that two or more distributions of microstates that differ only in the permutation
of phase points within a subregion of phase space of volume �

3, are to be regarded as identical,
which already corresponds to the Bose-Einstein statistics. In the classical description the volume of
such elementary cells is taken to tend to zero in order to recover the continuity of the phase space.
It is remarkable that, already in his classical statistical studies, Boltzmann introduced formally the
idea of a discrete phase space (see e.g., Jones 2008, Chap. 3).
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En ≡ (2n + 1)E0 = �ωn + 1
2�ω. (3.80)

Equation (3.79) allows now the determination of the function g(E) by means of
(3.21b),

Zg(β) =
∫

g(E)e−βEdE =
∞∑

n=0

e−βEn =
∞∫

0

∞∑
n=0

δ(E − En)e−βEdE, (3.81)

whence

g(E) =
∞∑

n=0

δ(E − En). (3.82)

The substitution of (3.82) into Eq. (3.21a) finally determines the probability
density Wg(E),

Wg(E) = 1

Zg

∞∑
n=0

δ(E − En)e−βE . (3.83)

This distribution gives for the mean value of any function f (E)

〈 f (E)〉 =
∫

Wg(E) f (E)dE = 1

Zg

∞∑
n=0

f (En)e−βEn =
∞∑

n=0

wn f (En), (3.84)

with the weights wn given by

wn = e−βEn

Zg
= e−βEn∑∞

n=0 e−βEn
. (3.85)

The final form of Wg(E), Eq. (3.83), identifies {En = �ω(n + 1/2)} with the set
of discrete energy levels accesible to the oscillators. Such discreteness, seemingly
excluding all other values of the energy, is due to the highly pathological distribution
g(E), Eq. (3.82). As a result, (3.84) shows that the mean value of a function of
the continuous variable E calculated with the distribution Wg(E), can be obtained
equivalently by averaging over the set of discrete indices (or states) n,with respective
weightswn . Thus, although both averages are formally equivalent, their descriptions
are essentially different: one refers to the continuous energy E , the other one to
discrete states (levels) with energy En . As this latter is completely characterized by
the state n, it is natural to interpret the last equality in Eq. (3.84) as a manifestation
of the discrete (quantized) nature of the energy. Indeed, the last equality in Eq. (3.84)
can be recognized as the description afforded by the density matrix for a canonical
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ensemble of quantum oscillators at temperature T , with the weights wn given by
(3.85) (see e.g. Cohen-Tannoudji et al. 1977).

The above discussion points to the fundamental role played by the zero-point
energy in explaining quantization, by putting it at the root of Eq. (3.79) and hence of
Eq. (3.82). From the present point of view, and contrary to the usual credo, the radia-
tion field is not intrinsically quantized, but it becomes so when attaining equilibrium
through its interaction with matter. In other words, quantization is here exhibited
as an emergent property of matter and field in interaction, an idea that is closely
examined from several angles in the following chapters, becoming thus the leitmotiv
of the book.

3.6 A Quantum Statistical Distribution

The thermostatistical analysis of a canonical ensemble of oscillators has led to the
conclusion that although E is a continuous variable, its equilibrium distribution pos-
sesses extremely peaked values. In other words, the energies that conform to the
thermal equilibrium state described by the distribution Wg belong, roughly speaking,
to a discrete spectrum. This explains why the mean value 〈 f (E)〉, which corresponds
to an equilibrium state, involves only the discrete set En . However, the energy still
fluctuates and in doing so tends to fill the interspaces between its discrete values.18

Thus we find that temperature-independent fluctuations appear as a characteristic
trait of quantum systems. A closer study of this property allows to establish contact
with one of the most frequently used distributions in quantum statistics.

3.6.1 Total Energy Fluctuations

The appropriate statistical distribution that includes all (thermal as well as nonther-
mal) fluctuations is given by Eq. (3.41),

Ws(E) = 1

U
e−E/U , (3.86)

and the variance of the energy at all temperatures (including T = 0) is (σ2
E )s = U 2.

Using the decomposition (3.60) we may write for the total energy fluctuations

(σ2
E )s = U 2 = (UT + E0)2 = U 2

T + 2E0UT + E2
0 . (3.87)

18 The existence of energy fluctuations associated with the natural linewidth and other processes
(see e.g. Schiff 1955; Louisell 1973), effectively dilutes this discrete distribution of energies into
a somewhat smoothened-out distribution acquiring a more continuous shape. Thus g(E) should be
seen as a theoretical limiting distribution.
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This result generalizes Eq. (3.59) to include both thermal and nonthermal energy
fluctuations. In conformitywith the present discussion, the total energy can bewritten
in terms of its thermal and nonthermal fluctuating parts,

E = ET + E0. (3.88)

The total energy fluctuations are then given by

(σ2
E )s = σ2

ET
+ σ2

E0 + 2�(ET , E0), (3.89)

where �(ET , E0) is the covariance

�(ET , E0) = 〈ET E0〉 − 〈ET 〉 〈E0〉. (3.90)

Comparing Eqs. (3.89) and (3.87), and identifying the temperature-dependent part
of the fluctuations of the whole field U 2

T + 2E0UT with σ2
ET

and E2
0 with σ2

E0 , we
verify that �(ET , E0) = 0, as was expected considering that the fluctuations of ET

and E0 are statistically independent, due to the independence of their sources.
The entropy Ss follows from Eqs. (3.44) and (3.86),

Ss = −kB

∫
Ws(E) ln cs Ws(E)dE = kB ln c−1

s U + kB, (3.91)

whence
∂Ss

∂U
= kB

U
. (3.92)

A comparison with the thermodynamic entropy, which satisfies

∂Sg

∂U
= 1

T
, (3.93)

shows that these two entropies coincide only when E0 = 0, i.e., for U = kB T .

3.6.2 Quantum Fluctuations and Zero-Point Fluctuations

Let us now investigate how the nonthermal fluctuations become manifest in the
statistical properties of the ensemble of oscillators. The value of the energy of the
harmonic oscillator [(cf. Eq. (3.1)]

E = (p2 + ω2q2)/2 (3.94)

canbeused as a startingpoint to performa transformation from the energydistribution
Ws(E) to a distribution ws(p, q) defined in the oscillator’s phase space (p, q). To
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this end we introduce the pair of variables (E, θ) related to the couple (p, q) by19

p = √
2E cos θ, (3.95a)

q =
√
2E
ω2 sin θ, (3.95b)

so that ws(p, q) is given by (Papoulis 1991; Birnbaum 1961)20

ws(p, q) = Ws(E(p, q), θ(p, q))

∣∣∣∣ ∂(E, θ)

∂(p, q)

∣∣∣∣ , (3.96)

with the Jacobian of the transformation

∂(p, q)

∂(E, θ)
=

∣∣∣∣ ∂(E, θ)

∂(p, q)

∣∣∣∣
−1

= 1

ω
. (3.97)

Now, Ws(E) is a marginal probability density that can be obtained from Ws(E, θ) by
integrating over the variable θ, so that

Ws(E) =
2π∫

0

Ws(E, θ)dθ. (3.98)

For a system of harmonic oscillators in equilibrium, the trajectories (in general,
the surfaces) of constant energy do not depend on θ, so all values of θ are equally
probable, which means that

Ws(E, θ) = 1

2π
Ws(E). (3.99)

Using Eqs. (3.86), (3.94) and (3.96) we thus obtain for the distribution in phase space:

ws(p, q) = ω

2π
Ws(E(p, q)) = ω

2πU
exp

(
− p2 + ω2q2

2U

)
. (3.100)

This expression, which is known in quantum theory as the Wigner function for the
harmonic oscillators (Hillery et al. 1984), can be factorized as a product of two
normal distributions,

19 The transformation defined by (3.95a) and (3.95b) is an extended canonical transformation
(Goldstein 1980), which differs from a canonical one—from the action and angle variables (J, θ),
with J = E/ω, to the phase space variables (p, q)—only by a constant factor ω. Of course θ = ωt.
20 When a probability P(x) is expressed in terms of a new variable y(x) as W (y), the equality
P(x)dx = W (y)dy holds. Equation (3.96) is simply the generalization of this result to a two-
dimensional space. See Papoulis (1991), Chap. 6 for a detailed derivation.
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ws(p, q) = w(p)w(q) = 1√
2πσ2

p

e−p2/2σ2
p · 1√

2πσ2
q

e−q2/2σ2
q , (3.101)

where σ2
p = U and σ2

q = U/ω2. The product of these dispersions gives

σ2
qσ2

p = U 2

ω2 = E2
0

ω2 + σ2
ET

ω2 ≥ E2
0

ω2 = �
2

4
, (3.102)

where Eq. (3.58) was used to write the second equality and the value E0 = �ω/2
was introduced into the last one.

Equation (3.102) points to the fluctuating zero-point energy as the ultimate
(and irreducible) source of the so-called quantum fluctuations. Indeed, the magni-
tude of σ2

qσ2
p is bounded from below because of the nonthermal energy fluctuations;

the minimum value �
2/4 is reached when all thermal fluctuations have been sup-

pressed, which means T = 0. Therefore, descriptions afforded by purely thermal
distributions such as Wg cannot account for the meaning of these inequalities. This
result stresses again the fact that once a zero-point energy has been introduced into
the theory, new distributions (specifically statistical rather than thermodynamic) are
needed to include its fluctuations and to obtain the corresponding quantum statistical
properties. Though here we have arrived at the Heisenberg inequality (3.102) by
considering a system of harmonic oscillators, later on (particularly in Chap. 5) we
will derive it for an arbitrary system, and again the presence of the zpf will turn out
to be decisive in reaching the result. Finally, note that the Heisenberg inequalities
should be understood as referring to statistical variances, due to the statistical nature
of (3.102).

3.6.3 Comments on the Reality of the Zero-Point Fluctuations

Asmentioned earlier, the concept of a zero-point energy of the radiation field entered
into scene as early as 1912, with Planck’s second derivation of the blackbody
spectrum. Yet further to the frustrated attempt by Einstein and Stern (1913), and
despite the suggestive proposal made by Nernst (1916) to consider the zpf as respon-
sible for atomic stability, little or no attention was paid to its existence as a real
physical entity that could have a role in the newly developing quantum mechanics.21

Interestingly, it was the crystallographers who, prompted by Debye’s theoretical
work, set out to measure the spectroscopic effects of the zero-point energy through
X-ray analysis and thereby seemengly verified its existence (James et al. 1928;
Wollan 1931).

21 The value of the deep insight ofNernst will be substantiated in Chaps. 4–7. This conceptualization
is in vivid contrast with the notion of ‘virtual’ usually applied to the fluctuating vacuum field.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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As mentioned in Sect. 1.4.1, today it is well accepted that the fluctuations of the
electromagnetic vacuum are responsible for important observable physical phenom-
ena. Perhaps their best known manifestations, within the atomic domain, are the
Lamb shift of energy levels (see e.g. Milonni 1994) and their contribution to the
spontaneous transitions of the excited states to the ground state. They are known to
contribute one half of the Einstein A-coefficient for ‘spontaneous’ transitions, the
other half being due to radiation reaction (see e.g. Milonni 1994; Davydov 1965). 22

By far the most accepted evidence of the reality of the zpf is the Casimir effect, that
is, the force between two parallel neutral metallic plates resulting from the modi-
fication of the field by the boundaries (see e.g. Boyer 1970; Bordag et al. 2009).
The existence of the zpf vcan therefore be considered a reasonably well established
physical fact.23 In the following chapters we will have occasion to study in depth the
essential role played more broadly by this random field in its interaction with matter
at the atomic level.
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