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Abstract. Given a social network represented by a graph G, we consider the
problem of finding a bounded cardinality set of nodes S with the property that
the influence spreading from S in G is as large as possible. The dynamics that
govern the spread of influence is the following: initially only elements in S are in-
fluenced; subsequently at each round, the set of influenced elements is augmented
by all nodes in the network that have a sufficiently large number of already influ-
enced neighbors. While it is known that the general problem is hard to solve —
even in the approximate sense — we present exact polynomial time algorithms
for trees, paths, cycles, and complete graphs.

Keywords: Social Networks, Spread of Influence, Viral Marketing, Dynamic
Monopolies, Exact Polynomial Time Algorithms.

1 The Motivations

Gaming giant FONY R© is about to launch its brand new console PlayForFUN-7 R©, and
intends to maximize the adoption of the new product through a massive viral marketing
campaign, exploiting the human tendency to conform [4].

This tendency occurs for three reasons: a) the basic human need to be liked and
accepted by others [5]; b) the belief that others, especially a majority group, have more
accurate and trustworthy information than the individual [29]; c) the “direct-benefit”
effect, implying that an individual obtains an explicit benefit when he/she aligns his/her
behavior with the behavior of others (e.g., [20], Ch. 17).

In the case in point, argument c) is supported by the fact that each player who buys
the PlayForFUN-7 console will be able to play online with all of the people who already
have bought the same console. Indeed, the (possible) success of an on-line gaming
service comes from its large number of users; if this service had no members, there
would be no point to anyone signing up for it. But as people begin using the service, the
benefit for more people to sign up increases due to the increasing opportunities to play
games with others online. This motivates more people to sign up for the service which
further increases the benefit.
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FONY is also aware that the much-feared competitor Nanosoft R© will soon start to
flood the market with a very similar product: FUNBox-14. For this reason, it is crucial
to quickly spread the awareness of the new console PlayForFUN-7 to the whole market
of potential customers.

The CEO of FONY enthusiastically embraced the idea of a viral marketing cam-
paign1, and instructed the FONY Marketing Division to plan a viral marketing cam-
paign with the following requirements: 1) an initial set of influential people should be
targeted and receive a complimentary personalized PlayForFUN-7 station (because of
budget restrictions, this set is required to be small); 2) the group of influential people
must be judiciously chosen so as to maximize the spread of influence within the set of
potential PlayForFUN-7 buyers; 3) the spread of influence must happen quickly.

To comply with the CEO desiderata, FONY Marketing Division analyzed the be-
havior of players in the network during the past few years (i.e., when players bought
the latest console, how many games they bought, how many links/friends they have in
the network, and how long they play on average every week). On the basis of this
analysis, an estimate of each player’s tendency to conform was made, and the fol-
lowing mathematical model was put forward. The network of players is represented
by a graph G = (V,E), where V is the set of players, and there is an edge be-
tween two players if those two players are friends in the network. The individual’s
tendency to conform is quantified by a function t : V −→ N = {0, 1, 2, . . .}, with
easy-to-convince players having “low” t(·) values, and hard-to-convince players hav-
ing “high” t(·) values. If S ⊆ V is any initial set of targeted people (target set),
then an influence spreading process in G, starting at S, is a sequence of node sub-
sets Influenced[S, 0] ⊆ Influenced[S, 1] ⊆ . . . ⊆ Influenced[S, ρ] ⊆ . . . ⊆ V, such
that

Influenced[S, 0] = S

and for all ρ > 0,

Influenced[S, ρ] = Influenced[S, ρ−1] ∪
{
u :

∣∣N(u)∩Influenced[S, ρ−1]
∣∣ ≥ t(u)

}
,

where N(u) is the set of neighbors of u. In words, an individual v becomes influenced
if the number of his influenced friends is at least its threshold t(v). It will be said that
v is influenced within round ρ if v ∈ Influenced[S, ρ]; v is influenced at round ρ > 0 if
v ∈ Influenced[S, ρ] \ Influenced[S, ρ− 1].

Using this terminology and notation, we can formally state the original problem as:

(λ, β)-MAXIMALLY INFLUENCING SET ((λ, β)-MIS).
Instance: A graph G = (V,E), thresholds t : V −→ N, a latency bound λ ∈ N and a
budget β ∈ N.
Question: Find a set S ⊆ V such that |S| ≤ β and |Influenced[S, λ]| is as large as
possible.

1 “If politicians can sell their stuff through a viral marketing campaign [9, 25, 30], then why not
us?”, an unconfirmed source claims the CEO said.
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2 The Context

It did not spoil the fun(!) of FONY Marketing Division to learn that (variants of) the
(λ, β)-MIS problem have already been studied in the scientific literature. We shall limit
ourselves here to discussing the work that is most directly related to ours, and refer the
reader to the monographs [13, 20] for an excellent overview of the area. We just mention
that our results also seem to be relevant to other areas, like dynamic monopolies [21, 27]
for instance.

The first authors to study the spread of influence in networks from an algorithmic
point of view were Kempe et al. [23, 24]. However, they were mostly interested in
networks with randomly chosen thresholds. Chen [11] studied the following minimiza-
tion problem: given a graph G and fixed thresholds t(v), find a set of minimum size
that eventually influences all (or a fixed fraction of) nodes of G. He proved a strong
inapproximability result that makes unlikely the existence of an algorithm with approx-
imation factor better than O(2log

1−ε |V |). Chen’s result stimulated a series of papers
[1, 6, 7, 10, 14–17, 19, 22, 28, 31], that isolated interesting cases in which the problem
(and variants thereof) becomes tractable.

None of these papers considered the number of rounds necessary for the spread of in-
fluence in the network. However, this is a relevant question for viral marketing in which
it is quite important to spread information quickly. Indeed, research in Behavioural Eco-
nomics shows that humans make decisions mostly on the basis of very recent events,
even though they might remember much more [2, 12]. The only paper known to us that
has studied the spread of influence in the same diffusion model that we consider here,
and with constraints on the number of rounds in which the process must be completed,
is [18]. How our results are related to [18] will be elucidated in the next section. Finally,
we point out that Chen’s [11] inapproximability result still holds for general graphs if
the diffusion process must end in a bounded number of rounds.

3 The Results

Our main results are polynomial time algorithms to solve the (λ, β)-MIS problem on
Trees, Paths, Cycles, and Complete graphs, improving and extending some results from
[18]. In particular, the paper [18] put forward an algorithmic framework to solve the
(λ, β)-MIS problem (and related ones), in graphs of bounded clique-width. When in-
stantiated on trees, the approach of [18] would give algorithms for the (λ, β)-MIS prob-
lem with complexity that is exponential in the parameter λ, whereas our algorithm has
complexity polynomial in all the relevant parameters (cf., Theorem 1). We should also
remark that, in the very special case λ = 1 and thresholds t(v) = 1, for each v ∈ V ,
problems of influence diffusion reduce to well known domination problems in graphs
(and variants thereof). In particular, when λ = 1 and t(v) = 1, for each v ∈ V , our
(λ, β)-MAXIMALLY INFLUENCING SET problem reduces to the MAXIMUM COVER-
AGE problem considered in [8]. Therefore, our results can also be seen as far-reaching
generalizations of [8].
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4 (λ, β)-Maximally Influencing Set on Trees

In this section, we give an algorithm for the (λ, β)-MAXIMALLY INFLUENCING SET

problem on trees. Let T = (V,E) be a tree, rooted at some node r. Once such a rooting
is fixed, for any node v, we denote by T (v) the subtree rooted at v. We will develop a
dynamic programming algorithm that will prove the following theorem.

Theorem 1. The (λ, β)-MAXIMALLY INFLUENCING SET problem can be solved in
time
O(min{nΔ2λ2β3, n2λ2β3}) on a tree with n nodes and maximum degree Δ.

The rest of this section is devoted to the description and analysis of the algorithm
that proves Theorem 1. The algorithm traverses the input tree T bottom up, in such a
way that each node is considered after all its children have been processed. For each
node v, the algorithm solves all possible (λ, b)-MIS problems on the subtree T (v), for
b = 0, 1, . . . , β. Moreover, in order to compute these values we will have to consider
not only the original threshold t(v) of v, but also the decreased value t(v)−1 which we
call the residual threshold. In the following, we assume without loss of generality that
0 ≤ t(u) ≤ d(u) + 1 (where d(u) denotes the degree of u) holds for all nodes u ∈ V
(otherwise, we can set t(u) = d(u) + 1 for every node u with threshold exceeding its
degree plus one without changing the problem).

Definition 1. For each node v ∈ V , integers b ≥ 0, t ∈ {t(v) − 1, t(v)}, and ρ ∈
{0, 1, . . . , λ} ∪ {∞}, let us denote by MIS[v, b, ρ, t] the maximum number of nodes
that can be influenced in T (v), within round λ, assuming that

– at most b nodes among those in T (v) belong to the target set;
– the threshold of v is t;
– the parameter ρ is such that

1) if ρ = 0 then v must belong to the target set, (1)

2) if 1 ≤ ρ ≤ λ then v is not in the target set and at least t of its children are active

within round ρ− 1, (2)

3) if ρ = ∞ then v is not influenced within round λ. (3)

We define MIS[v, b, ρ, t] = −∞ when any of the above constraints is not satisfiable.
For instance, if b = ρ = 0 we have2 MIS[v, 0, 0, t] = −∞.

Denote by S(v, b, ρ, t) any target set attaining the value MIS[v, b, ρ, t].

We notice that in the above definition if 1 ≤ ρ ≤ λ then, the assumption that v has
threshold t implies that v is influenced within round ρ and is able to influence its neigh-
bors starting from round ρ+ 1. The value ρ = ∞ means that no condition are imposed
on v: It could be influenced after round λ or not influenced at all. In the sequel, ρ = ∞
will be used to ensure that v will not contribute to the influence any neighbor (within
round λ).

2 Since ρ = 0 then v should belong to the target set, but this is not possible because the budget
is 0.
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Remark 1. It is worthwhile mentioning that MIS[v, b, ρ, t] is monotonically non-
decreasing in b and non-increasing in t. However, MIS[v, b, ρ, t] is not necessarily
monotonic in ρ.

The maximum number of nodes in G that can be influenced within round λ with any
(initial) target set of cardinality at most β can be then obtained by computing

max
ρ∈{0,1,...,λ,∞}

MIS[r, β, ρ, t(r)]. (4)

In order to obtain the value in (4), we compute MIS[v, b, ρ, t] for each v ∈ V, for each
b = 0, 1, . . . , β, for each ρ ∈ {0, 1, . . . , λ,∞}, and for t ∈ {t(v)− 1, t(v)}.

We proceed in a bottom-up fashion on the tree, so that the computation of the various
valuesMIS[v, b, ρ, t] for a node v is done after all the values for v’s children are known.

For each leaf node � we have

MIS[�, b, ρ, t] =

⎧
⎪⎨
⎪⎩

1 if (ρ = 0 AND b ≥ 1) OR (t = 0 AND 1 ≤ ρ ≤ λ)

0 if ρ = ∞
−∞ otherwise.

(5)

Indeed, a leaf � gets influenced, in the single node subtree T (�), only when either �
belongs to the target set (ρ = 0) and the budget is sufficiently large (b ≥ 1) or the
threshold is zero (either t = t(�) = 0 or t = t(�)− 1 = 0) independently of the number
of rounds.

For an internal node v, we show how to compute each value MIS[v, b, ρ, t] in time
O(d(v)2λβ2).

We recall that when computing a value MIS[v, b, ρ, t], we already have computed
all the MIS[vi, ∗, ∗, ∗] values for each child vi of v.
We distinguish three cases for the computation of MIS[v, b, ρ, t] according to the value
of ρ.

CASE 1: ρ = 0. In this case we assume that b ≥ 1 (otherwise MIS[v, 0, 0, t] = −∞).
Moreover, we know that v ∈ S(v, b, 0, t) hence the computation of MIS[v, b, 0, t] must
consider all the possible ways in which the remaining budget b − 1 can be partitioned
among v’s children.

Lemma 1. It is possible to compute MIS[v, b, 0, t], where b ≥ 1, in time O(dλb2),
where d is the number of children of v.

Proof. Fix an ordering v1, v2, . . . , vd of the children of node v.
For i = 1, . . . , d and j = 0, . . . , b − 1, let AMAXv[i, j] be the maximum number of
nodes that can be influenced, within λ rounds, in T (v1), T (v2), . . . , T (vi) assuming that
the target set contains v and at most j nodes among those in T (v1), T (v2), . . . , T (vi).

By (1) we have

MIS[v, b, 0, t] = 1 +AMAXv[d, b− 1]. (6)

We now show how to compute AMAXv[d, b− 1] by recursively computing the values
AMAXv[i, j], for each i = 1, 2, . . . , d and j = 0, 1, . . . , b− 1.



How to go Viral: Cheaply and Quickly 105

For i = 1, we assign all of the budget to T (v1) and

AMAXv[1, j] = max
ρ1,t1

{MIS[v1, j, ρ1, t1]},

where ρ1 ∈ {0, . . . , λ,∞}, t1 ∈ {t(v1), t(v1)− 1}, and if t1 = t(v1) − 1 then
ρ1 ≥ 1.

For i > 1, we consider all possible ways of partitioning the budget j into two values
a and j − a, for each 0 ≤ a ≤ j. The budget a is assigned to the first i − 1 subtrees,
while the budget j − a is assigned to T (vi). Hence,

AMAXv[i, j] = max
0≤a≤j

{
AMAXv[i− 1, a] + max

ρi,ti
{MIS[vi, j − a, ρi, ti]}

}

where ρi ∈ {0, . . . , λ,∞}, ti ∈ {t(vi), t(vi) − 1}, and if ti = t(vi) − 1 then
ρi ≥ 1.

The computation of AMAXv comprises O(db) values and each one is com-
puted recursively in time O(λb). Hence we are able to compute it, and by (6), also
MIS[v, b, 0, t], in time O(dλb2).

CASE 2: 1 ≤ ρ ≤ λ. In this case v is not in the target set and at round ρ − 1 at
least t of its children must be influenced. The computation of a value MIS[v, b, ρ, t]
must consider all the possible ways in which the budget b can be partitioned among v’s
children in such a way that at least t of them are influenced within round ρ− 1.

Lemma 2. For each ρ = 1, . . . , λ, it is possible to compute MIS[v, b, ρ, t] recursively
in time O(d2λb2), where d is the number of children of v.

Proof. Fix any ordering v1, v2, . . . , vd of the children of the node v.
We first define the values BMAXv,ρ[i, j, k], for i = 1, . . . , d, j = 0, . . . , b, and k =
0, . . . , t.
If i ≥ k, we define BMAXv,ρ[i, j, k] to be the maximum number of nodes that can be
influenced, within λ rounds, in the subtrees T (v1), T (v2), . . . , T (vi) assuming that

– v is influenced within round ρ;
– at most j nodes among those in T (v1), T (v2), . . . , T (vi) belong to the target set;
– at least k among v1, v2, . . . , vi, will be influenced within round ρ− 1.

We define BMAXv,ρ[i, j, k] = −∞ when the above constraints are not satisfiable. For
instance, if i < k we have BMAXv,ρ[i, j, k] = −∞.

By (2) and by the definition of BMAX , we have

MIS[v, b, ρ, t] = 1 +BMAXv,ρ[d, b, t]. (7)

We can compute BMAXv,ρ[d, b, t] by recursively computing the values of
BMAXv,ρ[i, j, k] for each i = 1, 2, . . . , d, for each j = 0, 1, . . . , b, and for each
k = 0, 1, . . . , t, as follows.

For i = 1, we have to assign all the budget j to the first subtree of v. Moreover, if
k = 1, then by definition v1 has to be influenced before round ρ and consequently we
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can not use threshold t(v1) − 1 (which assumes that v contributes to the influence of
vi). Hence, we have

BMAXv,ρ[1, j, k] =

⎧
⎪⎨
⎪⎩

maxρ1,t1{MIS[v1, j, ρ1, t1]}, if k = 0

maxδ{MIS[v1, j, δ, t(v1)]}, if k = 1

−∞, otherwise,

(8)

where
– ρ1 ∈ {0, . . . , λ,∞}
– t1 ∈ {t(v1), t(v1)− 1}
– if t1 = t(v1)− 1 then ρ1 ≥ ρ+ 1
– δ ∈ {0, . . . , ρ− 1}.

The third constraint ensures that we can use a reduced threshold on v1 only after the
father v has been influenced.

To show the correctness of equation (8), one can (easily) check that, for k < 2, any
target set solution S that maximizes the value on the left side of the equation is also a
feasible solution for the value on the right, and vice versa.

For i > 1, as in the preceding lemma, we consider all possible ways of partitioning
the budget j into two values a and j − a. The budget a is assigned to the first i − 1
subtrees, while the remaining budget j − a is assigned to T (vi). Moreover, in order to
ensure that at least k children of v, among children v1, v2, . . . , vi, will be influenced
before round ρ, there are two cases to consider: a) the k children that are influenced
before round ρ are among the first i− 1 children of v. In this case vi can be influenced
at any round and can use a reduced threshold; b) only k − 1 children among nodes
v1, v2, . . . , vi−1 are influenced before round ρ and consequently vi has to be influenced
before round ρ and cannot use a reduced threshold. Formally, we prove that

BMAXv,ρ [i, j, k]=max
{
max0≤a≤j

ρi,ti

(BMAXv,ρ[i−1, a, k]+MIS[vi, j−a, ρi, ti]),

max0≤a≤j
δ

(BMAXv,ρ[i−1, a, k−1] +MIS[vi, j−a, δ, t(vi)])
}

(9)

where

– ρi ∈ {0, . . . , λ,∞}
– ti ∈ {t(vi), t(vi)− 1}
– if ti = t(vi)− 1 then ρi ≥ ρ+ 1
– δ ∈ {0, . . . , ρ− 1}.

In the following we show the correctness of equation (9). First we show that

BMAXv,ρ[i, j, k] ≤max
{

max
0≤a≤j
ρi,ti

(BMAXv,ρ[i−1, a, k] +MIS[vi, j−a, ρi, ti]),

max
0≤a≤j

δ

(BMAXv,ρ[i−1, a, k−1] +MIS[vi, j−a, δ, t(vi)])
}

Let S ⊆ ⋃i
z=1 T (vz) be a feasible target set solution that maximizes the number of

nodes that can be influenced, within λ rounds, in the subtrees T (v1), T (v2), . . . , T (vi)
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and satisfies the constraints defined in the definition of BMAXv,ρ[i, j, k]. Hence |S| ≤
j. We can partition S into two sets Sa, where |Sa| ≤ a, and Sb (|Sb| ≤ j − a) in such a
way that Sa ⊆ ⋃i−1

z=1 T (vz) while Sb ⊆ T (vi). Since S satisfies the constraints defined
in the definition of BMAXv,ρ[i, j, k], we have that, starting with S, at least k children
of v, among children v1, v2, . . . , vi, will be influenced before round ρ. Hence, starting
with Sa, at least k−1 children of v, among children v1, v2, . . . , vi−1, will be influenced
before round ρ. We distinguish two cases:

– If Sa influences k− 1 children of v, among children v1, v2, . . . , vi−1, before round
ρ, then we have that Sb must also influence vi before round ρ. Hence Sa is a feasible
solution for BMAXv,ρ[i−1, a, k−1] and Sb is a feasible solution for
maxδ{MIS[vi, j−a, δ, t(vi)]}.

– On the other hand when Sa influences at least k children of v,
among children v1, v2, . . . , vi−1, before round ρ then Sa is a feasi-
ble solution for BMAXv,ρ[i−1, a, k] and Sb is a feasible solution for
maxρi,ti{MIS[vi, j−a, ρi, ti]}.

In either case we have that the solution S is also a solution for the right side of the
equation. Perfectly similar reasoning can be used to show that

BMAXv,ρ[i, j, k] ≥max
{

max
0≤a≤j
ρi,ti

(BMAXv,ρ[i−1, a, k] +MIS[vi, j−a, ρi, ti]),

max
0≤a≤j

δ

(BMAXv,ρ[i−1, a, k−1] +MIS[vi, j−a, δ, t(vi)])
}

and hence equation (9) is proved.
The computation of BMAXv,ρ comprises O(d2b) values (recall that t ≤ d+2) and

each one is computed recursively in time O(λb). Hence we are able to compute it, and
by (7), also MIS[v, b, ρ, t], in time O(d2λb2).

CASE 3: ρ = ∞. In this case we only have to consider the original threshold t(vi)
for each child vi of v. Moreover, we must consider all the possible ways in which the
budget b can be partitioned among v’s children.

Lemma 3. It is possible to compute MIS[v, b,∞, t] in time O(dλb2), where d is the
number of children of v.

Proof. Fix any ordering v1, v2, . . . , vd of the children of the node v.
For i = 1, . . . , d and j = 0, . . . , b, let CMAXv[i, j] be the maximum number of nodes
that can be influenced, within λ rounds, in T (v1), T (v2), . . . , T (vi) assuming that

– v will not be influenced within λ rounds and
– at most j nodes, among nodes in T (v1), T (v2), . . . , T (vi), belong to the target set.

By (3) and by the definition of CMAX , we have

MIS[v, b,∞, t] = CMAXv[d, b]. (10)
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We can compute CMAXv[d, b] by recursively computing the values CMAXv[i, j] for
each i = 1, 2, . . . , d and for each j = 0, 1, . . . , b, as follows.
For i = 1, we can assign all of the budget to the first subtree of v and we have

CMAXv[1, j] = max
ρ1

{MIS[v1, j, ρ1, t(v1)]}

where ρ1 ∈ {0, . . . , λ,∞}.
For i > 1, we consider all possible ways of partitioning the budget j into two values a
and j−a, for each 0 ≤ a ≤ j. The budget a is assigned to the first i− 1 subtrees, while
the remaining budget j − a is assigned to T (vi). Hence, the following holds:

CMAXv[i, j] = max
0≤a≤j

{
CMAXv[i− 1, a] + max

ρi

{MIS[vi, j − a, ρi, t(vi)]}
}

where ρi ∈ {0, . . . , λ,∞}.
The computation of CMAXv comprises O(db) values and each one is computed

recursively in time O(λb). Hence, by (10), we are able to compute MIS[v, b,∞, t] in
time O(dλb2).

Thanks to the three lemmas above we have that for each node v ∈ V, for each b =
0, 1, . . . , β, for each ρ = 0, 1, . . . , λ,∞, and for t ∈ {t(v) − 1, t(v)}, MIS[v, b, ρ, t]
can be computed recursively in time O(d(v)2λβ2). Hence, the value

max
ρ∈{0,1,...,λ,∞}

MIS[r, β, ρ, t(r)]

can be computed in time
∑
v∈V

O(d(v)2λβ2)×O(λβ)=O(λ2β3)×
∑
v∈V

O(d(v)2)=O(min{nΔ2λ2β3, n2λ2β3}),

where Δ is the maximum node degree. Standard backtracking techniques can be used
to compute a target set of cardinality at most β that influences this maximum number
of nodes in the same O(min{nΔ2λ2β3, n2λ2β3}) time. This proves Theorem 1.

5 (λ, β)-Maximally Influencing Set on Paths, Cycles, and
Complete Graphs

The results of Section 4 obviously include paths. However, we are able to significantly
improve on the computation time for paths.

Let Pn = (V,E) be a path on n nodes v1, v2, . . . , vn, and edges (vi, vi+1), for
i = 1, . . . , n − 1. Moreover, we denote by Cn the cycle on n nodes that consists of
the path Pn augmented with the edge (v1, vn). In the following, we assume that 1 ≤
t(i) ≤ 3, for i = 1, . . . , n. Indeed, paths with 0-threshold nodes can be dealt with by
removing up to λ 1-threshold nodes on the two sides of each 0-threshold node. In case
we remove strictly less than λ nodes, we can reduce by 1 the threshold of the first node
that is not removed (which must have threshold greater than 1). The path gets split into
several subpaths, but the construction we provide below still works (up to taking care
of boundary conditions).
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Theorem 2. The (λ, β)-MAXIMALLY INFLUENCING SET problem can be solved in
time O(nβλ) on a path Pn.

Proof. (Sketch.) For i = 1, 2, . . . n, let r(i) be the number of consecutive nodes having
threshold 1 on the right of node vi, that is, r(i) is the largest integer such that i+ r(i) ≤
n and t(vi+1) = t(vi+2) = . . . = t(vi+r(i)) = 1. Analogously we define l(i) as the
largest integer such that i− l(i) ≥ 1 and t(vi−1) = t(vi−2) = . . . = t(vi−l(i)) = 1.

We use P (i, r, t) to denote the subpath of P induced by nodes v1, v2, . . . , vi+r,
where the threshold of each node vj with j �= i is t(vj), while the threshold of vi
is set to t ∈ {t(vi)− 1, t(vi)}.

We define MIS[i, b, r, t] to be the maximum number of nodes that can be influenced
in P (i, r, t) assuming that at most b nodes among v1, v2, . . . , vi belong to the target set
while vi+1, . . . , vi+r do not.

Noticing that P (n, 0, t(vn)) = P and we require that |S| ≤ β, the desired value is
MIS[n, β, 0, t(vn)].

In order to get MIS[n, β, 0, t(vn)], we compute MIS[i, b, r, t] for each i =
0, 1, . . . n, for each b = 0, 1, . . . , β, for each r = 0, 1, . . . ,min{λ, r(i)}, and for
t ∈ {t(vi)− 1, t(vi)}.

Denote by S(i, b, r, t) any target set attaining the value MIS[i, b, r, t].
If i = 0 OR b = 0 we set MIS[i, b, r, t] = 0.
If i > 0 AND b > 0. Consider the following quantities

� = min{λ, l(i)}

M0 =

{
MIS[i−�−1, b− 1, 0, t(vi−�−1)− 1] + r + �+ 1 if � < λ

MIS[i−�−1, b− 1, 0, t(vi−�−1)] + r + �+ 1 otherwise

M1 =

{
MIS[i−1, b, 0, t(vi−1)] if t > 1

MIS[i−1, b,min{λ, r + 1}, t(vi−1)] otherwise.

By distinguishing whether vi belongs to the target set S(i, b, r, t) or not we are able to
prove that

MIS[i, b, r, t] = max {M0,M1}
and vi ∈ S(i, b, r, t) if and only if MIS[i, b, r, t] = M0.

For cycles, the problem can be solved by simply solving two different problems on
a path and taking the minimum. Indeed, starting with a cycle we can consider any node
v such that t(v) ≥ 2 (if there is no such node, then the problem is trivial). If node v
belongs to the target set, we can consider the path obtained by removing all the nodes
influenced only by v and then solve the problem on this path with a budget β − 1. On
the other hand, if we assume that v does not belong to the target set, then we simply
consider the path obtained by eliminating v. Therefore, we obtain the following result.

Theorem 3. The (λ, β)-MAXIMALLY INFLUENCING SET problem can be solved in
time O(nβλ) on a cycle Cn.

Since complete graphs are of clique-width at most 2, results from [18] imply that the
(λ, β)-MIS problem is solvable in polynomial time on complete graphs if λ is constant.
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Indeed, one can see that for complete graphs the (λ, β)-MAXIMALLY INFLUENCING

SET can be solved in linear time, independently of the value of λ, by using ideas of
[26].

If G is a complete graph, we have that for any S ⊆ V , and any round ρ ≥ 1, it holds
that

Influenced[S, ρ] = Influenced[S, ρ− 1] ∪ {v : t(v) ≤ |Influenced[S, ρ− 1]|}.
Since Influenced[S, ρ− 1] ⊆ Influenced[S, ρ], we have

Influenced[S, ρ] = S ∪ {v : t(v) ≤ |Influenced[S, ρ− 1]|}. (11)

From (11), and by using a standard exchanging argument, one immediately sees that
a set S with largest influence is the one containing the nodes with highest thresholds.
Since t(v) ∈ {0, 1, . . . , n}, the selection of the β nodes with highest threshold can be
done in linear time. Summarizing, we have the following result.

Theorem 4. There exists an optimal solution S to the (λ, β)-MAXIMALLY INFLUENC-
ING SET problem on a complete graph G = (V,E), consisting of the β nodes of V with
highest thresholds, and it can be computed in linear time.

6 Concluding Remarks

We considered the problems of selecting a bounded cardinality subset of people in
(classes of) networks, such that the influence they spread, in a fixed number of rounds,
is the highest among all subsets of same bounded cardinality. It is not difficult to see that
our techniques can also solve closely related problems, in the same classes of graphs
considered in this paper. For instance, one could fix a requirement α and ask for the
minimum cardinality target set such that after λ rounds the number of influenced people
in the network is at least α. Or, one could fix a budget β and a requirement α, and ask
about the minimum number λ such that there exists a target set of cardinality at most
β that influences at least α people in the network within λ rounds (such a minimum λ
could be equal to ∞). Therefore, it is likely that the FONY R© Marketing Division will
have additional fun in solving these problems (and similar ones) as well.
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