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Preface

Fifty years ago—in 1963, to be precise—the British physicist Trevor Marshall
published a paper in the Proceedings of the Royal Society under the short title
Random Electrodynamics—an intriguing title, at that time. To date this paper has
received just over four citations per year, which means it is alive, but not as present
as it could be, considering the perspectives it opened for theoretical physics.
Shortly thereafter a related paper was published by a young US physicist, Timothy
Boyer, under the longer title Quantum Electromagnetic Zero-Point Energy and
Retarded Dispersion Forces. Boyer does not cite Marshall’s paper (although he
does so in his third paper, which is followed by a productive 50-year long work in
solitary), but instead he refers to the work of David Kershaw and Edward Nelson
on stochastic quantum mechanics. All these papers share a central feature: they are
based on conceiving quantum mechanics as a stochastic process. Marshall
mentions explicitly the existence of a real, space-filling radiation zero-point field
as the source of stochasticity. Boyer sees a deep truth in this, and in a note added
to his manuscript he comments that ‘‘…in this sense, quantum motions are
experimental evidence for zero-point radiation.’’

From a historical perspective, we recall that nearly 50 years earlier—in 1916, to
be precise—Nernst had proposed to consider atomic stability as experimental
evidence for Planck’s recently discovered zero-point radiation. This visionary idea
was largely ignored by the founders of quantum mechanics, the only (brief)
exception being the Einstein and Stern paper of 1913; such is history. Both
Marshall and Boyer succeed in demonstrating that some quantum phenomena can
indeed be understood by the simple expedient of adding this random zero-point
field to the corresponding classical description. Their pioneering work was soon
followed by that of other colleagues, moved by the conviction that the random
zero-point field has something important to tell us about quantum mechanics.
Many other results have been obtained during this period, which constitute the
essence of the theory largely known under the name of stochastic electrodynamics.
At the same time, other researchers, notably Nelson, dedicated their efforts to
develop the phenomenological stochastic theory of quantum mechanics.
The perception that quantumness and stochasticity are but two different aspects of
a reality, started to gain support from several sides.

So here we are, 50 years later. In the mean time, quantum mechanics has
continued to develop; the new applications derived from it only serve to reaffirm it
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as a powerful theory. Along with its success, however, comes an increasing
recognition that its old foundational problems have not found convincing solution.
Recall the birth of quantum theory: Bohr’s model of the hydrogen atom was
supported on a postulate that implied a fundamental violation of electrodynamics.
Truly, such postulate was necessary at its moment, but urgent necessity does not
restore physical consistency. Then came the mysterious matrix mechanics, and the
no less mysterious de Broglie wavelength. Such obscure premises served as
foundations for the interpretative apparatus of quantum theory. And obscurity and
vagueness followed, along with a formidable mathematical apparatus. From this
perspective, one easily concludes that better supporting and supported principles
are required. More recent efforts from a number of authors attest to the conviction
that quantum mechanics, and more generally quantum theory, is in need of an
alternative that helps to explain the underlying physics and to solve the conun-
drums that have puzzled many a physicist, from de Broglie and Schr̈odinger to
Einstein and Bell, among many others. Common to most of the recent efforts in
search of an alternative is precisely the idea that the quantum description emerges
from a deeper level.

Quantum mechanics constitutes usually both, the point of departure and the
final reference, for all inquiries about the meaning of the theory itself. Its con-
ceptual problems are therefore looked at from inside, which provides limited space
for rationalization, and even in some instances creates a kind of circular reasoning
of scant utility, as is amply testified by the unending discussions on these matters.
Experience evinces that an external and wider approach is indeed required to grasp
the meaning of quantum theory and get a clear, physically understandable, and
preferably objective, realistic, causal, local picture of the portion of the world that
it scrutinizes.

The main purpose of this book is to show that such alternative exists, and that it
is tightly linked to the stochastic zero-point radiation field. This is a fluctuating
field, solution of the classical Maxwell equations, yet by having a nonzero mean
energy at zero temperature it is foreign to classical physics. The fundamental
hypothesis of the theory here developed is that any material system is an open
system permanently shaken by this field; the ensuing interaction turns out to be
ultimately responsible for quantization. In other words, rather than being an
intrinsic property of matter and the (photonic) radiation field, quantization emerges
from a deeper stochastic process. A physically coherent way to understand
quantum mechanics and go beyond it is thus offered, confirming the notion of
emergence—the coming forth of properties of a compound system, which no one
of its parts possesses.

The theory here presented has been developed along the years in an effort to
find answers to some of the most relevant conceptual puzzles of quantum
mechanics, by providing a physical foundation for it. It is thus not one more
interpretation of quantum mechanics, but constitutes a comprehensive and self-
consistent theoretical framework, based on well-defined first principles in line with
a realistic viewpoint of Nature. There is neither the opportunity nor the need to
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resort to ad hoc tenets or philosophical considerations, to assign physical meaning
to the elements of the theory and interpret its results.

As the formalism of quantum mechanics is successfully reproduced, some may
argue about the value of redoing what is already well known. However, the usual
theory, with its interpretations included, seems to tell us more about our knowledge
and our way of thinking about Nature, than about Nature itself. A good part of what
really happens out there remains hidden, waiting to be disclosed. With this volume,
our intention is to contribute to this disclosure and to share the fascinating expe-
rience of discovering some of the quantum mysteries and intricacies along the
process. Moreover, a door is opened to further explorations that may unravel new
physics. As the reader will appreciate, this chapter is not closed; there is much that
remains unexamined, awaiting future investigations.

This book has been prepared for an audience that is conversant with at least the
most basic ideas and results of quantum mechanics. More specifically, it is
intended to address those readers who (either secretly or openly) seek a remedy to
the apocalyptic statement by Feynman, that ‘‘nobody understands quantum
mechanics.’’ Its contents should be of value to researchers, graduate students and
teachers of theoretical, mathematical and experimental physics, quantum chem-
istry, foundations and philosophy of physics, as well as other scholars interested in
the foundations of modern physics.

Throughout this volume, frequent reference is made to The Quantum Dice.
An Introduction to Stochastic Electrodynamics (The Dice), a precursor containing
many ideas and results that have survived the test of time and others that have been
superseded or improved here. The Dice and the present book differ in at least two
central aspects. First, the version of stochastic electrodynamics discussed in the
former was essentially limited to linear problems and failed to properly address the
more general nonlinear case; this limitation is successfully lifted in the present
book. Secondly, in addition to applying the Fokker-Planck method (already con-
tained in The Dice) with success, particularly in Chaps. 4 and 6, new procedures
are developed and crucial physical demands (as e.g., the balance of energy, and
ergocidity) are identified, which converge into a theoretical framework that is
clearer, richer and more unified than the former one. Further to facilitating a
smooth and fruitful incursion into the territories of quantum mechanics and
quantum electrodynamics, the new developments result in an expansion of the
aims of the theory, for example by including the study of composite systems or by
opening the door to future analysis of the system before the attainment of the
quantum regime.

In addition to the bibliography at the end of the chapters, a list of suggested
references (not cited in the chapters) appears at the end of the volume. In the
bibliography, the items marked * refer to stochastic electrodynamics (some of
them including stochastic optics) and those marked ** are general or topical
reviews on stochastic electrodynamics; papers marked � are overtly critical about
stochastic (quantum) mechanics; those marked �� contribute to the development of
that theory, but may express some important criticism about it. Some few
abbreviations are used in the text, all of them easy to spell out: QM, QED, SED,
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LSED, ZPF, FPE, GFPE for quantum mechanics, quantum electrodynamics, sto-
chastic electrodynamics, linear stochastic electrodynamics, zero-point field, Fok-
ker-Planck equation, and generalized Fokker-Planck equation, respectively. In
Chap. 1—and occasionally elsewhere—CI and EI are used for the Copenhagen and
ensemble interpretations of quantum mechanics, respectively.

The authors acknowledge numerous valuable observations and suggestions
received during the elaboration of the manuscript. We are particularly grateful to
Pier Mello, Theo Nieuwenhuizen, Vaclav Spika, and Gerhard Grössing for their
support and critical comments. Draft versions of the various chapters were shared
with some of our students; special thanks go to David Theurel and Eleazar Bello
for their useful comments. Further, we wish to thank the Dirección General de
Asuntos del Personal Académico (UNAM) and its Director General, Dante Morán,
for the support received for the preparation of this volume, under contracts
Numbers IN106412 and IN112714. A special word of appreciation goes to Alwyn
van der Merwe for his relentless support as editor of the Springer series, and to the
reviewers of Springer for their valuable comments and suggestions. Our thanks go
also to Aldo Rampioni, Kirsten Theunissen and the Springer staff for their support
and attentions. Finally, we wish to acknowledge the facilities provided to us
throughout the years by the Instituto de Física, UNAM.

Mexico, March 2014 Luis de la Peña
Ana María Cetto

Andrea Valdés Hernández
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Chapter 1
Quantum Mechanics: Some Questions

...[quantum-mechanical] vagueness, subjectivity, and
indeterminism, are not forced on us by experimental facts, but by
deliberate theoretical choice.

Bell (1987, page 160)
... that today there is no interpretation of quantum mechanics
that does not have serious flaws, and that we ought to take
seriously the possibility of finding some more satisfactory other
theory, to which quantum mechanics is merely a good
approximation .

Weinberg (2013, page 95)

1.1 On Being Principled... At Least on Sundays

Tied to our microscopic place in the immensities of the Cosmos, we are beginning to
unfold its mysteries with remarkable precision. Being as gigantic as we are compared
to the atomic and subatomic worlds, we have been able nevertheless to uncover an
important fraction of its workings. We do not know yet what an electron is made of,
but we know already many of its secrets (see e.g. Wilczek 2002).

The remarkable scientific, technological, philosophical, and even economic
success of quantum mechanics is only the beginning. No physicist on Earth would
question the numerically fitting description that quantum mechanics offers of the
part of the world that pertains to its domains, which extend much beyond the atomic
scale the theory originally was intended to cover, both towards the macroscopic and
the ultramicroscopic. However, a nonnegligible portion of the practicing physicists
would also acknowledge, either openly or reluctantly, that the mysteries of the quan-
tum world have not been satisfactorily cleared or explained, after more than eighty
years of successful existence of this most basic theory.

Such acknowledgment depends of course on what is meant by explanation.
A historical example of what we have in mind follows from the Newtonian theory of
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2 1 Quantum Mechanics: Some Questions

gravitation: the clarity, universality, simplicity and high precision of this theorymade
of it a grandiose paradigm; the theory reigned undisputed for over two centuries and
became the ideological pedestal that supported the European Enlightenment. The
universal gravitational force became the pivotal element to understand innumerable
terrestrial and celestial facts, and a central element in the construction of a whole
philosophy of nature. This occurred despite the known shortcomings of the theory in
more than one essential aspect. Not only did it rest on the ageing concept of action at
a distance, but the specific form of the force was selected ad hoc to lead to the Kep-
lerian ellipses, introduced as a mere patch into the Newtonian system of mechanics,
with no theoretical support or physical mechanism that would lead to it or explain
it. From this more exacting point of view, one could say that the classical theory
gives a precise and simple description of the facts, sufficiently good f or all practical
purposes (fapp ); but it hardly constitutes an explanation of what is going on in the
real world. To find such an explanation the whole edifice of general relativity had to
be put forth, allowing us to dispense with ad hoc elements or actions at a distance,
and providing us instead with a causal rule. Indeed, general relativity explains the
Newtonian theory.

Today we can calculate atomic transition frequencies to within a billionth part,
and use refined applications of the quantum properties of matter and the radiation
field to construct marvelous and powerful devices that have become emblematic of
our civilization. However, have we really got an understanding of what is happening
deep-down in the quantum world? A glance at the quantum literature dedicated to
the discussion of its fundamental aspects is sufficient to reveal the vast spread of
meanings and uncertainties that beset current quantum knowledge. Of course, if the
number predicted by the theory, or the use that is made of it, is taken as its test, just
as was the case with Newtonian gravitation and the extended pragmatic viewpoint it
prompted, the conclusion is that there is no problem at all. But we may be a bit more
demanding and ask, for instance, for the physical (rather than formal) explanation
ofatomic stability, the origin of uncertainty or the quantum fluctuations. Again, are
wave-particle duality and quantum nonlocalities the final word? Do superluminal
influences really exist?1 In short: the quantum formalism describes its portion of
Nature astonishingly well and we do not know why. It would be difficult to express
this kind of feelings about the status of present-day quantum theory more lucidly
than Bell did in 1976: quantum mechanics is a fapp theory. And Maxwell (1992)
rightly asks: what is beyond fapp?

Since the creation of quantummechanics (qm) there has been a flood of papers and
essays discussing these and similar or deeper questions, and almost any conceivable
(or inconceivable) argument or answer has been advanced, both from within physics
and from the philosophy of science, ranging from a complete accord with quantum
orthodoxy to a radical departure from it. Such extended and deep rumination has not
been the endeavor of idle physicists and philosophers, since names such as Bohr, de

1 In statements about superluminal influences, it is difficult to know which kind of influences are
being considered. Anyhow, detailed analysis shows that special relativity and quantum mechanics
have still a peaceful coexistence (see e.g. Shimony 1978; Redhead 1983, 1987).
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Broglie, Dirac, Einstein, Heisenberg, Landé, Popper, Schrödinger, do honor to an
unending list of active participants.

Let us listen to some few big voices to get a better feeling of the magnitude of the
quantum muddle, as Popper (1959) calls it. Feynman writes:

I think I can safely say that nobody understands quantum mechanics,

and goes on speaking of the [unsolved] mysteries of qm (Feynman et al. 1965).
Referring to matter diffraction he asserts:

A phenomenon which is impossible, absolutely impossible, to explain in any classical way,
and which has in it the heart of quantum mechanics. In reality it contains the only mystery...

How does it really work? What machinery is actually producing this thing? Nobody knows
any machinery. Nobody can give you a deeper explanation of this phenomenon than I have
given; that is, a description of it.

Gell-Mann (1981) in his turn qualifies:

In elementary particle theory one assumes the validity of three principles that appear to be
exactly correct.

(1) Quantum mechanics, that mysterious, confusing discipline, which none of us really
understands but which we know how to use. It works perfectly, as far as we can tell, in
describing physical reality, but it is a ‘counter-intuitive discipline’, as social scientists would
say. Quantum mechanics is not a theory, but rather a framework, within which we believe
any correct theory must fit. (2) Relativity. (3) Causality.

In his turn Dyson (1958) observes:

...the student says to himself: ‘I understand QM’ or rather he says: ‘I understand now that
there isn’t anything to be understood...’ .

And speaking about himself, he adds (Dyson 2007)

...the important thing about quantum mechanics is the equations, the mathematics. If you
want to understand quantummechanics, just do the math. All the words that are spun around
it don’t mean very much.

Despite the hundreds of books and of international conferences discussing both
physical and philosophical problems of qm, the basic conundrums remain alive and
as unresolved as theywere eight decades ago. Fortunately nobody (to our knowledge)
has blamed Bell of having been unable to understand qm, as was said about Einstein.
He, Bell, solved the matter his own way: at the time of some lectures he explained
that during the week he used the handy fapp theory. Theweekends however he would
regain his principles and search for something better (quoted in Gisin 2002).

Experience shows that so far, neither physical nor philosophical arguments have
been effective to get us out of the muddle. For the normal practicing physicist the
philosophical arguments, when they have a meaning for science, are little more
than an abstraction, an ethereal generalization of the truths already discovered by
science. But if along its lines of reasoning, science has been unable to set foot on the
profundities of the quantum world, we cannot expect philosophy to unfold them for
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us. Something of revealing importance can thus be extracted from these persistent
discussions: as long as the issues are debated and the differing points of viewdefended
from inside quantum theory, no definite conclusion can be reached. What is required
then is to gain a look onto qm from outside it, to get a wider and clearer perspective.
The work presented here represents precisely a systematic attempt to look onto qm
from outside it, with the help of a deeper physical theory. This provides us with the
possibility of getting answers from a wider perspective than that obtained by just
interpreting (or reinterpreting, or misinterpreting) the formalism.

In fact, many of the difficulties with qm arise as a result of the interpretation
ascribed to its formalism. Though there have been claims that qm does not need
interpretation,2 the truth is that in no other place of physics do the theory and its
formal content elicit such diverse and even contradictory meanings as in qm (see
Sect. 1.2). And indeed, the formal apparatus of a theory is in general not enough
to interpret it.3 If “nobody understands quantum theory” it is difficult to hold that
the theory speaks for itself. Apart from the immediate problem that represents the
lack of consensus on the interpretation of qm, the critical point is that many inter-
pretations of it, particularly the dominant one, jeopardize (when not simply do away
with) some principles that have been pillars of the whole edifice of physics. Even
if—or precisely because—the principles of scientific philosophy are a distillate of
the most fundamental discoveries of science, if qm demonstrates that Nature (not
a certain description of it) is incompatible with some of those principles, as might
be realism, determinism, locality or objectivism, then the philosophical framework
must of course be modified accordingly, instead of forcing us to attune physics to
worn presuppositions. It could be that the advances of science demand a revision
of what is taken at a given moment for a firmly established general outlook; history
is full of experiences of this nature. The central concerns and theories of the phi-
losophy of science should be consistent with scientific discovery, and are therefore
subject to revision, just as happens with science itself. When the scientific case is
clear, science philosophy must adapt to what science tells us. But that requires an
absolutely convincing demonstration, since principles as realism, say, are just that,
general principles extracted from a huge plurality of cases and circumstances, so
their generality, universality, solidity and soundness are utterly confirmed. Convinc-
ing demonstrations, not a mere interpretation of the formal apparatus of qm, are thus
required to abandon these solid principles.4

In the following section we present and comment on some of the most basic issues
that beset qm, which originate when adopting a certain interpretation of the theory.

2 See e.g. Fuchs and Peres (2000), or Omnés (1994). Compare with, e.g. Bunge (1956), de Witt and
Graham (1974), and Marchildon (2004).
3 For example, a given system of linear differential equations can represent a mechanical, an
acoustical, an electrical or an electromagnetic system, or even an analog computer as well. There
is ample conceptual space to accommodate the interpretation.
4 Virtually all science philosophers have received with approval the philosophical conclusions
arrived at from (orthodox) quantum mechanics, despite its nonrealistic (even antirealistic) and
subjective trends. Far from helping to drive quantum physics towards a more realistic conception,
this of course has contributed to reinforce such trends.
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By the same token, in this introductory chapter there is no attempt to resolve these
issues or give answers to them. It is along the subsequent chapters, as we develop
the theory, that we will be finding answers. This will allow us to summarize, in the
final chapter, the insights afforded by the theory and discuss its outlook.

1.1.1 The Sins of Quantum Mechanics

Let us point out in brief some of the sins of qm—some venial, others capital—
that are readily found and discussed in the scientific literature, particularly the one
written under the spell of the orthodox interpretation. It may seem amazing that
two discussions on the subject written by physicists (one of whom later became
a recognized philosopher of science) published almost half a century apart (Bunge
1956; Laloë 2002), touch essentially upon the same fundamental questions, of course
with an emphasis that corresponds to the given moment.

• qm is an indeterministic theory. Indeed, though the quantum dynamic laws evolve
deterministically, the theory is unable to predict individual events. The most the
theory can offer are probabilistic predictions, whence the specific outcome of
an experiment cannot be determined in advance. In itself, indeterminism is not
a regrettable property of a physical theory. The statistical theories of classical
physics are indeterministic (or, for some people, they obey statistical determinism)
and this is not considered a shortcoming. The reason is that in such cases the origin
of such indeterminacy is clear. Recall for instance the statistical description of a
classical gas; there is a distribution of velocities of the molecules that calls for a
statistical description with no practical alternative. The distribution of velocities
of the molecules is a direct consequence of the fact that there is a myriad of
microstates compatible with the macroscopic state under scrutiny, all of them
having equivalent possibilities corresponding to the initial conditions. In other
words, the indeterminacy is a feature of the description, not of the system itself.
By contrast, in the usual rendering of qm we have no more explanation for the
statistical indeterminism than the indeterminismof the theory. For some thismeans
quantum indeterminism is irreducible.5,6

5 Determinism must be clearly distinguished from causality, the latter referring to an ontological
property of the system. The notion of indeterminism wavers in the literature from ontological to
epistemic connotations, and from objective to subjective meanings. In this book we understand
by (physical) determinism a property of the description of a physical system, not of the system
itself, and thus of epistemological nature. Although many different meanings are ascribed also to
causality, this term refers to a direct genetic connection among the elements of the description, i.e.
to an ontological property of the underlying physical reality. We could say that causality refers to
the hardware of nature, determinism to our software about it.
6 Whether the indeterminism is ontic or merely manifests itself at the observational or descriptive
level is a controversial issue, to which every decoder adds his own preferred interpretation (see
Bunge 1956 for examples). Still, the attempts to construct a fundamental and deeper deterministic
theory from which qm could emerge through an appropriate mechanism to generate indeterminism,
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• qm has intrinsic limitations to its predictive power. As stated above, the predictions
of qm are only probabilistic. The specific reading of the meter is beyond what qm
can predict, yet Nature gives in each instance a well-defined unique answer; we are
therefore faced with two possibilities: (a) the predictions of qm are incomplete,
or (b) the predictions are complete and God plays dice.

• qm is a noncausal theory. One of themost conspicuous examples of noncausality in
qm (which is also a towering manifestation of indeterminism) are the Heisenberg
inequalities, which imply the existence of unavoidable (quantum) fluctuations.
The cause for such fluctuations is alien to the theory (assuming that a cause must
indeed exist), or is simply inexistent at all (assuming that no property of Nature
escapes to the quantum description). There is a long list of schools and subschools,
with different views on whether the Heisenberg inequalities refer to uncertainties
(a measure of our ignorance), to (objective or ontic) indeterminacies, or to some-
thing else.7,8 In any case, the widespread attitude is that no cause for quantum
fluctuations is considered to be required, and even less, investigated; they can
happily remain ‘spontaneous’.

• qm is not a legitimate probabilistic theory. Though the predictions of qm deal
with probabilities, no formulation of qm is fully consistent with a genuine prob-
abilistic interpretation (in the classical sense). The use of probability amplitudes
instead of probabilities implies a distinctive probability theory by itself. For exam-
ple, negative probabilities appear in qm not only in connection with phase-space
distributions, but also as a result of the superposition principle. The amplitudes
can interfere destructively and give rise to negative contributions to the proba-
bility densities, of a nonclassical nature. These results have led to a widespread
acceptance of negative probabilities as a necessary trait of quantum theory.9

speak to the existing conviction in some circles that quantum indeterminism demands explanation.
For example, t’Hooft has envisioned a process of local information loss leading to equivalence
classes that correspond to the quantum states (’t Hooft 2002, 2005, 2006).
7 The textbook (and historical) explanation of the Heisenberg inequalities as a result of the pertur-
bation of, say, the electron by the observation cannot be taken as the last word, at least because the
inequalities follow (as a theorem) from the formalism without introducing observers and measuring
apparatus.

Within the statistical interpretation of qm (see Sect. 1.2.2 ) they indeed refer to the product of the
(objective) variances of two noncommuting dynamic variables in a given state (see e.g. Ballentine
1998, Sect. 8.4).
8 The interpretative difficulties are evengreaterwith the energy-time inequality, because this inequal-
ity (in its usual form) does not belong to the customary formal apparatus of the theory. There are
of course various proposals to replace it (see e.g. Bunge 1970; Jammer 1974, Sect. 5.4). Also the
introduction of a time operator has been explored by several authors (see e.g. Muga et al. 2008, in
particular the contribution by P. Busch; see also Hilgevoord and Atkinson 2011).
9 The acceptance of negative probabilities implies a fundamental change in the axioms of probability
theory. Since “they are well-defined concepts mathematically, which like a negative sum of money
...should be considered simply as things which do not appear in experimental results” ( Dirac 1942;
see also Feynman 1982, 1987; d’Espagnat 1995, 1999; and the detailed discussion in Mückenheim
et al. 1986, where they are called extended probabilities), they tend to be pragmatically accepted,
even if this renders the meaning of probability obscure. Once this door is open, anything may step
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• qm is a nonlocal theory. Nonlocality is a major issue for quantum physics. It is
inherent to the structure of the theory, although subject to quite different conno-
tations, some of which lead to the notion of action at a distance. Locality is a
most fundamental physical demand; it pertains to the conceptual framework upon
which theoretical physics is founded, yet it is apparently contravened by all quan-
tum systems, not only multipartite ones, in which the entanglement introduces
the well-known nonlocal correlations between the subsystems. Thus, to under-
stand the origin and meaning of quantum nonlocality is a major task for a deeper
understanding of present-day physics, one that has been put aside in favour of the
development and expansions of its applications.

• qm is a theory of observables, not of beables. According to the more extended
interpretation of qm, it is meaningless to speak of the value of a certain variable
of a physical system until the corresponding measurement has been performed.
Therefore the theory refers to measured variables (observables) and not to preex-
isting, objective, individual properties of the system (beables). This is clearly a
shortcoming from a realist point of view.

• qm is a contextual theory. In quantum theory (Bell’s) contextuality means that the
result of measuring an observable A depends both on the state of the system and
the whole experimental context. In particular, it depends on the result obtained in
a previous (or simultaneous) measurement of another, commuting observable B.
Thus the value attributed to A depends on the whole context.10

• qm requires a measurement theory. The pure states of the microworld are not
realized in our everyday world. We need some means to reduce the former to
mixtures when passing to the macroscopic level. Traditionally the assumed agent
is the observation (measurement); thus the observer and his proxy break actively
into the description in order to produce results.11 It would not be an overstatement
to say that the notion of measurement in qm raises more conceptual problems than
those it is intended to solve.

• qm postulates a nonunitary evolution foreign to its formalism. In its usual interpre-
tation, qm demands the collapse of the vector state (the projection onto a subspace
associated with the observable under measurement) as a means to reduce all the
possibilities encoded in the state into a single one, to account for the measurement
process.12 It is thus the observer who does the dirty task of suspending the uni-

in; thus, for instance, imaginary probabilities have been considered to reconcile quantum theory
with locality (Ivanović 1978).

In Khrennikov (2009) the probabilistic machinery of quantum mechanics is extended within a
realist point of view, to the description of any kind of contextual contingencies, which leads to a
theory that finds application in several fields of inquiry, including economics and psychology.
10 We are referring to the use of the term ‘contextuality’ as e.g. in Bell (1985) or Svozil (2005). In
particular, this property of a quantum systems is at the base of the response of (Bohr 1935) to the
EPR 1935 argument (see Einstein et al. 1935).
11 One should add that a theory of measurement (i.e., of our methods to interrogate nature) cannot
be part of a fundamental (thus general) description of nature, because the former must be quite
specific and detailed in every instance to have any predictive capacity.
12 The notion of reduction or collapse of thewave functionwas introduced as a quantum postulate by
vonNeumann (1932) and Pauli (1933). There is no clear definition of the qualities of the perturbation
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tary and causal evolution law to allow for the (nonunitary) collapse of the wave
function.13

• qm risks becoming subjective with the entry into scene of the observer. The
observer is an active intruder, the element that transforms the potential into the real;
however, he/she is not part of the libretto. For some people this is an opportunity
to add subjective elements to the interpretation.14

• qm requires a boundary between the observed and the observer, but the theory
cannot define it. To avoid an infinite regression, the measuring instrument must be
classical. Thus a part of the world is not described by qm, despite the fact that it
is considered to be a fundamental theory, one that should apply to everything.15

Since quantum theory should lead to the description of the macroscopic world
as a limiting process, in principle it cannot refer to elements of the latter in its
foundations; yet it does precisely that.

• qmdealswith objects of undefinednature. The theorydoes not embodyanobjective
strict rule of demarcation that distinguishes between corpuscular andwave entities.
Worse, even: whether these objects exhibit a corpuscle- or a wavelike behaviour is
controlled by the free undertakings of the observer. There is room for three quarks
within a proton, but an electronmay occupy thewhole interferometer before hitting
a single point on the screen.

• qm lacks of a space-time description. In particular, the notion of trajectory is
foreign to qm, presumably prevented by the Heisenberg inequalities. Thus, qm
describes what the atomic electrons do in the abstract Hilbert space, but says
nothing about what they do in common three-dimensional space.16

• qm is a nonrealist theory. The usual quantum description averts realism from
several sides, through the lack of a space-time description, incomplete causality,

of the physical system that demarcate the two ways of evolution (the causal one and the collapse).
Thus, “[T]he observed system is required to be isolated in order to be defined, yet interacting
to be observed” (Stapp 1971). Within the single-system interpretation the collapse is avoided by
means of the ‘many-worlds interpretation’ (or ‘relative-state formulation’) of qm (Everett 1957,
from Everett’s thesis 1956), according to which the world splits into as many independent worlds
as different results of the measurement can occur. We will not discuss here this (extreme, even if
logical) interpretation.
13 It is of course possible in principle to include the measurement apparatus in the Hamiltonian; a
well known example of this is Bohm’s theory (see Chap. 8). This helps to express the measurement
problem in more realistic terms. Another well-known example is van Kampen (1988).
14 An argument against the observer, aimed at recovering objectivity in the quantum ‘potential-
ities’, has been advanced from cosmology. According to inflationary theory, the early classical
inhomogenities in the cosmic microwave background originated in earlier quantum fluctuations.
This quantum-to-classical transition took place much before even galaxies existed. It follows that
the measurement problem in cosmology is of a different kind (Perez et al. 2006; Valentini 2008).
15 It is even applied to the universe as a whole; see e.g. Hartle andHawking (1983). Awell-grounded
critique of the boundary, for the general public, is contained in Wick (1995).
16 However, the possibility to construct quantum trajectories (by considering additional elements
into the usual quantum description) has received special attention since the times of de Broglie. The
best known example of quantum trajectory is perhaps the one afforded by Bohm’s theory (discussed
in Chap. 8).

http://dx.doi.org/10.1007/978-3-319-07893-9_8
http://dx.doi.org/10.1007/978-3-319-07893-9_8
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unexplained indeterminism, nonlocality... (see Sect. 1.3 for a discussion on realism
and quantum mechanics).

1.2 The Two Basic Readings of the Quantum Formalism

1.2.1 The Need for an Interpretation

The pure theoretical skeleton of a physical theory, its formalism, says nothing about
the world; it is devoid of empirical meaning. To attribute physical meaning to the
abstract mathematical apparatus, a set of semantic rules, collectively known as the
interpretation, is required. The interpretation assigns a concrete empirical meaning
to the nonlogical terms in the theoretical model (such as mass, force, charge, electric
field, and so on). Physically, the model normally does not resemble what it models;
the conformity resides in the functioning.

Which is the meaning we should ascribe to the different elements in the quan-
tum formalism, e.g, the wave function, solution of the Schrödinger equation for
a given problem? The answer is left to our ingenuity. And this is where the real
problem starts... It is not difficult to count a dozen different interpretations of the
same theory: Copenhagen interpretation (Bohr, Heisenberg, etc., from 1926 on);
ensemble interpretation (Einstein, etc., from 1926 on); de Broglie–Bohm theory (de
Broglie 1927; Bohm 1952a, b); quantum logic (Birkhoff and von Neumann 1936);
many worlds (Everett 1957); stochastic electrodynamics (Marshall 1936); stochas-
tic mechanics (Nelson 1966); modal interpretations (van Fraassen 1972); propen-
sities of smearons (Maxwell 1982); consistent histories (Griffiths 1984); quantum
information (Wheeler 1983); transactional interpretation (Cramer 1986); zitterbewe-
gung interpretation (Hestenes 1990); no-signaling plus some nolocality (Popescu and
Rohrlich 1994); relational quantummechanics (Rovelli 1996); and so on. According
to other authors, qm does not require an interpretation at all (Peres (2000)), or on
the contrary, there is only one legitimate interpretation (Omnès 1994), or even any
interpretation goes (Feyerabend 1978). We are further told that the description does
not really describe the system, but merely our knowledge (or information) about it
(Heisenberg 1958a, b, but see Marchildon 2004; Jaeger 2009); or that the theory is
about measurements and observables and not about beables (see Bell 1976, 1985); or
that the awareness of our knowledge ‘actualizes’ the wave function, thus promoting
us from external passive bystanders into active (although involuntary) participators
(Patton and Wheeler 1975), without being included however in the formal structure.
A recent trend is to say that qm refers not to matter, but to bits of information (see
e.g. Vedral 2010). And so forth...

Thus we have a nice formal description of the quantum world, empirically
adequate for our purposes, but we still lack of a real understanding of that world. No
wonder that there are expressed recognitions of the need of a fundamental and deep
amendment of our present quantum image (see e.g. Delta Scan 2008; Stenger 2010).
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1.2.2 A Single System, or an Ensemble of Them?

Amost basic and crucial question for any interpretation of qm relates to the meaning
of the wave function: does it describe the dynamics of a single particle, or does
it instead refer to an ensemble of similarly prepared particles? The answer to this
question distinguishes between the twomainstreams of the interpretation of quantum
theory, the Copenhagen and the ensemble interpretations.17

The usual textbook standpoint on qm is based on some variant of the Copen-
hagen (or orthodox) interpretation (CI).18 It might also be called the customary,
mainstream or regular interpretation, although it is not so clear that the present-day
practicing physicists (and physical and quantum chemists) adhere to it in their daily
endeavours as tightly as such names may fancy. The founding fathers of the CI are of
course Heisenberg (1930) and Bohr (1934), who were joined almost from the start by
physicists like Pauli, Dirac (1930), Born (1971), von Neumann (1932), and Landau.
One should bear in mind, however, that the name CI does not refer to a sharp set
of precepts, since a wide range of tenets with respect to some of the central inter-
pretative issues can be distinguished among its practitioners. Thus it encompasses a
collection of variants of interpretation rather than a tight doctrine. In a broad sense
one refers normally (but not necessarily) to any of the members of such collection
as the conventional interpretation. The basic tenet of the CI of qm is that a pure
state provides a description as complete and exhaustive as possible of an individual
system. So, qm goes as far as is possible in the knowledge of Nature, and physicists
must renounce once and for all the hope for a more detailed description of the indi-
vidual; Nature imposes upon us a limitation to our knowledge. This assumption has
enormous consequences, some of which will be discussed in the following section.

A very different outlook ensues from the ensemble (orstatistical) interpretation
(EI) of qm. According to this interpretation the wave function refers to a (theoreti-
cal) ensemble of similarly prepared systems, rather than to a single one. The earliest
attempts to formulate an ensemble interpretation of qm are found in Slater (1929),
Schrödinger (1932) and Fürth (1933). Other early advocates of this interpretation
were Langevin (1934), Popper (1959), Einstein (1936, 1949), Landé (1955, 1965),
Blokhintsev (1964, 1965) (the original Russian version of 1949 was the first sys-
tematic treatment of the ensemble interpretation of qm).19 Being an intrinsically

17 An early introductory account of the different interpretations of qm and their variants can be
found in Bunge (1956). More advanced expositions, also by professional philosophers of science,
are found, among others, in Bunge (1973) and Redhead (1987). A more recent monograph by a
physicist is Auletta (2000).
18 Since this interpretation (as indeed all interpretations) contains in an essential way Born’s (1926)
probabilistic notion of the wave function, and in addition it was strongly influenced by Heisenberg,
it would be more properly called Copenhagen-Göttingen interpretation. Wigner (1963) proposed
to apply the term ‘orthodox’ more specifically to the view adopted by von Neumann, as reshaped
by London and Bauer (1939).
19 More recent advocates are Margenau (1958, 1978), Sokolov et al. (1962), Mott (1964), Marshall
(1965), Lamb (1969, 1978), Belinfante (1975), Newton (1980), Santos (1991), de Muynck (2002),
Laughlin (2005), Khrennikov (2009), Nieuwenhuizen (2005) (in Adenier et al. 2006), etc. For an
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statistical description, for the advocates of the EI the description afforded by the
wave function ψ is neither complete nor exhaustive of the individual systems that
conform the ensemble (which in its turn gives significance to the different probabil-
ities encoded in ψ). Chance enters into the picture in a fundamental way; the wave
function does not “represent things themselves, but merely the probability of their
occurrence” (Einstein 1933, slightly adapted).

1.3 Is Realism Still Alive?

“Quantum mechanics demolishes the view that the universe exists out there”
(Wheeler 1979).

Quantum mechanics, or a certain interpretation of it?
Such a view of qm is clearly nonrealist. This may not mean much to some,

to others it may be unimportant, but to still others it may be of high significance,
because philosophical realism is not a capricious free invention. As mentioned ear-
lier, philosophers arrived at the notion of realism by distilling the works of creative
scientists (and philosophers) along the centuries, and recognizing and extracting the
essence of their diverse procedures. They have thus discovered that there are realist
scientists, nonrealist scientists and anti-realist scientists, and that the largemajority of
creative natural scientists are (spontaneously or consciously) realist and work under
the assumption (or conviction) that the world they are studying is not an illusion, but
exists by itself. This is the essence of scientific realism: the belief in a real world,
external to us, independent of our attention to it, a world in which we act, which acts
upon us, and upon which we act to know more about it. A nonrealist negates either
the reality of the external world or its independence from us, or both; an antirealist is
more extreme and believes that theworld is a result of ourmental activity.20 Along the
centuries, science, with its remarkable development, has nourished and reinforced
realism. Shortly stated, realism is a synthetic result of the scientific venture.

Further to the general defining attributes of scientific realism—external real-
ity, independent from our deeds, and the possibility to know the world—realism
in physics embodies other demands of general validity. An obvious one is causality,
which lies at the basis of physical science. Another is the recognition that the phe-
nomena occur in space and time, and thus should admit a space-time description. A

important defense of the ensemble interpretation of qm see the old paper by Ballentine (1970),
or his more recent books (1989, 1998); Ballentine takes, however, an indeterministic view. Home
and Whitaker (1992) contains a detailed discussion, from a realist point of view, of the different
versions of the ensemble interpretation of qm. Further, an interesting analysis is that of Rylov (1995)
who demonstrates on general arguments that qm (including Dirac’s theory) necessarily refers to an
ensemble of particles.
20 It is not too difficult to find openly antirealistic views nourished by the conventional interpretation
of qm. See e.g. Rigden (1986), Adler (1989). There are also some researchers that go as far as to
consider that the universe itself is not real; see e.g. Henry (2005).
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third one is that the causal relations are local, which means that there are no actions
at a distance.21,22

Let us look at some of the features of qm as seen from the CI and the EI, to make
clear the position of these interpretations with regard to realism. In doing so, we
will touch upon some of the difficulties encountered in Sect. 1.1.1 and discusse them
more at length.

As stated above, a most distictive quality of qm is its indeterminism, which in
some instances is taken as noncausality. In a situation commonly considered, a given
observation can lead to one of a miscellany of possible results (e.g. a specific eigen-
value among a set of values). Which is the outcome is a matter of chance, and the CI
grants that nothing, except chance, determines the result. The example of the decay
of a single radioactive nucleus is illustrative: quantum theory can correctly assign
a mean lifetime to the nucleus, but it cannot predict the precise moment or direc-
tion of the decay products. However, a nearby detector shows that such moment and
such directions exist. The precise prediction escapes quantum theory. By considering
the quantum description to provide the most complete attainable information about
a given system, not unusually the CI declares that precise values of the physical
variables cannot be predicted by qm simply because such variables do not have pre-
existent values; they do not exist until a measurement is performed, until a precise
value is recorded).23 Thus, for example, for the conventional school, the position
of the particle is materialized or brought into being, as it were, as a result of its
measurement. The values of the dynamical variables are thus objectively undeter-
mined prior to their measurement, and only probable values can be assigned to them;
probabilities become irreducible. Since the nonexistent cannot be measured, it is the
measurement itself which fixes the measured value, giving reality to it. It is here that
the observer (or the observer’s proxy) slips into the description; the realist funda-
mental principle that physics should refer to the world rather than to our knowledge
of it (or information about it) is eroded, and with it the no less fundamental demand
of a strictly objective rendering of the physical world. All this was clearly recognized

21 We are using here the term realism with the meaning of gnoseologic realism (Bunge 1985), i.e.
ontologically as the belief in an external world, independent of our theories and observations, and
epistemologically as the conviction that it is possible to know that world, part by part. However,
in some places we use a restricted notion of physical realism which originates in the famous
EPR 1935 paper, namely that if a value can be determined for a variable without disturbing the
individual system, there exists an element of reality associatedwith it, even prior to themeasurement.
According to this notion, the individual systems are at all times in objectively real states (Deltete
and Guy 1990), even if unknown, and should in principle be amenable to a space-time description.
22 An introductory discussion of scientific realism by a realist can be seen in Boyd (1983). The
author shows, in particular, how the educated (expressly in science) common sense is a good guide
towards scientific realism.
23 A word of caution is needed here. The measured value may or may not preexist, it suffices to
consider that some feature or property related to the measured value preexists. The clearest example
is perhaps the measurement of a spin with a Stern-Gerlach apparatus, which obviously may reorient
the spin. Thus, a realist theory is compatible with both possibilities; it all depends on the nature of
the measured variable. See Allahverdyan et al. (2013).
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(and accepted) by Bohr (1928) in his famous Como Lecture of September 1927, a
characteristic sentence of which says:

...the finite interaction between the object and themeasuring devices... implies... the necessity
to renounce the classical idea of causality, and a radical revision of our attitude toward the
problem of physical reality,

and by Heisenberg in denying the existence of an underlying quantum realm
(Heisenberg 1958a, page 129):

...the idea of an objective real world whose smallest parts exist objectively in the same sense
as stones or trees exist, independently of whether or not we observe them ... is impossible...

or further (Heisenberg 1958b, page 15):

... the natural laws formulated mathematically in quantum theory no longer deal with the
elementary particles themselves butwith our knowledge of them.Nor is it any longer possible
to ask whether or not these particles exist in space and time objectively...

The role of the observer is not limited to bringing out a real physical variable
out of a mere potentiality, it includes determining the very nature of the system. For
instance, in an electron diffraction experiment the electron suffers a series of transfor-
mations from being a (more or less) localized entity (with corpuscle-like properties)
to becoming a structure that fills a macroscopic volume (with wavelike properties)
and vice versa. It seems difficult to bring to terms this series of transmutations with
the idea of a reality independent of our undertakings.24

Along with the observer, a radical form of nonlocality is introduced into the
theoretical framework: the collapse of the wave function—instantaneous over the
whole space—determined by a local measurement. Indeed, the collapse, which is
the theoretical counterpart of the changes on the individual system brought about
by the active observer, becomes the inevitable mechanism by which a specific result
is selected from among the various possibilities. The collapse disrupts the orderly
causal development described by the evolution equation, introducing an abrupt fall
to a lawlessly established state of a certain statistical mixture (these are the spooky
actions at a distance, mentioned by Einstein to Born; see Born 1971). Thus two
forms of evolution compete within the theory, and it is the observer—the ineluctable
intruder—who determines with his actions which of them should operate. Of course,
interpreting the collapse as merely a theoretical tool, without ascribing to it a sense of
reality, becomes an acceptable pragmatic procedure. But this is not its usual grasp.25

24 In a letter to Physics Today by Henry (2004, p. 14) discussing why physics understanding is
so poor in the United States, the author ends by saying: “We know from quantum mechanics that
nothing is real, except for the observations themselves.” Another typical example reads: “one cannot
consider quantum properties as being ‘real,’ in the sense of ‘objective reality” (Paul 2008).
25 As is the case with other quantum paradoxes, the collapse of the wave function becomes under-
standable within the ensemble interpretation. The fact that an individual observation is made does
not change the (original) ensemble, it only changes our knowledge by giving us an extra piece of
information. We add this information to construct a new ensemble that corresponds to the updated
situation, a quite normal statistical procedure. The ‘collapsed’ state vector describes the new situa-
tion.
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Since according to the spirit of the Copenhagen interpretation it is meaningless
to attribute any existence to a certain physical variable until it is measured,26 the
quantum variables have been transformed into observables. Hence, the standard
adumbration of qm demands from us to assume that the theory is not about existing
objects of nature, but about our measurements and observations on them. Bohr states
it clearly (as reported by Petersen 1963):

There is no quantum world. There is only an abstract quantum mechanical description. It is
wrong to think that the task of physics is to find out how Nature is. Physics concerns what
we can say about Nature.

Heisenberg goes even farther (Heisenberg 1958b), by negating the reality of his very
object of study:

...the atoms or the elementary particles are not as real [as any phenomena in daily life]; they
form a world of potentialities or possibilities rather than one of things and facts.

Out of the frying pan into the fire, today we see a modern version of this idealistic
vision of the world swiftly extending in connection with information, which argues
that the building blocks that constitute the world are not matter and energy, but ...
bits of information (see e.g. Vedral 2010; Boriboje and Brukner 2011, and references
therein). A most fashionable formula for this was introduced by Wheeler (1990): “It
from bit”, where ‘bit’ stands for the unit of information; according to this dictum, the
material world emerges from the (qu)bits of quantum information, not conversely.

As for the possibility to construct a space-time description of quantum systems,
the very idea was firmly negated by Heisenberg, Bohr and other founders of qm,
who declared the quantum world to be nonvisualizable. Thus, the concept of tra-
jectory was taken as untenable in quantum theory since it is contrary to Heisenberg
inequalities (and to the wavelike properties, many would add).27 The view of a
nonvisualizable world helped to do away with the need to explain some of the
quantum paradoxes (Jones 2008, particularly Chap. 16). By 1927 quantum trajecto-
ries were so insistently negated—with the exception of de Broglie and Einstein28

(Bacciagaluppi and Valentini 2009)—that at the closure of the Solvay 1927 Congress
Lorentz felt obliged to make a declaration of principles:

... I should like to preserve this ideal of the past, to describe everything that happens in the
world with distinct images. I am ready to accept other theories, on condition that one is able
to re-express them in terms of clear and distinct images.

26 The dictum “No elementary phenomenon is a phenomenon until it is a registered phenomenon”
(Wheeler 1978, 1983) is a transparent revelation of the positivism that permeates usual quantum
theory.
27 We find trajectories in Feynman’smethod of path integrals, but they are virtual and attain arbitrary
velocities, and besides all possible trajectories are considered with equal amplitude, not only those
(unknown) related to the actual motion followed by a given electron travelling from point A to
point B.
28 Thiswas precisely one of the persistent arguments put forward byEinstein against theCopenhagen
interpretation.
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We are not longing for a past full of clear images, if that past is gone for ever. But,
is it really gone? As Lorentz put it, we should be ready to accept the new theories,
on condition that they are the result of transparent and definitive knowledge, free
of free elections. Yet, by embracing the Copenhagen interpretation, we forsake the
possibility not only of making precise predictions about individual trajectories, but
entertaining that very notion.

Thewidespread conclusion that the violationof theBell inequalities byqmdemon-
strates Nature’s nonlocality represents one more argument against realism. As an
example, van Fraassen (1989) contends that scientific realism is invalidated at the
microlevel by the violation of Bell’s inequalities, and therefore it cannot be valid
more generally.29 In fact, there is no need of these inequalities or any of their vari-
ants to demonstrate that qm corresponds indeed to a nonlocal description, as follows,
for example, from Bohm’s interpretation of qm. The point is that we must carefully
distinguish between Nature being intrinsically nonlocal and a nonlocal rendering of
the relevant portion of Nature.

To maintain a realist view of physics, either the definition of realism must be
changed to accommodate for the new situation, or we must accept that qm cannot be
the final tale. The standard lore purports the first alternative, which leads to consider
that our current notion of realism is incompatible with science.30 For example Stapp
(1972) writes “If the statistical predictions of quantum theory are true, an objective
universe is incompatible with the law of local causes.” It is interesting to compare
this with Einsteins contention (in Born 1971, page 221):

I cannot seriously believe in [quantum mechanics] because it cannot be reconciled with the
idea that physics should represent a reality in time and space, free from spooky actions at a
distance.

Clearly Einstein opted for the second alternative above, namely to admit that qm
is not the final tale. As he expressed in Einstein (1949):

29 By contrast, Shimony (1989) contends that the formalism of qmmay have to be modified so that
the theory meets certain metaphysical constraints. He even suggests the need to modify qm to save
physical realism. By way of example he points out a possible modification of the topology of space-
time at a subquantum scale. He alerts the reader, remarking that “[t]his proposal is the antithesis
of [his] attempt to draw philosophical consequences from scientific results, for it indicates rather
a reliance on philosophical considerations to supply the heuristics for a scientific investigation.”
(page 34).

As can be surmised, the conceptual problems associatedwith the violation of theBell inequalities
have led some authors to even question qm as a fundamental theory of nature [see e.g. Howard
(1989)].
30 More precisely, that local realism and quantum theory are incompatible. This can be argued,
as summarized by Ferrero (1987), as follows: It is possible to demonstrate that the following four
statements are incompatible:

a) Realism; b) Locality; c-EPR) Quantum mechanics is a complete theory; c-Bell) Quantum
mechanics accepts hidden variables (it is not a complete theory); d) Quantum mechanics is a valid
theory of Nature.

a, b, d and c-EPR are the assumptions in the EPR paper;
a, b, d and c-Bell are the assumptions in the early derivation of Bell’s theorem.
Thus, independently of the completeness of qm (i.e., of c-EPR or c-Bell), a, b and d are incom-

patible. In Bell 1971 the demand c-Bell was eliminated.
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If in quantum mechanics we consider the psi-function as (in principle) a complete descrip-
tion of a real physical situation, we thereby imply the hypothesis of action-at-distance, a
hypothesis that is hardly acceptable. If, on the other hand, we consider the psi-function as
an incomplete description of a real physical situation, then it is hardly to be believed that,
for this incomplete description, strict laws of temporal dependence hold.

By assuming that qm goes as far as possible in the knowledge of Nature, the CI
forces us to admit a nonrealistic, irreductibly indeterministic, nonlocal and noncausal
world. In contrast, once we concede that the quantum description is incomplete, the
possibility of going beyond qm without having to renounce to realism opens in
principle. A means to recover realism is thus offered by adhering to the ensemble
interpretation. In particular, by recognizing that quantum theory is statistical and as
such incomplete, the ensemble school allows for the possibility of understanding
the indeterminism as due to such incompleteness, without necessarily assigning to
it a more fundamental meaning, as could be that of an ontological property, or,
perhaps, an irreducible indeterminism at the observational level. This leaves the
door open to further studies at a deeper level, for the identification of the source of
the indeterministic (or stochastic) behavior characteristic of quantum systems. For
those who profess this credo this is a most important alternative. For a hard realist,
who believes that each individual system has always a real state (may be unknown),
and that among the tasks of physics an important one is to discover such real states,
an essentially statistical theory cannot be taken as complete.

In an extended variant of the EI (also here there are variants, of course) the particle
is assumed to have at each moment a set of well-defined, objectively real properties,
even if these properties are not simultaneously described by the wave function.31,32

Thus for example, one thing is to say that the values of two variables associated
with noncommuting operators cannot be simultaneously ascertained by resorting to
ψ, and another one is to say that such values are not simultaneously defined, or
simultaneously existent, even if distributed and unknown. Preexisting values thus
may exist (Deltete and Deltete and Guy 1990), yet the wave function ψ—a catalog
of all the different possible outcomes—can only assign to each of them a certain
probability. In the example of the decay of a single radioactive nucleus the fact that

31 There exists a widespread belief that if two quantities cannot be measured simultaneously, they
do not exist simultaneously. This (positivist) identification of existing (being) and being observed
(measured) is of course merely a point of view; it is not part of the postulates of qm.
32 A simple example may be illustrative of the ambiguity of the quantum description. Consider the
state vector of two spin 1/2 particles in the singlet state (referred to a certain direction z)

|00〉z = 1√
2

(|↑〉 |↓〉 − |↓〉 |↑〉) .

A rotation of the system of reference to an arbitrary direction n̂ transforms this description into

|00〉n̂ = 1√
2

(∣∣n̂+
〉 ∣∣n̂−

〉 − ∣
∣n̂−

〉 ∣∣n̂+
〉)

.

Now the spins are referred to the arbitrary direction n̂. Thus, the spins may be aligned in any
direction whatsoever. In other words, the state vector gives absolutely no indication of the actual
direction of the spins. From the ensemble point of view, the individual spin pairs are distributed
uniformly in all directions.
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a precise prediction escapes to qm, does not mean by necessity that there are no
precise (although unknown) factors precisely determining the result. Thus, the EI
advocate distinguishes between the capabilities of our theories or descriptions, and
what happens in the real world, at the ontological level. A particular, but immediate
consequence of this is that the notion of trajectory, though recognized as foreign to
the quantum description, is not forbidden in principle.

From an ontological point of view, what the EI and CI schools claim is the preex-
istence or not of features that lead to the observed value (see, however, footnote 23).
Thus, referring to the observables of theCI,Bell contends: observables are not beables
(Bell 1987, particularly articles number 5 and 7).33 The transition from beables to
observables—from preexisting values to undefined or nonexisting values—is one
most important issue of quantum theory, which remains nevertheless unstudied. Out
of the blue the observer enters the scene, although the quantum-mechanical formal-
ism does not provide tools to establish where that boundary between the observed
and the observer lies, leaving room for an ambiguity and cloudiness that is totally
strange to theoretical physics. Bell (1987, article 20) refers to this in unequivocal
terms: “It is the toleration of such an ambiguity, not merely provisionally but per-
manently, and at the most fundamental level, that is the real break with the classical
ideal. It is this rather than the failure of any particular concept such as ‘particle’ or
‘determinism’.”34

The pictures provided by the CI and the EI differ so widely—they in fact exclude
each other—that at first glance it should be a simplematter to empirically demonstrate
the fallacies behind one or the other. But almost eighty years have elapsed since the
advent of quantum theory and the dichotomy remains, notwithstanding the endless
discussions and enlightened studies on the subject.35 The root of the difficulties is
that the problem is deeply influenced by the personal philosophical stance. There
coexist several general outlooks about the world, and each one of us adopts one or
another, consciously or unconsciously to different degrees. This is an (apparently)
free personal selection, more or less as (apparently) free is the selection of a religious
credo. Add to that the characteristic positivistic standpoint that pervades textbooks,
entangled with their scientific content. The physics student is normally unprepared
to recognize the presence of this mixture, and less so to disentangle it, so that he ends
up assimilating as established knowledge what is far from that.

33 Not surprisingly, other terms equivalent to beable have been proposed in the literature, such
as ‘being’ or ‘existent’ (Shimony 1978; d’Espagnat 1984). Bell (1987, article 19) adds ‘beer’ as
another one, personally suggested to him by Zumino.
34 A strong contention against the pragmatic and nonrealist views associated with the observer
and his (hers in his language) measurements, reigns in the whole little (big) book of Bell on the
foundations of quantum mechanics (Bell 1987). He even says that there are words that should not
belong to the lingo of theoretical physics and should be banned from it, such as ‘measurement’,
‘observation’, ‘observer’.
35 Reviews or reprints of important work expressing differing views, as well as ample lists of
references to papers dealing with this subject, can be found in de Witt and Graham (1974); Belin-
fante (1973); Jammer (1974); Nilson (1976); Wheeler and Zurek (1983); Cushing and McMullin
(1989); Ballentine (1989, 1998); Omnès (1994, 1999); Home (1997); Auletta (2000); Bertlmann
and Zeilinger (2002), etc. The list is endless.
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For a realist the CI is implausible, to say it mildly (other more belicose terms
have been used), while a moderate orthodox considers the EI full of unnecessary
metaphysics Fuchs and Peres (2000), or just dogmatic. For a more radical orthodox,
the EI lacks the space needed to accommodate other elements demanded by his world
view, such as the observer and perhaps his mind. The pragmatic (fapp) physicist
argues that theCopenhagen theory has been used successfully formany yearswithout
a single failure, which is a proof of its correctness, so we should derive from it our
vision of the world and not the other way round. He therefore expects us to renounce
our basic principles of physical thought in order to be able to understand physics
(Tambakis 1994) on the basis of a ‘quantum syllogism’, an attitude similar in nature
to that required to give theological support to the theory of the epicycles, as Jaynes
(1993) put it. Further, not few physicists add that qm describeswhat can be described,
and that importing into the quantumdomain knowledge that originated in the classical
world leads to contradictions and paradoxes (see e.g. Lévy-Leblond 1973), as Bohr
alerted us since 1935.

It should be noted that, much as the strength of the EI lies in its essentially statisti-
cal nature, in it lies also its weakness. Indeed, the EI (as expounded e.g. in Ballentine
1970, 1989, 1998) is far from being free of difficulties on a very fundamental level.
An immediate one is that the quantum-mechanical description is a very particular
sort of statistical description, in terms, not of probabilities, but of amplitudes of
probability, which have the peculiarity that they interfere among themselves. This is
fundamental for qm; it is the basis for quantum interference and entanglement, two
most important and characteristic features of the quantum systems. This superposi-
tion of amplitudes has at least two implications that go counter to the usual theory of
probability: the occurrence of probabilities that depend on the context (contextuality,
for short), and of negative probabilities, as remarked in Sect. 1.1.1. Moreover, and
connected to the latter, the quantum description does not allow for a joint distribution
for noncommuting variables, so it lacks of a true phase-space distribution of general
applicability. The fact that joint probability distributions do not exist for noncom-
muting variables puts into question the very definition of correlations between them.
It should therefore not be surprising to find results such as those of Gleason (1957),
Bell (1966), Kochen and Specker (1967),36 showing that even if each observable is
considered as a classical random variable, two incompatible observables (noncom-
muting operators) cannot be viewed simultaneously as classical random variables
defined on the same space of events, with independence from the specific context.
The consequence of this is the nonexistence of a (context-independent) joint dis-
tribution of such variables (Suppes and Zanotti 1981). A particular sequel of such
theorems is that any hidden-variables theory of qm is necessarily contextual.

Of course, such problems as negative probabilites and the lack of a phase-space
description, being characteristic of the quantum formalism, are common to all inter-

36 The latter is the name by which the theorem of these authors is commonly known, although a
similar result was presented somewhat earlier in Bell (1966). For this reason some authors refer to
it under the fairer acronym BKS. There are not so many instances in which an almost simultaneous
discovery by several authors is duly recognized—more often, science seems to have become a
one-hundred meter steeplechase race.
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pretations of qm. However, the problem becomes more accute for the EI, precisely
because it sees qm as a statistical theory. The widespread lack of clarity about this
topic has led to a series of objections against the ensemble interpretation of qm, with
some authors claiming with conviction that such a formulation has been empirically
disproved. About this there is still much to say.

1.4 What is this Book About?

Through the following eight chapters, a fundamental theory for quantum mechanics
is constructed from first physical principles, disclosing quantization as an emer-
gent phenomenon arising from a deeper stochastic process. The elements that
sustain the pillars of the quantum-mechanical formalism are identified; hallmarks
such as the mechanism responsible for atomic stability, the nature of quantum fluc-
tuations, the origin and meaning of quantum nonlocalities, as well as other central
features of quantum theory, are elucidated. All this is carried out within a comprehen-
sive and self-consistent theoretical framework that reaffirms fundamental scientific
principles such as realism, causality, locality, and objectivity. Thus, the theory devel-
oped in the present monograph hopefully may serve to show that those principles
can survive their apparently unsurmountable adversities.

If one lesson can be drawn from the persistent but inconclusive enlightened studies
on the meaning of the quantum laws, it is that the analysis of quantum theory from its
inside leads to nowhere. Such studies may add richness, deepness and erudition to an
interpretation, but the essentials remain the same. The virtue of the theory presented
here is that it offers a perspective on the quantum world from outside it; one arrives
at the quantum formalism from a distance, with a well-defined physical perspective.
The interpretation comes from the physics, not the physics from the interpretation.

1.4.1 The Underlying Hypothesis

The fundamental hypothesis that is put to test and developed at length in this book
is that every material system is an open stochastic system in permanent contact with
the random zero-point radiation field (zpf). The existence of an all-pervading zpf
follows quite naturally from the (classical) Maxwell equations, yet it is foreign to
the classical realm, which graciously assigns zero energy to the field oscillators at
zero temperature. The zpf is taken here as the athermal component of the radiation
field, as real as any other solution of the Maxwell equations.

Themost significant conclusion drawn from the present theory is that the quantum
phenomenon, rather than being an intrinsic property of matter or the radiation field,
emerges from their interaction. A key element is found in the fluctuations of the
zpf, which correspond to the ‘vacuum fluctuations’ of quantum electrodynamics
(qed). Vacuum fluctuations are commonplace in modern quantum theory, though
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some of their consequences seem not to be fully appreciated. The fluctuations of
the best known vacuum field, the electromagnetic radiation field, are commonly
considered to be (totally or partially) responsible for several physical phenomena,
such as spontaneous radiation from excited systems (see e.g. Dalibard et al. 1982),
the Casimir forces (see, e.g., Davydov 1965; Ballentine 1989), and the Lamb shift
(see e.g. Sokolov et al. 1962; Milonni 1994). But apart from serving to explain these
quantum corrections, the vacuum field is mostly viewed as a nuisance, because it
is responsible for several of the infinities that spoil the otherwise smooth quantum
calculations.37 Thus it is swept under the carpet as soon as possible (only to reenter
through the back door) and reduced to a merely virtual field. In the theory presented
here, rather than being a nuisance, the zpf becomes central for the understanding of
the behavior of atomic matter. Thus, far from being considered as merely the origin
of some small corrections or effects to be added on top of the quantum pattern of
matter, the zpf is seen as the source of the quantum behavior of matter. This is the
central premise of stochastic electrodynamics (sed), at least from the point of view
of the present authors.

Naturally, since all vacuum fields may contribute in principle to the universal
background noise, in line with our approach all of them could contribute to the fun-
damental stochastic behavior of matter on the microscopic level. However, at the
scales to which qm is most frequently applied, or for systems basically of an elec-
trodynamic nature, it is the electromagnetic vacuum that plays the pivotal role. At
deeper levels or for systems of another sort, it may well be that other vacua become
relevant; one can even speculate that all vacuum fields have similar statistical prop-
erties, so that a kind of universality holds, in the sense that the essential stochasticity
of matter is basically independent of the nature of the dominant background field.
One could also consider that the required random field is just a construct to simulate
the effects of random fluctuations of the metric, and take these as the ultimate origin
of the quantum phenomenon (a first heuristic approach to this idea has been given in
Santos 2006).

1.4.2 The System Under Investigation

Our system of study is composed of a material charged particle (rather, an ensemble
of them) embedded in the zpf and having a dynamics that is initially described by
a classical (stochastic) equation of motion. Due to the randomess of the system, the
theory is statistical in essence. The system is then left to evolve. When, and if, it
reaches a reversible regime in which detailed energy balance (i.e., at each frequency
of the field) is attained in themean between the field andmatter, the radiative terms in

37 Interestingly, at present the zero-point fields are seen as possible sources of the conjectured dark
energy. Even if for the moment this is not much more than a speculation (which carries its own
problems), it brings to the fore the possible importance of zero-point fields (see e.g. Saunders and
Brown 1991).
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the dynamical equations for the mechanical subsystem becomemere corrections that
can be neglected in a first approximation. Under these conditions the evolution turns
out to be controlled by the quantum equations. Two independent and complementary
derivations of this fundamental result are presented, one in Chap. 4 (leading to the
Schrödinger description), and another in Chap. 5 (leading to the Heisenberg for-
malism). The ensuing classical-to-quantum transition could in a way evoke the usual
textbook derivations in quantumfield theory that start froma classical field theory and
at some point incorporate an extra-classical (quantum) demand. Of course the con-
verse transition, from quantum to classical, is theoretical commonplace—although
not always based on conclusive arguments. Yet our procedure differs profoundly in
essence and scope from such formalmethods; here no quantum demand is introduced
(neither a priori nor a posteriori). The zpf is the extra-classical physical entity that
ultimately endows the system with its quantum properties, and in addition guaran-
tees the internal consistency of the theory. The quantum is not the means, but the
consequence.

The present theory should not be confused with a semiclassical theory, which
treats matter quantum-mechanically but the field classically, or conversely (see e.g.
Sokolov and Tumanov 1956). Quite the contrary, here we deal with an initially
continuous radiation field (classical, but with its zero-point component) and a particle
that initially satisfies classical equations of motion, and show that both end up being
quantized.

As a prelude to the derivations inChaps. 4 and5, the phenomenological description
of qm as a stochastic theory is discussed in Chap. 2, with the purpose of introducing
the reader to some of the (old) methods that succeed in showing that it makes sense
indeed to understand qm as a stochastic theory. InChap. 3we initiate the testing of our
hypothesis, by analyzing the consequences of allowing for a zero-point contribution
in the equilibrium radiation field. There it is shown that the zpf has a decisive role
in leading to the Planck distribution for the radiation in thermal equilibrium, and to
the quantized spectrum for the oscillators of the field.

The treatment ofmatter and field as inseparable elements of awhole systemmakes
it possible for the theory to go beyond qm in the most natural way. It provides the
elements to study the radiation and absorption terms—a matter that is normally con-
sidered to belong to the domain of qed—which here appear as radiative corrections
(neglected in the previous approximation) to the quantum-mechanical description.
In Chap. 6 it is shown that indeed, these terms are responsible for the finite lifetimes
of excited atomic states, as well as for the absolute stability of the ground state in the
sole presence of the zpf. A further radiative correction that appears quite naturally
gives the Lamb shift for isolated atoms, and the corresponding shifts in more com-
plex situations. Of particular interest is the discussion, in the same Chap. 6, related to
the origin of the electron spin from the present perspective, as another consequence
of the fluctuations imposed on the particle by the field, in this case, those that give
rise to rotational motions. We are thus faced with one more element that cannot be
predicted from within the Schrödinger realm, but can be unfolded by recognizing
the presence and action of the zpf. Moreover, being the spin of the charged particle
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the support for its magnetic moment, it becomes clear that along with it, the theory
determines the spin g-factor of the electron, predicting its correct value of 2.

When the theory is generalized to include systems of two particles, which is the
subject of Chap. 7, a phenomenon expected in the present treatment appears, namely
the emergence of correlations between (even otherwise noninteracting) nearby par-
ticles through common relevant modes of the vacuum field. The correlated motions
of the particles attest to their entanglement, induced by the zpf. Therefore, just as
the zpf may be capable of generating decoherence of the system, it also stands as
the most important source of coherence in a significant class of bipartite systems. In
particular, when the particles are identical and subject to the same external potential,
our results disclose the mechanism underlying the Pauli exclusion principle. More
generally, the vacuum field is exhibited as an important source of nonlocality: when
this field is ignored, the consequences of its action appear as nonlocal. Nonlocal-
ity is further studied in Chap. 8, both for the single-particle case and for a pair of
correlated (entangled) particles; these studies unfold the important role played by
the so-called diffusive velocity, just the one due to the quantum fluctuations, in pro-
viding the quantum system with its characteristic nonlocal descriptive features. In
addition, in Chap. 8 we make a brief detour to the causal interpretation of qm, which
among interesting features provides an opportunity to glance at a hidden-variables
description and to take a fresh look at quantum nonlocality.

Attention is paid in Chap. 9 to the undulatory properties of matter; the de Broglie
wave is constructed and shown to originate in the radiation field around the moving
particle. A well-defined physical wave is thus naturally associated to the moving
corpuscle, yet both entities (particle and wave) are clearly distinguished from each
other at all times. Further, a brief discussion is presented regarding the diffraction of
electrons, which is explained by arguing that the electron diffraction pattern is but
a trace of the pattern produced by the diffracted zpf. A final section is devoted to a
discussion on the relationship between atomic and cosmological constants, with the
zpf, of cosmic presence, acting as the bridge between these two realms of Nature.
The final Chap. 10 contains an overview of the main results and implications for qm
of the theory developed in the previous chapters. It further provides a brief account
of several of its limitations and possible extensions, and ends with a brief discussion
of sed in the broader context of theories of space-time metric fluctuations.

It should indeed be noted from the start that the treatment given here to the quan-
tum problem corresponds to a restricted theory in several senses. An obvious one
is that the entire discussion is nonrelativistic. Further, the dynamics that takes place
during the transition from the original classical state—inwhich the system is far from
equilibrium—to the final state—the quantum regime, controlled by the detailed bal-
ance of energy—still needs to be worked out in detail; surely such studies will reveal
a rich physics that so far remains hidden. Moreover, the entire treatment is limited
here to the description of the dynamics of the material part of the system, while the
field is considered as basically (though not entirely!) unperturbed. This excludes by
construction the possibility of a full quantum-electrodynamic description. Conse-
quently, the calculation of those phenomena that correspond to qed is everywhere
limited in this volume to the lowest significative order of approximation.Within these
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limitations, nevertheless, the results derived are always the correct ones, appropri-
ately coinciding with the corresponding predictions of either (nonrelativistic) qm or
qed.

By looking at quantum theory from the perspective offered here, we hope that
the reader will find a satisfactory explanation or answer to a number of the issues
and puzzles mentioned in this chapter, and to others that may be boggling his mind.
On the other hand, as discussed in the final chapter, it is clear that there are still
many fundamental (and treacherous) facets to learn about the quantum world and
its intriguing machinery. qm is a marvelous theory. Just because it is marvelous, it
deserves to be better understood.

In concluding, we should note that the theory developed in this volume is an
alternative, more advanced, complete and elaborate version of the previously devel-
oped theory of sed.38 When it is necessary to distinguish between the traditional
theory and the present version, the latter will be designated with lsed (the l stands
for linear; see the explanation in Sect. 5.2). The theory offers substantial answer
to a fundamental question posed by T. H. Boyer,39 namely: which quantum prob-
lems can be explained using classical physics plus the zpf? A large collection of
papers published in the past half century by different authors (by Boyer himself,
P. Claverie, D. C. Cole, H. M. França, T. W. Marshall, A. Rueda, E. Santos, our-
selves and several others) provided the ground for the construction of the present
version and anticipated some of the results derived here. Recent results obtained by
some of these authors and others serve to legitimate or reinforce the ones presented
here. We therefore wish, through the present work, to pay tribute to all those col-
leagues who have joined us in this exciting endeavour with the shared conviction that
the quantum puzzle can be solved, and that the zpf is a central part of the solution.

Appendix A: The Ensemble Meaning of Probability

Considering that probability is a somewhat obscure subject, about which all sorts of
debates have taken place, the following observations—due in essence toBrody (1975,
1993)—may be appreciated by some of our readers. The point is that several notions
of probability coexist and are used in the physical literature, with their respective
caveats. It would not be an overstatement to say that the personal grasp of the notion
of probability plays an important role in the espousal of one or the other interpretation
of qm. It therefore seems appropriate to give some precision to the meaning given
to it in the present work.40

38 A comprehensive account of the results obtained in sed up to 1995 is contained in the book The
Quantum Dice, by L. de la Peña and A.M. Cetto (1996), hereafter referred to as The Dice.
39 We attribute this question to Boyer by inferring it from his papers. In a private communication
he has expressed himself in similar terms. See however Boyer (2011).
40 Among the many different perspectives on the subject within physics, the following cover a wide
range of possibilities: Bunge (1970); Lucas (1970); Gillies (1973); Rédei and Szegedi (1989); Home
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Apart from the formal or axiomatic (Kolmogorovian) probabilities and the sub-
jective interpretation of probability,41 there are two interpretations of probability
popular among the practitioners of physics. One of them is the frequentist or objec-
tive ( empirical) interpretation. According to this interpretation, proposed by Venn
(1880), and developed by Reichenbach (1949) and von Mises (1957), among others,
a series of observations is made and the relative frequency of an event is thus deter-
mined; its probability is taken as the value attained in the limit when the number
of cases in the series tends to infinity. Here we are dealing with events (not with
propositions as in the formal rendering, or with opinions or beliefs as is the case with
the subjective interpretation), and the determination of the relative frequency is an
empirical, objective (although approximate) process. There are however some prob-
lems that hamper a strict formulation of this probability: if experimental frequencies
are used, the infinite limit is unattainable; if the relative frequency is a theoretical
estimate, then the limit is probabilistic and the frequentist definition becomes circular.
Again, the existence of the limit value should be assumed. Moreover, the theoretical
structure lacks an experimental counterpart: why should the experimental relative
frequencies correspond to the theoretical estimates? Notwithstanding such difficul-
ties, this interpretation constitutes a widely used practical tool. As Bunge (1970) puts
it: “All we have is a frequency evaluation of probability”.

Let us turn our attention to another important view on probability, much extended
among physicists, namely the ensemble interpretation.We follow here the discussion
on the subject byBrody (1975, 1975), particularly Chap.10), and start by recalling the
usual concept of ensemble . Each theoretical model of reality should be in principle
applicable to all cases of the same kind, i.e., to all cases where the properties of the
system considered by the model are equal; the factors neglected by the model may
vary or fluctuate freely, but in consistency with the applicable physical laws. The set
of all these cases constitutes the ensemble of interest. The notion of ensemble as a
set of theoretical constructs can thus be established without recourse to the concept
of probability, and can be structured so as to possess a measure, which is then used
to define averages over the ensemble. The ensemble concept of probability can then
be introduced as follows. Let A be a property of interest and let χA be the indicator
function of A, i.e., χA(ω) = 1 if the member ω of the ensemble has the property A,

and Whitaker (1992). See also Interpretations of Probability in the online Stanford Encyclopedia
of Philosophy.
41 The most extended subjective views of probability are the individual degree of acceptability of
a proposition (de Fenetti 1974), or its Bayesian version (Jeffreys (1939); Jaynes (1995); Caticha
(2008) as a measure of the informed personal opinion. According to the Bayesian views, any
evaluation of a probability is conditional to some evidence that partially entails it; thus, Keynes
(1921) asserts that “the probability of the same statement varies with the evidence presented”. By
contrast, the probability of decay of an atomic nucleus depends on the internal physical situation of
the constituent nucleons, and is entirely independent of any personal information. This illustrates
the different use of the concept of probability in physics and in other fields of knowledge. It should
be considered that even if an assigned numerical probability is taken as depending on our degree
of rational belief (or our degree of partial entailment), it contains some logical elements, since it
is limited by rational constraints that ensure the possibility of using a mathematical apparatus (see
Gillies (1973), Introduction).
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χA(ω) = 0 otherwise. Then the probability of A is the expectation over the ensemble
of χA(ω),

Pr(A) =
∫

�

χA(ω)dμ(ω), (A.1)

where μ(ω) is the measure function for the ensemble, usually normalized over �,
the range of the events ω. It is possible to show that this definition satisfies all the
axioms of Kolmogorov (1956), so that indeed the ensemble can become the basic
tool for probabilistic theorization.

The experimental counterpart of this probability is the relative frequency as
measured in an actual (and of course finite) series of experiments. If the relative fre-
quencies thus measured do not correspond to the theoretical estimates, the ensemble
(the measure) should be redefined until agreement is reached through the appropriate
research work. Here there is no global recipe. Of course, as is the case with any other
physical quantity, theoretical probabilities and their experimental values need not
necessarily be exactly the same.

The ensemble definition of probability does not allow the application of the notion
of probability to a singular case (there is no ensemble). Thus, for example, the philo-
sophical problem of the probability of a given theory being true, becomes meaning-
less. To give meaning to the assertion about the probability of a single event, it must
be translated into a statement about its relative frequency.

The most interesting aspect of the ensemble notion of probability is its direct
correspondence with the concept used by physicists in their daily undertakings, so
thatwe adhere to it in the presentwork, even though it is not entirely free of conceptual
and philosophical problems—as any other interpretation of probability.
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Chapter 2
The Phenomenological Stochastic Approach:
A Short Route to Quantum Mechanics

Some physicists, among them myself, cannot believe that we
must abandon, actually and forever, the idea of direct
representation of physical reality in space and time...

A. Einstein (1954)

2.1 Why a Phenomenological Approach to Quantum
Mechanics?

Independently of the interpretation embraced, randomness enters into the quantum
description as a central and ever present ingredient.1 Therefore, and leaving aside for
themoment the problem of identifying the source of the randomness, a direct analysis
of qm as a stochastic theory seems befitting as an introduction to the subject and in
preparation for the chapters that follow. The phenomenological approach presented
in this chapter is particularly suitable for such purposes, and in spite of its limitations,
it reinforces the notion that a stochastic process underlies qm.2

The natural procedure to dealwith a stochastic problem in physics involves a statis-
tical treatment.However, anydirect stochastic interpretation of qm faces immediately
a fundamental difficulty, since qm is not a genuine statistical theory, as mentioned

1 Not quite independently of the interpretation, strictly speaking. For example, Bell (1987, article
19) argues that “. . .the reversibility of the Schrödinger equation strongly suggests that quantum
mechanics is not fundamentally stochastic in nature.” This sentence sounds tempting. . . At this
stage, how would you respond to it? (An answer is given at the end of the chapter.)
2 Randomness plays an important role in several interpretations of qm, in addition to the one
developed in this book. A case of major interest is Griffiths’ theory of consistent histories, according
to which most of the evolution is due to randomness. See Omnès (1994, 1999a, b), Griffiths (1996),
Griffiths and Omnés (1999).
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in Chap. 1. This presents us with a quite discomforting alternative: (i) either a true
statistical description of quantum systems is achieved, but then it cannot faithfully
reproduce all of qm, or (ii) the stochastic model is constructed so as to reproduce
the quantum behavior in detail, but then it will be endowed with some bizarre prop-
erties. The derivation of standard qm from a genuine stochastic theory, as developed
in later chapters, will allow us to fully appreciate the importance of this assertion,
since several approximations have to be made along the way, which result in a sui
generis statistical description.

The stochastic theory presented in this chapter is based on a phenomenological
model that goes along the second alternative and hence is completely in line with
qm. As will become clear, this model has the advantage of its intuitive appeal and its
simplicity. The fact that it is expressed in terms of dynamical variables that are not part
of the standard quantum formalism, contributes to enrich the description by looking
at the quantum phenomenon from a different angle, yet the phenomenological model
also has some important shortcomings.

In developing the stochastic approach to qm a stochastic physical source with
certain simple statistical properties is normally assumed to exist, but not identified.
This lack of definition has given way to a variety of most dissimilar proposals, and
even to the assumption that the hidden source does not exist at all and that the
stochasticity is spontaneous, which of course leaves things as noncausal as they are
without the need of another theory. In the context of the present chapter, it is a small
sin to leave the source of stochasticity unspecified, since the rest of the book is
devoted, to a large extent, to identify such source and to extract the consequences of
its presence.

An important point to be made here is that nearly all forms of phenomenological
approach to qm consider the stochastic process as a kind of Brownianmotion. Aswill
become evident, this is incorrect. Quantum stochasticity does not mean Brownian
motion; at the phenomenologic level quantumandclassical stochastic particles follow
their own dynamical rules.

2.2 The Stochastic Description of Quantum Mechanics

Among the profuse arguments given in support of the notion of a stochastic process
underlying qm, a couple of them go as follows (see also Comisar 1965; Hall and
Collins 1971; Vasudevan et al. 2008). The first one, merely formal, is based on the
analogy first observed by Schrödinger (1931, 1932) (and later by 1933) between his
equation and the diffusion equation, which are related with one another by analytical
continuation into imaginary times(see Sect. 4.4.5). The seed planted by Schrödinger
expanded much later into a fuller theory in terms of Bernstein processes (Blanchard
and Garbaczewski 1994; Jamison 1974; Zambrini 1986; see also Cramer 1986; Gar-
baczewski 1990, 1992, 1992, 1993a, 1993b, 1994, 1995.

A second interesting argument is that if a quantum particle is considered to follow
a stochastic process in configuration space, the resulting Hausdorff fractal dimension
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of such process turns out to be the same as that of a Brownian particle (Abbott and
Wise 1981). This fact is in itself interesting, although one can think with no less
legitimacy of a phase-space description, and then the analogy breaks down. Many
other particular reasons have been given in support of a stochastic approach to the
quantum problem; for example, de Broglie (1967) felt compelled to introduce it in
order to make the particle switch at random from one guiding wave to another (the
guiding wave proposed by de Broglie is touched upon in Chap. 8).

The first relatively accomplished stochastic theory of the quantum process was
proposed by the Hungarian physicist Fényes (1946, 1952) [which was strongly crit-
icized by Nicholson (1954)], and further developed by Kershaw (1964) and Bess
(1973), among others.3 Féynes’ theory is based on an ad hoc Lagrangian within a
Brownian context; the authorwent as far as to recover a good part of theHilbert-space
formalism and concluded that qm describes an inherently stochastic phenomenon.
But perhaps the most widely known theory of this kind, based on a non dissipative
Markov process, is stochastic mechanics, initiated by Nelson in (1966) (and subse-
quent papers 1967–2013), and further developed byGuerra (1981, 1984, 1985, 1988),
Guerra and Marra (1983), Guerra and Morato (1983), and Davidson (1978, 1979a,
b, c, 1981, 2007). A common characteristic of this collection of works, at least during
the earlier stages of development, was the identification of the underlying process
as classical and of a Brownian nature. This led Jammer (1974, p. 418) to the state-
ment: “The main objective of the stochastic interpretation of quantummechanics has
been to show that quantum theory is fundamentally a classical theory of probabilities
or stochastic processes, and as such conceptually of the same structure as, say, the
Einstein-von Smoluchowski theory of Brownian motion. . .” in our own words (de
la Peña and Cetto 1982), “this sounds as astonishing and implausible as the com-
plementary assertion would sound, namely, that Brownian motion is fundamentally
a quantum theory conceptually of the same structure as the Schrödinger theory of
the electron”. And indeed, the need for a clear conceptual distinction between these
two stochastic processes gave rise to a different branch of research, whose scope
was also the development of a possible stochastic interpretation of qm, but on the
basis that the quantum stochasticity is distinctly nonclassical, i.e., essentially differ-
ent from Brownian motion. This theory, which has been called stochastic quantum
mechanics, is the one that will be presented here.4

3 At least two other stochastic proposals were made almost simultaneously to Féynes’ work, by
Novobátzky (1951) and Takabayasi (1952). A detailed account of the first developments of the
stochastic approach to qm can be seen in Jammer (1974), Chap. 9.
4 As noted earlier, Nelson calls the theory simply stochastic mechanics. His work is that of a math-
ematician and should be of major interest to the more mathematically inclined readers. There is
another entirely different theory that goes under the same name stochastic quantum mechanics,
pioneered by Prugovečki (1984, 1995) [see also Ali and Engliš (2005); Ali and Prugovečki (1986)].
It represents an attempt to unify physics into a rigorous quantum structure that considers a quantum
spacetime and a universe which on the microscopic level follows a stochastic rather than determin-
istic evolution. Further, it should be noted that some authors speak of stochastic quantum mechanics
while referring to Bohm’s theory (see e.g. Feligioni et al. 2005).
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A general feature of all these stochastic theories is their phenomenological nature;
since they are aimed at reproducingqm, whether the process is considered classical or
not, they are in principle unable to go beyond qm. In general, no specific assumption
is made about the nature of the stochastic force, although, as indicated above, one
can find the most varied suggestions in this regard, ranging from collisions with
vacuum particles or zerons, interactions with a diversity of vacuum fields or even
neutrinos, or a universal action reservoir (Lisi 2006), to fluctuations of the space-time
metric (Santos 2006). The description may even be made compatible with the idea
of an indeterministic electron, which is far from the realistic and causal persuasion
that inspires the whole enterprise. Their phenomenological character is perhaps the
strongest objection that can be made to these models, but taken at their face value
they can be and indeed have been useful, at least because of the picture they suggest,
and for several other reasons that will become evident in what follows.

2.3 Stochastic Quantum Mechanics

Ourfirst task is to construct a theory of stochastic processes in configuration space that
is sufficiently general (within the proper limits of the theory), so as to accommodate
the quantum processes, assuming such a description is feasible. The (rather informal)
exposition that follows, essentially based on de la Peña (1969), de la Peña and Cetto
(1975, 1982, 1991, 1996) (we follow more closely the exposition in this last work),
andSantos (1973), startswith the formulation of the appropriate kinematics.Different
or complementary discussions can be seen in Nelson (1966, 2012), Guerra (1981),
Blanchard et al. (1987), Kyprianidis (1992) and references therein.

2.3.1 Kinematics

Consider a particle undergoing a stochastic motion, so that its position x(t) consti-
tutes a stochastic process. Thus, for each possible event (or rather, for each realization
of the source of randomness, if any) a specific trajectory is followed, starting from
the initial conditions. Assume that at a certain time t the particle is located at a point
x; at a slightly earlier time t ′ = t − �t it had a different position denoted by x′, and
similarly, at a slightly later time t ′′ = t + �t it will occupy the position x′′. For an
arbitrary C√-function g of the stochastic variable x a Taylor series expansion, with

�+x = x′′ − x, �−x = x − x′, (2.1)

gives the expression (a sum over repeated indices is understood)
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g(x′′) − g(x′)
2�t

= ∂g

∂xi

�+xi + �−xi

2�t

+ ∂2g

∂xi∂x j

�+xi�+x j − �−xi�−x j

4�t
+ · · · (2.2)

For a smooth (sure or nonstochastic) motion we can take the limit �t ↑ 0, when
this expression reduces to dg(x)/dt = (∇g) · (dx/dt).5 However, in the presence of
stochasticity�t cannot be taken arbitrarily small. The reason is that at the time scale
of the ‘instantaneous’ description (i.e., according to the available experimental time
resolution) the components �±xi for a given member of the ensemble may happen
to be non differentiable (or changing very fast), due to abrupt kicks impressed by the
random source. On the other hand, since �±xi (t) refers also to a stochastic variable,
also the ‘derivative’ defined above becomes a random function. Nevertheless, it is
possible to construct an approximate or phenomenological derivative, for small �t,
as follows.

Thefirst change consists in averaging over all the possible events (or realizations of
the background randomness), or rather over the ensemble of particles that reproduce
all the possible trajectories. This operation is denoted by ↓·◦, so that instead of g(x′′)−
g(x′)wewill consider

〈
g(x′′) − g(x′)

〉
. Next, the problem of taking the limit�t ↑ 0

is solved by performing a moving averaging of the function x(t) during a ‘small’
time �t ,6 much smaller than the characteristic time T0 of the systematic (relevant)
motions, but long enough for the particle to feel the effects of many blows from the
stochastic source, so as to effectively smoothen out the most rapid changes in the
instantaneous position. For example, in the case of Brownian motion the particle
is so large compared with the solvent molecules that it receives a large number of
molecular impacts during the time interval�t , thus effectively averaging them into a
(much) smoother function of time. These averaged quantities are the ones that obey
the diffusion laws. Thus we choose

T0 � �t � tc, (2.3)

where tc is appropiately selected so as to embrace many of the most closely spaced
violent changes in each particular ‘instantaneous’ x(t). The resulting (coarse-time-
scale) average time derivative or systematic derivative is denoted by the symbolDc;
hence,

5 By writing
g(x; t ′′) − g(x; t ′)

2�t
= 1

2�t

∫ t ′+2�t

t ′
∂g(x; s)

∂s
ds

it becomes clear that this expression is a coarse-grained time-derivative obtained by time-averaging
the derivative ∂g/∂t. This procedure mimicks the time smoothing produced by an observation,
which is always extended in time. Such smoothing is particularly appropriate to deal with highly
irregular (and even non-differentiable) functions.
6 The moving average x�t (t) of x(t) is defined as x�t (t) = (1/�t)

∫ t+�t
t x(τ )dτ .
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Dcg(x) =
〈
g(x′′) − g(x′)

〉

2�t
, (2.4)

with �t such that Eq. (2.3) holds.
At this point it is necessary tomake several assumptions about the properties of the

stochasticmotion.Considering thedesiredgenerality of the treatment and the lackof a
specificmodel, these properties are unknown in principle; but for the cases of interest
here it proves sufficient to assume that the stochasticity is due to a stationary, isotropic
and homogeneous source; the second moments of �±x are then independent of the
sign for equal signs,

〈
�+xi�+x j

〉 = 〈
�−xi�−x j

〉
(up to terms of order�t). Further,

the fluctuations are assumed to be statistically independent,
〈
�+xi�−x j

〉 = 0 for all
i and j . Each surviving second moment may have a contribution of order �t due to
the randomness of the motion, plus higher-order contributions,

〈
�+xi�+x j

〉 = 2Di j (x, t)�t + · · · ,
〈
�−xi�−x j

〉 = 2Di j (x, t)�t + · · ·
(2.5)

These expressions define (to zero order in �t) the elements Di j of the diffusion
tensor as

Di j (x, t) =
〈
�±xi�±x j

〉

2�t
. (2.6)

The difference
〈
�+xi�+x j

〉 − 〈
�−xi�−x j

〉
is therefore of order higher than the

first in �t , and from Eqs. (2.2) and (2.4) we have to zero order in �t (adding the
contribution that may come from a possible explicit time dependence of g)

Dcg(x, t) =
(

∂

∂t
+ v · ∇

)
g(x, t), (2.7)

with the flux or systematic (convective) velocity v(x, t) given by

v(x, t) = ↓�+x + �−x◦
2�t

=
〈
x′′ − x′〉

2�t
. (2.8)

This Dc coincides with the total time derivative of hydrodynamics. Note that appli-
cation of Eq. (2.7) to each of the components xi gives

v(x, t) = Dc x. (2.9)

The systematic derivative defined above is only one of an infinite number of
possible derivatives. Another one, equally important for what follows, is obtained by
considering not the difference in (2.2), but the sum
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g(x′′) + g(x′)
2�t

= 2g(x)

2�t
+ ∂g

∂xi

�+xi − �−xi

2�t

+ ∂2g

∂xi∂x j

�+xi�+x j + �−xi�−x j

4�t
+ · · · (2.10)

This leads to the definition of the stochastic derivative of the function g(x, t),
namely,

Dsg(x, t) =
〈
g(x′′) + g(x′) − 2g(x)

〉

2�t
(2.11)

or

Dsg(x, t) = ∂g

∂xi

↓�+xi − �−xi ◦
2�t

+ ∂2g

∂xi∂x j

〈
�+xi�+x j + �−xi�−x j

〉

4�t
+ · · · . (2.12)

As for the first moments of the deviations of the coordinates entering into the expres-
sion forDsg, note that for a smooth motion the difference (�+x −�−x) is of order
(�t)2; however, if there is a ‘diffusion pressure’, i.e., if the distribution of the instan-
taneous motions is inhomogeneous (there are more impacts per unit time from one
side than from the other), the average of this difference may contain a term of order
�t . Therefore, we write

u = ↓�+x − �−x◦
2�t

=
〈
x′′ + x′ − 2x

〉

2�t
(2.13)

and call u the diffusive, stochastic, or osmotic velocity. Collecting results, and
neglecting again all higher-order terms, we get

Dsg(x, t) = ui
∂g

∂xi
+ Di j

∂2g

∂xi∂x j
, (2.14)

an equation that applied to x gives

u = Ds x. (2.15)

In what follows we consider the simple case of a diagonal, isotropic and uniform
diffusion tensor Di j = Dδi j , with D constant, so that Eq. (2.14) reduces to

Dsg(x, t) =
(
u · ∇ + D∇2

)
g(x, t). (2.16)
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TheMarkovian approximation made above (hereMarkovian means only retention of
terms up to and including second-order moments) is by no means trivial and in each
specific application its validity should be verified. However, it will prove sufficient
and appropriate for the reproduction of the quantum description.

Note that neither u nor Ds exist in the Newtonian limit, i.e., for smooth motions
in the absence of stochasticity. This allows us to define the Newtonian limit through

Newtonian limit: Ds ↑ 0 and u ↑ 0. (2.17)

In this limit of courseDc ↑ d/dt , with the derivative taken along thefluxof particles.
As is now evident, by considering a sequence of time intervals previous to t ′ and
following t ′′ it becomes possible to define as many different velocities as desired, and
each additional one renders a more complete (but less local) statistical description
of the motion. However, for the present purposes the two velocities v and u defined
above happen to be sufficient. Yet certain linear combinations of them, as well as of
the operators of time derivation Dc and Ds , are particularly useful. Specifically, we
have the exit and access combinations, denoted by the indices e and a, respectively
[also called forward (+) and backward (−)]. The velocities and operators of interest
are summarized as follows,

De = Dc + Ds, Da = Dc − Ds; (2.18a)

Dc = ∂

∂t
+ v · ∇, Ds = u · ∇ + D∇2; (2.18b)

De = ∂

∂t
+ ve · ∇ + D∇2, Da = ∂

∂t
+ va · ∇ − D∇2; (2.18c)

ve =
〈
x′′ − x

〉

�t
= v + u = De x, va =

〈
x − x′〉

�t
= v − u = Da x; (2.18d)

v = 1
2 (ve + va) = Dc x, u = 1

2 (ve − va) = Ds x. (2.18e)

Equation (2.18d) exhibits the access (exit) velocity va (ve) as the local velocity
of the particles reaching (leaving) point x at time t. However, these refer to the
(local) average values of �x±; to get instantaneous expressions it is required to add
to each increment the corresponding instantaneous deviation from their respective
local mean value, i.e.,

�+x = ve�t + δx+, �−xi = va�t + δx−, (2.19)

with δx+ and δx− independent stochastic vector variables that average to zero.7

In the absence of diffusion, va = ve; but if there is diffusion, there may be more

7 To reproduce the above results it is required that the second moment
〈
(δx+)2

〉
be proportional

to�t, so that
〈
(�+x)2

〉
/�t acquires afinite value [as demandedbyEq. (2.6)]. This is a characteristic
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(or fewer) particles leaving than entering the neighborhood of x in a given small time
interval, the difference 2u being then a measure of the intensity of the diffusion [see
Eq. (2.27) below].

An important feature of the velocities is their different behavior with respect to
time reversal. A time-reversal operation T̂ interchanges t ′ and t ′′, and thus also the
points x′ and x′′:

T̂ x′′ = x′, T̂ x′ = x′′. (2.20)

It follows from Eqs. (2.18d) and (2.18e) that

T̂ ve = −va; T̂ va = −ve,

T̂ v = −v; T̂u = u,
(2.21)

and similarly for the derivative operators,

T̂De = −Da; T̂Da = −De,

T̂Dc = −Dc; T̂Ds = Ds .
(2.22)

The next step is to construct appropriate expressions for the acceleration; this
can be readily achieved by applying a time derivation to a velocity. We have at our
disposal two velocities and two time derivatives, which can be combined into four
different accelerations. These accelerations and their corresponding behavior under
time reversal are

acc = Dcv = DcDc x; T̂ acc = +acc;
ass = Dsu = DsDs x; T̂ ass = +ass;
acs = Dcu = DcDs x; T̂ acs = −acs;
asc = Dsv = DsDc x; T̂ asc = −asc.

(2.23)

2.3.2 Spatial Probability Density and Diffusive Velocity

Let ρ(x, t) denote the probability density of particles in configuration space. This
function satisfies the forward (exit) Fokker-Planck Eq. (Risken 1984),

∂ρ

∂t
+ ∇ · ρve − D∇2ρ = 0. (2.24a)

(Footnote 7 continued)
feature of Brownian motion (or rather, of a white noise), and explains the extended reference to
theories as the present one as ‘Brownian-motion theories’.
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The backward (access) Fokker-Planck equation can be obtained from (2.24a) by
performing the substitution t − �t ↑ t + �t. This amounts to change the sign of
the temporal derivate, and transforms ve into −va [see the first line in Eq. (2.21)].
The resulting equation is

∂ρ

∂t
+ ∇ · ρva + D∇2ρ = 0. (2.24b)

By combining Eqs. (2.24a) and (2.24b) and using (2.18e) one is led to

∂ρ

∂t
+ ∇ · ρv = 0, (2.25)

∇ · ρu = D∇2ρ. (2.26)

The first of these equations is the continuity equation expressing the local conserva-
tion of particles. The second one can be rewritten as ∇ · (ρu − D∇ρ) = 0, which
integrates into ρu = D∇ρ + ∇ × G, with G an arbitrary vector; however, by con-
sidering the balance of particles that go into and out of any small volume around a
point x in space, it can be seen that one should take G = 0 in general (de la Peña
and Cetto 1969), which leads to the important formula8

u = D
∇ρ

ρ
= D∇ ln ρ, (2.27)

confirming that the motions described by u are due to diffusion, as discussed in
relation with Eq. (2.13). This observation substantiates the selection G = 0, since
then u is due exclusively to the spatial changes in ρ. Notice that u can be rewritten
alternatively in the form

u = D∇ ln

(
ρ

ρref

)
, (2.28)

where ρref is any arbitrary reference constant value. Thus, the diffusive velocity does
not depend on the scale of the density ρ(x, t). In Chap. 4 wewill relate the coefficient
D in Eq. (2.27) to the source of the fluctuations (namely the zero-point radiation field)
and in doing so we will endow u with a deeper physical meaning.

8 In the literature it is possible to find the velocity u defined with the sign reversed. Equation (2.27)
can be recast into the form jdiff ≡ uρ = D∇ρ, known as Fick’s law (with due allowance for the
reversed sign).

http://dx.doi.org/10.1007/978-3-319-07893-9_4


2.3 Stochastic Quantum Mechanics 43

2.3.3 Dynamics

The lack of a specific model requires that we use a few basic arguments for the
construction of the dynamics of stochastic mechanics. The best way is to opt for
the most general law consistent with several obvious requirements. In the first place,
one should expect the relationship between the (coarse-grained) accelerations and the
forces to be linear. The acceleration amust then be expressible as a linear combination
of the previous four accelerations, Eq. (2.23),

a = λ1acc + λ2ass + λ3acs + λ4asc, (2.29)

where the λ’s are constant parameters to be determined. Notice that this expression
is not time-reversal invariant, since upon time inversion the last two terms reverse
their sign, whereas the first two remain unchanged.

The total force acting on the particles can be represented as the sum of the external
force and a stochastic force. In its turn this latter can be decomposed into two terms,
namely the dissipative force (which embodies the systematic effects of the stochas-
ticity on the particle), and the purely random force. The effective (locally averaged)
force is thus composed of the external force plus a coarse-grained friction term. A
force that depends only on the position should remain invariant with respect to time
reversal, whereas velocity-dependent forces may change their sign under such opera-
tion. Therefore, if we decompose the net force f in the general form f = f + + f −,

where T̂ f ± = ± f ±, and assume a linear relation between forces and accelerations,
it follows that the most general equations of motion acquire the form

m (λ1acc + λ2ass) = f +,

m (λ3acs + λ4asc) = f −, (2.30)

with m the mass of the particle. The parameters in these equations can be selected so
as to adjust the theory to different purposes (see, e.g., Davidson 1978, 1979b; Nassar
1986a). In particular, in order to reproduce the quantum-mechanical description any
friction term must be taken as zero (or considered negligible), since the dynamics
as described by the Schrödinger equation is reversible. This situation differs sub-
stantially from the corresponding one in classical stochastic problems (say, of the
Brownian-motion family), where the dissipative effects never cease and the long-
term motions are purely stochastic.9 Therefore, in the quantum case the source of
stochasticity must be different from a white noise, since the total lack of coherence
of the latter makes it unsuitable to sustain a systematic (mean) motion.

Considering first the conservative problem f = −∇V (x), for which f − = 0 (the
case f − 	= 0 is straightforward and is considered in the next section), the second
equation in (2.30) gives

9 The hipothesis of a Brownian process without friction is just the most characteristic feature of
Nelson’s (1966, 1985a, 2012) theory.
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Dcu + γDsv = 0, (2.31)

where the two last expressions in Eq. (2.23) were used and we put γ = λ4/λ3. On the
other hand, by taking the gradient of the continuity Eq. (2.25) and using Eqs. (2.7)
and (2.16), one arrives after some simplifications at

∂u

∂t
+ ∇ (u · v) + D∇2v = −D∇ × (∇ × v) . (2.32)

From (2.27) it follows that ∇ × u = 0; further, in the conservative problem it is
reasonable to reduce the description to the case ∇ × v = 0 (in the next section the
more general problem with ∇ × v 	= 0 is reviewed). The above equation transforms
thus into

∂u

∂t
+ (u · ∇) v + (v · ∇)u + D∇2v = 0, (2.33)

which can be rewritten as

Dcu + Dsv = 0. (2.34)

This equation is an alternative form of the continuity equation for the conservative
problem. Comparison with Eq. (2.31) gives

γ = λ4

λ3
= 1. (2.35)

The results allow us to identify the second of Eq. (2.30) as a constraint on the system
rather than a dynamical relation. It follows also that for ∇ × v 	= 0 the continuity
equationwill determine, via the second equation in (2.30), the appropriate expression
for the force f −, which will no longer be null [see, for example, Eq. (2.50)].

The first of Eq. (2.30), on the other hand, is a true dynamical law, which can be
recast into the form

mλ1 (acc − λass) = f +, (2.36)

with λ = −λ2/λ1. In the Newtonian limit, ass ↑ 0 and acc = D2
c x ↑ d2x/dt2;

therefore, to recover the correct classical limit onemust takeλ1 = 1, and the equation
of motion becomes

m (Dcv − λDsu) = f +. (2.37)

This is the most general dynamical law allowed by the theory, under the principles
adopted. Note that it contains a single free parameter, whose value will be discussed
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below. Notice also that for λ 	= 0 Eq. (2.37) differs from the classical equation of
motion.

With the derivatives given by (2.18b), Eq. (2.37) reads explicitly

m

[
∂v

∂t
+ (v · ∇) v − λ (u · ∇)u − λD∇2u

]
= f +. (2.38)

This equation was first proposed with the specific value λ = 1 in Nelson 1966. It
can also be cast in the form

m
dv

dt
= f + + f diff, (2.39)

with the time derivative taken along the mean motion (with respect to the flux
velocity v). The term f diff stands for a force (additional to the external one) origi-
nating in the diffusive velocity,

f diff = mλass = −∇Vdiff, (2.40)

with

Vdiff = −λ

(
1

2
mu2 + m D∇ · u

)
= −λ

(
2m D2∇2≥ρ≥

ρ

)
, (2.41)

where Eq. (2.27) was used to write the second equality.
It should be borne in mind that the equation of motion (2.39) refers just to mean

values in x-space. For a description of the instantaneous motion of a (single) particle
it is necessary to resort to the Langevin equation for the problem. In Nelson’s (1967)
theory such equation is proposed to correspond to a frictionless Brownian motion,
which (in one dimension, for simplicity) reads

dx = (v + u) dt + ≥
2D�W (t), (2.42)

where �W is taken as a Gaussian white noise (or Wiener process), ↓�W (t)◦ = 0,〈
(�W (t))2

〉 = dt [compare with Eq. (2.19)]. The trajectories are now nowhere
differentiable with probability one, so that some appropriate procedure is required
to integrate the equation of motion. In Nelson’s formulation the Ito definition of the
time integral is used, which means that the increment �W (t) is interpreted as equal
to �W (t) = W (t + dt) − W (t) for dt > 0. Details can be seen e.g. in Nelson’s
works; Gardiner (1983), and Vasudevan et al. (2008).
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2.3.4 Integrating the Equation of Motion

By taking λ1 = 1 and λ3 = λ4 in Eq. (2.30), and further observing that λ3 can be
absorbed in f− by an appropriate redefinition (which is equivalent to taking λ3 = 1),
we write the law of motion and the constraint in the form

m (Dcv − λDsu) = f +,

m (Dcu + Dsv) = f −.
(2.43)

Equations (2.43) with the derivatives given by (2.18b) look impressive: they form a
system of coupled, nonlinear partial differential equations involving v and u. How-
ever, this system has the remarkable property that it can be integrated (once), uncou-
pled, and linearized if expressed in terms of appropriate functions. This is achieved
in several steps as follows.

From Eq. (2.38) and writing f + generically as

f + = −∇V + F, (2.44)

the first equation in (2.43) reads

m

[
∂v

∂t
+ (v · ∇) v − λ (u · ∇)u − λD∇2u

]
= −∇V + F. (2.45)

We now decompose v in the general form

v = 2D∇S + b, (2.46)

with S = S(x, t) a (dimensionless) real function and b a vector containing any
possible rotational contribution to v. With the help of the identities

1

2
∇w2 = (w · ∇)w + w × (∇ × w) ,

∇2w =∇ (∇ · w) − ∇ × (∇ × w) ,

Equation (2.45) rewrites as

∇
[
2m D

∂S

∂t
+ 1

2
mv2 + Vdiff + V

]
= F − m

∂b
∂t

+ mv × (∇ × v) . (2.47)

As for the second equation in (2.43), it reads explicitly

m

[
∂u

∂t
+ (v · ∇)u + (u · ∇) v + D∇2v

]
= f −. (2.48)



2.3 Stochastic Quantum Mechanics 47

The identity

∇ (u · v) = (u · ∇) v + (v · ∇)u + u × (∇ × v) + v × (∇ × u) ,

together with Eq. (2.27), gives

m D∇
[
1

ρ

(
∂ρ

∂t
+ ∇ · ρv

)]
= f − + mu × (∇ × v) + m D∇ × (∇ × v) . (2.49)

We thus see that, as expected, the equation m (Dcu + Dsv) = f − imposes con-
straints via the continuity equation, which causes the term within square brackets to
vanish. This fixes the force f − as

f − = −mu × (∇ × v) − m D∇ × (∇ × v) . (2.50)

Now we come back to the dynamical Eq. (2.47) and assume that the additional
force F in Eq. (2.44) refers to a Lorentz force due to an external electromagnetic
potential A,

F = −e

c

∂ A
∂t

+ e

c
v × (∇ × A) . (2.51)

In this case the flow velocity becomes

v = 2D∇S − e

mc
A, (2.52)

thus fixing b = −(e/mc)A. This value for b, together with Eq. (2.51), implies that
the right-hand side of Eq. (2.47) vanishes, so the equation reduces to

∇
[
2m D

∂S

∂t
+ 1

2
mv2 + Vdiff + V

]
= 0. (2.53)

Further, introduction of Eq. (2.52) into (2.50) gives a diffusion-dependent Lorentz-
force term that changes sign under time reversal. In the Coulomb gauge (i.e., taking
∇ · A = 0) this force is given by

f − = e

c
u × (∇ × A) + D

e

c
∇2 A. (2.54)

Now we are in position to integrate the dynamical Eq. (2.53). The result, after
absorbing into S the arbitrary function of time that arises from the integration, is

2m D
∂S

∂t
+ 1

2
mv2 − λ2m D2∇2≥ρ≥

ρ
+ V = 0. (2.55a)
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This, together with the continuity equation

∂ρ

∂t
+ ∇ · ρv = 0, (2.55b)

with v given by (2.52), constitutes a pair of differential equations for the variables ρ
and S that is equivalent to the original pair (2.43), andbears the dynamical information
for an ensemble of particles subject to the conservative force −∇V and immersed
in an external electromagnetic field represented by the vector potential A. Equations
(2.55a) and (2.55b) uncouple if we perform a transformation that takes ρ and S to
new variables w+ and w−, such that

w+ + w− = ln ρ, (2.56)

w+ − w− = 2
S≥−λ

.

Direct substitution leads, after some algebra, to the pair of separated equations

− 2mζ
∂w+
∂t

= −2mζ2
[
(∇w+)2 + ∇2w+

]
+ V −

−ζ
e

c
(2A · ∇w+ + ∇ · A) + e2

2mc2
A2; (2.57)

+ 2mζ
∂w−
∂t

= −2mζ2
[
(∇w−)2 + ∇2w−

]
+ V +

+ζ
e

c
(2A · ∇w− + ∇ · A) + e2

2mc2
A2, (2.58)

with ζ = D
≥−λ. As a final step, this system of equations can be linearized by

introducing the further change of functions

ψ+ = expw+ = exp

(
ln

≥
ρ + S≥−λ

)
= ≥

ρ exp

(
S≥−λ

)
, (2.59a)

ψ− = expw− = exp

(
ln

≥
ρ − S≥−λ

)
= ≥

ρ exp

(
− S≥−λ

)
, (2.59b)

thus obtaining

− 2m D
≥−λ

∂ψ+
∂t

= 1

2m

(
2m D

≥−λ∇ − e

c
A
)2

ψ+ + V ψ+, (2.60a)

2m D
≥−λ

∂ψ−
∂t

= 1

2m

(
−2m D

≥−λ∇ − e

c
A
)2

ψ− + V ψ−. (2.60b)
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Further, Eqs. (2.59a, 2.59b) give

ρ = ψ+ψ−, (2.61)

and the velocities v and u rewrite as

v = D
≥−λ∇ ln

ψ+
ψ−

− e

mc
A = D

≥−λ

(∇ψ+
ψ+

− ∇ψ−
ψ−

)
− e

mc
A, (2.62)

u = D∇ lnψ+ψ− = D

(∇ψ+
ψ+

+ ∇ψ−
ψ−

)
. (2.63)

In the absence of external electromagnetic field (A = 0), v reduces to

v = 2D∇S.

The function S(x, t) represents therefore a velocity potential, or a kind of statisti-
cal action function, the gradient of which gives the momentum associated with the
systematic (mean local) velocity.

2.3.5 Quantum and Classical Stochastic Processes

Equations (2.60a, 2.60b) apply to any system that can be described by the present
stochastic treatment, subject to the free (though nontrivial) choice of D and λ. This
exhibits at once the strength and the weakness of the procedure. For on the one hand,
an appropriate selection of the parameters leads to a Schrödinger-like description
of the stochastic system; but on the other hand, the equation thus obtained is quite
unspecific and the ‘appropriate’ selection of the parameters seems quite arbitrary.
A complete theory should allow for an unambiguous derivation of both λ and the
coefficients Di j (not necessarily constant nor diagonal in themore general case), from
first principles. This is beyond reach for the present phenomenological approach, due
first and foremost to the nonspecificity of the random field. In Sect. 2.4 an argument
is given that helps to perceive the generality (and arbitrariness) of Schrödinger-like
equations, and to realize that the selection of the parameters is a matter of no minor
importance. At this stage we just briefly explore the possible applications of the
results just derived.10

Notice that in the integrated Eqs. (2.60a, 2.60b) the free parameter is the product
D

≥−λ, not each factor separately. One may therefore consider that D takes care of

10 In (Davidson 1979b and 2001) an interesting, slightly different selection of the parameters is
discussed, which reproduces the classical nonlinear Schrödinger equation, derived in Sect. 4.5.5 of
this book. See also (Bacciagaluppi 2011).

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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the scale, whereas the relevant property of λ is its sign, so that one can take λ = ±1.
This leads to essentially two different theories, according to the sign of λ.

2.3.5.1 The Parabolic Solution

Take first λ = −1. In this case Eqs. (2.60a, 2.60b) are parabolic, the functions ψ+
and ψ− are both real and the process described by them is irreversible. This theory
can be used to describe classical Markov processes, if due allowance is made for
the unbalanced friction force, which can be introduced via an expression such as
f f = −βve with ve = 2D(∇ψ+/ψ+), or the like (see e.g. Cetto 1972). However,
with the introduction of such a term the theory ceases to be linear and it is then simpler
to go back to the (linear) Fokker-Planck equation.Moreover, it happens that the values
of both the friction parameter β and the diffusion coefficient D are problem-specific;
the single way out of this situation is the fluctuation-dissipation relation, when it
is at hand. As is well known, the presence of the friction force, together with the
incoherence of the noisy background, leads to purely noisy solutions for t ↑ √.

With all these drawbacks, a procedure as the present one seems to be of little help,
if any, for such problems. Further elaborations can be seen in de la Peña and Cetto
(1975), Skagerstam (1977), Nassar (1986a, b) and references therein.

2.3.5.2 The Hyperbolic Solution

Take now λ = 1. In this case Eqs. (2.59a, 2.59b) give ψ− = ≥
ρ exp (i S) = ψ∗+,

and Eqs. (2.60a, 2.60b) become hyperbolic and each other’s complex conjugate.
The process is therefore reversible. The Schrödinger equation is obtained with the
selection

D = �

2m
(2.64)

for the diffusion coefficient. It acquires the nature of a wave equation thanks to the
factor i in front of the first derivative with respect to time, which mimics a second-
order time derivative, as discussed in Sect. 4.4.5.11 It seems reasonable to ask why
the theory should predict an undulatory behavior, when the whole treatment has been
made in terms of particles that follow (deterministic) trajectories. These matters will
be briefly discussed in Sect. 2.5.1 below (see also Chap. 9). In any case, we see that
λ = +1 is the back door through which undulatory aspects enter the theory.

It should be stressed that the selection (2.64) is far from obvious or natural; there is
not an a priori reason to assume that the tensorm D has a universal value, independent
of the specific problem (this point is discussed in Sect. 2.4). Given the phenomeno-
logical character of the present theory, this formula enters as an empirical selection,

11 Although giving rise to some bizarre wave phenomena; for comments and examples of this see
e.g. Ballentine 1990, 1998.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_9
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although there have been of course some attempts to justify it from fundamental
considerations (see e.g. de Broglie 1967) so as to ground the theory on a more solid
basis. Since the problem of identifying the noise source behind the assumed stochas-
tic process is left open in this kind of approach, that of deriving the detailed form
and value of the diffusion tensor and the constant λ remains open as well.

A key point of the present stochastic approach is its adequacy to distinguish classi-
cal from quantum stochastic processes, which have become described by essentially
different equations, even if at first sight the corresponding Langevin equations seem
to be quite similar. One should therefore speak not of a Brownian analog of qm
(as is so frequently done), but of a quantum stochastic process in itself. Insufficient
attention to this crucial point is the cause of much confusion in the literature. More
specifically, according to Eq. (2.37), the accelerations aB for the classical (Brownian)
case (λ = −1) and aQ for the quantum system (λ = 1) are, respectively,

aB = Dcv + Dsu, aQ = Dcv − Dsu. (2.65)

Similarly, Eqs. (2.39)–(2.41) show that the sign of the extra potential Vdiff is essential
in determining the different dynamics. In the quantum case, Vdiff (with D = �/2m)
becomes the so-called quantum potential VQ , and f diff = f Q can then be interpreted
(in the language proper of Bohm’s theory discussed in Chaps. 4 and 8) as a quantum
force. From Eq. (2.41) we see that this extra potential is intimately related to the
diffusion. Further, being due solely to the spatial variations in the density of particles
ρ, it introduces a nonlocal ingredient into the description, since the probability density
ρ contains information about the entire setup. This point will reappear in several of
the following chapters, particularly in Chap. 8.

2.4 On Schrödinger-Like Equations

According to the exposition in Sect. 2.3.5, deriving a Schrödinger-like equation
would seem to be quite an easy matter. However, as noted above, the proper selec-
tion of the parameters λ and D—which is crucial to obtain quantization—is by no
means trivial. Thus a true derivation of a quantum equation of motion requires more
than arriving at a Schrödinger-like equation, it requires also deriving the value of
the parameters involved. To make this point clear, suffice it to recall the following
alternative way of ‘deriving’ the Schrödinger equation, based merely on general
arguments of a statistical nature. The sole intention of this example is to elaborate on
the general relationship between the Schrödinger equation and a simple stochastic
description in configuration space.

The starting point is the continuity Eq. (2.25) for the density of particles. Assume
the flux to be laminar and write the drift (systematic) velocity v in terms of a velocity
potential (an ‘action’ S) according to

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_8
http://dx.doi.org/10.1007/978-3-319-07893-9_8
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v = a

m
∇S, (2.66)

with the parameter a so selected as to make S a dimensionless function of x and t .
A change of variables from ρ, S to a new complex pair ψ,ψ∗, defined as

ψ = ≥
ρei S, ψ∗ = ≥

ρe−i S, (2.67)

gives

ρ = ψ∗ψ, v = ia

2m
∇ (

lnψ∗ − lnψ
)
. (2.68)

The continuity equation thus transforms into

ψ∗
(

i
∂ψ

∂t
+ a

2m
∇2ψ

)
− ψ

(
−i

∂ψ∗

∂t
+ a

2m
∇2ψ∗

)
= 0. (2.69)

At this point a separating real function U is introduced so that

ψ∗
(

i
∂ψ

∂t
+ a

2m
∇2ψ

)
= ψ

(
−i

∂ψ∗

∂t
+ a

2m
∇2ψ∗

)
= Uψψ∗. (2.70)

As a result, Eq. (2.69) becomes separated into

i
∂ψ

∂t
= − a

2m
∇2ψ + Uψ (2.71)

and its complex conjugate. The procedure can be applied to any mechanical system
obeying the continuity equation (with a laminar flow), and hence to classical or
quantum particles alike (de la Peña 1967). However, two problems remain, namely
the determination of the parameter a and the function U, which may depend on x, t
and even on ψ and ψ∗. In what follows we proceed to determine the function U. See
also Kracklauer (1992), and de la Peña and Cetto (1993) for other determinations of
U .

We start by combining the expression (2.68) for v with Eq. (2.71), to obtain

∂v

∂t
= a2

4m2∇
(

1

ψ∗ ∇2ψ∗ + 1

ψ
∇2ψ

)
− a

m
∇U. (2.72)

On the other hand, ∇ lnψ = (1/2) ∇ ln ρ + i∇S, whence

∇2ψ

ψ
= ∇2≥ρ≥

ρ
+ i∇2S + i∇S · ∇ρ

ρ
− (∇S)2 . (2.73)

This latter equation, when introduced into (2.72), leads to
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∂v

∂t
= ∇

(
a

2m
∇ · u + 1

2
u2

)
− 1

2
∇v2 − a

m
∇U, (2.74)

with

u = a

2m
∇ ln ρ. (2.75)

Since∇×v = 0, it follows that∇v2 = 2 (v · ∇) v, which allows to rewrite Eq. (2.73)
in terms of the total time derivative along the trajectory dv/dt = (∂v/∂t)+(v · ∇) v,
as

m
dv

dt
= −∇

(
−a

2
∇ · u − 1

2
mu2

)
− a∇U. (2.76)

On the other hand, combining Eqs. (2.39)–(2.41) [with D = a/2m, in accordance
with Eqs. (2.27) and (2.75)] one obtains

m
dv

dt
= −λ∇

(
−a

2
∇ · u − 1

2
mu2

)
+ f +. (2.77)

For the conservative case ( f + = −∇V ), comparison of the last two equations
implies that

(1 − λ)∇
(

−a

2
∇ · u − 1

2
mu2

)
= ∇ (V − aU ) . (2.78)

Integration of this expression gives the solution

aU = V + (1 − λ) Va + h(t), (2.79)

with h(t) an arbitrary function of time that can be taken as zero without loss of
generality, and

Va =
(
1

2
mu2 + 1

2
a∇ · u

)
= a2

2m

∇2≥ρ≥
ρ

. (2.80)

Notice that according to Eq. (2.41), Vdiff = −λVa, since D = a/2m.
We now introduce Eq. (2.79) into (2.71), thus obtaining

ia
∂ψ

∂t
= − a2

2m
∇2ψ + V ψ + (1 − λ) Vaψ. (2.81)

The result just obtained evinces the distinctive nature of the case λ = 1: this is
the single value of λ that linearizes Eq. (2.81), and transforms it into a Schrödinger
equation,
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ia
∂ψ

∂t
= − a2

2m
∇2ψ + V ψ. (2.82)

The value λ = −1, corresponding to the Brownian case as discussed above, leads
to a Schrödinger-like equation but with a total potential V + 2Va . Further, the value
λ = 0 gives a net potential V + Va . This case corresponds to a classical equation
of motion devoid of stochasticity, but allows distributed velocities, since, according
to the discussion following Eq. (2.36), the condition λ = 0 is equivalent to taking
the Newtonian limit. As discussed in Sect. 4.5.5, Eq. (2.81) with λ = 0 is formally
equivalent to a field theory for ψ with a classical Lagrangian.

Leaving aside the problem of justifying the selection λ = 1 to arrive at (2.82),
we observe that the parameter a fixes the scale of the action aS, and is therefore,
in principle, problem-dependent. Hence the a priori identification of Eq. (2.82) with
the Schrödinger equation containing a universal constant a, is not warranted. This
observation explains the singular role played by Schrödinger’s equation in quantum
theory, and therein resides a specific feature of quantum systems. Whereas in the
classical case the value of the action integrals is determined by the initial conditions
(whence a becomes highly arbitrary), in the quantum case this parameter becomes
fixed in a more fundamental way: it is the initial conditions what are conditioned by
the parameter, and determined so as to comply with an energy-balance condition, as
will be shown in Chap. 4.12

Notwithstanding its importance, this discussion is frequently overlooked in the
literature, characteristically in many published attempts to present variants of the
above procedure as bona fide derivations of the Schrödinger equation from classical
arguments. Still, doubts have been cast on the phenomenological stochastic theory, in
particular on the legitimacy of the demand of single-valuedness on the wave solution,
as discussed in Sect. 2.6.

Some 15 years ago, Yves Couder and his colleagues discovered the bouncer, a
macroscopic particle (a small drop of silicon oil) that can be made to dance over
the surface of a vertically vibrated bath of the same fluid. By increasing the peak
acceleration of the vibrations, the droplet can be made to self-propel with constant
speed.With this arrangement they have observed a variety of behaviors of the droplet
that have a striking similarity with the wavelike behavior of quantum particles (see
e.g. Couder and Fort 2006; Couder et al. 2005; Wind-Willassen et al. 2013). A
detailed study by Brady and Anderson (2013) has revealed that this macroscopic
hydrodynamic system can indeed be described by Eq. (2.82), with the parameter a
appropriately selected for the specific system (and hence not universal), so that it can
be taken as a close mechanical model of the quantum behavior. Here the vibrating oil
bath is representing the substratum, which by its interplay with the particle generates
a quantum-like dynamics, including quantization of orbital motions!

12 For example, when solving the Heisenberg equations of motion for x and p, the initial conditions
are given by matrices, which guarantees that the Heisenberg inequalities are satisfied starting from
t = 0.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Fig. 2.1 Trajectories of
a Gaussian wave packet
made of 20 free particles
with fixed energy, accord-
ing to Eq. (2.42). Obtained
by numerical simulation.
Courtesy of Bárbara Moreno
Munguía)

2.5 Stochastic Quantum Trajectories

Let us return to stochastic quantum mechanics. In this phenomenological approach,
the ensemble is composed of particles (localized entities), although their statistical
description appears encoded in Eq. (2.82), which has formally acquired the nature
of a wave equation. One can therefore go back to the equation of motion (2.42) and
use it to find individual trajectories, by means of numerical simulation. Compared
to the corresponding calculations usually carried out in the framework of Bohm’s
theory (see Chap. 8), which resort to the mean local velocity v(x, t) (though in
that approach they are seen as referring to the actual velocity of a single particle),
these ones are somewhat more elaborate. The trajectories here obtained follow more
closely the instantaneous motions, therefore they showmore detail and provide extra
information about the quantum dynamics. Figures 2.1 and 2.2 (similar to those in
Moreno Murguía 2006), illustrate the results obtained for a Gaussian wave packet
containing 20 particles, in the first case moving freely, in the second one imping-
ing upon a narrow semitransparent barrier centered at the origin. The presence of
rapid fluctuations—absent in Bohm’s description andmerely implicit in the quantum
description—is conspicuous.

An analysis of Fig. 2.2 reveals several interesting aspects of the dynamics. The
majority of the particles are reflected by the barrier, although an important fraction
of them cross it and some remain inside for a relatively long time, going to and fro,
until they escape in one direction or the other. This is particularly interesting because
it shows that it is legitimate to speak of real particles in motion ‘inside’ the barrier. A
most remarkable peculiarity displayed by the trajectories is the nonlocality of their
behavior, as is further discussed in Chap. 8. It is clear from Fig. 2.2 that long before
reaching the barrier, the particles already ‘feel’ its presence and start modifying their
energy, either losing or gaining some, even enough to ‘jump over’ the barrier in some

http://dx.doi.org/10.1007/978-3-319-07893-9_8
http://dx.doi.org/10.1007/978-3-319-07893-9_8
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Fig. 2.2 The same packet
as in Fig. 2.1, now in the
presence of a barrier of width
1 and height 10 (arbitrary
units), represented by a pair
of fine horizontal lines. The
energy of incidence is 1.
Courtesy of Bárbara Moreno
Murguía

cases (constant energy corresponds to a constant slope of the trajectories). Beyond
the barrier the energy (hence the velocity) of the particles remains stable in statistical
terms, and close to its original value. This applies also to the reflected particles, which
rapidly tend to move as free particles. Both figures also clearly show that typically
the trajectories intersect, due to the presence of stochasticity, in contrast with the
prediction derived from Bohm’s description (see e.g. Holland 1993). Figure 2.2 also
hints at the effects of the interference of the incident and the reflected packets, which
gives rise to diffraction.

2.5.1 Wavelike Patterns

A remarkable property of quantum particles is of course their wavelike behavior. At
first it might seem counterintuitive to expect from a stochastic mechanical formu-
lation as the one developed here, to reproduce the undulatory behavior of particles.
On the other hand, as said below Eq. 2.64, we have arrived at a wave equation for
describing the dynamics of the ensemble. In addition, a stochastic model that repro-
duces qmmust account for the wavelike features. That this is so has been confirmed
with the help of various numerical simulations, similar to the ones carried out for
the semitransparent barrier mentioned in the previous section. One such example is
presented in Fig. 2.3, taken from McClendon and Rabitz (1988). This figure shows
the fringe pattern obtained for a ‘wave packet’ of several thousand particles emerg-
ing from two Gaussian slits, obtained by numerical integration within stochastic
mechanics. The result compares well, statistically speaking, with that obtained from
a quantum-mechanical calculation. A most important observation made with this



2.5 Stochastic Quantum Trajectories 57

Fig. 2.3 Fringe pattern for a
Gaussianwave packet contain-
ing 10,000 particles crossing
a screen with two Gaussian
slits. Obtained by numerical
simulation. Reprinted with
permission from McClendon
and Rabitz (1988). Copyright
1988 by the American Physi-
cal Society

numerical experiment is that it demonstrates that each electron comes from just one
slit.

The same conclusion is obtained in Webb (2011) using an event-based model
for particles emitted one-at-a-time in the two-slit experiment. The results of the
numerical simulations confirm that the fringe patterns should be interpreted in terms
of the aggregate behavior of individual particles. Other interesting related quantum
simulations are discussed in Michielsen et al. (2010) and De Raedt and Michielsen
(2012). This gives a clear answer to a much raised question about the behavior of
the electrons in such case. Of course such numerical calculations cannot give an
explanation of the physics behind the diffraction pattern, since they are based on
phenomenological models. In Chap. 9 we reconsider this problem from the point of
view of the theory developed in the next chapters.

2.6 Extensions of the Theory, Some Brief Comments,
and Assessment

Stochastic quantum mechanics can be extended along several important directions.
For example—and this is perhaps one of its most remarkable outcomes—conditional
probabilities (not amplitudes) have been constructed describing interference phe-
nomena and the like (Petroni 1989). Variational methods and path-integral proce-
dures have been introduced. In particular, by following a variational approach it has
been possible to show that for stationary states v is irrotational wherever the density is
different from zero, while in the nodes at ρ = 0 the vorticity tensor �i j = (∇ × v)i j
can be different from zero. Using a generalization to mean velocities that are not
irrotational, the process is shown to relax towards a standard (irrotational) solution,
which can be seen as an attractor for the extended family of stochastic solutions.13

13 The idea that the quantum stationary states are some kind of attractors within an appropriate set
of solutions has been arrived at from other, complementary points of view; see e.g. de la Peña and
Cetto (1995), ’t Hooft (2006).

http://dx.doi.org/10.1007/978-3-319-07893-9_9
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Extensions of the theory to a wider range of problems include, among others, the
electron spin (de la Peña 1971), the description of mixtures (Guerra 1984), radiative
corrections (de la Peña and Cetto 1971), the relativistic case (de la Peña 1970; Hakim
1968; Morato 1992), and gravity (Smolin 1986). Spinning and relativistic particles
have been studied by Dohrn et al. (1979), and a statistical description that can accom-
modate relativity and spin in a natural way has been proposed by Tiwari (1988). An
independent, interesting development in a similar direction is the treatment of the
Dirac equation in terms of a dichotomic (telegraph) stochastic process (Gaveau et
al. 1984). Systems composed of several particles have been considered, dramatically
exhibiting the characteristic nonlocalities of the description (de la Peña and Cetto
1969;Loffredo andMorato 2007). Further, a quantumfield theory has been developed
within Nelson’s framework, as well as a procedure for stochastic quantization and a
full study of quantum coherent states. The theory has also received close attention
from the point of view of Bernstein processes (see e.g. the works of Garbaczewski).
Dissipation in quantum systems is highly amenable to treatment with the stochastic
methods (Marra 1987). Another noteworthy result is the sub-quantum H-theorem
in Valentini (1991a, b). Further, stochastic quantum mechanics has been of some
value in the study of stochastic chaos in Brownian systems obeying a Fokker-Planck
equation that is formally analogous to the Schrödinger equation (see e.g. Alpatov
and Reichl 1994).14 A somewhat different and interesting realist and objective for-
mulation of the stochastic approach to the quantum phenomenon has been developed
in recent years by Budiyono (2012a, b, c, 2013a, b).

The stochastic theory also helps to gain some intuition on specific quantum prob-
lems, notably the (anti)symmetrization of the wave function (Nelson 1985a, Sect. 20;
see also Loffredo and Morato 1987; Petroni and Morato 2000). Its application to
the tunnel effect (Jona-Lasinio et al. 1981; Yasue 1981) is convenient for address-
ing aspects related to quantum trajectories, such as arrival times, first hitting time,
sojourn times, and so on, and provides an illustration of typical (one-particle) quan-
tum nonlocality, as shown in Sect. 2.5. The analysis of particle trajectories represents
undoubtedly a valuable plus of the stochastic approach to qm (see McClendon and
Rabitz 1988; Moreno Murguía 2006).

An additional contribution of the theory is that it discloses the link between the
quantum potential VQ [see paragraph following Eq. (2.65)] and the diffusive velocity
u, as shown in Eq. (2.41). This helps to assign a kinetic nature to VQ , a point that
will be revisited in detail in Chap. 8, where the relation between u and the nonlocal
properties of the quantum system will become clear. An illustration of this can be
seen in the expression for the acceleration aQ , Eq. (2.65), which is a function of
the diffusive velocity and thus of the (changes of the) density of particles ρ: the
essentially nonlocal nature of u is conveyed to the acceleration through λ 	= 0.15

14 Some of these matters are discussed in Vasudevan et al. (2008). For the relativistic case see also
Ramanathan (1997). Extensive and complementary lists of references to earlier work can be found
in Jammer (1974), Guerra (1981, 1984, 1988), Blanchard et al. (1987), de la Peña and Cetto (1991),
and The Dice.
15 The formula for the acceleration aB for classical (Brownian) particles is of course as nonlo-
cal as the quantum acceleration, but nobody denies the usefulness of the Brownian-motion theory of

http://dx.doi.org/10.1007/978-3-319-07893-9_8
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Despite its advantages in providing an alternative route for the understanding of
qm, the theory has also its downsides, the most obvious one being its phenomenolog-
ical nature, as has been stressed already. This may not perturb those who argue that
thermodynamics is also a phenomenological theory and yet nobody quarrels about
that. The point is that in the present description a most fundamental element is miss-
ing: the physical cause of the fluctuations, so the physical elements that determine
the parameters in Schrödinger-like equations remains unidentified. This leaves things
more or less as in qm itself: we face again the unexplained (noncausal) fluctuations,
and the universality of a in Eq. (2.71) must be assumed a priori.

The theory has received further criticisms from a diversity of standpoints (see e.g.
Ghirardi et al. 1978; Gillespie 1995; Grabert et al. 1979; Mielnik and Tengstrand
1980 ). One in particular, is that not a single stochastic process, but an infinity of
them can be associated to a quantum state (Davidson 1979b). This is a peculiarity of
the description in terms of a Schrödinger-type equation involving the sole product
D

≥−λ, as discussed above, rather than a problem for its stochastic interpretation.
This difficulty is solved by determining D on physical grounds, as is done in Chap. 4.
It is further argued that, contrary to what happens with classical diffusions, the quan-
tum stochastic process cannot be separated into ‘subprocesses’ satisfying a given set
of initial conditions (Grabert et al. 1979); this means that the trajectory of a given par-
ticle depends nonlocally on all other trajectories that it could have followed, which is
of course unrealistic and unacceptable. However, these (and other) bizarre peculiar-
ities (see e.g. Ghirardi et al. 1978) are a manifestation of the quantum behavior; they
constitute an integral part of quantum theory, even if some of them remain normally
hidden. In other words, bizarre quantum properties manifest themselves as bizarre
stochastic properties. Accepting quantum theory implies accepting them. We have
become accostumed with time to accept the former, but are still very sensitive to the
latter. What stochastic qm does is to expose them for further analysis.

The nonlocality problem in stochastic quantum mechanics has been strongly—
and rightly—criticized by Nelson (1985a, b, 2005, Sect. 23) on the ground that any
fundamental physical theory that violates locality is untenable. It is noteworthy that
Nelson decided to abandon his succesful efforts in the development of his stochastic
mechanics—which to a large extent is the one discussed in the present chapter—for
a reason of principle, namely, when he discovered its nonlocal nature. Now, it is
clear that a theory designed to reproduce qm will reproduce the niceties but also
the quandaries of qm. And the nonlocality of Nelson’s theory is a mere rebound of
the quantum nonlocalities —yet nobody renounces qm by rejecting its nonlocalities.
Quite the contrary: today it is fashionable to happily speak of quantum nonlocalities;
a look at the literature around the Bell inequalities serves to attest this. It seems that
the problem has two facets. For on the one hand it is important to understand why

(Footnote 15 continued)
Einstein and Smoluchowski within its domain of applicability. It even played a most important and
historic role in the empirical demonstration of the reality of molecules at the beginning of the 20th
century! Such description of the Brownian case is admittedly not a fundamental one. In the quantum
case a problem arises when interpreting it as a fundamental theory, since a fundamental expression
for the acceleration must be local.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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qm implies a nonlocal description, and on the other hand, it is important to find the
theory that supersedes this trait which, as Nelson put it, is untenable.16

Probably the most extended criticism towards stochastic quantum mechanics (or
stochastic mechanics) is the one raised by Wallstrom (1989, 1994) in a frequently
cited work (see also Goldstein 1987; Takabayasi 1952). In essence it asserts that the
transition from the couple of Eq. (2.43) [or Eq. (2.39) and the continuity equation]
to the Schrödinger equation may be unbefitting due to the fact that in the construc-
tion for ψ ∼ ei S the function S may be many-valued, so that there is no reason
to assume that ψ is single-valued, it being a mere mathematical object. Detailed
rebuttals of Wallstrom’s argument have been given in Smolin (2006) in a significant
contribution to Nelson’s theory, and by Fritsche and Haugk (2009) (and 2003), this
latter offering a proof that the single-valuedness of the wave function ensues from
the conservation of its normalization at all times. It is important to insist on these
rebuttals because Wallstrom’s work has been considered by many as the definitive
blow against Nelson’s and similar theories. An unfortunate example isWick’s (1995)
book, an excellent and highly advisable book for the wide public, which contains a
careful discussion of several of the conceptual problems of qm, particularly the ‘infa-
mous boundary’ between the observed and the observer. Given the book’s realistic
and objective approach to the subject, one would expect it to pay serious attention to
the stochastic theory—which it does not. In fact, the author confesses that he used
to be appreciative of Nelson’s theory, but was forced to change his point of view by
Wallstrom’s paper. The replies provided by Smolin and by Fritsche and Hangk hope-
fully help restore confidence in the stochastic theories of qm—within their natural
limitations. In Chap. 4 we come back to this point.

To put things in the proper perspective we should bear in mind that as a phe-
nomenological theory, stochastic quantum mechanics is not to be doomed for its
properties or shortcomings. The error would lie in taking such a limited description
as the accomplished theory. The parameter λ of the stochastic description of qm is
selected so as to reproduce the latter, with all virtues and limitations of such selec-
tion. Difficulties appear due to the poorness of the configuration-space description:
it is too restricted to hold the richness of the real stochastic phenomena.

Generally speaking, the critics of stochastic (quantum) mechanics are formally
correct in their criticisms, although their objections normally relate in the last instance
(and unknowingly to the critics) to the peculiarities of quantum systems rather than
to the stochastic approach itself. What in reality many of the critics of the stochastic
description of qm are doing is contribute to the catalog of the most relevant dif-
ferences between classical and quantum stochastic processes. The differences are
so substantial that one should not be surprised to find that the required stochastic
quantum description falls far from the corresponding classical one.

16 Recently, Nelson has attempted to apply stochastic mechanics to relativistic fields, hoping to
avoid the above mentioned nonlocality features, and aiming to develop useful technical tools in
constructive field theory (see Nelson 2013).

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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2.6.1 A Summing Up

Thematerial of this chapter has hopefully served its purpose to assess the value of sto-
chastic quantum mechanics in the present context. One first advantage of the theory
is that it neatly discloses the stochastic nature of the quantum system, highlighting
essential similarities and differences between qm and classical, Brownian-type sto-
chastic processes. Another is that it leads to qm through a simple, phenomenological
approach which, not being part of usual qm, enriches it by offering a complementary,
intuitive picture of some important aspects of the theory.

The stochastic approach provides with relative simplicity a way to arrive at qm
from a realist and objective physical picture; however, it leaves us with the feeling
that the real thing continues to be hidden behind the phenomenological curtain.
Something more fundamental is required. The search for it is the subject matter of
the following chapters.

Answer to the quiz: The reversibility of the Schrödinger equation means that this
equation describes an average behavior after any (subquantum) irreversible process
that could exist, has ceased to be active. The meaning of this answer will become
clearer as we proceed.
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Prugovečki, E.: Stochastic QuantumMechanics and Quantum Spacetime. Reidel, Dordrecht (1984)
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Chapter 3
The Planck Distribution, a Necessary
Consequence of the Fluctuating
Zero-Point Field

With this chapter we initiate our analysis of the implications of considering the
fluctuating zero-point radiation field (zpf) as a fundamental constituent of an other-
wise classical system. As announced in the introductory chapter, our journey starts
with a fresh look at a simple though physically (and historically) relevant system,
namely the electromagnetic radiation field in equilibrium with matter at temperature
T . The blackbody problem, the one that gave birth to quantum mechanics, is thus
revisited, taking into account the zpf. The mere existence of this nonthermal field is
shown to have far-reaching consequences. In particular, by performing a thermody-
namic and statistical analysis of an ensemble of harmonic oscillators of frequency ψ
representing the modes of the radiation field of the respective frequency, we find that
Planck’s law, as well as irreducible (quantum) fluctuations, arise as necessary conse-
quences of allowing for the presence of the pervarsive zpf, without any assumption
of discreteness.

3.1 Thermodynamics of the Harmonic Oscillator

Let us start by considering a one-dimensional harmonic oscillator of frequency ψ,

with the Hamiltonian given by1

H = (p2 + ψ2q2)/2. (3.1)

For amaterial oscillator ofmassm = 1, q and p stand for the oscillator’s position and
momentum, respectively. Now, of relevance for our purposes is that amonochromatic
mode of frequency ψ of the radiation field is equivalent to a harmonic oscillator of
that same frequency. In this case H refers to the energy of such mode, and q and p
represent its quadratures.

1 This first part of the exposition borrows from thework ofBoyer (1969b, 2003),who has contributed
substantially to the analysis of the Planck distribution from a perspective akin to the one developed
here. See also Boyer (1969a, 1976, 1983, 1984, 2010a, b, 2012), Marshall (1965), and Theimer
(1971).
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68 3 The Planck Distribution

Several basic properties of the harmonic oscillator can be derived from the
structure of (3.1), and thus hold irrespective of the oscillator’s nature. In particu-
lar, for a given constant energy U, the trajectory in phase space is the ellipse

p2 + ψ2q2 = 2U, (3.2)

and its area gives the action

J = 1

2χ

∮
pdq = 1

2χψ

∮ √
2U − ψ2q2 d (ψq) = U

ψ
. (3.3)

The action J is an adiabatic invariant of the harmonic oscillator (see e.g. Landau and
Lifshitz (1976), Sect. 49; José and Saletan (1998), Sect. 6.4), which means that it
remains constant under a slow change of the frequency. Therefore, the change dU
in the energy concomitant with the slow change dψ is given by

dU = Jdψ = U

ψ
dψ, (3.4)

so that the work dW done by the system on the external device effecting the change
of frequency is

dW = −U

ψ
dψ. (3.5)

From here it follows that if S(T,ψ) stands for the entropy of the system when this
latter is in thermodynamic equilibrium at temperature T , for a reversible process one
may write

T d S(T,ψ) = dU (T,ψ) + dW = dU (T,ψ) − U

ψ
dψ, (3.6)

consequently

T

(
ωS

ωT

)
ψ

dT + T

(
ωS

ωψ

)
T

dψ =
(

ωU

ωT

)
ψ

dT +
[(

ωU

ωψ

)
T

− U

ψ

]
dψ. (3.7)

Since the changes in the variables T and ψ are independent, this relation naturally
splits into the pair of equations

T

(
ωS

ωψ

)
T

=
(

ωU

ωψ

)
T

− U

ψ
, (3.8)

T

(
ωS

ωT

)
ψ

=
(

ωU

ωT

)
ψ

. (3.9)
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We utilize these two relations by taking the partial derivative of the first one with
respect to T and of the second one with respect to ψ, and combine the results to get

(
ωS

ωψ

)
T

= − 1

ψ

(
ωU

ωT

)
ψ

. (3.10)

Substitution into Eq. (3.8) gives

(
ωU

ωψ

)
T

− U

ψ
= −T

ψ

(
ωU

ωT

)
ψ

. (3.11)

The solution of this equation can be found by writing U = ψ f (T,ψ) to cancel the
term U/ψ, whence

ψ

T

(
ω f

ωψ

)
T

= −
(

ω f

ωT

)
ψ

. (3.12)

This equation holds for any function f of the single variable ψ/T , as can be easily
verified; hence Eq. (3.11) admits the general solution

U = ψ f (ψ/T ). (3.13)

Equation (3.13) is indeed a very important result: it is Wien’s law, which establishes
the general form of the mean energy U of any harmonic oscillator as a function of its
frequencyψ and the temperature T . This lawwill be at the basis of our considerations
below.2,3

We now present some additional results concerning the thermodynamics of the
harmonic oscillator that will be useful below. The Helmholtz free energy F takes
the form

F(T,ψ) = −kB T ρ(ψ/T ), (3.14)

where kB is Boltzmann’s constant and ρ is a thermodynamic potential from which
the thermodynamic functions of the oscillator can be determined. In particular the
mean equilibrium energy becomes

2 Wien’s law is a fundamental law of physics, since only simple and very general principles are
required for its derivation. It is valid in classical as well as in quantum physics, and is even consistent
with relativity, so it was the appropriate law to herald the 20th century. To get a better feeling of
its fundamental nature, a derivation based solely on dimensionality arguments can be found in
Sommerfeld’s classical book on Thermodynamics (Sommerfeld 1956). Simple clear discussions
of Wien’s law can be seen in two highly pedagogical papers: Piña and de la Selva (2010), and del
Río-Correa (2010).
3 We recall that for the derivation of his law, Wien studied the Doppler effect of the modes of an
adiabatically disturbed radiation field in thermal equilibrium (see e.g. Milonni 1994).
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U (T,ψ) = kB T 2
(

ωρ

ωT

)
ψ

= −kBψ
dρ(z)

dz
, (3.15)

with z = ψ/T . Comparison with Wien’s law gives

f (z) = −kB
dρ

dz
. (3.16)

Finally, the entropy is also a function of the variable z,

S(z) = kBρ(z) + z f (z). (3.17)

These results suffice for our purposes.

3.1.1 Unfolding the Zero-Point Energy

In the low-temperature limit T → 0, Eqs. (3.13) and (3.15) give for the mean energy

E0 √ U (0,ψ) = ψ f (↑) = −kBψ
dρ

dz
(↑) = Aψ, (3.18)

so that the zero-point energy E0—the mean energy of the oscillator at absolute tem-
perature T = 0—is determined by the value that the function f (z) (or dρ/dz) attains
at infinity.4 In the usual thermodynamic analysis the value of the constant A = f (↑)

is arbitrarily chosen as zero, so there is no athermal energy. However, the more gen-
eral (and more natural) solution corresponds to a nonnull value of A. In the case
of the radiation field oscillators, this represents a physically more reasonable choice
than a vacuum that is completely devoid of electromagnetic phenomena. By taking
A to be nonzero we attest the existence of a zero-point energy that fills the whole
space and is proportional to the frequency of the oscillator,5,6

4 Some textbook demonstrations of Wien’s law cast doubt about extending its validity to the limit
T = 0. That Eq. (3.13) holds also at T = 0 is explicitly demonstrated in Cole (1990).
5 That the only spectrum consistent with relativity (and hence with electromagnetic theory) cor-
responds to E0(ψ) ↓ ψ , has been demonstrated independently by several authors. The earliest of
such demonstrations are those in Marshall (1963), Santos (1968), and Boyer (1969b). See also Cole
(1990), Milonni (1994), Chap. 2; and The Dice, Chap. 4. The present thermodynamic calculation
leads to the same expression, Eq. (3.18). Further, the Schrödinger equation provides a similar pre-
diction for the ground-state energy of a particle in a harmonic oscillator potential. Here we have a
vivid example of the intrinsic unity of physics, reinforcing the idea that it refers to different aspects
of a single reality.
6 Taking A = 0 is equivalent to putting the boundary condition for the solutions of Maxwell’s
equations at infinity in the past equal to zero, i. e. no radiation. The choice A ◦= 0 replaces this
unnatural boundary condition by a zero-point field at infinity, simultaneously restoring time-reversal
symmetry in electrodynamics.
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E0 = Aψ = 1
2�ψ. (3.19)

The value of A (with dimensions of action) must be universal because it determines
the equilibrium spectrum at T = 0, which, according to Kirchhoff’s law, has a
universal character. We have put it equal to �/2 in order to establish contact with
present-day knowledge. However, it must be stressed that the presence of the Planck
constant here does not imply any quantum connotation. In addition, it should be
noticed that many of the results to be obtained in the present chapter do not depend
on the precise value of E0, the only requirement being in such instances that it be
different from zero.

A nonnull value of A means a violation of energy equipartition among the oscilla-
tors, since the equilibrium energy becomes now a function of the oscillator frequency.
Though at this stage such violation can strictly be assured only at T = 0, the result
suggests that the physics ensuing from the existence of E0 ◦= 0 necessarily transcends
classical physics. This opens up interesting possibilities that will be explored along
this chapter.

In concluding this section, let us note that the existence of a zero-point energy
provides a natural energy scale, which, along with kB T , suggests to introduce the
dimensionless quantity

z̊ = 2E0
kB T

= �

kB
z = �ψ

kB T
. (3.20)

Thiswill be the natural dimensionless variable of the thermodynamic functions, since
the potential ρ in Eq. (3.14) is a dimensionless function of z and can therefore be
expressed as a function of z̊.

3.2 General Thermodynamic Equilibrium Distribution

Our aim is to find the average energyU per oscillator in an ensemble of such systems
when equilibrium has been reached at a fixed temperature T . For this purpose we
first follow the standard description of a canonical ensemble (Pathria 1996). In this
case, the probability that a member of the ensemble is in a state with energy between
E and E + dE can be written in the general form

Wg(E)dE = 1

Zg(λ)
g(E)e−λEdE, (3.21a)

Zg(λ) =
∫

g(E)e−λEdE, (3.21b)

where λ = 1/(kB T ), Zg(λ) is the partition function that normalizes Wg(E) to unity,
and g(E) is a weight function representing the density of states with energy E . The
mean value 〈 f (E)≡ of any function f (E) is thus
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〈 f (E)≡ =
∫

Wg(E) f (E)dE . (3.22)

For f (E) = E , (3.22) gives the mean energy

U = 〈E≡ =
∫
EWg(E)dE . (3.23)

Equation (3.21a) constitutes the general form of a Boltzmann distribution.7 In par-
ticular, the corresponding classical distribution for the harmonic oscillator is obtained
from (3.21a) with g(E) given by Pathria (1996)

gclassic(E) = 1

sψ
, (3.24)

where s is a constantwith dimensions of action, so g has the dimension of (energy)−1.
In this case one gets from the above equations

Wcl(E) = Wgcl(E) = e−λE
∫

e−λEdE ; (3.25a)

Zcl(λ) =
∫

gcl(E)e−λEdE = 1

sλψ
; (3.25b)

〈E≡ = U = − 1

Zcl

d Zcl

dλ
= 1

λ
= kB T . (3.25c)

From the last equation it follows that U (T = 0) = 0. This means that to allow for
a zero-point energy, a form for g(E) different from that given by Eq. (3.24) must be
used. The specific structure of this g(E) consistent with a zero-point energy for the
harmonic oscillator will be determined below.

3.2.1 Thermal Fluctuations of the Energy

Equations (3.21a, 3.21b) and (3.22) lead to a series of important and general results.
With f (E) = Er , r a positive integer, it follows that (the prime indicates derivative
with respect to λ)8

7 This form of writing Wg(E) was used, for example, by Einstein (1907) in his early work on the
specific heat of solids. He considered the distribution in (3.21a) assuming from the start a form
for the function g(E) equivalent to (3.82) below, as was dictated by the quantization discovered by
Planck. Here we proceed in the opposite sense, by allowing the theory to determine g(E).
8 The present discussion draws closely from de la Peña and Cetto (2002), de la Peña et al. (2008,
2010a, b), Valdés-Hernández et al. (2010), Valdés-Hernández (2010).
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〈Er 〉′ = − Z ′
g

Zg

〈Er 〉 − 1

Zg

∫
Er+1g(E)e−λEdE = − Z ′

g

Zg

〈Er 〉 −
〈
Er+1

〉
, (3.26)

and further, from (3.21b),

〈E≡ = U = 1

Zg

∫
Eg(E)e−λEdE = − Z ′

g

Zg
. (3.27)

These two expressions combined give the recurrence relation

〈
Er+1

〉
= U

〈Er 〉 − 〈Er 〉′ , (3.28)

which can be extended to any continuous function h(E) to obtain

− 〈h(E)≡′ = 〈Eh(E)≡ − U 〈h(E)≡ . (3.29)

Thus − 〈h(E)≡′ is given in general by the covariance of h(E) and E .
Equation (3.28) with r = 1 gives a most important expression for the energy

variance,

γ2
E √

〈
(E − U )2

〉
=

〈
E2

〉
− U 2 = −dU

dλ
, (3.30)

which can be rewritten as the well-known relation (Mandl 1988)

γ2
E = −dU

dλ
= kB T 2

(
ωU

ωT

)
ψ

= kB T 2Cψ (3.31)

in terms of the specific heat (or heat capacity) Cψ .9 Because Cψ is surely finite at
low temperatures, the right-hand side of this expression is zero at T = 0, whence

γ2
E (T = 0) = 0, (3.32)

which shows that the description provided by the distribution Wg does not allow
for the dispersion of the energy at zero temperature. The fact that Wg offers a ther-
modynamic description that admits thermal fluctuations only, and has no room for
temperature-independent fluctuations, is an important shortcoming, as is clear when
we consider a collection of harmonic oscillators (such as those of the electromag-
netic field in equilibrium inside a cavity) which are endowedwith a zero-point energy
given by (3.19). Indeed, for such system the distribution Wg leaves out the fluctua-
tions of the nonzero nonthermal component of the energy. We continue to work here

9 Cψ coincides with the specific heat at constant volume, so the usual notation in this context is CV .
Still, we employ the subindex ψ since we are considering ψ to be a fixed parameter.
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with the thermodynamic description, but later on we shall introduce a full-fledged
statistical description that overcomes this limitation.

3.2.2 Some Consequences of the Recurrence Relation

The recurrence relation (3.28) and the Wien law can be recast into other interesting
forms as follows. First we observe that the equation

〈Er 〉 = 1

Zg(λ)

∫
Erg(E)e−λEdE, (3.33)

with the substitutions E = E0ζ (ζ dimensionless), and z̊ = 2E0λ, gives
〈Er 〉 = Er

0 fr (E0, z̊), (3.34)

where fr (E0, z̊) is defined as

fr (E0, z̊) =
∫

ζrg(E0ζ)e−z̊ζ/2dζ
∫
g(E0ζ)e−z̊ζ/2dζ

.

As follows fromEq. (3.34), fr is an adimensional function, hence it can be expressed
as a function of the adimensional parameter z̊ only. For the harmonic oscillator we
use Wien’s law to write E0 = Aψ, so that Eq. (3.34) reads

〈Er 〉 = ψr Ar fr (z̊), (3.35)

which is a generalization of Wien’s law for any power r.
On the other hand, the general recurrence relation between the moments of the

energy, Eq. (3.28), can be rewritten as follows, using Eq. (3.31),

〈
Er+1

〉
= U

〈Er 〉 − d

dλ

〈Er 〉 = U
〈Er 〉 + γ2

E
d

dU

〈Er 〉 , (3.36)

or
〈
Er+1

〉
=

(
U + γ2

E
d

dU

)
〈Er 〉 . (3.37)

Successive iterations of this equation yield

〈Er 〉 =
(

U + γ2
E

d

dU

)r−1

U. (3.38)
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This reveals U + γ2
E (d/dU ) as a kind of ‘raising’ operator for the higher moments

of the energy, beginning with the first moment 〈E≡ = U . It is clear that for γ2
E (U )

even in U , the moments 〈Er ≡ (U ) have the parity of r.
The second centered moment of the energy is γ2

E = 〈
(E−U )2

〉 ; for the third one
we obtain

〈
(E−U )3

〉
=

〈
E3

〉
− 3Uγ2

E − U 3

= γ2
E

d

dU

〈
(E−U )2

〉
, (3.39)

and by induction it can be seen that this last result generalizes into

〈
(E−U )r 〉 = γ2

E
d

dU

〈
(E−U )r−1

〉
(3.40)

for any integer r ≥ 1. This equation shows that at T = 0, all centered moments are
zero because of (3.32); hence the energy is exactly E0, and its distribution function
reduces to δ(E − E0) in this thermodynamic analysis.

3.3 Planck’s Law from the Thermostatistics
of the Harmonic Oscillator

3.3.1 General Statistical Equilibrium Distribution

It now becomes necessary to extend our description so as to allow for nonthermal
fluctuations of the zero-point energy of the field, which are excluded by Wg . This can
be achieved by paying attention to the statistical distribution of the energy Ws(E).
Since for every frequency the field contains a huge number of modes, the central
limit theorem applies (Grimmett and Stirzaker 1983; Papoulis 1991) and hence the
field amplitude of frequency ψ follows a normal distribution. This means that the
energy distribution follows the simple law

Ws(E) = 1

U
e−E/U , (3.41)

with ∫
Ws(E)dE = 1,

∫
EWs(E)dE = U, (3.42)

and the corresponding energy dispersion is given by (the subscript s denotes averages
taken with respect to Ws , to be distinguished from those calculated with Wg)10

10 This is a well-known statistical result, established for the first time by Lorentz for the thermal
radiation field. A simple demonstration is given in Vedral (2005). Inclusion of the zero-point
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(
γ2
E
)

s
= U 2. (3.43)

This (exponential) distribution of the energy [subject to the constraints (3.42)] has
the property of maximizing the statistical entropy Ss , defined as

Ss = −kB

∫
Ws(E) ln cs Ws(E)dE, (3.44)

where cs is an appropriate constant with dimension of energy. Since the entropy is
usually interpreted as a measure of the disorder present in the system (see e.g. Callen
1985; Mandl 1988), the maximal entropy property means maximum disorder, which
is the natural demand for a system constituted by a huge number of independent
components once equilibrium has been reached.

From Eq. (3.43) we see that Ws allows indeed for zero-point fluctuations, since
at T = 0

(γ2
E )s

∣∣∣
0

= U 2(T = 0) = E2
0 , (3.45)

which means that there is a nonthermal contribution to the energy fluctuations, with
variance E2

0 . The thermal contribution γ2
ET

to the energy fluctuations at any tem-

perature is obtained by subtracting from the total ones this nonthermal term E2
0 .

This is true because the thermal and nonthermal fluctuations have an entirely dif-
ferent source, so they are statistically independent, with a null correlation [see the
discussion following Eq. (3.90)]. That is,

γ2
ET

= (γ2
E )s − E2

0 , (3.46)

whence

γ2
ET

= U 2 − E2
0 . (3.47)

Recalling that γ2
E in Eq. (3.31) stands for the thermal fluctuations of the energy, we

can combine this latter with (3.47) and write (omitting the subindex T )

γ2
E = U 2 − E2

0 = −dU

dλ
. (3.48)

Before studying the consequences of this relation we observe that the distribu-
tion (3.41) leads to recurrence relations incorporating the nonthermal fluctuations.
Indeed (3.41) gives for the moments of the energy

(Footnote 10 continued)
component does not modify this statistical property, since the argument to establish it remains in
force.
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〈Er 〉
s = r !Ur , (3.49)

and making reiterative use of this equation one obtains

〈Er 〉
s = U

〈
Er−1

〉

s
+ (γ2

E )s
d

dU

〈
Er−1

〉

s
. (3.50)

Thus a sophisticated form of writing (3.49) in terms of a raising operator is

〈Er 〉
s =

(
U + (γ2

E )s
d

dU

) 〈
Er−1

〉

s
, (3.51)

a result analogous to the previous recurrence relation (3.38), but now including the
zero-point fluctuations. A much simpler, alternative form of this relation is

〈Er 〉
s = rU

〈
Er−1

〉

s
. (3.52)

3.3.2 Mean Energy as Function of Temperature;
Planck’s Formula

We note from Eq. (3.48) that knowledge of the variance γ2
E as a function of U is

enough to determine U (λ). Indeed, an integration of this equation—which articu-
lates both thermodynamic and statistical information via Eqs. (3.31) and (3.46),
respectively—

dU

dλ
= E2

0 − U 2(λ) (3.53)

gives the function U (λ). Subject to the condition U → ↑ as T → ↑, the result is

U (λ) =
{

1
λ , for E0 = 0;
E0 coth E0λ, for E0 ◦= 0.

(3.54)

Although the case E0 = 0 can of course be obtained from the last expression in the
limit E0 → 0, it is more illustrative to treat the two cases separately. As seen from
Eq. (3.54), the mean energy as a function of the temperature depends critically on
the presence of E0. For E0 = 0 the classical energy equipartition is recovered,

Ucl = λ−1 = kB T, (3.55)

whereas for E0 = �ψ/2 Planck’s law is obtained,
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UPlanck(ψ, T ) = 1
2�ψ coth 1

2�ψλ. (3.56)

By taking the limit T → 0, we verify that UPlanck includes the zero-point energy,11

UPlanck(λ → ↑) = 1
2�ψ = E0. (3.57)

This establishes Planck’s law as a physical result whose ultimate meaning—or
cause—is the existence of a fluctuating zero-point energy of the field oscillators.

It is important to stress that Planck’s law has been obtained without the introduc-
tion of any explicit quantum or discontinuity requirement. Equation (3.53) results
from a thermostatistical analysis of the field modes, based on the properties of Wg

and Ws , together with Wien’s law, which opens the door to their zero-point energy
Aψ. This leads us to conclude that Wien’s law with A ◦= 0 in Eq. (3.18) consti-
tutes an extension of classical physics into the quantum domain—as evidenced by
the quantum properties of the harmonic oscillator that ensue from Planck’s law (see
below). Thus, strictly speaking, Wien’s law stands as a precursor of Planck’s, and
should be considered historically to contain the first quantum law.

The demonstration that the law that gave rise to quantum theory stems from the
existence of a fluctuating zero-point energy, brings to the fore the crucial importance
of this nonthermal energy for the understanding of quantum mechanics or, more
generally, of quantum theory.

A brief comment on the thermal fluctuations of the energy seems in place before
ending this section. We have seen that for E0 ◦= 0 the thermal energy dispersion is
given by

γ2
ET

(U ) = U 2 − E02 (U = UPlanck), (3.58)

whereas in the classical case (E0 = 0),

γ2
ET

(U ) = U 2 (U = Ucl). (3.59)

Whilst in the latter case the thermal fluctuations of the oscillator’s energy depend
solely on its (purely) thermal mean energy, Ucl, in the former case Eq. (3.58)
relates the thermal fluctuations with the total mean energy UPlanck, which includes
the temperature-independent contribution. The statistical description initiated in
Sect. 3.3.1 will be resumed below, in Sect. 3.6.

11 Planck’s law without zero-point energy (the first relation derived by Planck) is obtained by fixing
the constant of integration precisely as −E0, so that U (λ) = E0 coth E0λ − E0. The existence of the
zero-point energy remains hidden with this choice.

An additional comment is in place here. At first sight it would seem plausible to take the constant
of integration in the first line of Eq. (3.54) as E0, so that the resulting function,U (ψ, T ) = kB T +E0
is apparently consistent with both the existence of a nonthermal energy and Wien’s law. However,
such choice must be discarded since this U cannot be obtained as a limit case of E0 ◦= 0.
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3.4 Planck, Einstein and the Zero-Point Energy

The previous discussion suggests separating the average energyU Planck (which as of
now will be denoted simply byU ) into a thermal contributionUT and a temperature-
independent part E0,

U = UT + E0, (3.60)

so that Eq. (3.58) becomes

γ2
E = U 2

T + 2E0UT . (3.61)

The first term in Eq. (3.60)

UT = E0 coth E0λ − E0 = 2E0
e2E0λ − 1

, (3.62)

with E0 = �ψ/2, is Planck’s law without the zero-point energy. At sufficiently low
temperatures UT takes the form

UT (λ → ↑) = 2E0e−2E0λ . (3.63)

This is the (approximate) expression suggested byWien at the end of the 19th century,
and considered for some time to be the exact law for the blackbody spectral distrib-
ution. Equations (3.63) and (3.61) represent the germ of quantum theory, since it is
precisely on their basis that Planck and Einstein advanced the notion of the quantum
(for the material oscillators and for the radiation field, respectively). The following
pages contain a discussion of their respective points of view and of the relations
between these and our present notions based on the reality of the zero-point energy.
A remarkable relationship will thus be disclosed.

3.4.1 Comments on Planck’s Original Analysis

In his initial studies on the radiationfield in equilibriumwithmatter, Planck (1900a, b)
used as point of departure the expression for the derivative of the entropy12

ωS

ωU
= 1

T
. (3.64)

In line with the views and knowledge of his time, Planck recognized only the thermal
energy, soU should be replaced here byUT . In the high-temperature limit the relation
(3.64) led him to write (putting UT (T → ↑) = kB T )

12 An early account of the material in this and the following two subsections is presented in
de la Peña and Cetto (2002), and de la Peña et al. (2010a, b).
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ω2S

ωU 2
T

= ω

ωUT

(
kB

UT

)
= − kB

U 2
T

. (3.65)

For low temperatures Planck usedWien’s result (3.63), assuming it to afford an exact
description of the properties of the equilibrium field. He thus wrote

UT = 2E0e−2E0λ = 2E0e−2E0/kB T = 2E0e−2(E0/kB )(ωS/ωUT ), (3.66)

whence

ωS

ωUT
= − kB

2E0 ln
UT

2E0 , (3.67a)

ω2S

ωU 2
T

= − kB

2E0UT
. (3.67b)

Not surprisingly, Eqs. (3.65) and (3.67b) give different results, since different tem-
perature regimes were used in each case. As the simplest possibility Planck assumed
that the description for arbitrary temperatures could be obtained by interpolating
Eqs. (3.65) and (3.67b) and consequently he proposed the relation

ω2S

ωU 2
T

= − kB

U 2
T + 2E0UT

. (3.68)

This equation leads directly to Planck’s lawwithout the zero-point term [Eqs. (3.62)],
a result that Planck (against his will) interpreted, as is well known, as due to the
quantization of the energy exchanged between the material oscillators of the cavity
and the equilibrium radiation field.13

13 The rationale behind Planck’s reading of his formula is the following. If the system composed
by the walls of the cavity (represented by a collection of material oscillators) and the enclosed
radiation field exchanges energy not continuously but by lumps (which he called quanta) of value
n�ψ (n = 1, 2, 3, . . .), then the mean equilibrium energy is

U =
∑↑

n=0 n�ψe−λn�ψ

∑↑
n=0 e−λn�ψ

.

Performing the summations with the aid of the relation
∑↑

n=0 xn = 1/(1 − x), one gets

U = �ψ

e�ψλ − 1
,

which is just the UT in Planck’s theory. If by contrast a continuous exchange of energy is assumed
instead of a discrete one, the sum above must be replaced by an integral from 0 to ↑. The reader
can easily check that in this case the result is the classical formula UT = 1/λ = kB T .
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3.4.2 Einstein’s Revolutionary Step

A few years later, Einstein argued that even though Eq. (3.68) was empirically con-
firmed (through Planck’s law), its full meaning remained to be clarified. For this
purpose Einstein chose also to take Eq. (3.64) as a safe point of departure, whence
he wrote

ω2S

ωU 2
T

= ω

ωUT

1

T
= − 1

T 2Cψ
, (3.69)

or

kB T 2Cψ = −kB

(
ω2S

ωU 2
T

)−1

. (3.70)

Equation (3.70) combined with (3.68) and (3.31) gives

kB T 2Cψ = −dUT

dλ
= γ2

E = U 2
T + 2E0UT , (3.71)

which is the same as (3.61). Einstein recognized the disagreement between this result
and the classical expression γ2

E = U 2
T . As is well known, it is here where he made his

most—according to him (Rigden 2005), his only—revolutionary step in physics. He
interpreted the first term on the right-hand side of (3.71) as due to the fluctuations of
the thermal field produced by the interference among its modes of a given frequency.
This interpretation follows from considering the limit of (3.71) at high temperatures,
at which UT ∗ E0 and therefore γ2

E = U 2
T , as was predicted by Lorentz on the basis

of Maxwell’s equations and is discussed in relation with Eq. (3.43). Einstein thus
saw in this term a direct manifestation of the wavelike nature of light.

As for the second term in (3.71), which in the context of classical thermodynamics
is completely unexpected, the fact that it leads to the quantum theory of Planck led
Einstein to interpret it in terms of light quanta (Einstein 1905a, b), seeing in the
expression 2E0UT a manifestation of discrete properties of the radiation field, as
follows. According to Planck, the average energy exchanged between n material
oscillators (representing the walls of the cavity) of frequencyψ and the radiation field
is�U = �ψ〈n≡, and contributes with γ2

�U = 2E0�U = �
2ψ2〈n≡ to the fluctuations

of the field, as follows from (3.71). For Einstein, the linearity of the variance in
〈n≡ suggested a Poisson distribution of n independent events, each corresponding
to an exchange of energy equal to �ψ = 2E0.14 It is the interpretation by Einstein
of the linear term as representing a discrete or ‘corpuscular’ contribution, with each

14 A Poisson distribution refers to the probability of n independent discrete events taking place
simultaneously, and has the form

Pa(n) = e−a an

n! .

It is easy to verify that for this distribution the mean of n is 〈n≡ = a and its variance is precisely
γ2

n = 〈n≡ .
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corpuscle being an independent packet of energy �ψ,what gave birth to the notion of
the photon (see Vedral 2005 for a simple derivation). It is clear from Eq. (3.71) that
the discrete structure of the field will manifest itself only at very low temperatures,
when the linear term dominates over the quadratic, wavelike one. However, it is
important to stress, as Einstein did as of 1909, that the two terms coexist at all
temperatures, and thus, both particle and wave manifestations of light coexist at
all temperatures (Einstein 1909). This observation is sometimes ignored to argue
that they are mutually exclusive, although there exist both theoretical arguments
and experiments that demonstrate the possible coexistence of the two aspects of the
behaviour of light.15

3.4.3 Disclosing the Zero-Point Field

It is important to note that no zero-point energy was considered by either Planck or
Einstein in their analysis of Eqs. (3.68) and (3.71), respectively. Instead, as stated
above, Planck interpreted the term 2E0UT in Eq. (3.68) as a result of the discontinu-
ities in the processess of energy exchange betweenmatter and field (more specifically
in the emissions, as of 1912). Einstein in his turn saw in 2E0UT a manifestation of
the corpuscular nature of the field, and thus pointed to it as the key to Planck’s law.
Now, from the point of view proposed here the consideration of the zero-point energy
gives rise to a third understanding of Eq. (3.71) that does not depend on the notion
of quanta. The elucidation of U 2

T as the result of the interference of the modes of
frequency ψ of the thermal field suggests to interpret 2E0UT as due to additional
interferences, now between the thermal field and a zero-point radiation field of mean
energy E0 (per mode of frequency ψ) that is present at all temperatures. As is by now
clear, Eq. (3.71) lacks the extra term E2

0 representing the nonthermal fluctuations,
just because the thermodynamic description has no room for them; this shortcoming
has been overcome with the introduction of the distribution Ws , Eq. (3.41).

From this new perspective the notion of intrinsic discontinuities in the energy
exchange or in the field itself is unnecessary to explain either Planck’s law or the
linear term in Eq. (3.71); it is the existence of a (fluctuating) zero-point radiation field
(zpf) what accounts for that law. This could of course not be Planck’s or Einstein’s
interpretation because the zero-point energy (and more so the zero-point field) was
still unknown at that time, even though their results were consistent with its existence.

The concept of a zero-point energy of the radiation field appeared for the first
time in 1912, in a work where Planck attempted another derivation of his law, moti-
vated by his well-known uneasiness with the idea of introducing discontinuities in

15 Graded realizations of complementarity relations (wave-like or particle-like behavior) have been
under close scrutiny during the last decades; see e.g. Jaeger et al. (1995), Englert (1996), Engert
and Bergou (2000), Liu et al. (2009), Flores and de Tata (2010) (see also Ghose and Home 1996).
The general validity of Einstein’s fluctuation formula (3.71) had been verified experimentally since
earlier times; see Aldemade et al. (1966), Kattke and van der Ziel (1970). The authors are grateful
to M. D. Godfrey for drawing their attention to these references.
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our theoretical descriptions (Planck 1912). Some time thereafter Einstein and Stern
(1913) used the idea of a zero-point energy, although applied to molecules, i.e., to
mechanical oscillators. Unfortunately the authors were obliged to use the (incorrect)
value �ψ for this energy; this along with other difficulties led Einstein to abandon
such line of research.16 Shortly thereafter the notion of a zero-point field was born
anew, when Nernst made his visionary proposal (Nernst 1916), as briefly mentioned
in the preface.

3.5 Continuous Versus Discrete

We have just seen how three alternative approaches provide three quite different
readings of the same quantity, U 2

T + 2E0UT . In these approaches, either the zero-
point energy (of a continuous field) or the energy quantization is identified as the
notion underlying the Planck spectral energy distribution. Therefore the next logical
step is to inquire about the relation between the zero-point energy and quantization.
Is quantization inevitably linked to Planck’s law, or is it merely the result of a point
of view, of a voluntary but dispensable choice?

3.5.1 The Partition Function

An answer to the above question is found from an analysis of the partition function
obtained from (3.54). As follows from Eq. (3.27), Zg(λ) can be determined by direct
integration of

U = −d ln Zg(λ)

dλ
, (3.72)

with U (λ) given by the second of Eq. (3.54). The result is

Zg = C

sin hE0λ , (3.73)

where C is a numerical constant whose value is determined by requiring the classical
result Zg = (sλψ)−1 [Eq. (3.25b)] to be recovered in the limit T → ↑. This leads
to C = E0/sψ = �/2s, so that

Zg(λ) = E0
sψ sinh E0λ . (3.74)

16 More detailed discussions of these points, from a modern perspective, are presented in Milonni
(1994); see also Boyer (1969a) and Jiménez et al. (1980).
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On the other hand, from Eqs. (3.15) and (3.72) the thermodynamic potential ρ can
be written in the form

ρ = ln Zg. (3.75)

This along with Eq. (3.17) gives for the entropy (up to an additive constant, and
writing S = Sg)

§g = kB ln Zg + U

T
= kB ln �

s − kB ln(2 sinh E0λ) + kBλU, (3.76)

which in the zero-temperature limit reduces to

Sg(λ → ↑) = kB ln
�

s
. (3.77)

To set the origin of the entropy at T = 0 one must take s = �,17 hence the partition
function takes the form

Zg(λ) = 1

2 sin hE0λ . (3.78)

3.5.2 The Origin of Discreteness

Once we have determined the partition function Zg we are in position to discuss
the discontinuities characteristic of the quantum theory, which are hidden in the
continuous description given by the distribution Wg . To this endwe expand Eq. (3.78)
and write (see Santos 1975; Theimer 1976; Landsberg 1981 for related discussions)

Zg = 1

2 sinh E0λ = e−λE0
1 − e−2λE0 =

↑∑

n=0

e−λE0(2n+1) =
↑∑

n=0

e−λEn , (3.79)

where

17 This is a most significant quantum result. In the quantum statistical description the finite quantity
�
3 plays the role of a minimal element of volume in phase space. This idea was introduced formally

for the first time by Planck in his early studies of the blackbody spectrum (Planck 1900a, b). Later, in
1924, Bose assumed that two or more distributions of microstates that differ only in the permutation
of phase points within a subregion of phase space of volume �

3, are to be regarded as identical,
which already corresponds to the Bose-Einstein statistics. In the classical description the volume of
such elementary cells is taken to tend to zero in order to recover the continuity of the phase space.
It is remarkable that, already in his classical statistical studies, Boltzmann introduced formally the
idea of a discrete phase space (see e.g., Jones 2008, Chap. 3).
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En √ (2n + 1)E0 = �ψn + 1
2�ψ. (3.80)

Equation (3.79) allows now the determination of the function g(E) by means of
(3.21b),

Zg(λ) =
∫

g(E)e−λEdE =
↑∑

n=0

e−λEn =
↑∫

0

↑∑

n=0

δ(E − En)e−λEdE, (3.81)

whence

g(E) =
↑∑

n=0

δ(E − En). (3.82)

The substitution of (3.82) into Eq. (3.21a) finally determines the probability
density Wg(E),

Wg(E) = 1

Zg

↑∑

n=0

δ(E − En)e−λE . (3.83)

This distribution gives for the mean value of any function f (E)

〈 f (E)≡ =
∫

Wg(E) f (E)dE = 1

Zg

↑∑

n=0

f (En)e−λEn =
↑∑

n=0

wn f (En), (3.84)

with the weights wn given by

wn = e−λEn

Zg
= e−λEn

∑↑
n=0 e−λEn

. (3.85)

The final form of Wg(E), Eq. (3.83), identifies {En = �ψ(n + 1/2)} with the set
of discrete energy levels accesible to the oscillators. Such discreteness, seemingly
excluding all other values of the energy, is due to the highly pathological distribution
g(E), Eq. (3.82). As a result, (3.84) shows that the mean value of a function of
the continuous variable E calculated with the distribution Wg(E), can be obtained
equivalently by averaging over the set of discrete indices (or states) n,with respective
weightswn . Thus, although both averages are formally equivalent, their descriptions
are essentially different: one refers to the continuous energy E , the other one to
discrete states (levels) with energy En . As this latter is completely characterized by
the state n, it is natural to interpret the last equality in Eq. (3.84) as a manifestation
of the discrete (quantized) nature of the energy. Indeed, the last equality in Eq. (3.84)
can be recognized as the description afforded by the density matrix for a canonical
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ensemble of quantum oscillators at temperature T , with the weights wn given by
(3.85) (see e.g. Cohen-Tannoudji et al. 1977).

The above discussion points to the fundamental role played by the zero-point
energy in explaining quantization, by putting it at the root of Eq. (3.79) and hence of
Eq. (3.82). From the present point of view, and contrary to the usual credo, the radia-
tion field is not intrinsically quantized, but it becomes so when attaining equilibrium
through its interaction with matter. In other words, quantization is here exhibited
as an emergent property of matter and field in interaction, an idea that is closely
examined from several angles in the following chapters, becoming thus the leitmotiv
of the book.

3.6 A Quantum Statistical Distribution

The thermostatistical analysis of a canonical ensemble of oscillators has led to the
conclusion that although E is a continuous variable, its equilibrium distribution pos-
sesses extremely peaked values. In other words, the energies that conform to the
thermal equilibrium state described by the distribution Wg belong, roughly speaking,
to a discrete spectrum. This explains why the mean value 〈 f (E)≡, which corresponds
to an equilibrium state, involves only the discrete set En . However, the energy still
fluctuates and in doing so tends to fill the interspaces between its discrete values.18

Thus we find that temperature-independent fluctuations appear as a characteristic
trait of quantum systems. A closer study of this property allows to establish contact
with one of the most frequently used distributions in quantum statistics.

3.6.1 Total Energy Fluctuations

The appropriate statistical distribution that includes all (thermal as well as nonther-
mal) fluctuations is given by Eq. (3.41),

Ws(E) = 1

U
e−E/U , (3.86)

and the variance of the energy at all temperatures (including T = 0) is (γ2
E )s = U 2.

Using the decomposition (3.60) we may write for the total energy fluctuations

(γ2
E )s = U 2 = (UT + E0)2 = U 2

T + 2E0UT + E2
0 . (3.87)

18 The existence of energy fluctuations associated with the natural linewidth and other processes
(see e.g. Schiff 1955; Louisell 1973), effectively dilutes this discrete distribution of energies into
a somewhat smoothened-out distribution acquiring a more continuous shape. Thus g(E) should be
seen as a theoretical limiting distribution.
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This result generalizes Eq. (3.59) to include both thermal and nonthermal energy
fluctuations. In conformitywith the present discussion, the total energy can bewritten
in terms of its thermal and nonthermal fluctuating parts,

E = ET + E0. (3.88)

The total energy fluctuations are then given by

(γ2
E )s = γ2

ET
+ γ2

E0 + 2�(ET , E0), (3.89)

where �(ET , E0) is the covariance

�(ET , E0) = 〈ET E0≡ − 〈ET ≡ 〈E0≡. (3.90)

Comparing Eqs. (3.89) and (3.87), and identifying the temperature-dependent part
of the fluctuations of the whole field U 2

T + 2E0UT with γ2
ET

and E2
0 with γ2

E0 , we
verify that �(ET , E0) = 0, as was expected considering that the fluctuations of ET

and E0 are statistically independent, due to the independence of their sources.
The entropy Ss follows from Eqs. (3.44) and (3.86),

Ss = −kB

∫
Ws(E) ln cs Ws(E)dE = kB ln c−1

s U + kB, (3.91)

whence
ωSs

ωU
= kB

U
. (3.92)

A comparison with the thermodynamic entropy, which satisfies

ωSg

ωU
= 1

T
, (3.93)

shows that these two entropies coincide only when E0 = 0, i.e., for U = kB T .

3.6.2 Quantum Fluctuations and Zero-Point Fluctuations

Let us now investigate how the nonthermal fluctuations become manifest in the
statistical properties of the ensemble of oscillators. The value of the energy of the
harmonic oscillator [(cf. Eq. (3.1)]

E = (p2 + ψ2q2)/2 (3.94)

canbeused as a startingpoint to performa transformation from the energydistribution
Ws(E) to a distribution ws(p, q) defined in the oscillator’s phase space (p, q). To
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this end we introduce the pair of variables (E, β) related to the couple (p, q) by19

p = ∼
2E cos β, (3.95a)

q =
√
2E
ψ2 sin β, (3.95b)

so that ws(p, q) is given by (Papoulis 1991; Birnbaum 1961)20

ws(p, q) = Ws(E(p, q), β(p, q))

∣∣
∣∣
ω(E, β)

ω(p, q)

∣∣
∣∣ , (3.96)

with the Jacobian of the transformation

ω(p, q)

ω(E, β)
=

∣∣∣
∣
ω(E, β)

ω(p, q)

∣∣∣
∣

−1

= 1

ψ
. (3.97)

Now, Ws(E) is a marginal probability density that can be obtained from Ws(E, β) by
integrating over the variable β, so that

Ws(E) =
2χ∫

0

Ws(E, β)dβ. (3.98)

For a system of harmonic oscillators in equilibrium, the trajectories (in general,
the surfaces) of constant energy do not depend on β, so all values of β are equally
probable, which means that

Ws(E, β) = 1

2χ
Ws(E). (3.99)

Using Eqs. (3.86), (3.94) and (3.96) we thus obtain for the distribution in phase space:

ws(p, q) = ψ

2χ
Ws(E(p, q)) = ψ

2χU
exp

(
− p2 + ψ2q2

2U

)
. (3.100)

This expression, which is known in quantum theory as the Wigner function for the
harmonic oscillators (Hillery et al. 1984), can be factorized as a product of two
normal distributions,

19 The transformation defined by (3.95a) and (3.95b) is an extended canonical transformation
(Goldstein 1980), which differs from a canonical one—from the action and angle variables (J, β),
with J = E/ψ, to the phase space variables (p, q)—only by a constant factor ψ. Of course β = ψt.
20 When a probability P(x) is expressed in terms of a new variable y(x) as W (y), the equality
P(x)dx = W (y)dy holds. Equation (3.96) is simply the generalization of this result to a two-
dimensional space. See Papoulis (1991), Chap. 6 for a detailed derivation.
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ws(p, q) = w(p)w(q) = 1
√
2χγ2

p

e−p2/2γ2
p · 1

√
2χγ2

q

e−q2/2γ2
q , (3.101)

where γ2
p = U and γ2

q = U/ψ2. The product of these dispersions gives

γ2
qγ2

p = U 2

ψ2 = E2
0

ψ2 + γ2
ET

ψ2 ≥ E2
0

ψ2 = �
2

4
, (3.102)

where Eq. (3.58) was used to write the second equality and the value E0 = �ψ/2
was introduced into the last one.

Equation (3.102) points to the fluctuating zero-point energy as the ultimate
(and irreducible) source of the so-called quantum fluctuations. Indeed, the magni-
tude of γ2

qγ2
p is bounded from below because of the nonthermal energy fluctuations;

the minimum value �
2/4 is reached when all thermal fluctuations have been sup-

pressed, which means T = 0. Therefore, descriptions afforded by purely thermal
distributions such as Wg cannot account for the meaning of these inequalities. This
result stresses again the fact that once a zero-point energy has been introduced into
the theory, new distributions (specifically statistical rather than thermodynamic) are
needed to include its fluctuations and to obtain the corresponding quantum statistical
properties. Though here we have arrived at the Heisenberg inequality (3.102) by
considering a system of harmonic oscillators, later on (particularly in Chap. 5) we
will derive it for an arbitrary system, and again the presence of the zpf will turn out
to be decisive in reaching the result. Finally, note that the Heisenberg inequalities
should be understood as referring to statistical variances, due to the statistical nature
of (3.102).

3.6.3 Comments on the Reality of the Zero-Point Fluctuations

Asmentioned earlier, the concept of a zero-point energy of the radiation field entered
into scene as early as 1912, with Planck’s second derivation of the blackbody
spectrum. Yet further to the frustrated attempt by Einstein and Stern (1913), and
despite the suggestive proposal made by Nernst (1916) to consider the zpf as respon-
sible for atomic stability, little or no attention was paid to its existence as a real
physical entity that could have a role in the newly developing quantum mechanics.21

Interestingly, it was the crystallographers who, prompted by Debye’s theoretical
work, set out to measure the spectroscopic effects of the zero-point energy through
X-ray analysis and thereby seemengly verified its existence (James et al. 1928;
Wollan 1931).

21 The value of the deep insight ofNernst will be substantiated in Chaps. 4–7. This conceptualization
is in vivid contrast with the notion of ‘virtual’ usually applied to the fluctuating vacuum field.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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As mentioned in Sect. 1.4.1, today it is well accepted that the fluctuations of the
electromagnetic vacuum are responsible for important observable physical phenom-
ena. Perhaps their best known manifestations, within the atomic domain, are the
Lamb shift of energy levels (see e.g. Milonni 1994) and their contribution to the
spontaneous transitions of the excited states to the ground state. They are known to
contribute one half of the Einstein A-coefficient for ‘spontaneous’ transitions, the
other half being due to radiation reaction (see e.g. Milonni 1994; Davydov 1965). 22

By far the most accepted evidence of the reality of the zpf is the Casimir effect, that
is, the force between two parallel neutral metallic plates resulting from the modi-
fication of the field by the boundaries (see e.g. Boyer 1970; Bordag et al. 2009).
The existence of the zpf vcan therefore be considered a reasonably well established
physical fact.23 In the following chapters we will have occasion to study in depth the
essential role played more broadly by this random field in its interaction with matter
at the atomic level.
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Chapter 4
The Long Journey to the Schrödinger Equation

I am, in fact, rather firmly convinced that the essentially
statistical character of contemporary quantum theory is solely
to be ascribed to the fact that this [theory] operates with an
incomplete description of physical systems.
[In] a complete physical description, the statistical quantum
theory would. . .take an approximately analogous position to the
statistical mechanics within the framework of classical
mechanics. . .

A. Einstein (1949)

. . .I think that we cannot afford to neglect any possible point of
view for looking at Quantum Mechanics and in particular its
relation to Classical Mechanics. Any point of view which gives
us any interesting feature and any novel idea should be closely
examined to see whether they suggest any modification or any
way of developing the theory along new lines.

P. A. M. Dirac (1951)

An important conclusion was derived from the discussion in Chap. 3: the radiation
field in equilibrium with matter acquires a discrete energy distribution, in presence
of its zero-point component. This was interpreted to mean that the field appears
quantized because of its interaction with matter. Then, what about matter? Could it
be that it becomes as much affected as the field by this interaction? In this chapter we
investigate this most important question. As our journey progresses it will become
clear that indeed, matter is so strongly influenced by the background field, that
it ends up behaving ‘quantum-mechanically’. Again, quantization is revealed as a
phenomenon that emerges as a result of the permanent matter-field interaction.

The approach taken in the present chapter starts with the (nonrelativistic) equation
of motion for a particle immersed in the stochastic zero-point radiation field (zpf)
and subject to possible external forces, which are nonlinear in general. The problem
is, therefore, a complicated one of electrodynamics with a stochastic field, the exact
solution of which is beyond present-day mathematics. A statistical treatment is then
carried out, using a standard approach to obtain an equation for the probability
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density of particles in phase space. The reduction of the description to configuration
space leads in the radiationless approximation to the Schrödinger equation, under
the condition of energy balance. The main lessons and implications of this important
result are discussed in the final part of the chapter.1

4.1 Elements of the Dynamics

The main character in this chapter will be a charged particle—typically an electron,
the case of neutral particles being briefly discussed in Sect. 4.7—immersed in the zpf.
The particle may be subject in addition to external forces (normally a conservative
binding force, on the atomic or molecular scale), and possibly also to some external
radiation field in its vicinity. What is important, however, is that the zpf is always
present.

4.1.1 The Equation of Motion

For a particle of mass m and electric charge e subject to the action of an external
force f (x) and immersed in the pervasive zpf, the Abraham-Lorentz equation of
motion reads2

m ẍ = f (x) + mτ
...
x + eE(x, t) + e

c
v × B(x, t). (4.1)

The term mτ
...
x , with τ = 2e2/3mc3, represents the radiation reaction force on the

particle due to its acceleration (Landau and Lifshitz 1951). For an electron this term
is normally small, since τ is of the order of 10−23 s; nevertheless, it will prove to be an
important ingredient in Eq. (4.1). 3 The fields E(x, t) and B(x, t) in the Lorentz force

1 This chapter draws to a large extent from previous work, contained in the following references:
de la Peña and Cetto (1977a, b, 1995, 1996, 2005, 2006, 2007), de la Peña et al. (2009, 2012a, b),
Cetto et al. (1984, 2012).
2 Instead of starting from the set of Hamilton equations for the entire system (particle plus field), we
use as point of departure the (approximate) equation of motion for the particle. A detailed derivation
of Eq. (4.1) from the Hamiltonian can be seen in many texts on electrodynamics. A particularly
clear discussion is given by Cohen et al. (1989). See also de la Peña (1983), or The Dice.
3 In the usual derivations of Eq. (4.1), a retarded integral over time is written as a series expansion
in terms of time derivatives of x. The lion’s share of this series pertains to the external (Lorentz)
force. Then follow terms proportional to ẍ and

...
x , and higher time derivatives are neglected, so the

equation is approximate.
The term proportional to ẍ adds a ‘small’ electromagnetic correction δm to the mass. It happens

that the integral that expresses this correction is divergent, because of the approximations made.
In Eq. (4.1) this poses no problem, since m = m0+ δm is considered to correspond to the experi-
mental (renormalized) mass, m0 being the mass that appears in the initial Hamiltonian. A formal
procedure to solve this problem consists in adding to the initial Hamiltonian amass counterterm that
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are the electric and magnetic components of the fluctuating zpf, hence they must be
represented by stochastic variables. This makes Eq. (4.1) practically unsolvable. A
number of simplifications and approximations are therefore introduced to go ahead.
Firstly, a nonrelativistic description is assumed to be sufficient; this means that under
normal conditions (v/c � 1) the magnetic force becomes negligible compared with
the electric force, and (4.1) takes the simpler form

m ẍ = f (x) + mτ
...
x + eE(x, t). (4.2)

Secondly, it is anticipated that those modes of the field that are relevant for the
dynamics have wavelengths much larger than the characteristic dimensions of the
motion, so that one may assume that in the region of space occupied by the parti-
cle during its (approximately periodic) motion, the electric field is assumed not to
vary appreciably; this is the long-wavelength approximation.4 The x-dependence of
E(x, t) can then be neglected, and one can write the pair of equations

m ẋ = p, ṗ = f (x) + mτ
...
x + eE(t). (4.3)

4.1.2 Basic Properties of the Zero-Point Field

We need to recall here some basic properties of the field represented by E(t) in
Eq. (4.3) that will be extensively used below. Because it refers to the fluctuating
vacuum, E(t) must be a stationary random variable with zero mean value,

(Footnote 3 continued)
takes into account (with the opposite sign) the contribution to the mass of all neglected terms, and
thus eliminates the infinite contribution (of course, it is infinite itself!). This clever cancellation of
one infinity with another —a procedure that in qed (and more generally in quantum field theory)
gives excellent results—represents a regularization by renormalization.

The radiation-reaction term, being proportional to
...
x , transforms the equation of motion into

one of third order, thus demanding extra initial (or final) conditions. This term is known to lead to
some awkward noncausal effects, such as preacceleration, i.e., response in advance to the external
force (although in the present case the advanced times are of order τ √ 10−23 s, so the effect is in
practice negligible). It should be clearly understood that this noncausal behaviour is also a result
of the neglect of the higher-order terms, since the theory in its closed form is absolutely causal.
A similar situation is met with the Lorentz-Dirac equation, which is the relativistic version of the
Abraham-Lorentz equation (see Rohrlich 1965). A more extensive discussion of the radiation force
and the problems connected with it in the context of the present theory, as well as a causal variant of
it, can be seen in The Dice, Sect. 3.3. The current approximate form is more convenient in practical
terms, provided one bears in mind that its noncausal features are an artifact of the approximation.

Notice that mτ
...
x represents the electric component of the field radiated by the particle, which

is of a nature similar to eE(t); this can be made explicit by writing mτ
...
x = eErad(x, t), where

Erad(x, t) stands for the radiated field.
4 As will become clear in Chap.5, the relevant modes are those associated with the dominant
response of the particle to the field (exhibited e.g. in the atomic transitions), which have indeed
wavelengths much larger than the atomic dimensions.

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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E(t)
(i) = 0, (4.4)

where (·)(i) denotes the average over all realizations (i) of the field. Further, its
spectral energy density must correspond to a mean energy �ω/2 per frequencymode.
Given that the volume density of modes is equal to5

ρmodes(ω) = ω2

π2c3
, (4.5)

the spectral energy density is

ρ0(ω) = ω2

π2c3
1

2
�ω = �ω3

2π2c3
. (4.6)

This expression determines the correlation between the Fourier-transformed spatial
components of the electric field. The Fourier transform for the ith-component reads

Ẽi (ω) = 1

2π

∫ +↑

−↑
Ei (t)e

iωt dt, (4.7)

with

Ẽi (ω)Ẽ↓
j (ω

◦)
(i) = δi j

4π

3
ρ0(ω)δ

(
ω − ω◦) . (4.8)

Inserting here (4.7) gives the autocorrelation function,

Ei (t)E j (t ◦)
(i) = δi jϕ(t − t ◦), (4.9)

where

ϕ(t − t ◦) = 4π

3

∫ ↑

0
ρ0(ω) cosω(t − t ◦)dω, (4.10)

since ρ(ω) = ρ(|ω|). Equation (4.8) means that the Fourier components pertaining
to different frequencies are statistically independent. In the present case the auto-
correlation describes a highly colored noise manifested through its strong (cubic)
dependence on the frequency. If there is any extra component due to an external
field, as could be a thermal equilibrium radiation or any other excitation of the field
modes, the corresponding contribution must be added to ρ0(ω) in Eq. (4.6).

The total energy density of the vacuum follows from Eq. (4.6),6

5 This formula is the result of counting the number of field modes of frequency ω = 2πc/λ (with
both polarizations) per unit volume within an interval of frequency �ω. Assuming the distribution
of radiation to be homogeneous and isotropic, this gives after integrating over the solid angle:
�n = (1/π2c3)

∫
�ω ω2dω.

6 As remarked in note 5 of Chap.3, the spectrum proportional to ω3 is the single one for which
all inertial observers are equivalent. This can be confirmed by calculating the force exerted by a

http://dx.doi.org/10.1007/978-3-319-07893-9_3
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∫ ↑

0
ρ0(ω)dω = �

2π2c3

∫ ↑

0
ω3dω. (4.11)

Because of the divergence of this integral, strictly speaking ρ0(ω) cannot represent a
true spectral density, as it would bestow an infinite energy density to the simmering
field! Even with a reasonable cutoff in the integral, the result continues to be inad-
missibly high. This represents a major open problem for contemporary physics. A
mystery besets the huge value of the energy content of the vacuum, particularly in
connection with its unobserved supposedly enormous gravitational effects. A spec-
ulation (see, i.a., Wesson 1991) is that a perfectly uniformly distributed field filling
the whole space would produce equal effects on and from all directions, so that mat-
ter would not be perturbed by its gravitational effects; only the possible effects of
its fluctuations would reveal its presence. This problem is intimately linked to the
mystery of the origin of the cosmological constant. AsWeinberg (1989) puts it: “Any
solution of the cosmological constant problem is likely to have a much wider impact
on other areas of physics or astronomy”. Its solution is expected to come some day
with a better understanding of the meaning and nature of dark energy. It will be
left aside here (just as is done in other important areas of physics where it appears,
such as quantum field theory and astrophysics), taking advantage of the fact that the
developments of the present theory are not directly affected by it.

As a complement to this brief discussion on the zpf, the final section of Chap.9
is devoted to a consideration of the relationship between atomic and cosmological
constants, which leads to an interesting expression for Planck’s constant in terms of
the latter.

4.2 Generalized Fokker-Planck Equation in Phase Space

Solving the exact problem associated with Eq. (4.1) is a hopeless enterprise. How-
ever, the detailed description of the stochastic motion of a single particle is not of
interest, since it depends on the (unknown) specific realization of the field in a given
circumstance. This suggests making a description of an ensemble of similar systems,
which represent all (field) realizations compatible with the conditions of the prob-
lem. We therefore resort to a statistical treatment, by constructing the corresponding
(generalized) Fokker-Planck equation, gfpe.7

For this purpose we start by considering the density R of points in the phase
space of the particle. For each realization of the field, R satisfies the (approximate)
continuity equation (summation over repeated indices is used throughout),

(Footnote 6 continued)
homogeneous and isotropic background field on a dipole moving with velocity v, which is given
by F = −(6/5)π2τc[ρ(ω) − (ω/3)(dρ/dω)]v (see Einstein and Hopf 1910; The Dice, Chap. 4).
Only for ρ(ω) √ ω3 this force becomes zero.
7 A Fokker-Planck equation (fpe) is a differential equation of second order that describes the evo-
lution of the probability density for the particle subject to a white noise (an uncorrelated noise, with

http://dx.doi.org/10.1007/978-3-319-07893-9_9
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∂R

∂t
+ ∂

∂xi
(ẋi R) + ∂

∂ pi
( ṗi R) = 0, (4.12)

where ẋi and ṗi are given in accordance with Eq. (4.3).8 Due to the stochasticity
of E (impressed upon ẋi and ṗi ), the density R is still a stochastic variable, which
means that it varies from realization to realization of the field. The transition from
the description afforded by Eq. (4.12) to an effective one requires focusing not on

R, but on its average over the realizations {(i)}, Q ≡ R
(i)

(Edwards and McComb
1969; Kampen 1976, p. 209). The averaged probability density Q(x, p, t) provides
information on how the particles of the ensemble are distributed in the vicinity of a
point (x, p) at time t . Any reference to the specific realization (i) [or to a specific
trajectory that solves Eq. (4.3)] is therefore absent from the description afforded by
Q. In this scenario the direct role of the stochasticity of the equation of motion is that
of making of the position and momentum distributed variables, even for fixed initial
conditions. The statistical (phase-space) treatment requires passing from Eq. (4.12)
to the equation that governs the evolution of Q(x, p, t). As shown in Appendix A,
such equation reads

∂Q

∂t
+ 1

m

∂

∂xi
pi Q + ∂

∂ pi
fi Q + mτ

∂

∂ pi

...
x i Q = e2

∂

∂ pi
D̂i Q, (4.13)

with the diffusion operator D̂(t) defined by means of the expression

D̂i (t)Q = P̂ Ei Ĝ
∂

∂ p j
E j

↑∑

k=0

[
eĜ

∂

∂ pl
(1 − P̂)El

]2k

Q, (4.14)

and the projection operator P̂ and the inverse evolution operator Ĝ given by

(Footnote 7 continued)
a flat power spectrum). Given that the present problem involves a colored noise, the corresponding
equation for the probability density in phase space is not a true fpe, but a generalization of it that
contains memory terms, leading to an integro-differential equation. It is to such equation that we
refer as a gfpe. For conceptually rich, early introductions to the fpe for the study of Brownian
motion see the papers by S. Chandrasekhar and by Ming Chen Wang and G. E. Uhlenbeck in Wax
(1954/1985). For a first-rate presentation of the subject see Stratonovich 1963. For a more recent
presentation see Risken (1984); see also Cetto et al. (1984).
8 The approximation consists in assuming that the field remains essentially unmodified. For a
complete description one should write the continuity equation as

∂R

∂t
+ ∂

∂xa
(ẋa R) + ∂

∂ pa
( ṗa R) = 0,

where R({xa, pa} , t) stands for the density of points in the entire phase space of the particle plus
field system, so that {xa} = {x f , xi } and {pa} = {p f , pi }, where the index f refers to the field
quadratures and i to the particle’s variables.
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P̂ A = A
(i)

, Ĝ A(x, p, t) =
∫ t

−↑
e−L̂(t−t ◦) A(x, p, t ◦)dt ◦, (4.15)

where L̂ is the Liouville operator for the particle [Eq. (A.17)],

L̂ = 1

m

∂

∂xi
pi + ∂

∂ pi
( fi + mτ

...
x i ) . (4.16)

The operator e−L̂(t−t ◦) in Eq. (4.15) acts on all variables to its right and makes them
evolve from x(t ◦), p(t ◦) (t ◦ < t) towards x(t), p(t) as final conditions, following a
deterministic path. The details are explained in the Appendix A.

The gfpe (4.13) is an integro-differential equation, or equivalently, a differential
equation of infinite order. A good part of its complication is due to thememory devel-
oped as the system evolves in time according to Eq. (4.15). Nevertheless, as shown
in Appendix B, in the time-asymptotic limit, when the Markovian approximation is
applicable,9 the diffusion operator D̂ can be approximately expressed in terms of
two diffusion coefficients

e2D̂i = D pp
i j

∂

∂ p j
+ D px

i j
∂

∂x j
, (4.17)

which to lowest order in e2 are given by Eqs. (B.10a), (B.10b), namely

D pp
i j = e2

∫ t

−↑
dt ◦ϕ(t − t ◦)

∂ p j

∂ p◦
i
, D px

i j = e2
∫ t

−↑
dt ◦ϕ(t − t ◦)

∂x j

∂ p◦
i
, (4.18)

with ϕ(t − t ◦) given by Eq. (4.10). In this Markovian approximation the gfpe (4.13)
becomes a true fpe (a differential Equation of second order),

∂Q

∂t
+ 1

m

∂

∂xi
pi Q + ∂

∂ pi
( fi + mτ

...
x i ) Q = ∂

∂ pi
D pp

i j
∂Q

∂ p j
+ ∂

∂ pi
D px

i j
∂Q

∂x j
. (4.19)

This equation will prove to be very useful for actual calculations.

9 Right after particle and field start to interact, the system is far from equilibrium. In this regime the
main effect of the zpf on the particle is due to the high-frequency modes, which produce violent
accelerations and randomize the motion. Eventually, the interplay between the electric field force
and radiation reaction is expected to drive the system close to equilibrium; in this (time-reversible)
regime the Markovian approximation applies. The duration of the transient period, i.e. the time tM
required by the system to reach the Markovian limit, is determined basically by the effect of the
high-frequency modes. Since the particle is assumed to respond to modes of frequency up to mc2/�

(see Chap.6), tM is estimated to be of of the order of �/mc2 ≡ 10−20 s for an electron.

http://dx.doi.org/10.1007/978-3-319-07893-9_6
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4.2.1 Some Important Relations for Average Values

Equation (4.13) contains a wealth of statistical information on the dynamics of the
system, which will be of much value for further developments. In the following we
present some revealing statistical relations that can be readily derived from it. For
this purpose we introduce the (phase-space) average

〈·≥ =
∫

(·) Qdxdp, (4.20)

with the volume element d3xd3 p written succinctly as dxdp. For a general phase
function G(x, p) that has no explicit time dependence,

d

dt
〈G≥ =

∫
G ∂Q

∂t
dxdp. (4.21)

Equation (4.13) multiplied from the left by G and integrated over the entire phase
space (assuming in the integration by parts that the system is bounded so that Q
vanishes at infinity), gives the general relation

d

dt
〈G≥ =

〈
ẋi

∂G
∂xi

〉
+

〈
fi

∂G
∂ pi

〉
+ mτ

〈
...
x i

∂G
∂ pi

〉
− e2

〈
∂G
∂ pi

D̂i

〉
, (4.22)

which can be recast in a more illuminating form as

d

dt
〈G≥ =

〈
dG
dt

〉

nr
+ mτ

〈
...
x i

∂G
∂ pi

〉
− e2

〈
∂G
∂ pi

D̂i

〉
. (4.23)

The term 〈
dG
dt

〉

nr
=

〈
ẋi

∂G
∂xi

+ fi
∂G
∂ pi

〉
(4.24)

represents the nonradiative contribution to d 〈G≥ /dt , in contrast with the two remain-
ing terms in Eq. (4.23), which originate in the radiation reaction and the fluctuating
field. Notice that the latter terms give rise to radiative contributions in the mean only
if G depends on the momentum, since for G = G(x) Eq. (4.23) reduces to

d

dt
〈G(x)≥ =

〈
dG(x)

dt

〉

nr
. (4.25)

For example, for G = xi and xi x j , respectively,

d

dt
〈xi ≥ = 1

m
〈pi ≥ ; (4.26a)
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d

dt

〈
xi x j

〉 = 1

m

〈
pi x j + p j xi

〉
. (4.26b)

The effect of the radiative termson the (average) dynamics is disclosedby applying
(4.23) to G = pi , xi p j , pi p j successively,

d

dt
〈pi ≥ = 〈 fi ≥ + mτ 〈...x i ≥ − e2

〈
D̂i

〉
; (4.27a)

d

dt

〈
xi p j

〉 =
〈
1

m
pi p j + xi f j

〉
+ mτ

〈
xi
...
x j

〉 − e2
〈
xi D̂ j

〉
; (4.27b)

d

dt

〈
pi p j

〉 = 〈
fi p j + pi f j

〉

+ mτ
〈...
x i p j + pi

...
x j

〉 − e2
〈
pi D̂ j + p j D̂i

〉
. (4.27c)

Equation (4.27a) exhibits the role played by the last term, −e2
〈
D̂i

〉
, as a mean

effective force due to diffusion, analogous to the osmotic force in the case ofBrownian
diffusion. As for Eq. (4.27b), its antisymmetric form gives

d

dt
〈L≥ = 〈M≥ + mτ 〈x × ...

x ≥ − e2
〈
x × D̂

〉
, (4.28)

with L and M the angular momentum and the torque due to the external force f ,
respectively. This equation is useful for the study of the angular momentum, as will
be shown in Chap.6. On the other hand, the symmetric form of Eq. (4.27b) (taking
i = j) leads to

d

dt
〈x · p≥ = 1

m

〈
p2

〉
+ 〈x · f ≥ + mτ 〈x · ...x ≥ − e2

〈
x · D̂

〉
, (4.29)

which is related to the virial theorem (see Eq. (4.35) below).
Equation (4.27c) gives also (again taking i = j)

1

2m

d

dt

〈
p2

〉
= 1

m
〈 p · f ≥ + τ 〈 p · ...x ≥ − 1

m
e2

〈
p · D̂

〉
. (4.30)

In terms of

H = 1

2m
p2 + V (x), (4.31)

with dV/dt = −(1/m) p · f, Eq. (4.30) becomes

d

dt
〈H≥ = τ 〈 p · ...x ≥ − 1

m
e2

〈
p · D̂

〉
. (4.32)

http://dx.doi.org/10.1007/978-3-319-07893-9_6
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This equation is important for the analysis of the mean energy exchange during
radiative transitions, as will be seen in Chap.6. More generally, for any G = ξ(x, p)

that represents an integral of the motion of the ‘radiationless’ problem, (4.24) is zero
and one is left with

d

dt
〈ξ≥ = mτ

〈
...
x i

∂ξ

∂ pi

〉
− e2

〈
∂ξ

∂ pi
D̂i

〉
, (4.33)

which shows that 〈ξ≥ can in general be affected by both radiation and diffusion.
Equation (4.32) is just a particular instance of (4.33) for ξ = H .

The above equations are especially useful to obtain expressions for average values
of dynamical quantities in the regime in which 〈G≥ acquires a constant value, so that
d 〈G≥ /dt vanishes. This occurs in particular in a stationary situation, since then
(∂Q/∂t) = 0 and the left-hand side of (4.23) is zero for any G. In this case, from
Eqs. (4.26a), (4.26b) we have 〈 p≥ = 0 and 〈x · p≥ = 0, meaning that x and p are
uncorrelated. As for Eq. (4.27a), it reduces to

〈 f ≥ = e2
〈
D̂

〉
− mτ 〈...x ≥ , (4.34)

which shows that up to terms of order e, the mean value of the external force is zero.
Further, under stationarity, Eq. (4.27b) with i = j becomes

1

2m

〈
p2

〉
+ 1

2
〈x · f ≥ + 1

2
mτ 〈x · ...x ≥ − 1

2
e2

〈
x · D̂

〉
= 0, (4.35)

which in the radiationless approximation reduces to the virial theorem (with averages
over the ensemble instead of over time). Equation (4.35) represents therefore a more
complete form of the latter, indicating the presence of radiative corrections to the
mean kinetic energy, of value

〈δT ≥ = − 1
2mτ 〈x · ...x ≥ + 1

2e2
〈
x · D̂

〉
. (4.36)

As will be shown in Chap.6, this formula gives the (nonrelativistic) Lamb shift.
Finally, when 〈H≥ does not evolve anymore in time, Eq. (4.32) reduces to the

energy-balance condition

τ 〈...x · p≥ = e2

m

〈
p · D̂

〉
. (4.37)

The left-hand side represents the average power lost by the particle to the field through
radiation reaction along its smoothed trajectory, and the right-hand side is the average
power gained by the particle from the background field and stored in the momentum
fluctuations.

The physical meaning of (4.37) can be made more transparent by resorting to
the original stochastic equation of motion (4.3) (note that in contrast with previous
expressions, in what follows x and p are stochastic variables that depend on the field

http://dx.doi.org/10.1007/978-3-319-07893-9_6
http://dx.doi.org/10.1007/978-3-319-07893-9_6
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realization). Multiplying the second expression in Eq. (4.3) by p allows us to write
the time derivative of the (here stochastic) Hamiltonian (4.31) as

d H

dt
= τ p · ...x + e

m
p · E, (4.38)

or equivalently,

d

dt

(
H − τ

m
ṗ · p

)
= d

dt
Hr = −mτ ẍ2 + e

m
p · E, (4.39)

where Hr differs from the (mechanical, radiationless) Hamiltonian H by a radiative
correction,

Hr = H − τ

m
p · ṗ = 1

2m
p2 − τ

m
p · ṗ + V . (4.40)

The first two terms on the right-hand side coincide with the first two terms of a Taylor
series expansion

1

2m
p2(t − τ ) = 1

2m
p2(t) − τ

2m

d

dt
p2(t) + · · · ; (4.41)

therefore, up to terms of order τ ,

Hr = 1

2m
p2(t − τ ) + V . (4.42)

This expression indicates the presence of preacceleration. However, as mentioned
in footnote 3, such noncausal description is merely a result of the approximations
made to arrive at the Abraham-Lorentz equation; therefore, taking Hr ∗ H above
is a means to recover causality. This is legitimate given the smallness of the preac-
celeration (and the fact that ṗ · p averages to zero for periodic motions). Averaging

over the field realizations gives for H
(i)

independent of time,

mτ ẍ2
(i) = e

m
p · E

(i)
. (4.43)

This expression is physically equivalent to Eq. (4.37), but has the advantage of
disclosing the zpf as the source of the energy delivered to the particle through the
fluctuations impressed on its momentum. As can be expected, the energy-balance
equation will play a central role in the development of the theory, specifically from
Sect. 4.4.4 on.

In actual applications it is normallymore convenient to use theMarkovian approx-
imation to determine d 〈G≥ /dt. This is done by resorting to Eq. (4.17) for the cal-
culation of the last term in Eq. (4.22). After some integrations by parts one arrives
at



106 4 The Long Journey to the Schrödinger Equation

d

dt
〈G≥ =

〈
dG
dt

〉

nr
+ mτ

〈
...
x i

∂G
∂ pi

〉

+
〈

D pp
i j

∂2G
∂ pi ∂ p j

〉

+
〈

D px
i j

∂2G
∂ pi ∂x j

〉

+
〈

∂G
∂ pi

(
∂D pp

i j

∂ p j
+

∂D px
i j

∂x j

)〉

.

(4.44)

At the end of Appendix B it is shown that the last term in this expression (containing
derivatives of the diffusion coefficients) vanishes, whence (4.44) reduces to

d

dt
〈G≥ =

〈
dG
dt

〉

nr
+ mτ

〈
...
x i

∂G
∂ pi

〉
+

〈
D pp

i j
∂2G

∂ pi∂ p j

〉
+

〈
D px

i j
∂2G

∂ pi∂x j

〉
. (4.45)

We shall use either Eq. (4.23) or (4.45) as turns out more convenient.

4.3 Transition to Configuration Space

The results of the previous section are very suggestive of the kind of behavior one
can expect for the mean values of relevant dynamical quantities of the material
system under the combined action of the zpf and radiation reaction (in addition to an
external force). ‘Classical-like’ equations are obtained for these mean values, closely
reminiscent of the Ehrenfest theorem of quantum mechanics (qm), with additional
contributions (corrections of order e2 and higher) due the radiation terms.

In order to establish the connection between the previous results and the quantum-
mechanical laws, we now focus on the gfpe (4.13), and reduce the present (phase-
space) description to the configuration space of the particle, which is the space in
which the quantum description is usually made in terms of the wave function. An
entirely similar procedure can of course be followed to reduce the description to the
momentum space of the particle (as is briefly indicated in Sect. 4.3.1). Both processes
are equally permissible, but mutually exclusive. For a full description in phase space
one would need to return to Eq. (4.13). A concise discussion on why the phase-space
description cannot be obtained by going backward from the quantum formalism is
left for Sect. 4.6.

The transition to configuration space can be performed in a systematic way by
multiplying Eq. (4.13) successively by pn

i pm
j pl

k (with n, m, l = 0, 1, 2 . . .) and
integrating over the momentum space, to obtain a family of equations containing
moments (of increasing order) of the components of p. Equivalently, it can be done
with the help of the characteristic function Q̃ (the Fourier transform) associated with
the density Q,

Q̃(x, z, t) =
∫

Q(x, p, t)ei p·zdp. (4.46)
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By applying the Fourier operator (̃·) = ∫
(·) ei p·zdp to Eq. (4.13) and recalling that

all surface terms appearing along the integrations vanish at infinity, one gets

∂ Q̃

∂t
− i

1

m

∂2 Q̃

∂xi∂zi
− i zi ( fi + mτ

...
x i ) Q̃ = −ie2zi (

˜̂Di Q). (4.47)

According to the equation of motion (4.3), to lowest order in τ the term mτ
...
x i can be

approximatedby τ (d fi/dt) = τ (∇ fi )·( p/m).Aswill be clear below (Sect. 4.4.1), in
the time-asymptotic (radiationless) limit such approximation is legitimate.Moreover,
all our calculations will be carried out up to terms of order τ ; hence, for convenience
we shall as of nowmake this substitution. In particular, introducing the approximation
in (4.13) we get, instead of (4.47), the equation

∂ Q̃

∂t
− i

1

m

∂2 Q̃

∂xi∂zi
− i zi fi Q̃ − τ

m
zi

∂ fi

∂x j

∂ Q̃

∂z j
= −ie2zi (

˜̂Di Q). (4.48)

For consistency, in the time-asymptotic limit the right-hand side should be calculated
in the Markovian approximation.

The probability density ρ(x, t) in configuration space is given by the marginal
probability

ρ(x, t) =
∫

Q(x, p, t)dp = Q̃(x, 0, t), (4.49)

and the local average of a generic function g(x, p, t) is given by the formula

〈g≥ (x) ≡ 〈g≥x = 1

ρ

∫
g(x, p, t)Qdp. (4.50)

It is important to note that 〈g≥x represents a partially averaged quantity, which is
still a function of the position variables, hence the name local. The fully averaged
quantity is of course

〈g≥ =
∫

〈g≥x ρdx . (4.51)

For simplicity in the writing, the possible time dependence of both 〈g≥x and 〈g≥ is
omitted.

The characteristic function Q̃(x, z, t) is called also momentum-generating func-
tion because it is possible to derive all (local) moments of pi from it. For example,
the local average of pn

i pm
j pl

k reads

〈
pn

i pm
j pl

k

〉

x
= 1

ρ

∫
pn

i pm
j pl

k Qdp (4.52)

= (−i)(n+m+l)

(
1

Q̃

∂n+m+l

∂zl
k∂zm

j ∂zn
i

Q̃

)∣
∣∣∣∣
z=0

.
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4.3.1 A Digression: Transition to Momentum Space

Although it will not be required in this book, it is interesting for reference purposes
to indicate how a similar transition can be made to the momentum space. This is
achieved by applying the Fourier transformation

∫
(·) ei k·xdx to equation (4.13).

With (in one-dimensional notation, for simplicity)

P̃(p, k, t) =
∫

Q(x, p, t)eikx dx, (4.53)

and after some simple calculations, one obtains the integro-differential equation

∂ P̃

∂t
− i

p

m
k P̃ + 1

2π

∂

∂ p

∫
K̃ (k − k◦, p)P̃(k◦, p)dk◦ = e2

∂

∂ p
(
˜̂DP)(k, p), (4.54)

where K̃ is the Fourier transform of the acting force K ,

K (x, p) = f (x) + τ

m

d f

dx
p. (4.55)

Note that the last term was again written in its time-asymptotic form. It is clear that
things get more complicated in the p-description, because of the integro-differential
term on the left-hand side of Eq. (4.54).

4.3.2 A Hierarchy of Coupled Transfer Equations

An alternative procedure to get themost of Eq. (4.48) in the transition to configuration
space, consists in expanding the factor ei p·z that enters into each term of Eq. (4.48)
and separating into powers zn

i zm
j zl

k for n, l, m = 0, 1, 2, . . . The first three equations
thus obtained are

∂ρ

∂t
+ 1

m

∂

∂x j

(〈
p j

〉
x ρ

) = 0; (4.56a)

∂

∂t

(〈pi ≥x ρ
) + 1

m

∂

∂x j
(
〈
pi p j

〉
x ρ) − fi ρ − τ

m

∂ fi

∂x j

〈
p j

〉
x ρ = −e2 ˜

(D̂i Q)

∣
∣
∣
∣
z=0

; (4.56b)

∂

∂t

(〈
pi p j

〉
x ρ

) + 1

m

∂

∂xk

(〈
pi p j pk

〉
x ρ

) − (
fi

〈
p j

〉
x + f j 〈pi ≥x

)
ρ

+ 2τ

m

[(
∂ fi

∂xk

)
〈
p j pk

〉
x +

(
∂ f j

∂xk

)
〈pi pk≥x

]
ρ = e2 ˜

(pi D̂ j + p j D̂i )Q

∣
∣
∣
∣
z=0

.

(4.56c)
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The first equation is connected with the second one through the first moments
〈
p j

〉
x ,

the second with the third one through the local correlations
〈
pi p j

〉
x , and so on. The

entire set of equations of which (4.56a, 4.56b, 4.56c) are the first three, constitutes
thus an infinite hierarchy of coupled nonlinear equations.

The first member of the hierarchy is the continuity equation, which describes the
transfer of matter. It follows that the current density (or mean flux of particles) is
j(x) = ρ(x) 〈 p≥x /m, hence the flow (or flux) velocity is given by

v(x) = j(x)

ρ(x)
= 1

m
〈 p≥x . (4.57)

Note that, being proportional to 〈 p≥x , v(x) is a local mean velocity, an average over
the subensemble of particles that at a given time t are localized in the neighborhood
of x and move with any velocity p/m.

The second equation of the hierarchy describes the transfer of momentum, or
equivalently, the evolution of j(x, t). In addition to ρ and first local moments 〈pi ≥x ,

it contains second local moments or correlations
〈
pi p j

〉
x , while the transfer of these

(and of the kinetic energy, for i = j and up to a factor 1/2m) is contained in the third
equation. This coupling between successive members of the hierarchy (4.56) creates
a highly difficult mathematical problem. However, in Sect. 4.4.1 we shall find that
under well-defined physical assumptions (and some approximations) a decoupling
takes place, having far-reaching consequences.

In order to rewrite the first two equations of the hierarchy in a form that is more
convenient for our purposes, we proceed as follows. In terms of the function Q̃
introduced through (4.46), the first moments are [from (4.52)]

〈pi ≥x = −i

(
∂

∂zi
ln Q̃

)∣∣
∣∣
z=0

, (4.58a)

〈
pi p j

〉
x = − ∂2

∂z j∂zi
ln Q̃

∣∣∣
∣
z=0

+ 〈pi ≥x
〈
p j

〉
x . (4.58b)

The structure of these expressions suggests introducing the variables

z+ = x + ηz, z− = x − ηz, (4.59)

instead of x and z, and writing Q̃ in the unconditional form

Q̃(z+, z−, t) = q+(z+, t)q−(z−, t)χ(z+, z−, t), (4.60)

where η is a real parameter with dimensions of action [as follows from Eq. (4.46)],
to be determined in Sect. 4.4.4. The function χ represents the nonfactorizable part
of Q̃(z+, z−, t).



110 4 The Long Journey to the Schrödinger Equation

Notice from (4.46) that Q̃↓(x, z, t) = Q̃(x,−z, t), whence

q+(z±, t) = q↓−(z±, t), χ↓(z+, z−, t) = χ(z−, z+, t). (4.61)

Q̃ can therefore be rewritten in the form

Q̃(z+, z−, t) = q(z+, t)q↓(z−, t)χ(z+, z−, t), (4.62)

where q(z±, t) ≡ q+(z±, t). (4.63)

The whole description can thus be carried out in terms of only the complex function
q and the function χ. Further, from (4.49) and (4.62) it follows that

ρ(x, t) = Q̃(x, 0, t) = q↓(x, t)q(x, t)χ0(x, t), (4.64)

with χ0(x, t) = χ(z+, z−, t)|z+=z− a real function that can be taken as a constant,
absorbing its possible time and space dependence into the functions q(x, t), q↓(x, t).
We therefore write

χ0(x, t) = 1, ρ(x, t) = q↓(x, t)q(x, t). (4.65)

With the above results Eq. (4.58a, 4.58b) thus transform into

〈pi ≥x = −iη
∂

∂xi
ln

q(x, t)

q↓(x, t)
+ gi (4.66a)

with gi = iη

(
∂

∂z−i
− ∂

∂z+i

)
lnχ

∣∣∣∣
z+=z−

, (4.66b)

and

�i j ≡ 〈
pi p j

〉
x − 〈pi ≥x

〈
p j

〉
x = −η2

∂2

∂xi∂x j
ln ρ + �i j (4.67a)

with �i j = � j i = 2η2
[(

∂2

∂z+i∂z− j
+ ∂2

∂z−i∂z+ j

)
lnχ

]

z+=z−
. (4.67b)

Notice that both quantities gi and �i j are determined by the function χ.

Using Eqs. (4.57) and (4.67a), the first two equations of the hierarchy (4.56)
become

∂ρ

∂t
+ ∂

∂x j

(
v jρ

) = 0, (4.68a)
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m
∂

∂t
(viρ) + m

∂

∂x j

(
viv jρ

) − η2

m

∂

∂x j

(
ρ

∂2

∂xi∂x j
ln ρ

)
+ 1

m

∂

∂x j
�i jρ − fiρ

= τv j
∂ fi

∂x j
ρ − e2 (

˜̂DQ)i

∣∣∣∣
z=0

. (4.68b)

4.4 The Schrödinger Equation

Let us now focus on the couple of Eq. (4.68). As shown in Appendix C, a series of
algebraic manipulations allows to recast them in the form

∇
(
1

q
M̂q

)
= Frad + F� − ∂g

∂t
+ v × (∇ × g) , (4.69)

with M̂ the differential operator

M̂ = −2iη
∂

∂t
+ 1

2m
(−2iη∇ + g)2 + V . (4.70)

Frad and F� are force vectors with components given by

Firad = τv j
∂ fi

∂x j
− e2

ρ
(
˜̂DQ)i

∣∣∣∣
z=0

, Fi� = − 1

mρ

∂

∂x j
� j iρ, (4.71)

and the functions gi and �i j are defined through Eqs. (4.66b) and (4.67b).
From (4.65) it follows that the operator M̂ acts over an amplitude of probability

density.10 This, together of course with the structure of M̂ , strongly suggests to
identify (4.69) with a general equation that contains the Schrödinger equation as
a particular case, provided η = �/2. In the following we discuss the conditions
under which (4.69) reduces to the Schrödinger equation; as mentioned earlier, the
derivation of the value of η is left for Sect. 4.4.4.

4.4.1 The Radiationless Approximation

What is the physical connection between the process described by Eq. (4.68) and the
Schrödinger equation? To give an answer to this central question, let us examine the
role of the radiative terms appearing in (4.68).

10 It was Born who introduced the interpretation of q ↓ q as a probability in quantum mechanics,
though limited to the description of dispersion states. The proposal of interpreting this quantity as
a probability density more generally was put forward by Pauli in (1927). Here, Born’s rule ensues
from the theory itself.
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The first term on the right-hand side of (4.68b), due to the radiation reaction, has
a dissipative effect on the motion. In the absence of the second term, this one would
be responsible for the decay of the system to its (classical) state of lowest energy.
For instance, it would make a hydrogen atom collapse under the attractive force
exerted on the (radiating) electron by the nucleus. The second term, on the other
hand, exerts a permanent, random action on the motion. In the absence of the first
term, this one would lead to an erratic, unstable motion of the electron. Furthermore,
this term introduces memory effects since it contains a time integration from the
initial moment (at which particle and field were connected) to time t .

Now, in line with the discussion of Sect. 4.2.1 we are particularly interested in
those situations (assuming they exist) in which as a result of the combined action
of the dissipative and fluctuating forces, the system eventually reaches a regime of
energy balance in the mean, or rather, a reversible regime that complies with the
condition d 〈H≥ /dt = 0. Probably the hypothesis that such a state is reached is
applicable to all (bound) systems, but we leave this point open. What is important
is that under such condition, the two terms on the right-hand side of Eq. (4.32)
essentially cancel each other, and any residual effect of the radiative terms in (4.68b)
leads to minor corrections in the mean. We therefore consider the time-asymptotic
limit (see footnote 9) when the two terms on the right-hand side of (4.68b) can be
neglected in a first approximation (this is the so-called radiationless approximation),
i.e.,

∂ρ

∂t
+ ∂

∂x j

(
v jρ

) = 0, (4.72a)

m
∂

∂t
(viρ) + m

∂

∂x j

(
viv jρ

) − η2

m

∂

∂x j

(
ρ

∂2

∂xi∂x j
ln ρ

)
+ 1

m

∂

∂x j
�i jρ − fiρ = 0.

(4.72b)

Further, also Frad vanishes in this approximation, so that Eq. (4.69) becomes

∇
(
1

q
M̂q

)
= − 1

mρ
∇ ·

(
�̃ρ

)
−

[
∂g

∂t
− v × (∇ × g)

]
, (4.73)

where �̃ is the symmetric tensor with components �i j . According to (4.66b) and
(4.67b), the forces appearing on the right-hand side of this equation depend on the first
and second derivatives of χ(z+, z−, t), evaluated at z = 0. As will be confirmed in
Sect. 4.6, from the expression Q̃(z+, z−) = q+(z+)q−(z−)χ(z+, z−) it is clear that
a knowledge of the function χ is central for a complete description of the system in
phase-space. However, the exact form ofχ can only be found by solving the complete
hierarchy of equations in configuration space (or equivalently, the full gfpe in phase
space), which is beyond present-day possibilities. Nevertheless, even though χ is
undetermined at this point, Eq. (4.73) suggests a physical meaning for g and �̃.
This follows from noticing that the term within square brackets has the structure of
a Lorentz force eEχ + (e/c) v × Bχ, indicating that g plays the role of an effective
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vector potential,

g(x, t) = −e

c
Aχ(x, t), (4.74)

so that Eχ = − (1/c)
(
∂ Aχ/∂t

)
, and Bχ = ∇ × Aχ. This expression for g com-

bined with (4.66a) gives the correct relation between the (local) mechanical momen-
tum 〈 p≥x and the (local) canonical momentum 〈P≥x ,

〈 p≥x = −iη∇ ln
q(x, t)

q↓(x, t)
+ g = 〈P≥x − e

c
Aχ(x, t). (4.75)

The structure of the remaining termon the right-hand side of (4.73) suggests assigning
to �̃ the role of an effective stress tensor transmitted through the field Aχ. Therefore,
in the radiationless approximation all terms containing g and �̃ can be neglected
separatedly (which amounts to takingχ = 1), and Eq. (4.73) becomes∇(q−1M̂q) =
0 with M̂ is given by (4.70) with g = 0; whence

M̂q = h(t)q, (4.76)

with h an arbitrary function of time. In terms of the function

ψ (x, t) = q (x, t) e− i
2η

∫ t h(t ◦)dt ◦
, (4.77)

Eq. (4.76) becomes M̂ψ = 0, i.e.,

− 2η2

m
∇2ψ + V ψ = 2iη

∂ψ

∂t
, (4.78)

where
ρ(x, t) = ψ(x, t)ψ↓(x, t). (4.79)

Without loss of generality one may take h(t) = 0, hence ψ (x, t) = q (x, t). Equa-
tion (4.78) has precisely the form of the Schrödinger equation for the probability
amplitude ψ, in terms of the as yet undetermined parameter η.

We shall occasionally use the polar form of ψ (x, t) (sometimes called the
Madelung representation),

ψ (x, t) = q (x, t) = √
ρ(x, t)ei S(x,t). (4.80)

The local canonical momentum coincides in the radiationless approximation with
the mechanical momentum, given according to (4.75) and (4.80) by

〈 p≥x = mv = −iη∇ ln
ψ (x, t)

ψ↓ (x, t)
= 2η∇S(x, t), (4.81)
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and the local mean dispersion of the momentum reads (4.67a),

〈
p2

〉

x
− 〈 p≥2x = −η2∇2 ln ρ. (4.82)

Notice that if we take χ ∼= 1 so that the terms containing g are not neglected, but
the forces on the right-hand side of (4.73) comply with the relation

∂g

∂t
− v × (∇ × g) = − 1

mρ
∇ ·

(
�̃ρ

)
, (4.83a)

Equation (4.73) becomes ∇(q−1M̂q) = 0, where M̂ now includes the vector g,

according to (4.70). Using again (4.77) we get

1

2m
(−2iη∇ + g)2 ψ + V ψ = 2iη

∂ψ

∂t
, (4.84)

which has the form of the Schrödinger equation with minimal coupling to the field
Aχ.11

In the radiationless approximation the first two equations of the hierarchy, (4.72),
become an independent system of two nonlinear equations for ρ(x, t) and v(x, t),

∂ρ

∂t
+ ∂

∂x j

(
v jρ

) = 0, (4.85a)

m
∂

∂t
(viρ) + m

∂

∂x j

(
viv jρ

) − η2

m

(
ρ

∂

∂xi
∇2 ln ρ + ∂ρ

∂x j

∂2 ln ρ

∂xi∂x j

)
− fiρ = 0,

(4.85b)

decoupled from the rest of the hierarchy. By their form, (4.85a, 4.85b) resemble the
corresponding pair of equations of kinetic theory (see e.g. Balescu 1975, Sect. 12.4,
or Fujita and Godoy (2010), Sect. 8), with the stress tensor replaced by the term
proportional to η2 in Eq. (4.85b). To carry further this analogy (which originated in
the earlywork ofMadelung 1926), onewould have to treat this term as a kind of stress
in a ‘quantum fluid’—which is somewhat artificial, as no real fluid is supporting such
stress. Actually the term proportional to η2 does not require any odd interpretation,

11 More generally, the condition under which Eq. (4.84) holds is
∫

F� · dx −
∫

Fg · dx + h(t) = 0,

with Fg = (∂g/∂t) − v × (∇ × g) , and F� = −(1/mρ)∇ ·
(
�̃ρ

)
. The vector field g given

by Eq. (4.74) determines the function �̃ and should contain all electromagnetic contributions: the
zpf, the self-field radiated by the particle, any external field, and any existing excitation. This leads
to the territory of qed. Since the radiated field depends on the dynamics, it can be known only by
solving the entire (matter-field) problem.
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since according to Eqs. (4.67a) and (4.82) it is due to the momentum correlations
(transcribed to configuration space by the reduction process). An important property
of this term, difficult to overstress, is its nonlocal nature, manifested through its
dependence on the distribution of the particles in the entire configuration space. No
wonder that this becomes a key term in the theory, as it encapsulates some peculiar
features such as quantum fluctuations and quantum nonlocality.12 In fact, it gives
rise to the so-called quantum (or Bohm’s) potential

VQ = −2η2

m

∇2∈ρ∈
ρ

, (4.86)

as follows from Eq. (C.8) in Appendix C, where it is shown that Eq. (4.85a, 4.85b)
are equivalent to the Hamilton-Jacobi-type equation found so characteristically in
Bohm’s theory,

2η
∂S

∂t
+ 1

2
mv2 + V + VQ = 0, (4.87)

with the functions ρ, v and S defined through (4.80) and (4.81). This matter will
be further discussed in Chap. 8; for the time being suffice it to note that the term
proportional to η2 is the sole element that distinguishes Eq. (4.85a, 4.85b) from
those describing an ensemble of classical particles. Its presence signals therefore
a definitive departure from classical physics. Section 4.5.1 includes more detailed
comments on the subject.

4.4.2 Statistical and Quantum Averages

A remarkable feature of the description constructed above is that it gives the possi-
bility to calculate statistical averages, such as those defined in Sect. 4.2.1, in terms
of appropriate operations performed on the probability amplitude ψ (x, t). Thus for
instance, according to Eqs. (4.51) and (4.81), the mean momentum is given by

〈 p≥ =
∫

〈 p≥x ρdx = −iη
∫ (

ψ↓∇ψ − ψ∇ψ↓) dx

= −2iη
∫

ψ↓∇ψdx =
∫

ψ↓ p̂ηψdx, (4.88)

12 In Sect. 4.3.1, the transition from phase space to the momentum subspace was shown to lead
to an integro-differential equation that is explicitly nonlocal due to the integral transform. The
nonlocal character of the reduced description becomes then obvious. A similar situation occurs in
the transition to configuration space, but then the nonlocality of the description (even for a single-
particle system) is manifested through the term containing η2, which embodies information of the
probability distribution of particles. This point is discussed more at length in Chap.8.

http://dx.doi.org/10.1007/978-3-319-07893-9_8
http://dx.doi.org/10.1007/978-3-319-07893-9_8
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where an integration by parts was performed in the second line (with ρ vanishing at
infinity), and p̂η stands for the differential operator

p̂η ≡ −2iη∇. (4.89)

Similarly, from (4.82) one obtains, after some simple algebraic manipulations,

〈
p2

〉
=

∫ 〈
p2

〉

x
ρdx =

∫ (
〈 p≥2x − η2∇2 ln ρ

)
ρdx =

∫
ψ↓ p̂2ηψdx . (4.90)

On the other hand, since any function of the form g(x, t) coincides with its local
mean value 〈g≥x [see Eq. (4.50)], one may write

〈g(x)≥ =
∫

g(x)ρdx =
∫

ψ↓g(x̂)ψdx, (4.91)

with x̂ ≡ x. As a result, in the present formalism the statistical averages 〈 p≥ ,
〈
p2

〉
,

〈g(x)≥ coincide with those defined by the usual quantum rules

〈
Â
〉
=

∫
ψ↓ Âψdx, (4.92)

in terms of an appropriate operator Â associated with the dynamical variable A. In
particular, for A = H = (

p2/2m
) + V (x), Eqs. (4.78) and (4.89) give for the

Hamiltonian and the energy operators

Ĥ =
(

p̂2η/2m
)

+ V (x̂), Ê = 2iη(∂/∂t). (4.93)

In the time-asymptotic, radiationless regime, the dynamics of the mechanical sub-
system is governed by the Schrödinger-like Eq. (4.78), which means that the quan-
tum rules (still in terms of the parameter η) ensuing from the structure of Eq. (4.78)
already operate (more comments on this in the following chapters). Under such
circumstances the dynamical variables become represented by their corresponding
(usually noncommuting) quantum operators, and the expectation values are to be
calculated with the usual quantum tools. In particular, the customary correspon-
dence rule applies, which means replacing the Poisson brackets with the quantum
commutators according to

[x, p]PB ⊗ (2iη)−1 [
x̂, p̂η

]
. (4.94)

However, the correspondence between dynamical variables and operators must be
handled carefullywhenmaking use of the relations between average values derived in
Sect. 4.2.1. Equation (4.22)—from which all such relations are extracted—has been
derived directly from the gpfe, and it is a statistical law. In the following Section and
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in Chap.6, extensive use is made of Eq. (4.22) to carry out calculations of averages
already in the quantum regime. This is a legitimate procedure when the calculations
do not involve an ambiguity in the operator ordering (see, e.g., Eq. (4.106) below).
Such procedure suffices for our purposes, and corresponds to the regime governed
by Eq. (4.78). When convenient we will remind the reader that the relation is to be

understood as a quantumexpression, by adding a roman subindexQ, i.e.,
〈
Â
〉
= 〈A≥Q.

4.4.3 Stationary Schrödinger Equation

We recall from Sect. 4.2.1 that a sufficient condition for d 〈G(x, p)≥ /dt = 0 to hold,
is that the system has reached a stationary state, in which (∂Q/∂t) = 0. Let us now
see how Eq. (4.78) can be used to describe such state.

With (∂Q/∂t) = 0 the function Q becomes Q(x, p) and themarginal distribution
ρ depends only on x. Therefore the local mean velocity does not depend on time [see
Eq. (4.52)],

〈 p≥x = 1

ρ(x)

∫
pQ(x, p)dp = mv(x). (4.95)

It follows from (4.81) that ∇S(x, t) is a time-independent function, whence S(x, t)
decomposes as S(x, t) = s(x) + S(t), and Eq. (4.80) gives ψ (x, t) = ϕ(x)ei S(t).

Application of Ĥη to this function thus results in

Ĥηψ = −2η
d S

dt
ψ. (4.96)

A multiplication from the left by ψ↓ gives, after integration,

〈
Ĥη

〉
= 〈H≥ = 1

2m

〈
p2

〉
+ 〈V ≥ = E = −2η

d S

dt
. (4.97)

Integrating the last equality gives finally S(t) = (−E/2η)t so that

ψ (x, t) = ϕ(x)e−iE t/2η, (4.98)

and Eq. (4.78) becomes the stationary equation,

− 2η2

m
∇2ψ + V ψ = Eψ. (4.99)

This is an eigenvalue equation (for bound systems), with the eigenvalues representing
the possible energies E . The eigenvalue corresponding to the eigenfunction ψk will
be denoted in general with Ek (k ≥ 0), E0 representing the lowest energy state. Thus,
from Eq. (4.98),

ψk (x, t) = ϕk(x)e−iEk t/2η. (4.100)

http://dx.doi.org/10.1007/978-3-319-07893-9_6
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4.4.4 Detailed Energy Balance: The Entry Point for Planck’s
Constant

According to the above results, in the time-asymptotic limit the system reaches a
regime in which its statistical behavior is described by the Schrödinger equation—
provided the parameter η has the value �/2. This description has been obtained
by taking the radiationless approximation, in which the zpf disappeared from the
picture, taking Planck’s constant along. Now we are in a condition to bring the zpf
back into the picture, by imposing the energy-balance condition (4.37) to the ground
state described by Eq. (4.99). We thus assume that the radiation field is in its ground
state, with spectral energy density given by (4.6),

ρ0(ω) = �ω3

2π2c3
, (4.101)

and that the mechanical system is in its state of lowest energy (E = E0). Therefore
we write the energy-balance condition in the form

τ 〈...x · p≥0 = e2

m

〈
p · D̂

〉

0
. (4.102)

It is possible to give a simpler (equivalent) form to this equation by using the true
fpe (4.19) (instead of the more elaborate and exact gfpe), which holds in the time-
asymptotic regime. For this purpose we resort to Eq. (4.45) with G = H , thus
obtaining the balance condition

τ 〈...x · p≥0 = − 1

m

〈
TrD pp〉

0 , (4.103)

with TrD pp = ∑
i D pp

ii . To calculate both sides of this equation we apply the usual
mathematical methods ensuing from the structure of Eq. (4.78). In particular, resort-
ing to Eq. (4.100) we write (in one dimension, for simplicity)

xkn(t) =
∫

ψ↓
k xψndx = eiωkn t xkn(0), (4.104)

where ωkn ≡ (Ek−En) /2η. This gives for the matrix elements of the operators p̂
and

.̂..
x 13

pkn = mẋkn = imωkn xkn, (4.105)
...
x kn = −iω3

kn xkn .

13 In the present context these relations appear simply as a result of the calculations. Their physical
meaning will become clear when they reappear in Chap. 5, in connection with the derivation of the
Heisenberg description of qm.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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Now, it is straightforward to show that for any state n,

(
.̂..
x p̂)nn = ( p̂

.̂..
x )nn, (4.106)

whence the ordering of these operators is irrelevant for calculating the mean value.
Consequently the left-hand side of Eq. (4.103) becomes

τ (
.̂..
x p̂)00 = −mτ

∑

k

ω4
0k |x0k |2 . (4.107)

The calculation of the right-hand side is made in Appendix D and gives

− 1

m

〈
D pp〉

0 = −�mτ

2η

∑

k

ω4
0k |x0k |2 . (4.108)

Equating these two results we obtain

η = �

2
. (4.109)

In other words, for the ground state to be a truly stationary state, η must be given by
this last expression. With this value for η, the general Eq. (4.78) becomes precisely
the Schödinger equation,

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + V ψ. (4.110)

The time-asymptotic and radiationless regime, in which the mechanical system is
correctly described by the Schrödinger equation, is therefore called the quantum
regime.14

In order to better grasp the significance of the zpf in connection with Eq. (4.110),
let us recall that the generic Eq. (4.78), as well as its stationary form (4.99), were
derived neglecting the radiative terms, once they had played their main role in taking

14 During the development of sed in the late ninetiteenseventies and until the eighties, use was
made of the true fpe derived in Appendix B. That equation was applied to several problems, giving
some correct results for linear problems, and wrong answers for the rest, particularly the H atom.
From what we have just seen, it is clear that a mistake was being made by applying the classical fpe
(with classical variables) to a system that is already following a nonclassical behavior. In particular,
the fpe by itself does not guarantee that the quantum regime has been reached; hand in hand with
it, the energy-balance condition must be in force. The erroneous results obtained, characterized
by the violation of the energy-balance condition, led unfortunately to a quite extended belief that
the stochastic approach to qm based on the zpf was wrong. This was first shown in Boyer (1976),
(1980), and then by several other authors (see e.g. Marshall and Claverie 1980; Alcubierre and
Lozano 1988); a detailed exposition and further references are given in The Dice). In this context
it is relevant to recall the statement by Claverie and Diner in (1977): “The relationship between
quantum theory and sed, if it exists, is of a more subtle nature than [a] mere formal equivalence.”
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the system close to equilibrium, when it had reached a situation of energy bal-
ance. Now we have found that the energy-balance condition (4.103) determines
Schrödinger’s equation univocally. It follows that qm contains information about
the central connection between the quantum particle and the zpf, even though this
information is contained in a cryptic form. One may therefore conclude that the
Schrödinger equation describes more than just the particle; it describes the particle
in interaction with the field that has taken it to the time-reversible regime.

The result just obtained is of utmost significance for the theory: the fact that η
does not depend on the specific problem (e.g. on the external potential V ) but only
on the zpf, conveys to the Schrödinger equation its recognized universal validity. In
addition to introducing Planck’s constant into the picture and furnishing the right
value for η, (4.103) confirms the spectrum ρ √ ω3 as the single one that leads to
equilibrium with the ground state of the mechanical system, by guaranteeing that
both expressions (4.107) and (4.108) have the same algebraic structure. This means
that the energy-balance condition is satisfied not only globally, but term by term;
therefore, a situation of detailed energy balance between particle and field has been
reached.

The energy-balance condition can be imposed to find the specific stationary solu-
tion(s) for any problem at hand, be it classical or quantum. In the case of a classical
stochastic problem, equilibrium is obtained only if the noise is characterized by a
Rayleigh-Jeans spectrum, ρ √ ω2, as was established by van Vleck almost a cen-
tury ago (van Vleck 1924; an updated revision is van Vleck and Huber 1977). In
the quantum context, by contrast, the lowest-energy stationary solution is that of
the Schrödinger equation, and equilibrium is reached with the zpf with spectrum
ρ √ ω3, as has just been demonstrated.

We have here the answer to the question of why atoms reach and maintain their
stability. Without the notion of the zpf it becomes impossible to explain this stabil-
ity, since the moving electrons radiate their energy, and eventually (rather quickly)
the atom collapses, as mentioned earlier. As will be studied in Chap.6 (and as is
well known), the excited states decay spontaneously, so eventually (if there is no
external agent capable of inducing excitations), the excess energy will be radiated.
Yet the atom does not collapse, because the stability of the ground state is guaran-
teed precisely thanks to the action of the field, which counterbalances (in the mean)
the tendency of the electrons to radiate. For certain, well-defined orbital states, this
mechanism leads to stable situations (strictly, quasi-stable in the case of excited
states), which correspond to the quantum states. This is just the mechanism of stabil-
ity envisioned by Nernst as early as 1916 and supported generally by the authors who
have worked on sed along the years. Here we can appreciate the difference between
predicting the existence of quantum states (as the Schrödinger equation does) and
explaining them, i.e., exhibiting the mechanism that supports them.

It is appropriate here to contrast the present sed approach with the one that
prevailed during the early attempts to develop the sed theory and apply it to the
atomic problem (see, e.g., The Dice and references therein). It was believed that
during the entire evolution of the dynamics, the diffusive terms should play a primary
role, on a par with the external forces. Nowwe have learned that although the random

http://dx.doi.org/10.1007/978-3-319-07893-9_6
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field (in combination with radiation reaction) has an important effect for very short
times in taking the system to an equilibrium regime, in the long run its role becomes
much more subtle (though no less important): besides maintaining this equilibrium
regime it determines the size of the fluctuations and produces radiative corrections.
This explains the universal presence of the quantum fluctuations, and assigns to them
a causal origin. In Chaps. 5–7 we discuss several other important manifestations of
the presence of the zpf in the quantum description.

A further important remark follows from Eq. (4.33), which under stationarity
reduces to the balance condition for any of the ‘classical’ integrals of motion of the
system under study, namely,

〈
...
x i

∂ξ

∂ pi

〉

Q
= 3c3

2

〈
∂ξ

∂ pi
D̂i

〉

Q
. (4.111)

Equation (4.102) is just the particular case of (4.111) for ξ = H . The factor e2

has vanished from this equation (written to the lowest order of approximation),
transforming it into an apparently mechanical balance condition for the integrals of
motion, which can be applied even to neutral particles (particles with a vanishing
charge). In Boyer (1975) this limit is termed ‘random mechanics’. Equation (4.111)
evokes the quantization conditions of old qm, all of them apparently mechanical.
Recall for example the quantum condition for the angular momentum: it has been
universally interpreted as amechanical constraint, yet it is a particular case of (4.111)
under the quantum regime.

4.4.5 Schrödinger’s i

A point of much significance concerning the Schrödinger equation is the imaginary
coefficient i in the time derivative, which makes it differ essentially from any other
fundamental equation of physics. This is true even for the fundamentally undulatory
or wave equations, such as those of optics, electromagnetism or sound. It is only
in derived equations where imaginary coefficients are present—which suggests that
Eq. (4.110) should actually be interpreted as a derived equation, just as it appears in
the present treatment.

It is well known that the solutions ψ of Eq. (4.78) represent an undulatory phe-
nomenon. However, the usual wave equation is written in terms not of a Laplacian,
but of a d’Alambertian containing a second-order time derivative, whereas Eq. (4.78)
contains a first-order time derivative. This difference is crucial. The wave equation

∇2w − 1

c2
∂2w

∂t2
= 0 (4.112)

is hyperbolic and describes a (time-)reversible process, which represents an oscillat-
ing (sustained) wave. By contrast, the equation

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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K∇2w − ∂w

∂t
= 0 (4.113)

with K real, is parabolic and describes a (time-)irreversible process, which fades
out and propagates with no return. Typical examples to which this equation applies
are the propagation of heat, or the diffusion of particles in a solvent (or evanescent
‘waves’).

The Schrödinger equation lies somewhere in between these two structures, since
it has the form of Eq. (4.113) though it belongs to the family of wave equations.
This can be seen by replacing the real coefficient K in Eq. (4.113) by an imaginary
coefficient, or equivalently replacing t by i t ,

i
∂w

∂t
= −K∇2w. (4.114)

Theparabolic equation is thus transformed into a hyperbolic one: the operator i(∂/∂t)
takes the place of the second-order operator (∂2/∂t2), and the solution w becomes
oscillatory and reversible. In other words, on comparing Eqs. (4.113) and (4.114) we
observe that the change K ⊗ i K (or rather t ⊗ i t) transforms the diffusion equation
into awave equation, andvice versa.Wefind inSchrödinger’s i the (formal) root of the
wave properties in the quantum description, although the structure of the Schrödinger
equation differs from that of a legitimate wave equation. This transformation, which
is known as aWick rotation and converts a Lorentzmetric into aCartesian one (or vice
versa), is often used in the formal treatment of second-order differential equations.15

This also prepares us to find that the ‘waves’ of qm differ in several aspects from
waves in a physical medium, as discussed, e.g. in Ballentine (1990, 1998).

4.5 Further Insights into the Quantum Description

Let us now apply some of the results obtained in the foregoing sections to obtain
further insight into the nature of the quantum description. This also gives us an oppor-
tunity to introduce some preparatory material that will be revisited in the following
chapters.

15 A related subject is stochastic quantization (Parisi and Wu 1981; Masujima 2009), which makes
use of an imaginary time τ related to the real time by τ = i t . This transforms the time-dependent
Schrödinger equation into a diffusion-like equation, so the expansion in terms of eigenfunctions of
the Hamiltonian takes the form of a partition function of statistical mechanics with τ interpreted as
the inverse temperature, τ ⊗ β = 1/kB T,

�(x, t) =
∑

n

ψn exp (−iEnt) =
∑

n

ψn exp (−τEn) =
∑

n

ψn exp (−βEn) .

This procedure has proved to be of value in several applications, particularly in quantum field
theory, by allowing for a treatment of quantum problems with the methods of statistical mechanics
or stochastic processes. Of course, stochastic quantization is just a formal method of calculation; it
is not intended to improve the interpretation of qm.



4.5 Further Insights into the Quantum Description 123

4.5.1 Fluctuations of the Momentum

As remarked in Sect. 4.4.1, the term proportional to η2 in Eq. (4.85b) bears the
footprint of the fluctuations in momentum space, given by Eq. (4.82) (with η = �/2),
namely

〈
p2

〉

x
− 〈 p≥2x = −�

2

4
∇2 ln ρ. (4.115)

Upon an integration by parts one obtains for the average of this term

− �
2

4

〈
∇2 ln ρ

〉
= −�

2

4

∫
ρ∇2 ln ρdx = �

2

4

〈(∇ρ

ρ

)2
〉

, (4.116)

whence Eq. (4.115) gives, resorting to Eqs. (4.57) and (4.90),

〈
p2

〉
− m2

〈
v2

〉
= �

2

4

〈(∇ρ

ρ

)2
〉

. (4.117)

This result discloses a contribution to the mean kinetic energy (additional to that due
to the flux velocity v) originating in the local mean deviations of themomentum from
its local mean value,

〈
p2

〉
x −〈 p≥2x . As follows from (4.115), such deviations are due

to diffusion, which is always present because of the fluctuations impressed by the
field on the momentum. Equation (4.117) thus suggests to introduce the concept of
diffusive (also called stochastic) velocity u, defined as

u = �

2m
∇ ln ρ = �

2m

∇ρ

ρ
. (4.118)

Notice that this equation assigns the value D = �/2m to the diffusion coefficient
introduced in Chap. 2, as was (correctly) assumed there. Considering as usual that ρ
vanishes at infinity, u averages to zero,

〈u≥ = �

2m

∫
ρ∇ ln ρ dx = 0. (4.119)

In terms of the diffusive velocity Eq. (4.117) reads

〈
p2

〉
= m2

〈
u2 + v2

〉
, (4.120)

and the dispersion of the momentum

σ2
p =

〈
p2

〉
− 〈 p≥2 (4.121)

http://dx.doi.org/10.1007/978-3-319-07893-9_2
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becomes
σ2

p = m2σ2
u + m2σ2

v . (4.122)

According to the above results, the difference
〈
p2

〉
x − 〈 p≥2x does not represent the

total local dispersion of the momentum (it does not average to σ2
p), but only the

contribution from mu. Chapter8 will provide an occasion to discuss more in depth
the significant role played by u in the quantum description, showing that its pres-
ence represents a departure from classical physics. In particular, σ2

u will be seen to
become essential for an understanding of the irreducible quantum fluctuations, and
for endowing them with a causal origin, rooted in the presence of the zpf.16

The above analysis can be extended to include the (radiative) corrections due
to the tensor �̃ and the vector g defined in Eqs. (4.66a, 4.66b) and (4.67a, 4.67b).
Indeed, Eq. (4.67a) with i = j gives

〈
p2

〉

x
− 〈 p≥2x = −�

2

4
∇2 ln ρ + Tr�̃. (4.123)

The average of this expression leads to a formula for the total momentum dispersion
(including radiative effects due to Aχ)

σ2
p = m2σ2

u + σ2
v +

〈
Tr�̃

〉
, (4.124)

where σ2
v may include corrections arising from the vector g.

4.5.2 Local Velocities: ‘Hidden’ Information Contained in ψ

The diffusive velocity u and the flux velocity v defined in Eq. (4.57), appear on a
similar footing in the present approach. As follows from Eq. (4.81) (with η = �/2)
and (4.118), these local average velocities can be expressed in terms of the wave
function ψ(x, t) as (see also Eqs. (2.62) and (2.63) with λ = 1, D = �/2m, A = 0)

v = �

m
∇S = i�

2m

(∇ψ↓

ψ↓ − ∇ψ

ψ

)
(4.125)

16 There exists a profuse quantum literature in which the term related to the momentum fluctuations
enters through one door or another (for a discussion and several examples see Carroll 2010). Their
contribution is rarely identified as coming from fluctuations in the momentum space, and almost
never as due to the zpf. Most frequently they are simply taken as ‘quantum fluctuations’, a term that
conveys the idea that they are spontaneous, i.e., causeless. As a result, the momentum fluctuations
term appears in the literature under several guises. In the stochastic theory of qm it is identified as
produced by the velocity u; see Chap. 2 and references therein. In Olavo (2000) it is interpreted
as coming from a local entropy due to spontaneous local fluctuations in positions. In the Bohmian
theory it is known as the quantum potential (see Chap. 8 and, e.g., Holland 1993), which in its turn
is ‘explained’ as a Fisher information (Frieden 1998), Roy (1986) relates it to fluctuations of the
metric, and so on.

http://dx.doi.org/10.1007/978-3-319-07893-9_8
http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_8
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and

u = �

2m
∇ ln ρ = �

2m

(∇ψ↓

ψ↓ + ∇ψ

ψ

)
. (4.126)

Despite its importance, Eq. (4.125), along with its identification as a physically sen-
sible local mean velocity, rarely appears in textbooks on qm, an (excellent) exception
being Ballentine (1990, 1998). What is usually presented in the quantum literature
is not v, but the current density or probability flux,

j(x, t) = ρv = i�

2m

(
ψ∇ψ↓ − ψ↓∇ψ

)
. (4.127)

As for the velocity u, its very presence and of course the physical meaning we
have assigned to it, are completely foreign to the standard quantum discourse. Yet,
Eq. (4.125) and (4.126) show that the wave function carries information about both
components of the local velocity: its phase bears information on v, whereas its mod-
ulus bears information about u. Thus, they are concealed in the quantum formalism.

In order to exhibit the presence of the local velocities in the quantum description,
we combine Eqs. (4.125) and (4.126) to find that

p̂ψ = −i�∇ψ = m(v − iu)ψ, (4.128)

where p̂ = p̂η=�/2 [cf. Eq. (4.89)]. We see that the application of the quantum
operator p̂ to the wave function reproduces both velocities (or momenta). Since
〈u≥ = 0, when averaging over x only the contribution of v remains,

〈
p̂
〉 =

∫
ψ↓ p̂ψdx =

∫
m(v − iu)ρdx = m 〈v≥ = 〈 p≥ , (4.129)

but when considering the secondmoment
〈

p̂2
〉
= 〈

p2
〉
the role ofu becomes evident,

as follows from (4.120).
Equation (4.128) suggests the introduction of the complex vector π

p̂ → π ≡ m(v − iu) (4.130)

as a means to calculate the quantum average of a function of the operator p̂ by

averaging over a complex vector (a c-number). The second moment
〈

p̂2
〉
would thus

be reproduced according to the usual rule for calculating the second moments of a
complex variable (see e.g. Papoulis 1991, Sect. 8.1). A direct calculation leads indeed
to 〈

π · π↓〉 = m2
〈
v2 + u2

〉
=

〈
p̂2

〉
. (4.131)

The need to resort to a complex vector to reproduce the quantum expectation values is
linked to the fact that, as we have seen, p̂ extracts from the (complex) wave function
information regarding two velocities, namely v and u. In Chap.8 we will come back

http://dx.doi.org/10.1007/978-3-319-07893-9_8
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to the correspondence p̂ ⊗ π in the context of bipartite systems, where it will be of
value for the understanding of quantum correlations.

The introduction of a complex momentum π to reproduce the quantum averages
of the p̂ operator using c-numbers can also be extended to its time-counterpart, the
Hamiltonian. We observe that a direct calculation gives

Ĥψ = i�
∂

∂t
ψ = (

HS + i Hρ

)
ψ = Hψ, (4.132)

where

HS = −�
∂S

∂t
, Hρ = �

2

∂ ln ρ

∂t
. (4.133)

A comparison with (4.130) shows that in a certain sense, HS is to Ĥ what mv is to
p̂, and similarly Hρ is to Ĥ what mu is to p̂. In analogy with Eqs. (4.131), (4.129),
and (4.122) we obtain

〈HH↓〉 =
〈
Ĥ2

〉

〈
Ĥ

〉
= 〈HS≥ ,

σ2
H = σ2

HS
+ σ2

Hρ
.

The couple of equations

mu = �

2
∇ ln ρ, Hρ = �

2

∂ ln ρ

∂t
, (4.134)

thus suggests to interpret (�/2) ln ρ as a sort of (diffusive) action that results in
additional contributions to the momentum and energy fluctuations.

4.5.3 A Comment on Operator Ordering

In connection with the operator formalism of qm, it seems interesting to discuss
the meaning that can be ascribed to the ordering of operators from the standpoint
of the present theory. Limiting for simplicity the discussion to the one-dimensional
case and to the products of the fundamental operators x̂ and p̂, we observe that an
integration by parts gives

∫
ψ↓(x̂ p̂ + p̂x̂)ψdx = −i�

∫
ψ↓

[
x

∂ψ

∂x
+ ∂

∂x
(xψ)

]
dx

= −i�
∫

x

(
ψ↓ ∂ψ

∂x
− ψ

∂ψ↓
∂x

)
dx = 2m

∫
xvρdx = 2m 〈xv≥ ,

(4.135)
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where we used Eq. (4.125). Hence the usual (symmetrized) quantum correlation〈
x̂ p̂ + p̂x̂

〉
/2 gives the correlation between the position coordinate and the (local

mean) systematic velocity v,

1
2

〈
x̂ p̂ + p̂x̂

〉 = m 〈xv≥ . (4.136)

A similar calculation, now using Eq. (4.126), gives for the commutator

∫
ψ↓(x̂ p̂ − p̂x̂)ψdx = −i�

∫
ψ↓

[
x

∂ψ

∂x
− ∂

∂x
(xψ)

]
dx

= −i�
∫

x

(
ψ↓ ∂ψ

∂x
+ ψ

∂ψ↓
∂x

)
dx = −2im

∫
xuρdx = −2im 〈xu≥ .

(4.137)

Therefore the expectation value of the commutator [x̂, p̂] is proportional to the cor-
relation between the position coordinate and the diffusive velocity u,

1
2

〈
x̂ p̂ − p̂x̂

〉 = −im 〈xu≥ . (4.138)

By adding and subtracting the above results one obtains

〈
x̂ p̂

〉 = m 〈x(v − iu)≥ , (4.139)
〈
p̂x̂

〉 = m 〈x(v + iu)≥ .

These expressions show that the order of the operators in the calculation of the expec-
tation value of their product has nothing to do with a temporal order of observations
or measurements, but rather with the sign of the imaginary contribution. As was
briefly mentioned following Eq. (4.122), the effects of the presence of the velocity
u have no classical analogue. Though this will be clarified in more detail in Chap. 8,
Eq. (4.138) already highlights the fact that it is precisely the correlation between x
and u what prevents the commutator [x̂, p̂] from vanishing.

4.5.4 Trapped Motions

An interesting result can be extracted from Eq. (4.115) by applying a variational
principle (de la Peña and Cetto 1977a, b). For a stationary state with v = 0 this
equation (in the one-dimensional case) reduces to

〈
p2

〉

x
= −�

2

4

∂2

∂x2
ln ρ. (4.140)

The mean energy of the system is then

http://dx.doi.org/10.1007/978-3-319-07893-9_8
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〈H≥ =
∫ [

− �
2

8m

d2

dx2
ln ρ + V (x)

]
ρ(x)dx . (4.141)

Let us now demand that 〈H≥ acquires an extremum value, subject to the condition
that ∫

ρ(x)dx = 1. (4.142)

A couple of integrations by parts gives for ϕ(x) ≡ ∈
ρ(x)

δ

∫
ϕ2

[
− �

2

8m

d2

dx2
lnϕ2 + V (x)

]
dx =

∫ (
−�

2

m

d2ϕ

dx2
+ 2V (x)ϕ

)
δϕdx .

To thiswe add the constraint (4.142), in the form−2 〈H≥ ∫
ϕδϕdx = 0 (〈H≥ is here a

Lagrange multiplier). The solution of this variational problem is the Euler-Lagrange
equation (Morse and Feshbach 1953; Hassani 1999)

− �
2

2m

d2ϕ

dx2
+ V ϕ = 〈H≥ ϕ. (4.143)

This result emphasizes the remarkable role played by the local dispersion of the
momentum, Eq. (4.140): it leads directly to the (stationary) Schrödinger equation
for ψ = ϕe−i〈H≥t/� and guarantees that the stationary distribution of particles cor-
responds to an extremum (normally a minimum) of the mean energy of the system.
These extrema of the mean energy correspond to the quantized solutions: here we
witness a complementary side of the demand of stationarity.

The observation that the energy of the stationary states is a local minimum is
very suggestive. Of course each particle finds eventually its own specific trajectory,
with a certain mean energy (averaged over the trajectory) and more or less stable.
The ensemble of such trajectories acquires eventually a minimum mean energy,
which corresponds to the set of most robust motions and generates a certain spatial
probability distribution of particles. Usual qm does not account for such trajectories,
and their (approximate) knowledge requires a simulation of the random field. A first
image that comes to mind is that the orbits are ‘trapped’ once they are close enough
to the stationarity condition. In Chap.5 this picture will become more transparent
with the demonstration that the stationary states correspond to situations that satisfy
an ergodic condition. The trapping of the orbits occurs in the long run, because the
stochastic field forces the particle to explore the neighboring phase-space regions;
as long as the particle is not trapped, it will continue probing the phase-space. This
means that the stationary orbits are qualitatively analogous to limit cycles, although
here the attractive basin is formed by the lowest average energy. Similar possibilities
have been suggested in the past by several authors (see Surdin 1970; de la Peña and
Cetto 1995; ’t Hooft 2002).

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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4.5.5 ‘Schrödinger’ Equation for a Classical System?

One reason for the difficulties found when interpreting qm is rooted in the fact
that the description of the quantum particles is made in field-theoretic terms. One
can perceive the underlying meaning of this assertion by using the simple trick of
inverting the argument, and attempting to describe a problem of classical mechanics
in field-theoretic terms similar to those employed for the quantum description. For
this purpose consider an ensemble of classical particles with density in configuration
space ρ(x, t) and principal function S(x, t); the Lagrangian density can then be
written in the form

L = −ρ

[
∂S

∂t
+ 1

2m
(∇S)2 + V

]
. (4.144)

For this to be correct the variables ρ and S must be treated as canonically conju-
gate fields (ρ playing the role of position coordinate and S that of the corresponding
momentum). Under the demand that the action

∫ t2
t1
Ldxdt be stationary under infin-

itesimal arbitrary variations (with fixed end points), first of ρ and then of S, the
ensuing equations of motion are

∂S
∂t + 1

2m (∇S)2 + V = 0, (4.145)
∂ρ
∂t + ∇ · (

ρ∇S
m

) = 0. (4.146)

These are the correct dynamical equations for a congruency of classical particles,
the first one being the Hamilton-Jacobi equation for particles subject to the exter-
nal potential V , and the second one the corresponding continuity equation for an
ensemble of such (conserved) particles.

Once in possession of the field-theoretic description, one can take the quantum
route (Schiller 1962; Rosen 1964, 1986) by introducing a wave function via the
definitions

ψ = R ei S/a, R = ∈
ρ, (4.147)

with a a constant having dimensions of action. This seems to be an acceptable
transformation from (ρ, S) to the fields (ψ,ψ↓). The Lagrangian density becomes

L = i
a

2

(
ψ↓ ∂ψ

∂t
− ψ

∂ψ↓

∂t

)
(4.148)

+ a2

8m

(
ψ↓∇ψ − ψ∇ψ↓) − V ψ↓ψ.

The action is now to be varied with respect to the fields ψ and ψ↓. Indeed from the
last expression for L it follows that ψ and ψ↓ are canonically conjugate variables,
iψ↓ taking the place (up to a constant) of the momentum coordinate, since
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∂L
∂ψ̇

= i
a

2
ψ↓. (4.149)

By varying the Lagrangian with respect to the fields ψ and ψ↓ one gets

ia
∂ψ

∂t
= − a2

2m
∇2ψ + V ψ + a2

2m

∇2R

R
ψ (4.150)

and its complex conjugate. Apparently the Schrödinger equation has been recovered
for the classical ensemble of particles,17 but now these are subject to the ‘potential’

V ◦ = V + a2

2m

∇2R

R
. (4.151)

Assume for a moment that a = �; then the last term becomes the quantum
potential VQ with the sign reversed [see Eq. (4.86) with η = �/2]. It pops up here,
because it is absent from the classical Hamilton-Jacobi equation (4.145). This turns
Eq. (4.150) into a highly nonlinear equation. Furthermore, in the present treatment
the constant a is totally arbitrary; there is no reason to conclude that it has a universal
value nor to identify it with Planck’s constant, so the system described by Eq. (4.150)
can have any (macroscopic) scale. Many attempted derivations of the Schrödinger
equation from not explicitly quantum principles make this kind of gratuitous iden-
tification a √ � (see related discussions in Chap.2, Sect. 2.4). Further, the above
result confirms that the crucial term responsible for the divide between the quantum
and the classical world is the quantum potential (see Chap. 8 for further discussions
related to VQ).

Notice moreover that in the present instance there are no fluctuations; the disper-
sions, if any, are due to initial conditions on the functions ρ and S [cf. discussion
following Eq. (2.81)]. Further, the trajectories are strictly classical, so the ‘wave’
description is not guaranteed. However, in the quantum case such description does
make sense because the term in the quantum Hamilton-Jacobi equation cancels out
the one in Eq. (4.150), leading thus to a linear equation for ψ. This marvelous lin-
earization makes the Schrödinger equation extremely valuable and mathematically
appropriate for the description of quantum systems. Extending the procedure to
describe classical corpuscles by means of fields (or waves) is generally misleading
and fanciful.

17 Though this resultmay be quite surprising, in fact it is not, since the continuity equation alongwith
the factorization ρ = ψ↓ψ readily leads to an equation having the general form of the Schrödinger
equation, as has been known for a long time (see e.g. de la Peña 1967; Jammer 1974; Kracklauer
1992). This shows that the structure of the Schrödinger equation, rather than being specific to qm,
is a kind of generic framework in the presence of fluctuations (see e.g. Carroll 2010). Of course,
the term proportional to ψ

(∇2R
)
/R in Eq. (4.150) disappears if it is subtracted from the potential

in Eq. (4.145).

http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_8
http://dx.doi.org/10.1007/978-3-319-07893-9_2
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4.6 Phase-Space Distribution and the Wigner Function

The starting point for the derivation of the quantumdescription in configuration space
was the gfpe (4.13) in the phase space of the particle. From this equation one can
go either to the momentum space or to the configuration space, which was the case
we analyzed, obtaining eventually the Schrödinger equation in the time-asymptotic
regime. One may therefore reasonably ask: is it possible to proceed in the opposite
sense, starting from the usual quantum-mechanical description provided separately in
configurationormomentumspace, and recover aunique full phase-spacedescription?
That this question cannot be answered in the positive is a well-established fact.18 Let
us briefly look into the matter from the present perspective, and disclose the reason
for this difficulty.

Equation (4.46) for Q̃(x, z, t) can be inverted and combined with Eqs. (4.59) and
(4.62) to obtain (with η = �/2)

Q(x, p, t) = 1

2π

∫
Q̃(x, z, t)e−i p·zdz

= 1

2π

∫
q(x + �

2 z, t)q↓(x − �

2 z, t)χ(x + �

2 z, x − �

2 z, t) e−i p·zdz.

(4.152)

By construction, Q(x, p, t) furnishes a true (Kolmogorovian) probability density
in phase space. This means that if the exact solutions for q and χ were known for
all values of z and at all times, one would have a full phase-space description for
the particle. However, in the radiationless approximation and in the time-asymptotic
limit—a regime that leads to the more restricted Schrödinger equation—all we have
at hand, at most, are the terms of the Taylor series expansion of χ(x + �

2 z, x − �

2 z, t)
up to second order in z (as shown in Sect. 4.4.1). Hence the integral in (4.152), which
extends over the entire z-space, cannot be evaluated correctly in general. One can,
instead, construct an approximate form W (x, p, t) obtained by fixing χ = 1 while
allowing z to remain as a Fourier variable (putting q = ψ as in [4.80)],

W (x, p, t) = 1

π�

∫
ψ(x + y, t)ψ↓(x − y, t) e−i2 p· y/hdy, (4.153)

with y = �z/2. This is the well-knownWigner phase-space function (Wigner 1932,
Moyal 1949).19 As a result of the approximations made in passing from Eqs. (4.152)

18 Entire books have been dedicated to analyze and discuss the problem of a quantum-mechanical
phase-space distribution. See, e.g., Zachos et al. (2005) .
19 The first phase-space description of a quantum system was made in Weyl (1927); the Wigner
function was introduced and studied firstly in Dirac (1930). It was later proposed independently
in Heisenberg (1931) and Wigner (1932). The theory of the latter was substantially developed in
Moyal (1949). A discussion of the fundamentals of the distribution functions is given in Hillery et al.
(1984) (see also Tatarskii 1983); for an introductory account of theWigner function see Case (2008).
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to (4.153), there is no guarantee that W is a true Kolmogorovian probability. And
indeed, despite its recognized value, it is not, since as is well known it can take on
negative values (hence the name pseudo-probability distribution) in some regions
of phase space for almost all states and systems—the exception being the Gaussian
states, which correspond to the separable caseχ(x+�z/2, x−�z/2, t) = 1 (Urbanik
1967; Hudson 1974; Piquet 1974; Soto and Claverie 1983, 1983). The right solution
to this long-standing problem is of course to recognize the intrinsic limitations of W
that ensue from its approximate nature, and to revert to the full distribution Q(x, p, t)
and learn how to distil the appropriate solutions.

The point referring to the function χ introduced through (4.60) as a factor of
Q̃(x, z, t) is of importance for an understanding of the difference between the phase-
space distributions in Eqs. (4.152) and (4.153). The derivations in Sect. 4.4.1 show
that in the general case, both � and χ may differ from the constant values normally
assigned to them. This has consequences not only for the construction of a true phase-
space quantum distribution, but more generally for the description of the quantum
behavior of particles, at least in some regions of the configuration space and for
certain problems, since any value of χ ∼= 1 or � ∼= 0 implies a deviation from the
quantum-mechanical description.

As was shown in Sect. 4.4.1, the selection� = 0 decouples the first two equations
of the hierarchy from the rest. This leads to a substantial simplification of the problem
at hand, since instead of an infinity of equations, just two—the simplest of them—
suffice for the quantum description in configuration space. But this comes with a
high price: the loss of a true phase-space description.

We thus conclude that in point of fact a true phase-space probability density for the
problem should exist, but that this density function ismore complicated than the usual
Wigner function or any other of the many already proposed. A most important prob-
lem is thus the investigation of the possibilities offered by the full phase-space proba-
bility (4.152), without making appeal to a power expansion of the diffusion term, and
even less to theMarkovian approximation. This seems to constitute a fruitful demand-
ing research programme, but one that is beyond the scope of the present volume.

4.7 What We Have Learned So Far About Quantum Mechanics

The thermostatistical analysis of the radiation field in equilibrium, made in Chap.3,
showed that in the presence of its zero-point component the energy of the field
becomes quantized. The statistical analysis of the dynamics of matter in the presence
of the zero-point field, made in this chapter, shows that also the material system
becomes quantized. In summary, the quantum properties of both matter and field
emerge from the consideration of the existence of a real, ubiquitous random zero-

(Footnote 19 continued)
General formulas for quantum phase-space distributions (which apply to the Wigner function as a
special case) are given in Cohen (1976) and Cohen and Zaparovanny (1980). A general overview
with selected papers is Zachos et al. (2005).

http://dx.doi.org/10.1007/978-3-319-07893-9_3


4.7 What We Have Learned So Far About Quantum Mechanics 133

point radiation field. These results substantiate the success of a whole series of
previous works carried out within sed.20

The description provided by the Schrödinger equation has been obtained from
a generalized phase-space Fokker-Planck equation for the particle, in the time-
asymptotic limit when a balance is eventually reached between the diffusive and
dissipative terms contributing to the mean energy. The onset of the quantum regime
is thus conditioned by energy balance. This is the secret of qm: the energy-balance
condition confirms the validity of the structure of the Schrödinger equation, univo-
cally fixing the spectral density of the background field that is needed to sustain this
balance, as well as the value of η = �/2. Yet the approximations and simplifications
made along the derivations have had the effect of deleting from the final description
every explicit reference to the zpf—the very cause of the quantum behavior! Con-
sequently, the reason for the stochasticity becomes concealed and the fluctuations
appear as causeless. By exhibiting them as real, objective fluctuations resulting from
the permanent interaction of the atomic system (or whatever quantum structure is
under study) with the zpf, the theory puts the so-called quantum fluctuations on
a mundane perspective. Further, it defines the role played by Planck’s constant in
determining the characteristic size of the quantum fluctuations.

Of crucial importance is the fact that the source of the noise is a radiation field;
the spatial and temporal coherence of the modes of the field is central to support
the stationary states for relatively long times. This introduces an essential difference
between the action of the zpf and that of a purely noisy background (as the Brownian-
motion one), and leads to the existence of, for instance, stable orbital motions in the
atomic case.

It is clear that from the present perspective, the description afforded by the
Schrödinger equation refers to a statistical ensemble, not to an individual particle.
The particle remains always a particle, the (physical) wave (the background field)
remaining literally in the background. In the configuration-space description, mean
trajectories that belong to subensembles are characterized by the local mean veloc-
ities v(x) and u(x); due to its intrinsically statistical nature the theory cannot be
applied in general to singular events, so individual trajectories appear as unknown.
These conclusions appear as inescapable, and mark a clear departure from the usual
(Copenhagen) interpretation of qm in favour of the less popular ensemble (or statis-
tical) interpretation. Briefly, the theory recovers for physics causality, determinism,
realism and locality.21

20 Some recent independent investigations are of particular relevance to the present theory. We
recall the important numerical simulations in Cole (2006) and Cole and Zou 2003–2004 leading
to a correct statistical prediction of the ground state orbit for the H-atom (and some results for its
excitations in Cole and Zou 2009). In Huang and Batelaan (2012a, b), the modes of a classical
one-dimensional harmonic oscillator immersed in the zpf and excited by an electromagnetic pulse
are studied by numerical simulation, with results that are in excellent agreement with the quantum
predictions. The authors are indebted to Khaled Dechoum and Emilio Santos for having drawn their
attention to this work at an early stage.
21 It could be argued that the quantum description is indeterministic. This is obviously true, and
is in consonance with any statistical description. The point is that the starting equation of motion,
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A frequently posed question relates to the application of the present theory to
neutral particles. The general answer is that all known particles have electromagnetic
interactions; even a neutral particle possesses at least amultipolemoment that couples
to the zpf.22 Coupling of the particle through higher moments is expected to lead
to the same results obtained here, although stationarity would be reached perhaps
somewhat more slowly. It has also been argued that other vacuum fields, and even
fluctuations of the space-timemetric, could be important for the understanding of the
quantum properties of matter. The present results indicate that due consideration of
the zpf suffices to get an understanding of the quantum behavior of both matter and
field, in the nonrelativistic approximation. Of course, for a relativistic description one
should expect other fields to play a role, in particular the electron-positron vacuum.
Regarding metric fluctuations, a comment is included in Chap. 10.

Equation (4.79) defines the meaning of ψ: it is an abstract mathematical object
that plays the role of an amplitude (or density) of probability (in configuration space,
in the present description), rather than representing directly a physical wave.23 This
is an important result: the Born rule ρ(x, t) = ψ(x, t)ψ↓(x, t) is not a postulate
of the theory; it is a natural consequence of the statistical description.24 Theories
in which the probability density ρ is conveniently expressed in terms of a product
of two complex amplitudes, have been criticized in the past (see Takabayasi 1952;
Wallstrom 1989, 1994) on the argument that the sets of solutions of the stochastic
equations and of the Schrödinger equation are different.25 The critique certainly does

(Footnote 21 continued)
valid for an individual member of the ensemble, is deterministic. Indeterminism enters because
the specific realization of the field in the individual case is unknown. Thus quantum indeterminism
should not be understood as intrinsic to matter at the microscopic level, but rather of a nature similar
to that of statistical physics. Something similar can be said about nonlocality: the initial theory is
local; the final statistical and partial description is the one that acquires nonlocal properties. For
related discussions on causality, determinism, realism and locality see Chap. 1.
22 Recently Huang and Batelaan (2012a, b) have proposed another form of visualizing the problem,
by considering that the random motion gives rise to instantaneous multipolar moments that couple
to the corresponding modes of the radiation field. Strictly speaking, this can be applied also to
neutral (structured) particles.
23 The most obvious instance in which this is manifest is a system of N particles in three dimen-
sions; then ψ lives in an abstract 3N -dimensional space, while physical waves (fields) live in three
dimensions. This point, raised for the first time by Pauli, was a subject of much discussion during
the early phase of qm; a detailed account can be seen in Bacciagaluppi and Valentini (1927). How-
ever, in the case of particles (fermions) the problem disappears using the number representation
of the state vector. Then the 3N coordinates (if introduced at all) represent merely N points in
three-dimensional space.
24 The fact that in qm the Born rule is introduced as a postulate, is not a minor point. Indeed it is
so important that serious efforts have been made for many years to demonstrate it from within qm.
Probably the most far-reaching result of such attempts is due to Graham (1973), who proves that

the probability of state n in the superposition of states
∑N

1
cnψn tends to |cn |2 for large values of

N . See also Hartle (1968).
25 The factorization ρ = ψ↓ψ taken as a minor mathematical liberty was apparently first introduced
in Collins (1977) and has been repeatedly used by several authors. But in fact it is not inconse-
quential, since it opens the possibility to introduce a phase function, not present in the absence of such

http://dx.doi.org/10.1007/978-3-319-07893-9_10
http://dx.doi.org/10.1007/978-3-319-07893-9_1
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not apply to the present case, in which the quantization is legitimated by the demand
of detailed energy balance, and Born’s rule is an integral and derived part of the
theory.

Since from the perspective of the results presented here, present-day qm fur-
nishes an approximate, time-asymptotic, partially averaged description of the phys-
ical phenomenon, there exists plenty of room for further and deeper investigations.
For instance, it is clear that the transition from the Fokker-Planck equation to the
Schrödinger equation is an irreversible procedure; one cannot reconstruct from the
latter the probability density in phase space by purely logical steps backward. It
therefore remains to explore the consequences of making a more complete use of
the density Q(x, p, t), or to investigate the behavior of the system before it reaches
the state of energy balance (the quantum regime), when the approximations still do
not apply. Which is the correct description at such short times? One should expect
an entirely unknown behavior of matter in this initial nonequilibrium regime, which
can neither be classical because the � due to the interaction with the field is part of
the picture, nor quantum-mechanical because the conditions to apply such descrip-
tion have not yet been reached. Undoubtedly an exploration into this realm would
represent a new adventure in physics, with interesting outcomes.

Appendix A: Derivation of the Generalized Fokker-Planck
Equation

In this appendix the generalized Fokker-Planck equation associated with the stochas-
tic Eq. (4.3) is derived, borrowing from de la Peña and Cetto (1977a). For the sake of
simplicity the derivation is presented in one dimension. The generalization to three
dimensions is made at the end of the appendix.

As discussed in the text, for any given realization of the field the density R(x, p, t)
of points in the phase space of the particle satisfies the continuity Eq. (4.12),

∂R

∂t
+ 1

m

∂

∂x
pR + ∂

∂ p
( f + mτ

...
x + eE) R = 0. (A.1)

The differential equation for Q, the mean value of R over the field realizations {(i)},
can be constructed by means of the smoothing method (see e.g. Frisch 1968), as
follows. A smoothing operator P̂ is introduced, which acts on any phase function
A(x, p, t) by giving its local (in the particle phase space) average,

P̂ A = A
(i)

, so A = A
(i) + (1 − P̂)A. (A.2)

(Footnote 25 continued)
factorization. Only if a physical meaning andwell-definedmathematical properties can be attributed
to such function, so that it belongs naturally to the theory, the procedure canbe considered acceptable.
For other comments on this important matter see Sect. 2.6.

http://dx.doi.org/10.1007/978-3-319-07893-9_2
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Clearly δA = (1− P̂)A is the random component of A,which means that the second
Equation in (A.2) is a decomposition of A into its average A plus its fluctuating part.
Further, P̂ = P̂2, so P̂ is a projection (idempotent) operator. The application of this
smoothing operator to the density R separates it into its average and its random parts
Q and δQ, respectively,

R = Q + δQ, Q = P̂ R, δQ = (1 − P̂)R. (A.3)

We are interested in constructing the differential equation for Q. For this purpose
we rewrite Eq. (A.1) in the form

∂

∂t
(Q + δQ) + L̂ (Q + δQ) = −e

∂

∂ p
E (Q + δQ) , (A.4)

where L̂ stands for the (nonrandom) Liouville operator for the particle, including
the radiation-reaction force mτ

...
x—strictly speaking, the operator L̂ differs from a

true Liouville operator due to the (small) radiation reaction term—,

L̂ = 1

m

∂

∂x
p + ∂

∂ p
( f + mτ

...
x ) . (A.5)

Equation (A.4) becomes separated into its nonstochastic and fluctuating parts by
applying to it the projection operators P̂ and 1− P̂ in succession. Using that P̂ E = 0
[see Eq. (4.4)], one thus obtains the couple of equations

(
∂

∂t
+ L̂

)
Q = −e

∂

∂ p
P̂ EδQ, (A.6)

(
∂

∂t
+ L̂

)
δQ = −e

∂

∂ p
E Q − e

∂

∂ p

(
1 − P̂

)
EδQ. (A.7)

The next step is to eliminate δQ from these equations. This can be achieved by
introducing the operator Ĝ = (∂/∂t+L̂)−1,which corresponds to theGreen function
of the differential operator ∂/∂t + L̂, so for any phase function A(x, p, t) one has

Ĝ A(x, p, t) =
∫ t

−↑
e−L̂(t−t ◦) A(x, p, t ◦)dt ◦. (A.8)

The operator Ĝ is now used to invert Eq. (A.7),

δQ = −eĜ
∂

∂ p
E Q − eĜ

∂

∂ p

(
1 − P̂

)
EδQ, (A.9)

or, even better,
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[
1 + eĜ

∂

∂ p

(
1 − P̂

)
E

]
δQ = −eĜ

∂

∂ p
E Q. (A.10)

Applying from the left the inverse of the operator in square brackets gives an expres-
sion for δQ,which combined with Eq. (A.6) gives a complicated integro-differential
equation for Q,

(
∂

∂t
+ L̂

)
Q = e2

∂

∂ p
P̂ E

[
1 + eĜ

∂

∂ p

(
1 − P̂

)
E

]−1

Ĝ
∂

∂ p
E Q. (A.11)

This is the gfpe for the problem. However, this is a formal expression in which the
random field and the operator Ĝ appear in a form which makes it quite impractical
to use. A more manageable form is obtained by formally expanding the expression
within square brackets into a power series,

(
∂

∂t
+ L̂

)
Q = e2

∂

∂ p
P̂ E

↑∑

k=0

[
−eĜ

∂

∂ p

(
1 − P̂

)
E

]k

Ĝ
∂

∂ p
E Q

= −e
∂

∂ p
P̂ E

↑∑

k=0

[
−eĜ

∂

∂ p

(
1 − P̂

)
E

]k+1

Q

= −e
∂

∂ p
P̂ E

↑∑

k=1

[
−eĜ

∂

∂ p

(
1 − P̂

)
E

]k

Q. (A.12)

To write the second equality we used the fact that E Q can also be written as
(1 − P̂)E Q.

To somewhat simplify Eq. (A.12) we take into consideration some statistical
properties of the random field. First of all, for the zpf the distribution is symmetric
and centered around zero, so that the average of products of an odd number of factors
vanishes,

P̂ E(t1)E(t2) . . . E(t2n+1)P̂ A = 0. (A.13a)

Assuming the distribution to be Gaussian, the average of products with an even
number of factors take the form (Gardiner 1983, Sect. 2.8; Wang and Uhlenbeck in
Wax 1954/1985, Sect. 9a)26

P̂ E(t1)E(t2) . . . E(t2n)P̂ A =
∑

E(ti )E(t j ) . . . E(tr )E(ts)
(i)

A
(i)

, (A.13b)

26 As shown in these references, it is correct to assume that the distribution is Gaussian in the case
of the free field. Strictly speaking E(t) cannot be taken as a free field, since it is somehow modified
by its interaction with the mechanical subsystem. However, the modifications affect only a very
reduced set (which can be considered of measure zero) of the (averaged) modes of the field in the
vicinity of the particle, by introducing correlations among the phases of some of these modes. For
the rest, the field remains essentially unchanged. For details see Peña et al. (2009), or Chap.5.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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where the sum is to be effected over all possible different pairs of factors.
Now from Eq. (A.13a) we note that all terms on the right-hand side of (A.12) with

even k vanish, so the equation simplifies into

(
∂

∂t
+ L̂

)
Q = e

∂

∂ p
P̂ E

↑∑

k=0

[
eĜ

∂

∂ p

(
1 − P̂

)
E

]2k+1

Q, (A.14)

which is equivalent to

(
∂

∂t
+ L̂

)
Q = e2

∂

∂ p
P̂ EĜ

∂

∂ p
E

↑∑

k=0

[
eĜ

∂

∂ p

(
1 − P̂

)
E

]2k

Q. (A.15)

This is the generalized Fokker-Planck equation (gfpe) that we use here. The gener-
alization to three dimensions is straightforward and gives (summation over repeated
indices is to be understood)

(
∂

∂t
+ L̂

)
Q = e2

∂

∂ pi
P̂ Ei Ĝ

∂

∂ p j
E j

↑∑

k=0

[
eĜ

∂

∂ pl

(
1 − P̂

)
El

]2k

Q, (A.16)

where

L̂ = 1

m

∂

∂xi
pi + ∂

∂ pi
( fi + mτ

...
x i ) (A.17)

is the Liouville operator with the radiation reaction force added as an ‘external’ force.
Substitution of this expression into (A.16) gives Eq. (4.13).

The above derivations have been made in terms of operators; a more common
form involves the Green function, as follows. The differential equation for the Green
function G of the Liouville equation is

(
∂

∂t
+ L

)
G = δ(x, x◦)δ( p, p◦), (A.18)

in terms of which the evolution of a dynamical variable A(x, p, t), described above

with the aid of the operator e−L̂(t−t ◦), is given by the expression

e−L̂(t−t ◦) A(x, p, t ◦) =
∫

dx ◦dp◦G(x, p; x◦, p◦; t − t ◦)A(x◦, p◦, t ◦), (A.19)

where the prime refers to the values of the dynamical variables at t ◦ < t, subject to
the condition A(x◦, p◦, t ◦)

∣∣
t = A(x, p, t). The evolution from (x◦, p◦) to (x, p) is

deterministic, as follows from the (modified) Liouville operator (A.17).



Appendix B: Diffusion Coefficients in the Markovian Approximation 139

Appendix B: Diffusion Coefficients in the Markovian
Approximation

We now proceed to the derivation of a simpler version of Eq. (4.13), by considering
the approximation to second order of the gfpe, known as Markovian approximation.
The results obtained are suitable to develop the sed theory further, once the system
has reached a reversible condition, which is called quantum regime for the reasons
mentioned in Sect. (4.4.4). It is important to remark that between the gfpe with an
infinity of terms and the fpe written to order n = 2 in the derivatives, there is no
intermediate approximation for a positive probability density. In fact, any truncation
of the gfpe above n = 2 will automatically revert the expansion to second order
for a nonnegative Q (all higher-order coefficients vanish). Thus, there are only three
nontrivial possibilities: truncation at n = 1, which corresponds to deterministic
(Newtonian) processes (described by the Liouville equation); truncation at n = 2,
which corresponds to diffusions (Markovian) processes (described by a true fpe,
whichmay be only approximate); and, finally, no truncation at all, which corresponds
to the gfpe of infinite order (A.16). This is the essential content of Pawula’s theorem,
a detailed discussion of which can be seen in Risken (1984).

To get the (true, but approximate) fpe (4.19),

∂Q

∂t
+ 1

m

∂

∂xi
pi Q + ∂

∂ pi
( fi + mτ

...
x i ) Q

= ∂

∂ pi
D pp

i j
∂Q

∂ p j
+ ∂

∂ pi
D px

i j
∂Q

∂x j
, (B.1)

we start from the gfpe (4.13). The first step is to write Eq. (4.14) to first order in e2

(i.e., to take only the term of the sum with k = 0), which is

D̂i Q
∣∣∣
k=0

= P̂ Ei Ĝ
∂

∂ p j
E j Q = P̂ Ei (t)

∫ t

−↑
dt ◦e−L̂(t−t ◦) ∂

∂ p j
(E j Q)(t ◦), (B.2)

where Eq. (4.15) has been used. Since E j depends on time only, this can be written
in the form

D̂i Q
∣∣∣
k=0

=
∫ t

−↑
dt ◦Ei (t)E j (t ◦)

(i)
e−L̂(t−t ◦) ∂

∂ p j
Q(t ◦). (B.3)

Now, the evolution law
Q(t) = e−L̂(t−t ◦)Q(t ◦) (B.4)

allows us to write, inserting the identity operator eL̂(t−t ◦)e−L̂(t−t ◦),

e−L̂(t−t ◦) ∂

∂ p j
Q(t ◦) =

(
e−L̂(t−t ◦) ∂

∂ p j
eL̂(t−t ◦)

)(
e−L̂(t−t ◦)Q(t ◦)

)
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= ∂

∂ p◦
j

Q(t), (B.5)

where, as explained in Appendix A, the prime refers to the values of the dynamical
variables at t ◦ ≤ t, from where they follow a deterministic evolution to their end
values at time t . Substitution into Eq. (B.3) using Eq. (4.9) gives

D̂i Q
∣∣
∣
k=0

=
∫ t

−↑
dt ◦ϕ(t − t ◦)δi j

∂

∂ p◦
j

Q(x, p, t). (B.6)

From the chain rule for the derivation,

∂Q

∂ p◦
j

= ∂ pk

∂ p◦
j

∂Q

∂ pk
+ ∂xk

∂ p◦
j

∂Q

∂xk
, (B.7)

it follows that

D̂i Q
∣∣∣
k=0

=
(∫ t

−↑
dt ◦ϕ(t − t ◦)

∂ p j

∂ p◦
i

)
∂Q

∂ p j
+

(∫ t

−↑
dt ◦ϕ(t − t ◦)

∂x j

∂ p◦
i

)
∂Q

∂x j
.

(B.8)
Direct substitution into (4.13) gives the (approximate) equation

∂Q

∂t
+ 1

m

∂

∂xi
pi Q + ∂

∂ pi
fi Q + mτ

∂

∂ pi

...
x i Q = ∂

∂ pi

(
D pp

i j
∂Q

∂ p j
+ D px

i j
∂Q

∂x j

)
,

(B.9)
with the diffusion coefficients in the Markovian approximation given by

D pp
i j = e2

∫ t

−↑
dt ◦ϕ(t − t ◦)

∂ p j

∂ p◦
i
, (B.10a)

D px
i j = e2

∫ t

−↑
dt ◦ϕ(t − t ◦)

∂x j

∂ p◦
i
. (B.10b)

Now, the dominant contribution to these time integrals comes from times t ◦ close
to t , when the system is already in the regime in which Eq. (4.78) controls the
dynamics. This means that the dynamical variables are now represented by operators
(see Sect. 4.4.2), and the factors ∂ p j/∂ p◦

i , ∂x j/∂ p◦
i should be properly expressed in

terms of them.By noticing that for the corresponding classical variables the equalities

∂ p j

∂ p◦
i

= [
x ◦

i , p j
]
PB , (B.11a)

∂x j

∂ p◦
i

= [
x ◦

i , x j
]
PB (B.11b)

apply, in terms of operators the following substitutions must be made,
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∂ p j

∂ p◦
i

⇒ 1

2iη

[
x̂ ◦

i , p̂ j
]
, (B.12a)

∂x j

∂ p◦
i

⇒ 1

2iη

[
x̂ ◦

i , x̂ j
]
. (B.12b)

These can be obtained from the general rules

∂

∂ p j
⇒ 1

2iη

[
x̂ j ,

]
,

∂

∂x j
⇒ 1

2iη

[
, p̂ j

]
. (B.13)

With (B.12a, B.12b), Eqs. (B.10a), (B.10b) take the form

D pp
i j = e2

2iη

∫ t

−↑
dt ◦ϕ(t − t ◦)

[
x̂ ◦

i , p̂ j
]
, (B.14a)

D px
i j = e2

2iη

∫ t

−↑
dt ◦ϕ(t − t ◦)

[
x̂ ◦

i , x̂ j
]
. (B.14b)

It is now straightforward to show that the diffusion coefficients [Eqs. (B.10a),
(B.10b)] comply with the relation

∂D pp
i j

∂ p j
+ ∂D px

i j

∂x j
= 0. (B.15)

For this purpose we apply Eqs. (B.13) to (Eqs. B.14a), (B.14b), thus obtaining

∂D pp
i j

∂ p j
+ ∂D px

i j

∂x j
= e2

(2iη)2

∫ t

−↑
dt ◦ϕ(t − t ◦)

{[
x̂ j ,

[
x̂ ◦

i , p̂ j
]] + [[

x̂ ◦
i , x̂ j

]
, p̂ j

]}
.

(B.16)
Resorting to the Jacobi identity (which is valid both for Poisson brackets and for
commutators)

[
x j ,

[
x ◦

i , p j
]] + [

x ◦
i ,

[
p j , x j

]] + [
p j ,

[
x j , x ◦

i

]] = 0, (B.17)

and noticing that the second term vanishes, we find

[
x j ,

[
x ◦

i , p j
]] = − [

p j ,
[
x j , x ◦

i

]] = − [[
x ◦

i , x j
]
, p j

]
, (B.18)

and therefore the right-hand side of (B.16) is null, which proves Eq. (B.15). A direct
consequence of this result is that Eq. (4.44) reduces to (4.45).
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Appendix C: Detailed Derivation of the ‘Generalized’
Schrödinger Equation

The starting point for the present derivation is the couple of Eq. (4.68)

∂ρ

∂t
+ ∂

∂x j

(
v jρ

) = 0, (C.1a)

m
∂

∂t
(viρ) + m

∂

∂x j

(
viv jρ

)− η2

m

∂

∂x j

(
ρ

∂2

∂xi∂x j
ln ρ

)
+ 1

m

∂

∂x j
�i jρ − fiρ (C.1b)

= τv j
∂ fi

∂x j
ρ − e2 (

˜̂DQ)i

∣∣∣∣
z=0

.

Inserting the continuity equation into (C.1b) and multiplying by ρ−1 results in

m
∂v

∂t
+ m

2
∇v2 − mv × (∇ × v) + ∇

(
−2η2

m

∇2∈ρ∈
ρ

+ V

)
= Frad + F�, (C.2)

since (v · ∇) v = 1
2∇v2 − v × (∇ × v). The i components of the vectors Frad and

F� are, respectively,

Firad = τv j
∂ fi

∂x j
− e2

ρ
(
˜̂DQ)i

∣∣
∣∣
z=0

, (C.3)

Fi� = − 1

mρ

∂

∂x j
� j iρ. (C.4)

Now, according to Eq. (4.66a) mv decomposes as

mv = −iη∇ ln
q(x, t)

q↓(x, t)
+ g = 2η∇S + g, (C.5)

where the last equality follows from writing q(x, t) in its polar form

q(x, t) = ∈
ρei S(x,t). (C.6)

Substitution of Eqs. (C.5) into (C.2) gives (using ∇ × mv = ∇ × g)

∇M = Frad + F� − ∂g

∂t
+ v × (∇ × g) , (C.7)
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with

M = 2η
∂S

∂t
+ 1

2
mv2 − 2η2

m

∇2∈ρ∈
ρ

+ V . (C.8)

This is basically the Hamilton-Jacobi-type equation of Bohm’s theory
[see Sect. (4.4.1)], when M = 0 (and η = �/2), which means that it should be
possible to arrive at the Schrödinger equation from the above expressions. For this
purpose we proceed as follows.

From Eq. (C.6) it follows ln q = (1/2) ln ρ + i S, which combined with the
continuity Eq. (C.1a) gives

∂S

∂t
= − i

q

∂q

∂t
− i

2
∇ · v − iv · ∇q

q
− v · ∇S. (C.9)

Using here Eq. (C.5) leads to

∂S

∂t
= − i

q

∂q

∂t
− iη

m
∇2S − i

2m
∇ · g − 2iη

m
∇S · ∇q

q
−

− i

m
g · ∇q

q
− 2η

m
(∇S)2 − 1

m
g · ∇S. (C.10)

This expression, togetherwithmv2 = (1/m) (2η∇S + g)2, allows to recast Eq. (C.8)
in the form

M = 1

q

[
−2iη

∂q

∂t
+ 1

2m
(−2iη∇ + g)2 q + V q

]
− (C.11)

− 2η2

m

[

i∇2S + ∇2∈ρ∈
ρ

+ (∇S)2 + 2i∇S · ∇q

q
− ∇2q

q

]

.

Now we notice that as a consequence of Eq. (C.6),

∇q

q
= 1

2

∇ρ

ρ
+ i∇S, (C.12)

whence
∇2q

q
= ∇2∈ρ∈

ρ
+ i∇2S + i∇S · ∇ρ

ρ
− (∇S)2 . (C.13)
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From here it follows that the term in the second line of Eq. (C.11) vanishes. Conse-
quently M reduces to

M = 1

q

[
−2iη

∂q

∂t
+ 1

2m
(−2iη∇ + g)2 q + V q

]
= 1

q
M̂q, (C.14)

with M̂ the linear operator

M̂ = −2iη
∂

∂t
+ 1

2m
(−2iη∇ + g)2 + V . (C.15)

Finally, inserting Eq. (C.14) into (C.7) we arrive at

∇
(
1

q
M̂q

)
= Frad + F� − ∂g

∂t
+ v × (∇ × g) . (C.16)

We call this the generalized Schrödinger equation, since as is shown in Sect. 4.4.1,
it reduces to the Schrödinger equation in the radiationless approximation. Equation
(C.16) and its adjoint are equivalent to the first two equations of the hierarchy, (C.1a,
C.1b).

Appendix D: Diffusive Contribution to the Energy Balance

This appendix is devoted to the calculation of the right-hand side of the energy-
balance condition (4.37). The particle is considered in equilibrium with the zpf,
which means that it must be in its ground state, represented by the solution ψ0(x)

of the Schrödinger equation (4.78) (still in terms of η). We recall that in the time-
asymptotic limit, the Markovian approximation holds, described by the fpe (B.1).
This means that one may use the simpler Eq. (4.103), which in one dimension reads

τ 〈...x p≥0 = − 1

m

〈
D pp〉

0 . (D.1)

Introducing the diffusion coefficient D pp given by Eq. (B.14a), one obtains

− 1

m

〈
D pp〉

0 = ie2

2ηm

∫ t

−↑
dt ◦ϕ(t − t ◦)

〈[
x̂ ◦

i , p̂ j
]〉
0 , (D.2)
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With ϕ(t − t ◦) given by (4.10) and ρ = ρ0 given by (4.101), this becomes (recall
that τ = 2e2/3mc3)

− 1

m

〈
D pp〉

0 = i�τ

2ηπ

↑∫

0

dω ω3
∫ t

−↑
dt ◦ cosω(t − t ◦)

〈[
x̂ ◦

i , p̂ j
]〉
0 , (D.3)

with 〈[
x̂ ◦, p̂

]〉
0 =

∑

k

(
x̂ ◦
0k p̂k0 − p̂0k x̂ ◦

k0

)
, (D.4)

Equations (4.104) and (4.105) can be used to write xkn(t) = eiωkn t xkn and pnm(t) =
imωnmeiωnm t xnm, which gives

〈[
x̂ ◦, p̂

]〉
0 = 2im

∑

k

ωk0 |x0k |2 cosωk0(t − t ◦). (D.5)

Introducing this into Eq. (D.3) leads to

− 1

m

〈
D pp〉

0 = −�mτ

πη

∑

k

ωk0 |x0k |2 (D.6)

×
↑∫

0

dω ω3
∫ t

−↑
dt ◦ cosω(t − t ◦) cosωk0(t − t ◦).

The integral over time can be calculated with the formula

∫ ↑

−↑
dkeikx =

∫ ↑

−↑
dk cos kx = 2πδ(x). (D.7)

This gives

∫ t

−↑
dt ◦ cosω(t − t ◦) cosωk0(t − t ◦) = π

2
[δ(ω − ωk0) + δ(ω + ωk0)]. (D.8)

For the ground state there are no negative frequencies, i.e. all ωk0 > 0, whence the
second term in the right-hand side does not contribute to (D.6), and therefore

− 1

m

〈
D pp〉

0 = −�mτ

2η

∑

k

ω4
k0 |x0k |2 . (D.9)
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Chapter 5
The Road to Heisenberg Quantum Mechanics

... quantum phenomena do not occur in a Hilbert space, they
occur in a laboratory.

A. Peres (1995, p. XI)

Once the Schrödinger equation has been obtained from fundamental principles, one
might consider that the task of arriving at quantummechanics is over, and that all that
is left is to develop and apply it. However, a great deal still remains to be understood
concerning the underlying meaning of the quantum formalism.

This chapter is devoted to an alternative approach leading to the quantization of
matter within the framework of sed. The path followed here is perhaps less intuitive,
but on the other hand it is highly revealing and illustrative of some of the intricacies
of qm. Although based on the same basic principles used so far, this approach takes
us to the quantum formalism in its matrix form. Heisenberg’s theory appears thus
not only as a mere mathematical transformation of Schrödinger’s theory—as Dirac,
Schrödinger himself and others succeeded to show—but as a description that exhibits
complementary aspects of the quantum world.

5.1 The Same System: A Fresh Approach

The main character in this chapter is again a charged particle—typically an atomic
electron—immersed in the background radiation field and subject to an external
force. We recall that the radiation field may or may not contain excitations, but it
always includes the random zpf of mean energy �ψ/2 per normal mode. A central
conclusion drawn from Chap. 4 is that once an energy balance has been attained
in the mean between the diffusive and dissipative radiative terms, the statistical
behavior of the particle is correctly described by the Schrödinger equation, in the
radiationless approximation. This means that, for a particle subject to a conservative,
binding force, the description can be made in terms of stationary states, which are
energy-conserving states, i.e., eigenstates of the Hamiltonian.
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152 5 The Road to Heisenberg Quantum Mechanics

It seems now opportune to take a more straightforward approach for the analysis
of these stationary states in the quantum regime, based again on the (stochastic)
Abraham-Lorentz equation.We shall therefore use this equation as the starting point,
as in Chap. 4; yet very soon our train of thoughts will take a different path, one that
brings us closer to the formalism developed in the famous paper by Born, Heisenberg
and Jordan in 1926. The purpose of this new approach is to throw additional light on
what it means for the system to reach stationarity and become quantized. What are
the specificities of the matter-field interaction in the quantum regime? How do these
specificities manifest themselves in the quantum formalism? What is the physical
meaning of the quantities involved in the Heisenberg description?

As we proceed with the analysis, several interesting features of the underlying
physicswill be disclosed.A central one is the linear, resonant response of themechan-
ical system in the quantum regime to a certain, well-defined set of modes of the radi-
ation field. Not surprisingly, the corresponding resonance frequencies are eventually
identified with the usual (atomic) transition frequencies. Furthermore, the ergodic
properties of the system turn out to play a major role in quantization. Along the
process, we are led in a natural way to matrix mechanics as a suitable alternative tool
for the description of the dynamics of the particle in the quantum regime. The results
obtained endow the Heisenberg formalism with a revealing physical meaning, as is
discussed along the text and more in detail in the final part of the chapter.1

5.1.1 Description of the Mechanical Subsystem

As in Chap. 4, we consider a particle with mass m and charge e subject to an external

(binding, conservative) force f (x), in addition to the radiation reaction force mχ
···
x

and the electric component of the Lorentz force (in line with the nonrelativistic
approximation) due to the random background field. The motion of the particle is
thus governed by the Abraham-Lorentz equation

m
··
x = f (x) + mχ

···
x + eE(x,t), χ = 2e2

3mc3
. (5.1)

Our focus will be the stationary solutions of Eq. (5.1), whenever they exist. For
a study of these, a more detailed description of the random electric field E(x, t)
is required. For this purpose we expand it in terms of plane waves of frequency
ψk = c |k|, wave vector k, polarization ω and random amplitudes aω

k ,
2

1 The present exposition draws largely from de la Peña and Cetto (2006a, b) (2007),
de la Peña et al (2009), Valdés-Hernández (2010), Cetto et al. (2012), and references therein.
2 This kind of expansion in terms of plane waves is usual, both in dealing with stochastic forces (see
e.g. Rice 1954) and in qed [see e.g. Milonni (1994)]. The difference between a classical field and a
quantum field lies in the factor aω

k , which takes the value 1 in the classical instance, and represents
an operator in the quantum situation. Here, aω

k stands for a random variable.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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E(x, t) =
∑

k,ω

Ẽ(ψk)ε̂
ω
kaω

k e−i k·xeiψk t + c.c. (5.2)

The factor Ẽ(ψk) is determined by the mean energy of the corresponding modes—
which in the case of the zpf is given by �ψ/2—and ρ̂ω

k is the polarization unit
vector. By performing an angular average over all field modes having the same
frequency ψk and summing (which, up to a factor 2, is equivalent to averaging) over
the polarizations,3 Eq. (5.2) can be recast in the form

E(x, t) =
∑

ψk

Ẽ (ψk)

[∫

�k

d�k

(
∑

ω

ε̂ω
kaω

k

)
e−i k·x

]

eiψk t + c.c.

=
∑

ψk

Ẽ(ψk)ak(x)eiψk t + c.c., (5.3)

with ak(x) defined as

ak(x) ≡ a(ψk, x) =
∫

�k

d�k

(
∑

ω

ε̂ω
kaω

k

)
e−i k·x . (5.4)

The expression a(ψk, x) does not imply a functional dependence of a on ψk ; rather,
the notation stresses that to each frequencyψk there corresponds a stochastic variable
ak(x). For a maximally disordered field, which the zpf is normally assumed to
be in the absence of matter [as done already in Einstein and Stern (1913) and in
Chap. 3], the original aω

k are statistically independent random variables with a normal
distribution. However, the angular integration smoothes out the fluctuations, so that
the ensuing ak(x) represent a sort of coarse-grained amplitudes. We therefore make
the assumption that the integrated ak(x) have roughly fixed amplitudes and random
phases.4

Further and as before, the amplitude of the relevant modes of the field is assumed
not to vary appreciably in space within the characteristic deviations of the particle
from its mean position x0, so that E(x, t) can be replaced by E(x0, t) in Eqs.
(5.1)–(5.4); this is the long-wavelength approximation, the validity of which will

3 The summation over ω can be performed whenever the polarization of the radiation field is
irrelevant. However, this is not always the case, as will become evident in Chap.6, in connection
with the spin of the electron; in this case one must keep the distinction between the two different
polarizations.
4 Several authors in sed, in particular Boyer, use this representation systematically. Still, the fixed
amplitudes can be taken as normally distributed, but with a negligible dispersion. See also the
discussion at the end of Appendix A.

http://dx.doi.org/10.1007/978-3-319-07893-9_6
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be confirmed in due time.5 In the one-dimensional case, for simplicity (with the
direction of motion along x̂ and with the origin fixed at some x0), (5.3) reduces to

E(t) = E(t) · x̂ =
∑

ψk

Ẽ(ψk)a(ψk)e
iψk t + c.c. =

∑

k

Ẽkakeiψk t + c.c, (5.5)

were a(ψk) is the dimensionless stochastic variable a(ψk)= ak(0) · x̂ and we intro-
duced the succinct notation

Ẽkak = Ẽ(ψk)a(ψk), (5.6)

with

Ẽ(ψk)a(ψk) = Ẽ√(−ψk)a
√(−ψk). (5.7)

In addition we have

a(ψk) = eiλk , (5.8)

withλk a random phase in [0, 2γ] ;we have taken into account the fixed amplitude of
a(ψk), |a(ψk)| = 1. The size of the coefficients Ẽ(ψk) will therefore be determined
by the intensity (or the mean energy) of the corresponding modes. The coefficients
Ẽ(ψk) in the above expressions differ from some of those appearing in previous
chapters, for example, in Eqs. (4.7) and (4.8). In that case the stochastic amplitudes
a(ψk) are contained in the coefficients, whereas here they are written separately.

With the above approximations the equation of motion becomes

mẍ = f (x) + mχ
...
x + eE(t). (5.9)

5.1.2 Resonant Solutions in the Stationary Regime

As stated above, we are interested in the stationary solutions of Eq. (5.9). Each of
these can be decomposed into a time-independent contribution, which coincides with
the time average defined as

g(t)
t = lim

T ↑↓
1

2T

∫ T

−T
g(t)dt, (5.10)

5 The fact that the long-wavelength approximation does not hold for the field components
Ẽ(ψk)ak(x) of high frequency is irrelevant here, as their contribution amounts basically to an
inconsequential noise. As explained in Chaps. 4 and 9, for light atoms the relevant wavelengths are
ωk ◦ aB (aB is the Bohr radius). For heavier atoms, ωRyd ≥ 4γ�

3c/(me4) ≡ aB/ζ.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_9
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and an oscillatory (and fluctuating) contribution that averages to zero. Thus we look
for solutions of the form

xs(t) =
∑

k

x̃kakeiψk t + c.c, (5.11)

with x̃k the coefficient associated with the frequency ψk and

xs(t)
t = x̃0a0 + x̃√

0a√
0 , (5.12)

where the subindex 0 corresponds to the null frequency ψk=0 = 0. Notice that since
xs(t) is a real quantity, the coefficients x̃k satisfy (cf. Eq. 5.7)

x̃k = x̃(ψk) = x̃√(−ψk). (5.13)

Assuming that the external force f (x) can be expanded as a power series of x
(and excluding the case of a constant force, for simplicity),

f (x(t)) = c1x(t) + c2x2(t) + c3x3(t) + · · · , (5.14)

we decompose it in the stationary state in a form analogous to (5.11),

f s(t) =
∑

k

f̃kakeiψk t + c.c. (5.15)

It is important to stress that here as in Eq. (5.11), each component of frequency ψk

is conveniently written in the form f̃kak, although the quantities f̃k themselves (in
particular x̃k) depend in general (for nonlinear forces) on the variables {ak}, but not
on time. In other words, neither Eq. (5.11) nor Eq. (5.15) are explicit expansions in
the field stochastic variables ak ; yet the time dependence in both equations is fully
expressed through the periodic factors eiψk t .

Introducing Eqs. (5.5), (5.11) and (5.15) into (5.9) leads, after separating the terms
that oscillate with frequency ψk , to

− mψ2
k x̃k = f̃k − imχψ3

k x̃k + eẼk, (5.16)

or

x̃k = − e

m

Ẽk

�k
, (5.17a)

with �k ≡ ψ2
k − iχψ3

k + f̃k

mx̃k
. (5.17b)
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The dominant contributions to the solution x(t) come from the poles of x̃k , i.e.,
for �k 	 0. They correspond to those frequencies that satisfy the (approximate)
equation

ψ2
k ≥ − f̃k

mx̃k
. (5.18)

The resonances at these frequencies are extremely sharp due to the small value of
χ (recall that χ ≡ 10−23 s for electrons). Indeed, for atomic frequencies of interest
χψ � χψRyd ≡ ζ3, where ψRyd = 2γc/ωRyd and ζ = e2/�c is the fine-structure
constant. We denote the set of solutions of Eq. (5.18) as {ψk}res and refer to its
elements as resonance frequencies.

One should assume that there may be in principle more than one stationary solu-
tion. Since we are dealing with conservative forces, the different stationary solutions
would correspond to definite values of the mechanical energy E . A particular solu-
tion will be therefore labeled with an index ζ that is in direct correspondence with
the energy attained, denoted by Eζ.6 It is clear that for every stationary solution,
some frequencies (to be determined by the theory itself) play an important role in
the dynamics, while others not. Thus, every state ζ has associated with it a set of fre-
quencies, which will be referred to as relevant frequencies. We denote the elements
of this set as ψζβ, where the index β labels the different frequencies in such a way
that for β ∗= β∼, ψζβ ∗= ψζβ∼ , and write (5.11), (5.5) and (5.15) for a state ζ as

xsζ(t) =
∑

β

x̃ζβaζβeiψζβ t + c.c., (5.19a)

Eζ(t) =
∑

β

Ẽζβaζβeiψζβ t + c.c., (5.19b)

f sζ(t) =
∑

β

f̃ζβaζβeiψζβ t + c.c., (5.19c)

in terms of the shorthand notation

Ãζβ = Ã(ψζβ), aζβ = a(ψζβ), (5.20)

which does not imply a functional dependence on the frequency ψζβ, but simply a
correspondence between the respective quantity and the frequency ψζβ . Further, in
line with Eq. (5.8), the stochastic variable aζβ can be expressed as

aζβ = eiλζβ , (5.21)

6 As will be seen below, the stationary states labeled with ζ will turn out to be the stationary states
predicted by the Schrödinger equation and derived in Chap. 4. However, for the present approach
to be self-contained, in this chapter we are developing the argument with independence from our
previous results.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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with λζβ a stochastic phase in [0, 2γ].
In analogy with Eq. (5.12), the time average of xsζ(t) is given by

xsζ(t)
t = x̃ζβ0aζβ0 + x̃√

ζβ0
a√
ζβ0

, (5.22)

where β0 is defined so that

ψζβ0 = 0. (5.23)

An entirely analogous expression follows of course for f sζ(t)
t
. Again, the coefficients

x̃ζβ , f̃ζβ depend in principle on the field variables aζβ, and hence the expressions
(5.19a) and (5.19c) should not be understood as explicit expansions on such variables.
It should be noticed that in (5.19b), Eζ does not represent the expansion of the
free field, but rather the expansion of the field which contains only those modes
of frequencies that are relevant for the dynamics of the mechanical system when
the latter has attained the stationary state ζ. The rest of components generate a
background noise that is being neglected, on account of the strong response to the
relevant frequencies.

One of the main goals of the present theory is to determine the set {ψζβ} for a
given stationary state ζ; consequently we must in principle allow ψζβ to acquire
both positive and negative values. Therefore the expansions (5.19a, 5.19b, 5.19c), at
variance with those of the form (5.15), do not necessarily refer to explicit expansions
in terms of positive and negative frequencies. The transition

∑
k ↑ ∑

β may thus
require a reordering of terms in the sums.

In order to determine the equation for the resonance frequencies for a given state
ζ, we introduce the expansions (5.19a, 5.19b, 5.19c) into Eq. (5.9), which thus
becomes

−
∑

β

mψ2
ζβ x̃ζβaζβeiψζβ t + c.c. (5.24)

=
∑

β

( f̃ζβ − imχψ3
ζβ x̃ζβ + eẼζβ)aζβeiψζβ t + c.c.

Thus for each relevant frequency ψζβ ,

− mψ2
ζβ x̃ζβeiψζβ t = f̃ζβeiψζβ t − imχψ3

ζβ x̃ζβeiψζβ t + eẼζβeiψζβ t . (5.25)

This equation can be rewritten as

m
d2 x̃ζβ(t)

dt2
= f̃ζβ(t) + mχ

d3 x̃ζβ(t)

dt3
+ eẼζβ(t), (5.26)

with
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Ãζβ(t) ≡ Ãζβeiψζβ t . (5.27)

From Eq. (5.25) one obtains, in analogy with (5.17a, 5.17b),

x̃ζβ = − e

m

Ẽζβ

�ζβ
, (5.28a)

�ζβ = ψ2
ζβ − iχψ3

ζβ + f̃ζβ

mx̃ζβ
. (5.28b)

This means that the mechanical system in state ζ responds resonantly to those fre-
quencies that solve, in analogy with Eq. (5.18), the system of equations

ψ2
ζβ ≥ − f̃ζβ

mx̃ζβ
. (5.29)

Equation (5.29) represents in general a system of coupled nonlinear equations for the
x̃ζβ’s andψζβ ’s. Each one of the quantitiesψζβ, x̃ζβ and f̃ζβ depends (for nonlinear
systems) on other members of the same set. In the present condensed writing all the
nonlinearities of the problem are concealed.

Those relevant frequencies ψζβ that satisfy the above equation are precisely the
resonance frequencies corresponding to the state ζ—the ones that determine the
main contributions to xsζ(t)—which of course constitute a subset of the solutions of
Eq. (5.18). As seen from Eq. (5.19c), the remaining relevant frequencies are just the
oscillation frequencies that contribute dominantly to the expansion of an arbitrary
power series of x (or p, as will be clear from Appendix B); therefore, the entire
set of frequencies that are of relevance for a particular problem is in general larger
than the set of resonance frequencies. As we go ahead, the meaning of the relevant
frequencies will be further clarified. In particular, in Appendix B a specific example
is studied and the problem of determining the relevant frequencies for higher powers
of x is carried out in detail. At the root of the resonant behavior is the fact that the field
contains modes of all frequencies, each with a relatively large spatial and temporal
coherence and thus able to act coherently on the particle for times longer than the
relaxation time of the system.

The fact that the equation of motion (5.24) decomposes into Eq. (5.26) and its
complex conjugate, allows us to restrict the study to the solutions of (5.26) only.
We thus observe that this latter is the detailed form, satisfied term by term, of the
equation

mẍζ = fζ + mχ
...
x ζ + eEζ, (5.30)

with
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xζ(t) =
∑

β

x̃ζβaζβeiψζβ t , (5.31a)

fζ(t) =
∑

β

f̃ζβaζβeiψζβ t , (5.31b)

Eζ(t) =
∑

β

Ẽζβaζβeiψζβ t . (5.31c)

From this point on we will work with Eq. (5.30)—which is in direct correspondence
with the original equation of motion—andwith expansions of the form (5.31a, 5.31b,
5.31c), where the coefficients are given by the solutions of Eq. (5.25).

5.2 The Principle of Ergodicity

Due to the stochasticity of the field, the solutions (5.11) refer to a given realization
(i) of the random zpf. This means that instead of xs(t), for example, one ought to
write xs(i)(t),where the index (i) (omitted for simplicity in the previous expansions)
stresses the dependence of xs(t) on the specific field realization through the random
coefficients a ≡ a(i).

The set {i} of all the realizations of the field determines the ensemble of all possible
realizations for an individual system. This statistical set can therefore be reproduced
by considering not one, but an ensemble of particles, each of which is subject to a
different realization of the field. Clearly such ensemble includes particles that, once
stationarity has been attained, have reached one of the possible stationary states.
Thus, when focusing on a specific stateζ,we areworking onlywith a subensemble of
particles, or equivalently, a subensemble {i}ζ of the field realizations, such that {i} =⋃

ζ
{i}ζ.7 Hence, for example, xζ(t) should be written in an explicitly realization-

dependent form as x (i)
ζ (t), with (i) ∈ {i}ζ.

According to the above, in what follows, when referring to a given stationary

state ζ, the averages over the ensemble of realizations of the field (denoted as (·)(i))
are considered to be taken over (i) ∈ {i}ζ; alternatively, they can be determined by

7 The proposed decomposition is similar to the one that occurs in the harmonic oscillator case
studied in Chap.3. Thus, for a system of oscillators in equilibrium with the background field,
one can resort to Eq. (3.84) applied to f (E) = E to write the mean energy of the ensemble as

⊗E〉 = ∑
n wnEn = ∑

i PiE(i) = E(i)
(i)

, where En and wn are given by Eqs (3.80) and (3.85),
respectively, and Pi is the weight function (with respect to the whole event space {i}) associated
with the specific realization (i). According to the discussion following Eq. (3.85), the index n
distinguishes among the different stationary states accessible to the mechanical subsystem (thus
n here plays the role of ζ). By contrast, consider an ensemble of classical (Brownian) harmonic
oscillators with E0 = 0. In this case the decomposition ⊗E〉 = ∑↓

n=0 wnEn becomes trivial, since
the only stationary state corresponds to E0 = 0.

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_3
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averaging over the subensemble of particles (denoted as ⊗·〉) that have reached such
state.

We now introduce a hypothesis that will turn out to be central for the development
of the present theory, namely that once in a stationary state, the system has acquired
ergodic properties. This is a natural assumption for a particle that performs a random
but stationary, hence recurring motion when subject to a binding potential. It means
that the system becomes recurrent in statistical terms, so that it eventually fills the
available subspace surface. The ergodic principle implies that the time averages
of the dynamical variables coincide with their corresponding field-realization (or
ensemble) averages, that is,

g(i, t;ζ)
t = g(i, t;ζ)

(i) = ⊗g(i, t;ζ)〉 (5.32)

for every function g that depends on time and on the field realization, for a given
stationary state ζ. This means that

g(i, t;ζ)
t
is independent of (i). (5.33)

In the following we explore the consequences of introducing such condition.
Throughout this section we make the i-dependence explicit in every quantity that
depends on (i) when convenient, yet for simplicity in the writing we shall omit it in
general in the rest of the sections.

Let us focus on an arbitrary dynamical variable A that in state ζ has the form

Aζ(t) =
∑

β

Ãζβaζβeiψζβ t . (5.34)

By decomposing (5.34) into its time-independent contribution plus oscillating terms
that average to zero, one gets (recall from Eq. (5.23) that ψζβ0 = 0)

Aζ(t) = Ãζβ0aζβ0 +
∑

β( ∗=β0)

Ãζβaζβeiψζβ t , (5.35)

whence

A(i)
ζ (t)

t
= Ã(i)

ζβ0
a(i)
ζβ0

. (5.36)

The ergodic condition in its form (5.33) implies that the right hand side of (5.36) is
i-independent, whence

Ã(i)
ζβ0

a(i)
ζβ0

= Ãζβ0aζβ0 . (5.37)

We will come back to this result below.
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The second term in (5.35) corresponds to the deviations of Aζ(t) from its mean
value, and its modulus allows us to calculate the variance β2

Aζ
defined as

β2
Aζ

=
∣∣∣Aζ − Aζ(t)

t
∣∣∣
2

t

, (5.38)

where

∣∣
∣Aζ − Aζ(t)

t
∣∣
∣
2 =

∑

β∼( ∗=β0),β∼∼( ∗=β0)

Ãζβ∼ Ã√
ζβ∼∼aζβ∼a√

ζβ∼∼ei(ψζβ∼−ψζβ∼∼ )t (5.39)

=
∑

β∼( ∗=β0)

∣
∣∣ Ãζβ∼aζβ∼

∣
∣∣
2

+
∑

β∼( ∗=β0) ∗=β∼∼( ∗=β0)

Ãζβ∼ Ã√
ζβ∼∼aζβ∼a√

ζβ∼∼ei(ψζβ∼−ψζβ∼∼ )t .

The first term in the second line is time-independent, whilst the remaining terms
oscillate with frequency ψζβ∼ − ψζβ∼∼ ∗= 0 for β∼ ∗= β∼∼. Thus, by identifying the non

oscillating contribution in Eq. (5.39) with the time average of
∣∣∣Aζ − Aζ(t)

t
∣∣∣
2
we

obtain the following expression for the variance of Aζ,

β
2(i)
Aζ

=
∣∣∣∣A(i)

ζ − A(i)
ζ (t)

t
∣∣∣∣

2
t

=
∑

β( ∗=β0)

∣∣∣ Ã(i)
ζβa(i)

ζβ

∣∣∣
2
. (5.40)

As before, it follows from condition (5.33) that the right-hand side of Eq. (5.40)
must be independent of the realization. Further, since according to Eq. (5.8) the
modulus of a(i)

ζβ is 1, we get

β2
Aζ

=
∑

β( ∗=β0)

∣∣∣ Ã(i)
ζβ

∣∣∣
2
independent of (i). (5.41)

This equation must be satisfied for every ζ and for any variable Aζ that decomposes
as (5.34). Moreover, the number of (statistically independent) terms that contribute
to the sum depends on the particular system and on the specific variable A, hence
the sum may be either finite or infinite. The solution to Eq. (5.41) is that each term
of the respective sum is independent of the realization.8 As to the term with β = β0,

8 For a finite number of terms the proposed solution is the general one. For an infinite sum of
statistically independent terms, according to the central-limit theorem [see e.g. Papoulis (1991)]
the variable β2

Aζ
follows a normal distribution. Yet the condition (5.41) implies that β2

Aζ
must be a

sure, nonstochastic variable, so that the normal distribution must have zero width. This implies that
each term in the sum has zero variance, whence it is a sure quantity.
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we can resort to Eqs. (5.8) and (5.37) to conclude that
∣
∣∣ Ã(i)

ζβ0

∣
∣∣
2
is also independent

of i . This allows us to write

Ã(i)
ζβ = Ãζβeiν(i)

ζβ(A) (5.42)

for all β, with Ãζβ a nonstochastic (sure) complex number, and ν
(i)
ζβ(A) a stochastic

phase that, in principle, depends on the variable A. Inwhat followswe draw important
conclusions regarding such phase.

Consider two variables A1 and A2 that in the stationary state ζ are given by
expansions of the form (5.34). Clearly the sum A3ζ = A1ζ + A2ζ can also be
expanded as in (5.34), so that the coefficient Ã(i)

3ζβ corresponding to the frequency
ψζβ is given by

Ã(i)
3ζβ = Ã(i)

1ζβ + Ã(i)
2ζβ . (5.43)

Multiplying this equation by its complex conjugate and using Eq. (5.42) for each
Ã(i)

nζβ (n = 1, 2, 3), one obtains

∣
∣∣ Ã3ζβ

∣
∣∣
2 =

∣
∣∣ Ã1ζβ

∣
∣∣
2 +

∣
∣∣ Ã2ζβ

∣
∣∣
2 + 2Re Ã1ζβ Ã√

2ζβei�(i)
ζβ , (5.44)

with

�
(i)
ζβ = ν

(i)
ζβ(A1) − ν

(i)
ζβ(A2). (5.45)

Since the left-hand side of (5.44) is a sure quantity, and �
(i)
ζβ is the only realization-

dependent term on the right-hand side, the equation requires �
(i)
ζβ to be a sure,

nonstochastic phase. This means that for all ζ,β, and irrespective of A1 and A2,

the stochasticity of ν
(i)
ζβ(A1) is the same as that of ν

(i)
ζβ(A2), hence ν

(i)
ζβ in Eq. (5.42)

is the same for all A. This result implies that the (common) stochasticity of Ã(i)
ζβ is

physically irrelevant when considering equations involving coefficients of the form
Ã(i)

ζβ, whence we may drop the phase ν(i)
ζβ and write

Ã(i)
ζβ = Ãζβ . (5.46)

In particular, putting Aζ equal to xζ and ẋζ, we obtain, respectively,

x̃ (i)
ζβ = x̃ζβ, ˜̇x (i)

ζβ = ˜̇xζβ = iψζβ x̃ζβ . (5.47)

With Eq. (5.46) at our disposal, we are in a position to return to Eqs. (5.37) and (5.21)
and obtain
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a(i)
ζβ0

= aζβ0 , (5.48)

λ
(i)
ζβ0

= λζβ0 . (5.49)

Equation (5.46) is a most notable outcome of the principle of ergodicity. The
meaning and implications of it are examined below when applied, in particular, to
the coefficients of expansions such as (xn)ζ. The fact that the Ãζβ (in particular
x̃ζβ) and the ψζβ are nonrandom variables in the present approximation, leads to the
conclusion that Eqs. (5.31a, 5.31b, 5.31c) are explicit expansions in the variables
a(i)
ζβ , i.e., linear functions of the stochastic components of the field. In particular,
with x̃ζβ given by (5.28a), we have

x (i)
ζ (t) = − e

m

∑

β

Ẽζβ

�ζβ
a(i)
ζβeiψζβ t . (5.50)

For this reason, the theory that ensues as a result of the condition of ergodicity is
called Linear Stochastic Electrodynamics (lsed).9

5.2.1 The Chain Rule

The ergodic properties just discussed have far-reaching consequences, both for the
physical behavior of the system and for the mathematical formalism used to describe
it. We focus first on the latter and leave the former for the following sections. Since
the derivations are quite lengthy they are presented in Appendix A; the following is
a summary of the main results.

A central aspect relates to the way in which the expansion of the force, or more
generally of a nonlinear function of x , must be constructed when the mechanical
system is in the stationary state ζ, so as to comply with the demand of ergodicity.
Take, for example, the expression for the variable x2,

(x2)ζ =
∑

β

(x̃2)ζβaζβeiψζβ t . (5.51)

As shown inAppendixA [seeEq. (A.11)], for Eq. (5.46) to be satisfied the coefficients
in this expansion must be given by

9 The foundations of lsed can be traced to the early papers by de la Peña and Cetto (1991–1995)
and Cetto and de la Peña (1991). A detailed account of this initial stage of the theory can be found
in The Dice, Chap.10. As mentioned there, this line of research was motivated by the need to solve
some of the critical challenges faced by sed in the 1980-90s. More recent work, as of de la Peña and
Cetto (1999, 2001), and especially the references cited in footnote 1, deal with a more developed
form of the theory that in some aspects differs noticeably from the original one.

http://dx.doi.org/10.1007/978-3-319-07893-9_10
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(x̃2)ζβ = x̃2(ψζβ) =
∑

β∼
x̃(ψζβ∼)x̃(ψζβ − ψζβ∼), (5.52)

and the stochastic variables must fulfill Eq. (A.10), namely (in this and the following
expressions no summation over repeated indices is assumed)

a(ψζβ∼)a(ψζβ − ψζβ∼) = a(ψζβ). (5.53)

Equation (5.52) shows that the dominant (nonnoisy) contributions to (x2)ζ come
from those frequencies ψζβ such that ψζβ −ψζβ∼ and ψζβ∼ are resonance frequencies
(i.e., frequencies corresponding to dominant contributions to xζ). The condition that
bothψζβ −ψζβ∼ andψζβ∼ satisfy an equation of the form (5.29) is the one that selects,
from the complete set of relevant frequencies {ψζβ}, those that are important for the
variable (x2)ζ. For other variables this condition will change, and other relevant
frequencies will come into play, as shown in the example presented in Appendix B.

It is further argued in Appendix A that the summation indices (β) in the above
expansions are much more than mere labels introduced to distinguish between the
different relevant frequenciesψζβ . Instead they are endowedwith a physicalmeaning
by denoting additional stationary states accesible to the mechanical system, ζ being
only one of them (hence ζ ∈ {β}). Consequently, new frequencies ψβ∼β∼∼ (with β∼,
β∼∼ ∈ {β}) appear in the description, satisfying the relations [Eqs. (A.28) and (A.29)]

ψβζ = −ψζβ, (5.54a)

ψζβ∼ + ψβ∼β∼∼ + · · · + ψβ(n−1)β = ψζβ . (5.54b)

The antisymmetry of ψζβ suggests writing it in the form (see A.27)

ψζβ = �ζ − �β, (5.55)

with the physical meaning of the parameters �ζ,β to be determined in Sect. 5.4.1.
Equation (5.54b) involves an arbitrary number of relevant frequencies ψβ(n)β(m) that
do not necessarily represent resonance frequencies, indicating that appropiate lin-
ear combinations of relevant frequencies result in another relevant frequency (see
Appendix B).

From Eqs. (5.54a, 5.54b) one obtains, in particular,

ψζβ + ψβζ = ψζζ = 0, (5.56)

whence the index β0 introduced in Eq. (5.23) is just β0 = ζ. It also follows from
(5.54a, 5.54b) thatψζβ −ψζβ∼ = ψβ∼β,whence Eq. (5.52) reduces to [see Eq. (A.37)]

(x̃2)ζβ =
∑

β∼
x̃(ψζβ∼)x̃(ψβ∼β) =

∑

β∼
x̃ζβ∼ x̃β∼β, (5.57)
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and (5.53) becomes
aζβ∼aβ∼β = aζβ . (5.58)

This last result is readily generalized to an arbitrary number of factors by a successive
(chained) application of it, [see Eq. (A.31)]

aζβ∼aβ∼β∼∼aβ∼∼β∼∼∼ · · · aβ(n−1)β = aζβ . (5.59)

As shown in the appendix (Eq. A.34) it follows that aζβ is of the form

aζβ = eiλζβ = ei(φζ−φβ), (5.60)

with φω a random phase. Thus,

aζβ = a√
βζ, (5.61)

which combined with (5.59) gives

aζβaβζ = ∣
∣aζβ

∣
∣2 = aζζ = 1. (5.62)

Equations (5.54b) and (5.59) are the chain rules established for the frequencies
and the corresponding stochastic variables, respectively. It is important to note that
they ultimately ensue from the ergodic demand, specifically as a consequence of
imposing condition (5.46), and turn out to be decisive on the mathematical structure
of the description, as will be seen in the next section. Equation (5.59) tells us that
the amplitudes of the field pertaining to relevant modes become partially correlated,
indicating that not only thematerial part, but also the near background field is affected
during the evolution of the complete system towards equilibrium.

5.2.2 Matrix Algebra

We now come back to Eq. (5.57), namely

(x̃2)ζβ =
∑

β∼
x̃ζβ∼ x̃β∼β, (5.63)

and observe that the right-hand side embodies the rule for matrix multiplication, with
the (square) matrix x̂ having as elements the coefficients x̃β(n)β(m) (β(n),β(m) ∈ {β}).
The matrix x̂ thus defined is Hermitian, as follows from considering the expressions
for xζ(t) and x√

ζ(t),
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xζ(t) =
∑

β

x̃ζβaζβeiψζβ t , (5.64a)

x√
ζ(t) =

∑

β

x̃√
ζβaβζeiψβζt , (5.64b)

where the second line follows from (5.54a) and (5.61). Indeed, these equations show
that with respect to aζβ and ψζβ, the conjugation amounts to an exchange of the
indices ζ and β, whence

x̃√
ζβ = x̃βζ. (5.65)

The antisymmetry of ψζβ indicates that this result is consistent with the property
x̃√(ψζβ) = x̃(−ψζβ), satisfied by the coefficients x̃ζβ = x̃(ψζβ) of the expansion
(5.19a) for the real variable xsζ [see also Eq. (5.13)].

In line with Eq. (A.39), the expression (5.57) can be generalized to higher powers
of x, thus obtaining

(x̃n)ζβ =
∑

β∼...β(n−1)

x̃ζβ∼ x̃β∼β∼∼ . . .x̃β(n−1)β, (5.66)

whence for the n-th power of x in the state ζ we have

(xn)ζ =
∑

β

(x̃n)ζβaζβeiψζβ t , (5.67)

with (x̃n)ζβ given by the element ζβ of the corresponding matrix product, (x̃n)ζβ =(
x̂n

)
ζβ

.
With the chain rule applied to the frequencies, Eq. (5.54b), one may transfer the

time dependence to every single factor x̃ in Eq. (5.67) and define an evolving matrix
x̂(t) as follows,

(
xn)

ζ
=

∑

β

⎛
⎝ ∑

β∼,β∼∼...β(n−1)

x̃ζβ∼ x̃β∼β∼∼ . . . x̃β(n−1)β

⎞
⎠ aζβeiψζβ t

=
∑

β

⎡

⎣
∑

β∼,...,β(n−1)

(x̃ζβ∼eiψζβ∼ t )(x̃β∼β∼∼eiψβ∼β∼∼ t ) . . . (x̃β(n−1)βeiψ
β(n−1)β t

)

⎤

⎦ aζβ

=
∑

β

[
x̂n(t)

]
ζβ

aζβ, (5.68)

with x̂ζβ(t) = x̃ζβeiψζβ t .
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The above results hold also for arbitrary powers of ẋ(t), so that

(
ẋn)

ζ
=

∑

β

(̂ẋ
n
)ζβaζβeiψζβ t (5.69)

witĥ̇xζβ = iψζβ x̃ζβ the ζβ element of the Hermitian matrix ̂̇x . Thus, every dynam-
ical variable A that can be expressed as a power series of x or ẋ—or, more generally,
as a power series of the form h(x) + g(ẋ)—has a square Hermitian matrix Â asso-
ciated with it, with elements ζβ given by the coefficients Ãζβ . Functions that are
expressed in terms of products of the form �nmcnm xn pm are left aside for the time
being, since a rule for the ordering of the corresponding matrices would be required.
In the following the matrix elements Ãζβ in expansions such as (5.19a) and (5.31a,
5.31b, 5.31c) will be simply denoted as Aζβ . In state ζ the expansion for A reads
therefore

Aζ(t) =
∑

β

Aζβaζβeiψζβ t . (5.70)

Moreover, the matrix Â can absorb the time dependence, so that

Aζβ(t) = Aζβeiψζβ t . (5.71)

Extracting from the sum (5.70) the element corresponding to β = ζ and using
Eqs. (5.56) and (5.62), one gets

Aζ(t) = Aζζ +
∑

β ∗=ζ

Aζβaζβeiψζβ t , (5.72)

which shows that the diagonal element Aζζ coincides with the mean value

Aζζ = Aζ(t)
t = ⊗Aζ〉 . (5.73)

With the above results, the well-known (formal) correspondence between physi-
cal variables and (Hermitian) operators is established. Contrary to what happens in
the usual formalism, however, these results point to a direct and well-defined con-
nection between a matrix Â and the associated variable A. Indeed, the expansion
(5.70) expresses the relation between the variable A(t) in the state ζ and the ζ-th
row of the matrix Â(t). Thus, it is the set {Aζ(t)} (including all states ζ) what is in
correspondence with the matrix Â(t). In particular, since the set of stationary solu-
tions of Eq. (5.9) contains all the possible stationary states (recall the discussion at
the beginning of Sect. 5.2), we conclude that the matrix x̂ is in direct correspondence
with the (family of) solutions of the original equation of motion (5.9).

It should be borne in mind that the Aζ(t) given by (5.70) still contains the ran-
dom amplitudes aζβ , which depend on the realization (i). Therefore the present
description refers to an element of a (sub)ensemble of particles, and the information
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contained in it must be considered only as representative of this ensemble. Conse-
quently the quantum operator Â does not correspond, as is usually assumed, to the
variable A(t) of a single system; rather, it encapsulates the dynamical information
that is common to all members of the ensemble.

While according to (5.73) the diagonal elements of thematrix Â carry information
about the mean values of the corresponding variable A in all possible stationary
states, the nondiagonal elements bear information about the deviations from those
mean values. This can be seen by resorting to Eq. (5.41) (with Ã(i)

ζβ = Ãζβ = Aζβ

and β0 = ζ, as explained above) for the variance of A in state ζ,

β2
Aζ

=
∑

β( ∗=ζ)

∣
∣Aζβ

∣
∣2 . (5.74)

Since in Eq. (5.70) these deviations are accompanied by the stochastic field ampli-

tudes,we conclude that the nondiagonal elements of Â are nontrivial as a consequence
of the presence of the zpf. We refer the reader to Sect. 5.4.4 for a discussion on the
relation between fluctuations and the off-diagonal elements of Â.

5.3 Physical Consequences of the Ergodic Principle

5.3.1 Establishing Contact with Quantum Theory

In the preceding sections we have seen that the chain rule deriving from the ergodic
principle entails a matrix algebra for the generic amplitudes Aζβ , which are the
coefficients in the expansion of Aζ(t). With these results Eq. (5.26) takes the form

m
d2 x̂(t)

dt2
= f̂ (t) + mχ

d3 x̂(t)

dt3
+ eÊ(t). (5.75)

It should be stressed that (5.75) is much more than a new form of writing Eq.

(5.26). As a result of the ergodic demand, neither xζβ (x̂) nor fζβ ( f̂ ) depend on
the aζβ’s, and hence the random variables have been cancelled out. That is, the
stochastic equation of motion (5.30), written in terms of c-(random) numbers, has
been transformed into a nonstochastic matrix equation (q-numbers). Yet in contrast
with (5.30), which refers to a specific stationary state ζ, Eq. (5.75) involves matrices
that contain information about all possible stationary states.

Equation (5.75) goes beyond the quantum-mechanical description; it is the equa-
tion of motion proper of nonrelativistic qed. As will be discussed in Chap.6, the

http://dx.doi.org/10.1007/978-3-319-07893-9_6
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radiative terms in (5.75) prevent any excited state from having an infinite lifetime.10

This confirms our conclusion that the transition to qm, and hence to a description
that admits (formally) truly stationary states, entails neglecting the radiative terms in
Eq. (5.75). The radiationless approximation must be made (and will be made in the
following section), in order to obtain the quantum-mechanical description, made in
terms of stationary states that satisfy the ergodic (recurrent) condition. This should
be compared with the results of Chap.4, where stationarity (a recurrent behavior
for bounded systems) is reached under the condition of energy balance. Both condi-
tions can be captured under the broader term quantum regime, already introduced in
Chap.4.

The fact that we have arrived at Eq. (5.75), which bears information regarding the
dynamics of the mechanical system in the ergodic regime, indicates the convergence
of the present theory and (nonrelativistic, spinless) qed. We recall that the results
of Chap.3 already pointed to the conclusion that, when the zpf is duly taken into
account, the field in equilibriumwithmatter [which is the field entering in Eq. (5.75)]
appears quantized. It should be clear by now, however, that the equivalence between
the descriptions afforded by qed and lsed refers to their formal features; they are
conceptually distinct theories, with important differences in their physical outlook.11

5.3.2 The Radiationless Approximation

Since in the quantum regime the contribution of the radiative terms in the equation
of motion (5.75) reduces to radiative corrections, these terms can be neglected in a
first approximation, whence Eq. (5.75) becomes

m
d2 x̂(t)

dt2
= f̂ (t). (5.76)

It must be noticed that even though this equation is the result of a legitimate approx-
imation, it differs crucially from Eq. (5.75) in the sense that it lacks any reference to
the field that has driven the system to the quantum regime. With the disappearance
of the cause of the quantum behavior, the description becomes acausal, and with
the disappearance of any reference to the background field it becomes an abstract
expression; quantum mechanics is then (futilely) doomed to explain itself by its own
bootstraps.

10 In qm it is customary to call stationary the eigenstates of the time-independent (stationary)
Schrödinger equation. Strictly speaking, all excited atomic eigenstates have finite lifetimes. Since
the atomic lifetimes are ≡106 times a typical atomic period, such states can be appropriately called
quasi-stationary.
11 Recall that the present theory has focused on the description of the states attained by the mechan-
ical system only, leaving aside the description of the evolution of the field. Therefore the stated
equivalence between the present theory and qed refers basically to the mechanical subsystem.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_3
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In the radiationless approximation the Hamiltonian matrix for the particle reduces
to

Ĥ = p̂2

2m
+ V (x̂), (5.77a)

and x̂ and p̂ satisfy the equations

p̂ = m
dx̂

dt
,

d p̂

dt
= f̂ . (5.78)

Recalling that the elements of Â(t) are Aζβ(t) = Aζβeiψζβ t [see Eq. (5.71)], this
gives

pζβ = imψζβxζβ, (5.79)

fζβ = iψζβ pζβ .

With these results one may proceed to construct the law of evolution for the
matrix Â(t) associated with a dynamical variable A. On one hand, by taking the time
derivative of Aζ(t) and using Eqs. (5.71), (5.55), one arrives at

d Aζ(t)

dt
=

∑

β

i
[
�ζ Aζβ(t) − �β Aζβ(t)

]
aζβ

=
∑

β

i
[
�̂, Â(t)

]

ζβ
aζβ, (5.80)

where �̂ is the diagonal matrix with elements

�ζβ = �ζδζβ . (5.81)

On the other hand, one can write

d Aζ(t)

dt
=

(
d A(t)

dt

)
ζ

=
∑

β

Ȧζβ(t)aζβ . (5.82)

Equations (5.80) and (5.82) taken together give the evolution law Ȧζβ = i
[
�̂,

Â(t)
]

ζβ
, or in closed matrix notation,

i
d Â(t)

dt
=

[
Â(t), �̂

]
. (5.83)
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This result is a direct consequence of the structure of the expansion of Aζ(t) and the
antisymmetry of the frequencies ψζβ , a property that is therefore at the root of an
evolution law involving an algebra of commutators.

Equation (5.83) shows that the matrix �̂ plays a central role in determining the
evolution of the mechanical subsystem. Since this latter is controlled by the Hamil-
tonian, it follows that the matrix �̂ must be related to Ĥ . The relation between �̂

and Ĥ , to be established below, acquires importance not only because it allows to
express (5.83) in terms of Ĥ , but also because it relates the relevant frequencies
ψζβ = �ζ − �β with the elements of the Hamiltonian matrix.

As a first step for establishing the connection between �̂ and Ĥ we expand the
(mechanical) Hamiltonian function in the state ζ in the form

Hζ = Eζ +
∑

β ∗=ζ

Hζβaζβeiψζβ t , (5.84)

since Hζζ = Hζ
t = Eζ [see Eq. (5.73)]. In the stationary radiationless regime Hζ

does not evolve in time and is a sure, nonstochastic quantity. Therefore,

d Hζ

dt
=

∑

β ∗=ζ

iψζβ Hζβaζβeiψζβ t = 0. (5.85)

This equation holds only if ψζβ Hζβ = 0 for ζ ∗= β, whence

Hζβ = Eζδζβ . (5.86)

Since in the present description both �̂ and Ĥ are diagonal matrices, they relate to
each other via a third diagonal matrix D̂, so that,

�̂ = D̂ Ĥ = Ĥ D̂, (5.87)

where the elements of D̂ are functions, still to be determined, of the elements of
Ĥ , i.e.,

D̂ζβ = ζζ(Ĥ)δζβ . (5.88)

Equation (5.87) thus gives

�ζ = ζζ(Ĥ)Eζ, (5.89)

which combined with (5.55) results in

ψζβ = ζζEζ − ζβEβ . (5.90)
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We now introduce (5.87) into Eq. (5.83) applied to Â = x̂, resort to (5.77a) and
the first equation in (5.78), and arrive thus at

i

m
p̂ = Ĥ

[
x̂, D̂

]
+ 1

2m

(
Ĉ p̂ + p̂Ĉ

)
D̂, (5.91)

with Ĉ the canonical commutator,

Ĉ = [
x̂, p̂

]
. (5.92)

The first expression in (5.79), together with (5.86) and (5.88), shows that equation
(5.91) establishes an algebraic relation between the relevant frequencies and the
elements of thematrices D̂, Ĥ and Ĉ . Thus, by determining the elements of thematrix[
x̂, p̂

]
we will be able, after comparison of Eqs. (5.90) and (5.91), to disclose the

relation between �̂ and Ĥ . In the following we tackle the problem of calculating the
commutator (5.92), to then come back and give final form to the evolution Eq. (5.83).

5.3.3 The Canonical Commutator
[
x̂, p̂

]

To calculate the commutator Ĉ = [
x̂, p̂

]
we start bywriting its elementζβ explicitly,

using the chain rule (5.54b) in the form ψζβ = ψζγ + ψγβ . This gives

ψζβCζβ =
∑

γ

(
xζγ pγβ − pζγxγβ

) (
ψζγ + ψγβ

)

=
∑

γ

(
xζγ pγβψζγ + xζγ pγβψγβ − pζγψζγxγβ − pζγxγβψγβ

)
. (5.93)

The first and last terms in the second row cancel each other by virtue of the equations
of motion (5.79), and we are left with

ψζβCζβ = −i
[
x̂, f̂ (x)

]

ζβ
= 0. (5.94)

Since this must be satisfied for any pair ζβ, and in general ψζβ ∗= 0 (except for
ζ = β), Ĉ must be diagonal,

Cζβ = Cζδζβ . (5.95)

We can now introduce this expression into Eq. (5.91) written in terms of the matrix
elements, using also Eqs. (5.86) and (5.88). The result reads

i

m
pζβ = Eζxζβ

(
ζβ − ζζ

) + 1

2m
pζβζβ

(
Cζ + Cβ

)
. (5.96)
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With the aid of the first equation in (5.79) and (5.90) we obtain, after some rearrange-
ments (which include dividing by the factor xζβζβ, assumed to be nonzero)12

ψζβ

(
Cζ + Cβ

) = 2i
(Eζ − Eβ

)
. (5.97)

At this point we apply the chain rule (5.54b) to the frequencies in (5.97), i.e.,

ψζγ + ψγβ = 2i

( Eζ − Eγ

Cζ + Cγ
+ Eγ − Eβ

Cβ + Cγ

)
= ψζβ = 2i

Eζ − Eβ

Cζ + Cβ
. (5.98)

For this equation to hold, the coefficient of Eγ in the middle term must vanish, which
implies that

Cζ = Cβ = C. (5.99)

This is a most important result: it means that the commutator
[
x̂, p̂

]
has a universal

value, independent of the state, hence of the particular system,

[
x̂, p̂

] = CI. (5.100)

We now proceed to determine the value of the constant C . Due to its universality,
for simplicity in the calculation we consider an ensemble of harmonic oscillators of
frequency ψ0 embedded in the background field. With the help of Eqs. (5.28a) and
(5.79), the nonzero (diagonal) elements of

[
x̂, p̂

]
can be written as

Cζ = [
x̂, p̂

]
ζζ

= i
2e2

m

∑

γ

ψγζ
∣
∣�γζ

∣
∣2

Ẽ√
γζ Ẽγζ. (5.101)

SinceCζ does not depend onζ, one can calculate the right-hand side of this equation
assuming thatζ represents the oscillator’s ground state,ζ = 0.Now, for the oscillator
to reach stationarity and remain in its ground state, also the background field must
be in the ground state, which means that only the vacuum field, with spectral energy
density

ε0(ψ) = �ψ3

2γ2c3
, (5.102)

is present (see discussion in Sect. 4.4.4).
Passing to the continuum with ψγ0 ↑ ψ and13

12 Notice that the assumption xζβ ∗= 0 needed to arrive at this expression implies that ψζβ in
(5.97) is a resonance frequency. Otherwise the coefficient xζβ = xζβ(ψζβ) would be negligible
(and would not contribute significantly to the expansion of xζ).
13 The correspondence Ẽ√(ψγζ)Ẽ(ψγζ) ↑ (4γ/3)ε(ψ) follows by noticing that Ẽ√(ψγζ)Ẽ(ψγζ)

gives the contribution of one Cartesian component of the field to the spectral energy density in a
discrete representation, which corresponds just to (4γ/3)ε(ψ) in the continuum description.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Ẽ√
γ0 Ẽγ0 ↑ 4γ

3
ε0(ψ), (5.103)

one obtains

C = i�
2χ

γ

∫ ↓

0

ψ4

|�(ψ)|2 dψ, (5.104)

with

�(ψ) = ψ2 − iχψ3 + g̃(ψ), g̃(ψ) = f̃ (ψ)

mx̃(ψ)
. (5.105)

For the harmonic oscillator f = −mψ2
0x, so that

g̃(ψ) = −ψ2
0 . (5.106)

Inspection of (5.105) thus shows that the dominant contribution to the integral comes
from the resonance at ψ = ψ0. One thus obtains, in terms of a new variable z = χψ,

C = i�
2

γ

∫ ↓

0

z4

z6 + (z + z0)2(z − z0)2
dz. (5.107)

Further, due to the sharpness of the resonance one can replace z by z0 everywhere in
the integrand except in the difference u = z − z0 and extend the integral from −↓
to +↓, thus obtaining

C = i�
z20
2γ

∫ ↓

−↓
du

u2 + (z40/4)
= i�, (5.108)

whence

[
x̂, p̂

] = i�I. (5.109)

This calculation serves to emphasize the role played by both the zpf and the resonant
response of the particle in fixing the value of the commutator.14 Moreover, since the
Ẽζβ bears information about the mean square fluctuations of the field, according to
Eqs. (5.102) and (5.103), the derivation shows that the value of

[
x̂, p̂

]
is determined

exclusively by the fluctuations of the zpf, and that it can therefore be considered a
direct measure of the intensity of the fluctuations impressed by this field upon the
particle.

14 Milonni (1981) presents a similar derivation of the commutator for the free particle within qed.
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On the other hand, the variances β2
xζ

and β2
pζ

satisfy the Robertson-Schrödinger
inequality,

β2
xζ

β2
pζ

≥ 1
4

∣∣〈[x̂, p̂
]〉∣∣2 + ∣∣〈 1

2 {x̂, p̂} − 〈
x̂
〉 〈

p̂
〉〉∣∣2 , (5.110)

with

{x̂, p̂} = x̂ p̂ + p̂x̂ . (5.111)

We assumed here that the variance of Aζ is equal to the variance of the opera-
tor Â when the system is in state ζ; this equivalence is demonstrated below [see
Eq. (5.124)]. From this strictly mathematical relation it follows that

β2
xζ

β2
pζ

≥ 1
4

∣∣⊗[x̂, p̂]〉∣∣2 = �
2

4
, (5.112)

hence,

(
β2

xζ
β2

pζ

)
min

= 1
4 |C |2 = �

2

4
. (5.113)

With this result we generalize Eq. (3.102) (with x instead of q) derived for an ensem-
ble of harmonic oscillators, to an arbitrary system. The result endows the Heisenberg
inequalities with a deep meaning (see the related discussion in Sect. 5.4.2).

5.3.3.1 The Commutator as an Imprint of the Zero-Point Field

The above derivation of Eq. (5.109) shows that the presence of the zpf is at the core
of one of the most fundamental quantum formulas,

[
x̂, p̂

] = i�I. This observation
is of importance because it points to the physical origin of the commutator, which in
the radiationless approximation becomes concealed—and in usual qm is inexistent.

Since equation
[
x̂, p̂

] = i�I is a physical law that applies once the quantum
regime has been reached, prior to that point its absolute validity is not warranted.15

Notice, by contrast, that the classical equation for the Poisson bracket [x, p]PB = 1
is an identity, an inviolable relation. Therefore, the correspondence [x, p]PB = 1 ↑
(i�)−1

[
x̂, p̂

]
is legitimate provided the quantum regime has been reached (as we

assume when applying it, particularly in Chaps. 4 and6).
The basic commutator serves to define a scale for the matrix elements xζβ . We

recall that in the original equation ofmotion (5.30), the Fourier components x̃ζβ of the

15 One may conceive of a dispersionless (for the particle) initial condition, when particle and field
start interacting. The evolution of the system towards the quantum regime will repair the initial
violation of the law

[
x̂, p̂

] = i�I. Intermediate situations should be possible, and their observation
or not could eventually help to prove or disprove the present theory.

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_6
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solutions xζ are proportional to the coefficients Ẽζβ [see Eq. (5.28a)], which in their
turn, as has been said above, bear information about the mean square fluctuations
of the field. As mentioned earlier, such information gets lost in the passage from
Eq. (5.75) to Eq. (5.76); this loss is repaired by resorting to the commutator (5.109).
Indeed, from Eqs. (5.79) one obtains

2m
∑

β

ψβζ

∣∣xζβ(t)
∣∣2 = �, (5.114)

an expression that fixes the scale of the xζβ—which is equivalent tofixing the variance
of the variables x and p by means of equations such as (5.124) below.

5.4 The Heisenberg Description

5.4.1 Heisenberg Equation, Representations, and Quantum
Transitions

As anticipated at the end of Sect. 5.3.2, we are now in a position to write down the
equation of motion (5.83) in terms of Ĥ .This is achieved by introducingCζ = Cβ =
i� in Eq. (5.97)—which ensued from Eq. (5.91)—to obtain

ψζβ = �
−1 (Eζ − Eβ

)
. (5.115)

Comparison with (5.90) gives ζζ = ζβ = �
−1, whence (5.87) becomes

�̂ = �
−1 Ĥ (5.116)

and the final form of Eq. (5.83) is therefore

i�
d Â(t)

dt
=

[
Â(t), Ĥ

]
, (5.117)

i.e., the Heisenberg equation for the operator Â(t) = Â(x̂(t), p̂(t)). Recall that we
have limited the study to variables of the form A(t) = A(x(t), p(t)), with no explicit
time dependence; this is consistent with the expansion (5.70) for Aζ(t), and explains
the absence of the term i�∂ Â/∂t on the right-hand side of (5.117).

The present derivation shows the intimate connection between the commutator[
x̂, p̂

]
and the Heisenberg equation (5.117) governing the evolution of the dynamical

variables. It also shows that it is precisely through the commutator that the signature
of the zpf is recovered, through the appearance of Planck’s constant. The law of
evolution (5.117) bears thus a hallmark of this pervading field.
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Note that even though (5.117) has been derived resorting to the so-called energy
representation, i.e. to a description in terms of stationary, energy-conserving states, in
which Ĥ is diagonal, this law continues in force when a change of basis is performed
via a unitary transformationU that turns Ĥ into a nondiagonal matrix Ĥ ∼ = U † ĤU .
Hence (5.117) is the general evolution law in the quantum regime, valid in any
representation. This observation acquires relevance in those cases where the states
of the system under study are characterized by well-defined values of some other
dynamical variable G, whose matrix is not diagonal in the energy representation but
becomes diagonal under a transformation U , so that Gγγ∼ = Gγδγγ∼ . According to
the discussion in Sect. 5.2, in this case the complete ensemble must be divided into
a set of subensembles {i}γ, each containing the particles in specific states γ, such
that {i} = ⋃

γ
{i}γ ; this subdivision is different from {i}ζ and incompatible with it

(unless Ĝ commutes with Ĥ , in which case the transformationU is not necessary). In
other words, every representation entails a specific division into subensembles. This
explains why it is not possible to characterize the state of a system simultaneously in
terms of two or more dynamical variables represented by noncommuting matrices.
This incompatibility at the level of the statistical description does of course not
preclude the dynamical variables themselves from continuing to exist simultaneously
for every individual particle.

Let us now turn to Eq. (5.115), which identifies the relation ψζβ = �ζ − �β

(Eq. 5.55) with Bohr’s transition rule,

�ψζβ = Eζ − Eβ, (5.118)

thus demonstrating that the transition frequencies are just the frequencies of reso-
nance (see footnote 12). This is a highly nontrivial result, but a perfectly natural
one, since it means that a (quantum) transition occurs when the mechanical system
responds resonantly to a mode of the radiation field.

This explains how it is that an atomic electron ‘knows’ in advance the energy of
the state where it will land when realizing a transition, since the energy difference is
determined with precision because of the sharpness of the resonance. The resonant
response of the particle to a selected set of frequencies of the random zpf constitutes
the physical mechanism responsible for the ‘indeterminate’ transition of the particle
to one among the collection of accessible stationary states. The same applies to every
allowed transition from a given state ζ. Which is the transition that effectively takes
place in a given case, and at what instant does it take place, depends on the precise
conditions of the atomand themodeof thefield responsible for the transition; it cannot
be inferred from the present (statistical) description. Moreover, the identification of
the linear resonant response as the mechanism behind the quantum (electric-dipole)
transitions explains the fact that the corresponding selection rules are expressed in
terms of thematrix elements of x̂ (i.e., resonances) rather than of any other (nonlinear)
dynamical variable.

This resonant phenomenon, along with the fact that the quantities featuring in
Eq. (5.118) become fixed (i.e. nonstochastic) once the ergodic condition is in force,
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can be ultimately considered as a quantization principle.During the evolution towards
the quantum regime, those orbits that happen to be robust enough against the fluctu-
ations of the field become selected by their ergodicity, and eventually determine the
stationary quantum states. The excited (metastable) states are included alongside the
ground (stable) state as if they were truly stationary states, only when the radiative
corrections are neglected, just as in the usual quantum-mechanical description.

5.4.2 The Hilbert-Space Description and State Vectors

For a more comprehensive description of the quantum system it is convenient to
introduce the state vectors of an appropriate Hilbert space. The ensuing formalism,
which is of course known to be an extremely useful tool in qm, will be useful for the
study of the statistical nature of the quantum description to be made below. It also
will prove very valuable for the analysis of entanglement to be developed in Chap.7.

We start by observing that thematrix Â(t), represented by the set of its elementary
oscillators Aζβ(t) = Aζβeiψζβ t , can be expanded as follows,

Â(t) =
∑

ζ,β

Aζβeiψζβ t |eζ〉⊗eβ

∣∣, (5.119)

with {∣∣eζ〉⊗eβ

∣
∣} a basis constructed from the vectors of a complete orthonormal basis

{|eζ〉}, that spans the Hilbert space of states of the system.
By virtue of Eq. (5.118), the above expression gives

⊗eζ| Â(t)
∣∣eβ

〉 = ⊗eζ| Â(0)
∣∣eβ

〉
eiψζβ t

= ⊗eζ| eiEζt/� Â(0)e−iEβ t/�
∣
∣eβ

〉

= ⊗ζ(t)| Â(0) |β(t)〉, (5.120)

where |ζ(t)〉 is obtained from |eζ〉 by means of the unitary transformation

|eζ〉 ↑ |ζ(t)〉 = e−iEζt/� |eζ〉. (5.121)

Equation (5.120) allows to transfer the time dependence from the matrix Â(t)—
which lies at the core of the Heisenberg representation of qm—to the vectors of a
new basis {|ζ(t)〉} , which now contains all the information regarding the dynamics
of the system. Moreover, the {|ζ(t)〉} are directly related to the energy eigenvalues
{Eζ} and therefore to the stationary states {ζ}, so that |ζ(t)〉 stands now for a state
vector that evolves in time according to Eq. (5.121). This fact will be used below to
establish contact with the Schrödinger picture of qm.

Let us now introduce a shorthand (but practical and usual) notation by writing
Eq. (5.120) as

http://dx.doi.org/10.1007/978-3-319-07893-9_7
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Aζβeiψζβ t = ⊗ζ(0)| Â(t) |β(0)〉 = ⊗ζ(t)| Â(0) |β(t)〉 = ⊗ζ| Â |β〉 . (5.122)

This expression relates the Fourier coefficients of (5.70) with the elements of the
Hilbert-space description found in qm. From this and Eq. (5.73) we obtain

A
t
ζ = ⊗Aζ〉 = Aζζ = ⊗ζ| Â |ζ〉 , (5.123)

whence the quantity ⊗ζ| Â |ζ〉 can be legitimately called an expectation (or mean)
value. Further, Eq. (5.74) rewrites as

β2
Aζ

=
∑

β( ∗=ζ)

∣∣∣⊗ζ| Â |β〉
∣∣∣
2 =

∑

β( ∗=ζ)

⊗ζ| Â |β〉 ⊗β| Â |ζ〉 = ⊗ζ| Â2 |ζ〉 − ⊗ζ| Â |ζ〉2 ,

(5.124)

where the Hermiticity of Â and the completeness of the basis {|β〉} were used.
Since the left-hand side of (5.124) stands for the variance (obtained by calculating
averages over time or over the realizations of the field), the result confirms that the
variance as is calculatedwithin the standard quantum formalism should be interpreted
just as a genuine statistical variance. In addition, Eq. (5.124) indicates that the
quantities ⊗ζ| Â |β〉possess a statistical connotation; thus, although no explicit sign of
stochasticity remains in the quantities (5.122), their statistical nature has not been lost.

Further, from Eq. (5.112) we find

β2
xζ

β2
pζ

≥ 1
4�

2. (5.125)

That this result, here derived only for stationary states ζ, holds for any state, can be
seen by resorting once more to an application of the Robertson-Schrödinger inequal-
ity. Therefore, the Heisenberg inequality actually involves statistical variances, and
is again a consequence of the persistent action of the zpf, so that no reference to
observations or measurements is required for its interpretation. Before the quantum
regime is established and the ergodic properties are in place, this inequality may of
course be violated, as mentioned earlier.

5.4.3 Transition to the Schrödinger Equation

In the previous section we introduced the Schrödinger picture of qm, in which it
is the basis {|ζ(t)〉} what evolves in time, whereas the operators Â remain fixed,
Â = Â(0). In this picture we thus need a law of evolution for an arbitrary state
vector, instead of Eq. (5.117) governing the dynamics of the operators. Such law of
evolution is of course the Schrödinger equation, which is derived here for the sake
of completeness, and in order to make contact with the results of Chap.4. For this
purpose we take the solution of Eq. (5.117),

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Â(t) = Û †(t) Â(0)Û (t), (5.126)

where Û (t) is the time-evolution operator

Û (t) = e−i Ĥ t/�. (5.127)

This implies that in the Schrödinger picture an arbitrary initial state vector |ψ(0)〉
evolves according to

|ψ(t)〉 = Û (t) |ψ(0)〉 = e−i Ĥ t/� |ψ(0)〉 , (5.128)

which immediately gives the complete Schrödinger equation

i�
d |ψ(t)〉

dt
= Ĥ |ψ(t)〉 . (5.129)

The most common form of its solutions is easily obtained by expanding |ψ(0)〉 in
the canonical basis {|eζ〉} and resorting to the energy representation, in which Ĥ is
diagonal. In this case Eq. (5.128) gives

|ψ(t)〉 =
∑

ζ

cζe−i Ĥ t/� |eζ〉 =
∑

ζ

cζe−iEζt/� |eζ〉 =
∑

ζ

cζ |ζ(t)〉 , (5.130)

as was to be expected, since in the energy representation the privileged basis is
precisely the basis {|ζ(t)〉} of stationary vectors. In particular, for a stationary state
|ψ(t)〉 = |ζ(t)〉 = e−iEζt/� |eζ〉 , we arrive at the stationary Schrödinger equation

i�
d |ζ(t)〉

dt
= Eζ |ζ(t)〉 . (5.131)

5.4.3.1 Transition to the Configuration Space

The basis vectors {|ζ(t)〉} defined in Eq. (5.121) can be used to construct a complete
set of orthonormal functions {ψζ(x, t)} in configuration space, such that

ψζ(x, t) = ⊗x | ζ(t)〉 = e−iEζt/�λζ(x), (5.132)

where |x〉 is the eigenvector of the position operator x̂ with eigenvalue x (so that
{|x〉} constitutes a continuous basis in Hilbert space), and

λζ(x) = ψζ(x, 0) = ⊗x | ζ(0)〉 = ⊗x | eζ〉 . (5.133)
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From (5.132), the Schrödinger equation (5.129) in configuration space follows imme-
diately,16

i�
∂ψ(x, t)

∂t
= Ĥψ(x, t), (5.134)

with [see Eq. (5.130)]

ψ(x, t) = ⊗x | ψ(t)〉 =
∑

ζ

cζe−iEζt/�λζ(x). (5.135)

It is important to observe that in the transition from the Heisenberg picture to the
Schrödinger picture, the energies Eζ take on the central role played earlier by the fre-
quencies ψζβ . This result represents a major shift in priority and emphasis: in the
Schrödinger description the state energies are the important parameters, whereas in
the Heisenberg description it is the transition frequencies that matter.

In the new representation, Aζβ(t) = ⊗ζ(t)| Â(0) |β(t)〉 becomes

Aζβ(t) =
∫

ψ√
ζ(x, t) Âxψβ(x, t)dx, (5.136)

where the subscript x in Âx stresses that Â is in the configuration-space represen-
tation, although it can be (and generally is) omitted. The elements of the (time-
independent) matrix Â are thus

Aζβ =
∫

λ√
ζ(x) Âλβ(x)dx . (5.137)

For A = A(x), and using Eq. (5.123), we get

A
t
ζ = ⊗A〉ζ =

∫
A(x)εζ(x)dx, (5.138)

where

εζ(x) = |λζ|2 = |ψζ|2 . (5.139)

From Eqs. (5.138) and (5.139) it follows that |ψζ|2 is the probability density in
configuration space. The wave function ψζ is therefore the amplitude (of density) of
probability in such space, which gives statistical information about the subensemble
ζ representing the particles with mean energy Eζ. This leads quite naturally to the
ensemble interpretationof theSchrödinger theory, in linewith the particular statistical
nature of the present approach.

16 The time derivative in Eq. (5.129) should be taken as a partial derivative in Eq. (5.134) because
now the state function depends also on the variable x . In the Hilbert space in which Eq. (5.129)
operates, time is the single variable required to describe the system.
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5.4.4 The Stochastic Representation

Our derivations have led successfully to the two alternative formalisms usual in qm,
namely the Schrödinger and Heisenberg pictures. As has been discussed above, one
feature that is shared by these representations is the loss of any explicit trace of sto-
chasticity. This may be considered a shortcoming, since the source of randomness
thatmakes the quantumfluctuations causal has disappeared entirely from the descrip-
tion. It seems therefore interesting to construct a new representation that retains the
stochastic elements inherited from the background field.

We start by observing that since the random variables {aζβ} satisfy a chain rule
(Eq. 5.59), also the quantities Aζβaζβeiψζβ t satisfy a matrix algebra. We therefore
introduce the stochastic matrix Â(i), which in terms of the basis vectors {|eζ〉} used
earlier takes the form

Â(i)(t) =
∑

ζ,β

Aζβeiψζβ t a(i)
ζβ |eζ〉⊗eβ

∣
∣. (5.140)

Hence, with |eζ〉 = |ζ(0)〉,

⊗ζ(0)| Â(i)(t) |β(0)〉 = ⊗ζ(0)| Â(t) |β(0)〉 a(i)
ζβ

= ⊗ζ(0)| eiφ(i)
ζ Â(t)e−iφ(i)

β |β(0)〉
=

〈
ζ(i)(0)

∣∣∣ Â(t)
∣∣∣β(i)(0)

〉
, (5.141)

where Eq. (5.60) has been used to write

a(i)
ζβ = eiφ(i)

ζ e−iφ(i)
β , (5.142)

and the stochastic basis {∣∣ζ(i)(t)
〉} was introduced, with elements (de la Peña and

Cetto 1996)

∣∣∣ζ(i)(t)
〉
= e−iφ(i)

ζ |ζ(t)〉 = e−iφ(i)
ζ e−iEζt/� |eζ〉 . (5.143)

Equation (5.141) shows that the stochasticity of the matrix Â(i)(t) can be trans-
ferred to the basis vectors, in analogy with the transition from the Heisenberg to
the Schrödinger picture, but here involving the i-dependence instead of the time
dependence. Further, by resorting to the evolving vectors (5.143) we obtain

⊗ζ| Â |β〉(i) ≡
〈
ζ(i)(0)

∣∣
∣ Â(t)

∣∣
∣β(i)(0)

〉
=

〈
ζ(i)(t)

∣∣
∣ Â(0)

∣∣
∣β(i)(t)

〉
=

= ⊗ζ(0)| Â(i)(t) |β(0)〉 = ⊗ζ(t)| Â(i)(0) |β(t)〉 . (5.144)
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Here both lines correspond to the proper Heisenberg ↑ Schrödinger transition, but
the first one involves stochastic vectors whereas the second one involves a stochastic
matrix Â(i). The equality

⊗ζ(0)| Â(i)(t) |β(0)〉 =
〈
ζ(i)(t)

∣∣∣ Â(0)
∣∣∣β(i)(t)

〉
(5.145)

thus allows for the transition from the stochastic Heisenberg picture (stochastic,
time-dependent operators) to the stochastic Schrödinger representation (stochastic,
time-dependent vectors). The latter representation is interesting in that it includes
from the outset a random phase φ

(i)
ζ for each basis vector

∣∣ζ(i)(t)
〉
, whereas in usual

qm the phase of a pure state |ζ(t)〉 remains fully discretionary. The φ
(i)
ζ enters here as

a reminder of the stochastic properties of the system and has a well-defined physical
meaning.

The random value of the phase factors e−iφ(i)
ζ acquires a real importance when

states are superposed, since in this case they give rise to random relative phases that
are physically relevant. For example, for a superposition of two stationary states
we have

∣∣∣ψ(i)
〉
= a

∣∣∣ζ(i)
〉
+ b

∣∣∣β(i)
〉
= e−iφ(i)

ζ

(
a |ζ〉 + ei(φ(i)

ζ −φ
(i)
β )b |β〉

)
, (5.146)

so that e−iφ(i)
ζ is physically innocuous but e(iφ(i)

ζ −φ
(i)
β ) is relevant. Such random rel-

ative phases are frequently introduced by hand in the theory of measurement or of
decoherence for example, to represent the random effects of the environment. Here
they appear automatically as one more manifestation of the ubiquitous zpf, which
in this context plays the role of an unavoidable environment. This latter observation
will prove to be of high relevance in Chap. 7, in connection with entangled states of
bipartite systems.

5.5 Concluding Remarks

Chapter4 and the present one have taken us from the same point of departure—viz
equations (4.2) and (5.9)—through different itineraries to the province of quan-
tum mechanics. In both cases a filter was introduced to select the acceptable time-
asymptotic motions in the form of a strong requisite, which operates as a sort of
quantum principle. The requirement in the present chapter was that of ergodicity,
whereas in Chap.4 it was the energy balance. Since these different requirements lead
to equivalent results—the reduction of the description to the quantum regime—they
should be closely related.

In the present case it is clear that when the ergodic, radiationless regime is
eventually attained, energy balance is satisfied, so that the stationary solutions ζ
characterized by a fixed energy correspond to surfaces of constant energy in the

http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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available phase space. Conversely, the arguments of Chap.4 can be completed by
noticing—as already argued in Sect. 4.5.4—that stationarity of an orbit, in the pres-
ence of stochasticity, means that in the long run the particle visits the entire available
energy surface for the corresponding state, giving rise to the ergodic behavior. This
speaks to the physical—beyond the formal—equivalence of both theories known
after the names of Heisenberg and Schrödinger. They enrich and complement each
other by revealing different aspects of the same quantum phenomenon. In particular,
the Heisenberg formalism just derived discloses the linear and resonant response of
the particle to certain modes of the background field, a property that remains hidden
in Schrödinger’s description, in which, as stated before, the energies Eζ and not the
frequencies ψζβ take on a prominent role.17

The ergodic principle turns out to play a crucial role in defining a matrix algebra
for the description of the dynamics of the system. The original stochastic equation
of motion (5.9) that describes a stationary state ζ, becomes transformed into the
nonstochastic matrix Eq. (5.75) (that includes all accesible stationary states). The
mathematical consequence of ergodicity is thus a dynamical law for operators that
are in correspondence with the dynamical variables. Physically, in the evolution
towards the quantum regime, ergodicity selects fromamong all the possible stationary
solutions of Eq. (5.30), those that are robust with respect to the field fluctuations;
these are the quantum solutions.

The transitions between states result from very sharp resonances of the particle
to certain modes of the field, be it just the zpf or otherwise. This extreme sharpness
(due to the small value of χ ) leads to the precisely defined value of the energy of the
radiated field—the photon—in a single-step transition. As for the background field,
we found that whereas the original free zpf is maximally disordered, the relevant
modes of the effective field in the neighborhood of the particle are considerably
less disordered, having constant amplitudes and random phases that are partially
correlated, according to the chain rule for the variables aζβ . This change in the near
field in interaction with the particle is accompanied by the emergence of its quantum
properties, as already envisaged from the results of Chap. 3.

Appendix A: The Ergodic Principle and the Algebraic Description

This appendix is devoted to a detailed analysis of the implications of imposing the
ergodic condition in the form (5.46), for the different elements that enter into the
description.

We start by recalling from Sect. 5.1.1 that to distinguish the solutions x(t) that
correspond to different accessible stationary states ζ, the substitution

17 Such resonant response will turn out to be crucial for the elucidation of some fundamental aspects
of entanglement, as shown in Chap.7.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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x(t) =
∑

k

x̃kakeiψk t ↑ xζ(t) =
∑

β

x̃ζβaζβeiψζβ t (A.1)

has been made, where x̃ζβ = x̃(ψζβ) stands for the amplitude corresponding to the
frequency ψζβ and similarly for aζβ . The purpose of the first part of the appendix
is to establish the correspondence for higher powers of x, xn ↑ (xn)ζ , that is
consistent with Eq. (5.46). The problem is equivalent to determining the appropriate
coefficients Ãζβ for any dynamical variable Aζ(t) that can be expanded as a power
series of x, with Aζ given by Eq. (5.34), namely

Aζ(t) =
∑

β

Ãζβaζβeiψζβ t . (A.2)

Let us first analyze the quadratic case, Aζ = (x2)ζ. The introduction of the index
ζ must be such as to guarantee that the expansion for (x2)ζ is consistent with the
demands imposed by the theory. We therefore start by writing

x2(t) =
∑

k,k∼
x̃k x̃k∼akak∼ei(ψk+ψk∼)t (A.3)

and define

ψK ≡ ψk + ψk∼ , (A.4)

so that Eq. (A.3) rewrites as

x2(t) =
∑

k,K

x̃(ψk)x̃(ψK − ψk)a(ψk)a(ψK − ψk)e
iψK t . (A.5)

As explained in Sect. 5.1.2, passing from x2(t) to
(
x2

)
ζ

(t) requires focusing not
on the complete set {ψK } but rather on the subset {ψζβ}, so that the sum over K
becomes a sum over β. Similarly, we make the substitution ψk ↑ ψζβ∼ . Thus,

(x2)ζ(t) =
∑

β,β∼
x̃(ψζβ∼)x̃(ψζβ − ψζβ∼)a(ψζβ∼)a(ψζβ − ψζβ∼)eiψζβ t . (A.6)

On the other hand, according to Eq. (A.2), (x2)ζ has the form

(x2)ζ(t) =
∑

β

x̃2(ψζβ)a(ψζβ)eiψζβ t . (A.7)

Comparison of these two equations leads to



186 5 The Road to Heisenberg Quantum Mechanics

x̃2(ψζβ)a(i)(ψζβ) =
∑

β∼
x̃(ψζβ∼)x̃(ψζβ − ψζβ∼)a(i)(ψζβ∼)a(i)(ψζβ − ψζβ∼),

(A.8)
where the index (i) denotes the dependence of the a’s on the field realization. Since
according to (5.46) x̃2(ψζβ) is a sure quantity, the sum

∑

β∼
x̃(ψζβ∼)x̃(ψζβ − ψζβ∼)

a(i)(ψζβ∼)a(i)(ψζβ − ψζβ∼)

a(i)(ψζβ)
(A.9)

must be a sure quantity as well, for any ζ, β. The only way to ensure that (A.9) is
an i-independent quantity is by taking

a(i)(ψζβ∼)a(i)(ψζβ − ψζβ∼) = a(i)(ψζβ). (A.10)

Equation (A.8) reduces thus to

x̃2(ψζβ) =
∑

β∼
x̃(ψζβ∼)x̃(ψζβ − ψζβ∼). (A.11)

Together with Eq. (A.7), this gives the expression for
(
x2

)
ζ
that is consistent with

the ergodic demand:

(x2)ζ(t) =
∑

ββ∼
x̃(ψζβ∼)x̃(ψζβ − ψζβ∼)a(ψζβ)eiψζβ t . (A.12)

We now focus on the frequency

�
(ζ)

β∼β ≡ ψζβ − ψζβ∼ , (A.13)

which is a difference between two relevant frequencies of the subensemble ζ. For a
given ζ, this frequency depends on the indices β,β∼ only. By its definition it has the
following properties:

�
(ζ)

β∼β = −�
(ζ)

ββ∼ , (A.14a)

�
(ζ)

ββ∼ + �
(ζ)

β∼β∼∼ + · · · + �
(ζ)

β(n−1)β(n) = �
(ζ)

ββ(n) . (A.14b)

The second equation involves an arbitrary number of terms,with eachβ(m) an element
of the set {β} of indices introduced to enumerate the different relevant frequencies in
{ψζβ}. In particular, for β∼ = β0, ψζβ∼ vanishes [see Eq. (5.23)], and�

(ζ)

β∼β reduces to

�
(ζ)
β0β

= ψζβ . (A.15)
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In terms of the new frequencies, and writing

x̃(�
(ζ)

ββ∼) = x̃ (ζ)

ββ∼ , (A.16)

Equation (A.11) reads

x̃2(�(ζ)
β0β

) =
∑

β∼
x̃ (ζ)

β0β∼ x̃
(ζ)

β∼β . (A.17)

Now we resort to the fact that β∼ and β run over the same domain ({β}) to define
a square matrix �(ζ) with elements �

(ζ)

β∼β . Thus, using the (provisional) notation

{β} = {0, 1, 2, . . .,β0 − 1,β0,β0 + 1, · · ·}, (A.18)

we write

�(ζ) =

⎛
⎜⎜⎜⎜⎝

�
(ζ)
00 = 0 �

(ζ)
01 . . . �

(ζ)
0β0

. . .

�
(ζ)
10 �

(ζ)
11 = 0 . . .

. . .

ψζ0 ψζ1 . . . ψζβ0 = 0 . . .

. . .

⎞
⎟⎟⎟⎟⎠ , (A.19)

where Eq. (A.15) was used in the β0-th row. This shows that the set of relevant
frequencies {ψζβ} is a row in the wider set of frequencies �(ζ). This, together with

the fact that all the elements �
(ζ)

β∼β should be taken into consideration on an equal

footing when calculating
(
x2

)
ζ
[see Eq. (A.17)], leads us to extend the analysis to

the entire matrix �(ζ).

The order of the rows in �(ζ) is physically irrelevant, since it was established
via the arbitrary ordering (A.18). This means that the rows in �(ζ) are physically
equivalent. Thus, if the β0-th row gives the set {ψζβ} for the subensemble ζ, another

row, say β∼ = η ∗= β0, gives the set {�(ζ)
ηβ } for the subensemble labeled with η,

whose relevant frequencies are {�(ζ)
ηβ = ψζβ − ψζη} . When the system is in the

corresponding stationary state η, the expansion of the dynamical variable A reads

Aη(t) ≡
∑

β

Ã(�
(ζ)
ηβ )a(�

(ζ)
ηβ )ei�(ζ)

ηβ t
, (A.20)

which is a generalization of

Aζ(t) =
∑

β

Ã(ψζβ)a(ψζβ)eiψζβ t (A.21)
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for a variable A in the stationary stateζ, in the sameway that�(ζ) generalized the set
{ψζβ}. Clearly (A.21) can be obtained from (A.20) taking η = β0.A first conclusion
that derives from here is that the row-index β∼ is in direct correspondence with a
stationary state index, so that the indices in {β}, originally introduced as labels that
distinguished each of the relevant frequencies, denote subensembles corresponding
to new stationary states. It follows that the indices ζ and β have the same domain
and the same physical interpretation. In particular, this allows us to write

β0 = ζ, (A.22)

so that Eq. (A.18) rewrites as

{β} = {ζ − ζ,ζ − (ζ + 1), · · · ,ζ − 1,ζ,ζ + 1, · · · }. (A.23)

According to the discussion preceding Eq. (A.20), the (arbitrary) state η ( ∗= ζ)

is related to ζ via their relevant frequencies, an observation that discloses a relation
among all stationary states, and ultimately connects them all. Of course, the origin
of such relation goes back to the ζ-dependence of �(ζ) (and hence of all its rows).
However, even though �(ζ) was constructed taking ζ as a privileged ensemble, this
matrix does not depend on ζ since the same matrix is obtained when considering the
difference between two relevant frequencies of any subensemble η. In order to see
this we construct the matrix �(η) with elements �

(η)

β∼β defined, in analogy with Eq.
(A.13), as the difference between two relevant frequencies of the subensemble η:

�
(η)

β∼β ≡ �
(ζ)
ηβ − �

(ζ)

ηβ∼ . (A.24)

Resorting now to Eq. (A.14b) we obtain

�
(η)

β∼β = �
(ζ)

β∼β, (A.25)

hence �(η) = �(ζ). Since η is arbitrary, it follows that the matrix (A.19) is indeed
ζ-independent so that �(ζ) = � and the superindex (ζ) in �

(ζ)

β∼β may be dropped.
The matrix � can then be understood as an array (in row form) of all the relevant
frequencies corresponding to all the accessible stationary states of the mechanical
system. Because of equations (A.14), its elements can be written in the general form

�β∼β = �β∼ − �β . (A.26)

The physical meaning of the parameters �β is determined in Sect. (5.4.1). Together
with Eq. (A.15) (with β0 = ζ), (A.26) gives

�ζβ = ψζβ = �ζ − �β, (A.27)
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hence
ψβζ = −ψζβ (A.28)

and

ψζβ∼ + ψβ∼β∼∼ + ... + ψβ(n−1)β = ψζβ . (A.29)

With these results we may now go back to Eq. (A.10) and write

a(i)(ψζβ∼)a(i)(ψβ∼β) = a(i)(ψζβ). (A.30)

Using the short notation aβ∼β = a(ψβ∼β), this relation can be easily generalized to
any number of factors by a successive (chained) application of it,

aζβ∼aβ∼β∼∼aβ∼∼β∼∼∼ . . . aβ(n−1)β = (
aζβ∼aβ∼β∼∼

)
aβ∼∼β∼∼∼ . . . aβ(n−1)β

= [(
aζβ∼∼

)
aβ∼∼β∼∼∼

]
. . . aβ(n−1)β

= [
aζβ∼∼∼

] · · · aβ(n−1)β

= aζβ . (A.31)

With each a(i)
β(n)β(m) written in polar form according to (5.21), this implies that also

the stochastic phases must satisfy the relation

λ
(i)
ζβ∼ + λ

(i)
β∼β∼∼ + · · · + λ

(i)
β(n−1)β

= λ
(i)
ζβ, (A.32a)

and can therefore be expressed as a difference of terms,

λ
(i)
ζβ = φ(i)

ζ − φ
(i)
β , (A.33)

where each of the φω represents a random phase. Equation (5.21) becomes thus

aζβ = eiλζβ = ei(φζ−φβ), (A.34)

from where it follows, in particular, that

aβζ = a√
ζβ . (A.35)

The relations (A.29) and (A.31), which are fundamental for the theory, constitute
what is called the chain rule. The frequencies that enter in the chain rule can refer
to relevant frequencies of any stationary state (they are elements of the matrix �),
and can be either resonance frequencies or linear (chained) combinations of them.

The result
∣∣aζβ

∣∣ = 1 requires a comment. In Chap. 3 it was found that the energy
of the oscillators of the zpf have an important dispersion. Here we got what seems
to be a contradictory result, namely that the aζβ’s have a fix amplitude. Consistency

http://dx.doi.org/10.1007/978-3-319-07893-9_3
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is recovered by considering the discussion following Eq. (5.4). Further, the strict
meaning of (A.34) is that only the modes of the field that have an important role
in the dynamics of the mechanical subsystem in the ergodic regime, are those that
have amplitudes with a Gaussian distribution with a negligible dispersion around an
average value 1. The remaining modes simply contribute to the background noise.

Finally, with the results obtained above, Eq. (A.12) becomes

(x2)ζ(t) =
∑

ββ∼
x̃ζβ∼ x̃β∼βaζβeiψζβ t , (A.36)

which, when compared with (A.7), gives

(x̃2)ζβ =
∑

β∼
x̃ζβ∼ x̃β∼β . (A.37)

Iteration of the procedure presented above leads to the following expression for the
n-th power of the variable xn in state ζ

(xn)ζ(t) =
∑

β

(x̃n)ζβaζβeiψζβ t , (A.38)

with

(x̃n)ζβ =
∑

β∼...β(n−1)

x̃ζβ∼ x̃β∼β∼∼ ...x̃β(n−1)β . (A.39)

Appendix B: A Simple Example: The Harmonic Oscillator

The aim of this appendix is to analyze a simple system by applying some of the
methods presented in the body of the chapter, in order to clarify the meaning of the
resonance and relevant frequencies, respectively. For this purpose let us consider the
case of a harmonic oscillator of natural frequency ψ0. The force is f = −mψ2

0x, so
that in the state ζ

fζ = −mψ2
0xζ. (B.1)

Equation (5.29) becomes then

ψ2
ζβ ≥ ψ2

0, (B.2)
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with solutions ±ψ0. The independence of the resonance frequencies from the state
is characteristic of the harmonic oscillator; it does not hold in general for arbitrary
forces. There exist therefore only two resonance frequencies for the state ζ, which
will be labeled with the indices β+ = ζ − 1 and β− = ζ + 1 [see Eq. (A.23)] in
such a way that

ψζ,ζ−1 = ψ0, ψζ,ζ+1 = −ψ0. (B.3)

Since these are the frequencies that contribute significantly to the expansion

xζ(t) =
∑

β

x̃ζβaζβeiψζβ t , (B.4)

we conclude that when the noisy terms are neglected in Eq. (B.4), the coefficients
x̃ζβ are

x̃ζβ = x̃ζ,ζ−1δβ,ζ−1 + x̃ζ,ζ+1δβ,ζ+1, (B.5)

hence

xζ(t) = x̃ζ,ζ−1aζ,ζ−1eiψ0t + x̃ζ,ζ+1aζ,ζ+1e−iψ0t . (B.6)

To determine the relevant frequencies of the system we resort to the chain rule
(Eq. A.29) and to the antisymmetry ψζβ = −ψβζ to combine the resonance frequen-
cies, thus obtaining

ψζ+1,ζ + ψζ,ζ−1 = ψζ+1,ζ−1 = 2ψ0. (B.7)

This defines a new (relevant) frequency ψζ+1,ζ−1 = 2ψ0. Now, according to the
discussion following Eq. (A.21), ζ + 1 and ζ − 1 represent new stationary states.
Their resonance frequencies are again ±ψ0, since as stated above, the solutions of
(B.2) are state-independent. As before, the two resonance frequencies for the state
ζ ± 1 will be labeled with the indices β+ = (ζ ± 1) − 1 and β− = (ζ ± 1) + 1.
This gives, in analogy with (B.3),

ψζ+1,ζ = ψ0, ψζ+1,ζ+2 = −ψ0, (B.8)

ψζ−1,ζ−2 = ψ0, ψζ−1,ζ = −ψ0.

A chained combination of these frequencies with ψζ+1,ζ−1 in Eq. (B.7) defines two
more relevant frequencies,

ψζ+2,ζ+1 + ψζ+1,ζ−1 = ψζ+2,ζ−1 = 3ψ0, (B.9)

ψζ+2,ζ−1 + ψζ−1,ζ−2 = ψζ+2,ζ−2 = 4ψ0.
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It is clear that the procedure can be applied iteratively, so that the relevant frequencies
for the harmonic oscillator take the form

ψζ+n,ζ+m = ψnm = ψ0(n − m), (B.10)

with n, m = 0, ±1,±2, . . .
In particular, the resonance frequencies (±ψ0) correspond to m = n ± 1; the

remaining relevant frequencies (those in Eq. (B.10)withm ∗= n±1)will be important
in expansions of higher powers of x(t) (or p(t)). For example, for x̃2ζβ(t) one
finds, using Eqs. (5.57) and (B.5), that the only terms that represent an important
contribution to x̃2ζβ(t) are

x̃2ζζ = x̃ζ,ζ−1 x̃ζ−1,ζ + x̃ζ,ζ+1 x̃ζ+1,ζ, (B.11)

x̃2ζ,ζ−2(t) = x̃ζ,ζ−1 x̃ζ−1,ζ−2eiψζ,ζ−2t = x̃2ζ,ζ−2ei2ψ0t ,

x̃2ζ,ζ+2(t) = x̃ζ,ζ+1 x̃ζ+1,ζ+2eiψζ,ζ+2t = x̃2ζ,ζ+2e−i2ψ0t .

The frequencies of oscillation of (x2)ζ are thus 0 (for
〈
(x2)ζ

〉 = x̃2ζζ, see Eq. (5.73))
and ±2ψ0. The extension of this exercise to other powers allows to recover the
remaining relevant frequencies (B.10).

This example serves to show that the relevant frequenciesψζβ are combinations of
resonance frequencies, as dictated by the chain rule (A.29). This latter is the quantum
counterpart of the classical rule to construct the combination frequencies intervening
in nonlinear systems, ψ j = ∑

i ± n jiψi , where ψi is a fundamental frequency of
oscillation and n ji are integermultiples; these frequencies correspond to the different
harmonic and intermodulation frequencies.
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Chapter 6
Beyond the Schrödinger Equation

The lack of a concrete picture [for the electron spin] is the most
satisfactory state of affairs.

W. Pauli,quoted in van der Waerden (1960) .

... I should like to preserve this ideal of the past, to describe
everything that happens in the world with distinct images. I am
ready to accept other theories, on condition that one is able to
re-express them in terms of clear and distinct images.

H. A. Lorentz, quoted in Bacciagaluppi and Valentini 2009.

In previous two chapters, the quantum behavior of matter has been shown to
emerge as a result of the permanent interaction with the random zero-point field.
Fundamental quantum results, such as the Schrödinger and the Heisenberg formal-
ism, have emerged within this framework. In this chapter, the theory developed so
far will take us beyond the realm of quantummechanics, in two important directions.

On the one hand, arriving at the Schrödinger (or Heisenberg) description meant
neglecting the radiative terms—the radiation reaction and the Lorentz force due to the
fluctuating vacuumfield—once they had played theirmain role in taking the system to
the quantum regime. Due consideration of these neglected terms will now allow us to
calculate the effects that they produce on the already quantized system. Specifically,
the (nonrelativistic) formulas of quantum electrodynamics for the atomic lifetimes
and the Lamb shift will thus be recovered. More generally, the mean evolution of
any integral of motion under a breakdown of the balance equations will be analyzed.

Another most relevant quantum phenomenon that cannot be predicted by the
Schrödinger theory is the spin of the electron. The second part of this chapter is
therefore devoted to an inquiry about the genesis of the electron spin from the per-
spective of the present treatment. Just as it gives rise to position, momentum and
energy fluctuations, the zpf is seen to induce an angular momentum resulting from
the instantaneous torque exerted by the Lorentz force on the particle. A close analysis
based on the separation of the modes of the zpf of given circular polarization reveals
the existence of a spin angular momentum of value �/2, as well as of a corresponding
magnetic moment with a g-factor of value 2, associated with the particle. This leads
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196 6 Beyond the Schrödinger Equation

us to the identification of the spin of the electron as a further emergent property,
generated by the interaction of the particle with the zpf.

6.1 Radiative Corrections. Contact with QED

It is today widely accepted that the fluctuations of the electromagnetic vacuum are
responsible for important observable physical phenomena that pertain to the realm
of quantum electrodynamics. Among their best known manifestations are the finite
atomic lifetimes. Indeed, the vacuum fluctuations are known to contribute, along
with radiation reaction, to the ‘spontaneous’ transitions of the excited states (see e.g.
Davydov 1965;Dalibard et al. 1982;Milonni 1994).Moreover, both the atomic Lamb
shift and the Casimir and van der Waals forces have been shown to be attributable
to changes in the energy of the vacuum field due to the presence of matter (see e.g.
Boyer 1968, 1969; Milonni 1994; Bordag et al. 2009).

Within the traditional framework of qm, the analysis of the radiative corrections
implies introducing by hand the quantized electromagnetic field (including its vac-
uum component) and using perturbative methods for the calculation of its effects. In
sed, by contrast, the field—both radiation reaction and the zpf—is there from the
very beginning. It is in fact an essential ingredient in any quantum system: both the
Schrödinger and the Heisenberg description have been obtained by considering its
influence to zero order in ψ (or e2). Additional effects of this field on matter show
up explicitly in the equations for the averaged dynamical variables that ensue from
the generalized Fokker-Planck equation (see Sect. 4.2.1). It is therefore pertinent to
investigate how these neglected radiative terms can be brought back into the pic-
ture in a self-consistent approach, and to calculate the effects of such terms on the
quantum-mechanical system.

Strictly speaking, in order to find the exact solution of the problem of the parti-
cle subject to the radiation field one should revert to the original sed Hamiltonian
equations of motion, and study the evolution of the complete (particle plus field) sys-
tem into the quantum regime, without making approximations along the way. This
would indeed be the ideal way to proceed. However, as stated in Chap. 4, solving
this problem is beyond present possibilities. The practical solution, therefore, is to
use the present, more restricted approach: let the full system evolve into the quantum
regime, take the corresponding (Schrödinger) zero-order solutions, and use them to
calculate the effects of the radiative terms contained in the original equations. This
procedure leads to closed formulas for the most important radiative corrections to the
already quantized system, to lowest significative order in the fine-structure constant
χ = e2/�c. The results obtained do not show any difference with respect to the
(nonrelativistic) qed predictions to the same order of approximation. However, in
contrast to qedwhere these corrections represent the main effects due to the vacuum
fluctuations, in sed they represent secondary effects, since the central effect of the
action of the vacuum radiation field is quantum mechanics itself.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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The calculation of radiative corrections has constituted a central component of
the program of sed. A number of significant results have been thus obtained in the
past, although with varying degrees of success and mostly restricted to the harmonic
oscillator.1 The derivations presented in this chapter are more general and therefore
applicable to the atomic case,where they lead to formulas that are directly comparable
to those of qed. 2

6.1.1 Radiative Transitions

In Chap. 4 we found that in the time-asymptotic, Markovian regime, the evolution
of the mean value of the particle Hamiltonian H( p, x) = (1/2m) p2 + V (x) is
determined by the Eq. (4.32), namely

d

dt
〈H√ = ψ 〈...x · p√ − e2

m

〈
p · D̂

〉
, (6.1)

where the first term on the right-hand side represents the average power lost by the
particle through radiation reaction, and the second one represents the mean power
exchanged between the particle and the background field. Energy balance exists
if and only if (d 〈H√ /dt) = 0. Under this condition, we found that the ensuing
description for the mechanical system is governed by a Schrödinger-like equation
(4.78), namely

− 2ω2

m
∇2ρ + V ρ = 2iω

λρ

λt
. (6.2)

The value of the parameter ω was determined by imposing the balance condition

ψ 〈...x · p√0 = e2

m

〈
p · D̂

〉

0
(6.3)

for the particle in the ground state. The value of the right-hand side term depends,
through the diffusion operator D̂, on the spectral energy density of the field. By
introducing the value corresponding to the zpf,

γ0(ζ) = �ζ3

2π2c3
, (6.4)

1 A representative list of related works along the years is Kalitsin (1953), Sokolov and Tumanov
(1956), Braffort et al. (1965), Braffort and Taroni (1967), Surdin (1970, 1974), Boyer (1968–1980),
Santos (1974), de la Peña and Cetto (1976–1979), Moore (1977, 1984), Jáuregui and de la Peña
(1981), Moore and Ramírez (1982), de la Peña and Jáuregui (1982) and Cetto and de la Peña
(1988a, b, c). See also Davies (1982) .
2 Previous versions of the material presented in this section can be found in de la Peña et al. (2010,
2012), Cetto and de la Peña (2012), and Cetto et al. (2012, 2013).

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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the correct result, namely ω = �/2, was obtained. This made it clear that the
Schrödinger equation contains key information about the background field with
which the particle is interacting. Additionally, the result indicates that detailed energy
balance for a particle in its ground state takes place only when it is in equilibrium
with a field of spectral energy density equal to γ0.

Now, for any stateρ that is solution of the Schrödinger equation, this latter predicts
d 〈H√ρ /dt = 0 (provided that H does not depend explicitly on time)3. Yet, for a
stationary state ρn the equation

ψ 〈...x · p√n = e2

m

〈
p · D̂

〉

n
(6.5)

does not hold in general for states other than the ground one (see Sect. 6.1.4). This
could appear as contradicting the balance equation (6.1) applied to the n-state. How-
ever, the apparent contradiction is solved by observing that whereas d 〈H√n /dt = 0
is a strictly quantum-mechanical expression, consistent with the Schrödinger equa-
tion which has been derived neglecting terms of order ψ (or e2 ), the right-hand-side
terms in (6.1) represent the radiative terms —precisely those that were neglected in
the Schrödinger approximation. Now we shall take them into account. As a result,
when the particle or the radiation field or both are in an excited state, the energy
balance is broken in general, and radiative transitions take place. The finite lifetimes
of the excited states are accounted for by these radiative terms. The corresponding
rate of change is, therefore, not d 〈H√n /dt, but a (radiative) correction of the latter,
which we denote as

d

dt
〈H√nr = ψ 〈...x · p√n − e2

m

〈
p · D̂

〉

n
. (6.6)

For actual calculations it is simpler to use instead of Eq. (6.6) its alternative form,
namely

d

dt
〈H√nr = ψ 〈...x · p√n + 1

m

〈
TrD pp〉

n , (6.7)

which ensues from Eq. (4.45) with G = H .
In Sect. 6.1.4 a similar analysis will be shown to apply to more general ‘classical’

integrals of motion, i.e., dynamical variables that are conserved in the absence of
the radiation terms. It is understood that all the calculations that follow involve the
radiative terms. Therefore, and for simplicity in the writing, the additional index r
will be dropped everywhere, except where it must be kept to avoid confusion.

3 That d 〈H√ρ /dt = 0 can be easily verified resorting to the general form of the solution

ρ(x, t) =
∑

n

cne−iEn t/�βn(x).

http://dx.doi.org/10.1007/978-3-319-07893-9_4


6.1 Radiative Corrections. Contact with QED 199

6.1.2 Breakdown of Energy Balance

Instead of considering the mechanical system in its ground state, as was done for the
calculation of the parameter ω in Sect. 4.4.4, we assume now that it is in an excited
state n, the background field still being in its ground state (the zpf). Then both terms
on the right-hand side of Eq. (6.7) must be recalculated. Since the quantum regime
has already been attained, the calculation of such terms is performed following the
same procedure as in Sect. 4.4.4. In particular, the mean value ψ 〈 p · ...x √n is given, in
the one-dimensional case, for simplicity, by (see Eqs. (4.106) and (4.107))

ψ (
.̂..
x p̂)nn = ψ ( p̂

.̂..
x )nn = −mψ

∑

k

ζ4
nk |xnk |2 , (6.8)

with ζnk = (En − Ek)/�.
For the second term on the right-hand side of (6.7), we proceed as in the Appendix

4D for the calculation for 〈D pp√0 , just noticing that for negative values of ζkn it is
the second integral on the right-hand side of equation (D.8) that contributes to the
sum. One thus obtains

1

m

〈
D pp〉

n = −mψ
∑

k

ζ4
nk |xnk |2 signζnk . (6.9)

This expression contains a mixture of positive and negative terms, whilst in (6.8) all
contributions have the same sign. As follows from equations (6.7)–(6.9), the net loss
of average energy per unit time is given by (recall that we are dropping the additional
index r that appears in (6.7))

d 〈H√n

dt
= −mψ

∑

k

ζ4
nk |xnk |2 (1 − signζkn)

= −2mψ
∑

k<n

ζ4
nk |xnk |2 . (6.10)

The upshot is that there cannot be energy balance between the zpf and a particle in
an excited state—as was to be expected, since the zpf is the background radiation
field in its ground state. Only for n = 0 (hence all k > n) Eq. (6.10) gives zero,
which means that only the ground state of the particle is sustained by the zpf. Since
in (6.10) the transitions from state n to (lower-energy) states k take place without
the intervention of an external radiation field, we speak of ‘spontaneous’ transitions
(more on this in the following section). The corresponding average energy loss per
unit time in each such transition, Wnk , is obtained by writing the total average energy
loss as a sum of contributions from the various possible transitions,

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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d 〈H√n

dt
=

∑

k

Wnk, (6.11)

whence
Wnk = −2mψζ4

nk |xnk |2 . (6.12)

It is clear that expressions such as (6.10) have a meaning only in a statistical
sense. To understand this meaning we have to think of an ensemble of systems all
prepared initially in the same excited state n, and subject to the action of the zpf.
Then according to (6.10), the members of the ensemble have a certain probability
per unit time to make a transition to a lower-energy state k, which is determined by
the values of ζnk and |xnk |, i.e., by the specific properties of the system. However,
which transition will take place in every instance is impossible to predict with the
present statistical description.

Let us now inquirewhether there is any (excited or external) background fieldwith
which a mechanical system in an excited state n can be in equilibrium. The excited
background field is defined by its spectral energy density γ(ζ) = γ0(ζ)g(ζ), with
g(ζ) > 1 an even function, so that

d 〈H√n

dt
= −mψ

∑

k

ζ4
nk |xnk |2 (1 − g(ζkn)signζkn). (6.13)

This expression is the generalization of (6.10) for the general density γ(ζ). To find
the answer to the above question we observe that the terms within the parentheses
have different signs, depending on whether ζkn refers to an upward or a downward
transition (i.e., k > n or k < n). Therefore, there is no way that detailed balance can
be satisfied in general.

Nevertheless, there is a particular system that can coexist with the field in an
excited state, namely the harmonic oscillator. In this case, all |ζnk | that contribute to
the sum in (6.13) are equal in value and coincide with the oscillator frequency ζ0.
Since for the harmonic oscillator,

|xnk |2 = �

2mζ0

[
νk,n+1(n + 1) + νk,n−1n

]
, (6.14)

the first term on the right-hand side of Eq. (6.13) gives

− mψ
∑

k

ζ4
nk |xnk |2 = − 1

2�ψζ3
0(2n + 1) (6.15)

and the second terms gives

mψ
∑

k

ζ4
nk |xnk |2 g(ζkn)signζkn = 1

2�ψζ3
0g(ζn+1n) = 1

2�ψζ3
0gn(ζ0), (6.16)
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because g(ζn+1,n) = gn(ζ0). Therefore, detailed balance exists if gn(ζ0) = 2n + 1;
in other words, if the harmonic oscillator in its excited state n is embedded in a
background field with spectral energy density

γ(ζ) = γ0(ζ)(2n + 1), (6.17)

there are as many absorptions as there are emissions per unit time, all with the same
frequency ζ0, so that the average energy of the oscillator does not change. This result
should not come as a surprise, since this field has precisely an energy per normal
mode �ζ0(2n + 1)/2, equal to the energy of the mechanical oscillator with which it
is in equilibrium.

6.1.3 Atomic Lifetimes: Einstein’s A and B Coefficients

We now investigate further implications of the absence of detailed balance. This can
be conveniently done by using Eq. (6.13) to calculate the average energy lost (or
gained) per unit time by the atom (or a mechanical system in general) prepared in an
arbitrary state n when it is subject to the action of a radiation field with an arbitrary
spectral energy density γ(ζ) = γ0(ζ)g(ζ). It is convenient to write the adimensional
function g as g(ζ) = 1 + ga(ζ), in order to separate the contribution coming from
the additional background field, so that

γ(ζ) = γ0(ζ)g(ζ) = γ0(ζ) + γa(ζ),

with γa(ζ) = γ0(ζ)ga(ζ). (6.18)

Equation (6.13) thus writes as

d 〈H√n

dt
= −mψ

∑

k

ζ4
nk |xnk |2

[
1 − (1 + ga(ζnk))signζkn

]

= mψ
∑

k

ζ4
nk |xnk |2

[
(ga)ζkn>0 − (2 + ga)ζkn<0

]
. (6.19)

The first term within the brackets in the second line of this equation, proportional to
ga, represents the absorptions (k > n) and the second one, proportional to 2 + ga,

the emissions (k < n). It is clear from this expression that there can be absorptions
only when the background field is excited so that there is an external component
γa ↑= 0. This additional field can therefore be identified with the photonic radiation
field. The emissions, on the other hand, may be either ‘spontaneous’ (in presence
of just the zpf, as in the previous section) or else stimulated by the additional field,
represented by ga .

The coefficients appearing in the various terms determine the respective rates of
energy gain and energy loss; therefore, they must be directly related to Einstein’s A
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and B coefficientsfor the transition probabilities. We recall that the coefficient A is
defined as determining the time rate for spontaneous emissions (the term independent
of ga in Eq. (6.19)),

d

dt
〈H√sp emn = −�

∑

k<n

ζnk Ank . (6.20)

Thus, Ank is the probability that the atom realizes a spontaneous transition from state
n to a lower state k during a unit of time, with a consequent loss of energy given by
�ζnk . In its turn, the coefficient Bem

nk , associated with the rate of energy loss due to
transitions induced (stimulated) by the external field, is defined through

d

dt
〈H√ind emn = −�

∑

k<n

ζnk Bem
nk γa(ζnk), (6.21)

whereas the coefficient Babs
kn , associatedwith the rate of energygain due to absorptions

induced by the external field, is defined according to

d

dt
〈H√ind absn = �

∑

k>n

ζkn Babs
kn γa(ζnk). (6.22)

The B coefficients are thus transition probabilities in presence of a photonic field
with spectral energy density γa(ζnk). The total rate of energy change can therefore
be rewritten in the more transparent form

d 〈H√n

dt
= d

dt
〈H√sp emn + d

dt
〈H√ind emn + d

dt
〈H√ind absn

=
∑

k>n

�ζkn Babs
kn γa(ζnk) (6.23)

−
∑

k<n

�ζnk
[
Ank + Bem

nk γa(ζnk)
]
,

which can be recast, using (6.18), as

d 〈H√n

dt
=

∑

k

� |ζnk |
[(

Babs
kn γ0ga

)
ζkn>0

− (
Ank + Bem

nk γ0ga
)

ζkn<0

]
. (6.24)

Comparison of this expression with Eq. (6.19) gives for the spontaneous emissions
coefficient

Ank = 4e2ζ3
nk

3�c3
|xnk |2 , (n > k), (6.25)

which is just the respective qed formula (see e.g. Louisell 1973). In its turn, the
coefficients B are found to be
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Babs
kn = Bem

nk = 4π2e2

3�2
|xnk |2 ↓ Bnk . (6.26)

These results coincide with the respective formula of qed (or qm) (Louisell 1973).
It is important to note that the expressions for the coefficients Ank, and Bnk involve
each one the single frequency ζnk, which means that the transition between states
involves a resonance with a field component of that frequency—in line with the
results of Chap. 5—and a consequent exchange of energy given by �Enk = �ζnk .

The ratio of the A to the B coefficients is

Ank

Bnk
= � |ζnk |3

π2c3
= 2γ0(ζnk). (6.27)

Notice in particular the factor 2 in this equation. Given the definition of the coeffi-
cients, one could have expected this ratio to correspond exactly to the spectral density
of the zpf, which would have meant a factor of 1 instead of the factor 2. This latter
seems to suggest that the zpf has double the ability of the rest of the electromagnetic
field to induce transitions. The correct explanation, however, is another: the structure
of Eq. (6.19) indicates that one should actually write 2γ0 = γ0 + γ0. One of these
two equal contributions to spontaneous decay is due to the effect of the fluctuations
impressed on the particle by the field; the second one is the expected contribution
due to Larmor radiation. Not surprisingly, they turn out to be equal: it is precisely
their equality what leads to the exact balance between the two contributions when
the system is in its ground state, guaranteeing the stability of this state. Yet one
can frequently find in the literature that all the spontaneous decay is attributed to
one or the other of these two causes, more frequently to Larmor radiation. It is an
important result of both the present theory and quantum electrodynamics (provided
the symmetric operator ordering is used) that the two effects contribute equal shares.
Interesting related discussions can be seen in Davydov (1965), Fain (1966), Fain and
Khanin (1969), Dalibard et al. (1982), Milonni (1994).

The relation (6.27) and the equality of both coefficients Babs
kn = Bem

nk , were pre-
dicted by Einstein on the basis of statistical considerations in his 1916 paper on the
theory of radiation. It is pertinent to ask here at which point the quantization enters
in Einstein’s paper—a somewhat confused issue that comes to surface every now
and then.4 A current answer to this question is that quantization is introduced by
assuming discrete atomic levels. However, this is wrong, as Einstein and Ehrenfest
demonstrated some time after the initial paper, by redoing the calculationswith a con-
tinuous distribution of atomic levels (Einstein 1917) and recovering the old results.
The correct answer is that quantization enters through the assumption of a physical

4 The derivation of the Planck distribution from the A and B coefficients goes back to Einstein’s
1916 work. In Chap. 3 the same law was derived by considering the existence of the zpf. A strong
relation should therefore exist between these two different forms of arriving at Planck’s law. The
remark made reveals this relation: the A coefficient is proportional to the spectral density of the
zpf. Therefore, postulating the existence of γ0 ↑= 0 or of A ↑= 0 are two different but equivalent
forms of treating the problem.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_3
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source that can generate ‘spontaneous’ transitions. This can be easily verified by
redoing the Einsteinian calculation but omitting the term that allows for spontaneous
emissions, which leads to absurd results, such as atomic coefficients that depend on
the temperature. On the other hand, it is interesting to observe that the omission of
the term associated with stimulated emissions in Eq. (6.19) (after introducing appro-
priate populations) leads to the approximate expression for Planck’s law that was
proposed byWien (Eq. 3.63), which is a fair approximation for low temperatures, so
it already contains a quantum seed.

It is easy to follow the procedure used by Einstein to arrive at the Planck distri-
bution from the A and B coefficients by focusing on just two states n and m, with
En− Em = �ζnm > 0 and respective populations Nn, Nm . For a system in thermal
equilibrium at temperature T , Einstein used the relation (kB stands for the Bolztmann
constant)

Nm/Nn = exp(En − Em)/kB T, (6.28)

leaving aside possible but inconsequential degeneracies. In line with Eq. (6.19) (first
with n = m and then with n) the number of absorptions (m ◦ n transitions) is
proportional to Nmga(ζnm), and the number of emissions (n ◦ m transitions) is
proportional to Nn[2 + ga(ζnm)]. From the equilibrium condition

Nmga = Nn (2 + ga) (6.29)

and Eq. (6.28) one thus obtains indeed Planck’s law (for the thermal field)

ga(ζnm) = 2

e(En−Em )/kB T − 1
. (6.30)

Notice that the equilibrium condition (6.29) implies detailed energy balance, since
the individual emissions and absorptions involve a same amount of energy, �ζnk .
Notice also that this result implies the Bohr rule (En − Em)/� = ζnm, which was
derived for the first time with this procedure.

6.1.4 A More General Equation for the Balance Breakdown

The procedure just used allows to calculate the rate of change of other dynamical
quantities that correspond to ‘classical’ conserved variables. For this purpose we go
back to Eq. (4.33), which holds for any dynamical quantity ξ(x, p) that is a ‘classical’
integral of motion (i.e., an integral of motion when the action of the radiation field
is turned off),

d

dt
〈ξ√ = mψ

〈
...
x i

λξ

λ pi

〉
− e2

〈
λξ

λ pi
D̂i

〉
. (6.31)

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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In one-dimensional problems the only integral of motion is H, so that in order to
study the balance equation for ξ ↑= H it is necessary to analyze the more general,
multidimensional case. Since both the Hamiltonian H and ξ are constants of motion,
the corresponding operators, Ĥ and ξ̂, commute, which means that in the energy
representation the matrix associated with ξ̂ is diagonal, i.e.,

ξnk = ξnνnk, (6.32)

where the index n = (n′
H , n′′

ξ ) includes the quantum numbers corresponding to

eigenvalues for both Ĥ and ξ̂. If the system is in a state n, the (radiative) time
evolution of 〈ξ√n is, according to Eq. (6.31),

d

dt
〈ξ√nr = mψ

〈
...
x i

λξ

λ pi

〉

n
− e2

〈
λξ

λ pi
D̂i

〉

n
. (6.33)

As before, we omit the subindex r in the following. For the calculation of both terms
on the right-hand side we use the relation

i�
λξ̂

λ pi
= [x̂i , ξ̂], (6.34)

whence (
λξ

λ pi

)
kn

◦ 1

i�
[x̂i , ξ̂]kn = 1

i�
xikn(ξn − ξk). (6.35)

This expression, together with
...
x ink = −iζ3

nk xink , leads to

[.̂..x i ,
λξ̂

λ pi
]nn = 1

�

∑

k

|xink |2 (ξk − ξn)
(
ζ3

nk + ζ3
kn

)
= 0, (6.36)

due to the antisymmetry of ζnk . This means that

(
.̂..
x i

λξ̂

λ pi

)
nn

=
(

λξ̂

λ pi

.̂..
x i

)
nn

, (6.37)

and hence no ambiguity in the operator ordering arises when calculating the first
term in Eq. (6.33), which reduces to

mψ

〈
...
x i

λξ

λ pi

〉

n
◦ mψ

(
.̂..
x i

λξ̂

λ pi

)
nn

= −mψ

�

∑

k

ζ3
nk |xnk |2 (ξn − ξk). (6.38)

For the second term in (6.33) we resort again to the Markovian approximation
and follow the same procedure as in appendix 4D, thus arriving at
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e2
〈

λξ

λ pi
D̂i

〉

n
= 4πe2

3�2

∫ ≡

0
dζγ(ζ)

∫ t

−≡
dt ′ cosζ(t − t ′)

[
x̂ ′

i ,
[
x̂i , ξ̂

]]

nn
. (6.39)

Allowing for a possible additional (external) background field so that γ(ζ) =
γ0(ζ)g(ζ), we get

e2
〈

λξ

λ pi
D̂i

〉

n
= 2mψ

π�

∑

k

|xnk |2 (ξn − ξk)

∫ ≡

0
dζ ζ3g(ζ)×

×
∫ t

−≡
dt ′ cosζ(t − t ′) cosζnk(t − t ′)

= mψ

�

∑

k

|xnk |2 (ξn − ξk)

∫ ≡

0
dζ ζ3g(ζ)[ν(ζ + ζnk) + ν(ζ − ζnk)]

= mψ

�

∑

k

|xnk |2 (ξn − ξk) |ζnk |3 g(ζnk). (6.40)

With (6.38) and (6.40), Eq. (6.33) becomes (recall that g(ζkn) = g(|ζkn|))
d

dt
〈ξ√n = −mψ

�

∑

k

ζ3
nk |xnk |2 (ξn − ξk)[1 − g(ζkn)signζkn]. (6.41)

This means that the zpf with spectral energy density γ0(ζ) (i.e. g(ζ) = 1) guaran-
tees not only detailed energy balance, but more generally, detailed balance of any
(‘classical’) integral of motion of the form here considered, for a mechanical system
in its ground state (i.e., signζkn = +1 for all ζkn).

In analogy with Eq. (6.19), (6.41) can be rewritten as

d

dt
〈ξ√n = mψ

�

∑

k

ζ3
nk |xnk |2 (ξn − ξk)[(ga)ζkn>0 − (2 + ga)ζkn<0]. (6.42)

In terms of the Einstein coefficients given by (6.25) and (6.26) (expressed in three-
dimensional notation), this equation gives

d

dt
〈ξ√n =

∑

ζkn>0

(ξk − ξn)γa(ζnk)Bkn −
∑

ζkn<0

(ξn − ξk)[Ank + γa(ζnk)Bnk] (6.43)

for the net change of 〈ξ√ per unit time due to (upward and downward) radiative
transitions from state n to states k.
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6.1.5 Radiative Corrections to the Energy: The Lamb Shift

The calculations presented in previous pages confirm that the radiative terms
neglected in the process of deriving qm give rise to corrections to the solutions
of the (unperturbed, i.e. radiationless) Schrödinger equation. The Einstein A and
B coefficients for the lifetimes of atomic states pertain to this category. A further
important—even if smaller—radiative correction, one that represents a major suc-
cess of qed, is the shift of the atomic levels due to another residual effect of the
zpf. Indeed, the effective work realized by the fluctuating motions of the bound par-
ticle gives rise to a tiny modification of the mean kinetic energy, as is shown in the
following by means of a direct approach to the subject.

To calculate the radiative energy shift let us go back to the one-dimensional version
of Eq. (4.29) (where the subindex Q reminds us that the calculations are carried out
according to the quantum rules),

d

dt
〈xp√Q = 1

m

〈
p2

〉

Q
+ 〈x f √Q + mψ 〈x ...

x √Q − e2
〈
xD̂

〉

Q
. (6.44)

As explained is Sect. 4.2.1, this equation is a time-dependent version of the virial
theorem, with radiative corrections included and the average values taken over the
ensemble instead of over time, as is customarily done. In line with the discussion
in Sect. 6.1.1, the correction 〈νT √nr (to lowest order in ψ ∼ e2) to the mean kinetic
energy in the quantum state n, is given by

〈νT √nr = −mψ

2
〈x ...

x √n + e2

2

〈
xD̂

〉

n
, (6.45)

where the two average values on the right-hand side are calculated using the solu-
tions of the Schrödinger equation. We shall again dispose of the additional index r,
whenever this does not lead to confusion.

The first term on the right-hand side of (6.45), associated with the Larmor radia-
tion, can be approximated to lowest order in ψ , by

− mψ

2
〈x ...

x √n = mψ

2
〈ẋ ẍ√n = mψ

4

d

dt

〈
ẋ2

〉

n
= 0, (6.46)

and hence it does not contribute to the energy shift in the mean. Now, it is interesting
to note that when 〈x ...

x √ is calculated in quantum terms, there is an ambiguity in the
order of the factors (since (x̂

.̂..
x )nn ↑= (

.̂..
x x̂)nn), and only the symmetrized operator

(x̂
.̂..
x )S = 1

2 (x̂
.̂..
x + .̂..

x x̂) (6.47)

has a real and null mean value, in accordance with (6.46), which defines the rule of
correspondence in this case. The anti-Hermitian, antisymmetric combination

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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(x̂
.̂..
x )A = 1

2 (x̂
.̂..
x − .̂..

x x̂) (6.48)

is not devoid of physical meaning, however. To identify this, we write

〈νT √A
n ↓ −i

mψ

2
(x̂

.̂..
x )A

nn = 1

2
mψ

∑

k

|xnk |2 ζ3
nk . (6.49)

In terms of the spontaneous-emission coefficient given by Eq. (6.25) we have (for
En > Ek)

〈νT √A
n = �

4

∑

k

Ank = �

4Tn
, (6.50)

where Tn = (
∑

k Ank)
−1 is the lifetime of state n against spontaneous decay. This

result shows that the expectation value of (x̂
.̂..
x )A furnishes a measure of the (inverse)

lifetime of the corresponding excited state—whereas the mean value of (x̂
.̂..
x )S rep-

resents a contribution to the energy shift (which turns out to be zero) for the same
state.

From Eq. (6.45) and the previous results, it follows that the correction to the
energy is due solely to the coupling of the (instantaneous) electric dipole moment of
the atom d = ex to the electric component of the background field, represented by
the second term in Eq. (6.45),

〈νT √n = e2

2

〈
xD̂

〉

n
= e

2

〈
dD̂

〉

n
. (6.51)

The calculation of this term is carried out in appendix A, and gives the result

e2

2

〈
xD̂

〉

n
= − 2e2

3πc3
∑

k

|xnk |2 ζkn

∫ ≡

0
dζ

ζ3

ζ2
kn − ζ2

. (6.52)

The radiative correction to the mean energy is thus (writing 〈νT √n = νEn and in
three dimensions, for comparison purposes)

νEn = e2

2

〈
x · D̂

〉

n
= − 2e2

3πc3
∑

k

|xnk |2 ζkn

∫ ≡

0
dζ

ζ3

ζ2
kn − ζ2

. (6.53)

This coincides with the formula derived by Power in 1966 for the Lamb shift on
the basis of Feynman’s argument of 1961. We recall that according to Feynman, the
presence of the atom creates a weak perturbation on the nearby field, thereby acting
as a refracting medium. The effect of this perturbation is to change the frequencies
of the background field in the vicinity of the atom from ζ to ζ/n(ζ), n being the
refractive index. The shift of the zpf energy due to the presence of the atom is then
(Power 1966, see also Milonni 1994, Chap. 3)
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�En =
∑

k,λ

1

2

�ζk

n(ζk)
−

∑

k,λ

1

2
�ζk ≥ −

∑

k,λ

[n(ζk) − 1]1
2

�ζk, (6.54)

and the refractive index is given in this approximation by (Davydov 1965, Chap. 9)

n(ζk) ≥ 1 + 4π

3�V

∑

m

|dmn|2 ζmn

ζ2
mn − ζ2

k

, (6.55)

where dmn = exmn is the electric dipole transition moment. After an integration
over the solid angle k̂ and summation over the polarizations λ = 1, 2, Power obtains
in the continuum limit for ζk the formula

�En = − 2

3πc3
∑

m

|dmn|2 ζmn

∫ ≡

0
dζ

ζ3

ζ2
mn − ζ2 , (6.56)

which coincides with the previous result, Eq. (6.53).
The observable Lamb shift (called also Lamb shift proper) is obtained by sub-

tracting from the total energy shift given by Eq. (6.53), the free-particle contribution,
νEfp, represented by this same expression in the limit of continuous electron energies
(when ζkn can be ignored compared with ζ in the denominator),

νEfp = 2e2

3πc3
∑

m

|xnm |2 ζmn

∫ ≡

0
dζ ζ = e2�

πmc3

∫ ≡

0
dζ ζ. (6.57)

The last equality follows from the sum rule �m |xnm |2 ζmn = 3�/2m. The Lamb
shift proper of the energy level n is therefore given by

νELn = νEn − νEfp = − 2e2

3πc3
∑

k

|xnk |2 ζ3
kn

∫ ≡

0
dζ

ζ

ζ2
kn − ζ2

, (6.58)

which again agreeswith the nonrelativisticqed formula.5 The logarithmic divergence
of the integral calls for the introduction of the usual (nonrelativistic) regularizing
cutoff ζC = mc2/�, which gives thus

νELn = 2e2

3πc3
∑

k

|xnk |2 ζ3
kn ln

∣∣∣
∣

mc2

�ζkn

∣∣∣
∣ . (6.59)

5 In the denominator of Eq. (6.58) the term ψ2ζ4 due to Larmor radiation is missing (it has been
neglected because the calculation is performed to lowest order in e2). Its introduction is important
for some applications, in particular to get a valid expression for the refractive index in Eqs. (6.55)
and (6.58) (Sokolov and Tumanov 1956; de la Peña and Cetto 1977). This is a quite natural term
in both qed and sed.
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This is Bethe (1947) well known result. Note, however, that in the present approach
(as in Power’s) no mass renormalization was required.

The interpretation of the Lamb shift as a change of the atomic energy levels due
to the interaction with the surrounding zpf is fully in line with the general approach
of the present theory. It constitutes one more manifestation of the influence of the
particle on the near field, which is then fed back to the particle. An alternative way
of looking at this reciprocal influence is by considering the general relation between
the atomic polarizability χ and the refractive index of the medium affected by it (for
n(ζ) ≥ 1),

n(ζ) = 1 + 2πχ(ζ). (6.60)

A comparison of this expression with Eq. (6.55) shows that

χn(ζ) = 2

3�

∑

m

|dmn|2 ζmn

ζ2
mn − ζ2 , (6.61)

which is the Kramers-Heisenberg formula (see Davydov 1965). This indicates that
the Lamb shift can also be viewed as a Stark shift associated with the dipole moment
d(ζ) = χ(ζ)E induced by the electric component of the zpf on the atom.

Let us recast Eq. (6.58) in a more familiar form, the one that is usual to find
in textbooks and more adapted to direct calculation. In doing so it is convenient to
introduce the energy En = �ζn and the abbreviated notation

Ink =
∫ ≡

0
dE E

(Ek − En)2 − E2
, (6.62)

so that (6.58) rewrites as (with χ = 3mc2ψ/2�)

νELn = − 2χ

3πc2
∑

k

Ink |ζkn xnk |2 (Ek − En)

= − 2χIn

3πm2c2
∑

k

∣∣ pnk

∣∣2 (Ek − En)

= − 2χIn

3πm2c2
i�

∑

k

f nk · pkn, (6.63)

since pnk = iζnk xnk and f nk = iζnk pnk . We have assumed that Ink depends so
weakly on the index k that such dependence can be ignored; νELn becomes, with
f̂ = −∇V,

νELn = − 2χIn

3πm2c2
i� 〈n| f · p |n√ = χIn

3πm2c2
i� 〈n| [∇V, p

] |n√

= − �
2χIn

3πm2c2
〈n| ∇2V |n√ . (6.64)
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For the Coulomb potential, ∇2V = 4πZe2ν3(r), so that only the wave function at
the origin contributes to the Lamb shift in the present approximation.

The main interest of (6.64), apart from convenience of calculation, lies in the
interpretation of the correction to the energy as due to fluctuations of the value of the
potential V resulting from assumed fluctuations νx of the instantaneous position of
the electron. Thus

V (x + ν(x)) = V (x) + νxi
λV

λxi
+ 1

2
νxiνx j

λ2

λxiλx j
V + · · · (6.65)

Assuming that the fluctuations are spherically symmetric on the average and sta-
tistically independent in orthogonal directions, so that in the mean νxi = 0,

νxiνx j = 1
3 (νx)2νi j , the average (over the set of fluctuations) of the above equation

becomes
V (x + ν(x)) = V (x) + 1

6 (νx)2∇2V + · · · (6.66)

Writing the energy shift (6.64) in terms of the expectation value of the deviation
V (x + ν(x)) − V (x), and neglecting higher-order terms,

νELn =
〈
V (x + ν(x)) − V (x)

〉
= 1

6 (νx)2
〈
∇2V

〉
= − �

2χIn

3πm2c2

〈
∇2V

〉
(6.67)

gives for the mean square displacement of x

(νx)2 = −2�
2χIn

πm2c2
= −2χIn

π
λ2

C , λC = �

mc
, (6.68)

where λC stands for the Compton wavelength. Thus

√
(νx)2

λC
=

√

−4χIn

π
∼ 10−1. (6.69)

Qualitatively, this result is in line with the well-known proposal in Welton 1948 to
identify the Lamb shift as a consequence of the fluctuations of the position of the
electron due to the interaction with the vacuum field (Milonni 1994). We see that the
fluctuations of x that give rise to the Lamb shift are smaller even in the mean than
the Compton wavelength, which is by itself a small quantity in comparison with the
Bohr radius aB = �

2/me2, λC = χaB (∼ 10−9 cm for the electron). The Lamb
shift is indeed a very small correction, so small that it requires the use of particularly
refined spectroscopy to be detected.6

6 There are several trembling motions of the electron, which should not be confused with each
other. On one hand there is the zitterbewegung, a relativistic trembling of the order of λC , with
a relatively well-defined frequency ∼2mc2/�. This leads to the notion that an electron cannot be
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It is interesting to observe that although the initial calculation of the Lamb shift
on the basis of Eq. (6.45) exhibits it as an additional kinetic energy, the expression
(6.64) describes it as the result of an extra potential energy. However, in both cases
it is the fluctuations of x which give rise to the correction. The reason for this is that
the fluctuations of the position variable generate both diffusion and extra potential
energy. The two descriptions are therefore equivalent forms of accounting for the
same process.

6.1.6 External Effects on the Radiative Corrections

By now it is clear that certain basic properties of the vacuum field—such as
the intensity of its fluctuations or its spectral distribution—are directly reflected
in the radiative corrections studied above. This means that a change in the properties
of the vacuum should lead in principle to a corresponding modification of these cor-
rections. The vacuum can be altered, for instance, by introducing material objects
that modify the boundary conditions and hence affect the distribution of the normal
modes of the field. Additionally, the background field can be modified by raising the
temperature of the system or by introducing external radiation. These changes lead
to observable effects on both the radiative lifetimes and the energy levels.

Such ‘environmental’ effects have been studied for more than 60 years, normally
within the framework of quantum theory. However, some calculations have been
made also within the framework of sed, in particular for the harmonic oscillator,
leading to comparable results (see e.g. Cetto and de la Peña 1988a, b).7 The formulas
derived in the previous sections provide an opportunity to study the more general
case, instead of restricting the calculations to the harmonic oscillator. The task is
facilitated and becomes transparent by the use of the present theory, because the
presence of the background radiation field is clear from the beginning.

6.1.6.1 External Effects on Atomic Lifetimes

In Sect. 6.1.3 we have already come across one observable effect of a change in the
background field: according to Eq. (6.19) the rates of stimulated atomic transitions
are directly proportional to the spectral distribution of the external (or additional)
background field, be it a thermal field or otherwise. In the case of a thermal field
at temperature T , in particular, with ga(ζnk) given by Eq. (6.30), the (induced)
transition rate from state n to state k becomes (with the help of Eqs. (6.4), (6.24) and
(6.26 ))

confined to a region in space smaller than a Compton wavelength. As just discussed, the fluctuations
of x associated with the Lamb shift are even smaller than λC .
7 Related topics in which sed has been very successful are the Casimir effect and the van der Waals
forces. The literature on this subject was iniciated with the old papers byMarshall (1965) and Boyer
(1968, 1969), and followed by an extensive series of works by these authors and several others. A
review of Boyer’s work on the subject is Boyer (1980a); a more extensive list of references is given
in The Dice. See also the literature at the end of the chapter.
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d Nnk

dt
= γ0(ζnk)ga(ζnk)Bnk

= 4e2 |ζnk |3 |xnk |2
3�c3

1

e�|ζnk |/kB T − 1
. (6.70)

This result shows that no single Hamiltonian eigenstate is stable at T > 0 (as is well
known), because the thermal field induces both upward and downward transitions.
For downward transitions (ζnk > 0) one can rewrite Eq. (6.70) for comparison
purposes in terms of Ank as given by (6.25),

d Nnk

dt
= Ank

e�ζnk/kB T − 1
. (6.71)

This expression indicates that the effect of the thermal field on the decay rate is
barely noticeable at room temperature (kB T ≥ 0.025 eV), since for typical atomic
frequencies, the denominator inEq. (6.71) ranges between exp(−40) and exp(−400).
In fact, the temperature would have to be raised by several orders of magnitude to
obtain a noticeable effect on the lifetimes—but then other effects on atomic stability
due to such high temperatures would be dominant. On the other hand, the simple
addition of a high-intensity monochromatic field of frequency ζnk—such as that
produced by a laser—can have a visible effect on the emission rates, as is well
known. Such effect in fact lies at the basis of the functioning of the laser.

Also when the geometry of the system or the spectral distribution of the back-
ground field aremodified by the presence of nearby conducting objects, the transition
rates are affected accordingly. Assume, for simplicity, that the modified field is still
isotropic, with the density of modes of a given frequency ζnk simply reduced by
a (geometrical) factor g(ζnk) < 1. Then according to the results of Sect. 6.1.3 the
corresponding spontaneous and induced transition rates are reduced by this factor,
since both A and γB are proportional to the density of modes. By enclosing the atoms
in a high-quality cavity that excludes the modes of this frequency, one can therefore
virtually inhibit the corresponding transition. For the more general, anisotropic case
the calculations are somewhat more complicated, without however leading to a sub-
stantial difference from a physical point of view. These cavity effects have been the
subject of a large number of experimental tests since the early works of Kleppner
(1981), Goy et al. (1983), and others. In those cases where observable effects were
predicted, the experiments have served to confirm the theoretical predictions.

Considering the essential role played by the background field in determining
the basic structure and quantum behavior of the atom, according to sed, one may
well wonder whether a geometric modification of this field (i.e., a change in the
distribution of single modes of certain frequencies) would not have an impact on the
basic behavior of the atom at the level of quantum mechanics. To respond to this
question, let us look back at the energy-balance condition (6.5),

ψ 〈...x · p√n = e2

m

〈
p · D̂

〉

n
. (6.72)
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We observe that any such alteration of the field modes affects both the radiation
reaction field and the zpf on an equal footing. The reason is that on each side of this
equation the field enters through its correlation function only (to lowest significative
order in the approximation). Therefore, both sides of the equation are identically
affected, and the equality continues to hold. This leads to an important conclusion,
namely that the (quantum-mechanical) stationary solutions of the Schrödinger equa-
tion (which must comply with the balance equation) are immune to such environ-
mental modifications of the background field.8 This can be considered a sign of the
robustness of the stationary quantum states.

6.1.6.2 External Effects on the Energy Levels

Let us now show how Eqs. (6.57) and (6.58) can be used to calculate the changes
in the energy shift produced by the addition of an (external or thermal) background
field. First we determine the shift νEn(γ) produced by the total field γ = γ0 + γa

(see Eq. (6.18)), following the same procedure that led to Eq. (6.53). Then, to the
corresponding free-particle contribution νEfp(γ) and the corresponding Lamb shift
νELn(γ) we subtract the original shifts (νEfp(γ0) and νELn(γ0)) produced by the zpf,
thus obtaining the formulas for the variations of the (first-order) corrections. The
calculation is straightforward using the cited equations, and the results are

�
(
νEfp

) = 4πe2

3�

∑

k

|xnk |2 ζkn

∫ ≡

0
dζ

γa

ζ2 = e2�

πmc3

∫ ≡

0
dζ

γa

γ0
ζ, (6.73)

�(νELn) = − 2e2

3πc3
∑

k

|xnk |2 ζ3
kn

∫ ≡

0
dζ

γa

γ0

ζ

ζ2
kn − ζ2

, (6.74)

for a homogeneous field. If, for instance, the additional field represents blackbody
radiation at a temperature T > 0, i.e., if γa(ζ, T ) = γ0(ζ)ga(ζ, T ) with ga(ζ, T )

given by (6.30), then Eq. (6.73) gives

�T
(
νEfp

) = 2χ

πmc2
(kB T )2

∫ ≡

0
dy

y

exp y − 1
. (6.75)

8 A similar conclusion was arrived at in Cetto and de la Peña (1988a, b), where it was formulated
in terms of a fluctuation-dissipation relation for sed.
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With ∫ ≡

0
dy

y

exp y − 1
= π2

6
(6.76)

equation (6.75) gives for the change of the free-particle energy the amount

�T
(
νEfp

) = πχ

3mc2
(kB T )2. (6.77)

Further, the formula for the change of the Lamb shift proper is given according to
Eq. (6.74) by

�(νELn) = − 4e2

3πc3
∑

k

|xnk |2 ζ3
kn

∫ ≡

0
dζ

ζ

ζ2
kn − ζ2

(
1

exp(�ζ/kB T ) − 1

)
.

(6.78)
These results coincide with those obtained within qed (Knight 1972; Zhou and
Yu 2010), and the corresponding thermal shifts have been experimentally observed
(see e.g. Hollberg and Hall 1984). From the point of view of sed (or qed) their
interpretation is clear: they represent additional contributions to the kinetic energy
impressed on the particle by the thermal field, according to the discussion at the
beginning of Sect. 6.1.5.

6.2 The Spin of the Electron

A most fundamental problem in quantum theory relates to the origin and nature of
the spin of the electron. Since this is a purely quantum phenomenon (albeit normally
considered of relativistic origin), the present theory should be expected to provide
an explanation for it, instead of merely taking it as one more intrinsic property of the
particle such as its mass or its electric charge.

Despite its importance for qm, the question about the origin and nature of spin
has received relatively little attention in sed. Indeed, during the initial period of
sed the electron was considered mainly as a spinless particle; to our knowledge
the only exception to this was the work of Braffort and Taroni (1967), showing the
existence of some effects due to spin. The 1980s saw the publication of a series of
phenomenological discussions by Moore and Ramírez (1982), Moore (1984), Cav-
alleri (1985) and Rueda (1993), focusing on the importance for quantum theory of
the appearance of (helical) vibrations that might be identified with the zitterbewe-
gung. By using an (otherwise classical) harmonic oscillator model for the electron
and separating the zpf into components of circular polarization, Jáuregui and de la
Peña (1981), de la Peña and Jáuregui (1982), derived the mean squared electron spin
angular momentum and its projections, within a numerical factor of order 1; see also
Sachidanandam(1983). Similarly, Barranco and coworkers 1989 studied the spin
and the magnetic moment of a (classical) particle subject to the zpf, using a simple
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composite particle model with two constituents bound by a harmonic force. More
recently, Muralidhar (2011) published a suggestive derivation of spin by assuming
that the zero-point energy of the (free) electron, considered as a classical particle, is
an energy of rotation within the region of space surrounding the particle. Specifically,
by expressing the zpf fluctuations as rotations on a complex plane, the spin angular
momentum appears in this model connected with the imaginary part of the rotations.

The various sed calculations, though based on classical models, have led in one
way or another to a result of order �

2 for the mean square value of the spin and of
order � for the spin projections. This strongly suggests the possibility of finding a
reasonable explanation for the electron spinwithin the present approach.Our analysis
of this possibility, presented in the following sections, exhibits the electron spin as
one more emergent property arising from the interaction of the electron with the zpf.

6.2.1 Unravelling the Spin

Let us again recall the equations for the averaged dynamical variables that ensue from
the generalized Fokker-Planck equation, derived in Sect. 4.2.1. We are interested, in
particular, in the balance equation for the angular momentum components

Li j = xi p j − x j pi , (6.79)

obtained from Eq. (4.28), namely

d

dt

〈
Li j

〉
Q = 〈

Mi j
〉
Q + mψ

〈
xi
...
x j − x j

...
x i

〉
Q − e2

〈
xi D̂ j − x j D̂i

〉

Q
. (6.80)

Here Mi j = xi f j − x j fi is a component of the momentum of the external force
(or torque), and the additional terms are due to radiation reaction and diffusion. For
simplicity let us consider that only the zpf is present and that the particle is in its
ground state, n = 0. Then, since the state is (truly) stationary, d

〈
Li j

〉
/dt = 0, and

Eq. (6.80) gives

〈
Mi j

〉
0 + mψ

〈
xi
...
x j − x j

...
x i

〉
0 − e2

〈
xi D̂ j − x j D̂i

〉

0
= 0. (6.81)

To lowest order in ψ one may take

m
〈
xi
...
x j − x j

...
x i

〉
0 = d

dt

〈
Mi j

〉
0 − 〈

ẋi f j − ẋ j fi
〉
0 , (6.82)

which under stationarity reduces to

mψ
〈
xi
...
x j − x j

...
x i

〉
0 = −ψ

〈
ẋi f j − ẋ j fi

〉
0 , (6.83)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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and Eq. (6.81) becomes thus

〈
Mi j

〉
0 − ψ

〈
ẋi f j − ẋ j fi

〉
0 = e2

〈
xi D̂ j − x j D̂i

〉

0
. (6.84)

For central forces, Mi j = 0 and one may write fi = g(r)xi with g(r) a radial
function, whence

ψ
〈
ẋi f j − ẋ j fi

〉
0 = ψ

〈
g(r)

(
ẋi x j − ẋ j xi

)〉
0 = − ψ

m

〈
g(r)Li j

〉
0 , (6.85)

which introduced in (6.84) leads to the balance equation for the angular momentum,

ψ
〈
g(r)Li j

〉
0 = me2

〈
xi D̂ j − x j D̂i

〉

0
. (6.86)

Alternatively, in the Markovian limit equation (4.45) can be applied directly to G =
Li j , thus obtaining

mψ
〈
xi
...
x j − x j

...
x i

〉
0 =

〈
D px

i j − D px
ji

〉

0
. (6.87)

By combining this with Eqs. (6.83) and (6.85), we get a balance condition for the
angular momentum components,

ψ
〈
g(r)Li j

〉
0 = −m〈D px

ji − D px
i j √0. (6.88)

Alternatively, one may take directly the (stochastic) equation of motion for a
central-force problem,

ṗi = fi + mψ
...
x i + eEi (t), (6.89)

where pi = mẋi , Ei (t) is the electric component of the zpf, and fi = g(r)xi . By
multiplying this equation by x j and anti-symmetrizing one gets

ṗi x j − ṗ j xi = mψ
(...

x i x j − ...
x j xi

) − e
(
xi E j − x j Ei

)
. (6.90)

Under stationarity, i.e. for the system in its ground state, one can perform the sub-
stitutions ṗi ◦ fi and mxi

...
x j ◦ −ẋi f j (valid to zero order in ψ ), thus arriving

at

ψg(r)Li j
(i) = −me

(
xi E j − x j Ei

)(i) = −me(x × E)
(i)
i j . (6.91)

This expression, which is equivalent to (6.86), shows that there is an angular momen-
tum L that results from the instantaneous torque exerted by the Lorentz force on
the particle. Since only the fluctuating component of x can contribute to the aver-

age (x × E)
(i)

(because Ei (t) is purely random), it is clear that all the angular
momentum thus generated is due to the random motion around the mean trajectory

http://dx.doi.org/10.1007/978-3-319-07893-9_4


218 6 Beyond the Schrödinger Equation

followed by the particle; thus, it is independent of the system of coordinates, and has
an ‘internal’ (intrinsic) nature. This angular momentum will turn out to be a crucial
phenomenon in our proposal for the origin of the electron spin.

That the Lorentz force due to the background field exerts indeed a torque on the
particle, is explained by the following argument. It is experimentally observed that
the interaction of the electron with the radiation field takes place via the circular
polarized modes of the field (or modes of a certain helicity). This is known to be the
case for the photonic field, which, from the present perspective, is the excited state
of the radiation field, additional to the zero-point component. It is therefore natural
to assume that the same is true for the interaction of the electron with the modes of
the field in its ground state, i.e., the zpf. To analyze the effect of such interaction, one
should therefore consider the zpf as composedofmodes of both right- and left-handed
circular polarization. Taken separately, these modes will indeed induce, through the
Lorentz force, rotational (viz right- and left-handed) motions on the particle. The two
effects will tend to conceal each other when the ensemble of modes and of particles is
considered in its entirety; yet by focusing on one of the two subensembles of a given
polarization of the field modes, the effective rotation induced on the corresponding
particles should be disclosed. It is just this mean rotation present in each one of the
two separate subensembles what will be identified below with the two degrees of
freedom proper to each of the corresponding spin-1/2 states of the particle.

6.2.2 The Isotropic Harmonic Oscillator

As an example of application of the results of the previous section, let us consider the
simplest case, namely a spherical isotropic harmonic oscillator of natural frequency
ζ0, in its ground state. In this case fi = −mζ2

0xi so that g(r) = −mζ2
0, and

Eq. (6.88) becomes
〈
Li j

〉
0 = 1

ψζ2
0

〈D px
ji − D px

i j √0. (6.92)

The calculation of the right-hand side is carried out in appendix B. The result, in
terms of the Cartesian components of x̂ and p̂, is

〈
Li j

〉
0 = 〈0| (x̂i p̂ j − x̂ j p̂i

) |0√ . (6.93)

This convergence of results shows that indeed the fluctuations generate the angular
momentum Li j , as predicted by Eq. (6.92). Now, the numerical value

〈
Li j

〉
0 = 0

for the ground state represents the net (average) angular momentum induced on the
isotropic harmonic oscillator by the full zpf. According to the discussion following
Eq. (6.91), however, we should analyze separately the contributions arising from
each of the two circular polarizations, characterized by the (circularly polarized)
vectors
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ψk± = 1∗
2

(
ψki ± iψk j

)
, (6.94)

with ψki , ψk j unit Cartesian vectors orthogonal to some axis k, assumed to be fixed.
We will therefore now consider a situation in which the particle (the oscillator) is

under the action of the background field of a given circular polarization with respect
to an axis k. Since according to the results in chapter 5 the response of the particle to
the field is linear, when the particle is acted upon the (circularly) polarized field the
appropriate variables to describe the system are the spherical variables (x+, x−, xk),
which are given, in accordance with (6.94), by,

x± = 1∗
2

(
xi ∼ i x j

)
, (6.95a)

xi = 1∗
2

(
x+ + x−)

, x j = i 1∗
2

(
x+ − x−)

. (6.95b)

The nonzero matrix elements of the oscillator are xi01 = (
x+
01 + x−

01

)
/
∗
2, and so

on. Further, since x±
10 = (

x∼
01

)∈
, Eq. (6.93) becomes

〈
Li j

〉
0 = mζ0

(
x+
01x−

10 − x−
01x+

10

) = mζ0

(∣∣x+
01

∣∣2 − ∣∣x−
01

∣∣2
)

. (6.96)

In the ground state,
〈
Li j

〉
0 = 0; hence the two terms,

∣∣x+
01

∣∣2 and
∣∣x−

01

∣∣2 , contribute
with equal magnitude and opposite sign to the k-th component of the total oscillator’s
angular momentum, as should be the case for a nonpolarized vacuum. These separate
contributions are

〈
Li j

〉+
0 = mζ0

∣∣x+
01

∣∣2 ,
〈
Li j

〉−
0 = −mζ0

∣∣x−
01

∣∣2 . (6.97)

Using xi01 = x j01 = ∗
�/(2mζ0) for the harmonic oscillator, one gets

mζ0
∣∣x±

01

∣∣2 = �

2
, (6.98)

whence the size of each separate contribution to the angular momentum in (6.96) is
just �/2. In order to distinguish this contribution from the (orbital) component of the
angular momentum we write

〈
Si j

〉± instead of
〈
Li j

〉±
0 , so that

〈
Si j

〉± = ±�

2
. (6.99)

Further, to study the square of the angular momentumwe take into account that L2

corresponds to a ‘classical’ integral of motion for central forces; thus from equation
(6.31) with ξ = L2, we get that for the (stationary) ground state, L2 satisfies the
equation
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mψ

〈
...
x i

λL2

λ pi

〉

0
= e2

〈
λL2

λ pi
D̂i

〉

0
. (6.100)

The approximation ṗk = fk allows us to write m
...
x k = −ζ2

0 pk for the harmonic
oscillator. Further, since L2 = r2 p2 − (r · p)2 is a homogeneous function of p of
degree 2, we have

pi
λL2

λ pi
= 2L2. (6.101)

With these results Eq. (6.100) reduces to

〈
L2

〉

0
= −3mc3

4ζ2
0

〈
λL2

λ pi
D̂i

〉

0
. (6.102)

The right-hand side of this equation is calculated in appendix C, and gives a result
different from zero—even for s-states. Dividing again the full ensemble into two
subensembles corresponding to different circular polarizations, one obtains

〈
L2

〉

0
=

〈
L2

〉+
0

+
〈
L2

〉−
0

, (6.103)

where each separate contribution to the mean square angular angular momentum is
given by 〈

L2
〉+
0

=
〈
L2

〉−
0

= 3

4
�
2. (6.104)

In terms of the notation introduced above (Eq. (6.99))—that distinguishes the (mean)
orbital angular momentum from the (mean) angular momentum induced by the cir-
cular polarizations of the zpf—Eq. (6.104) rewrites as

〈
S2

〉+ =
〈
S2

〉− = 3

4
�
2. (6.105)

The fact that the results in Eqs. (6.99) and (6.105) do not depend on the oscil-
lator’s frequency ζ0, suggests that they hold in the general case, and for the free
particle in particular (see Sect. 6.2.3). Therefore, we can conclude that when the
transformation (6.95a, 6.95b) possesses physical meaning, so that the decomposi-
tions

〈
Li j

〉
0 = 〈

Li j
〉+
0 + 〈

Li j
〉−
0 and

〈
L2

〉+
0 = 〈

L2
〉+
0 + 〈

L2
〉−
0 make sense, equations

(6.99) and (6.105) tell us that there exists an angular-momentum component that
does not correspond to an orbital motion of the particle. It represents the angular
momentum derived from the interaction of the particle with a given circular polar-
ized mode of the zpf. For an electron, which (as stated above) interacts with the
radiation field via its circular polarized modes, the transformation (6.95) is indeed
physically meaningful; thus the angular momentum induced by the zpf can be
identified with the electron’s spin. The term ‘intrinsic’ usually attached to it, points
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to the permanence of this effect (the zpf is always and everywhere present), although
here appears as induced on (or acquired by) the particle.

We have thus disclosed the existence of the vector S (with k-component εi jk Si j )
that stands for the intrinsic spin-angular momentum of a charged particle for which
the circularly polarized modes of the zpf are physically relevant. In this form we
see that the theory does contain the elements to account for the spin of the electron.
The extension of these results to the general case (arbitrary potential), as well as the
construction of the quantum operator corresponding to the vector S, are left for the
following section.

One additional point merits consideration. According to these results a charged
particle acquires spin 1/2; so what can be said about scalar bosons? A possible
answer to this question is that the spin 1/2 is acquired by elementary particles, such
as the electron, whereas composite particles may acquire it or not, depending on their
structure and their specific interaction with the radiation field. Thus, bosons come
out to be composite structures, with an even number of elements (if of fermion type).

6.2.3 General Derivation of the Electron Spin

Let us now present a general procedure to derive the spin of the electron, based on
the Heisenberg formalism of qm developed in Chap. 5. According to the above dis-
cussion, our ansatz is that the electron spin is an angular momentum of the particle
generated by its interaction with the zpf, specifically with one of the circular polar-
izations of the field. In contrast with the previous section, here the electron is subject
to an arbitrary external central force, and in any given stationary state. Denoting with
the index n the set of quantum numbers that characterize the state of the particle,
including the orbital angular momentum and its projection along the z axis, we have
(for simplicity in the writing we use xi = x, x j = y, and xk = z)

〈
L̂ z

〉

n
= 〈n| L̂ z |n√ =

∑

k

(
xnk pykn − ynk pxkn

)
= im

∑

k
ζkn (xnk ykn − ynk xkn) . (6.106)

To take into account that the electron responds to modes of a given circular polariza-
tion of the zpf, we transform again to the variables defined in Eqs. (6.95). Following
the same procedure that led to (6.96), Eq. (6.106) transforms into

〈
L̂ z

〉

n
= m

∑

k
ζkn

(∣
∣x+

nk

∣
∣2 − ∣

∣x−
nk

∣
∣2

)
. (6.107)

This expression can be rewritten as

〈
L̂ z

〉

n
= 〈Oz√+n + 〈Oz√−n , (6.108)

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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with 〈Oz√±n given by (σ = ±)

〈Oz√σn = σm
∑

k
ζkn

∣∣x±
nk

∣∣2 . (6.109)

On the other hand, from the commutator
[
x̂, p̂x

] = i� and xkn = x∈
nk it follows that

m
∑

k
ζkn |xnk |2 = 1

2� (6.110)

and the same for |ynk |2 . From (6.106) we obtain therefore

� = m
∑

k
ζkn

(∣
∣x+

nk

∣
∣2 + ∣

∣x−
nk

∣
∣2

)
= 〈Oz√+n − 〈Oz√−n , (6.111)

which combined with (6.108) gives

〈Oz√σn = 1
2

〈
L̂ z

〉

n
+ σ 1

2�. (6.112)

This result helps to avoid a possible confusion about themeaning of equation (6.108).
It is simply 〈

L̂ z

〉

n
= 1

2

〈
L̂ z

〉

n
+ 1

2� + 1
2

〈
L̂ z

〉

n
− 1

2�. (6.113)

Thus the spin projection is contained in the orbital angular momentum 〈L̂ z√n in
a dormant form, so to say. It is the quantity 〈Oz√σn what contains both a part of
the orbital angular momentum and the spin associated with one or the other of the
polarization states, σ = ±.

To construct the (quantum) operator associated with the vector S, we proceed as
follows. Clearly the mean value 〈L̂ z√n does not depend on σ, whereas the term σ�/2
does not depend on the set n; this shows that the operator L̂ z and the operator to be
associated with σ�/2 (which we shall call �̂z) belong to different Hilbert spaces.
Therefore, in order to express 〈Oz√σn in (6.112) as the average of an operator, we
must extend the Hilbert space to include the dichotomous variable σ in addition to
the quantum index n. This we do by resorting to the product space H = Hn ⊗ H2,

with H2 a bidimensional vector space spanned by an orthonormal basis having as
elements the vectors {|σ√} = {|+√ , |−√} . In terms of |nσ√ = |n√ ⊗ |σ√, Eq. (6.112)
rewrites as

〈Oz√σn = 1
2 〈nσ| L̂ z |nσ√ + 1

2� 〈nσ| �̂z |nσ√ , (6.114)

with �̂z an operator that has |σ√ as eigenvector,

〈nσ| �̂z |nσ√ = 〈σ| �̂z |σ√ = σ. (6.115)

Expressing �̂z in the general form in terms of the Pauli matrices gives
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�̂z = a0I + az σ̂z + a+σ̂+ + a−σ̂−, (6.116)

where a± = (
ax ∼ iay

)
/
∗
2, and σ̂+ = ∗

2 |+√ 〈−| , σ̂− = ∗
2 |−√ 〈+| are ladder

operators. Condition (6.115) imposed on �̂z gives a0 = 0, az = 1. Further, since
we are here considering the variables (x+, x−, z), the polarization vectors (6.94) fix
ẑ as the preferred axis, whence a± = 0, �̂z = σ̂z, and Eq. (6.114) becomes

〈Oz√σn = 〈nσ|
(
1
2 L̂ + Ŝ

)
· ẑ |nσ√ , (6.117)

with Ŝ the vector operator defined as Ŝz = �
1
2 �̂z, i.e.,

Ŝ = 1
2�π̂. (6.118)

The identification of the operator Ŝ with the spin of the electron is thus justified. The
independence of 〈L̂ z√n from σ and of 〈�̂z√ from n, indicates that under the present
conditions, the fluctuations associated with the spin are not correlated with those
that characterize the kinematics of the particle in the configuration space: L and S
constitute independent dynamical variables. Of course the spaces of the spin and of
the orbital angular momentum may become connected by the presence of magnetic
fields, which here have been omitted.

It should be stressed that even if the orbital momentum L̂ and the spin Ŝ are both
contained in the same expression for the angular motions, Eq. (6.113), this does not
mean that the spin is treated here as an orbital angular momentum. Indeed, as is well
known, there are fundamental differences between L̂ and Ŝ. In particular, the mean
value of L̂ z, say, can be freely determined by adjusting external parameters, and may
acquire a whole spectrum of values. However, only the sign of the projection Ŝz can
be subject to external adjustment; its absolute value is determined by the fundamental
commutator through (6.110), which in its turn is fixed by the zpf. It is because of
the universal value of the commutator that the spin of the electron is the same for all
electrons under all circumstances, which reinforces its apparent ‘intrinsic’ nature.

The connection of the commutator
[
x̂, p̂x

] = i� with the spin of the electron
deserves a couple of additional comments. As pointed out in chapter 4, Planck’s
constant � is a direct measure of the size of the fluctuations, both those of the zpf and
those impressed by it on the particle. Specifically, since the commutator implies that

the fluctuations of x and px have a minimum value adjusted to the rule σ2
xσ

2
px

∣∣∣
min

=
�
2/4, one may write the numerical relation

∣∣∣〈±| Ŝz |±√
∣∣∣ = 1

2� = σxσpx

∣∣
min , (6.119)

which emphasizes the fact that the value of the electron spin is determined by the
irreducible fluctuations of the phase-space variables x, px around the instantaneous
position of the particle.
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In qed the interaction of the electron with the vacuum leads to an effective radius
of the order of Compton’s wavelength λC . Similarly, in Chap. 9 we argue that the
fluctuating motion of the electron assigns to it an effective structure, a result similar
to that referred to in the discussion at the end of Sect. 6.1.5 above. From this point
of view, the electron can still be considered as ‘essentially’ pointlike, but simultane-
ously possessing an ‘effective’ (measurable) size. The small, rapid trembling of the
electron, taken as a (here nonrelativistic) zitterbewegung, suggests that it is tightly
linked with the spin of the electron.9 The appearance of an effective structure helps
also to get an understanding of another important quality of the electron, namely its
magnetic moment, a matter that is succinctly addressed in Sect. 6.2.5.

6.2.4 Angular Momentum of the Zero-Point Field

As a heuristic aid to our explanation of the spin of the electron, let us recall some
of the most basic properties of the angular momentum of the radiation field. Since
the detailed calculation is rather long, we present here a sketch of it (borrowing from
Mandel and Wolf 1995, Sect. 10.6).

The total angular momentum operator of the electromagnetic field is usually
defined as

Ĵ =
∫

V

(
r × P̂

)
d3r, (6.120)

where P̂ stands for the linear momentum density operator (ε0 is the electric perme-
ability of the vacuum)

P̂ = 1
2ε0

[
Ê (r, t) × B̂ (r, t) − B̂ (r, t) × Ê (r, t)

]
. (6.121)

The expression (6.120) for Ĵ can be decomposed into a term Ĵ L that depends on
r and can therefore be identified with the orbital angular momentum of the field,
plus a second term, Ĵ S, independent of r and thus interpreted as an intrinsic angular
momentum. Specifically,

9 The zitterbewegung is a phenomenon predicted by the Dirac equation for the electron. It consists
of an oscillation (a trembling) around the relativistic motion of amplitude of order λC and frequency
of order 2mc2/�. The nonrelativistic ‘zitterbewegung’ discussed here differs from the relativistic
jitter in that it involves nonrelativistic velocities and contains a wide spectrum of frequencies.

The often conjectured connection between spin and zitterbewegung was proposed for the first
time by Schrödinger (1930) and investigated more deeply by Dirac (1958) (see also Maddox
(1987)). Examples of related works, which include specific models of varying fortune, are Bhabha
and Corben (1941), Huang (1952), Corben (1968), Barut and Zhangi (1984), Hestenes (1985),
Hestenes (1990), Pavšič et al. (1993), Rodrigues et al. (1993), Rodrigues et al. (1998). Other mech-
anisms to generate zitterbewegung-like oscillations have been explored using relativistic models of
the electron. For instance, by considering within sed that the structure of the particle is related to
the difference between the centers of inertia and charge of the particle, it has been shown that the
electron responds to the random field by performing a zitterbewegung (see e.g. Rueda 1993; also
Cavalleri 1985, Cavalleri et al. 2010).

http://dx.doi.org/10.1007/978-3-319-07893-9_9
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Ĵ = Ĵ L + Ĵ S, (6.122)

where

Ĵ L = ε0

2

∫

V

3∑

i=1

{
Êi (r × ∇) Âi +

[
(r × ∇) Âi

]
Êi

}
d3r,

Ĵ S = ε0

2

∫

V

(
Ê × Â − Â × Ê

)
d3r, (6.123)

and Â stands for the electromagnetic vector potential operator. Equation (6.123)
shows that Ĵ S can give a result different from zero because the electromagnetic field
is a vector field (i.e., because it hasmore than one spatial component); this endows the
components Ĵ L and Ĵ S with very different properties andmeaning.We use a discrete
expansion in terms of plane waves, as is usual in qed (in the full three-dimensional
reciprocal space k, and with â†

kσ, âkσ creation and annihilation operators)

Â (r, t) = 1

V 1/2

∑

k,σ

(
�

2ζε0

)1/2 [
ψkσ âkσ (0) ei k·r−iζt + h.c.

]
, (6.124)

with ψkσ the orthogonal circular polarization vectors given by (6.94). Once the inte-
gration in (6.123) is carried out, Ĵ S reduces to

Ĵ S =
∑

k,σ=±1

�k̂σ
(
n̂kσ + 1

2

)
, (6.125)

with n̂kσ = â†
kσ âkσ the photon number operator in the basis of circular polarization,

and k̂ a unit vector in the direction of the wave vector k.Equation (6.125) is an expan-
sion in states of definite helicity, which assigns to individual photons a spin angular
momentum projection of value σ� = ±� along the direction k̂. Of major importance
for what follows is that in the absence of photons, with only the zpf present, each
mode of the vacuum state still contains a component of angular momentum, with
mean value given by

〈
Ĵ S

〉

vac
=

∑

k,σ=±1

�

2
k̂σ =

∑

k

1
2�k̂ −

∑

k

1
2�k̂. (6.126)

Therefore, a nonzero contribution to 〈 Ĵ S√vac = ± 1
2�k̂ is associated with every

mode (k,σ) of the zpf. For the unpolarized field the contributions of the right- and
left-hand polarizations compensate each other (for each k), and 〈 Ĵ S√vac vanishes.
This is the reason why the term 1/2 in Eq. (6.125) is frequently omitted.

Consider now particles that couple with the right or left circularly polarized
portions of the vacuum field. Equation (6.126) suggests that they acquire a com-
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ponent of angular momentum, just as they acquire energy or linear momentum, as a
result of the coupling.

The above decomposition (6.122) into orbital and spinorial components of the
radiation field possesses only a relative value. A detailed relativistic treatment of the
field (recall that the radiation field is relativistic) shows that only the total angular
momentum J satisfies a conservation law, but not its separate parts. The reason is
that such decomposition is in general neither covariant nor gauge invariant, so it lacks
a well-defined physical meaning. A detailed discussion of these matters can be seen
in Rohrlich (1965) .

6.2.5 Gyromagnetic Factor for the Electron

It was discovered experimentally that the g-factor associated with the spin magnetic
moment of the electron has an approximate value gS = 2, whereas for the orbital
magnetic moment the g-factor is gL = 1. This characteristic value of gS is incorpo-
rated into nonrelativistic quantum theory by hand, usuallywithout further elaboration
(it must be remarked that from the theory of Lande’s factor it follows that for L = 0,
g = 2; see Greiner 1998, Sect. 11.9). The issue is normally solved by resorting to
the Dirac equation, which predicts the value gS = 2 (plus corrections arising from
qed). Since the present theory produces the electron spin, it becomes of interest to
investigate the value predicted by it for the factor gS .

Traditionally the gyromagnetic ratio of the electron has not been a subject for
sed, due to the fact that the theory has paid little attention to the spin itself, as
mentioned earlier. An exception to this is the (quite elaborate) calculation made in
de laPeña and Jáuregui (1982) (see alsoThe Dice, Sect. 8.3.4), using as a startingpoint
the Fokker-Planck equation in the Markovian approximation. The problem studied
was a spherical harmonic oscillator of natural frequency ζ0, subject to an external
homogeneous magnetic field B in the z -direction. In terms of the Larmor frequency
ζL = |e| B/2mc, the procedure led in the weak-field limit, when ζL � ζ0, to a
total average energy given (in the present notation) by

Eσ = 1

2

[
3

2
�ζ0 + ζL

(〈Lz√ + 2Sσ
z

)]
, (6.127)

where the overall factor 1/2 comes from the fact that the average is taken over half
the ensemble, for a given value of σ. This expression contains already the correct
result gS = 2 in front of the term Sσ

z . To be precise, one should add that the referred
calculations were made using the methods characteristically employed in sed during
the eighties. Such methods led to the occurrence of some erroneous coefficients,
although the correct Eq. (6.127) was derived.

With the tools developed so far one can nowmake a straightforward calculation of
gS . For this purpose consider the electron acted on, in addition to the external force
f (x), by a static uniform magnetic field B = B ẑ. The contribution of the orbital

http://dx.doi.org/10.1007/978-3-319-07893-9_8


6.2 The Spin of the Electron 227

angular momentum L to the Hamiltonian is given by

Ĥ = −μ̂ · B = −μz B, (6.128)

where μ̂ = −(gμ0 L̂)/� is the magnetic moment due to L̂, μ0 = |e| �/(2mc) is the
Bohr magneton (with −e = |e|), and gL = 1. Therefore the mean energy is

E = − e

2mc
B〈L̂ z√ = μ0

�
B〈L̂ z√. (6.129)

Consider a situation in which the spin projection along ẑ has a well-defined value,
say 〈Ŝz√ = +�/2. This means that one should take into account only the action of
the subensemble of the zpf that corresponds to σ = +. Resorting to Eq. (6.112) to
write the contribution to 〈Lz√ from the subensemble with σ = + as (〈L̂ z√ + �)/2,
the component of E of interest is

E+ = μ0

�
B

(
1

2
〈L̂ z√ + �

2

)
= μ0

2�
B

(
〈L̂ z√ + 2〈Ŝz√+

)
. (6.130)

An analogous result holds for the subensemble with σ = −, for which 〈Ŝz√ = −�/2,

E− = μ0

�
B

(
1

2
〈L̂ z√ − �

2

)
= μ0

2�
B

(
〈L̂ z√ + 2〈Ŝz√−

)
. (6.131)

The corresponding Hamiltonians describing each part of the magnetic interaction of
the electron are therefore Ĥ+

L S, Ĥ−
L S, with

Ĥ+
L S = μ0

2�
B

(
L̂ z + 2Ŝz

)
= Ĥ−

L S; (6.132)

thus the complete Hamiltonian (which includes both polarizations) reads

ĤL S = Ĥ+
L S + Ĥ−

L S = μ0

�
B

(
L̂ z + 2Ŝz

)
. (6.133)

This contains the correct g-factor of 2 for the spin of the electron. It is clear that such
value derives from the two degrees of freedom associated with the polarization of
the zpf.

The result (6.133) gives a precisemeaning to the operator appearing inEq. (6.117).
Indeed, from this latter equation one can write Ô = (L̂ + 2Ŝ)/2, whence

ĤL S = μ0

�
B ·

(
L̂ + 2Ŝ

)
= −μ̂ · B, (6.134)

with

μ̂ = −2μ0

�
Ô. (6.135)
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This directly relates Ô with the total magnetic moment operator of the atomic elec-
tron.

Since with the present results we have at hand the usual theory of the electron
spin, it is straightforward to incorporate it as usual to the Schrödinger equation and
thus arrive at the Pauli equation.

6.3 Concluding Comments

We have found that the theory predicts radiative corrections to the results derived
with the Schrödinger equation, which to lowest-order coincide with the correspond-
ing ones of nonrelativistic qed. This is not a coincidence, since both theories are
essentially equivalent in their physical content (to the order of approximation here
studied), although very different in their conceptual perspective. In addition, just as
the quantum-mechanical behavior at the Schrödinger (or Heisenberg) level ensues
from the interaction with the zpf, also the spin of the electron emerges as a result of
such interaction. This is a most noteworthy outcome, since in quantum mechanics
the spin is considered to be an innate property of the electron.

Appendix A

Contribution of Diffusion to the Energy Shift

In Sect. 6.1.5, Eq. (6.51) is obtained for the radiative shift of the energy level n.
To calculate its value in the Markovian approximation (which amounts to taking
e2D̂(t)Q to lowest order in e2, as explained in Chap. 4) we start from the expression
for D̂ in terms of the diffusion operators, Eq. (4.17),

e2D̂i = D pp
i j

λ

λ p j
+ D px

i j
λ

λx j
, (A.1)

with

D pp
i j = e2

∫ t

−≡
dt ′β(t − t ′)

λ p j

λ p′
i
, D px

i j = e2
∫ t

−≡
dt ′β(t − t ′)

λx j

λ p′
i
. (A.2)

We thus have (in one-dimensional notation)

e2xD̂Q = D ppx
λQ

λ p
+ D px x

λQ

λx
. (A.3)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Performing the integration over phase space we get

e2
〈
xD̂

〉
= e2

∫
xD̂Qdxdp =

∫ (
D ppx

λQ

λ p
+ D px x

λQ

λx

)
dxdp. (A.4)

Upon an integration by parts this becomes

e2
〈
xD̂

〉
= −

〈
D px + x

(
λD pp

λ p
+ λD pp

λx

)〉
= − 〈

D px 〉 , (A.5)

where the last equality follows from Eq. (B.15) in Appendix 4B, namely

λD pp
i j

λ p j
+ λD px

i j

λx j
= 0. (A.6)

For the calculation of 〈D px √n we resort to equation (B.14b) with 2ω = �, which
gives

〈
D px 〉

n = ie2

�

∫ t

−≡
dt ′β(t − t ′)

〈[
x̂(t), x̂(t ′)

]〉
n , (A.7)

so that

e2
〈
xD̂

〉

n
= − ie2

�

∫ t

−≡
dt ′β(t − t ′)

〈[
x̂(t), x̂(t ′)

]〉
n . (A.8)

The mean value of the commutator is

〈[
x̂(t), x̂(t ′)

]〉
n = −2i

∑

k

|xnk |2 sinζkn(t − t ′).

Thus, with β(t − t ′) given by Eq. (4.10), i.e.,

β(t − t ′) = 4π

3

∫ ≡

0
γ0(ζ) cosζ(t − t ′)dζ, (A.9)

and γ0 given by (6.4), Eq. (A.8) gives

e2
〈
xD̂

〉

n
= − 4e2

3πc3
∑

k

|xnk |2
∫ ≡

0
dζ ζ3

∫ t

−≡
dt ′ cosζ(t − t ′) sinζkn(t − t ′).

(A.10)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Making the change of variable t − t ′ = s and introducing

∫ ≡

0
ds cosζs sinζkns = 1

2

∫ ≡

0
ds [sin(ζkn + ζ)s + sin(ζkn − ζ)s] (A.11)

= ζkn

ζ2
kn − ζ2

,

in Eq. (A.10) gives, finally,

e2

2

〈
x D̂

〉

n
= − 2e2

3πc3
∑

k

|xnk |2 ζkn

∫ ≡

0
dζ

ζ3

ζ2
kn − ζ2

. (A.12)

Appendix B

Angular-Momentum Components for the Harmonic Oscillator

In this appendix we calculate the right-hand side of Eq. (6.92) for the harmonic
oscillator in its ground state,

〈
Li j

〉
0 = 1

ψζ2
0

〈D px
ji − D px

i j √. (B.1)

With D px
i j given by Eq. (B.14b) in appendix 4B (and 2ω = �), we get

〈D px
ji − D px

i j √Q = −2ie2

3πc3

∫ ≡

0
dζ ζ3

∫ t

−≡
dt ′ cosζ(t − t ′)

〈[
x̂ ′

j , x̂i

]
− [

x̂ ′
i , x̂ j

]〉
.

(B.2)
For the ground state we have

〈[
x̂ j (t

′), x̂i (t)
] − [

x̂i (t
′), x̂ j (t)

]〉
0 (B.3)

= −2
∑

k

(
xi0k x jk0 − x j0k xik0

)
cosζk0(t − t ′),

where the summation is performed over all possible excited states k > 0 connected
to the ground state via the matrix elements xi0k . Inserting this expression into (B.2)
and resorting to Eq. (D.8) in appendix 4D, namely

∫ t

−≡
dt ′ cosζ(t − t ′) cosζk0(t − t ′) = π

2
[ν(ζ − ζk0) + ν(ζ + ζk0)], (B.4)

we obtain (with ζk0 > 0)



Appendix B 231

〈D px
ji − D px

i j √0 = 2e2

3mc3
∑

k

imζ3
k0

(
xi0k x jk0 − x j0k xik0

)

= ψ
∑

k

ζ2
k0

(
xi0k p jk0 − x j0k pik0

)
. (B.5)

For the harmonic oscillator the only term that contributes to the sum is k = 1, with
ζk0 = ζ0, whence Eq. (B.5) reads

〈D px
ji − D px

i j √0 = ψζ2
0

(
xi01 p j10 − x j01 pi10

) = ψζ2
0

〈
Li j

〉
0 . (B.6)

Thus Eq. (B.1) reduces to an apparent tautology on account of the dynamics.

Appendix C

Calculation of →S2〉

To find
〈
L2

〉±
for the harmonic oscillator in its ground state we use Eq. (6.102),

namely

− 2ζ2
0ψ

〈
L2

〉

0
= e2

〈
λL2

λ pi
D̂i

〉

0
. (C.1)

In order to calculate the right-hand side of this equation we proceed as in appendix
A. Specifically, we resort to Eq. (A.1) to write

e2
λL2

λ pi
D̂i Q = λL2

λ pi
D pp

i j
λQ

λ p j
+ λL2

λ pi
D px

i j
λQ

λx j
. (C.2)

Integration of this expression over phase space gives (after an integration by parts),

e2
〈
λL2

λ pi
D̂i

〉
=

∫ (
λL2

λ pi
D pp

i j
λQ

λ p j
+ λL2

λ pi
D px

i j
λQ

λx j

)
dxdp (C.3)

= −
〈

λ

λ p j

(
λL2

λ pi
D pp

i j

)
+ λ

λx j

(
λL2

λ pi
D px

i j

)〉

= −
〈

D pp
i j

λ2L2

λ p jλ pi
+ D px

i j
λ2L2

λx jλ pi

〉
,

where in the third line we used Eq. (A.6). Taking into account that for the isotropic
harmonic oscillator

λ p j

λ p′
i

= νi j cosζ0(t − t ′),
λx j

λ p′
i

= νi j
1

mζ0
sinζ0(t − t ′), (C.4)
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equation (A.2) shows that the diffusion coefficients are diagonal,

D pp
i j = νi j e

2
∫ t

−≡
dt ′β(t − t ′) cosζ0(t − t ′) = νi j D pp,

D px
i j = νi j

e2

mζ0

∫ t

−≡
dt ′β(t − t ′) sinζ0(t − t ′) = νi j D px ,

whence Eq. (C.3) reduces to

e2
〈
λL2

λ pi
D̂i

〉
= −

〈
D pp λ2L2

λ piλ pi
+ D px λ2L2

λxiλ pi

〉
, (C.5)

where summation over i is understood.
Now, since L2 = r2 p2 − (r · p)2 , we have that

λ2L2

λ piλ pi
= 4r2,

λ2L2

λxiλ pi
= 0, (C.6)

and (C.5) reads

e2
〈
λL2

λ pi
D̂i

〉
= −4e2

〈
r2

〉 ∫ t

−≡
dt ′β(t − t ′) cosζ0(t − t ′). (C.7)

With β(t − t ′) given by (A.9), Eq. (C.7) becomes, for the ground state,

e2
〈
λL2

λ pi
D̂i

〉

0
= − 8�e2

3πc3

〈
r2

〉

0

∫ ≡

0
dζ ζ3

∫ t

−≡
dt ′ cosζ(t − t ′) cosζ0(t − t ′).

(C.8)
For the integral over t ′ we use Eq. (B.4), so that

e2
〈
λL2

λ pi
D̂i

〉

0
= −4�e2

3c3
ζ3
0

〈
r2

〉

0
. (C.9)

The factor 〈r2√0 is calculated in accordance with the quantum methods, giving

〈r2√0 = 3〈x̂2√0 = 3x01x10 = 3�

2mζ0
.

Equation (C.1) becomes finally (Marshall 1965; de la Peña and Jáuregui 1982)

〈
L2

〉

0
= m�ζ0

〈
r2

〉

0
= 3

2
�
2. (C.10)
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This value of
〈
L2

〉
0 takes into account the action of the whole zpf, with both states of

circular polarization active. Considering the action of a single state of polarization
σ = ±, we get 〈

S2
〉σ ↓

〈
L2

〉σ

0
= 3

4
�
2. (C.11)
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Chapter 7
Disentangling Quantum Entanglement

The best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts, even though
they may be entirely separate...

E. Schrödinger (1935)

The seminal paper by Einstein et al. (1935)—amilestone in the debates on the nature
of quantum theory—led Schrödinger to see in the entangled states not one but the
characteristic trait of quantum mechanics, that which makes it deviate completely
from any classical notion (Schrödinger 1935). From that point on, entanglement
has been recognized as a phenomenon of primary importance for our understand-
ing of qm. Eventually the interest in it revived intensely, though pointing towards
a new direction. The celebrated works of Bell as of 1964 (in particular 1987; see
also Bell et al. 2001) seemed to put an end to the debate on the complete or incom-
plete nature of qm, and in the subsequent and extensive series of works focusing on
entanglement, the emphasis shifted from the interpretative discussions to the new
and promising perspectives offered by the applications of this phenomenon.1 Dur-
ing recent times the investigations on entanglement have developed with increasing
breakneck speed, mainly within the quantum information field. Nevertheless, and in
spite of the progress made concerning the control, quantification, evolution, and dis-
tribution of entanglement, some fundamental aspects of its physical meaning remain
as cryptic as they were 80 years ago. One central aspect, to which the present chapter
is devoted, refers to the ascertainment of the mechanism that entangles two particles
that do not interact by means of an external potential.

Themeremathematical structure of the (many-body) Schrödinger equationmakes
it possible to superpose two (or more) state vectors and create entangled state vectors
for composite systems. From a physical point of view, it is natural for such superpo-
sitions to appear when the particles of the system are subject to mutual interactions:
then the correlations (manifest in the form of entangled states) can be traced to this

1 For recent literature on this subject see e.g. Horodecki et al. (2009). A different approach to
entanglement is offered in Khrennikov (2010, 2011).
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238 7 Disentangling Quantum Entanglement

interaction. However, for a system composed of two or more noninteracting par-
ticles things are different: in this case the standard quantum formalism postulates
the symmetrization rule in the case of identical particles, thereby resorting to the
mathematical possibility of superposing state vectors, but leaving aside the physical
mechanism responsible for the ensuing correlations.2 What is the physical agent that
causes two (or more) noninteracting particles to get entangled? The answer (and even
the very question) seems to be foreign to the quantum-mechanical domain. Here we
have a dramatic instance of the failure of qm to identify, with its own tools, the
physics behind one of its most far-reaching traits.

The theory developed in previous chapters is applied in this one to give due
response to the question just raised. This is done specifically by extending the one-
particle theory presented in Chap.5 to a system of two particles that are embedded
in a common background field. The dynamical variables of the particles are shown
to become correlated whenever the particles resonate to a common frequency of
the background field. When the description is reduced to one in terms of state vec-
tors in the appropriate Hilbert space, the entangled states emerge naturally—the
entanglement factor representing the correlation between the zpf modes of com-
mon frequency—as the only ones that can reproduce such correlations. Further,
for systems of identical particles the properties of invariance of the field correlations
imply that entanglement ismaximal andmust be described by totally (anti)symmetric
states.3

The results thus obtained are applied to the particular case of two electrons with
spin, for which the total (orbital + spin) state vector turns out to be antisymmetric.
States in which both particles are in the same orbital and spinorial state, are excluded
because of the absence of a correlating field mode.

7.1 The Two-Particle System

7.1.1 The Field in the Vicinity of the Particles

The system of interest all along this chapter consists of a pair of particles with masses
and electric charges m1, m2 and e1, e2, which are located at x1 and x2 and subject
to external forces f 1(x1) and f 2(x2), respectively, with no interaction potential
between them. Although the general arguments apply to systems of three or more

2 The postulate of symmetrization of the wave function of the composite system is normally jus-
tified on the basis of the indistinguishability of the quantum corpuscles. It is within qft that the
spin-statistics theorem is derived as a relativistic result, detached from arguments about indistin-
guishability. Nevertheless, also qft fails to provide elements to unveil the mechanism leading to
this result —a fact that does not go without criticism (see e.g. Duck and Sudarshan 1997; Kaplan
2013; see also Tomonaga 1974).
3 The material presented in this chapter is based to a large extent on Valdés-Hernández (2010),
Valdés-Hernández et al. (2011), de la Peña et al. (2010, 2012).

http://dx.doi.org/10.1007/978-3-319-07893-9_5


7.1 The Two-Particle System 239

particles, by focusing on a bipartite system only, multipartite entanglement (such as
the 3-tangle, Coffman et al. 2000) is excluded from the present analysis. In a first
instance, the particles are considered spinless; the consideration of spin, which is an
important additional element, is left for Sect. 7.4.

The equations of motion for the two particles, again in the nonrelativistic approx-
imation, are given by

m1
··
x1 = f 1(x1) + m1τ1

···
x1 + e1

e2
m2τ2

···
x2 + e1E(x1, t), (7.1a)

m2
··
x2 = f 2(x2) + m2τ2

···
x2 + e2

e1
m1τ1

···
x1 + e2E(x2, t). (7.1b)

Equation (7.1a) is just the Abraham-Lorentz equation for the particle located at x1,

with the extra term (e1/e2)m2τ2
···
x2 = 2e1e2

···
x2/(3c3) standing for the force that the

radiation of the particle located at x2 exerts on charge e1 (Landau and Lifshitz 1951),
and similarly for Eq. (7.1b).

In line with the long-wavelength approximationmade in the one-particle problem,
we assume that noticeable changes in the field amplitudes of interest occur only
for distances much greater than the deviations of each of the particles from their
respective equilibrium positions x0

i (i = 1, 2), so that E(xi , t) can be replaced by
E(x0

i , t). Therefore, rather than speaking of the background field at xi we refer
to the background field in the vicinity of the particle located at xi . To construct the
expansions for these fields in a form analogous to the one used in Chap.5, we proceed
as follows.

Restricting the analysis to one-dimensional motions, we assume that the vectors
x0
1 and x0

2 are colinear and write

x0
2 = x0

1 + R = (x01 + R)x̂0
1, (7.2)

where R is a constant vector that stands for themeandistance between the equilibrium
positions of the particles, and x̂0

1 is a unit vector. More generally, our description is
valid for R = R(t) whenever the characteristic times of the motions of each of the
mechanical subsystems are much shorter than the times required for R(t) to change
appreciably; here we are neglecting such (slow) changes. In analogy with Eq. (5.3),
we write

E(x0
1, t) =

∑

ωk

Ẽ(ωk)ak(x0
1)e

iωk t + c.c., (7.3a)

E(x0
2, t) =

∑

ωk

Ẽ(ωk)ak(x0
1 + R)eiωk t + c.c. (7.3b)

Notice that by writing the same ak for both E(x0
1, t) and E(x0

2, t), both particles are
assumed to be subject to the same realization of the field. Therefore, systems com-
posed of particles that are arbitrarily distant are excluded from the present description,

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5


240 7 Disentangling Quantum Entanglement

because in such case the field in the vicinity of each particle is statistically indepen-
dent from the other, and thus can be considered to correspond to different realizations.
With this assumptionwe are tacitly describing a single (composite) system immersed
in a common background field, rather than two independent systems.

Now we project the fields (7.3a, 7.3b) along the direction R̂ and fix the origin at
x0
1, thus obtaining

4

E1(t) =
∑

ωk

Ẽ(ωk)ak(0) · R̂eiωk t + c.c. =
∑

k

Ẽ(ωk)a1keiωk t + c.c., (7.4a)

E2(t) =
∑

ωk

Ẽ(ωk)ak(R) · R̂eiωk t + c.c. =
∑

k

Ẽ(ωk)a2keiωk t + c.c., (7.4b)

where

a1k = ak(0) · R̂, (7.5a)

a2k = ak(R) · R̂. (7.5b)

With R̂ = x̂, the stochastic variable a1k appearing here coincides with the one
appearing in the expansion (5.5) for the one-particle case.

7.1.2 Looking for Stationary Solutions

7.1.2.1 The Coupled Equations of Motion

With the above approximations, Eqs. (7.1a, 7.1b) take the form

m1 ẍ1 = f1(x1) + m1τ1
...
x 1 + e1Eeff

1 , (7.6a)

m2 ẍ2 = f2(x2) + m2τ2
...
x 2 + e2Eeff

2 , (7.6b)

where each fi (xi ) can be expanded as a power series of its argument and Ei
eff stands

for the effective field

Eeff
1 = E1(t) + 1

e2
m2τ2

...
x 2, Eeff

2 = E2(t) + 1

e1
m1τ1

...
x 1. (7.7)

4 In Blanco and Santos (1979) the problem of a system of several particles embedded in the zpf
is addressed, with a scope similar to the present one. However, and although that paper constitutes
a significant and important effort to disclose the mechanism underlying entanglement, it differs
essentially from the present one in that an identical background field is assumed for all particles,
which leads to unconvincing results.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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Equations (7.6a, 7.6b) thus show that the presence of the charge e j modifies the net
field acting on the charge ei through the radiative term, proportional to

...
x j , which

is superposed to the background field Ei (t) in the vicinity of xi . This extra term
introduces a coupling —of radiative origin— between Eqs. (7.6a) and (7.6b), and
consequently the particles cease to be independent. In particular, the coupling terms
play an important role during the process leading to equilibrium, since, according to
the discussion in Chap. 4, the particle located at xi reaches a stationary state when the
mean power radiated by it balances the mean power absorbed from the effective field
Eeff

i , which is (partially) determined precisely by the coupling term 2ei e j
...
x j/3c3.

Thus, the radiative effect of one of the particles on the other is initially as significant
as the own radiation reaction. When the balance condition is eventually attained,
these terms contribute only with radiative corrections that can be discarded in a first
approximation, as was seen in Chaps. 4 and 5. However, the effect of the coupling
between Eqs. (7.6a, 7.6b) endures, and has far-reaching consequences. To disclose
and discuss such consequences is the main aim of this chapter.

7.1.2.2 Stationary Solutions

Suppose that once the stationary and radiationless regime has been reached, the
particle located at x1 is in state α whereas the particle located at x2 is in state α′
(in what follows, unprimed Greek indices denote states accessible to the particle at
x1 and primed Greek indices denote those accessible to the particle at x2). Due to
the coupling terms contained in the effective fields, each particle is in equilibrium
with a net radiation field Eeff

i that bears information on the final state reached by
both particles. Thus Eeff

i , and of course the stationary solutions of Eqs. (7.6a, 7.6b),
must be labeled with a compound-state index A = (α,α′) that embodies both (final)
states. Note that the index A can be understood in terms of a decomposition of the
ensemble {i} of realizations of the field in a similar way as in the one-particle case
(see Sect. 5.2), where the index involved was α. In this sense, A = (α,α′) identifies
the subensemble {i}A √ {i} corresponding to those (bipartite) mechanical systems
in which one particle has reached the state α,whereas the other has attained the state
α′. This compels us to write xi A(t) instead of xi (t), thus generalizing the expression
xα(t) used in the one-particle case. Also the expansions for the (net) field and the
external force must be generalized, so that [(cf. Eq. (5.31)]

xi A(t) =
∑

B

x̃i ABbABeiωAB t , (7.8a)

Eeff
i A(t) =

∑

B

Ẽeff
i ABbABeiωAB t , (7.8b)

fi A(t) =
∑

B

f̃i ABbABeiωAB t . (7.8c)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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242 7 Disentangling Quantum Entanglement

The index B plays the same role that β played in the one-particle expansions, i.e., it
labels the elements of the set {ωAB} of relevant frequencies for the given subensemble
characterized by A. For the particle in state α, a set {ωαβ} is defined; analogously, a
set {ωα′β′ } is defined for the second particle in state α′. Thus the index B is, like A,
a compound index of the form B = (β,β′), with β and β′ accesible states for the
respective particles. As for {bAB}, it stands for the set of randomvariables appropriate
for describing the expansions of the dynamical variables in the bipartite case. Since
the source of stochasticity in Eqs. (7.6a, 7.6b) are the two background fields E1(t)
and E2(t) given by Eqs. (7.4a, 7.4b) clearly the variables {b} depend on both families
of variables, {a1} and {a2}. The explicit relationship between themwill be the subject
of the next section.

Notice that, unlike the single-particle state, it may be that the stationary state
A of the bipartite system is only partially characterized by its total (mechanical)
energy, due to possible degeneracies. The index A is therefore in direct, though not
necessarily univocal, correspondence with the total mechanical energy, denoted by
EA. In the absence of an (external) interaction potential between the particles, EA is
given by

EA = Eα + Eα′ , (7.9)

and similarly for B = (β,β′), the total energy is EB = Eβ + Eβ′ .

7.1.3 The Common Random Variable

Each of the coefficients of the form Ãi AB (with A= x, Eeff, f , . . .) inEqs. (7.8a–7.8c)
is a quantity characterized by four state indices, Ãi AB = Ãi(α,α′;β,β′), and its spe-
cific form requires investigation. However, we are interested in the time-asymptotic,
radiationless limit only, in which Eqs. (7.6a, 7.6b) become decoupled and x1A and
x2A acquire just the form of the single-particle expansions for the particles in states
α and α′, respectively. Therefore, introducing the superindex (0) in the coefficient
x̃i AB appearing in Eq. (7.8b) to denote its value in the radiationless approximation,
we have

∑

B

x̃ (0)
1ABbABeiωAB t =

∑

β

x̃1αβa1αβeiωαβ t , (7.10a)

∑

B

x̃ (0)
2ABbABeiωAB t =

∑

β′
x̃2α′β′a2α′β′eiωα′β′ t . (7.10b)

Since {a1αβ} and {a2α′β′ } are the sets of random variables that determine the back-
ground fields needed for the particles to reach separately the states α and α′, each of
these families satisfies the same statistical properties as the variables {aαβ} studied
in the one-particle problem. Specifically, as a consequence of imposing the ergodic
condition on each of the subsystems, both {a1αβ} and {a2α′β′ }, as well as the corre-
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sponding frequencies {ωαβ} and {ωα′β′ }, must satisfy the chain rule (Eqs. (5.59) and
(5.54b), respectively),5 whence in particular

a2α′α′eiωα′α′ t = a2α′α′ = 1, a1ααeiωααt = a1αα = 1. (7.11)

We can now resort to these expressions to rewrite Eqs. (7.10a, 7.10b) as

∑

B

x̃ (0)
1ABbABeiωAB t =

∑

B

x̃1αβδα′β′a1αβa2α′β′ei(ωαβ+ωα′β′ )t , (7.12a)

∑

B

x̃ (0)
2ABbABeiωAB t =

∑

B

x̃2α′β′δαβa1αβa2α′β′ei(ωαβ+ωα′β′ )t . (7.12b)

Even though x1A(t) is formally equivalent to the expansion x1α(t) (Eq. 7.10a), these
expressions differ in an important sense, since Eq. (7.12a), by having α′ fixed, con-
stitutes the expansion for the position of one of the particles in the presence of the
other one. Thus we have

ωAB = ωαβ + ωα′β′ = �
−1 (EA − EB) , (7.13)

where the last equality follows from Eq. (7.9) and the fact that in the radiationless
approximation, Eq. (5.118) and its primed version hold. From Eqs. (7.12a, 7.12b)
we also identify

x̃ (0)
1ABbAB = x̃1αβδα′β′a1αβa2α′β′ , (7.14)

x̃ (0)
2ABbAB = x̃2α′β′δαβa1αβa2α′β′ .

From here it follows that the nonstochastic coefficients x̃ (0)
i AB are given by

x̃ (0)
1AB = x̃1αβδα′β′ , x̃ (0)

2AB = x̃2α′β′δαβ, (7.15)

whereas bAB factorizes as
bAB = a1αβa2α′β′ . (7.16)

This equation defines the joint random variable bAB which is common to expan-
sions (7.8a–7.8c) for both members of a bipartite system. The bAB is determined by
the random variables of the zpf in the vicinity of the particles, and can therefore be
used to expand the single common field in the form

Ei A(t) = E A(x0i , t) =
∑

B

Ẽi ABbABeiωAB t , (7.17a)

5 Notice that in Chap.5, primed and unprimed indices were used to denote (stationary) states for
the (single) particle, whereas here, primed and unprimed indices refer to different particles. Thus,
care must be taken when ‘translating’ equations such as (5.59) and (5.54b) to the bipartite case.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5


244 7 Disentangling Quantum Entanglement

with
Ẽ1AB = Ẽαβδα′β′ , Ẽ2AB = Ẽα′β′δαβ . (7.17b)

The chain rule (5.59) applied to the families of variables contained in Eq. (7.16) gives

bABbBG = (a1αβa2α′β′)(a1βγa2β′γ′) = (
a1αβa1βγ

)
(a2α′β′a2β′γ′)

= a1αγa2α′γ′ = bAG . (7.18)

This relation can be easily generalized to any number of factors, therefore the chain
rule holds also for the variables {bAB}, and the following relations are satisfied,

b↑
AB = bB A, |bAB |2 = bAA = bB B = 1. (7.19)

Moreover, according to Eq. (7.13), the chain rule (5.54b) applies to {ωAB}, whence

ωAB + ωBG = ωAG, (7.20)

which can also be generalized immediately to an arbitrary number of terms.

7.1.4 Establishing Contact with the Tensor Product Hilbert Space

According to Eq. (7.15), the coefficient x̃1AB in the expansion for x1A(t) reduces
in the radiationless regime to x̃1αβδα′β′ , where x̃1αβ is the amplitude corresponding
to the relevant frequency ωαβ for the problem of a single particle located at x1 in
state α and subject to the external force f1(x1). Since the same applies to x2A(t), we
conclude that any pair of dynamical variables6 F(x1, ẋ1) andG(x2, ẋ2) is represented
in state A by expressions of the form

FA(t) =
∑

B

F̃ABbABeiωAB t , (7.21a)

G A(t) =
∑

B

G̃ ABbABeiωAB t , (7.21b)

where
F̃AB = F̃αβδα′β′ , G̃ AB = G̃α′β′δαβ . (7.22)

Here and in what follows we omit the superindex (0) (introduced in Sect. 7.1.3) in
the coefficients, but keeping in mind that we are working in the radiationless regime.

Let us now find the appropriate Hilbert space for the composite system. In line
with the results of Sect. 5.2.2, the coefficient F̃αβ in (7.22) stands for the element

6 As discussed in Sect. 5.2.2, such variables are assumed to be functions of the form h(xi ) + g(ẋi )

with both h, g power series of their argument.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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αβ of a matrix F̂ defined in a Hilbert spaceH1 spanned by the state vectors {|α↓} of
the first particle, and similarly for G̃α′β′ . Further, by including the time-dependent
factor eiωAB t to construct the amplitudes F̃AB(t), we obtain

F̃AB(t) = F̃αβδα′β′ei(ωαβ+ωα′β′ )t = F̃αβ(t)δα′β′eiωα′β′ t , (7.23a)

so that F̃αβ(t) = F̃αβeiωαβ t stands now for the element αβ of an evolving matrix
F̂(t). Similarly,

G̃ AB(t) = G̃α′β′δαβei(ωαβ+ωα′β′ )t = G̃α′β′(t)δαβeiωαβ t , (7.23b)

where G̃α′β′(t) = G̃α′β′eiωα′β′ t are the elements of a matrix Ĝ(t) defined in a Hilbert
space H2. The one- and two-particle coefficients Ãαβ , ÃAB are therefore replaced
from now on by the corresponding matrix elements Aαβ , AAB .

The above expressions for F̃AB(t) = FAB(t) and G̃ AB(t) = G AB(t)—or their
time-independent version (7.22)—show that FAB and G AB are the elements of a
matrix defined in the tensor productHilbert spaceH1◦H2.Notice that the description
in the product space is here a consequence of expanding the dynamical variables in
terms of randomvariables of the formbAB = a1αβa2α′β′ .ThebAB , in their turn, result
from the presence of the coupling terms in Eqs. (7.6a, 7.6b). Hence the interaction
of the particles via the common field lies at the root of the description in the Hilbert
product space, even after the radiationless approximation has been taken.

By denoting withF and G the matrices with elements FAB and G AB , respectively,
Eqs. (7.22) can be written in closed matrix notation as

F = F̂ ◦ I2, G = I1 ◦ Ĝ. (7.24)

From this and Eqs. (7.21a, 7.21b) conclusions analogous to those reached in
Sect. 5.2.2 are obtained. In particular, a variable F(x1, ẋ1) has a matrix F asso-
ciated with it, whereas a variable G(x2, ẋ2) of the second particle can be put in
correspondence with the matrix G, and a variable of the form F(x1, ẋ1)G(x2, ẋ2) is
represented by7

FG = F̂ ◦ Ĝ = F̂ Ĝ, (7.25)

where in the last equality the notation was simplified in the customary way. In a
stationary state A the expansion for FG thus reads

(FG)A =
∑

B

F̂G ABbABeiωAB t , (7.26)

7 More general functions V (x1, ẋ1; x2, ẋ2)would be represented by linear combinations of elemen-
tary products FG.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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with

F̂G AB ≡ (F̂ Ĝ)AB =
∑

D

FADG DB

=
∑

δ,δ′
Fαδδα′δ′ Gδ′β′δδβ = FαβGα′β′ . (7.27)

Substitution of Eq. (7.27) in (7.26) gives, with the aid of (7.13) and (7.16),

(FG)A=(α,α′) =
∑

β,β′
FαβGα′β′a1αβa2α′β′ei(ωαβ+ωα′β′ )t = FAG A = FαGα′ .

(7.28)
Notice that according to Eq. (7.13), the term FαβGα′β′ in (7.28) for F(t) = x1(t),

G(t) = x2(t)oscillateswith a frequencyωAB that is the sumof resonance frequencies
of the corresponding particles. In this case ωAB establishes the transition frequency
of the complete system from state A to state B, with the total energy EB determined
by Eq. (7.13).

7.1.5 Implications of Ergodicity for the Common Random Field
Variable

Decomposition of Eq. (7.26) into a time-independent contribution plus an oscillating
term, here denoted as O(t), gives

(FG)A =
∑

B

F̂G ABbAB

∣∣
∣∣∣
ωAB=0

+ O(t). (7.29)

Hence, since O(t)
t = 0,

(FG)A (t)
t =

∑

B

F̂G ABbAB

∣∣∣
∣∣
ωAB=0

. (7.30)

Now the ergodic demand applied to the bipartite system requires that

(FG)A
t = (FG)A

(i)
, (7.31)

so that the right-hand side of Eq. (7.30) must be independent of (i). As this must
hold irrespective of A, it follows that

b(i)
AB = bAB whenever ωAB = 0. (7.32)
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Equation (7.32) is the generalization of our previous (one-particle) result
a(i)
αβ = aαβ for ωαβ = 0. In the one-dimensional single-particle case ωαβ vanishes
only for β = α, and the ergodic condition reduces simply to aαα = 1, Eq. (5.62).
The same happens in the bipartite case when A = B. However, when there is energy
degeneracy between two specific states A, B, the condition ωAB = 0 is satisfied also
with B ≡= A, i.e., [see Eq. (7.13)]

ωαβ = −ωα′β′ = ωβ′α′ ≡= 0. (7.33)

This case, inwhich the twoparticles share a common relevant frequencyωαβ = ωβ′α′ ,
will prove to be of particular relevance. Using (7.16) one can then rewrite Eq. (7.32)
in terms of these frequencies as (recall that a jγλ = a j (ωγλ), j = 1, 2)

b(i)
AB = a(i)

1αβa(i)
2βα = a(i)

1β′α′a
(i)
2α′β′ = bAB (ωAB = 0). (7.34)

Since each a j (ωγλ) is of the form a j (ωγλ) = exp i(ϕ( j)γλ), a(i)
1αβ and a(i)

2αβ differ
only by a phase factor,

a(i)
1αβ = a(i)

2αβeiς(i)
αβ . (7.35)

Equation (7.34) thus becomes

b(i)
AB = eiς(i)

αβ = e
iς(i)

β′α′ = bAB, (7.36)

or rather

λAB ≡
〈
a(i)
1αβa(i)

2βα

〉
= 〈bAB↓ = bAB (7.37)

= eiςαβ = e−iςα′β′ for ωαβ = −ωα′β′ ,

where the notation λAB has been introduced to distinguish those bAB that fulfill
condition (7.32) from those that do not (hence are stochastic), and

ςαβ = −ςβα, (7.38)

as follows from taking the complex conjugate of (7.35) with a↑(i)
(1,2)αβ = a(i)

(1,2)βα [cf.
Eq. (5.61)]. Finally, from Eq. (7.19) we get

λ↑
AB = λB A, |λAB |2 = 1. (7.39)

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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7.2 Correlations Due to Common Resonance Modes

7.2.1 Spectral Decomposition

An important feature of one-particle expansions such as (5.70) is that they repre-
sent spectral decompositions of the corresponding variable, so that each term of the
sum oscillates with a different frequency. This ensures a one-to-one correspondence
between the coefficients in the expansion and the corresponding relevant frequen-
cies (meaning that the mode of frequency ωαβ connects state α with state β only).
However, bipartite expansions such as (7.26) do not necessarily constitute spectral
decompositions of (FG)A, since the (set of) relevant frequenciesωAB may be degen-
erate, i.e., there may be two different states B (say, B = D, K with D ≡= K ) such that
ωAD = ωAK . According to Eq. (7.13), this of course corresponds to a degeneracy
of the states D, K , so that they share the same energy ED = EK . In the following
we investigate the implications of the existence of any frequency degeneracy for the
spectral decomposition of the product (FG)A.

Let us assume that in the expansion (7.26) or (7.28) there exist indeed two different
pairs

(
β,β′) = {(

δ, δ′) ,
(
κ,κ′)} (i.e., two states B = K , D with K ≡= D) such

that
ωAD = ωαδ + ωα′δ′ = ωακ + ωα′κ′ = ωAK , (7.40)

whence ωDK = 0 but
ωδκ = ωκ′δ′ ≡= 0. (7.41)

For simplicity we consider only one frequency to be (doubly) degenerate, which
means that the only degeneracy present is the one explicitly written in (7.40). We
then isolate the terms corresponding to B = K ,D in (7.26) and write

bAK = bADbDK = bADλDK , (7.42)

where the second equality follows from Eq. (7.37) applied to bDK , and λDK = λ↑
DK

is therefore a nonrandom coefficient of magnitude 1 [(see Eq. (7.39)]. The expansion
(7.26) reads then

(FG)A =
[

F̂G AD + λDK F̂G AK

]
bADeiωADt

+∑
B ≡=D,K F̂G ABbABeiωAB t , (7.43)

where the terms that oscillate with the same frequency have been separated from the
sum and grouped in the first line. This represents the spectral decomposition of the
product variable FG in state A. It is important to note that according to Eqs. (7.40)
and (7.41), the degeneracy ωAK = ωAD implies the existence of a nonzero relevant
frequency common to both particles, ωδκ = ωκ′δ′ . By inverting the reasoning we
conclude that a response of both particles to the same frequency of the background

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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field implies a degeneracy (ωAD = ωAK ) and gives rise to a nonfactorizable coef-
ficient [the term within square brackets in (7.43)] in the spectral decomposition of
(FG)A.

Notice that owing to the ergodic condition, which implies that λDK in Eq. (7.43)
is a nonrandom factor, every coefficient in the spectral decomposition of (FG)A is
proportional to the joint random variable b(i)

AB (or b(i)
AD). The linear response to the

field, discussed at the end of Sect. 5.2 for the one-particle case, turns out to be a
feature also of the composite system, but now with both particles responding to the
field represented by {bAB}.

Let us now take A to be one of the degenerate states, i.e., A = D. Then ωAK =
ωDK = ωDD = 0, and Eq. (7.43) reads

(FG)D = F̂G DD + λDK F̂G DK +
∑

B ≡=D,K

F̂G DBbDBeiωDB t . (7.44)

Analogously, if A = K ,

(FG)K = F̂G K K + λK D F̂G K D +
∑

B ≡=D,K

F̂G K BbK BeiωK B t . (7.45)

These equations give for the average value8 of FG in states D and K , respectively
(with K ≡= D),

〈(FG)D↓ = (FG)
t
D = F̂G DD + λDK F̂G DK , (7.46a)

〈(FG)K ↓ = (FG)
t
K = F̂G K K + λK D F̂G K D, (7.46b)

or in more explicit notation,

〈(FG)D↓ = FδδGδ′δ′ + λDK FδκGδ′κ′, (7.47a)

〈(FG)K ↓ = FκκGκ′κ′ + λK D FκδGκ′δ′ . (7.47b)

Equations (7.46a, 7.46b) show that 〈(FG)D↓ and 〈(FG)K ↓ involve coefficients asso-
ciated not only with their respective state D = (δ, δ′) or K = (κ,κ′), but also with
the second state that shares the same energy, i.e., that satisfies

ED = Eδ + Eδ′ = Eκ + Eκ′ = EK , (7.48)

8 We recall that in the stationary regime, the principle of ergodicity holds and therefore time averages
are equivalent to ensemble averages. Notice further that for the calculation of (7.46a, 7.46b), the
system is considered to be either in state D or in state K . Hence, according to the discussion
in Sect. 5.2, these averages are taken over different subensembles, namely those containing all
realizations of the system in state D or K , respectively.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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which is but another form of expressing Eq. (7.41).9 This indicates that special
attention must be paid to the expansion of dynamical variables in degenerate states,
as will be shown in what follows.

7.2.2 State Expansion Versus Energy Expansion

As observed earlier, when there is no degeneracy the index A is univocally related to
EA, so that (7.26) is both the expansion of FG when the system is in state A, and the
expansion of FG when the system possesses energy EA. By contrast, in the presence
of degeneracy both states D and K are linked through the condition ED = EK . So
even if e.g. (7.44) represents FG for the system in state D, it does not completely
represent this variable when the energy of the system is ED = EK . Because of this, it
will be convenient to distinguish between state expansions (associated to a specific
state), and energy expansions (associated to a specific energy).

Thus far we have focused on state expansions, characterized separately by the
indices D, K . The energy expansionswill be labeledwith the energy index specifying
the degeneracies; thus, according to the above we should write

(FG)EA
= (FG)A for A a nondegenerate state,

(FG)ED=EK
for a (doubly) degenerate energy state, D ≡= K .

}

(7.49)

The structure of (FG)ED=EK
will be investigated below. At this point, it suffices to

say that it represents FG in the single bipartite state characterized by the degeneracy
ED = EK . Let us now find the state vector that corresponds to such state, and also to
nondegenerate states.

7.2.3 State Vectors: Emergence of Entanglement

Equations (7.46a), (7.46b) for the average values of the product FG in states D, K
with ED = EK contain a feature that is distinctive of degenerate states, namely they
consist of linear combinations of two products of matrix elements of F and G. This
reflects the fact that the coefficients F̂G AB that oscillate with a degenerate frequency
have ceased to be separable, as seen from the first line in Eq. (7.43). Such property

9 The existence of common relevant frequencies and the condition of degeneracy are thus two faces
of the same coin, yet it will become clear below that the former is more illuminating in disclosing
the physical mechanism underlying entanglement. As stated after Eq. (5.135), focusing on the
(relevant) frequencies rather than on the energy levels represents a shift from the Schrödinger to the
Heisenberg approach. Here we find another example that shows that despite the formal equivalence
of the two approaches, either one or the other is more suitable to understand certain aspects of the
quantum phenomenon.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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has important implications also for the structure of the state vectors associated with
the degenerate states D, K, as is shown in what follows.

For this purpose, we apply the procedure of Sect. 5.4.2 to the bipartite case. In
analogy with Eq. (5.119) for the one-particle case, we expand the matrix product
F̂G(t) in general as

F̂G(t) =
∑

A,B

F̂G AB(t)|eA↓〈eB |

=
∑

α,α′,β,β′
FαβGα′β′ei(ωαβ+ωα′β′ )t (|eα↓〈eβ

∣∣)
1 (|eα′ ↓ 〈eβ′

∣∣)2, (7.50)

where the canonical basis {|eA↓〈eB | = {(|eα↓〈eβ

∣∣)1 ◦ (|eα′ ↓ 〈eβ′
∣∣)2} is constructed

from the vectors {|eA↓ = |eα↓1 |eα′ ↓2} spanning the product space H1 ◦ H2. The
time evolution can be transferred from F̂G(t) to the vectors of a new basis obtained
from the original one by means of the unitary transformation

|eA↓ ≥ |A(t)↓ = |α(t)↓1
∣∣α′(t)

〉
2 = e−i(EA/�)t |eA↓ . (7.51)

In analogy with Eq. (5.122), we get for the matrix elements of F̂G(t)

F̂G ABeiωAB t = 〈A(0)| F̂G(t) |B(0)↓ (7.52)

= 〈A(t)| F̂G(0) |B(t)↓ = 〈A| F̂G |B↓ .

Now consider the case in which there are two degenerate states D, K , accessible
from A, as in Sect. 7.2.1. Equation (7.43) shows that the spectral decomposition of
(FG)A contains then coefficients of two kinds: those corresponding to all nonde-
generate frequencies ωAB, given by F̂G AB in the second line, and those associated
with the degenerate frequency ωAK = ωAD , given by the first line. Expressed in
terms of matrix elements, the former have the simple structure given in Eq. (7.52)
(for B ≡= D,K ), whereas the latter take the form

F̂G AD(t) + λDK F̂G AK (t) = 〈A| F̂G (|D↓ + λDK |K ↓). (7.53)

Therefore every coefficient in the spectral decomposition of (FG)A is contained in
the A-th row (corresponding to the vector 〈A|) of the matrix F̂G. For nondegenerate
states B (associated to F̂G AB), the column vectors are simply |B↓, i.e.,

nondegenerate B ∗ |B↓ = |β↓1
∣∣β′〉

2 . (7.54)

On the other hand, in the case of degeneracy, the column vector is given according
to Eq. (7.53) by |D↓ + λDK |K ↓. This reveals the existence of a new type of vector
that is not an element of the basis {|B↓}, but is given by the superposition

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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degenerate D, K ∗ |ϕDK ↓ ≡ |δ↓1
∣∣δ′〉

2 + λDK |κ↓1
∣∣κ′〉

2 , (7.55)

with ωδκ = ωκ′δ′ ≡= 0. Therefore, whenever the two particles share a relevant fre-
quency, a new class of vector arises naturally in the transition to the Hilbert-space
description, which corresponds to a well-defined energy state of the bipartite system,
is nonfactorizable, and gives rise to entanglement. To properly normalize this vector
we consider that the original basis {|β↓1

∣
∣β′〉

2} is orthonormal and resort to Eq. (7.39),
whence

|ψDK ↓ = 1∼〈ϕDK |ϕDK ↓ |ϕDK ↓ = 1∼
2

(
|δ↓1

∣
∣δ′〉

2 + λDK |κ↓1
∣
∣κ′〉

2

)
. (7.56)

In the usual quantum formalism, the possibility of combining two (or more) state
vectors to construct a third one—which is key for the existence of entanglement—is
understood as a (mathematical) result of the linearity of the Schrödinger equation.
Here we find that this combination has a deeper physical origin in the relations
between the random variables of the common background field, expressed through
the chain rule. In fact, it is the product Eq. (7.42) containing the nonrandom phase
factor λDK what allows to rewrite the original expansion (7.26) in the form of (7.43),
leading to the combination of terms given by (7.53), with information about the two
degenerate states (|δ↓1

∣∣δ′〉
2 and |κ↓1

∣∣κ′〉
2).

7.2.4 Entanglement as a Vestige of the ZPF

We recall from Eq. (7.37) that λDK is defined by the correlation of the field variables
a1(ωδκ), a2(ωδ′κ′). The entanglement factor λDK in (7.56) is thus exhibited as a
further vestige of the zpf in quantum mechanics, reminding us of the active role
of this field as a member of the whole system. Because of this correlation between
field variables, the state of the system becomes correctly described by the single
state |ψDK ↓ given by Eq. (7.56) instead of the separate-particle states |D↓, |K ↓,
which contain only partial information about the system, as discussed above. This
observation contrasts with the widespread interpretation of states of the form (7.56)
as meaning that the system can be simultaneously in two different (degenerate) states
|D↓, |K ↓.10 Instead, the structure of |ψDK ↓means that the original one-particle states
|δ↓1

∣∣δ′〉
2, |κ↓1

∣∣κ′〉
2, have become entangled, giving rise to a single new state.

10 In fact, as follows from the remark in note 8, the averages over states |D↓ and |K ↓ imply an
averaging over different (incompatible) subesembles, hence they cannot be taken simultaneosly
over one and the same system.
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7.2.5 Emergence of Correlations

The fact that two particles embedded in a common background field may share rele-
vant frequencies, suggests possible correlations between those dynamical variables
F and G (corresponding to different particles) to which the common frequencies
contribute in the expansions (7.21a, 7.21b). In order to analyse such possible corre-
lations with the usual matrix tools developed here and in Chap. 5, we calculate the
covariance defined as

�(FG)E = 〈ψ| F̂G |ψ↓ − 〈ψ| F̂ |ψ↓ 〈ψ| Ĝ |ψ↓ , (7.57)

where |ψ↓ stands for the state vector of the bipartite system when its energy is E .

According to the first line in (7.49) and Eq. (7.54), for a nondegenerate state A
(i.e. E = EA) one gets

�(FG)EA
= 〈A| F̂G |A↓ − 〈A| F̂ |A↓ 〈A| Ĝ |A↓ . (7.58)

Direct calculation gives
�(FG)EA

= 0. (7.59)

By contrast, when there is a degeneracy (i.e. ED = EK ), the second line in (7.49)
and (7.55) imply that the covariance is given by

�(FG)ED=EK
= 〈ψDK | F̂G |ψDK ↓ − 〈ψDK | F̂ |ψDK ↓ 〈ψDK | Ĝ |ψDK ↓ , (7.60)

where |ψDK ↓ is the state vector (7.56).The first term gives

〈ψDK | F̂G |ψDK ↓ = 1
2 (FδδGδ′δ′ + FκκGκ′κ′) + Re λDK FδκGδ′κ′ , (7.61)

because of the hermiticity of the matrices F̂, Ĝ and Eq. (7.39). The second term is
obtained by successively taking F̂, Ĝ = I in (7.61),

〈ψDK | F̂ |ψDK ↓ 〈ψDK | Ĝ |ψDK ↓ = 1
4 (Fδδ + Fκκ)(Gδ′δ′ + Gκ′κ′), (7.62)

whence

�(FG)ED=EK
= 1

4 (Fδδ − Fκκ)(Gδ′δ′ − Gκ′κ′) + Re λDK FδκGδ′κ′ . (7.63)

This result shows that the existence of common relevant frequencies is crucial for
the emergence of nonclassical correlations between the particles, or more properly,
between (some of) their dynamical variables.11 Which variables become correlated

11 According to the results in Chap.5 (see alsoAppendixB), the relevant frequencies are constructed
via linear combinations of the resonance frequencies, hence the existence of common relevant

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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depends of course on the frequencies ωδκ and ωδ′κ′ that satisfy ωδκ = ωκ′δ′ ≡= 0,
since they determine the matrix elements appearing in Eq. (7.63). To see this more
clearly, let us first note that the covariance is composed of two contributions of
entirely different nature (we write �(FG)ED=EK

= �(FG)DK ),

�(FG)DK = �0
(FG)DK

+ �λ
(FG)DK

, (7.64)

with
�0

(FG)DK
= 1

4 (Fδδ − Fκκ)(Gδ′δ′ − Gκ′κ′),

�λ
(FG)DK

= Re λDK FδκGδ′κ′ .
(7.65)

The first one is different from zero only when both F̂ and Ĝ have diagonal terms,
with different values for states δ andκ, and δ′ andκ′, respectively. In particular, when
these matrices commute with Ĥ1 and Ĥ2, which means that they represent constants
of motion for particles 1 and 2, respectively, they become diagonal matrices in the
energy representation and only contribute to �0

(FG)DK
; such matrices do not serve

to exhibit entanglement. For illustration purposes take the simple case F̂ = Ĥ1 and
Ĝ = Ĥ2: then

�0
(FG)DK

= 1
4 (Eδ − Eκ)(Eδ′ − Eκ′) = − ( 1

2�ωδκ

)2
. (7.66)

This result, as should be expected, simply expresses the negative (classical) cor-
relation between the individual energy differences for particle 1 (�Eδκ = �ωδκ)
and for particle 2 (�Eδ′κ′ = �ωδ′κ′ ) when the energies are subject to the restriction
Eδ + Eδ′ = Eκ+Eκ′ .

For F , G to exhibit entanglement, the second term in Eq. (7.65) must be different
from zero. This happens only when both F̂ and Ĝ have nondiagonal terms (and such
that λDK FδκGδ′κ′ is not purely imaginary). In particular, for purely nondiagonal
matrices F̂ and Ĝ this is the only contribution to�(FG)DK . The term �λ

(FG)DK
clearly

depends on the correlation λDK between the random field amplitudes when there
is a common relevant frequency [ωδκ = −ωδ′κ′ ; see Eq. (7.37)]. In other words,
the correlation of the common modes of the background field in the vicinity of the
particles canmanifest itself on themechanical system in the formof an entanglement-
related correlation between the particles. It is impossible to understand the genesis
of such correlation when the presence of the common field is ignored.

(Footnote 11 continued)
frequencies goes back to the existence of common resonance frequencies.We can therefore rephrase
the above statement by saying that the existence of (nontrivial) common resonance frequencies lies
at the root of the emergence of correlations between the particles.
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7.2.5.1 Statistical Meaning of the Covariance

Abovewe resorted to thematrix formalism and the state vectors derived in Sect. 7.2.3
to study the emergence of correlations between the particles when there is a common
relevant frequency. Nowwe shall establish contact with the statistical language more
proper of lsed, and recover the previous covariances with the tools of the latter
theory. For this purpose we focus on the covariance [cf. Eq. (7.57)]

�(FG)E = 〈(FG)E ↓ − 〈FE ↓ 〈GE ↓ , (7.67)

when the composite system has a total (mechanical) energy E .

As seen in Sect. 7.2.2, for a nondegenerate state A, (FG)EA
is simply (FG)A, so

one gets
�(FG)EA

= 〈(FG)A↓ − 〈FA↓ 〈G A↓ . (7.68)

A direct calculation using Eq. (7.26) gives in this case

〈(FG)A↓ = FααGα′α′ = 〈FA↓ 〈G A↓ , (7.69)

whence F and G are uncorrelated, in line with Eq. (7.59). Thus, for a nondegenerate
state A, the covariance of F and G can be calculated indistinctly as a statistical
average [right-hand side of Eq. (7.68)], or as a quantum average [right-hand side of
Eq. (7.58)].

We now focus on the degenerate case, with ED = EK (D ≡= K ). According to the
discussion in Sect. 7.2.2, the covariance (7.67) must be calculated with the energy
expansion (FG)ED=EK

. Since this latter represents FG in the state characterized by
the energy ED = EK , its mean value

〈
(FG)ED=EK

〉
(7.70)

will be calculated resorting to Eqs. (7.47a, 7.47b) under the assumption that both
states D and K contribute to it on an equal footing. Thus,

〈
(FG)ED=EK

〉 = 1
2 [〈(FG)D↓ + 〈(FG)K ↓] . (7.71)

Explicitly, we obtain

〈
(FG)ED=EK

〉 = 1
2 [FδδGδ′δ′ + FκκGκ′κ′ + 2Re λDK FδκGδ′κ′ ] . (7.72)

To calculate the corresponding covariance [see Eq. (7.67)],

�(FG)ED=EK
= 〈

(FG)ED=EK

〉 − 〈
FED=EK

〉 〈
GED=EK

〉
, (7.73)

we write 〈FED=EK ↓ (and 〈GED=EK ↓) by taking G = 1 (and F = 1) in (7.72),
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〈
FED=EK

〉 = 1
2 (Fδδ + Fκκ),

〈
GED=EK

〉 = 1
2 (Gδ′δ′ + Gκ′κ′). (7.74)

Equation (7.73) gives thus, using (7.72) and (7.74),

�(FG)ED=EK
= 1

4 (Fδδ − Fκκ)(Gδ′δ′ − Gκ′κ′) + Re λDK FδκGδ′κ′ , (7.75)

which is exactly Eq. (7.63). This confirms the equivalence of the matrix method
and the statistical method, under the (natural) assumption that the partial (statistical)
averages over the degenerate states D, K contribute an equal amount.

7.3 Systems of Identical Particles

7.3.1 Natural Entanglement

We have seen in Sect. 7.2.3 that the existence of a common relevant frequency—due
to a degeneracy in the energy of the composite system—is a necessary and sufficient
condition for the state of a bipartite system to get entangled. Now, in the case of
two identical, noninteracting particles subject to the same external force, there is an
intrinsic degeneracy that makes entanglement unavoidable. This degeneracy arises
from the fact that the particles satisfy the same equation of motion, namely [cf.
Eqs. (7.6a, 7.6b)]

mẍi = fi (xi ) + mτ
...
x i + eEeff

i . (7.76)

It is clear that in this case the sets of states that are accessible to each particle are
identical,

{β} = {β′}, (7.77)

and hence all the relevant frequencies are common to both.12

From Eq. (7.77) it follows that for each and every pair BI = (β, β′) of states
of the two particles (with β ≡= β′) there is another one, BI I = (β′,β), having the
same total energy EB = Eβ + Eβ′ , such that the degeneracy condition (7.41) [with
(δ,δ′) = (β,β′), (κ,κ′) = (β′,β)] holds, i.e,

ωββ′ = −ωβ′β ≡= 0. (7.78)

Although thefirst equality follows immediately from the antisymmetry of the relevant
frequencies, it is important to stress its physical meaning by observing that the left-

12 In the above lines we treat as identical particles those having the same intrinsic properties relevant
for the present description, namely m and e. No explicit reference to their spin or other properties is
made, since the description developed so far [rooted in Eq. (7.76)] leaves out any spinorial effect,
thus treating the particles as spinless systems. However, the equality of their spins is tacitly assumed
by considering that the Hilbert spaces in which the matrices F̂ and Ĝ are defined coincide, hence
possess the same dimension. In Sect. 7.4, we extend the analysis to particles with spin 1/2.
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hand side stands for the relevant frequency of one of the particles, whereas the
right-hand side stands for the relevant frequency of the other one.

According to the discussion in Sect. 7.2.3, the double degeneracy of all the states
(β, β′) as well as of all the frequencies ωββ′ compels us to describe every state of
the bipartite system in terms of an entangled vector of the form given by (7.56) [with
(δ,δ′) = (β,β′), (κ,κ′) = (β′,β)],

|ψB↓ = 1∼
2

(
|β↓1

∣∣β′〉
2 + λB

∣∣β′〉
1 |β↓2

)
, (7.79)

where
λB ≡ 〈a1ββ′a2β′β↓ = eiςββ′ (

β ≡= β′) , (7.80)

in accordance with Eq. (7.37). The covariance of F and G, Eq. (7.63), reduces in
this case to (we use the shorthand notation �ββ′ = �(FG)EBI

=EBI I
)

�ββ′ = 1
4

(
Fββ − Fβ′β′

) (
Gβ′β′ − Gββ

) + Re λB Fββ′ Gβ′β . (7.81)

7.3.2 The Origin of Totally (Anti)symmetric States

In the case of two identical particles, the covariance of F and G is invariant under an
exchange of single-particle states, as can be readily verified by applying the operator
Is :β ∗ β′ to �ββ′ in Eq. (7.81),

Is�ββ′ = �ββ′ . (7.82)

Further, using Eq. (7.38) the state vector (7.79) becomes

∣∣ψ′
B

〉 = Is |ψB↓ = 1∼
2

( ∣∣β′〉
1 |β↓2 + λ↑

B |β↓1
∣∣β′〉

2

)
= λ↑

B |ψB↓ , (7.83)

which is the same as the original |ψB↓ multiplied by an overall phase factor.
Now, we recall that each of the particles is in correspondence with the stochastic

field Ei = E(x0i , t) in its vicinity. By making this field explicit, we may carry out
a physical transformation having no counterpart in the usual quantum description,
which consists of an exchange of the field in the vicinity of the particles, E1 ∗
E2. This operation is equivalent to the exchange of the field variables a1 ∗ a2
and therefore will be denoted as I f :1 ∗ 2. Since the particles are identical, such
permutation is equivalent to an exchange of the states of the particles, and hence,
according to what has been said above, it must leave the covariance (7.81) invariant

I f �ββ′ = �ββ′ . (7.84)
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In order to calculate the left-hand side of this equation, we first recall that aiββ′ =
a↑

iβ′β , whence
I f λB = λ↑

B . (7.85)

As for the matrix elements in �ββ′ , they have no trace of the field variables, so they
remain invariant under I f .13 With this and Eq. (7.85), the condition (7.84) becomes

(
λ↑

B − λB
)
ImFββ′ Gβ′β = 0. (7.86)

Since this equation must hold irrespective of β,β′, F̂, and Ĝ, its solution is λB

real,14 i.e.,
λB = ±1. (7.87)

This means that for two identical (noninteracting) particles subject to the same
external potential, the states (7.79) are (anti)symmetric, hence maximally entangled,

|ψB↓ = 1∼
2

(
|β↓1

∣∣β′〉
2 ± ∣∣β′〉

1 |β↓2
)
, (7.88)

for β′ ≡= β. From Eq. (7.80) we see that in this case the field variables a1ββ′ and
a2β′β are maximally (anti)correlated and λB is symmetric in the field variables, as
should be expected in view of the symmetry of the problem. Further, Eqs. (7.65)
and (7.81) give for the entanglement-related covariance

�λ
ββ′ = λBRe Fββ′ Gβ′β = ±Re Fββ′ Gβ′β . (7.89)

7.3.3 Comments on Particle Exchange

The effect of interchanging particle states is identical to the effect of interchanging
the fields in the vicinity of the particles; therefore, the product of both operations,
Is I f = I f Is, leaves the description invariant. Further, since the field variables are in
direct correspondence with the positions of the particles, the effect of I f can be seen
as an interchange of positions (Ix ), whence the operation Is I f = Is Ix is equivalent to

13 As follows from the analysis in Sect. 7.1.4, F̂ (Ĝ) stands for the matrix defined in H1 (H2)

associated with a variable F(G) proper of the particle immersed in the background (not effective!)
field E1(E2), with random amplitudes a1(a2). Now, in the case of identical particles subject to the
same external potential, H1 and H2 coincide, and therefore the matrices F̂ and Ĝ are invariant
under I f .
14 If F̂ = Ĝ, then Fββ′ Gβ′β = ∣

∣Fββ′
∣
∣2, thus ImFββ′ Gβ′β = 0 and nothing can be said about

λ↑
B − λB .However, there exist F̂ and Ĝ that have the same relevant frequencies andgive nevertheless

a complex value for Fββ′ Gβ′β .An obvious example is F̂ = p̂ and Ĝ = x̂, for which ImFββ′ Gβ′β =
mωββ′

∣
∣xββ′

∣
∣2 .
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an interchange of particles, denoted as Ip.15 However, Ip does not coincide with the
corresponding particle-exchange transformation I qmp made within the usual quantum
formalism, because the field (or position)-exchange operation I f is foreign to the
usual scheme. It is precisely the alleged impossibility to distinguish trajectories what
is usually considered the basis for the indistinguishability of the particles, a property
that is identified as responsible for the essential differences between quantum systems
of identical particles and their classical analogue [see e.g. Cohen-Tannoudji et al.
(1977)]. Consequently, I qmp is simply Is; that is, in the Hilbert-space description
the exchange of particles amounts to an exchange of their actual states only (this
is the so-called exchange degeneracy). Such discrepancy in the definition of the
particle-exchange operation causes the symmetry (or invariance) arguments in these
approaches to differ conceptually.

In the quantum formalism the operation I f :1 ∗ 2 has the mathematical effect
of interchanging the Hilbert spaces of the one-particle vectors in products such as
|β↓1|β′↓2. Thus, it still holds that I f and Is = I qmp produce identical effects, but
here I f is merely a mathematical operation that switches the labels attached to
the particles, without these labels providing any additional physical information,
or characterizing any intrinsic property of the particles. In contrast, the formalism
developed here puts these labels into correspondence with the fields in the vicinity
of the particles, and in this sense they are endowed with a physical meaning.

7.4 Spin-Symmetry Relations

The derivation of the symmetry or antisymmetry of the stationary states for systems
of two identical particles made in Sect. 7.3.2 represents a step towards the spin-
statistics theorem of quantum field theory, which is adopted by qm. Let us now take
a further step in connection with this problem, by focusing on a system composed of
two noninteracting electrons with their spin taken into account.16 The analysis that
follows rests on the main result in Sect. 7.3.2, namely that whenever condition (7.78)
holds, the state of the bipartite system is described by the entangled vector (7.88).

The system to be studied consists, therefore, of a pair of noninteracting electrons
subject to the same external potential, such that the ‘orbital’ (i.e., nonspinorial) part
of the total Hamiltonian decomposes as

Ĥo = Ĥ1o + Ĥ2o, (7.90)

15 The interchange of particles thus defined is valid only for identical particles subject to the same
external potential. This is so because to ensure that upon the exchange Is the resulting state continues
to be stationary, both β and β′ must be accessible states for both particles, for any pair (β, β′).
16 In Chap.6 the electron spin was obtained as another quantum property that emerges from the
particle-zpf interaction. In the transition to the Heisenberg description, this new variable appears
represented by a two-dimensional matrix operator Ŝ, which is expressed in terms of the Pauli
matrices as Ŝ = �σ̂/2 and satisfies the usual angular-momentum commutation rules.

http://dx.doi.org/10.1007/978-3-319-07893-9_6
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with Ĥio having eigenvalues En . In addition, and in order to include the spinorial
degrees of freedom, the system is immersed in an external magnetic field B = B ẑ,
so that the following extra term is added to the Hamiltonian,

Ĥspin = μ0Bσ̂1z + μ0Bσ̂2z, (7.91)

where μ0 stands for Bohr’s magneton (μ0 = −e�/2mc) and σ̂i z is the z-Pauli matrix
of particle i . The total Hamiltonian of the composite system is then

Ĥ = Ĥ1 + Ĥ2 = Ĥ1o + Ĥ2o + μ0Bσ̂1z + μ0Bσ̂2z, (7.92)

and the energy levels of each particle are

Eβ = En + μ0Bsz, (7.93)

with sz = ± the eigenvalue of σ̂i z , i.e., in the usual notation,

σ̂i z |±↓i = ± |±↓i , or σ̂i z |szi ↓ = szi |szi ↓ . (7.94)

Equation (7.93) thus shows that the (single-particle) state index β is now a compound
index β = (n, sz) that includes both the orbital and the spinorial states. With this
equation, condition (7.78) reads

ωββ′ = �
−1(Eβ − Eβ′) = �

−1(En − En′) + μ0B�
−1(sz − s′

z) ≡= 0. (7.95)

7.4.1 Two Electrons in the Singlet State

Let us first apply the above results to a systemof two electrons assuming for simplicity
that both particles are in the same orbital state |n↓,

|ϕ↓ = |n↓1 |n↓2 , (7.96)

so that n = n′ in the above expressions. The common relevant frequency is then
determined solely by the difference between the magnetic energy terms; according
to Eq. (7.95),

ωββ′ = μ0B�
−1(sz − s′

z). (7.97)

For this frequency to be different from zero we must have sz ≡= s′
z, hence |β↓ =

|n↓ |±↓ and ∣
∣β′〉 = |n↓ |∈↓. From Eq. (7.88) we thus obtain the entangled state vector

|ψ↓ = 1∼
2

|n↓1 |n↓2
(

|+↓1 |−↓2 + λS |−↓1 |+↓2
)
, (7.98)
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with λS = ±1. To determine the sign of λS we use Eq. (7.81) with λB = λS,

F̂ = σ̂1 · a, and Ĝ = σ̂2 · b, where a, b are two unitary vectors in arbitrary
directions. The calculation is straightforward and gives

�ββ′ = �S = −azbz + λS(ax bx + byay). (7.99)

We now assume that the two electrons are in the singlet state (total spin S = 0). In
this case, for b = a the spin components must be antiparallel, which means that

�S=0(a = b) = −a2
z + λS=0(a

2
x + a2

y) = −a2
z (1 + λS=0) + λS=0 = −1 (7.100)

irrespective of az . This fixes the value of the correlation factor,

λS=0 = −1, (7.101)

whence
�S=0 = −a · b (7.102)

in agreement with the quantum formula. This calculation has served to univocally
determine the sign of λS for S = 0, which introduced into (7.98) leads to the
antisymmetric spin state vector:

|χ↓S=0 = 1∼
2

(
|+↓1 |−↓2 − |−↓1 |+↓2

)
, (7.103)

and to the complete antisymmetric state vector

|ψ↓S=0 = 1∼
2

|n↓1 |n↓2
(

|+↓1 |−↓2 − |−↓1 |+↓2
)
. (7.104)

It is clear from the way it has been constructed, that (7.103) encodes the (maximum)
available statistical information of the spin state of the entire bipartite system. This
means that it encodes the probabilities of the outcomes of experiments that may
be performed on the two particles, whether jointly or individually, whether close
to each other or a distance apart—as long as the correlation between the common
relevant fieldmodes is not broken.When the latter occurs, the value of the correlation
parameter λS becomes zero, the system ceases to be correctly described by the
entangled state vector, and the bipartite system must be considered as two separate
systems, each described by its own state function.

7.4.2 The Helium Atom

An important example of a system having two electrons is of course the Helium
atom. Let us consider, as in the previous example, that the direction of z is fixed by an
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external magnetic field B of arbitrary size that aligns the spins and introduces a spin-
dependent energy term. For the present calculation, the motion of the nucleus and
the direct interaction between the particles can be neglected, so that the Hamiltonian
takes the form (7.92).

Take first the case in which both electrons are in the same orbital state, say n, and
the spins are antiparallel, i.e., S = 0. As seen above, the complete state is described
by the antisymmetric state vector (7.104). Now the question arises: is it possible
for the two electrons to have parallel (instead of antiparallel) spins (i.e., S = 1)
when they are in the same orbital state? We know of course that the answer is in the
negative; let us look at it from the approach developed in the preceding section.

As remarked under Eq. (7.97), for correlating modes to exist when the particles
are in the same orbital state, their spin projections along the direction ẑ must be
antiparallel (i.e., sz ≡= s′

z). This led us to write the general form of the bipartite
state vector as (7.98) with λS = ±1. This means that only two states can describe
the composite system. Since the case with λS = −1 has been shown to correspond
to S = 0, the only possibility left is that the vector corresponding to S = 1 has
λS=1 = 1. Equation (7.99) would thus give

�S=1 = −azbz + (ax bx + byay), (7.105)

which for a = b reduces to

�S=1(a = b) = −a2
z + a2

x + a2
y = 1 − 2a2

z . (7.106)

However, the fact that the condition ωββ′ ≡= 0 allows only for one state vector
corresponding to S = 1, namely (7.98) with λS=1 = 1, creates a problem, since
a single state does not suffice to represent the three spin-projection configurations
consistent with S = 1, that conform the triplet state. In other words, when the total
spin is S = 1 three vectors are required to describe the system, which is not allowed
by the condition ωββ′ ≡= 0. In fact, the restriction sz ≡= s′

z that ensues from this latter
already indicates that the bipartite state cannot be of the form

|ψ↓ = |n±↓1 |n±↓2 . (7.107)

Thus the orbital states must be different, and they become entangled due to the fact
that there is a common resonance frequency ωββ′ ≡= 0. In other words, no two
electrons can be in exactly the same (spin and orbital) state. This is, in essence,
an expression of the Pauli principle, which appears here as a consequence of the
existence of the zpf connecting the particles and correlating their motions via the
common relevant frequencies.

In connection with this result, it is in place to emphasize the key role played by the
constraint imposed on the variables characterizing the state of the bipartite system
for entanglement to appear—as already remarked by Schrödinger in his celebrated
1935 papers. Consider for simplicity a bipartite state defined by the total spin and
its projection along an arbitary axis z (i.e., S = 0, or S = 1 with m = 0); all these
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cases correspond to an entangled state. Assume now that the constraint on the total
spin is lifted (e.g., we focus only on the orbital, identical states); then the electrons
become disentangled and must be treated as two separate systems. This observation
can be extended to other variables characterizing a quantum system. For example,
in the case studied in Sect. 7.3.1, the state of the bipartite system was defined by the
total energy only, EB = Eβ + Eβ′ , with β ≡= β′. Having the total energy fixed led to
ωββ′ = −ωββ′ ≡= 0, and to the consequent entanglement of the particles through the
respective field modes. If the system is perturbed by a force that does not conserve
the (total) energy, the particles get disentangled.

Applied to the Helium atom, we may draw a further consequence from the above
discussion.Whether the atom is in the ground state or in any one of the excited states,
for the (composite) state vector to represent a stationary state it must be defined by
the total energy of the bipartite system. This means that all stationary states of the
atom are entangled, either through the spin vectors, or the orbital vectors, or both.
Now, our analysis of the singlet spin case in Sect. 7.4.1 led us to conclude that the
complete state vector must be antisymmetric; see (7.104). This property should hold
regardless of whether the electrons are in the same orbital state |n↓ or in different
states |n↓, |n′↓, since the action of any operator (satisfying the superselection rule of
univalence)17 acting on the state vector does not alter its symmetry or antisymmetry
property. This means that any vector describing the complete, stationary state of the
system of two electrons must be antisymmetric.

Again, this is a well-known property in qm; however, instead of being introduced
here by hand, it appears as a further consequence of the correlations established (via
the zpf) between the electrons (with spin) that form a bipartite system.

7.5 Final Comments

We have seen that when the components of a bipartite system resonate to a common
frequency of the background field, it is no longer possible to describe them in a
separate and independent way; particles and field constitute a single physical system,
which explains why, when the description focuses on the mechanical subsystem
only, the state is described by an entangled state vector. By ignoring the presence
of the background field, however, entanglement appears as an elusive feature, and
(apparent) nonlocal and noncausal effects enter into the picture.

The importance of the zpf for the understanding of entanglement goeswell beyond
the quantum-mechanical case studied here. As an important example, in a series of
works related to stochastic optics (see e.g. Santos 2002, 2008; Marshall and Santos
1988, 2002; Casado et al. 1998 and references therein), the‘nonclassical’ entangle-
ment of photons is shown to arise as a consequence of the extra correlations involving
the zpf. Taken together, those results and the present ones point towards a fundamen-
talmechanism responsible for entanglement, one that rests on the extra correlations—

17 The superselection rule of univalence forbids transtions from symmetric into antisymmetric
vector states, and conversely.
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unknown to classical physics and normally concealed in quantum theory—due to the
presence of the zpf.

By now the mediating action of the environment in the process of entanglement
is well recognized. The environment appears as a physical entity capable not only of
degrading entanglement—as happens in decoherence processes—but also of produc-
ing it. The ability of the environment to generate correlations among the constituents
of a composite system has been largely studied within the quantum formalism
(see, e.g., Braun 2002; Kim et al. 2002; Benatti et al. 2003; Ficek and Tanaś 2006;
Hor-Meyll et al. 2009, and references therein).

The picture built along this chapter suggests a remarkable parallelism between
(quantum) entanglement and superconductivity. In this latter case a passing electron
modifies the phonon field due to electromagnetic interaction, so a second electron
passing by feels the modified phonon field and reacts accordingly, thus establishing a
correlation between the two electrons to form a Cooper pair (see e.g. Greiner 1998).
The background phonon field due to the vibrations in the crystal lattice plays a role
similar to that of the background electromagnetic field in the present case, as the
medium that transfers information of the state of one electron (by inducing a change
in its mechanical energy) to another one (by inducing a corresponding change).

It should be mentioned also that a result analogous to quantum entanglement
can be obtained for a system of Brownian particles (Allahverdyan et al. 2005). For
this to happen, the particles must however have interacted in the past via an exter-
nal potential. This essential difference between the Brownian entanglement and the
quantum entanglement presented here rests on the specific nature of the stochastic
environment acting in each case. The thermal bath represents a white noise and thus
is completely uncorrelated and incoherent, so that it is capable of maintaining the
pre-existent correlations for some limited time, but is unable to originate them.

Finally, we have seen that the zpf, precisely through the mechanism of entan-
glement, becomes an important piece in producing states of definite permutation
symmetry for systems composed of electrons. This provides a physical clue for a
better understandingof the relation between spin and statistics in quantummechanics.
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Chapter 8
Causality, Nonlocality, and Entanglement
in Quantum Mechanics

Why is the pilot-wave picture ignored in the text books? Should
it not be taught, not as the only way, but as an antidote to the
prevailing complacency? To show that vagueness, subjectivity,
and indeterminism, are not forced on us by experimental facts,
but by deliberate theoretical choice?

Bell (1987, page 160)

The material presented in previous chapters has dealt with some fundamental
elements of qm such as (non)locality, (non)causality, (in)determinism and the
(non)existence of trajectories. These elements have been at the core of some of the
most longstanding controversies, and also of the most thorough attempts to develop
alternative interpretations of the quantum formalism.

Among such reformulations, perhaps the best known one is the de Broglie-Bohm
theory. This represented the first serious attempt to recover for qm two notions
that are dear to (classical) physics, namely those of causality and of trajectory (or
realism, in a by now extended usage)—although at the high price of nonlocality. It
seems therefore appropriate to initiate the discussion on these subjects with a brief,
critical review of the de Broglie-Bohm theory. This will set the framework for a
fresh analysis of quantum (non)locality from the perspective of the sed theory as
developed in the preceding chapters.

8.1 Causality at Stake

Quantum indeterminism, as represented by the Heisenberg inequalities or the inher-
ently unpredictable specific outcome of a measurement, is for some a cause of
discomfort with the theory.When the status of qm as a fundamental theory of physics
is at stake, such trait is indeed hardly acceptable from a realist standpoint. The sim-
plest solution to the problem of quantum indeterminism consists in assuming that
there exist some variables that specify, along with the quantum-mechanical state

L. de la Peña et al., The Emerging Quantum, 267
DOI: 10.1007/978-3-319-07893-9_8,
© Springer International Publishing Switzerland 2015
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vector, a dispersion-free state, i.e. a state for which the specific outcomes of a mea-
surement are fully determined. These hypothetical variables that restore determin-
ism are the so-called ‘hidden variables’ or ‘hidden parameters’. Of course, one must
assume that their existence is compatible with the quantum laws. And here sprouts
the problem...

8.1.1 Von Neumann’s Theorem

In 1932 the mathematician J. von Neumann published what constituted the first
formal textbook on quantum mechanics (English version: von Neumann 1932). The
book contains a theorem that was quickly accepted, and which half a century ago still
seemed to be in full force. This theorem—which stands even today as the archetype of
the ‘impossibility proofs’, more popularly known as ‘no-go’ theorems— asserts that
one cannot add hidden variables to render qm deterministic.1 Since qm is supported
by a vast amount of empirical evidence, a deterministic description of it happens to
be refuted by such evidence.

In 1952 a second round startedwith the publication byD. Bohmof two now classi-
cal papers (Bohm1952a, b; see alsoBohm1953) providing a specific counterexample
to von Neumann’s theorem. It was just a causal and deterministic description com-
pletely consistent with the quantum-mechanical formalism, built in terms of nonlocal
hidden variables. One should have expected such a result to immediately draw the
attention from physicists (and mathematicians and philosophers of science) eager to
find the error in von Neumann’s demonstration. However, this was not the case; the
large majority simply ignored Bohm’s results and took von Neumann’s conclusion
for granted.

In the proof of his theorem, von Neumann had introduced some postulates that
he considered of general validity. Starting with the expression

〈
Ĉ

〉
= tr (ρC) (8.1)

that defines the mean value of an operator Ĉ (associated with the observable C) in
the quantum state described by the density matrix ρ, it is straightforward to arrive at

〈
Â + B̂

〉
=

〈
Â
〉
+

〈
B̂

〉
, (8.2)

irrespective of the operators Â and B̂. Von Neumann then assumed that this additive
relation holds alsowhen themean values are calculated in dispersion-free states. And
since such states must yield one (well-defined) result from among the possible ones
predicted by the quantum state, the expectation values of Ĉ in a dispersion-free state

1 It is much less known that almost simultaneously and independently, a similar result was published
by Solomon (1933).
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are just the eigenvalues of Ĉ (Bell 1987, articles 1 and 4). Yet for noncommuting
Â and B̂ the eigenvalue of the sum Â + B̂ is not necessarily equal to the sum
of the corresponding eigenvalues,2 whence the relation (8.2) ceases to be true for
dispersion-free states.

Two years after the original publication of von Neumann’s theorem, Hermann
(1935) observed that this additivity assumptionwas too restrictivewithin the quantum
domain.3 Hermann’s criticism was largely ignored, as were the few other criticisms
raised much later, notably by Feyerabend (1956), and Mugur-Schächter (1964).4

The widely accepted proof that von Neumann’s theorem demanded revision came
only with the work of Bell (1966), who again observed that the theorem was mathe-
matically correct but not of general applicability, as the additivity postulate was too
restrictive.

The generally accepted conclusion at present is that the theorem is not general
enough to eliminate all kinds of hidden-variable theories (see e.g. Bub 2010); in
particular, it does not exclude nonlocal hidden variables, as Bohm’s work evinced.
Alternative versions of von Neumann’s theorem have been devised in the meantime
that escape from the previous criticisms, by Gleason (1957) for Hilbert spaces of
dimensionality greater than 2, Bell (1966), Kochen and Specker (1967), Belinfante
(1973), and Peres (1996), among others. In their turn, Gudder (1970) and Santos
(1975) have proved that qm does accept contextual hidden variables.

2 Take for example the spin projections along three different directions: Â = Ŝx , B̂ = Ŝy and
Ĉ = ( Â + B̂)/

√
2 = (Ŝx + Ŝy)/

√
2. If the system possesses spin 1/2, the eigenvalues of each

of these operators are the same and equal to ±1; clearly the eigenvalues of Ĉ are not the linear
combination (±1 ± 1)/

√
2.

3 Since Hermann’s argument is little known, and is just the same discovered by Bell 30 years later,
it seems of interest to transcribe it here: “Suppose we have an ensemble of physical systems, with
R and S physical quantities that can be measured on this ensemble; the expectation value of R
(Expt(R)) is the average value of all measurement outcomes that will be obtainedwhenmeasuringR
on all systems of the ensemble, and is also the value that is expected to be obtained when measuring
R on an arbitrary element of this ensemble. Von Neumann requires that for this expectation value-
function Expt(R), defined using an ensemble of physical systems and producing a number for every
physical quantity, Expt(R+ S) = Expt(R) + Expt(S). In words: The expectation value of a sum
of physical quantities is equal to the sum of the expectation values of both quantities. With this
assumption the proof of von Neumann either succeeds or fails.”
“For classical physics this requirement is trivial and also for those quantummechanical observables
that [commute]... Not trivial however is the relation for quantum mechanical quantities for which
indeterminacy relations hold. In fact the sum of two such quantities is not even defined: Because a
sharp measurement of one of them excludes sharp measurement of the other one and thus because
both quantities cannot have sharp values at the same time, the commonly used definition of the sum
of two quantities breaks down.”
4 Feyerabend noticed that the postulates used in vonNeumann’s derivation did not exclude dispersive
hidden variables.Now if the hidden variables added toqm had an irreducible dispersion, the quantum
variables themselves should continue to be dispersive and things remained essentially the same,
except that the theorem needed some reformulation. Mugur-Schächter, on her part, argued that
the demonstration was not as general as assumed, since it presupposes that the distribution of the
hidden variables (once more, distributed variables) has properties similar to those of the quantum
distribution.
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8.1.2 Bohm’s Counterexample

For historical fairness, the theory proposed by Bohm—causal quantum mechanics,
as he called it—should be named after de Broglie and Bohm, since L. de Broglie
proposed his pilot-wave theory already during the construction of quantum mechan-
ics as an alternative to both Heisenberg’s and Schrödinger’s routes to the new theory
(de Broglie 1926a, b, 1927a, b, c; see also de Broglie 1963).5 The pillars on which
de Broglie’s and Bohm’s theories rest are quite similar, although from the outset the
former was more ambitious. The theory proposed by de Broglie was an attempt to
arrive at qm through the study of the trajectories followed by electrons or photons
‘guided’ by the quantum field (hence the name of pilot-wave theory). De Broglie’s
initial work preceded the theories of Heisenberg and Schrödinger, and can therefore
be considered to be the first attempt to find a formulation for qm. Unfortunately the
author abandoned it around 1930, due to several unresolved difficulties, and with this
the search for quantum trajectories was left aside for a long time. A detailed discus-
sion of de Broglie’s theory, covering both the technical and the historical aspects,
can be seen in the excellent book by Bacciagaluppi and Valentini (2009); see also
Cushing (1992) and Bohm and Hiley (1995). In 1956, de Broglie himself published
a general discussion of his theory

As for Bohm’s theory, it is derived from qm—just the converse of what de
Broglie’s theory was designed for—so one can say that it is qm supplemented with
a guidance formula—a pilot formula that can be derived from within qm—which is
the entry point for the hidden variables. Thus Bohm’s theory represents an alternative
reading of qm rather than a different theory. Bohm himself insisted on this point:
his theory is totally consistent with qm, it is qm seen from a causal and determin-
istic stance. The theory was born precisely out of the drive to demonstrate that, in
defiance of von Neumann’s theorem, qm accepts a hidden-variable description that
makes it causal and deterministic. Yet even though Bohm’s formulation did provide
at its time a real counterexample to von Neumann’s theorem, it was largely left aside,
as mentioned earlier. An eloquent testimony of the reaction generated by Bohm’s
theory is given by F. Bopp in his summary of the discussions at a 1957 Conference
in Bristol (Jammer 1974, p. 256):

‘...we say that Bohm’s theory cannot be refuted, adding... that we don’t believe in it.’.

Hostility towards Bohm’s theory continued and still continues in many circles,
although much attenuated. An illustrative example is due to Pauli (1952), who in the
book in homage to de Broglie dismissed the de Broglie-Bohm approach as ‘artificial
metaphysics’ because this theory breaks the symmetric treatment of canonically con-
jugate variables. The theory developed in Chap. 4 shows that this violation is merely

5 Without pretending to undermine de Broglie’s credit for his seminal contribution, in most of
this book we shall refer to Bohm’s theory, for short, as is customary in present-day literature. An
alternative form of qm, similar to Bohm’s, had been proposed many years earlier by Madelung
(1927).

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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apparent, since the description in configuration space is the result of a free choice
rather than of necessity.

Since Bohm’s formulation is derived just from qm, its novelty might be ques-
tioned; however, this question would be out of place. Bohm’s approach has con-
tributed in various important ways to our understanding of quantum theory. Firstly,
it opened a door to the idea of the feasibility of hidden-variable theories. This stim-
ulated work on the subject, which led to important results and to a weakening of the
extended conviction that the quantumworld is elusory.Amost important contribution
is the insistence on a causal interpretation of qm, openly confronting the orthodox
interpretation in terms of quantum fluctuations and selections without an underly-
ing cause. A further merit is that it does not resort to the observer, as orthodox qm
does. If you want to perform a measurement, you should incorporate the instrument
into the description just as you would do in a classical context (an example of this
is given below in Sect. 8.2.3). Moreover, the variables used in Bohm’s formulation
allow for the introduction into qm of the notion of trajectory. In fact, the electron
remains all the time a corpuscle following a trajectory and never becoming a wave.
This additional touch of realism is another important virtue that is in want in the
usual renderings of qm. In discussing Bohm’s formulation more at depth in what
follows, we will find a new opportunity to cogently establish the meaning of several
of the most characteristic features of qm from a realist point of view, and to show
the many coincidences and some divergences with the theory discussed in this book.

AsBohm’s formulation gained acceptancewith time, the emphasis shifted towards
a full-fledged alternative to the orthodox interpretation, and the theory expanded its
aims. From a counterexample to von Neumann’s theorem it evolved into a causal
and realistic interpretation of qm that acquired some popularity.6 It has even been
presented as a quantum theory by itself, not based on the Schrödinger equation but
on its own principles [see e.g. Dürr and Teufel (2009)] and leading to the Schrödinger
equation as one of its major results.7 A very important extension of the theory is its
generalization to the many-body problem. Here also de Broglie was the originator,
having presented his many-body theory already at the 1927 Solvay Conference (de
Broglie 1928). Also since its 1952 revival by Bohm, the theory was presented as
a many-body corpus. There are works studying further possibilities, such as the
introduction of spin, the extension to the relativistic domain, (see e.g. Nikolić 2007;
Hernández-Zapata and Hernández-Zapata 2010), or the generalization to a statistical

6 The well-known book by Bell containing the collection of his articles on the foundations of qm
(Bell 1987) was very influential in the revival of Bohm’s theory. Bell appreciated the objective,
deterministic and causal aspects of the pilot-wave theory. It was the search for an answer to the
question: Is it that any hidden-variables theory is by necessity nonlocal? what prompted Bell’s work
leading to his now famous inequalities.
7 This is achieved by simply inverting the reasoning in the derivations. Two crucial postulates are
needed: one is of course the guidance equation; the second demand serves to introduce the quantum
potential VQ into Eq. (8.9) on the basis of an appropriately contrived argument. The simplest
procedure is to consider the quantum potential as an empirical—and thus phenomenological—
expression, and to proceed from there on. There exist all sorts of interpretations and ‘derivations’
of the quantum potential, as commented in footnote 4.14.
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situation (Bohm and Hiley 1996), usually treated bymeans of the density matrix, and
into other modern topics (Oriols and Mompart 2012). Extensive monographs on the
subject are Bohm and Hiley (1995), Holland (1993), Dürr and Teufel (2009), or the
introductory course Towler (2009); see also Passon (2005) and Thiounn (1965). For
another ‘branch’ of the theory see Floyd (2000). A related critical work on Bohm’s
theory is Dürr et al. (1992).

8.2 Essentials of the de Broglie-Bohm Theory

8.2.1 The Guiding Field

A straightforward derivation of Bohm’s theory starts with the introduction into the
Schrödinger equation

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + V ψ (8.3)

of the wave function ψ(x, t) written in polar form

ψ(x, t) = √
ρ(x, t)ei S(x,t), (8.4)

with ρ(x, t) and S(x, t) real functions. By separating Eq. (8.3) into its real and
imaginary parts one obtains the couple of equations

∂ρ

∂t
+ ∇ · ρv = 0, (8.5a)

�
∂S

∂t
+ �

2

2m
(∇S)2 + V − �

2

2m

∇2√ρ√
ρ

= 0, (8.5b)

where ρv = j is the probability current or particle flux, with [see Eqs. (4.57) and
(4.127)]

v(x, t) = �

m
∇S(x, t). (8.6)

Clearly the content of Eqs. (8.5a) and (8.5b) is the same as that of Schrödinger’s equa-
tion. However, in the causal interpretation a formal analogy with classical mechanics
is established, by taking v(x, t) as the velocity field of a single particle located at x,

dx
dt

= �

m
∇S(x, t)|x=x(t) , (8.7)

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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and thus interpreting �S as the action function of the quantum problem. This action
differs from the classical one (Sc) in that the latter solves a true (classical) Hamilton-
Jacobi equation

∂Sc

∂t
+ 1

2m
(∇Sc)

2 + V = 0, (8.8)

whereas the (dimensionless) action S is governed by Eq. (8.5b), which can be rewrit-
ten as

�
∂S

∂t
+ �

2

2m
(∇S)2 + Veff = 0, Veff = V + VQ, (8.9)

with VQ the quantum potential or Bohm’s potential [already found, for example, in
Eqs. (2.80) and (4.86)],

VQ = − �
2

2m

∇2√ρ√
ρ

. (8.10)

In terms of the ‘effective potential’ Veff = V + VQ, Eq. (8.9) takes the form of
a Hamilton-Jacobi equation for the principal function S (Goldstein et al. 2002).
Equation (8.9) is thus interpreted as the quantum Hamilton-Jacobi equation, that is,
the quantum version of Eq. (8.8). According to this interpretation, the difference
between a classical problem and the corresponding quantum one is due the presence
of the function VQ (cf. the discussion in Sect. 4.4.1).8

Notice, however, that in contrast to the external (classical) potential V , VQ is not a
preestablished function of x; it depends on the evolution of ρ = ψψ√, the dynamics
of which is in its turn determined by the quantum potential itself. Hence VQ applies a
kind of feedback on the particle, dependent on the distribution of particles, a feature
that endows the theory with highly nonclassical properties. It should come as no
surprise that the implications of this potential for the dynamics are far reaching, as
we know is just the case. In particular, the dependence of VQ on ρ endows Eq. (8.9)

8 The kinetic origin of the quantum potential is discussed in de la Peña et al. (2011). To the
varied proposals to derive the quantum potential cited in footnote 4.14, one should add those of
Dürr et al. (1992), and Ván and Fülöp (2003), as well as.the thermodynamic approach of Grössing
(2008, 2009). A somewhat bolder one is that of Floyd (2002), who proposes a trajectory description
based on a peculiar quantum potential containing derivatives of third order. An interesting point of
this theory is that it contains extra parameters that allow for a distribution of the velocity v, resulting
in amore realistic description. Salesi (1996) and Recami and Salesi (1998) propose that the quantum
potential can be derived by considering the energy associated with the internal zitterbewegung
(considered as the antecedent of the spin). A similar proposal is made by Esposito (1999), who
associates the quantum potential with the (internal) kinetic energy due to a generalized spin; see
also Yang (2006). For these authors, the notions of spin, zitterbewegung and quantum potential are
intimately related. Garbaczewski (1992) offers a nice derivation of the quantum potential as due
to the fluctuations of the momentum. In Carroll (2007, 2010), additional arguments are introduced
about the origin of the quantum potential, related to Fisher information.

http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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with a statistical content, and is responsible for the essential difference between (8.5b)
and a true Hamilton-Jacobi equation, which by definition describes the motion of a
congruency of (single) particles acted on by local potentials (a congruency refers to
a single-valued trajectory field).

The fact that in Bohm’s theory v stands for the velocity of a single particle, allows
for the introduction of the notion of trajectory into the description. Such trajectory
is described by the velocity field, determined by ψ according to Eq. (8.6) [see also
Eq. (4.125)],

v(x, t) = i�

2m

(∇ψ√

ψ√ − ∇ψ

ψ

)
. (8.11)

The wave function ψ is taken here as a physically real field—just as real as, say,
the electromagnetic field—that pervades the entire available space and guides the
particle according to (8.11), which is therefore known as the guidance (or pilot)
equation.9 The two basic physical elements of the theory are thus the wave (guiding
or pilot) field, determined by the Schrödinger equation, and the particle, with its
motion determined by the solution of Eq. (8.7), or rather by the solution of

m

(
∂

∂t
+ v · ∇

)
v = m

dv

dt
= −∇(V + VQ), (8.12)

obtained by applying the operator ∇ to Eq. (8.9). Notice that the operator

Dc = ∂

∂t
+ v · ∇, (8.13)

frequently called co-moving derivative (introduced in Sect. 2.3.1), coincides with
the the total time derivative when the latter is taken along the path determined by the
velocity field v (whence in the Bohmian approach Dcv is the actual acceleration of
the particle).

The solution of Eq. (8.7) depends on the initial condition x0 = x(t = 0). When
different values are assigned to x0, an ensemble of motions (for a given ψ) is deter-
mined; a statistical meaning is therefore ascribed to the field ψ by postulating that
the probability for a particle to be in the vicinity dx around x is given by

|ψ(x, t)|2 dx. (8.14)

This allows to establish contact with the probability interpretation of the density
ρ(x, t). Moreover, it can be shown that given the initial distribution ρ(x, 0), Eq.

9 The fieldψ differs in essence from those known to classical physics. In contrast to the gravitational
or the electromagnetic field, for example, it does not have a generating source. Moreover, it affects
the particle (by guiding it) but is not affected by it. This lack of reciprocity in the field-particle
influence led de Broglie (1956) (and afterwards Bohm himself) to regard the pilot-wave theory as
just a step towards a necessarily more developed theory. [See item 15 in Bell (1987)].

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_2
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(8.11) holds at any future time. The fact that the (ensemble of) initial positions x0 is
the only information required by the theory that is not contained in ψ(x, t), has led
to refer to such positions as the set of hidden variables of the theory. They are here,
but remain hidden to usual qm.

The pilot equation was introduced early in de Broglie’s work (1927, 1928) as
a law that unifies the Maupertuis principle of least action for the path of a particle
and Fermat’s principle of least time for a ray in optics; pt thus represents a law that
unifies mechanics and optics. That both principles led to the same Eq. (8.11) allowed
de Broglie to bring together the mechanical and undulatory aspects of the behavior
of a quantum particle, following his fundamental proposal of the dual behavior of
both, particles and photons. Equation (8.11) was therefore the starting point of de
Broglie’s theory (the pilot-wave theory). For Bohm, on the other hand, the point
of departure was Eq. (8.12), which represents the guidance principle applied to the
acceleration, not to the velocity, and which can be identified with Newton’s equation
of motion for a particle subject to the potential Veff. Of course, the presence of the
quantum potential in this latter modifies drastically the strictly classical (Newtonian)
interpretation of Eq. (8.12).

What is sometimes called Bohmian mechanics is the theory based on Eqs. (8.11)
and (8.3); it is a kind of mixture of the two theories (de Broglie’s and Bohm’s) that
leaves aside the initial motivations of both authors in favor of the formal aspects
of the theory. Notwithstanding its shortcomings (some of which will be discussed
below) Bohmianmechanics should be recognized for its success in restoring realism,
objectivity, determinism and causality for qm.

8.2.2 Quantum Trajectories

In the de Broglie-Bohm theory of motion a particle possesses an exact position x
and an exact velocity v at any given time. This endows the theory with one of its
main virtues, namely that of allowing for a phase-space trajectory (Holland 1993,
Vasudevan et al. 2008). Since the notion of trajectory is foreign to the usual quantum
description, it seems appropriate to comment on it here.

Textbooks on qm usually appeal to physical intuition to introduce some concepts,
yet very soon the physical intuition dissapears in favour of a dynamical description
carried out in an appropriateHilbert space. In this new (highlymathematical) context,
the notion of trajectory in physical space is dispensed of, avoided, or even negated.10

10 This assertion requires some qualification. It is not too difficult to find (both in orthodox textbooks
and in research papers, and of course also in popular works), arguments that bear implicitly or
explicitly on the notion of trajectory. For example, in discussions on van der Waals or molecular
forces a drawing is sometimes made of atoms with well-localized orbiting (point) electrons, and
the Hamiltonian is written accordingly. True, at some moment an average is taken, but nevertheless
the discussion refers, or at least seems to refer, to orbiting point particles. Another example is an
atom or a particle in a Stern-Gerlach experiment, which in every analysis is considered to follow a
definite trajectory.
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In general, the denial of quantum trajectories is rooted on a certain reading of the
uncertainty relations, so this kind of assertions is interpretation-dependent; valid only
within the Copenhagen interpretation broadly understood, and particularly embraced
by Bohr, as revealed in the following:

Bohr was also at the meeting. After I had tried many times to explain what I was doing
and didn’t succeed, I talked about trajectories, then I would swing back –I was being forced
back all the time. I said that in quantum mechanics one could describe the amplitude of each
particle in such and such a way. Bohr got up and said ‘Already in 1925, 1926, we knew
that the classical idea of a trajectory or a path is not legitimate in quantum mechanics: one
could not talk about the trajectory of an electron in the atom, because it was something not
observable.’ In other words, he was telling me about the uncertainty principle. It became
clear to me that there was no communication between what I was trying to say and what they
were thinking. Bohr thought that I didn’t know the uncertainty principle, and was actually
not doing qm right either. He didn’t understand at all what I was saying. I got a terrible
feeling of resignation. R. P. Feynman, taken from Towler (2009), lecture 6.

In contrast to the Copenhagen interpretation (where the quantum description is
taken to refer to a single particle), for the ensemble interpretation the Heisenberg
inequality �x�p ↑ �/2 says nothing about the impossibility for a single particle to
have a definite position andmomentum. It represents, instead, a statistical expression
relating the simultaneous dispersions of position and momentum in the ensemble.
Further, acknowledging the statistical essence of qm, the issue is not whether both x
and p are simultaneously distributed, but why their distributions are conditioned by
the Heisenberg inequality. We have found in Chaps. 3–5 an answer to this question,
involving the action of the zero-point field. Indeed, in the present approach the origi-
nal equation ofmotion refers to a stochastic process with a well-defined trajectory for
every realization of the field. However, when an ensemble of systems is considered,
the possibility to identify the single trajectories is lost.11 Our corollary is thus that
qm is unable to explicitly allude to the notion of trajectory, without this however
implying a negation of the existence of trajectories.

Historically speaking, the denial of quantum trajectories was not always the case.
Quite the opposite, as stated in Sect. 8.1.2, in his very first attempts to construct
modern quantummechanics—some ten years after Bohr’s model of the H-atom—de
Broglie was trying to describe the quantum trajectories when he proposed the guid-
ance formula v = �↓S/m. In the course of time, the notion of quantum trajectory has
found invigoration with the emergence of novel ideas from the consistent-histories
interpretation of quantum mechanics (see e.g. Griffiths 1993, Omnès 1994), the
quantum-trajectory method (Lopreore and Wyatt 1999, 2000), quantum optics (see
e.g. Brun 2002), and even from a study of the Dirac equation (Gull et al. 1993). The
Workshops onQuantumTrajectories held in 2008 and 2010 attest to the current inter-
est on the subject. Indeed, the possibility of tracing quantum trajectories has attracted
the attention of a vast number of investigators due to the valuable information that can
be effectively gained from their study. The related literature shows a growing trend,

11 It is this statistical treatment what engenders ‘indistinguishability’, and this occurrs regardless
of whether the system is classical or quantum. This, for instance, explains the use of the notion of
indistinguishability to solve the Gibbs paradox in classical statistical physics (see e.g. Mandl 1988).

http://dx.doi.org/10.1007/978-3-319-07893-9_3
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and eventually such endeavour should bear important fruits. Hence, even though the
notion of trajectory in qm continues tomeet opposition among strongly Copenhagen-
minded physicists, it seems that we are still in a period of search and definition about
the physical principles of quantum theory, the trajectory issue being only a small part
of the picture.

From within sed, refined studies have been carried out to determine the trajec-
tories as predicted by the theory. Such studies demand a detailed simulation of the
zpf, instead of the hazard being introduced by hand through the use of distributed
initial velocities (Bohm’s theory) or of a white noise (stochastic mechanics). For this
purpose a background noise with spectrum proportional to ω3 has to be generated
and the full equation of motion (4.2) must be used. A most important example of this
kind of calculations is the work of Cole and Zou (2003, 2004a, b, c, d, 2009) on the
H-atom, which (nearly) reproduces the stationary quantum predictions as the result
of a statistical analysis of a long run of the ground-state orbit. It should be stressed
that these results are obtained by averaging the orbital motions, that is, by tracking
individual trajectories of electrons for a long time interval, in correspondence with
the discussions in Chaps. 4 and 5. Another most interesting example is given in
Huang and Batelaan (2012); here the authors study the details and statistics of the
trajectories followed by a classical oscillator immersed in the zpf, and exhibit
the mechanism by which the classical distribution of positions gets transformed
into the corresponding quantum distribution.

That quantum trajectories may differ greatly from classical trajectories should
be expected in advance. Popular illustrations such as the stylised atoms used in
postage stamps, logos and comic strips are of course very rude representations, far
from reality. The atomic orbits do not resemble planetary orbits; they are some-
thing much more complex due to the complex dynamics they obey. The best-known
graphs of quantum trajectories are perhaps those obtained within Bohm’s theory.12

Even if they cannot provide a detailed description, the studies of electron trajecto-
ries from Bohm’s perspective satisfactorily reproduce some central features of the
experimental results and offer an intuitive picture of the underlying dynamics. For
some physicists the notion of quantum trajectory is natural and is an interesting
consequence of the quantum potential (see e.g. Dewdney et al. 1993, Dürr et al.
1993); for others, their weirdness makes them unacceptable, or even surrealistic
(Englert et al. 1992, Aharonov and Vaidman 1996).

The trajectories predicted by Bohm’s theory are in general very complex, since
the quantum potential is an intricate function of ψ and ψ√ that can vary very fast
with the coordinates, and thus along the path followed by the particle. Moreover,
the trajectories are normally quite sensitive to the initial conditions and to the full
distribution of particles.Amost popular example of aBohmian trajectory is presented
in Fig. 8.1, which shows the paths followed by electrons diffracted by two Gaussian
slits (taken from Philippidis et al. 1979). Another example is given in Fig. 8.2 (taken

12 Also Nelson’s theory and more generally the stochastic description of qm have been successfully
used to investigate quantum trajectories, as shown by the examples in Chap.2.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Fig. 8.1 Trajectories
scattered by two Gaussian
slits, according to Bohm’s
theory. The initial beams of
particles have a uniform
distribution at each slit.
Reprinted from Philippidis
et al. (1979) with permission
from Springer

from Dewdney and Hiley 1982), which shows the trajectories of electrons from
a Gaussian packet incident on a semitransparent barrier with a transmission ratio
of one-half. The pattern shows clearly how the outer particles are reflected before
reaching the barrier, whilst the ones closer to the barrier are mostly transmitted. In
the next section we will have opportunity to discuss this (nonlocal) feature in more
detail.13 Notice that individual particles do not conserve theirmechanical energy, but
change speed before reaching the barrier, as shown also in Chap.2. The total energy
is of course conserved, but since qm does not consider the energy of interaction with
the zpf, it loses accountability in instances as the present one.

As mentioned earlier, the Bohmian trajectories are described by individual parti-
cles having an instantaneous velocity v(x) as given by Eq. (8.6). Such interpretation
differs from the one developed in this book, according to which (8.6) refers to a local
mean velocity, obtained as a result of a (partial) averaging over the momentum space,
and hence containing statistical information about all the individual instantaneous
velocities at x. From the perspective adopted here, the stochastic field is responsible
for fluctuations around the mean motion, as shown for example in Figs. 2.1 and 2.2,
so that the actual velocity of a single particle varies at random from case to case and
should be expressed as14

vactual(x, t) = �

m
∇S(x, t) + �v, (8.15)

with�v a stochastic deviation that averages to zero. Consequently the sed approach
admits (random) trajectories that can mutually cross, an effect that the de Broglie-
Bohm theory, by its deterministic nature, cannot take into account. Indeed, a well-

13 Further examples can be seen in Holland (1993), Lopreore and Wyatt (1999, 2000)—who have
generated what they call the ‘quantum trajectory method’—; Suñé and Oriols (2000), Matzkin and
Nurock (2008), Sanz et al. (2002), Philippidis et al. (1982), and Kumar Chattaraj (2010).
14 In a variant of Bohm’s theory the idea of a fluid à la Madelung is entertained. By considering this
fluid to be subject to fluctuations, a random element is then added; see Bohm and Vigier (1954).
See also Wang (2006) for related work.
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Fig. 8.2 A collimated beam of particles scattered by a barrier according to Bohm’s theory. Notice
that many particles are scattered before reaching the barrier. Reprinted from Dewdney and Hiley
(1982) with permission from Springer

known prediction of Bohm’s theory is that the (deterministic) trajectories never cross.
This is foreseeable, for particles that follow the (by form) classical rule, Eq. (8.12): the
crossing of classical trajectories at a point x wouldmean that at that point the velocity
(the local tangent) would not be a single-valued function. Illustrative examples of
crossing trajectories that go in line with the stochastic perspective can be seen in the
cited figures of Chap. 2.

The aforementioned difference between the meanings ascribed to v is reflected
also in the way Eq. (8.9) is read. Whereas in Bohm’s theory the statistical content
of this equation is encoded in the quantum potential VQ (via its dependence on
the probability density ρ), within our approach the analogy with the classical case
is more distant, due to the intrinsic statistical sense of the kinetic terms involved.
In addition, the fact that in Bohm’s theory the velocity v is identified with dx/dt
runs into a problem for stationary states with real (spatial) wave function, since
in such case ∇S = 0 and there is no flow of particles, as argued by Heisenberg
(1955). This sounds unconvincing, especially considering that in general (even for
stationary states) a nontrivial distribution ofmomenta is to be expected, so that a static
image seems incongruent with the theory. Of course, there still exists the diffusive
velocity u (see Sect. 4.5.1), although it is not recognized as a velocity in the usual
quantum account, nor in the causal interpretation. By contrast, if v refers to a mean

http://dx.doi.org/10.1007/978-3-319-07893-9_2
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local velocity, the result v = 0 only indicates that there are equally many particles
travelling in opposite directions. This restores consistency with the distribution of
the momenta.15

8.2.3 The Measurement Task in the Pilot Theory

The causal and realistic posture that characterizes the pilot theory can be extended
to cope with the measurement problem in a natural, objective and rational way: if
a measurement is to be performed, that means the system has been prepared by
inserting the measuring instrument, which has thus become an integral part of it. The
next step is therefore to solve the Schrödinger equation with the apparatus and its
gear included; the solution should give the statistical answer, and so themeasurement
problem should dissolve.

Let us illustrate how this is achieved, with the help of a simple example proposed
byBell (1987, article 17) and derived from the original theory presented by deBroglie
(1928) in the Fifth Solvay Conference 1927 (other, more elaborate and realistic
examples can be seen in the suggested literature). Suppose that a spin component is to
bemeasured, and that the ‘measurement’ is represented by an interactionHamiltonian
similar to the one proposed by von Neumann (1932) in his famous textbook (one-
dimensional notation is used for simplicity),

− i�gÔ
∂

∂x
. (8.16)

Here g is a coupling constant and Ô an appropriate spin operator (the observable to
be measured). Assume also that the particle is sufficiently massive so that the com-
plete Hamiltonian is very nearly represented by its interaction part. The Schrödinger
equation for the state |ψ◦ reads then

i�
∂

∂t
|ψ◦ = −i�gÔ

∂

∂x
|ψ◦ . (8.17)

Introduction of the spin eigenvectors |αn◦ such that Ô |αn◦ = On |αn◦ , allows to
express the state function in the form

15 Here it is in place to recall the argument against the Copenhagen interpretation raised by Einstein
(1953), considering the stationary states of an infinite one-dimensional square well potential. The
spatial part of the wave function can be written in the form ϕ = N sin kx . From Eq. (8.11) it
follows that v = 0, hence there is no flow velocity. However, by writing the wave function in the
form ψ = (N/2i)(eikx − e−ikx ), it can be interpreted as referring to two similar subensembles of
particles, traveling to the right and to the left, with velocities ±�k/m. Thus, it is the net (mean)
velocity that is null. Einstein used this example to argue that the statistical reading is the single one
that can be made in the limit of high energies. Since passing to this limit does not change the nature
of the problem, Einstein concluded that one should consider the wave function as describing an
ensemble, not an individual particle.
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|ψ(x, t)◦ =
∑

n

�n(x, t) |αn◦ . (8.18)

Substituting into Eq. (8.17) leads to

∂�n

∂t
+ gOn

∂�n

∂x
= 0, (8.19)

with solution

�n(x, t) = �n(x − vnt) (8.20)

with vn = gOn . Therefore the state is given by

|ψ(x, t)◦ =
∑

n

�n(x − vnt) |αn◦ . (8.21)

The result speaks for itself: the wavepackets �n(x − vnt) travel each with its own
velocity gOn , and thusmove apart with time. Eventually the overlap between packets
will be negligible so that they can be considered isolated from one another. A position
measurement corresponds then to a specific On and thus to a particular spin state
|αn◦, which contributes with the probability |�n|2. For example, when x is taken to
represent a radial direction, different positions correspond to different angles and the
example becomes an elementary model of a Stern-Gerlach experiment.

When the overlap between the different�n becomes negligible, there is no appre-
ciable interference between them. It thus appears as if the state has suffered an
effective, practically irreversible collapse, although subject at all times to a unitary
evolution. It is the approximation of treating the final packets as truly independent
which breaks the unitary dynamics, thus evoking a kind of ‘collapse’ (introduced by
hand) that does not correspond to any physical process, yet is useful as a practical
procedure to deal with the final state.16 One merit of the theory becomes thus clear:
there is no observer that ‘induces’ the wave collapse; no need for partial tracings;
no two laws of evolution but only the one that governs the dynamics all along the
process. The notion of collapse dissolves and no measurement theory is needed,
since now the measurement becomes a normal experiment, softly merged into the
conventional theory of quantum evolution. The conclusion is in full agreement with
the stance promoted by van Kampen (1988) and others: “The measuring act is fully
described by the Schrödinger equation for object and apparatus together...” In plain
words, quantum mechanics is more fitting without the addendum of the weighty
theory of measurement.

The rather elementary model just discussed illustrates well various fundamental
aspects of the meaning of ‘measurement of an observable’. The first one, remarkable

16 In the usual quantum theory of measurement, the process of extracting from (8.21) the observed
result �n (the reduction or collapse of the after-measurement state) is referred to as the problem of
objectification. See e.g. Mittelstaedt (2009).
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enough, is that every measurement (here of a spin component) ends up being a
position measurement. Thus, the breaking of the initial wave packet into several ones
as a product of the interaction, which separate in the course of time (until becoming
almost noninterfering) allows to identify the presence or absence of any component in
the initialwave packet. A second, fundamental aspect is that the description is entirely
objective and avoids dividing the world into undefined observed and observer, object
and subject—which is one of the most discomforting aspects of the usual quantum
theory of measurement (see e.g. Bell 1987; Wick 1995).

The amplitude of the nth component in Eq. (8.21) depends on the instrument
through the factor gOn . Thus one is tempted to conclude that the result of the mea-
surement is determined by both the system and the measuring apparatus (which here
is part of the enlarged system). In this direct sense, it is true. The probability with
which the packet �n contributes to |ψ(x, t)◦ is |�n(x − gOnt)|2 , which for t �= 0
is instrument-dependent. However, it is only in the relative weights of the states that
there is a dependence on the measuring device: if initially |�n(x)|2 is zero for a
given component, this component will never be registered in the output. Only those
components that contribute at t = 0 will have a chance to show up at later times. In
this sense, the end result depends exclusively on the system itself. In other words,
only predefined values are eventually observed, assuming the measuring instrument
does not directly affect the system itself.17

One of the reasons for the success of Bohm’s approach with the measurement
problem is the fact that it contains and uses the notion of quantum trajectory, as in
the above example, where the packets representing particles tend to separate.We have
here a nice and important instance of both the possibility of introducing this notion
into conventional qm , as already discussed, and the usefulness of such endeavor.
Even if, according to our perspective, a more detailed description exists that contains
fluctuations that are absent in Bohm’s’ theory, for many purposes such local mean
description suffices to give an approximate idea of how the quantum system behaves.

8.3 The Quantum Potential

As stated in Sect. 8.2.1, a key element in Eq. (8.5b) is the term VQ(x, t). It stands
as a sui generis potential, essentially different from any classical one in many ways,
on some of which we comment in the present section. Our purpose is both to show

17 The possibility that the result of a measurement depends on both the system under observation
and the measuring apparatus is also present at the classical level. A common example of the class
of nondisturbing classical procedures is a photocell detector that checks the presence or absence of
somebody before closing the door of an elevator. An example of the second class could be a ‘tail
or head’ detector for tossed coins which operates by inserting a card to stop and receive the coins.
Of course this second mechanism can be replaced with more elaborate optical procedures that do
not disturb the observed coins. This is a matter of the measurer’s skills and of the existing technical
possibilities.
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that essential features of the quantum system are linked to VQ , and to provide new
insights into its physical origin.18

Rather than starting from Eq. (8.4), we resort to the more general Eq. (2.81),

ia
∂ψ

∂t
= − a2

2m
∇2ψ + V ψ + (1 − λ)

a2

2m

∇2√ρ√
ρ

ψ,with ψ = √
ρei S, (8.22)

which is valid provided thefluxmomentumof the systemhas the structuremv(x, t) =
a∇S(x, t), with a constant. The procedure used at the beginning of Sect. 8.2.1 leads
then to a couple of equations involving the variables S and ρ: one is the continuity
Eq. (8.5a), the other is a generalized form of Eq. (8.5b),

a
∂S

∂t
+ a2

2m
(∇S)2 + V − λ

a2

2m

∇2√ρ√
ρ

= 0. (8.23)

The case of interest here corresponds evidently to a = �; however, the specific
value of a is irrelevant for the present purposes. As discussed in Sect. 2.4, what is
important is that Eq. (8.22) is linear in ψ if and only if λ = 1, that is, if Eq. (8.23)
involves an additional ‘potential’ given precisely by− (

a2/2m
)
(∇2√ρ/

√
ρ) (which

for a = � is the quantum potential). This establishes the following concomitance:
for a given purpose we can resort to the (Schrödinger) equation for ψ, or to the
equivalent (Hamilton-Jacobi-type) equation for (ρ, S)—the continuity equation is
merely a constraint, not a dynamical equation—, and the effects that arise from the
linearity of the former will be attributable to the term VQ in the latter. In the next
two sections we apply this parallelism—exploiting the linearity of the Schrödinger
equation—to draw conclusions about the role played by VQ in the dynamics of the
system. We shall thereafter inquire further into the physical meaning of VQ .

8.3.1 Linearity and Nonlocality

The most recognized feature of Bohm’s theory is its essential nonlocality. However,
almost every analysis on nonlocality that one finds in the physical literature is carried
out within the context of composite systems, the discussions on nonlocal effects in
single-particle systems being rather scarce.Apossible explanation for this rests on the

18 A first peculiarity of VQ is that it is independent of the field’s strength, or rather of the
intensity (≡ ρ) of the wave. This follows from the fact that VQ(ρ) = VQ(Aρ) for any constant
A, and indicates that the effects due to the particles do not depend on the number of particles
present; but on their distribution. That there are forces within the classical realm, particularly in
the hydrodynamical analogy, with similar peculiarities does not suffice to surmount the problem,
since in the hydrodynamical case there is a medium that supports and transmits the presure and the
stresses. By contrast, in the quantum single-particle problem we are not dealing with a collective
system; the ‘collection’ may be a conceptual ensemble, devoid of physical existence.

http://dx.doi.org/10.1007/978-3-319-07893-9_2
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fact that since the epr paper, andmostly fromBell’s theoremon, the debates regarding
nonlocality have centered on bipartite (or multi-partite) quantum systems, to the
extent that the notion of nonlocality has become widely understood as synonymous
with violation of Bell’s inequalities,19 or as a manifestation of some sort of action
at a distance between the constituents of the system. Another reason may be that for
single-particle systems the notionof nonlocality is somewhatmore blurred and subtle.
In particular, there is apparently no room for actions at a distance simply because a
single particle has no partner to interact with! However, a look at Fig. 8.2—which
shows that as an effect of the barrier some particles are reflected before reaching
it—indicates that it does make sense to talk about nonlocal effects in single-particle
systems. As the alien element in the otherwise classical (single-particle) Eq. (8.5b),
VQ is to be blamed for the characteristic quantum properties of the system: hence it
must account also for its nonlocal properties.

The fact that VQ depends explicitly on the spatial distribution of particles could
be considered indeed as a sufficiently strong argument to ascribe to it the nonlocal
properties characteristic of quantum systems. However, a more detailed argument
goes as follows. Expressing the Schrödinger equation in the form Lψ = 0, with
L a linear operator, the determination of the (causal) Green function for L, call it
K (x, t |x′, t ′), suffices to express the solution in the form

ψ(x, t) =
∫

K (x, t |x′, t ′)ψ(x′, t ′) d3x ′, t ↑ t ′, (8.24)

with K = 0 for t < t ′. Equation (8.24) shows that ψ at any point x and time t
carries information regarding its previous value at all points of the available space.
A consequence of this is that every quantity that is determined by ψ bears in general
information about the whole setup. Therefore, the trajectory defined by the guidance
Eq. (8.11) reflects the presence of boundary conditions and of (possibly distant)
external potentials, for example. This accounts for some of the nonclassical effects
manifested in numerous Bohm trajectories; in particular, it explains why the particles
begin to gain or lose energy or deviate before reaching the barrier, as in Fig. 8.2, as
if ‘perceiving’ its effect in advance.20 This kind of behavior is the one we identify
as the quantum single-particle nonlocality, where the term ‘nonlocal’ means that the
dynamics of the particle in some region is affected by what happens in regions that
may be far away from it, without an intermediate recognized (external) agent.

In the de Broglie-Bohm interpretation the underlying cause for such nonlocal
behaviour is found in the quantum potential, which transmits, to each point, infor-
mation about the wave field in the entire space. Thus, a particle at a point where V
is constant (e.g., located at x < a in the barrier example) is not a free particle, but

19 Bell inequalities is a collective name referring to a number of inequalities (such as the chsh-type
inequalities) that involve correlations between variables of the constituents of a composite system
and are violated by qm, reputedly due to the nonlocal properties of the quantum description.
20 The transmitted particles are among those that gain enough energy to travel not through the
barrier, but over it (see e.g. Lopreore and Wyatt 1999).
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is acted upon by a quantum force −∇VQ(x, t). This force, being dependent on the
point x where it is exerted, acts of course locally; what is nonlocal is the information
it carries. There is no room for superluminal action at a distance. Moreover, since
in Bohm’s interpretation the field ψ is considered to be a physical entity, the nonlo-
cality appears as entirely admissible: the anticipated reflection of the particles is as
natural (and local) as it would be if there existed a real fluid, as was conceived by
Madelung. In this scenario some incident particles are reflected before reaching the
barrier simply because the reflected wave acts upon them (Holland 1993).

This explanation does not hold in the sed framework,where the correct description
of the entire (field plus particle) system has a local structure and quantum nonlocality
appears as a feature of the reduced quantum-mechanical description, rather than an
ontological property. At the end of Sect. 8.3.3 we comment on this point in more
detail.

8.3.2 Linearity and Fluctuations

Equation (8.24) is a direct consequence of the linearity of the Schrödinger equation.
Another most important property of the solutions of linear equations, is that they
satisfy the superposition principle. Let us apply it here to a free-particle system, by
superposing plane waves of different momenta to construct a Gaussian wave packet,
and use it to show that VQ is also linked to the presence of quantum fluctuations,
which appear as irreducible.

Consider the following one-dimensional packet of free particles of massm,

ψ(x, t) = 1√
2π

∫
φ(k)e−i(�k2t/2m)+ikx dk, (8.25)

where �k = p. If the initial wave function is

ψ(x, 0) =
(

1

2πσ2
0

)1/4

exp(−x2/4σ2
0), (8.26)

the distribution ρ(x, t) is a Gaussian centered at the origin,

ρ(x, t) = 1√
2πσ2

exp
(
−x2/2σ2

)
(8.27)

with

σ2(t) = σ2
x (t) = σ2

0 +
(

�t

2mσ0

)2

. (8.28)
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Fig. 8.3 Distribution of
particles ρ (solid lines, marked
with numbers) and quantum
potential VQ (dotted lines,
marked with letters) of Eqs.
(8.27) and (8.29) for three
different times t1 < t2 < t3.
Curves (1) and (a) correspond
to t1, (2) and (b) to t2, and (3)
and (c) to t3. Arbitrary units

A direct calculation gives for the quantum potential

VQ = �
2

8mσ4

(
2σ2 − x2

)
. (8.29)

Figure 8.3 shows ρ (solid line) and VQ (dotted line) for three different times, as
the spread of the packet is seen to increase. A first conspicuous property of VQ is that
it does not approach a constant value at the boundaries (x ≥ ±∗), where the field
intensity, or rather the distribution of particles ρ, tends to zero.21 On the contrary, the
effect of the potential (8.29), as measured by the quantum force−∂VQ/∂x, increases
in those regionswhere the particles have a smaller probability to be. Indeed, it follows
from Eq. (8.29) that the exerted quantum force is repulsive and linear in x ; those
particles in the region x > 0 are ‘pushed’ to the right by such force, and those in
x < 0 are ‘pushed’ to the left, so the packet spreads continuously. In the frame of
the Hamilton-Jacobi-type equation, the dispersion is explained in mechanistic terms
as an effect of the quantum potential.

Further, from Eq. (8.29) it follows that

2m
〈
x2

〉 〈
VQ

〉 = �
2

4
, (8.30)

since σ2 = 〈
x2

〉
. This result (to be analyzed later for the general case) suggests a

strong relationship between the mean quantum potential and the irreducible momen-
tum fluctuations that lie at the root of the Heisenberg inequalities. It also exhibits
quantitatively what was said above in qualitative terms about the dispersive effect of
the quantum potential. Thus, in Bohm’s approach, the inherent dispersive nature of
quantum systems becomes causal, the quantum potential being the physical element
that causes it by exerting a (here) repulsive force on the particles.

21 This feature is not exclusive of the present example, but rather the general rule: VQ does not
decay as x ≥ ±∗, i.e., at far distances from the particles.
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If at variance with Bohm’s interpretation, ψ is taken as a mathematical entity
that bears statistical information, but is unable to produce direct physical effects on
the particles, the spread of the wave packet cannot be understood in mechanistic
terms. It becomes explained instead in statistical terms: the ensemble is composed
of subensembles of particles traveling with different velocities [each contributing
with a probability |φ(k)|2, as follows from (8.25)]; the faster ones move forward
whereas the slower ones are left behind, so the packet spreads. In this scenario each
particle of the ensemble is always a true free particle, since no physical force acts
upon it. The quantum potential is the bearer of the statistical information regarding
the momentum dispersion, so that not only the spread of the packet becomes natural,
but so does Eq. (8.30), which implies a relation between the quantum potential and
the momentum fluctuations.

The spread of the packet induced by VQ given by Eq. (8.29) can be compensated
by an external harmonic potential, so as to ensure that the net force −∂Veff/∂x van-
ishes. Writing the external potential as V = mω2x2/2, such condition is guaranteed
provided the oscillator frequency is exactly ω = �/

(
2mσ2

)
. The effective potential

becomes thus

Veff = V + VQ = 1
2�ω. (8.31)

Under this condition there is no net force on the particle, the packet (8.5b) does not
spread and a stationary state is reached. This is the simplest example of a coherent
state, and serves also to explain the stability of the distribution of the ground state
of the harmonic oscillator (which is a Gaussian): it is an effectively free particle, in
the sense the no net force acts upon it. Moreover, Eq. (8.31) fixes a natural refer-
ence energy level—an observation that can be used to infer the existence of the zpf
underlying the Schrödinger (or Hamilton-Jacobi-type) description.

8.3.3 The Quantum Potential as a Kinetic Term

In Bohm’s theory the quantum potential is accepted as a natural entity that needs no
further explanation. Just as is the case with fundamental laws of nature, it is taken
as an expression of the structure and workings of the physical world, which physics
has the duty to discover and describe. Yet clarification of the deeper meaning of VQ

does have importance because in it resides a fundamental ingredient of the quantum
description. All quantum problems involve the quantum potential, even if normally
it remains concealed behind the veil of the Schrödinger equation.

The discussion in Chap.4 helps us elucidate the nature of the quantum potential
and understand, from a more fundamental perspective, why it is so intimately related
with the dispersive and nonlocal effects studied in the previous section. In particular,
by disclosing the origin of VQ it will become clear that when dealing with a quan-
tum problem one is (knowingly or unknowingly) taking into account much more

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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information about the behavior of the system in momentum space than is explicitly
acknowledged.

Let us for this purpose recall an alternative derivation of Eqs. (8.5a) and (8.5b)
that serves to emphasize the significance of both velocities v and u. We start from
Eq. (4.128), namely

p̂ψ = −i�∇ψ = m(v − iu)ψ, (8.32)

with u the diffusive velocity given by

u = �

2m
∇ ln ρ. (8.33)

From Eq. (8.32) it follows that the kinetic energy operator (1/2m) p̂2 applied to ψ
results in

p̂2

2m
ψ = 1

2

[(
mv2 − mu2 − �∇ · u

)
− i (�∇ · v + 2mv · u)

]
ψ. (8.34)

On the other hand, Eq. (8.4) gives

i�
∂ψ

∂t
=

(
−�

∂S

∂t
+ i

�

2

∂ ln ρ

∂t

)
ψ. (8.35)

Combining the last two expressions with Schrödinger’s equation

p̂2

2m
ψ + V (x)ψ = i�

∂ψ

∂t
(8.36)

gives an expression whose imaginary and real parts are, respectively, the continuity
Eq. (8.5a) and the dynamical law

�
∂S

∂t
+ 1

2

(
mv2 − mu2 − �∇ · u

)
+ V = 0. (8.37)

A comparison with Eq. (8.5b) (with
(
�
2/2m

)
(∇S)2 = (m/2) v2) allows to write

the quantum potential in a form that reveals its kinetic nature,

VQ = − 1
2

(
mu2 + �∇ · u

)
. (8.38)

In Bohm’s theory the term (m/2) v2 alone is identified with the total kinetic energy,
whereas the remaining terms in Eq. (8.5b) are taken as a ‘potential’ energy. This
latter form of separating the kinetic and potential terms is a consequence of reading
(8.5b) in a classical fashion, as if it were a true Hamilton-Jacobi equation. Equations

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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(8.34) and (8.38), by contrast, identify VQ with a contribution to the kinetic energy
due to the diffusive velocity u. These equations give for the mean kinetic energy

1

2m

〈
p̂2

〉
=

∫ (
1

2
mv2 + VQ

)
ρd3x = 1

2
m

〈
v2

〉
+ 〈

VQ
〉
, (8.39)

so with the help of Eq. (4.120), namely

〈
p̂2

〉
= m2

〈
v2 + u2

〉
, (8.40)

one gets

〈
VQ

〉 = 1
2m

〈
u2

〉
= 1

2mσ2
u. (8.41)

This is an interesting result: the mean quantum potential coincides with the mean
kinetic energy of diffusion. Since u(x) �= 0 whenever ρ(x) is not constant (which
happens in all cases of interest, when there is finite spatial dispersion), Eq. (8.41)
implies that

〈
VQ

〉
is strictly positive. From Eq. (8.40) we find σ2

p̂ = m2σ2
v + m2σ2

u
[which is Eq. (4.122)], whence

σ2
p̂ = σ2

p = σ2
mv + 2m

〈
VQ

〉
> σ2

mv, (8.42)

where σ2
mv stands for the variance of the flux momentum mv. Classically, this latter

coincides with the total momentum dispersion, σ2
p = σ2

mv. Therefore, (8.42) states
that the quantum momentum dispersion (normally) exceeds the classical one. The
result σ2

p > σ2
mv is immediate from (4.122), yet the inequality (8.42) is expressed

in terms of the (mean) quantum potential, thus confirming that the ‘quantumness’ of
the system is indeed encoded in VQ . From (8.42) it follows that the minimum value
of σ2

p is

(σ2
p̂)min = 2m

〈
VQ

〉
min , (8.43)

a result that exhibits the existence of irreducible momentum fluctuations of value
2m

〈
VQ

〉
min . Equation (8.30) corresponds to the particular case v = 0 (a stationary

bounded s state), when σ2
mv vanishes.

From the previous results and the Schwartz inequality it follows that

σ2
xσ2

p ↑ m2σ2
xσ2

u ↑ 1
4�

2. (8.44)

The diffusive velocity is therefore the one that determines the Heisenberg inequality,
by expressing the presence of diffusion in the quantum system.

With Eq. (8.40) rewritten in terms of local mean values (with ∼ p◦x = mv) one
obtains, after rearrangements,

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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∫
VQρd3x = 1

2m

∫ 〈(
p − ∼ p◦x

)2〉
x
ρd3x . (8.45)

From here it follows that up to an arbitrary term that averages to zero, 2mVQ plays the

role of ∼( p − ∼ p◦x
)2◦x = ∼ p2◦x −∼ p◦2x, the local mean deviation of the momentum

from its local mean value. This assigns a more fundamental meaning to VQ : it bears
information, at each point x, of the local fluctuations impressed upon the momentum
of the particle.

With this, Eq. (8.43) becomes natural from the point of view of sed. Indeed,
unavoidable fluctuations exist due to the zpf , the information about which is con-
tained in VQ . The quantum potential is the element that (re)incorporates the momen-
tum fluctuations impressed by the zpf into the dynamics governed by the Hamilton-
Jacobi-type equation.

In addition, the fact that VQ plays the role of a partially averaged quantity that
results from restricting the description to the configuration subspace of the particle,
explains the origin of its nonlocal effects, since at each point x, VQ bears statistical
information about the entire momentum space. The single-particle quantum nonlo-
cality, rather than an ontological property, appears thus as a semblance, an artifact of
the reduced statistical description, which would dissolve by going back to the full,
original phase-space description.

8.4 Nonlocality in Bipartite Systems

As mentioned at the beginning of Sect. 8.3.1, nonlocality is normally discussed in
relation with composite systems. Nonlocality in such context has gained so much
attention in the last decades, that huge numbers of papers and entire volumes have
been devoted to its study with different purposes and in many directions. The issue
has evidently not been exhausted, and it therefore seems pertinent to contribute to its
clarification from the perspective of the present theory. In this section we focus on a
two-particle systemas the simplest example that can be used to study the complexities
arising in composite systems, and resort to the tools developed so far to gain further
insight into (bipartite) entanglement and nonlocality.

The two-particle system is described by the Schrödinger equation

i�
∂ψ

∂t
=

(
− �

2

2m1
∇2

1 − �
2

2m2
∇2

2 + V

)
ψ, (8.46)

with a general (time-independent) external potential of the form V = V (x1, x2).
Substitution of

ψ(x1, x2, t) = √
ρ(x1, x2, t)ei S(x1,x2,t) (8.47)
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in (8.46) leads again to a couple of equations (corresponding to its real and its
imaginary part). The continuity equation is

∂ρ

∂t
+ �

m1
∇1 · (ρ∇1S) + �

m2
∇2 · (ρ∇2S) = 0, (8.48a)

whereas the dynamical law reads

�
∂S

∂t
+ �

2

2m1
(∇1S)2+ �

2

2m2
(∇2S)2− �

2

2m1

∇2
1
√

ρ√
ρ

− �
2

2m2

∇2
2
√

ρ√
ρ

+V = 0. (8.48b)

Comparison of Eq. (8.48a) with its one-particle version (8.5a), allows to identify the
flow velocity associated to particle i (i = 1, 2) with

vi = �

mi
∇i S, (8.49)

so that the continuity equation for the bipartite case reads

∂ρ

∂t
+ ∇1 · (ρv1) + ∇2 · (ρv2) = 0, or

∂ρ

∂t
+ ∇ · (ρv) = 0, (8.50)

where the last equation is written in the six-dimensional configuration space. On
comparing Eq. (8.48b) with Eq. (8.5b) one obtains for the quantum potential VQi

associated with particle i

VQi = − �
2

2mi

∇2
i
√

ρ√
ρ

= − �
2

4mi

[
∇2

i ρ

ρ
− 1

2

(∇iρ

ρ

)2
]

. (8.51)

Equation (8.48b) takes thus the form

�
∂S

∂t
+ 1

2
m1v

2
1 + 1

2
m2v

2
2 + VQ1 + VQ2 + V = 0. (8.52)

Application of the operator ∇i to Eq. (8.52) gives, with the aid of (8.49) (unless
explicitly stated, from now on we assume i, j = 1, 2 with i �= j when both indices
appear in the same expression),

miD(i)
c vi = −∇i V − ∇i

(
VQi + VQ j

) − 1
2m j∇iv

2
j , (8.53)

where D(i)
c stands for the co-moving derivative of particle i [see Eq. (8.13)],

D(i)
c = ∂

∂t
+ (vi · ∇i ) . (8.54)
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In the Bohmian approach, where vi = dxi/dt, D(i)
c vi equals the total derivative

dvi/dt and is taken as the actual acceleration of the particle describing the trajectory
xi (t). From the present perspective instead, according to which vi stands for a (par-
tially) averaged velocity, D(i)

c vi constitutes a statistical acceleration characterizing
the local flow. Hence miD(i)

c vi stands for a (local mean) representative force, already
much smoother than the actual (stochastic) one. Let us denote this force by Fi ; then
Eq. (8.53) reads

Fi = −∇i V − ∇i VQi − ∇i VQ j − 1
2m j∇iv

2
j (8.55)

= f ci + f qi i + f qi j + f fi j .

The second equality identifies the different forces that contribute to Fi . The first one,
f ci = −∇i V, is the classical force due to the external potential V , whereas the three
remaining terms

f qi i = −∇i VQi ,

f qi j = −∇i VQ j , (8.56)

f fi j = −1

2
m j∇iv

2
j ,

are of kinetic origin. This is obvious for f fi j—which originates in the flux kinetic

energy proportional to v2j—and becomes clear for the ‘quantum’ forces f qi i and f qi j
once the quantum potential (8.51) is written in the form

VQi = − 1
2

(
mi u2

i + �∇i · ui

)
, (8.57)

with ui the diffusive velocity associated wtih particle i ,

ui = �

2mi
∇i ln ρ. (8.58)

Equations (8.57) and (8.58) generalize the single-particle expressions (8.38) and
(8.33), and show that both f qi i and f qi j are due to a diffusive velocity.

The fact that f qi j and f fi j represent forces that are exerted at xi but originate in
quantities (velocities) associated with an (arbitrarily distant) point x j , suggests the
emergence of further nonlocal effects that add to the nonlocal features characteristic
of the single-particle case (which ensued from the term f q

i i ). In the following we
shall investigate some aspects of this new kind of nonlocality.
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8.4.1 Nonlocality and Entanglement

For simplicity, in what follows we shall assume that each particle is restricted to a
one-dimensional motion. The above equations thus give for the two contributions to
Fi due to the presence of particle j,

f qi j = − ∂

∂xi
VQ j =

(
m j u j + �

2

∂

∂x j

)
∂u j

∂xi
, (8.59)

f fi j = −m jv j
∂v j

∂xi
. (8.60)

Clearly, a necessary condition for the force f qi j to exist is that ∂i u j �= 0, and similarly

for f fi j , that ∂iv j �= 0. Let us determine the properties of those states ψ(x1, x2, t) for
which these conditions hold.

We start by writing the density ρ(x1, x2, t) and the phase S(x1, x2, t) of the wave
function (8.47) in the general form

ρ(x1, x2, t) = r1(x1, t)r2(x2, t)r(x1, x2, t), (8.61)

S(x1, x2, t) = s1(x1, t) + s2(x2, t) + s(x1, x2, t). (8.62)

With this, and using the one-dimensional version of Eqs. (8.49) and (8.58), we arrive
at

∂u j

∂xi
= �

2m j

∂2

∂x j∂xi
ln r(x1, x2, t), (8.63a)

∂v j

∂xi
= �

m j

∂2

∂x j∂xi
s(x1, x2, t). (8.63b)

Notice that m j∂i u j = mi∂ j ui and m j∂iv j = mi∂ jvi , two properties that will
be (and had been) freely used without explicit mention. According to Eq. (8.63a),
∂i u j = 0 if and only if r has the form r(x1, x2, t) = R1(x1, t)R2(x2, t), i.e., if and
only if ρ factorizes as

ρ(x1, x2, t) = ρ1(x1, t)ρ2(x2, t), (8.64)

with ρi the marginal distribution functions,

ρi (xi , t) =
∫

ρ(xi , x j , t)dx j . (8.65)

Analogously, Eq. (8.63b) implies that ∂iv j = 0 if and only if s decomposes as
s(x1, x2, t) = �1(x1, t) + �2(x2, t), which in its turn means that S has the additive
structure
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S(x1, x2, t) = S1(x1, t) + S2(x2, t). (8.66)

It is evident that with ρ and S given by (8.64) and (8.66), respectively, ψ =√
ρ exp(i S) factorizes as

ψ(x1, x2, t) = ψ1(x1, t)ψ2(x2, t), (8.67)

with ψi (xi , t) = √
ρi exp(i Si ). We are thus led to conclude that

ψ = ψiψ j ∈⊗ ∂

∂xi
u j = 0 and

∂

∂xi
v j = 0, (8.68)

and consequently, that for a factorizable (separable) state the forces (8.59) and (8.60)
exerted at xi due to the presence of particle j vanish.

On the other hand, with ∂i u j = 0, VQi reduces to

VQi = − �
2

2mi

∇2
i
√

ρi√
ρi

= VQi (xi , t). (8.69)

If in addition ∂iv j = 0, consistency with Eq. (8.52 ) demands the external potential
to be of the form V (x1, x2) = V1(x1) + V2(x2). This shows that a separable state is
a consistent solution only for a system of noninteracting particles, and allows us to
write Fi as

Fi (xi , t) = − ∂

∂xi
Vi (xi ) − ∂

∂xi
VQi (xi , t). (8.70)

Therefore, wheneverψ factorizes as in (8.67), no force arises in the composite system
additional to those found in the single-particle case. In other words, in a factorizable
state the dynamics corresponds to that of a couple of independent particles, each
following its own laws. The nonlocalities are, then, those that correspond to single-
particle systems.

However, if at least one of the conditions for the velocities in (8.68) fails, the
wave function can no longer be factorized and hence it describes a nonseparable or
entangled state. According to the statement following Eq. (8.60), only in this case
the forces f qi j and f fi j may be different from zero. In other words, f qi j and f fi j are
conditioned by the existence of a nonfactorizable ρ or a nonfactorizable exp(i S),
respectively. This serves to identify the separate physical effects of the magnitude
and the phase of the wave function on the dynamics of the bipartite system. The
entanglement may be encoded either in the amplitude of ψ (if ∂i u j �= 0), or in its
phase (if ∂iv j �= 0), or in both; occasionally we will refer to amplitude entanglement
or phase-entanglement, respectively. The fact that eitherui , or vi , or both, may
depend on xi and x j , precludes the possibility of determining such velocities by
focusing on the subsystem i only. Instead, these dynamical variables pertain to the
bipartite system as awhole; they are associatedwith one of the subsystems but cannot
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be defined separately from the second one. We will come back to this point in Sect.
8.4.3.

Equations (8.61) and (8.62) allow us to write (for simplicity in what follows we
omit the time dependence)

vi = �

mi

[
∂si (xi )

∂xi
+ ∂s(x1, x2)

∂xi

]
, (8.71a)

ui = �

2mi

[
∂ ln ri (xi )

∂xi
+ ∂ ln r(x1, x2)

∂xi

]
. (8.71b)

These expressions display the extra contributions to vi and ui that are exclusively due
to entanglement, and which introduce the two-point dependence. Whenever there is
amplitude-entanglement (∂i ln r �= 0) the quantum potential (8.57) takes the form
VQi = VQi (x1, x2), the (total) quantum potential VQ = VQ1 + VQ2 acquires an
additional contribution that formally plays the role of an interaction potential, and
a generally nonzero term f qi j = −∂i VQ j depending on both x1 and x2 adds to Fi ,

which becomes a function of the form Fi (x1, x2, t).22 Analogouity, when there is
phase entanglement (∂i s �= 0), the flux kinetic energy associated with particle j
affects the particle located at xi , and a force f fi j results which also depends on the
position of both particles, leading again to a total force Fi (x1, x2, t).While giving rise
to the forces f fi j and f qi j , the entanglement may also modify the force f qi i = −∂i VQi ,
which for a nonfactorizable ρwill depend in general on the position variables of both
particles.

The ensuing two-point dependence of Fi brings out naturally the notion of nonlo-
cal effects, particularly when there is no (external) interaction between the particles.
This is the case, for example, if the particles interacted (got entangled) in the past,
or if the system is composed of identical noninteracting parties in a state described
by the superposition

ψ(x1, x2, t) = 1√
2
[φn(x1, t)φm(x2, t) ± φm(x1, t)φn(x2, t)] , (8.72)

despite the fact that V = V1 + V2. In the absence of an external interaction potential,
the issue of nonlocal effects due to entanglement has become so befogged that even
‘spooky’ actions at a distance—of unexplained physical origin, of course—have
been invoked. Nevertheless, considering for example that the Bohm particle that
follows the trajectory xi (t) with a velocity vi = dxi/dt is not the real, physical
particle, but rather a representative particle that at each point reproduces the statistical
dynamics of the appropriate subensemble, the spooky-action problem disappears.
The nonlocalities due to the two-point dependence of vi are not the result of a direct

22 The effective interaction potential introduced via VQ(x1, x2), which remains ‘hidden’ in the
depths of the Schrödinger equation, formally transforms the original noninteracting system into an
interacting one [see Eq. (8.52)]. By contrast, the possible nonfactorizability of exp(i S) does not
manifest itself as a formal interaction potential in Eq. (8.52). The nonlocal effect of this kind of
entanglement is manifested when a description in terms of forces is made, as we have seen.



296 8 Causality, Nonlocality, and Entanglement in Quantum Mechanics

physical action between the real particles, but only an imprint (in configuration space)
of the presence of correlated fluxes. In the identical-particle case, as follows from
the results of Chap.7, it is clear that such correlations are rooted in the coupling of
both particles through common modes of the field. Of course, a similar mechanism
takes place, although less effectively, for nonidentical particles provided they have
common relevant frequencies.

It is clear from the above results that for a noninteracting system (V = V1 + V2),
the force Fi depends on both xi and x j only if at least one of the conditions (8.68)
fails. In such case the correlations that ensue from the two-point dependence of Fi are
ascribed to the entanglement of ψ. In particular, correlations between the diffusive
and flux velocities denote entanglement. To see this, observe that given a function
h(x1, x2), an integration by parts leads to

〈
∂h

∂xi

〉
=

∫
∂h

∂xi
ρdx1dx2 = −

∫
h

∂ρ

∂xi
dx1dx2 = −2mi

�
∼hui ◦ , (8.73)

under the assumption that hρ vanishes at infinity. This result is particularly useful
when h is one of the velocities v j or u j , since in such case, according to Eq. (8.68)
a nonzero value of any of the covariances23

〈
ui u j

〉
,

〈
uiv j

〉
(8.74)

implies entanglement of the state ψ. Moreover, depending on which of the covari-
ances is nonzero, one can determine whether there is entanglement encoded in either
the modulus of the wave function (

〈
ui u j

〉 �= 0), or its phase (
〈
uiv j

〉 �= 0), or both.
Quantum mechanics does not recognize in u a quantity with a particular physical

meaning (let alone a velocity with a diffusive connotation!), and something similar
goes frequently for the flux velocity v. Yet the above results, particularly (8.68),
indicate that these velocities play a significant role not only for the understanding
of several properties of single-particle quantum systems (as follows, for example,
from Chap.4), but also in the bipartite case in connection with entanglement. In the
following sections the velocities v and u are used for an analysis of certain aspects of
entanglement and nonlocality. Even though some of the conclusions are well known,
the method used to reach them is not, and this may help to get a fresh look at them.

8.4.2 Momentum Correlations

The entry point for nonlocality in the present description has been the two-point
dependence of ui and vi . Now, these velocities are connected with the momentum

23 We use here the term covariance to refer to a two-point momentum ∼F̂1Ĝ2◦, even if the product
∼F̂1◦∼Ĝ2◦ differs from zero. In the literature the term ‘correlation’ is frequently used for ∼F̂1Ĝ2◦,
so we use it here when convenient.

http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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operator p̂i by means of Eq. (8.32), which in the one-dimensional case reads

p̂iψ = −i�
∂

∂xi
ψ = mi (vi − iui )ψ = πiψ, (8.75)

where πi stands for the complex variable [cf. Eq. (4.130)]

πi = mi (vi − iui ). (8.76)

This suggests that the correlations (8.74) may be contained in the expectation value
of p̂i p̂ j . Applying the operator p̂ j to Eq. (8.75) one obtains

p̂ j p̂iψ = (
π jπi − i�∂ jπi

)
ψ. (8.77)

The properties m j∂i u j = mi∂ j ui and m j∂iv j = mi∂ jvi imply that ∂iπ j = ∂ jπi ,

whence Eq. (8.77) is symmetrical in i, j , as expected. Multiplying this equation from
the left by ψ√ and integrating leads to

〈
p̂i p̂ j

〉 = mi m j
〈
viv j + ui u j

〉
. (8.78)

So even though the imaginary part of πi , ui , does not contribute to the mean value
of p̂i , it plays a central role in higher-order moments. This has already been pointed
out when calculating

〈
p̂2i

〉
[see also Eq. (8.40), or Sect. 4.5.2],

〈
p̂2i

〉
= m2

i

〈
v2i + u2

i

〉
. (8.79)

As discussed in Sect. 8.3.3, a nonzero value of
〈
u2

i

〉
indicates the presence of irre-

ducible momentum fluctuations; on the other hand, according to the discussion
following Eq. (8.73), a nonzero value of

〈
ui u j

〉
reflects entanglement and hence

a nonzero correlation
〈
p̂i p̂ j

〉
. Thus, the same physical entity, namely the velocity u,

bears information about two of the most characteristic quantum features, which now
appear as intimately related.24

Coming back to Eq. (8.78), the fact that for a factorizable ψ the mean value
∼u1u2◦ vanishes implies that any discrepancy between

〈
p̂i p̂ j

〉
and mi m j

〈
viv j

〉
is due

to entanglement, specifically due to the nonfactorizability of ρ. Moreover, (8.78)
leads to

1

mi m j

∣∣〈 p̂i p̂ j
〉∣∣ ≤ ∣∣〈viv j

〉∣∣ + ∣∣〈ui u j
〉∣∣ , (8.80)

which shows that a nonfactorizable ρ increases the upper limit of
∣∣〈 p̂i p̂ j

〉∣∣. This
result is in line with one of the main conclusions related with the violation of Bell’s

24 From this perspective, the conclusions reached regarding the dispersive and nonlocal features of
the quantum potential (a quantity that depends on u only) become evident.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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inequalitites, namely that entanglement introduces extra contributions to the cor-
relations, with no classical analogue. Here the source of such additional terms are
fluctuation-related velocities.

Before ending this section, it seems in place to add that the correspondence

p̂i ≥ πi = mi (vi − iui ) (8.81)

discussed in Sect. 4.5.2, besides establishing the equivalence between the average of
the quantum operator p̂i and the average of the complex scalar function πi , works
also for the mean value

〈
p̂i p̂ j

〉
. Indeed, direct calculation shows that the covariance

of πi and π j , defined as

C(πi ,π j ) = 1
2

〈
π√

i π j + πiπ
√
j

〉
, (8.82)

is just Eq. (8.78), that is,

C(πi ,π j ) = 〈
p̂i p̂ j

〉 = mi m j
〈
viv j + ui u j

〉
. (8.83)

This shows that the local mean value of pi p j coincides, up to a term that averages
to zero, with mi m j

(
viv j + ui u j

)
.

8.4.3 The Whole and the Parts

The procedure that led to Eq. (8.77), introduced in Sect. 4.5.2, can be used to write
the mean value of the operator p̂n

i as an average of a scalar function, in the form

〈
p̂n

i

〉 = 〈
pn

i

〉 =
∫

Pi (πi , ∂
kn
i πi )ρ(x1, x2)dx1dx2, (8.84)

where Pi (πi , ∂
kn
i πi ), a real function of πi and its first n derivatives (kn = 0, 1, . . . n),

plays the role of the local—at point (x1, x2)—mean value of p̂n
i . It follows from

Eq. (8.84) that for any operator gi ( p̂i ) that can be expanded as a power series of its
argument, the quantumaverage

〈
gi ( p̂i )

〉
can also be obtained by averaging a c-number

Gi (πi , ∂
k
i πi ), the local mean value of the variable gi (pi ), as

〈
gi ( p̂i )

〉 = ∼gi (pi )◦ =
∫

Gi (πi , ∂
kn
i πi )ρ(x1, x2)dx1dx2. (8.85)

It is clear that if πi = πi (x1, x2), Gi will in general be also a two-point function; con-
sequently any dynamical variable defined through it will in general display nonlocal
features.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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According to Eq. (8.68), if the state is factorizable ∂ jπi = 0, i.e. πi = πi (xi ) and
Eq. (8.85) reduces to

〈
gi ( p̂i )

〉 = ∼gi (pi )◦ =
∫

Gi (πi , ∂
kn
i πi )ρi dxi , (8.86)

that is, an average weighted with the marginal probability distribution ρi (xi ). For
(8.85) to reduce to (8.86) irrespective of gi ( p̂i ), necessarily ∂ jπi = 0, which means
that the state is nonentangled. Therefore, the mean value of an arbitrary gi ( p̂i ) is just
the average of the local mean value of gi (pi ) at point xi weighted with the marginal
distribution ρi (xi ), if and only if the state is nonentangled. Otherwise stated, all the
information required to determine

〈
gi ( p̂i )

〉
can be obtained from observations on

system i only, if and only if the state is separable.
If, on the contrary, the state ψ is an entangled one, then the dependence of Gi on

x j precludes the possibility of expressing
〈
gi ( p̂i )

〉
in the form (8.86). In this case,

determining the mean value of an arbitrary variable gi (pi ) of one of the particles
requires information about the whole system; in particular, the marginal distribution
ρi is not enough and we must resort to the joint distribution function ρ(x1, x2).

The above observations provide an alternative way of looking at nonlocality in
composite systems without the notion of action at a distance: nonlocality, as a prop-
erty encoded in the entanglement of the state, reflects the impossibility of considering
each of the constituents of the system separately one from another, i.e., as nonsepa-
rability. It forces us to consider the system as a whole, rather than as composed of
two separate parts, well within the spirit of Bohm’s interpretation. By considering
the presence of the zpf, as was done in Chap. 7, this point of view is the single
natural one: there is a unique system, composed of field and particles, with certain
field modes playing a correlating function between particles.

8.4.4 Nonlocality and Noncommutativity

At variance with what occurred with ∼gi ( p̂i )◦, the mean value of a function of the
position operator only, fi (x̂i ), is blind to the nonfactorizability of ψ(x1, x2, t). This
follows from the fact that any fi (x̂i ) has a local mean value that is just the function
fi (xi ), and hence the average

〈
fi (x̂i )

〉 = ∼ fi (xi )◦ =
∫

fi (xi )ρ(x1, x2)dx1dx2 =
∫

fi (xi )ρi (xi )dxi (8.87)

does not exhibit nonlocal features, irrespective of the state. Therefore, a variable Ai

proper to a single particle exhibits nonlocality onlywhen such variable ismomentum-
dependent.25

25 When the operator Â does not correspond to a single particle, this statement ceases to be true.
For example, for Â = A1(x̂1)A2(x̂2), the entanglement is revealed in the covariance ∼A1A2◦ even

http://dx.doi.org/10.1007/978-3-319-07893-9_7
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This particular asymmetry between momentum and position variables is due to
the fact that the description is carried out in the configuration-space representation.
If the momentum representation is used instead, with

ψp(p1, p2, t) =
√

ρp(p1, p2, t)ei Sp(p1,p2,t), (8.88)

the p-local mean value associated with gi ( p̂i ) becomes the real variable gi (pi ),
26

whereas the p-local mean value for fi (x̂i ) is defined, in analogy with (8.75), via the
equation

x̂iψp = i�
∂

∂ pi
ψp = (ξi − iζi )ψp = χiψp, (8.89)

where ξi = �(∂Sp/∂ pi ) and ζi = (�/2)(∂ ln ρp/∂ pi ). An analysis entirely analo-
gous to the one carried out above leads to conclude that the complex function χi ,

which now plays the role of the previous πi , depends on both momenta p1 and p2 if
and only if ψp does not factorize as ψp = ψ1(p1, t)ψ2(p2, t). Under these circum-
stances, conclusions entirely similar to the previous ones apply, mutatis mutandi:
nonlocal effects in momentum space are manifested in connection with the p-local
mean value associated with f (x̂i ).

The above observations lead us to assert that once a representation in terms of
the eigenvalues of the operator x̂i is chosen to describe the evolution of the system,
the nonlocal features become manifest through those variables Âi that are functions
of the corresponding noncommuting operator p̂i , and vice versa. Thus, considering
that (for a spinless system) any dynamical variable is a function of the fundamental
variables x and p, it follows that the x-local mean value of Ai will exhibit nonlocal
features when [x̂i , Âi ] �= 0, whereas its p-local mean value will exhibit nonlocal
features when [ p̂i , Âi ] �= 0.27

The requirement of noncommutativity of operators for the disclosure of nonlocal-
ity can alternatively be shown as follows. Let {|αβ◦ ∇ |α◦i ≤|β◦ j } be an orthonormal

(Footnote 25 continued)
though none of the variables is momentum-dependent. In fact, the point here is to show that the
present approach allows to reach conclusions about entanglement by focusing on single-particle
variables, rather than on correlations between variables of the two subsystems, as is customarily
done [see discussion following Eq. (8.96)].
26 The p-local mean value of a dynamic variable g is defined, in analogy with Eq. (4.50), as its
partial average over the configuration space, using the distribution Q,

∼g◦ (p1, p2) = ∼g◦p = 1

ρp

∫
gQ(x1, x2, p1, p2)dx1dx2.

27 The fact that the kind of variables that may exhibit nonlocality is representation-dependent
does not mean that the very existence of nonlocality is representation-dependent. Indeed, for any
entangled state |ψ◦ there will always be some variable exhibiting nonlocal features; which one
depends on the representation used to project |ψ◦.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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basis of the product Hilbert spaceH1 ≤H2. One may write the expectation value of
Âi in the pure state |ψ◦ as

∼ψ| Âi |ψ◦ =
∫

∼αβ| ψ◦ ∼ψ| α′β′〉 〈α′β′∣∣ Âi |αβ◦ dαdβdα′dβ′

=
∫

∼αβ| ψ◦ ∼ψ| α′β
〉 〈

α′∣∣ Âi |α◦ dαdβdα′. (8.90)

If the basis {|α◦i } is selected such that its elements are the eigenvectors of an operator
âi satisfying [âi , Âi ] = 0, then

〈
α′∣∣ Âi |α◦ ≡ δ(α − α′), and (8.90) reduces to

∼ψ| Âi |ψ◦ =
∫

ρ (α,β) ∼α| Âi |α◦ dαdβ, (8.91)

where ρ (α,β) = |ψ (α,β)|2 and ψ(α,β) = ∼αβ| ψ◦ is the wave function in the
(α,β)-representation. Integration over β of the joint probability ρ (α,β) gives the
marginal probability ρi (α), so that Eq. (8.91) simplifies into

〈
Âi

〉
=

∫
∼α| Âi |α◦ ρi (α)dα. (8.92)

Equation (8.92) is usually read as saying that when projective measurements are
performed corresponding to a physical variable a such that âi |α◦ = α |α◦ with
[âi , Âi ] = 0, ∼ Âi ◦ can be obtained from the sole (local) inspection of system i,
and any nonlocality due to the possible entanglement of ψ(α,β) remains hidden.28

By contrast, if a different basis {|γ◦} is chosen for the representation, such that
[γ̂i , Âi ] �= 0, the above reduction cannot be made. Now, it is always possible to find
a basis {|α◦1} in which Â1, say, is diagonal; but then the basis in which B̂2 is diagonal
will not be {|α◦2} unless [ Â1, B̂1] = 0; therefore, entanglement shows up only when
dynamical variables Â1, B̂2 are considered such that [ Âi , B̂i ] �= 0.29,30

28 Equation (8.87) is just Eq. (8.92) with Âi = f (x̂i ), yet Eq. (8.86) differs from the structure of
(8.92). To see this consider in particular Eq. (8.84) with n = 1; then Pi (πi , ∂

k
i πi ) = mi vi (xi ) �=

∼xi | p̂i |xi ◦, so indeed (8.86) is not Eq. (8.92) for Â = ĝi and α = xi .
29 Notice that the use of a fixed representation for both elements of the composite system, i.e. {|α◦1},
{|β◦2}, is a matter of necessity when discussing entanglement. The same applies when considering
measurements on a system. In fact, given an (α,β)-representation, the distribution function ρ (α,β)

is defined as the joint probability density that determines the probability of obtaining the valuesα and
β when performing the projective measurements corresponding to the proyectors �α

A1
= |α◦ ∼α|

⇒ H1 and �
β
B2

= |β◦ ∼β| ⇒ H2, respectively. Thus the representation used is linked with the
variables that are measured in a certain experiment.
30 This conclusion is in line with the results obtained in Sect. 7.2.5. Specifically, the discussion
following Eq. (7.63) tells us that for entanglement to become manifest through a correlation, both
dynamical variables involved (i.e., F, G, the equivalent of A1, B2 in the present case) must have
nondiagonal elements in a given representation (the energy representation, in that case).

http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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The results obtained above disclose the tight relation between noncommutativity
and nonlocality that is well recognized in the literature (see e.g. Tsirelson 1980,
Landau 1987, Revzen et al. 1997), though generally limited to the context of
dichotomic operators. In particular, Landau shows that given two operators â and Â
inH1, and two operators b̂ and B̂ inH2, the (chsh) operator defined as

Ĉ = âb̂ + â B̂ + Âb̂ − Â B̂

= â(b̂ + B̂) + Â(b̂ − B̂), (8.93)

satisfies the following inequality,31

∼Ĉ◦2 ≤
〈(

â2 + Â2
)

(b̂2 + B̂2)
〉
+

〈
{b̂, B̂}

(
â2 − Â2

)〉

+
〈
{â, Â}(b̂2 − B̂2)

〉
+

〈[
â, Â

]
[B̂, b̂]

〉
. (8.94)

This result ensues exclusively from the fact that σ2
C = ∼Ĉ2◦ − ∼Ĉ◦2 ↑ 0. Landau, in

line with the usual treatments, considered operators â, Â, b̂ and B̂ such that

â2 = Â2 = I1, b̂2 = B̂2 = I2 (8.95)

(the typical example being the Pauli matrices). In such case Eq. (8.94) reduces to

∼Ĉ◦2 ≤ 4 +
〈[

â, Â
]
[B̂, b̂]

〉
, (8.96)

an expression that exhibits the significant role of (the covariance of) the commutators
in determining the maximum possible value of ∼Ĉ◦2. For commuting â and Â, or b̂

and B̂, the inequality gives
∣
∣∣∼Ĉ◦

∣
∣∣ ≤ 2,which is the limit established inBell’s theorem

(see e.g. Bell 1966, 1987). Thus, according to Eq. (8.96), the noncommutativity of
the operators involved is a necessary condition for the violation of Bell’s inequalities
(in the form of the chsh inequality, Clauser et al. 1969), as well as the nonnull
correlation between both commutators.

This observation that noncommutativity and covariance unequivocally signal the
nonlocal feature of a state goes nicely with our previous exposition. Our conclusions
above were drawn by focusing not on covariances between operators of the form
F̂i Ĝ j , but on the single-particle operators Âi , thus showing that some aspects of

31 Note that, as already remarked in connection with von Neumann’s theorem [see Eq. (8.2)], the
equality

∼Ĉ◦ = ∼âb̂◦ + ∼â B̂◦ + ∼ Âb̂◦ − ∼ Â B̂◦
does not hold in general if the operators in the terms of the sum do not commute. This important
restriction needs to be borne inmindwhen attempting to apply (8.94) [or (8.96)] to draw conclusions
about correlations. See e.g. Accardi (1984).
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nonlocality can be unveiled without resorting to nonlocal (i.e. i and j-dependent)
operators. In addition, our exposition applies to continuous-variable systems, con-
trary to the more usual approach that focuses on dichotomic variables, such as spin
projections, when discussing these matters. The natural question arises as to why
noncommutativity is required for entanglement (or nonlocality) to become evident.
To give an answer, let us put [â, Â] = i F̂1, and [B̂, b̂] = −i Ĝ2, with F̂1 and Ĝ2 two
Hermitian operators. Equation (8.96) thus reads

∼Ĉ◦2 ≤ 4 + ∼F̂1Ĝ2◦, (8.97)

and the inequality now states that
∣
∣∣∼Ĉ◦

∣
∣∣ will exceed the value 2 only if the variables

F̂1 and Ĝ2 are correlated. If one of the commutators in (8.96) vanishes, then ∼F̂1Ĝ2◦
is trivially zero, no information at all is obtained regarding any possible correla-
tion between the systems, and no conclusion can be drawn about entanglement. In
other words, (non)commutativity per se says nothing about nonlocality; it is required
merely as a useful way to specify which are the operators that may give evidence of
entanglement, via the correlation between F̂1 and Ĝ2. As stated above, in Chap.7
a similar definition of the appropriate operators was made, by specifying that only
those variables F1 and G2 that share relevant frequencies become correlated in such
a way as to disclose entanglement [see the discussion following Eq. (7.63)].

8.5 Final Remarks

Nonlocality is a weird trait of quantum mechanics that is considered to have been
revealed (and has been made popular) by the Bell inequalities. Bohm, on his side,
used it to develop an entire line of philosophy of nature based on a holistic picture of
the world. As a result, dominant voices today affirm that ‘Nature is nonlocal’. But,
is it? Or is it merely the (quantum) description that is nonlocal? There are of course
physicists (and even a few philosophers of science, see e.g. Brown and Harré 1988)
who cannot accept nonlocality as a trait of fundamental science, arguing that it is an
artifact of the formalism and our reading of it. The derivations presented in previous
chapters and lines above, add their own share.

Let us briefly elaborate on this point. There exist today several derivations of the
Bell inequalities; one that has become standard with time started with the famous
paper by Clauser et al. (1969) cited above and based on the expression (8.93). A
careful consideration of the known derivations allows one to verify that the Bell
inequalities are merely statistical relations: no physics is involved in their derivation,
just as no physics is involved in Eq. (8.96). It suffices to take the mean value of (8.93)
for a series of trials32 and determine its bounds, to arrive at the CHSH inequality.

32 With an eye put on note (31), making sure that the average is taken over the same distribution in
each term.

http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_7


304 8 Causality, Nonlocality, and Entanglement in Quantum Mechanics

In short, the Bell (or CHSH) inequalities by themselves say nothing about Nature.
The physics enters when the theorem is applied to a given physical system. Any
experimental violation means that at least some postulate used for the derivation, is
not satisfied by that system. It is usual to blame the physical demand of locality for
the violation of the inequalities.

Let us consider the case of a pair of noninteracting particles, discussed in Chap.7.
The results obtained there indicate that the nonlocality of the description—which
is made evident in the case of an entangled state—arises from the neglect of the
zpf.33 Since quantummechanics lacks of a fundamental explanation for the origin of
entanglement—it is the result of a basic postulate—, the physics behind the associated
nonlocality remains hidden. Even if our results on this problem are still limited, our
analysis suggests there is a real chance that a more refined description—in phase
space, for example— would allow to recover locality.
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Chapter 9
The Zero-Point Field Waves (and) Matter

Students should not be taught to doubt that electrons, protons
and the like are particles... The waves cannot be observed in any
way than by observing particles.

Mott (1964)

The electron is either here, or there, or somewhere else, but
wherever it is, it is a point charge.

Feynman et al. (1965)

So far in our exploration of the fundamentals of qm we have paid null attention to
the very concept that gave rise to wave mechanics, the de Broglie wavelength and
the associated undulatory behavior of matter—certainly one of the most mysterious
properties of the quantum world. The notion of the quantum corpuscle as something
that possesses intrinsic wave properties, which preclude the possibility of describing
it as a localized entity, is widely extended. What we intend to show in the present
chapter, by contrast, is that the fundamental wave properties associatedwith quantum
particles can be understood without renouncing the notion of localized corpuscles.

Of course, formal manipulations of the results obtained in previous chapters allow
to ascertain the wave content of quantum mechanics and eventually arrive at de
Broglie’s wavelength. But such procedure would appear to reduce it to a mere math-
ematical artifact,without providing a clue about its physical content, andmore deeply,
without throwing light about the nature of the de Broglie wave. It seems therefore
obligatory to pay closer attention to this most significant entity.

In line with the spirit of the theory exposed in the present volume, the zpf should
be expected to play an important role in the elucidation of de Broglie’s wave, and
more generally in the explanation of the undulatory properties of matter. It would be
even surprising if the zpf did not in some way or another impress its wave properties
on the particles embedded in it. However, such possibility has only been occasionally
explored within sed; therefore, this chapter contains the results of some of the initial
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310 9 The Zero-Point Field Waves (and) Matter

investigations into the territory of the quantum waves, which obviously deserves
further exploration.1

9.1 Genesis of de Broglie’s Wave

We recall that in de Broglie’s theory of matter waves,2 an oscillation of Compton’s
frequency

ωC = m0c2

�
(9.1)

is associated with a corpuscle at rest (m0 stands for the rest mass). If the particle
moves with respect to the laboratory with velocity v along some axis, the frequency
ω in this latter reference frame is Doppler-shifted according to the formula

ω = γωC (1 + β), (9.2)

with

γ =
(
1 − β2

)−1/2
, β = v/c. (9.3)

The shift γβωC in Eq. (9.2) can be rewritten as (m = γm0)

γβωC ≡ ωB = 2πc
mv

h
= 2πc

λB
, (9.4)

and therefore

λB = h

mv
= h

p
. (9.5)

Equation (9.5) is the well-known expression for the de Broglie wavelength, which
originates in the Doppler shift of the frequency ωC . In de Broglie’s theory, a physical

1 Previous versions of the material presented in the first part of this chapter can be found in de la
Peña and Cetto (1992, 1994), Cetto and de la Peña (1955a, b), and The Dice.
2 Detailed, first-hand expositions of de Broglie’s theory can be found in de Broglie (1926, 1956,
1963). Modern presentations by one of its advocates made in Selleri (1990). A most elaborate
development of a variant of de Broglie’s theory for the relativistic electron is the geometrical
mechanics developed by Synge (1954). An informed historical discussion of de Broglie’s work up
to the 1927 Solvay conference is given in Bacciagaluppi and Valentini (2009). MacKinnon (1976)
presents a detailed analysis and improvement of de Broglie’s derivation in his thesis. Another
detailed discussion of de Broglie’s phase waves is presented in Espinosa (1982).



9.1 Genesis of de Broglie’s Wave 311

wave with the wavelength λB becomes a central entity, directly related with the
moving particle; yet the nature of such wave remains unspecified.3

Within the quantum formalism it is customary to introduce the expression (9.5) as
a means to assign wave properties to the quantum corpuscle. Practical applications
of the de Broglie wavelength are contained in almost any textbook, largely in the
form of restrictions on λB associated with atomic stationarity conditions, fromwhich
(quantized) spectra are extracted.DeBroglie’swavelength appears also in connection
with particle diffraction patterns, notably the electron equivalent of Young’s double-
slit experiment, and in the optics of electron microscopy. However, discussions on
the nature and origin of the de Broglie wave (not just the wavelength λB) are found
only rarely. In the following sections we dig into such matters, with the intention to
throw some light on the concept of de Broglie’s wave.

9.1.1 The de Broglie ‘Clock’

The first point that deserves attention in any attempt to understand the de Broglie
wave relates to the physical origin of the oscillations of frequencyωC associated with
the particle in its rest frame, which constitute a sort of ‘clock’ in de Broglie’s theory.
In this regard we recall that according to qed (see e.g. Milonni 1994, Chap. 11), the
interaction of an electron with the electromagnetic vacuum dresses the particle and
endows it with an effective size, estimated between (λCrc)

1/2 = λC (α/2π)1/2 √
λC/30 and λC , where rc = e2/(mc2) = (α/2π)λC is the classical electron radius
and λC is the Compton wavelength

λC = 2πc

ωC
= h

m0c
. (9.6)

In terms of λC , Eq. (9.5) takes the form

λB = λC

γβ
= λC

√
c2

v2
− 1, (9.7)

which means that for nonrelativistic motions λB is usually much larger than Comp-
ton’s wavelength.

From the point of view of sed, it is also natural to consider the charged particle
immersed in the vacuum field as endowed with an effective size of the order of the
Compton wavelength λC .4 As a result, the particle decouples from the components

3 In Surdin (1979) it is proposed to consider that de Broglie’s wave is of electromagnetic nature, in
some undefined way associated with the electromagnetic zpf.
4 A crude way to reach the same conclusion is the following. From the Heisenberg inequality
one obtains σ2

x ↑ (�2/4σ2
p),whence theminimum dispersion in the position variable determines an
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of the radiation field with wavelengths smaller than λC (and frequencies larger than
ωC ), so that the Compton frequency appears as a cutoff frequency. Any specific
model for the charge with structure (real or effective) would be arbitrary at this
stage, but also unnecessary, since our present purpose is limited to the introduction
of the appropriate cutoff, which we accept to be of the order of ωC .

The characteristic equation of motion for a free particle with structure (real or
effective) acted on by the zpf and radiation reaction has complex roots, giving rise
to oscillations of a very high frequency.5 This frequency is determined basically by
the size of the particle rather than by the details of its structure, so the phenomenon
is quite general; for an (effective) radius of order λC the frequency is of the order of
ωC . In a classical context, these high-frequency oscillations are transient, related to
initial motions, momentary disturbances and the like. However, when the particle is
in permanent interaction with the random background field, as is the present case,
things change essentially. The electromagnetic environment not only puts the particle
into resonance and makes it radiate, but it is also constantly knocking the particle,
so that the high-frequency oscillations become continuously renewed and acquire
a permanent (though fluctuating) character. It is appealing to identify these fine
oscillations of frequency ωC with the zitterbewegung, of which we have here an
informal rendering.

In short, even if the particle is initially conceived of as pointlike—which sounds
somewhat extreme for a physical, rather than mathematical element— it behaves
as an object with some structure that performs, in addition to any other motion, a
sustained oscillation with a frequency of about ωC . In this way the vacuum field
provides the physical sustenance for the de Broglie clock.

Because of its oscillating behavior, the particle at rest is continuously radiating
at the frequency ωC , a process that in a stationary state must be compensated by
absorption from the vacuum field. This means that the particle interacts intensely
with the modes of frequency ωC , as measured in its proper frame, and that these
modes sustain the jitter. The specific mechanism of this interaction is irrelevant for
the kinematics that follow; what is important is that the particle interacts selectively
with a narrow band of modes of the field of frequencies around ωC .

Let us assume for simplicity that the particle motion is restricted to one dimen-
sion, along some axis x̂↓

.This means that in its proper frame (denoted with S↓) the
components of the zpf of interest are the two plane waves of frequency ωC travelling
in opposite directions. The resulting (standing) wave is thus the superposition

ϕ↓(x ↓, t ↓) = e−i(ωC t ↓−k↓+·x↓+θ+) + e−i(ωC t ↓−k↓−·x↓+θ−) + c.c., (9.8)

(Footnote 4 continued)
effective radius a ◦ (σx )min. Such minimum value is achieved for the largest σ2

p, which in the

nonrelativistic regime can be limited by m2
0c2. This results in a ◦ (�/m0c).

5 A detailed discussion can be seen in de la Peña et al. (1982), and The Dice, Sects. 3.4 and 7.3.3.
In this latter it is shown that the selfcorrelation of the position coordinate of a harmonic oscillator
contains a permanent oscillatory contribution of a frequency determined by the cutoff (Eq. 7.101),
and with a value that is not too far from the Compton frequency.

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_7
http://dx.doi.org/10.1007/978-3-319-07893-9_7
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where

k↓± = ±kC x̂↓
, kC = ωC/c, (9.9)

and θ± are statistically independent random phases, in accordance with the results
of Chap. 4. In the laboratory frame (denoted by S) where the particle is seen to move
with velocity v = v x̂↓, the frequency ωC and the wave vectors k↓± transform in such
a way that the phases appearing in (9.8), being a relativistic scalar, remain the same.
This means that if ω± and k± stand, respectively, for the frequency and the wave
vector as seen in S of the plane waves traveling in the positive and negative direction
along the axis x̂↓, then

ωC t ↓ − k↓± · x↓ = ω±t − k± · x. (9.10)

The expressions for the frequencies ω± and the wave vectors k± read (see, e.g.,
Jackson 1975, Sect. 11.3)

ω± = γωC (1 ± β) , (9.11)

k± = ±γkC (1 ± β) x̂ = ±k± x̂,

and the standing wave ϕ↓(x ↓, t ↓) in S↓ has therefore the following form in S,

ϕv(x, t) = e−i(ω+t−k+x+θ+) + e−i(ω−t+k−x+θ−) + c.c. (9.12)

In terms of the frequencies

ωA = ckA = 1
2 (ω+ + ω−) = γωC , (9.13a)

ωB = ckB = 1
2 (ω+ − ω−) = γβωC = βωA, (9.13b)

Equation (9.12) becomes

ϕv(x, t) = 4 cos (ωAt − kB x + θ1) cos (ωBt − kAx + θ2) , (9.14)

with θ1,2 ≡ 1
2 (θ+ ± θ−). This result, to which we shall return below, represents

the standing wave of the zpf that activates the de Broglie clock, as seen from the
laboratory frame.

9.1.2 Energy, Frequency and Matter Waves

In order to relate ϕv(x, t) with the de Broglie wave, let us resort to the relativistic
expression for the energy

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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E2 = m2
0c4 + c2 p2. (9.15a)

From Eqs. (9.1) and (9.4) we obtain

�ωC = m0c2, (9.15b)

�ωB = cp, (9.15c)

which together with (9.13a) and (9.13b) allows us to recast Eq. (9.15a) as

E2 = �
2
(
ω2

C + ω2
B

)
= �

2ω2
C

(
1 + γ2β2

)
= �

2ω2
Cγ2 = �

2ω2
A. (9.16)

It follows that

E = �ωA = �γωC , (9.17)

and the relation for the energy (9.15a) becomes equivalent to

ω2
A = ω2

B + ω2
C . (9.18)

Formula (9.17) exhibits the energy as a manifestation of a vibration of very high
frequency, so that energy and frequency become two aspects of the same reality, as
is strongly expressed by Eq. (9.18). This suggests that all forms of energy are essen-
tially the same thing, namely vibrations (energy is motion!). Under the consideration
thatωB refers to an electromagnetic wave, the successive discoveries by Planck (cap-
tured in the quantum relation E ◦ ω), by Einstein (Eq. (9.15a)) and by de Broglie
become integrated into the general law (9.18), which is simultaneously relativistic
and quantum. In addition, this equation shows that de Broglie’s frequency can be
understood as a measure of the deviation of the actual frequency of vibration of the
particle in the laboratory (ωA) from its reference value (the Compton frequency ωC ),

i.e., ωB = (
ω2

A − ω2
C

)1/2
.

Taken together, Eqs. (9.15c) and (9.17) associate the wave number kB = p/� and
the frequency ωA = E/� with a particle having momentum p and energy E . Such
quantities are thus the natural ones to characterize a ‘matter’ wave associated with
the moving corpuscle. The dispersion relation for such wave is therefore given by
the relation E = E(p), whence from Eqs. (9.15a) and (9.17) it follows that the group
velocity vg of the matter wave is

vg = ∂E
∂ p

= v. (9.19a)

On the other hand, the phase velocity is just

vp = E
p

= mc2

p
= c2

v
. (9.19b)
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Notice that the sole specification of the wave number and the frequency of the matter
wave (kB and ωA, respectively) could suggest to identify it with a simple wave of
the form cos(ωAt − kB x + α) (with α constant). However, such wave does not
comply with the above expression for vg. This stresses the importance of the correct
dispersion relation, and clearly indicates that the matter wave must be more complex
than a simple oscillation.

9.1.3 The de Broglie Wave

We see that the intimate connection between energy and frequency not only brings in
the notion of amatter wave associatedwith themoving corpuscle, but also determines
its group and phase velocities. Two immediate questions arise, about its identification
and about its physical reality. Is the matter wave simply a mathematical artifact, con-
veniently put in correspondence with the physical corpuscle, or is it a truly physical
wave? In this section we briefly tackle this issue.

From the above discussion we know that the matter wave is not simply cos(ωAt −
kB x + α), but this wave modulated so that there is a wave traveling with velocity v;
hence it must be a wave of the form

cos(ωAt − kB x + α) × f (x − vt). (9.20)

In Eq. (9.14) we have precisely this kind of wave. Indeed, with ωB/kA = v, ϕv(x, t)
is found to have just the structure of (9.20),

ϕv(x, t) = 4 cos (ωAt − kB x + θ1) cos [kA (x − vt) − θ2] . (9.21)

Taking a snapshot of (9.21) at t = 0 gives

ϕv(x, 0) = 4 cos (kAx − θ2) cos (kB x − θ1) . (9.22)

Since kB = βkA < kA, ϕv(x, 0) represents a rapid spatial oscillation with an
amplitude that is modulated by a wave of wavelength λB = 2π/kB; that is, the
wavelength of the (spatial) modulation (envelope) is precisely de Broglie’s λB . Let
us now assume that instead of a snapshot we take a video with the position fixed at
x = 0; this gives

ϕv(0, t) = 4 cos (ωAt + θ1) cos (ωBt + θ2) . (9.23)

The fact that ωB = βωA < ωA, implies that the amplitude of the higher-frequency
wave (the carrier) is modulated by an oscillation of frequency ωB . In other words,
the frequency of the (temporal) envelope coincides with the de Broglie frequency.

We are now in a position to identify the whole structure ϕv(x, t) with the ‘matter
wave’, or de Broglie wave. Recognizing the origin of ϕv(x, t) in the zpf, we con-
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clude that the de Broglie wave represents a physically real wave, as ‘seen’ from the
laboratory. Since the spatial modulation of ϕv(x, t) travels with velocity v, to an
observer in S it appears to keep company to the particle, as if surrounding and ‘guid-
ing’ it along its motion—thus calling to mind the idea behind the guidance formula
in de Broglie’s theory. Both entities, particle and wave, appear thus as an indissoluble
couple, yet each of them has a well-defined and complementary nature; in particular,
the particle remains always a corpuscle, a nonextended object (though with some
structure), in contrast with the always extended ϕv(x, t). Notice that, even though
from this perspective the particle is an intrinsically localizable object, its specific
position within the matter wave’s wavelength is not determined.

Consideration of the zpf seems thus to be a natural means to incorporate not
only the de Broglie wavelength, but also the de Broglie wave, into the narrative of
quantum mechanics.6 An additional relation between λB , the vacuum field, and the
dynamics of the particle, can be obtained rewriting Eq. (9.4) in the form

ωBλB = 2πc. (9.24)

This relation characterizes an electromagnetic wave in vacuum, with de Broglie’s
wavelength and with a linear momentum equal to pB = �ωB/c, which, according
to Eq. (9.15c), �ωB = cp, coincides with the momentum p of the particle,

p = pB . (9.25)

Consequently, while the particle travels ‘sitting’ on the de Broglie wave, it bears
the same momentum as the zpf modes of frequency ωB; such modes thus acquire
special relevance for themoving particle. In this sense it is natural to associate the zpf
modes of wavelength λB also to the moving corpuscle—bearing in mind, however,
that de Broglie’s wavelength λB does actually originate in the background field. De
Broglie’s formula should then be recast in the form

λB = h

pB
, (9.26)

representing a genuine wave formula written in terms of parameters pertaining to a
wave only, without reference at all to the particle. From this perspective, it is via
the condition (9.25) that the wave property is transferred to the particle, so that
λB = h/p. That the modes of the zpf having frequency ωB (and wavelength λB)

turn out to be of particular importance for the dynamics of the particle will be further
discussed in Sect. 9.3, in relation with matter diffraction.

6 Or rather, into the ontology of quantum mechanics. We see in the wave function of quantum
mechanics an abstract object that lives in a mathemathical configuration space. By contrast, the de
Broglie wave associated with the zpf modulations should be understood as a real wave in three-
dimensional space. They are therefore two objects of an entirely different nature.
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9.2 An Exercise on Quantization à la de Broglie

In this sectionwe resort to the deBrogliewave constructed above to showbymeans of
an example how it can be applied to analyze some properties of stationary, bounded,
one-dimensional quantum motions. With this aim let us consider a benchmark case
and examine the stationary description of a particle trapped in an infinite square
potential well of width a. In this case there is no net flux and the particles will be
performing periodical back and forth motions inside the box. In order to construct
the de Broglie description for this situation, one must take into account not only
the ϕv(x, t), representing the wave associated with a particle that travels in the +x
direction with velocity v, but also the reflected wave ϕ−v(x, t) that travels in the −x
direction with the same speed. We therefore take the superposition

ϕ(x, t) = ϕv(x, t) + ϕ−v(x, t). (9.27)

As follows fromEq. (9.11), with the substitution v → −v the frequencyω± becomes
ω≡, and similarly for k± = ω±/c. We shall assume that the phases θ± in Eq. (9.12)
are the same in both components (they both refer to the same wave). Taking all this
into account, Eq. (9.27) reads

ϕ(x, t) = e−iθ[e−i(ω+t−k+x)+e−i(ω+t+k+x) +e−i(ω−t−k−x)+e−i(ω−t+k−x)] + c.c,
(9.28)

which reduces to

ϕ(x, t) = 4
[
cos (ω+t + θ) cos k+x + cos (ω−t + θ) cos k−x

]
. (9.29)

This standing wave inside the well is consistent with the condition of zero flux
velocity.Unlike the deBrogliewave, the superpositionϕ(x, t)does not travelwith the
particle, but reflects the periodicity of the motion. Further, since ϕ(x, t) corresponds
to a stationary situation, it means that it is periodic in x with period a,

ϕ(x, t) = ϕ(x + a, t). (9.30)

This stationarity condition applied to Eq. (9.29) leads to

k± = 2π

a
n±, n± = 0, 1, ... (9.31)

Notice that for v 	= 0 we have k+ > k− (see Eq. (9.11)), whence n+ > n−. From
here and Eqs. (9.13a), (9.13b) it follows that

1
2 (k+ − k−) = kB = π

a (n+ − n−) ≡ π
a n, n = 1, ..., (9.32a)

1
2 (k+ + k−) = kA = π

a (n+ + n−) ≡ π
a N , N = 1, ... (9.32b)
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Equation (9.32b), together with (9.15c), gives

p = �kB → pn = �π

a
n, (9.33)

whence

nλB = 2a. (9.34)

One can recognize here the well-known statement that the well can accommodate
an integer number of half-de Broglie’s wavelengths under stationarity, in agreement
with usual phenomenology.Notice that the result arises as a consequence of imposing
the stationarity condition on the wave ϕ(x, t) that reflects the periodicity of the
corpuscle’s motion. Equations (9.33) and (9.34) mean that the dynamics and the de
Broglie wave have become conformed to the geometry of the system.

Notice that Eq. (9.33) follows also from (9.25), under conditions of stationarity
of the standing waves of the zpf inside the well. In other words, the quantization
implied by Eq. (9.33) can be seen as a result of the presence of the vacuum field and
the identification p = pB, a relation that plays thus the role of a quantization rule.

Let us now turn to Eq. (9.32b), which together with λA = 2π/kA gives

NλA = 2a. (9.35)

According to this expression, also an integer number of half-wavelengths λA must be
accommodated inside the well to attain stationarity. However, since kB/kA = β =
n/N , in the nonrelativistic regime n ≥ N . Comparison between Eqs. (9.34) and
(9.35) thus indicates that the wave with λA inside the well has many more nodes that
thewavewithλB . In terms of the deBrogliewave, this is explained by recalling that at
any given time, ϕv(x, t0) represents a rapid oscillation of wavelength λA modulated
by an oscillation of wavelength λB ∗ λA (cf. Eq. (9.22)). Physically, this reflects
the fact that the particle inside the box is not simply performing a uniform motion
with (mean) velocity v (like a classical particle would do), but that such motion is
superposed to a vibration at the high frequency ωA ◦ ωC . As mentioned earlier, this
oscillation, the zitterbewegung, constitutes an echo—the laboratory frame—of de
Broglie’s clock.

The above results can be somewhat completed to get a more detailed picture of
what is happening inside the well. The formula for the energy En associated with the
smooth motion of the particles follows directly from Eq. (9.33),

En = p2n
2m

= π2
�
2

2ma2 n2, n = 1, ... (9.36)

Since the particles are being perfectly reflected at the walls of the well, it has sense
to define the period of the (mean) motion in state n as
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τn ≡ 2a

vn
= 2πn

�

2En
, (9.37)

which suggests to introduce a mechanical frequency ωmec
n such that

ωmec
n τn = 2πn. (9.38)

With this definition, Eq. (9.37) gives

En = �

2
ωmec

n , ωmec
n = π2

�

ma2 n2, vn = π�

ma
n = v1n. (9.39)

In state n the particle surveys in the mean n times the distance that corresponds to
the fundamental state n = 1. This result relates the index n in pn to the number
of complete cycles performed by the component n during the time that the slowest
component (for n = 1) completes one cycle.

The first relation in (9.39) looks akin to the substance of sed, and states that the
energy of the particle in the state n coincides with the energy of the modes of the zpf
of frequency ω mec

n . Further, direct calculation gives

λBnωmec
n = 2πvn, (9.40)

with λBn = h/pn . This relation defines a geometric wave inside the well, moving
with the particle; it has the de Broglie wavelength and the mechanical frequency
ωmec

n . This latter can be related with the de Broglie frequency by a comparison of
Eqs. (9.24) and (9.40), resulting in

ωmec
n = βnωBn . (9.41)

For nonrelativistic motions, we verify that the de Broglie frequency is very high
compared with the frequency of the dominant motion. In contrast, the de Broglie
wavelength is considerably larger than the Compton wavelength (see Eq. (9.7)).

Unlike the resonance frequencies studied in Chap. 5, which are the frequencies
of transition between states, the ωmec

n (n = 1, 2, ...) are related directly to the per-
manence in the respective state n. They remain hidden to qm, not being part of its
ontology, its epistemology, or its semantics. Equation (9.39) together with Bohr’s
rule shows that there exists a relation between the transition and the permanence
frequencies,

ωnm = �
−1(En − Em) = (ωmec

n − ωmec
m )/2. (9.42)

To the extent to which the definition En = �ωmec
n /2 has a meaning, such relationship

may be significant. The factor 2 is specific of the present example, of course.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
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9.3 Undulatory Properties of Matter

Because of their wave-like properties, quantum corpuscles are often not ‘seen’ as
particles—or waves—but as another sort of entity, such as ‘wavicles’ (Eddington
1928), ‘microparticles’ (Blokhinsev 1953/1964), ‘quantons’ (Bunge 1967, 1973),
‘smearons’ (Maxwell 1981), ‘wavelets’ (Barut 1993), andwhat not.7 A fewexamples,
taken from among scores of them, of the kind of contrasting points of view to which
the consideration of the wave properties of matter is prone to lead, may be seen in
Diner et al. (1983), Agazzi (1988), andCombourieu andRauch (1992). Leaving aside
particular details, what the existence of so many and diverse approaches evinces is
that the undulatory properties of matter are among the most perplexing and least
understood aspects of the quantum world.

To pay attention to the wave-like properties of matter, let us appeal to one of the
simplest and at the same time most revealing quantum experiments, that of electrons
passing through two parallel slits made on a screen. The amazing result is well
known, and popularized by the Tonomura et al 1989 experiment, which has been
seen by many thanks to the web (www.hitachi.com/rd/portal/research/em/movie.
html; see also Bach et al. 2013). It is important to draw attention to this experiment
(and earlier ones, such as those described in Jönsson (1961), and Matteucci and
Pozzi (1978), since all of them reveal that a single electron does not give rise to the
diffraction pattern: it merely produces a spot (seemingly at random) on the screen.
The diffraction pattern, a wave-like phenomenon, results from the addition of tens
of thousands of events, and hence depicts the statistical distribution of electrons
on the screen. The Schrödinger equation, which refers to the wave properties of
particles, describes just this statistical behavior. It cannot provide in general a detailed
description of the wanderings of an individual electron. It is devised to describe the
multitude, notwhat each and every electron is doing.And it certainly does not provide
a physical explanation for the diffraction pattern.

Let us now look from the present sed perspective at the problem of particle
diffraction by the pair of parallel slits. One should start by considering that the the
zpf is not immune to the presence of the slits. The Casimir effect, as well as the cavity
effects on atomic lifetimes and energy levels, are well-known instances that remind
us that zpf must satisfy the same boundary conditions as any other electromagnetic
field in the presence of matter [see e.g. Boyer (1980) and references therein; Cetto
and de la Peña (1988a, b)]. And indeed, Fig. 9.1 shows an image of the zpf diffracted
by two parallel slits, opened on an infinite, totally reflecting plate; the wavelentgth
of the field modes has been chosen to be of the order of the distance between slits.
This is the kind of field that the electrons ‘feel’ when traveling in the neighborhood
of the screen. The partially reorganized electric forces act on the particles, and one

7 The term wavelet refers to localized nonspreading solutions of massless wave equations that move
like massive quantum particles. Wavelets are seen as a bridge between classical point particles and
the waves of qm; the mass of the particle is determined by the internal frequency of the wavelet,
much as the ‘internal clock’ in the Broglie’s theory.

www.hitachi.com/rd/portal/research/em/movie.html
www.hitachi.com/rd/portal/research/em/movie.html
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Fig. 9.1 Contour map of the real part of the Ex component of the zero-point field of wavelength
0.9l, diffracted by two slits separated a distance 1.1l, pierced on a conducting plate; l is the width
of the slits. Reprinted from Avendaño and de la Peña (2005) with permission from Elsevier

should therefore expect to get on the screen a footprint of the diffracted field, traced
out by the electrons.

The detailed dynamics of the particles travelling in a diffracted field like the one in
figure reffig1 needs still to beworked out. However, according to the discussion in the
previous section, one may reasonably assume that the electrons with a momentum p
will be particularly affected by the diffracted modes that satisfy the condition (9.25),
pB = p (i.e., the modes of wavelength λB = h/p), and guided by them towards the
screen along the preferred directions determined by Bragg’s law. This would give
shape to an interference pattern superimposed on the noisy background. Thus, the
particle needs to ‘know’ nothing about the existence of the slits: it is the background
field what carries the required information and operates accordingly on the particles.
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The picture that emerges reminds us of the image suggested by J. Clauser some time
ago: “If a bunch of surfers pass through a breakwater with two entrances, you’ll see
the two-slit pattern later on the beach in surfer flesh!” (quoted inWick (1995), p. 116).
And indeed, for over 80yearswehavebeenobserving interferencepatterns in electron
flesh. The electrons maintain their corpuscular identity all along the experiment,
and there is no need of particle self-interference. Since the diffracted field exists
even in the absence of the electrons, it might be possible to put this explanation to
experimental test. The observation of the diffracted field with independence from the
presence or absence of the electrons would demonstrate that it is the field, not matter,
what is diffracted. An initial exposition of these matters is given in Avendaño and de
la Peña (2010). An example of the kind of results that such an explanation can afford
is shown in Fig. 9.2. This figure shows some preliminary results obtained again by
numerical calculation (Avendaño and de la Peña 2005, and work in preparation), for
the trajectories followed by electrons in the double-slit experiment. The fluctuating
component of the diffracted field has been suppressed to highlight the guiding effect
of the field. The momentum p of the particles has been selected according to the
law p = pB and the kinetic energy of the electrons has been assumed to remain
constant, i.e., the particles are deflected without changing their speed. Even if in the
real situation the trajectories may be not as smooth, the figure offers a clear image of
the behavior one may expect for the particles under the action of the diffracted zpf.
In particular, it is distinctly seen that on its way to the distant screen, each particle
crosses a single time a single slit, and behaves as a localized corpuscle all along its
journey.8

Particle diffraction patterns have been obtained experimentally also with neutrons
and other neutral particles, as is well known from crystallography and has been con-
firmed by the famous experiments by Rauch and colleagues [Rauch et al. (1974); a
detailed review is Greenberger (1983)]. This means that the sed explanation should
not be restricted to charged particles. As suggested in Chap. 4, a possible answer
to this observation is that all known particles, including the neutral ones, have elec-
tromagnetic interactions. An interaction with the zpf through the coupling of the
electric dipole moment, the magnetic moment, or any other multipole, is able in
principle to lead to results that are similar to the ones obtained from electric charge
coupling, although details such as the relaxation times may vary; such differences,
however, are irrelevant for the performed experiments, which proceed very slowly
in comparison.

The double-slit experiment affords an opportunity to give a more precise meaning
to the assertion that the Schrödinger equation predicts only the wavelike behavior
of quantum corpuscles. That such statement requires qualification can be illustrated
with the aid of Fig. 9.3. This figure shows the numerical solution of the Schrödinger
equation for the problem of two ideal slits, at different distances from the plane

8 The results obtained with this numerical experiment are similar to those obtained by Couder and
Fort (2006) in their macroscopic Young-type experiment, showing clearly that the bouncing droplet
goes through either one of the two slits but the associated wave passes through both slits, and the
interference of the resulting waves is responsible for the trajectory of the walker.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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Fig. 9.2 Trajectories followed by electrons in a realistic simulation of a two-slit experiment. The
particles are uniformly distributed in the beam behind the slits. The diffracted modes of the field
have momentum pB and the momentum of the particles is p, with p = pB . Figure courtesy of
J. Avendaño, adapted from Avendaño and de la Peña (2010)

that contains the slits. The solution shows that sufficiently close to the slits the
Schrödinger equation predicts a corpuscular behavior of the particles, whereas the
wavelike behavior corresponds to the Fraunhofer (far) region. For intermediate dis-
tances both aspects are simultaneously manifested. Here we have an example of
coexistence of corpuscular and wavelike manifestations, which reminds us of Ein-
stein’s reading of Eq. (3.71) as an expression of these two complementary aspects in
the case of light.

9.4 Cosmological Origin of Planck’s Constant

Let usmake a detour from the line of inquiry followed so far in this chapter, and direct
our attention to another interesting question directly related with the zpf, namely:
what fixes the scale � of the zpf fluctuations? Being the zpf of cosmological origin,
it sounds natural to assume that � should be linked in any way to other universal
constants.

To find an answer to this question let us consider a world made of just harmonic
oscillators, representing both matter and the modes of the zero-point radiation field.
Such a crude model should be appropriate for the purpose of performing an order-
of-magnitude estimate of certain quantities of interest for our present intent. Since
the thermal (photonic) background radiation is of no interest here, we assume that all

http://dx.doi.org/10.1007/978-3-319-07893-9_3
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Fig. 9.3 Numerical solution of the Schrödinger equation for two slits, shown as function of the
distance from the plane of the slits. At very short distances the solution resembles the one that
corresponds to particles, whereas at very far distances a Fraunhofer diffraction pattern is observed.
The distance from the slits to the screen is given by −y. Figure courtesy of J. Avendaño

elementary oscillators of a given frequency, irrespective of their nature, are in their
ground state. According to the image developed in this book, the charged (matter)
oscillators (electric dipoles) are radiating and contributing to the backgroundfield, but
they are also absorbing energy from the field. The random field so regenerated should
coincide with the vacuum field at each frequency under the assumption of a universe
in equilibrium.We herewith espouse a sort of cosmological principle associated with
sed, or, if preferred, a kind of electromagnetic Mach principle: the field produced
at a given point by all dipoles in the Universe should equal the random field acting
at that point on the particles themselves. This requirement establishes a relationship
between cosmological and atomic constants; in other words, it establishes the scale of
quantum fluctuations. Planck’s constant becomes thus determined by cosmological
parameters (de la Peña and Cetto 1984, 1997).9

A parallel reasoning, but dealing entirely with the gravitational field, has been dis-
cussed by Calogero (1997) in an interesting essay restricted to order-of-magnitude
considerations. In that work, the identification of the unavoidable gravitational fluc-
tuations with the quantum fluctuations of atomic systems is shown to lead to a rela-
tionship between atomic and cosmological constants. One should recall also a similar
attempt made in Puthoff (1991) within sed, also on the basis of a self-regenerating
model. The basic idea in Puthoff’s paper is much in line with the one studied here,

9 Recently we have become aware of a similar proposal by Mavrychev (1967), in which the author
reaches a comparable result.
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although in our rough estimate we refrain from resorting to any specific cosmolog-
ical model. Still we leave aside any problem related with the infinite gravitational
effects of the zero-point field, just as is done in qed (and in cosmology) with all
vacuum fields, simply because nobody knows yet how to solve this so-much studied
and poorly understood problem (see e.g. Weinberg 1989). By equating the radiation
field predicted by the model at a given point with the corresponding component of
the zero-point field, Puthoff obtains a prediction for the baryonic mass density of
the Universe, which establishes a relation between atomic constants and the Hub-
ble constant. This relation happens to correspond essentially to the one discussed in
Weinberg (1972) book (Sect. 16.4), which is usually taken as a numerical coinci-
dence, of unknown origin and meaning.

Consider, then, the radiating dipoleα (α = 1, 2, . . . , N ) of frequencyω located at
the position rα; we take the origin of coordinates at our place. The Fourier amplitude
of the electric field produced by this oscillator at the origin is

Eα(ω) = −k2nα × (nα × pα)
eikrα

rα
, k = ω

c
, (9.43)

where pα = (e/2)(q0α + i q̇0α/ω) is the (complex) amplitude of the dipole moment
pαe−iωt , and nα = rα/rα is the unit vector in the direction of rα. Since the mean

energy of the oscillator is �ω/2, one has
〈
q2
0α + q̇2

0α/ω2
〉

= �/mω, where the

average is taken over the set of oscillators of frequency ω, so that we write

pα = e

2

√
�

mω
Bα (9.44)

and consider the components Biα of Bα to be statistically independent complex
random variables with zero mean and second moments given by

〈
Biα B∼

jβ

〉
= δαβδi j ,

〈
Biα B jβ

〉 = 0. (9.45)

With these assumptions the mean square of Eq. (9.43) is (omitting the index α)

∈|E(ω)|2⊗ = �e2

4mc4
ω3

r2
∈|n × (n × B)|2⊗ = �e2

2mc4
ω3

r2
, (9.46)

since ∈|n × (n × B)|2⊗ = 〈
B · B∼ − (n · B)(n · B∼)

〉 = 2. We have taken into
account that the field amplitudes produced by statistically independent oscillators
are uncorrelated.

To evaluate the average energy content ∈E(ω)⊗ of the radiation field of frequency
ω at the origin, we integrate Eq. (9.46) over a spherical volume of radius R, assuming
an isotropic and homogeneous distribution of oscillators, of which there are n(ω) of
frequency ω and a total number N = ∑

ω n(ω):
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∈E(ω)⊗ = n(ω)

4π

∫

V
∈|E(ω)|2⊗dV = �e2ω3R

2mc4
n(ω). (9.47)

The cosmological postulate asserts that this energy should correspond to the zpf
energy of a mode of frequency ω, i.e., �ω/2 ; one thus obtains

n(ω) = mc4

e2ω2R
. (9.48)

To estimate the total number of oscillators we integrate over all frequencies, using
the rule V −1 ∑

ω → (2π2c3)−1
∫

dω ω2, which gives

N =
∑

ω

n(ω) = mc4

e2R

∑

ω

1

ω2 → mcV

2π2e2R

∫ �

0
dω = mc�V

2π2e2R
. (9.49)

Since the integral is divergent we have introduced a cutoff frequency � for the
material oscillators. Indeed, the material oscillators are transparent at arbitrarily
high frequencies; one can consider a cutoff around the pair-creation (Zitterwebe-
gung) frequency � = 2mc2/� as physically meaningful (see also the discussion in
Sect. 9.1.1), so that (9.49) becomes

N

V
= m2c2

π2α�2R
, (9.50)

where α = e2/�c stands for the fine-structure constant. Here V must be taken as
the volume of the visible part of the Universe, as this is the part that contributes to
the radiation field, and thus N/V is to be identified with the cosmological density of
charged particles, which multiplied by m N (the nucleon mass or any typical baryon
mass) gives for the baryonic density of the Universe the estimate

ρ √ m2m N c2

π2α�2R
. (9.51)

Before proceeding further let us add a couple of remarkswith regard to this expres-
sion. Firstly, we have not taken into account any absorption process, the reason being
that we are dealing with the zpf, which is not absorbed by matter in equilibrium with
it. Of course it is scattered by matter, but for a uniform and homogeneous universe
the final distribution remains the same. Therefore Eq. (9.51) needs no correction
from Thomson scattering.

The second comment refers to the simplicity of the model. The intention here is
to make a qualitative test of the sed cosmological principle, and for such purpose the
present rough estimate should suffice. For example, a somewhat more realistic model
would take into account the expansion of the Universe, which produces a redshift,
so that instead of the original frequency ω radiated when the Universe had a scale
factor R(t), the red-shifted frequency
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ω0 = R(t)

R0
ω (9.52)

should be used, where the subindex 0 refers to the presentmoment and place of obser-
vation. Thus, if ν(ω) represents the spatial density of oscillators of local frequency
ω at a distance r from us, instead of Eq. (9.47) one should write

∈E(ω)⊗ = e2�

2mc4
ω3
0 R3

0

∫ R0

0

ν(ω0R0/R(t))

R3(t)r2
r2dr, (9.53)

where, using Weinberg’s (1972) notation, one must put dr = (
√
1 − kr2/R(t))dt.

To go further one would have to specify the cosmological model; however, any
reasonable choice for R(t)would only change the numerical factors, without altering
the essential contents of Eq. (9.51). Thus, up to such numerical factors we take the
former result (9.51) as a reasonable relation among the relevant constants of nature.

Let us try to draw some conclusion from Eq. (9.51). For this purpose we first
introduce an auxiliary (representative) mass defined as

m̄ =
(

m2m N

π2α

)1/3

� 30m. (9.54)

where m is the mass of the electron. Equation (9.51) can then be rewritten in the
form (we put R = R0, and add the subindex 0 to mark the present values of the
cosmological parameters)

ρ0R3
0

m̄
= m̄2c2R2

0

�2
=

(
R0

λm̄

)2

, (9.55)

where λm̄ is the Compton wavelength (divided by 2π) associated with the mass
m̄,λm̄ = �/m̄c. We recognize in each side of Eq. (9.55) one of the ‘large numbers’
of cosmology, which are (H0 is the present value of Hubble constant, H0 = c/R0,

and G stands for the gravitational coupling constant)

N1 = �c

Gm2
N

◦ 1

6
1039, (9.56)

N2 = mc2

�H0
= mcR0

�
= R0

λm
◦ 1

3
1039, (9.57)

N3 = ρ0c3

m N H3
0

= ρ0R3
0

m N
◦ 1079. (9.58)

Except for the differences in the masses, Eq. (9.55) reads
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N3 = N 2
2 , (9.59)

which is one of the well-known numerical coincidences among these large numbers.
The surprising content of this expression is that it relates cosmological parameters
with Planck’s constant, which is a highly nontrivial result (remember that Weinberg
(1972) qualifies Eq. (9.59) as mysterious). The second independent relation among
these numbers, which can be taken to be N1N2 � N3, does not involve Planck’s
constant and can be obtained from cosmological models, such as the Friedmann
model.

We conclude that the sed Cosmological Principle, namely that the energy of
the vacuum fluctuations corresponds to the energy radiated by all dipoles of the
Universe in a self-regenerating process, seems to hold and serves to explain the
relation N3 = N 2

2 up to a constant factor of at most a few orders of magnitude.
Let us now recast Eq. (9.51) in a different form. In terms of the dimensionless

gravitational coupling constant αG = Gmm N /�c it reads

αG R0 √ 3π

8
αλm, (9.60)

which we write simply as

αλm √ αG R0, (9.61)

where the value of the common length l = αλm = e2/mc2 = r0 equals the classical
electron radius. It seems interesting to observe that Eq. (9.61) can be extended to
include nuclear forces by taking the coupling constant of order 1, αN √ 1, and a
characteristic lenght RN √ �/mπc, (mπ is the pion mass), which gives a numerical
value √ αλm/2, so that

αG R0 √ αλm √ αN RN √ r0. (9.62)

Equation (9.61) explains why Calogero’s gravitational arguments and the present
electromagnetic ones lead to equivalent results. This is another form of saying that
it should be feasible to represent the effects of the zero-point field as a fluctuating
metric field, a possibility that was already studied by Einstein himself (1924). It is
interesting to observe that Eq. (9.59) (or Eq. (9.61)) cannot be obtained solely from
the usual quantum formalism; it is within the conceptual frame of sed where the
cosmological principle leading to Eq. (9.59) finds its natural place.10

To end this detour, we note that Eq. (9.55) can be written in the form

� =
(

m̄3c2

ρ0R0

)1/2

. (9.63)

10 For some enriching comments of differing nature on the zpf see Ibison (2003), and Dasgupta
and Roy (2007).
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This suggests speculating that the fluctuations of matter density at cosmological
scales may produce local fluctuations on the value of �. Whether this has any sense
at all is a question that we leave to cosmologists.
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Chapter 10
Quantum Mechanics: Some Answers

Nothing in Nature is random.... A thing appears random only
through the incompleteness of our knowledge.

Spinoza (2005)

10.1 The Genetic Gist of the Zero-Point Field

Our investigations started with a recurrent theme of sed, namely the consideration of
the fluctuating zero-point radiation field as a basis to arrive at the Planck distribution
for the thermal equilibrium radiation field. The quantum of energy introduced by
Planck to obtain his law was not a necessary hypothesis1; instead, the essential
ingredient turned out to be the zero-point component of the field—just the one that
Planck discovered in his 1912 paper. This second discovery by Planck acquires, from
the present perspective, an importance at least as high as his first one.

The cornerstone for this remarkable result is shown to be contained already in
Wien’s law, which opens the door to the zpf—traditionally put aside as an article of
faith—by allowing the zero-point energyE0 of the field oscillators to be different from
zero. The conventional (classical) selection E0 = 0 is clearly unfit for the complexity
of a physical world full of electric charges, following all kinds of unending motions
and constantly emitting radiation. One should expect in advance the physical reality
of the random zero-point field to lead to a statistical behavior of submicroscopic
matter that departs from the classical one. And indeed, the presence of this zpf in an
otherwise classical system turns out to radically transform its behavior, leading to the

1 Something similar happens with the photoelectric effect. This just was the example that Einstein
1905 used to argue in favor of the quantun of radiation. But it is a matter of fact that the cause of
this effect can be attributed to the quantization of matter (see e.g. Schiff 1955, Chap. X; Lamb and
Scully 1969; Mandel 1976).
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quantization not only of the energy of the field oscillators in interaction with matter,
but also to that of matter in interaction with the field, under appropriate conditions.

The specific properties of this background field have very much to do with the
peculiarities of quantum systems; they are, so to say, the ultimate source of ‘quantum
weirdness’. First, the wave nature of the zpf is responsible for a fundamental differ-
ence between the effects of this field on matter and those of an incoherent source of
white noise, characteristic of classical, dissipative, Brownian-motion systems—as
already anticipated in Chap.2. A number of results obtained in Chap.4 through 9
show that a field with highly (spatially and temporally) coherent independent modes,
gives rise to an entirely different behavior of the system. Further to leading to nondis-
sipative states and sustaining them—a property remarkable by itself, being at the root
of the atomic stability as envisaged by Nernst—it impresses on the mechanical sys-
tem the ‘wavelike’ properties encoded in the Schrödinger equation. Moreover, as
shown in Chap.6, the two degrees of polarization of the zpfmodes induce helicoidal
motions of the electron, giving rise to an angular momentum that is independent of
the orbital motion. The electron spin is thus identified as a further emergent quantum
property, with the correct gyromagnetic factor of 2 for its magnetic moment.

The ergodic properties of the stationary mechanical system—one of the many
features that are concealed in usual quantum theory—turn out to be of primary
significance, as revealed in Chap.5. Linked to them is the linear resonant response
of the mechanical system to selected modes of the radiation field, encoded in the
Heisenberg formulation of quantum mechanics. These are the modes involved in
atomic transitions; they are selected by the mechanical system, as expressed in the
well-known selection rules for atomic transitions. Such rules are here endowed with
a physical mechanism (absent in qm) that explains the notorious quantum jumps.
According to the results in Chap.5, for a given state of the atomic electron there is
a defined set of resonance frequencies to which it may respond. Which will be the
one selected in each instance is a matter of chance, but there is no ‘guessing’ on the
part of the electron about the frequency once the resonance is established. Of course,
‘chance’ should be here understood to mean that the result depends on a multitude
of (unknown and uncontrollable) factors, such as the instantaneous state of the atom
and the specific realization of the active mode of the random vacuum field, of which
we have neither control nor knowledge.

Further, under certain conditions the zpf modes have the capacity to induce non-
classical correlations between the parties of a multipartite system, impressing on the
latter an effective nonlocal behaviour, encoded in the ensuing entanglement. This
observation helps to demystify the mechanism of entanglement by eliminating the
spooky nonlocality that seems to characterize it, say, in the case of (classically) non-
interacting particles. It is the absence of the zpf from the usual quantum description
what makes of entanglement, and all its peculiar properties, an abstruse feature, dif-
ficult to reconcile with the rest of physics. Particularly interesting is the fact that the
entanglement of the spin variables in a system of identical particles introduces the
demand of antisymmetric wave functions.

The usual quantum-mechanical formalism is known to provide a very accurate
description of the time-reversible regime. But strictly speaking, as shown here, it

http://dx.doi.org/10.1007/978-3-319-07893-9_2
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_6
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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provides only an approximate description for at least two reasons: firstly, the initial
transient phase, when field and particle have just started to interact, is not considered;
secondly, the radiative terms that were essential in taking the system to the stationary
regime, have been dropped from the equations in the derivations leading to quantum
mechanics, by taking the radiationless approximation. The first remark should not
be a cause for concern (yet), as the initial relaxation time is estimated to be of the
order of or shorter than 10−20 s. The second limitation is normally lifted by using
qed to calculate, perturbatively, the corrections produced by the neglected radiative
terms. In sed, by contrast, advantage is taken of the fact that these radiative terms
are embedded in the original formulation, as shown in Chap. 6.

Moreover, as follows from Chap.4, the fact that the initial continuity equation for
the phase-space probability density is reduced to an equation in configuration space
for the local averaged dynamical variables, indicates that the ensuing (quantum)
description is incomplete, this incompleteness being due not solely to its statistical
nature, but also to the partial information it bears about the dynamics of the sys-
tem. Quantum mechanics provides the maximum possible information through the
statistical description of (an ensemble of) systems in a certain (radiationless) state.
The lost information about the system cannot be reconstructed by going in reverse
order, from the reduced x- or p-(or any other equivalent-) representation back to the
full phase-space description. An immediate consequence of this is that characteristic
quantum features—such as the existence of irreducible fluctuations (as encoded in
the Heisenberg inequalities), the inexistence of joint probabilities for noncommut-
ing operators, the negative probabilities,2 the apparent nonlocalities, the nonclassical
correlations due to entanglement, and so on—become difficult (if not impossible)
to understand from within qm. The physical mechanisms that account for the quan-
tumness are irreversibly concealed when the zpf, the main culprit, has been left out
of the picture.

From the present analysis we conclude that even if the description of Nature
afforded by present-day quantum mechanics is nonlocal, indeterministic, in some
instances noncausal,3 and free of trajectories and physical images, it strictly speak-
ing does not negate either physical or philosophical realism. It is when one assigns
the characteristics of the (partial, asymptotic and approximate) quantum description

2 We have in mind true probabilities. Negative ‘probabilities’ are consubstantial to the technique of
the so-called weak measurements, i.e., non-projective measurements (Aharonov et al. 1988).
3 There are other cases in theoretical physics where approximations transform an otherwise causal
theory into one that violates causality. Perhaps one of the best known examples is the Abraham-
Lorentz equation of motion. This equation is derived from a perfectly causal combination of
Maxwell’s theory and classical mechanics. The end result, the Abraham-Lorentz equation, can
however give rise to noncausal phenomena as preacceleration, the anticipated response to a future
force [see e.g. Eq. (4.42)]. Again in this case, the root of such noncausal behavior is to be found
in the approximations leading from the original causal full description to the final simplified (and
noncausal) one. Approximate physical theories are not bound to satisfy the same rigorous require-
ments that fundamental theories are supposed to fulfil; this is particularly true in what refers to
consistency with first principles.

http://dx.doi.org/10.1007/978-3-319-07893-9_6
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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to Nature itself, by assuming one or another of the (free) interpretative hypotheses
of present-day qm, that realism seems to stall. Reality is richer than that: both qm
and realism are alive, each one in its own province. Arguments as those that fol-
low from the present theory show that the frequently repeated dicta about quantum
noncausality, essential indeterminism, (irreducible) quantum fluctuations, (unex-
plained) nonlocality, and the like, normally attributed to Nature, are indeed an
attribute of the description. The most essential properties of the classical world
maintain their force at the quantum level, although a very specific not-less-powerful-
statistical quantum lawfulness emerges from the complexity of the situation.

10.1.1 Origin of Quantization

The fact that from an essentially stochastic theory in which dynamical variables can
acquire any value from among a continuum we arrived at a description in which
such variables may attain sure, i.e., nonstochastic, and discrete values, seems to be
a contradiction, or at least an obscure property. However, there is an explanation for
it, and a multifaceted one indeed. The more fundamental reason for the appearance
of sharp values for some dynamical variables (in particular the energy) is the highly
peaked resonant response of the mechanical system to certain field modes, when
energy balance and ergodicity are in place; this leads to a (radiationless) description
in terms of eigenvalues of Hilbert-space operators, corresponding to stable stationary
motions. Moreover, the quantum description leaves aside small fluctuations around
the corresponding eigenvalues (as explained in Chap.5), which thus appear as non-
fluctuating quantities. In other words, Nature is noisier than what the theoretical
description (in the quantum-mechanical, radiationless approximation) asserts.

By fixing the reduced set of stationary solutions that are robust with respect to the
fluctuations of the field and correspond to a local extremum (minimum) of the mean
energy, which makes them particularly stable as discussed in Chap. 4, the resulting
ergodicity can be considered the source of quantization in the present theory. At the
same time, it becomes intuitively clear that the demand of detailed energy balance
can be satisfied only by a selected (frequently discrete) set of motions. By its physical
content, the present explanation of quantization stands in sharp contrast to the usual
one related to the mathematical properties of the wave function—although they are
both formally equivalent, as seen in Chaps. 4 and 5. This issue acquires relevance if
the wave function is taken as a mathematical object, because even as such it must
satisfy conditions of continuity and single-valuedness. In fact these conditions on ψ
arise from physical demands (such as that of energy balance in the mean) and, very
importantly, from those imposed on the spatial distribution, the flux currents, and
so on. This stresses the importance of the fact that the theory leads naturally to the
Born rule, which assigns to the wave function its probabilistic meaning and related
properties.

http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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10.1.2 Recovering Realistic Images

As discussed in Chap. 8, the notion of trajectory is foreign to qm. This correct con-
clusion, however, is frequently translated to mean that in the real quantum systems
of Nature trajectories do not exist. This would force us to renounce the possibility
of constructing a realist image of what a quantum corpuscle is actually doing in
space and time, a ban that goes contrary to the precepts and results of the theory here
developed.

Since the origins of quantum mechanics, particularly through the foundational
work of Heisenberg (see e.g. Jammer 1966), the statement about the inexistence
of quantum trajectories has permeated almost every textbook on the subject. The
argument is founded on the Heisenberg inequalities, interpreted as saying that non-
commuting observables (e.g., position and momentum) imply not simultaneously
existing values. However, according to our exposition in previous chapters, the
Heisenberg inequalities express an acquired property of the statistical description—
ultimately originating in the fluctuations impressed on the particle by the zpf—once
the system reaches the time-asymptotic quantum regime. In other words, they set
a limit to the applicability of present-day theory, not an (ontic or epistemic) final
limit to our capability of apprehension of Nature, nor to the capacity of a single
corpuscle to follow a given (yet unknown) trajectory. Even if the individual trajecto-
ries become unrecoverable from the quantum-mechanical description, they exist in
nature; they are in fact present in the very initial description in terms of Eq. (4.2),
say, but disappear from the narrative in the quantum description as a result of its
(reduced) statistical nature. The absence of trajectories in the quantum description
is an obstacle of significance for the account of individual events, such as the deflec-
tion of single particles by a potential barrier or by the atoms of a crystal, and more
importantly, for the construction of a realistic image of the microscopic world.

Among the attempts to introduce hidden variables into quantum theory to recover
the hidden trajectories, the best known one is Bohm’s causal theory. According to
the view here advocated such attempts can have at most a partial success, since the
individual behavior of a particle becomes irretrievable once its stochastic motion has
been smoothed out by the local averaging process. The only sensible way to follow
the real trajectories would be to go back to the original equation of motion (4.2),
but even then there is the intrinsic problem of any stochastic description, namely
the specific realization of the field is unknown and with it also the specific particle
trajectory. The best and only thing one can do in any real situation is, therefore, to
resort to the statistical treatment of the problem.

In summary, this means that to the extent that the present theory is a sensible one,
the mere addition of hidden variables to the usual (reduced) quantum mechanical
description to recover determinism or realism is a very limited recourse. Even if
one completes the (quantized) theory by adding the (quantized) background field,
as is done in qed, the trajectory of a specific particle remains unknown. In other
words, within present-day knowledge an indeterministic description of the quantum
system results unavoidable. It is interesting to compare this conclusion with the old

http://dx.doi.org/10.1007/978-3-319-07893-9_8
http://dx.doi.org/10.1007/978-3-319-07893-9_4
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eagerness, expressed so many times by Einstein as his most tenacious devotee, for a
final description free of statistical elements. Unfortunately (for some), that is a goal
that seems difficult to attain.

10.2 Some Answers

In the following we list a number of conclusions that can be drawn from the develop-
ments, discussions and results presented in the body of this book. The list is intended
to address some of the main (physical and conceptual) difficulties associated with
the usual interpretations of quantummechanics mentioned in Chap.1, and to provide
a succinct picture of the way out of such difficulties as offered by present sed. Those
readers who have accompanied us throughout this long journey, will appreciate that
the assertions made emanate from the theory here advanced and do not ensue from
personal preconceptions or prejudices. The list contains what we consider are the
most relevant points, but of course it is by no means exhaustive.

• The quantum phenomenon is not intrinsic, neither to matter nor to the field, but
emerges from a complex process of matter-field interaction.

• The stochastic zero-point radiation field is the physical entity ultimately respon-
sible for such emergency.

• This applies in particular to the description of the thermal equilibrium radiation
field. No assumption of discreteness is required to arrive at the Planck distribution.

• The equilibrium eventually attained by matter and field is such that a (detailed)
balance exists between mean absorbed and radiated power at each frequency of
the background field. Radiative effects can then be neglected.

• In such time-reversible regime, the mechanical system satisfies ergodic properties.
Taken together, detailed energy balance and ergodicity define the quantum regime.

• Once in this regime, the evolution of the mechanical system is governed by the
quantum laws, in the formulations of Schrödinger and Heisenberg. Both formu-
lations are formally equivalent, yet they disclose different and complementary
aspects of the quantum machinery.

• The Schrödinger equation provides a reduced statistical description of an ensemble
of particles immersed in a stochastic environment. It is unable to afford in general
a detailed account of a single element of the ensemble.

• The Schrödinger equation contains the core of the stochastic source in the form of
Planck’s constant, which is a measure of the fluctuations impressed by the zpf.

• The spectral energy density of the zpf, proportional to ω3—and hence consistent
with special relativity and with the principle of inertia—is essential in ensuring
the stability of the ground state. This singles out the zpf as the physical field
responsible for atomic stability.

• The relatively high coherence of the modes of the zpf that sustain the stationary
solutions contrasts markedly with an uncorrelated noise, such as that leading to a
single asymptotic (Brownian) solution with purely stochastic motion.

http://dx.doi.org/10.1007/978-3-319-07893-9_1
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• The transitions between ‘stationary’ states (hence the states themselves) are deter-
mined by the extremely sharp resonances of the mechanical system to the back-
ground field.

• The operators and vectors in a Hilbert space are a powerful tool for the statistical
description in terms of possible states of the system—though they conceal the
physical mechanism sustaining such states, and give no idea of what is happening
in real three-dimensional space.

• In a given quantum state, the dynamical variables are controlled by certain modes
of the zpf. The noncommuting operators and the canonical quantum commutator
[x̂, p̂] are an imprint of this field.

• The Heisenberg inequalities refer to the minimum statistical variances of the vari-
ables, induced by the action of the zpf. The quantum fluctuations are causal fluc-
tuations due to the (random) field.

• The particles remain particles all the time and follow definite and causal (sto-
chastic) trajectories, but the description of these is beyond the possibilities of the
limited statistical treatment offered by quantum mechanics.

• The reduction of the complete statistical description from phase space to the con-
figuration subspace is the source of several of the most characteristic and deceitful
properties of the quantum systems.

• In particular, such reduction precludes the possibility to start from qm and arrive,
by purely logical steps, at a genuine (Kolmogorovian) phase-space distribution.
Such distribution exists, but is beyond the realm of qm.

• The local averaging process conceals the detailed dynamics in phase space and
leads to apparent nonlocalities. Therefore nonlocality exists, in the restricted sense
that it a feature of the quantum description, but it does not refer to an ontological
property of Nature. The reduction process leads to the artful transformation of the
original local description into a nonlocal one.

• In particular, the concealed momentum fluctuations reappear in configuration
space in the form of a strange contribution, conventionaly taken as an additional
(quantum) potential, despite its kinetic origin. This ‘potential’ is an entry point of
nonlocality and irreducible fluctuations in the quantum description.

• The resonant response to selected field modes explains the emergence of nonclas-
sical correlations between noninteracting particles. Partners that share common
relevant frequencies become entangled, and the high spatial coherence of the field
modes involved gives stability to the ensuing states.

• For identical particles subject to the same potential, the entanglement induced by
the zpf common modes is maximal and leads to the (anti)symmetry of the wave
function. The antisymmetry of the total electron wave function is rooted in the
entanglement of the spin states.

• There are no spooky actions at a distance. It is the zpf what connects the parties
and transforms the bipartite system into a single entity .

• The electron spin is an acquired property that ultimately emerges from the (rota-
tional) fluctuations impressed on the particle by the zpf. Its magnitude is hidden
in the fundamental quantum commutator (the signature of the zpf).
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• Associatedwith the spin (unavoidable, thus in a sense intrinsic) angularmomentum
is a gyromagnetic g-factor of value 2, derived from the two degrees of freedom of
the circular polarization of the zpf.

• A moving quantum corpuscle has a physical (de Broglie) wave associated to it.
The de Broglie wave possesses an electromagnetic origin, linked with the zpf. Yet
both entities keep their individual corpuscle and wavelike natures, respectively.

• The diffraction pattern formed by a beam of electrons sent through an array of
slits reflects the action on them by the diffracted zpf. The trajectories of individ-
ual particles convey and reproduce statistically the wave nature of the diffracted
background field.

• The theory defined by the starting Eq. (4.2) derives from a fundamental description
that has all the properties that a fundamental realist and objective physical theory
should possess: it is causal, deterministic and local. It accepts depictive images
and offers a space-time description, without the need to bring the observer into the
picture.

• The loss, total or partial, of any of the above mentioned traits, is a result of the
approximations, reductions and simplifications made in arriving at the ultimate
quantum description. Of particular relevance is the disappearance of the zero-point
field from the picture.

10.3 The Photon

The photon is the quantum of electromagnetic interactions. This commonplace state-
ment refers to the photon in interaction with matter—not to the photon itself. If we
try to find an answer to the simple question “What is a photon itself?” things become
blurred. This is fittingly reflected in the well-known confession by Einstein (1951)
to a life-long friend:

All these fifty years of conscious brooding have brought me not closer to the answer to the
question, ‘What are light quanta?’ Of course today every Tom, Dick and Harry thinks he
knows the answer, but he is deluding himself.

This popular sentence, written more than sixty years ago, is still very much alive. As
a token of this, we recall the discussion organized in 2003 by The Optical Society
(OSA) “to bring together different views regarding a question asked over the course
of centuries: ‘What is the nature of light?’” The editors of the meeting materials
(C. Roychoudhuri and R. Roy) write in response: “Despite significant progress in our
understanding, it remains an open question”, and with a similar bent A. Zajonc, one
of the contributors to the issue, declares “We are today in the same state of ‘learned
ignorance’ with respect to light as was Einstein.”4

4 The contributions to the cited supplement to Optics & Photonic News are collected in Roychoud-
huri and Roy (2003). The book Roychoudhuri et al. (2008) and the proceedings of subsequent
SPIE meetings under the same title "The Nature of Light: What are Photons?"contains an ample
collection of papers on the nature of the photon, showing the broad diversity of views and deep
contradictions still existing on this matter.

http://dx.doi.org/10.1007/978-3-319-07893-9_4
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The theory developed in Chap. 3 suggests a view of the quantized radiation field
that is closer to Planck’s than to Einstein’s, in the sense that the quantization of the
energy of each mode of the radiation field ensues as a consequence of matter-field
interaction, the field alone remaining continuous. This contrasts with the intrinsic
discrete structure of the radiation field, which is the reading that evolved into the
notion of photon (Kuhn 1978)—yet quantum field theory has generally adopted and
extended the heuristic point of view proposed by Einstein (1905). We recall that
Eq. (3.84)

〈 f (E)√ =
∫ ↑

0
Wg(E) f (E)dE

︸ ︷︷ ︸
continuous

= 1

Zg

↑∑

n=0

f (En)e−βEn

︸ ︷︷ ︸
discrete

(10.1)

for the mean equilibrium value of a function f (E) was derived without any quantum
assumption, but can be read both in terms of a continuous energy distribution or a
discrete set of energy eigenstates. It is also true that such energy eigenvalues are
never captured exactly in the lab, due to the unavoidable fluctuations (line breadth,
and so on), which tend to give a more continuous structure to the energy distribution.

It seems interesting to make a short review of the most usual ‘definitions’ of
the photon. This is a complex task, given their diversity, so we restrict ourselves to
some representative examples. Probably the most extended one is precisely the early
concept proposed by Einstein himself in (1909) of the photon as a “singular point
just like the occurrence of electrostatic fields according to the electron theory”, i.e.,
a singularity surrounded by the electromagnetic field of light of Maxwell’s theory.
The present-day qed definition of the photon as the unit of excitation associated
with a quantized mode of the radiation field (a state of Fock space) does not throw
much light on the structure of such quantum, normally understood—or wanted to be
understood—as a localized ‘particle’, but described as an infinitely extended entity.
Again, this goes somewhat beyondwave-particle duality, since the definition includes
momentum, energy and polarization, but eludes position and time. As Zajonc (2003)
puts it “Location in space and in time is no longer a means for theoretically distin-
guishing photons as elementary particles”. Indeed it is well known, since the work
of Newton and Wigner (1949), that there is no Hermitian operator that befittingly
corresponds to position for photons.5,6 As Bohm (1951) puts it in an introductory

5 Newton and Wigner showed that it is not possible to define any position operator for a massless
free particle with a nonzero spin, in sharp contrast to the case of massive particles, which can be
localized. This is clearly in contradiction to the almost familiar notion of ‘position of a photon’, as
one basic ingredient of the intended theoretical description.
6 Einstein’s photon of (1909) is defined by E = cp = �ω. It was in 1916 that he added awell-defined
direction to the photon, transforming it into a ‘needle of radiation’. On the other hand, Wigner’s
(Footnote 6 continued)
photon is its helicity, which is a Lorentz-invariant concept coming from a subgroup of the Lorentz
group for massless particles.

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_3
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account: “There is, strictly speaking, no function that represents the probability of
finding a light quantum at a given point. If we choose a region large compared with
a wavelength, we obtain approximately P(x) ↓ (

E2(x) + H2(x)
)
/8πhν(x), but if

this region is defined too well, ν(x) has no meaning.”
The single photon is frequently defined not by its intrinsic properties, but by

its capabilities, such as its ability to trigger a single photodetection event. There is
then no word about the spatial distribution, because the photon becomes defined
by the entire excited optical system, which may be a closed or an open one. For
the closed system a single standing-wave mode happens to be enough, whereas in
the open case a traveling wavepacket is required. In either case the same energy
of one quantum of light, �ω, is considered distributed over the entire apparatus,
without a hint as to the localization of the photon. Despite this and other similar
obscurities, it is usually asserted that both wave and particle properties are present
in the quantum description, considering that the corpuscle aspect is fully described
by the language of particle creation and annihilation. The definition reduces then to
a description of the mathematics: we are invited to conceive the photon as a discrete
excitation of a mode or a set of modes {k} of the electromagnetic field in some cavity
(see e.g. Muthukrishan et al. 2008). Going to the extreme along this direction of
defining the photon by its capabilities, we find the jocund pragmatic definition by
Glauber “A photon is what a photodetector detects.” And in the most instrumentalist
vein Muthukrishan et al. (2008) add “A photon is where the photodetector detects
it.”, whatever the size of the detector. Thus the photon extends in the literature
from at least the size of the interferometer to that of an atom, or smaller. It would
perhaps be more suitable to say that a photon ends its life where and when the
photodetector detects it. On the other hand, one can read here and there of the
photon as if it were already well established and experimentally confirmed that
it is something like a minuscule localized object with well-defined frequency and
wavelength (however, see e.g. Raymer and Srinivasan 2012). We find nevertheless
that the photon of qed continues to be something radically different from a localized
dimensionless corpuscle, quite far from the initial image conceived by Einstein that
comes frequently to the physicist’s mind; indeed, not a more or less localized entity,
but something that may be distributed over the interferometer or the resonant cavity.

However, whatwe find common to all descriptions of the photon is the coexistence
of two key elements: (a) the photon is an individualized structure, integral part of an
electromagnetic field, and (b) it is capable of transferring a mean energy �ω (from
a stationary single mode or from a traveling wave-packet). It can be identified as an
independent excitation of the electromagnetic field. This coincides with the image
that emerges from the theory developed in Chap.3; thus, the expression (3.71) for
the fluctuations contains both a particulate and a continuous element.7 As discussed

7 The coexistence of both aspects in quantum behavior has meanwhile become an experimen-
tally verified fact; see Aldemade et al. (1966), Kattke and Ziel (1970). For more recent work on
(Footnote 7 continued)
complementarity see e.g. Jaeger et al. (1995), Englert (1996), Engert and Bergou (2000), Liu et al.
(2009) and Flores and de Tata (2010).

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_3
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earlier, the latter is immediately understood as a manifestation of the Maxwell field.
The former, ascribed by Einstein to a spatial discreteness of the field, expresses the
effects of the zero-point field, according to what we have learned in Chap.3. Thus
the photon is more than a classical Maxwell wave plus the active zpf: it appears as
a packet of the radiation field resulting from its interaction with matter. The field
continues to be a field all the time, even if it gains some organization.

As a quantum of the radiation field, the photon appears in the theory, particularly
in qed, only interacting (locally) with matter. Indeed, qed is used to describe the
mutual effects of matter and field in interaction; this is the standing point fromwhich
the present-day notion of photon acquires sense. This standpoint is extended to the
free field, assuming that also it requires quantization. However, the free field is an
unobserved entity, with properties that are in principle beyond our reach. We have
no more ground to assume that the free field is quantized, than the heuristic proposal
of Einstein for mathematical continuity and physical simplicity of the description.
We must be aware that this is an unverifiable extrapolation.

In the present sed account, further to the appearance of the quantized energy of the
field in thermal equilibrium with matter (Chap. 3), little contact has been made with
the photon. One exception (that addresses the issue only indirectly) is the analysis
of radiative corrections presented in Chap. 6, leading to the well-known formulas for
the Einstein A and B coefficients for the atomic lifetimes. These formulas clearly
imply emission or absorption of a well-defined quantum of energy. In connection
with this, we must recall the fact (already discussed above) that in the ergodic regime
the atom responds resonantly to field modes of definite frequencies given precisely
by the formula �ω = �E connecting the energy levels. Therefore, the quantum of
photonic energy exchanged between atom and field is in the picture—in relation
with radiative processes occurring in matter. An extended sed theory that looks at
the entire field-matter system, instead of focusing just on its material part as was
done here, should help clarify the nature of the photon.

10.4 Limitations and Extensions of the Theory

To extend the scope of the theory presented in this book, several of the simplifications,
reductions and approximations made along its development should be avoided or
superseded. An immediate one is our use of a one-dimensional Fourier expansion of
the zpf in both Chaps. 4 and 5, instead of the four-dimensional Fourier expansion
proper of qed. This implied averaging over the directions of the wave vectors k
for each frequency ωk, as well as over the states of polarization of the field (except
for the analysis of spin, which demanded a separation of the polarization modes).
Such averaging limits the scope of the theory from its very beginning and entails
the loss of important information, particularly when attempting to construct a more
detailed description of the field, to determine higher order corrections, or even to
be able to study regions of space, time or matter subject to extreme conditions, as
occur in somany situations envisaged by present day cosmology. Similarly, the entire

http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_3
http://dx.doi.org/10.1007/978-3-319-07893-9_6
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_5
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treatment is nonrelativistic, and the Lorentz force has been restricted to its electric
component and considered in the dipole (long-wavelength) approximation. Of major
significance is the reduction of the description from the entire phase space to the
configuration space of the particle; the theory is, consequently, unable to describe
very fast processes, since its validity is restricted to small values of the Fourier
variable z in Eq. (4.47), such that pz ◦ 1.

Although the original equations of motion introduced in Chaps. 4 and 5 govern
the evolution of the entire system at any given time, their mathematical complexity
forced us to focus attention on the solutions near energy balance, when assumptions
about ergodicity and stationarity can be reasonablymade. Thismeans that the detailed
evolution of both the field and the material system during the transient phase from
the initial nonequilibrium situation to the quantum regime has not been analyzed.
The Heisenberg inequalities, in particular, hold only once the quantum regime is
attained. So for extremely short time intervals they can be violated, and although this
possibility seems to be difficult to verify at present, it remains open in principle (an
example of such possibility is proposed in Sect. 8.1.1 of The Dice).

It seems marvelous that after such miscellany of curtailments and approxima-
tions, the resulting description, quantummechanics, manifests itself so powerful and
precise as it is known to be. Clearly, each one of these simplifications makes the
ensuing theory to depart from the capabilities of a more complete description—and
of qed in particular. This explains why, in making contact with qed, the analy-
sis has been restricted to the lowest significative order of approximation (obtaining
results that are in full agreement with those of qed). To overcome the limitations of
the present theory one should in principle resort to the full phase-space description
of the matter-field system. This should help to solve the known problems with the
phase space descriptions, of which the Wigner function is the prototype. Of course,
the indeterministic description will persist, but the extended theory would offer a
finer and fairer description of Nature.

One virtue of the present treatment is that it can help to open opportunities to
explore provinces unknown to all three, qm, qed and sed. This is perhaps its most
important contribution. Clearly the present theorymay—and should—be generalized
in several directions. From among the wide range of possibilities let us mention one
that seems to be most attractive.

Since the very early days of sed, the possibility of considering space-time metric
fluctuations as responsible for the fundamental stochasticity of the quantum world
has been entertained. Two immediate advantages are obvious. One is its universality,
since all forms ofmatter and energy are subject to gravitational interaction. This gives
an ecumenical answer to the frequent question in sed about neutral particles. An even
more significant advantage of such theory would be that it could integratenaturally

http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_4
http://dx.doi.org/10.1007/978-3-319-07893-9_5
http://dx.doi.org/10.1007/978-3-319-07893-9_8


10.4 Limitations and Extensions of the Theory 343

aspects of both, quantum theory and general relativity, a most desirable property for
a theory that should help pave the road to quantum gravity. If such view of nature—
intermediate between our present-day quantum theory and the would-be quantum
theory of gravity—may be of any help, is something to be explored.

The observation that the vacuum energy fluctuations should give rise to fluctu-
ations of the metric at small distances, has been considered in different contexts
and from various points of view. Already in a work by Einstein (1924) stochas-
tic fluctuations of the metric tensor are enterntained as a possible representation
of a real, all-pervading material field. Both the mathematical and the physical side
of the fluctuating geometry problem have received some attention over the years.
The mathematicians have worked on the construction of different types of statistical
geometries and their probabilistic topologies, a subject that is of much interest at
present. On their part, de Broglie, Rosen, and Blokhintsev, among others, studied
time ago the metric fluctuations as a source of the quantum fluctuations; the results
appear scattered in the literature, without having led to an accomplished theory (a
list of references up to approximately 1980 is given in Vigier 1982). A renewed
interest seems to be flourishing, with different and more actual ideas and viewpoints
(we refer for example toCarlton 1976;Namsrai 1986; Petroni andVigier 1984;Bergia
et al. 1989; Bergia 1991; Sorkin 1994; Santos 2006; Giovannini 2008; Gasperini
2011) . The connections between a phenomenological description of the fluctuations
of the metric and the stochastic theory of quantum mechanics, among other things,
have been explored by Roy (1986, 1992) and more recently in Vasudevan et al.
(2008), whereas in their formulation of geometrodynamics, Bergia et al. (1989) have
considered a model within the Kaluza-Klein framework. Several related aspects of
the subject are currently under study, though with emphasis on the relativistic aspect,
rather than its quantum implications. It would be premature to draw definitive con-
clusions about the merits and possibilities of such work; nevertheless, it is clear that
they are worth further efforts.

The most ambitious task for present-day theoretical physics is just the develop-
ment of a unified theory of the forces of nature. The efforts invested, both human
and economic, in the search of such theory have been considerable, and the results
for physics still quite limited. The two theories that give support to such efforts are
general relativity and quantum mechanics. Present-day quantum theory, with all its
conundrums, is being used in the search for a theory that pretends to describe the
world as it is supposed to be fifteen or more orders of magnitude apart from our
present scale of energies and times. This means transferring to the supposedly fun-
damental theory the problems and confusions that beset quantum theory today—and
with an amplified dose of ignorance. Before taking such bold and unwarranted step
it is best to clean the house and disclose the rich physics that remains invisible to the
usual quantum description. Here we offer a contribution to this task.
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