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Abstract. What is the most efficient way of lacing a shoe? Mathemat-
ically speaking, this question concerns the structure of certain special
cases of the bipartite travelling salesman problem (BTSP).

We show that techniques developed for the analysis of the (standard)
TSP may be applied successfully to characterize well-solvable cases of the
BTSP and the shoelace problem. In particular, we present a polynomial
time algorithm that decides whether there exists a renumbering of the
cities such that the resulting distance matrix carries a benevolent com-
binatorial structure that allows one to write down the optimal solution
without further analysis of input data. Our results generalize previously
published well-solvable cases of the shoelace problem.
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1 The Art of Shoelacing

In Europe, shoelaces are usually threaded in alternating zigzags, such that (when
viewed from above) the eyes of the shoes seem to be joined horizontally by the
shoelaces. In the USA, shoelaces are typically threaded in opposing zigzags, and
when seen from above they seem to be crossed. A third standard method is the
so-called shoe shop method, in which the shoelace makes a continuous zigzag
from top to bottom and then returns to the top in a diagonal line.

To the non-expert it would appear that there are only three or four accepted
methods of lacing our shoes. However, this is far, far, far from the truth! Experts
in the area of shoelacing are familiar with dozens of methods, as for instance
army lacing, bow-tie lacing, criss-cross lacing, double-helix lacing, gap lacing,
hash lacing, hexagram lacing, hidden-knot lacing, ladder lacing, lattice lacing,
left-right lacing, lightning lacing, over-under lacing, pentagram lacing, Roman
lacing, sawtooth lacing, spider-web lacing, star lacing, train-track lacing, zigzag
lacing, or zipper lacing.

Now a burning question arises: Which of these dozens of shoelacing methods
is the most efficient one? Or, in a more scientific formulation: Which lacing
method needs the smallest amount of shoelace? The mathematical literature
contains several studies on this theme. There are the short technical papers
by Halton [13], Misiurewicz [18] and Polster [19], and there also is a beautiful
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booklet [20] by Polster with the title “The shoelace book: a mathematical guide
to the best (and worst) ways to lace your shoes”. In this paper, we will add some
new insights to this research branch by exhibiting certain connections between
the shoelace problem and the travelling salesman problem.

2 Technical Introduction

The travelling salesman problem (TSP). In the TSP, the objective is to find
for a given n × n distance matrix C = (cij) a cyclic permutation τ of the set
{1, 2, . . . , n} that minimizes the sum c(τ) =

∑n
i=1 ciτ(i). In TSP slang, the ele-

ments of {1, 2, . . . , n} are usually called cities or points, the cyclic permutations
are called tours, and the value c(τ) is the length of permutation τ . The set of all
permutations over set {1, 2, . . . , n} is denoted by Sn. For τ ∈ Sn, we denote by
τ−1 the inverse of τ , that is, the permutation for which τ−1(i) is the predecessor
of i in the tour τ , for i = 1, . . . , n. We will also use a cyclic representation of
cyclic permutations τ in the form

τ = 〈i, τ(i), τ(τ(i)), . . . , τ−1(τ−1(i)), τ−1(i), i〉.

In the maximization version of the TSP (MaxTSP), one is interested in finding
the longest tour. The characterization of polynomially solvable cases is one of
the standard directions for research on NP-hard problems. For surveys on well-
solvable cases of the TSP, we refer the reader to Gilmore, Lawler & Shmoys [12]
and to Burkard & al [5].

The bipartite travelling salesman problem (BTSP). In the BTSP, there is an
even number n = 2k of cities which are partitioned into two classes: the class
K1 = {1, 2, . . . , k} of blue cities and the class K2 = {k+1, k+2, . . . , n} of white
cities. Any feasible tour in the BTSP has to alternate between blue and white
cities. The objective is to find the shortest tour with this special structure. The
set Tn of all feasible tours for the BTSP may formally be defined as

Tn = {τ ∈ Sn|τ−1(i), τ(i) ∈ K2 if i ∈ K1; τ
−1(i), τ(i) ∈ K1 if i ∈ K2}. (1)

By C[K1,K2] we denote the k × k matrix which is obtained from matrix C by
deleting the rows with numbers from K2 and by deleting the columns with num-
bers from K1. Note that the length c(τ) of any feasible BTSP tour is calculated
by using elements from C[K1,K2] only.

The BTSP is NP-hard, and there is no constant factor approximation al-
gorithm for it unless P = NP ; see Frank, Korte, Triesch & Vygen [11]. The
BTSP has also been investigated by Baltz [3], Baltz & Srivastav [4], Chalasani,
Motwani & Rao [8], and Frank, Korte, Triesch & Vygen [11]. Its relevance for
pick-and-place robots has been pointed out in Anily & Hassin [1], Atallah &
Kosaraju [2], Leipälä & Nevalainen [15], and Michel, Schroeter & Srivastav [17].
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Y coordinate 10 17 24 31 38 45 10 17 24 31 38 45

Fig. 1. An illustration to Halton’s [13] optimal lacing for new shoes with neat and tidy
rows of eyelets: the points with their coordinates, and an optimal BTSP tour

The shoelace problem. Halton [13] interprets the BTSP as a shoelacing problem:
the cities represent the eyelets of a shoe, and the objective is to find an optimal
shoe lacing strategy that minimizes the length of the shoelace. In Halton’s model
the eyelets are points in the Euclidean plane: the blue points lie on a straight
line and have coordinates (0, d), (0, 2d), . . . , (0, kd), and the white points lie on
some parallel line and have coordinates (a, d), (a, 2d), . . . , (a, kd). Halton proved
that in his special case the tour

τ∗ = 〈1, k + 1, 2, k + 3, 4, k + 5, 6 . . . , 7, k + 6, 5, k + 4, 3, k + 2, 1〉 (2)

is the shortest tour in Tn. Figure 1 illustrates Halton’s case of brand-new shoes
with two neat and tidy rows of eyelets.

In a follow-up paper, Misiurewicz [18] argues that Halton’s model is only
a crude approximation of reality: as shoes get older and worn-out, the eyelets
move out of place and will no longer form tidy rows. Misiurewicz observes that
for proving optimality of permutation τ∗, one actually does not need to have the
eyelets on two parallel lines; it is sufficient to require that the inequalities

cij + c�m ≤ cim + c�j (3)

hold for all indices i and j with 1 ≤ i ≤ � ≤ k and k + 1 ≤ j ≤ m ≤ n. In other
words, Halton’s tour τ∗ also solves the shoelace problem for older and somewhat
worn-out shoes; see Figure 2 for an illustration of Misiurewicz’s case.
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Y coordinate 10 14 26 31 36 40 10 22 34 38 40 46

Fig. 2. An illustration to Misiurewicz’s [18] optimal lacing for older and somewhat
worn-out shoes: an instance with a Euclidean distance matrix

Results and organization of this paper. We show that the techniques developed
for the analysis of the classical TSP can also be applied successfully to the
shoelace problem. In Section 3, we review some of the well-solvable cases of
the TSP which are relevant for the shoelace problem. We generalize the results
of Halton [13] and Misiurewicz [18], and we characterize a new polynomially
solvable case of the BTSP. In our case, the eyelets may indeed have very pe-
culiar locations, so that the old shoes of Misiurewicz now turn into very old,
deformed and mutilated shoes; see Figures 3 and 4 for an illustration (we hope
that this justifies the title of the paper!). In Section 4, we present an algorithm
for recognizing our new special case independently of the initial numbering of
the points/eyelets.

3 Polynomially Solvable TSP Cases and the BTSP

We start by reviewing some known results on specially structured distance ma-
trices. Readers who are familiar with the combinatorial optimization literature
will already have recognized that the inequalities in (3) are the notorious Monge
inequalities; see Burkard, Klinz & Rudolf [6] for further references. An n × n
matrix C = (cij) is called a Monge matrix, if it satisfies the following conditions
for all indices i, j,m, � ∈ {1, . . . , n} with i < � and j < m:

cij + c�m ≤ cim + c�j . (4)



Another Look at the Shoelace TSP 129

2

1

9

7

8

3

4

10

5
11

6
12

Point number 1 2 3 4 5 6 7 8 9 10 11 12

X coordinate 5 6 13 12 8 6 23 24 9 16 15 12

Y coordinate 6 21 25 28 38 43 10 18 30 32 40 46

Fig. 3. Instance 1 of the Euclidean BTSP with a relaxed Monge structure

As the inequality system (3) imposes the Monge inequalities only for the entries
in C[K1,K2], the system (3) is a relaxation of system (4).

Supnick [21] proved that the TSP with a symmetric Monge distance matrix
is always solved to optimality by the tour π∗

1 = 〈1, 3, 5, 7, . . . , 8, 6, 4, 2, 1〉, and
that the MaxTSP on symmetric Monge matrices is always solved by the tour
σ∗ = 〈1, n, 2, n− 2, 4, n− 4, . . . , n− 3, 3, n− 1, 1〉. Note that if the white points
in the shoelace problem were numbered in the reverse order, that is, if points
i ∈ K2 were renumbered by n+ k + 1 − i, then Halton’s permutation τ∗ in (2)
would become the Supnick permutation σ∗. We mention this fact here to stress
that the BTSP seems to have something in common with the MaxTSP.

Another well-known polynomially solvable case is the TSP with Kalmanson
distance matrices. A symmetric n × n matrix C is a Kalmanson matrix if it
fulfills the Kalmanson conditions

cij + c�m ≤ ci� + cjm (5)

cim + cj� ≤ ci� + cjm, for all 1 ≤ i < j < � < m ≤ n. (6)

Kalmanson [14] showed that the TSP with a Kalmanson matrix is solved by the
tour π∗

2 = 〈1, 2, 3, 4, 5, 6 . . . , n − 1, n, 1〉. Furthermore, an optimal tour for the
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Fig. 4. Instance 2 of the Euclidean BTSP with a relaxed Monge structure

MaxTSP can always be found among n/2 specially structured tours containing
among them Halton’s tour τ∗.

Demidenko matrices form a common generalization of Supnick and Kalman-
son matrices. A symmetric matrix C = (cij) is a Demidenko matrix if

cij + c�m ≤ ci� + cjm, for all 1 ≤ i < j < � < m ≤ n. (7)

Demidenko [10] showed that an optimal tour for the TSP with an n× n Demi-
denko distance matrix can be found in O(n2) time. Deineko & Woeginger [9]
proved that the MaxTSP with a Demidenko matrix remains NP-hard. However,
for a subclass of Demidenko matrices the longest tour can be found in the set
Tn of feasible BTSP tours as introduced in (1).

Proposition 1. (Deineko & Woeginger [9]). Let C be a symmetric n×n Demi-
denko matrix with n = 2k, that additionally fulfills the conditions

cik + ck+1,j ≤ ck+1,k + cij , for i ∈ K1 \ {k}, j ∈ K2 \ {k + 1}. (8)

Then there exists an optimal MaxTSP tour which belongs to the set Tn.

The problem of finding an optimal MaxTSP tour in Tn remains NP-hard. The
following proposition identifies an almost trivial special case.
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Proposition 2. (Deineko & Woeginger [9]). Let C be a symmetric n×n matrix
with n = 2k, that fulfills the conditions

c1,k+1 + cij ≥ c1j + ci,k+1, i = 2, . . . , k, j = k + 2, . . . , n (9)

cp+1,k+p + cij ≥ cp+1,j + ci,k+p, i = p+ 2, . . . , k, j = k + p+ 1, . . . , n (10)

cp,k+p+1 + cij ≥ cpj + ci,k+p+1, i = p+ 1, . . . , k, j = k + p+ 2, . . . , n (11)

p = 1, . . . , k − 2.

Then Halton’s tour τ∗ is a tour of maximum length in Tn.

It is easy to see that conditions (9)–(11) form a relaxation of the Kalmanson
conditions (6). Therefore, the TSP with a Kalmanson matrix that also fulfills (8)
has τ∗ as a tour of maximum length. Any Supnick matrix fulfills the inequalities
in (8). Furthermore, a Supnick matrix satisfies the reverse inequalities of (9)–
(11), where the ≥ signs are replaced by ≤. Therefore, if the points i ∈ K2 are
renumbered by n + k + 1 − i, then by Propositions 1 and 2, the permutation
σ∗ (which is obtained from τ∗ by the same renumbering) constitutes an optimal
solution to the MaxTSP with a Supnick matrix; we stress that the renumbering
does not affect the inequalities in (8). This comment explains the relationship
between the TSP and the MaxTSP with a Supnick matrix.

In the proof of Proposition 2 in [9], the well-known tour-improvement tech-
nique is used: starting from an arbitrary tour τ , a sequence of tours τ1, τ2, . . . , τT
is constructed, with τ1 = τ and τT = τ∗ such that

c(τ1) ≤ c(τ2) ≤ · · · ≤ c(τT ).

The inequalities (9)–(11) are used to establish the relationship c(τi) ≤ c(τi+1). If
inequalities (9)–(11) are all reversed, then it can be proved in a similar fashion
that the tour τ∗ is the shortest tour in Tn. We summarize this result in the
following theorem.

Theorem 3. Let C be a symmetric n × n matrix with n = 2k, that fulfills the
conditions

c1,k+1 + cij ≤ c1j + ci,k+1, i = 2, . . . , k, j = k + 2, . . . , n (12)

cp+1,k+p + cij ≤ cp+1,j + ci,k+p, i = p+ 2, . . . , k, j = k + p+ 1, . . . , n (13)

cp,k+p+1 + cij ≤ cpj + ci,k+p+1, i = p+ 1, . . . , k, j = k + p+ 2, . . . , n (14)

p = 1, . . . , k − 2.

Then the tour τ∗ is a tour of minimum length for the BTSP.

Of course the system (12)–(14) is just a further relaxation of the Monge inequali-
ties (4) and their relaxation (3). Figures 3 and 4 show two instances of the BTSP
with the Euclidean distance matrices that satisfy (12)–(14) but violate some of
the inequalities (3) of Misiurewicz.

The system (12)–(14) altogether contains Θ(n3) inequalities. The following
proposition shows that one needs only O(n2) time to verify these conditions.
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Proposition 4. The inequalities (12)–(14) can be verified in O(n2) time.

Proof. Let n = 2k throughout. To simplify notation, we consider an asymmetric
k × k submatrix A = C[K1,K2] of the n × n matrix C. The system (12)–(14)
can then be rewritten as

a11 + ast ≤ a1t + as1, 1 < s, t ≤ k (15)

ap,p−1 + ast ≤ apt + as,p−1, s = p+ 1, . . . , k; t = p, . . . , k; (16)

ap−1,p + ast ≤ ap−1,t + asp, s = p, . . . , k; t = p+ 1, . . . , k; (17)

p = 2, 3 . . . , k − 1.

We claim that the system (15)–(17) above is equivalent to the following system
with 2(k − 1)(k − 2) + 1 inequalities:

a11 + a22 ≤ a12 + a21; (18)

ap,p−1 + asp ≤ ap,p + as,p−1, (19)

ap,p−1 + as,p+1 ≤ ap,p+1 + as,p−1, s = p+ 1, . . . , k; (20)

ap−1,p + apt ≤ app + ap−1,t, (21)

ap−1,p + ap+1,t ≤ ap+1,p + ap−1,t, t = p+ 1, . . . , k; (22)

p = 2, 3, . . . , k − 1.

Indeed, it can be seen easily that the inequalities (18)–(22) form a proper subset
of the system (15)–(17). In particular, inequalities (16) and (17) with p = k − 1
are contained in (18)–(22). So what remains to be shown is that the inequalities
(15)–(17) with p ≤ k − 2 follow from (18)–(22).

Consider p∗ ≤ k − 1, and assume that (16)–(17) are satisfied for all p ≥ p∗.
Then the inequalities (16) with s = p∗ and s = p∗ + 1, and the inequalities
(17) with t = p∗ and t = p∗ + 1 are contained in (18)–(22). The inequalities
for s > p∗ + 1 and t > p∗ + 1 follow immediately from (18)–(22) and from the
following straightforward algebraic rearrangements:

ap∗,p∗−1 + ast − ap∗t − as,p∗−1 =

(ap∗,p∗−1 + as,p∗+1 − ap∗,p∗+1 − as,p∗−1) + (ap∗,p∗+1 + ast − ap∗t − as,p∗+1)

ap∗−1,p∗ + ast − ap∗−1,t − as,p∗ =

(ap∗−1,p∗ + ap∗+1,t − ap∗−1,t − ap∗+1,p∗) + (ap∗+1,p∗ + ast − ap∗+1,t − as,p∗)

Finally, the inequalities (15) follow from (16), (17) and (18), and from the fol-
lowing simple transformation:

a11 + ast − a1t − as1 =

(a11 + a22 − a12 − a21) + (a12 + ast − a1t − as2) + (a21 + as2 − a22 − as1).

This completes the proof of the proposition. ��
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4 The Recognition of Specially Structured Matrices

The combinatorial structure of the distance matrix C in Theorem 3 does heav-
ily depend on the numbering of its rows and columns. Hence it is natural to
formulate the following recognition problem:

Given an n×n distance matrix C = (cij), does there exist a renumbering
of the cities, that is, a permutation α of the rows and columns of C, such
that the resulting matrix (cα(i)α(j)) satisfies conditions (12)–(14)?

If we consider the submatrix A = C[K1,K2], then the recognition problem above
boils down to the problem of finding two permutations: one permutation for
permuting the rows and one permutation for permuting the columns in the
asymmetric matrix A:

Given a k × k matrix A = (aij), does there exist a permutation γ of
the rows and a permutation δ of the columns, such that the resulting
permuted matrix (cγ(i)δ(j)) satisfies the conditions (15)–(17)?

The following recognition algorithm is based on the technique developed by
Burkard & Deineko [7] for the recognition of a similar relaxed Monge structure
in a symmetric distance matrix.

Theorem 5. For a given k × k matrix A = (aij), it can be decided in O(k4)
time whether there exist permutations γ and δ such that the permuted matrix
(aγ(i)δ(j)) satisfies conditions (15)–(17). If the permutations γ and δ exist, then
they can be determined explicitly within this time bound.

Proof. First, we try all k indices as candidates for the first position in permuta-
tion γ. Without loss of generality let γ(1) = 1. Then an index i can be placed
in the first position of permutation δ if and only if the following inequalities are
satisfied:

a1i + ast ≤ asi + a1t for all s 	= 1, t 	= i. (23)

If there is another candidate j with the same property, then it follows imme-
diately from (23) that a1i + asj = asi + a1j ; in other words, we then have
asj = asi + d for all s, where d = a1i − a1j is the constant for fixed i and j.
Since adding a constant to a row or a column of matrix A does not affect the
inequalities (15)–(17), in this case any of the indices i or j may be placed in the
first position of permutation σ.

We claim that an appropriate candidate i can be picked in O(k2) time. Indeed,
the transformation a′st = ast − a1t for s = 1, . . . , k and t = 1, . . . , k transforms
matrix A into a matrix A′ = (a′i,j) with zeroes in the first row. The inequalities
(23) for matrix A are equivalent to the inequalities a′st ≤ a′si for matrix A′, for
all s, t and i. Therefore, an appropriate index i can be found in O(k2) time by
looking through the indices of the maximal elements in the rows of matrix A′.

The indices for the second position in permutations δ and γ can be chosen by
applying an analogous procedure to the submatrix A[{1, . . . , k}, {1, . . . , k} \ {i}]
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with the first row fixed to be 1, and to submatrix A[{2, . . . , k}, {1, . . . , k}] with
the first column fixed to be i. This yields an overall time complexity of O(k3)
for each candidate on the position γ(1), and therefore an O(k4) overall time
complexity for the entire algorithm. ��

1

Point number 1 2 3 4 5 6 7 8 9 10 11 12

X coordinate 26 21 26 26 26 26 21 15 21 33 15 21

Y coordinate 12 18 18 23 27 34 7 12 23 18 29 29

Fig. 5. Recognizing a rectilinear instance of the BTSP. The first point has been fixed

To illustrate the way our algorithm works, we consider the BTSP with a recti-
linear distance matrix where the distances between points i and j are calculated
as cij = |xi − xj | + |yi − yj|; see Figure 5 for an illustration. We assume here
that the first entry of permutation γ is fixed as γ(1) = 1. The corresponding
submatrix A of the distance matrix C and its transformed matrix A′ then look
as follows:

A6×6 =

7 8 9 10 11 12
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 10 11 16 13 28 22
2 11 12 5 12 17 11
3 16 17 10 7 22 16
4 21 22 5 12 17 11
5 25 26 9 16 13 7
6 32 33 16 23 16 10

A′
6×6 =

7 8 9 10 11 12
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 0 0 0 0 0 0
2 1 1 −11 −1 −11 −11
3 6 6 −6 −6 −6 −6
4 11 11 −11 −1 −11 −11
5 15 15 −7 3 −15 −15
6 22 22 0 10 −12 −12

Note that in all rows of matrix A′ the indices of the maximal elements are
{7, 8}. Hence either of these two columns may be picked as the first column,
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and we will pick δ(1) = 7. For choosing an appropriate row to be placed in the
second position of permutation γ, we next consider the following 5×6 submatrix
of the distance matrix:

A5×6 =

7 8 9 10 11 12
⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

2 11 12 5 12 17 11
3 16 17 10 7 22 16
4 21 22 5 12 17 11
5 25 26 9 16 13 7
6 32 33 16 23 16 10

A′
5×6 =

7 8 9 10 11 12
⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

2 0 1 −6 1 6 0
3 0 1 −6 −9 6 0
4 0 1 −16 −9 −4 −10
5 0 1 −16 −9 −12 −18
6 0 1 −16 −9 −16 −22

Now the indices of maximal elements in columns 7 through 12 of matrix A′

are: {2, 3, 4, 5, 6}; {2, 3}; {2}; {2, 3}; and {2, 3}. The only index that belongs
to all these sets is 2; hence γ(2) = 2. (If the intersection of these sets had been
empty, the choice of γ(1) = 1 as the first entry in permutation γ had failed and
would have to be reconsidered.)

We proceed with the following (analogous) steps and eventually find two per-
mutations γ = 〈1, 2, 3, 4, 5, 6〉 and δ = 〈7, 8, 9, 10, 11, 12〉 for the numbering of
the points. In permutation δ, the points 7 and 8 as well as the points 11 and 12
may be permuted, so that under the choice γ(1) = 1 there altogether exist four
pairs of permutations for feasibly renumbering the points. The corresponding
numbering and the optimal BTSP solution are reported in Figure 6.

2
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Fig. 6. Recognizing a rectilinear instance of the BTSP: The final numbering
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15. Leipälä, T., Nevalainen, O.: Optimization of the movements of a component place-
ment machine. European Journal of Operational Research 38, 167–177 (1989)

16. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling
Salesman Problem. Wiley, Chichester (1985)

17. Michel, C., Schroeter, H., Srivastav, A.: Approximation algorithms for pick-and-
place robots. Annals of Operations Research 107, 321–338 (2001)

18. Misiurewicz, M.: Lacing irregular shoes. The Mathematical Intelligencer 18, 32–34
(1996)

19. Polster, B.: Lacing irregular shoes. Nature 420, 476 (2002)
20. Polster, B.: The shoelace book: a mathematical guide to the best (and worst) ways

to lace your shoes. American Mathematical Society (2006)
21. Supnick, F.: Extreme Hamiltonian lines. Annals of Mathematics 66, 179–201 (1957)


	Another Look at the Shoelace TSP:The Case of Very Old Shoes
	1 The Art of Shoelacing
	2 Technical Introduction
	3 Polynomially Solvable TSP Cases and the BTSP
	4 The Recognition of Specially Structured Matrices
	References




