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Preface

This volume of Springer’s Lecture Notes in Computer Science series comprises
the scientific proceedings of the 12th International Workshop on Breast Imag-
ing (IWDM 2014), which was held June 29-July 2, 2014, in Gifu City, Japan.
This workshop was formerly called the International Workshop on Digital Mam-
mography, IWDM for short. Although the term “Digital Mammography” was
changed to “Breast Imaging” starting from the last meeting (IWDM 2012),
we still kept the familiar abbreviation “IWDM.” This new naming is to make
clear the recognition of the movement in breast imaging from mammography
toward more recent emerging technologies and multimodality imaging solutions.
The IWDM meetings traditionally bring together a diverse set of researchers
(physicists, mathematicians, computer scientists, and engineers), clinicians (ra-
diologists, surgeons), and representatives of industry, who are jointly committed
to developing technology for early detection of and subsequent patient manage-
ment in breast cancer. The conference series was initiated at a 1993 meeting of
the SPIE in San Jose, with subsequent meetings hosted every two years. Previ-
ous meetings have been held in York (1994), Chicago (1996), Nijmegen (1998),
Toronto (2000), Bremen (2002), Durham (2006), Tucson (2008), Girona (2010),
and Philadelphia (2012). This year was the first time the workshop was held in
an in Asian region in the history of the workshop over the past 20 years.

A total of 122 paper submissions from around 20 countries were received for
IWDM 2014. Each of the abstracts along with the maximum four-page support-
ing documents was reviewed in a blind process by two members of the Scientific
Committee, which led to a final selection of 27 oral presentations and 76 posters
during the two and a half days of sequential scientific sessions. Eleven profound
talks, including a plenary lecture, eight keynotes, and two luncheon seminars,
were given by invited speakers in IWDM 2014. Of these 11 talks, ten short ab-
stracts are included in the front matter of this volume, and six full review papers
by these speakers followed by 97 final peer-reviewed papers constitute a com-
prehensive state of the art in breast imaging today in this proceedings volume
(LNCS 8539).

Invited speakers, who are working as breast surgeons, radiologists, medical
physicists at hospitals, and researchers in universities or companies, were chosen
discreetly. As mentioned above, this workshop was the first meeting held in an
Asian area, and thus we selected the themes that are specific to issues of dense
breast, screening means, and imaging modalities. Dr. Noriaki Ohuchi of Tohoku
University Graduate School of Medicine, Japan, gave a lecture on the efficacy
of ultrasonography screening by sharing the updated data from the randomized
clinical trial for Japanese women in their 40s. Dr. Woo-Kyung Moon of Seoul
National University Hospital, Republic of Korea, presented data on the current
breast imaging diagnosis and screening in Korea. Dr. Ruey-Feng Chang of the
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National Taiwan University, Taiwan, gave a review on computer-aided diagnosis
for B-mode, elastography, and automated ultrasound, and Dr. Kwan-Hoong Ng
of the University of Malaya, Malaysia, gave a review on the quantitative mea-
surement and clinical utility of breast density. Dr. Michael K. O’Connor of the
Mayo Clinic, USA, presented diagnostic and screening application of molecular
breast imaging in women with dense breasts. Dr. Julian Marshall of Hologic
Inc., USA, discussed the current situation in mammography CAD with the ad-
vent of tomosynthesis, while Dr. Etta D. Pisano of the Medical University of
South Carolina, USA, provided a review of tomosynthesis and an overview of
the Tomosynthesis Mammographic Imaging Screening Trial (TMIST) design. Dr.
Andrew D. A. Maidment of the University of Pennsylvania, USA, presented his
work on virtual clinical trials for the assessment of new screening modalities. Dr.
Elizabeth Krupinski of the University of Arizona, USA, gave an overview of cur-
rent breast cancer telemedicine services in Arizona. A special luncheon seminar
was given by Dr. Tsuyoshi Shiina of Kyoto University, Japan, with the topic of
real-time tissue elastography. Another luncheon seminar was presented by two
invited speakers, Dr. Ch. Mueller-Leisse and Dr. Mechthild Schulze-Hagen of
Maria Hilf Moenchengladbach, Germany, who talked about the clinical benefit
of tomosynthesis.

Finally, a meeting as large and successful as IWDM 2014 is only possible
through the tireless work of many people. First, I would like to acknowledge the
excellent work of the Scientific Committee in guaranteeing scientific significance
by means of providing feedback to the authors for the final papers. Second,
special thanks need to go to Takeshi Hara and Chisako Muramatsu for making
this meeting a reality, to Norimitsu Shinohara for working many hours to recruit
the industrial partners, and to Xiangrong Zhou for making and renewing the
workshop web-site daily. Third, thanks go to all the advisory board members
and local Organizing Committee members listed herein. Finally, we are grateful
to our academic partners, cooperating organizations, and industrial partners for
their enthusiastic support for the scientific progress in breast imaging.

June 1, 2014 Hiroshi Fujita
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Effectiveness of Ultrasonography Screening

for Breast Cancer; Up-Dated Data from the
RCT of 76,196 Women Aged 40-49 (J-START)

Noriaki Ohuchi, Akihiko Suzuki, and Takanori Ishida

Department of Surgical Oncology, Graduate School of Medicine,
Tohoku University, Sendai, Japan

{noriaki-ohuchi,takanori}@med.tohoku.ac.jp
Akihiko1622@me.com

At present, mammography (MG) is the only method for breast cancer screening
that has evidence of decreasing mortality. However, MG does not achieve suffi-
cient screening accuracy in women aged 40 to 49, as the U.S. Preventive Services
Task Force (USPSTF) has recently recommended against routine screen MG in
women aged 40 to 49 years. Supplemental screening ultrasonography (US) has
the potential to depict early breast cancers not seen on MG. However, random-
ized controlled trials (RCTs), cohort studies, or case-control studies have not
been completed to assess the efficacy of screening US to reduce breast cancer
mortality, and the effectiveness has not been verified.

In 2007, we planned the RCT to assess effectiveness of US screening for breast
cancer in women aged 40-49, with a design to study 50,000 women with MG and
US (intervention group), and 50,000 women with MG only (control group). The
primary endpoints are sensitivity and specificity, and the secondary endpoint is
rate of advanced breast cancers.

The cumulative total number of participants registered is 76,196 (38,313 in
the intervention group and 37,883 in the control group). The study was designed
so that participants registered at their first examination underwent examinations
by the same method for the subsequent two years. The second examinations
were completed by end of March 2013. Among the 76,196 participants, 74.5%
of women had undertaken second screening, while information including the
presence of interval cancer is obtained from a further 22.6% using a questionnaire.
As of end of December 2013, only 2.9% of participants are unclear for their
follow-up.

This study is the first large-scale RCT carried out to clarify the effectiveness
of US screening for breast cancer. It requires objective judgment regarding the
advantages and disadvantages of the introduction of US screening, and it is an-
ticipated that J-START project will make a significant contribution to establish
a scientific justification for its introduction. RCT is the most appropriate way to
make scientific analysis and verification of the effectiveness of new modality in
cancer diagnosis and treatment, although such trials are extremely costly, take
long time until the final evaluation confirmed.

We believe that J-START, a prospective and challenging trial to evaluate
effectiveness of screening modality, would make an important contribution to
the world, with leading to the cancer mortality reduction in future generations.



Keynote Talks



Virtual Clinical Trials for the Assessment

of Novel Breast Screening Modalities

Andrew D.A. Maidment

University of Pennsylvania, Dept. of Radiology, Philadelphia, PA, USA
Andrew.Maidment@uphs.upenn.edu

Validation of any imaging system is challenging due to the huge number of
system parameters that should be evaluated. The ultimate metric of system per-
formance is a clinical trial. However, the use of clinical trials is limited by cost
and duration. We are strong proponents of a preclinical alternative, in the form
of Virtual Clinical Trials (VCT), which model human anatomy, image acquisi-
tion, display and processing, and image analysis and interpretation. A complete
VCT pipeline was envisioned by combining the breast anatomy and image ac-
quisition simulation pipeline developed at the University of Pennsylvania, with
the MeVIC image display and observation pipeline developed by researchers at
Barco. Today an integrated virtual clinical trial design program, VCTdesigner,
and a virtual clinical trial management program, VCTmanager, are freely avail-
able (www.VCTworld.org). The pipeline design is flexible and extensible, making
it possible to add functionality easily and rapidly. It is our hope that by freely
distributing the VCTmanager software, our field can standardize on this plat-
form for running VCT.



Computer-Aided Diagnosis for B-mode,

Elastography and Automated Breast Ultrasound

Ruey-Feng Chang1,2 and Chung-Ming Lo1

1Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

{rfchang,d97001}@csie.ntu.edu.tw
2Graduate Institute of Biomedical Electronics and Bioinformatics

National Taiwan University, Taipei, Taiwan

This review paper encapsulates the presentation of the computer-aided diag-
nosis (CAD) development in the session of US imaging at IWDM 2014. The
development includes novel methodologies in conventional B-mode and modern
ultrasound modalities such as elastography and automated breast ultrasound.
For B-mode images, gray-scale invariant texture features were proposed to solve
the changing of echogenicities from various ultrasound systems. Speckle patterns
were analyzed to show the properties of tiny scatterers with microstructure con-
tained in breast tissues for tissue characterization. Using quantified sonographic
findings in tumor classification can achieve better diagnostic result than com-
bining all features together. Elastography CAD systems use automatic tumor
segmentation and clustering method to reduce operator-dependence. Dynamic
sequence features were extracted from a sequence of elastograms to provide tu-
mor stiffness without selecting slices. Another approach was selecting slices with
quality evaluation methods. Both approaches reduced the overloads of physi-
cians in slice selection. Automated breast ultrasound system is developed to
automatically scan the whole breast and build the volumetric breast structure.
Three-dimensional morphology, texture, and speckle features were proposed and
combined to provide more diagnostic information than two-dimensional features.
These CAD systems for B-mode, elastography, and automated breast ultrasound
are good at malignancy evaluation and would be helpful in clinic use.



Breast Imaging Diagnosis and Screening

in Korea

Woo Kyung Moon, M.D.

Department of Radiology, Seoul National University Hospital,

Seoul, Korea

In Korea, national cancer screening program (NCSP) began in 1999 for five ma-
jor cancers, including stomach, breast, uterine cervix, liver and colorectal can-
cers.The NCSP recommends biennial breast cancer screening for females over 40
years of age with mammogram ± clinical breast examination as the screening
tool. The Korean Society of Breast Imaging (KSBI) developed guidelines and
standards of quality management for mammography from 1999. On January 14,
2003, the national assembly of Korea approved the Acts including quality man-
agement for mammography. Annual inspection includes the facilities to meet
minimum quality standards for personnel, equipment, and phantom image. Ev-
ery three year, on site survey and evaluation of clinical image are added. Mam-
mography accreditation program has been helping facilities improve the image
quality by peer review and professional feedback.

The breast cancer screening rate increased from 33.2% in 2004to55.2% in
2009. According to previously published reports in Korea, there were variations
in performance indicators across the institutions, but these differences were not
extreme; Performance of screening mammography was associated with sensitivity
of 85.0-91.5%, specificity of 95.0-99.0%, PPV1 of 0.8-2.5%, PPV2 of 18.0-27.7%,
recall ratesof 5.1-13.0%, and cancer detection rates of 0.5-2.0/1000. Compared
with the ideal goal of ACR in USA, PPV1 and cancer detection rates are lower
than the goal of ACR. It is probably due to lower cancer incidence in Korea than
that of USA. In the near future, results of 10 year performance and outcome
measurements of NCSP in Korea will be reported.

Although mammography screening is the only method presently considered
appropriate for mass screening of asymptomatic women, the success in cancer
detection has been limited in women with small and dense breasts, especially in
Asian women. Other or new breast imaging technologies having potential role
in breast screening are digital mammography, breast ultrasound including au-
tomated whole breast US, MRI, digital breast tomosynthesis. The digital mam-
mographic imaging screening trial (DMIST) found that digital mammography
performed significantly better than analog mammography in premenopausal and
perimenopausal women, those aged < 50 years, and those with dense breasts.
Ultrasound is an ideal supplement tomammography. The results of a multicenter
trial of supplemental screening breast ultrasound for women at high risk with
dense breast tissue have been promising. Several studies found that ultrasound
alone caught breast tumors that mammography couldn’t see in 0.1-0.5% of pa-
tients. Previously Published Data of screening US in Korea show similar cancer
detection rate, reported 0.35% - 0.5%. However, the operator dependence of
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hand held ultrasound is a major concern with respect to the widespread use of
whole breast screening ultrasound. Recently developed automated whole breast
ultrasound is more readily reproducible, has3D capability through multi-planar
reconstruction, and allows delayed interpretation outside of real time, optimiz-
ing the radiologist’s reading environment. Magnetic resonance imaging has been
used with success in the screening of high-risk women. From 2007, the ACS is-
sued recommendations for screening breast MRI among certain high-risk women.
Recently developed digital breast tomosynthesis (DBT) allows cross-sectional vi-
sualization of breast tissue that the overlying and underlying anatomical tissue
can be effectively removed when viewing individual slices. Thus overcoming the
problem of super-positioning that reduces the effectiveness of mammography.
It also has a potential role for breast screening. However, there are no large,
peer-reviewed studies that support the routine use of other imaging techniques,
these are not recommended to be widely used until a clear outcome benefit is
established for breast cancer screening.



Measurement and Clinical Use

of Breast Density

Kwan-Hoong Ng and Susie Lau

Department of Biomedical Imaging and University of Malaya
Research Imaging Centre,

Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

ngkh@ummc.edu.my

Breast density is loosely defined as the amount of fibroglandular tissue in the
breast compared to the total amount of breast tissue. In this review paper we
consider the three ways of describing breast density as seen on a mammogram:
pattern-based, area-based and volumetric-based and explain the rationale for
each along with detailing the various ways of estimating each of them (visual,
semi-automated, and fully automated). We also consider the use of other imaging
modalities of estimating breast density, including CT. Clinically, breast density
has now moved from being a controversial, even derided subject to one which
is widely accepted with an expanding number of clinical uses. It is proven that
a woman’s breast density is a strong predictor of the failure of mammographic
screening to detect breast cancer and thus can be used to indicate where alternate
modalities might be considered. It is proven that breast density is a strong
predictor of the risk of developing breast cancer and thus can be used to start
to consider tailored screening programs. We review the current widely known
clinical uses along with the lesser known uses, such as assessing the benefits of
chemoprevention and generating more accurate radiation dose estimates. Breast
density is becoming an increasingly important clinical tool; there is an increasing
need for accurate and consistent density measures along with an understanding
of how the various measures compare.



Low-Dose Molecular Breast Imaging -

Diagnostic and Screening Applications in
Women with Dense Breasts

Michael K. O’Connor

Department of Radiology, Mayo Clinic, Rochester, MN

mkoconnor@mayo.edu

Approaches to imaging the breast with nuclear medicine and/or molecular imag-
ing methods have been under investigation since the early 1990s. Nuclear medicine
procedures, which detect the preferential uptake of a radiotracer in breast lesions,
have the potential to offer valuable functional information that complements con-
ventional anatomical imaging techniques such as mammography and ultrasound.

Despite initial enthusiasm for scintimammography, nuclear medicine tech-
niques in general have struggled to gain mainstream acceptance by the breast
imaging community. In the last 5-10 years, older-generation scintillating gamma
systems, such breast-specific gamma imaging systems, have been replaced by a
new generation of dual detector cadmium zinc telluride [CZT] detectors that per-
form direct conversion [DC] of gamma ray energy to signal and yield improved
spatial and energy resolution. Using CZT-based detectors, DC-Molecular breast
Imaging [DC-MBI] has demonstrated the ability to reliably detect breast tu-
mors in a variety of diagnostic and screening settings. Recent improvements in
both the detector technology and patient preparation have enabled the associ-
ated radiation dose from DC-MBI to be reduced to less than 1.5 mSv. The most
robust evidence for the clinical use of DC-MBI is in the screening of women
with dense breast tissue. In two large screening studies, the addition of DC-MBI
to mammography was significantly more sensitive than mammography alone in
detecting cancer (91% vs. 25%, p <0.001). Supplemental screening with DC-
MBI detected an additional 8.3 cancers per 1000 women, which compares very
favorably to other modalities in screening women with dense breasts.



Will New Technologies

Replace Mammography CAD as We Know It?

Julian Marshall, Ashwini Kshirsagar, Sibel Narin, and Nikos Gkanatsios

Hologic, Inc., Santa Clara, CA, USA

Since its commercial introduction in 1998, Mammography computer-aided
detection (CAD) has been one of the few CAD technologies widely implemented
in clinical practice. The original concept of CAD marks as overlays on images
has been broadly accepted, although new paradigms have been proposed and
successfully tested that could one day challenge that original approach. But now,
as breast imaging evolves further with the advent of digital breast tomosynthesis,
new image processing techniques are developing that may cause us to re-evaluate
the clinical requirements for Mammography CAD as we know it. What clinical
problems in breast imaging are not solved by tomosynthesis, and how can CAD
help us with those problems?

Tomosynthesis: What We Know Now

and Why TMIST Is Needed

Etta D. Pisano

Department of Radiology and Radiological Science,
Medical University of South Carolina,

Charleston, USA

pisanoe@musc.edu

Digital Breast Tomosynthesis provides pseudo three-dimensional viewing of breast
tissue on a technological platform similar to conventional two-dimensional dig-
ital mammography. The technology is being incorporated into clinical environ-
ments across the world. This presentation provides a review of the current pub-
lished literature concerning the clinical use of digital breast tomosynthesis and
an overview of the design of a proposed North American Tomosynthesis Mam-
mographic Imaging Screening Trial (TMIST).



Advanced Telecommunications in Breast

Imaging– Streamlining Telemammography,
Telepathology & Teleoncology Services

to Improve Patient Care

Elizabeth A. Krupinski

Department of Medical Imaging, University of Arizona,
Tucson, AZ USA

krupinski@radiology.arizona.edu

Teleradiology services are very common worldwide, and Full Field Digital Mam-
mography (FFDM) systems have made it possible to include mammography.
This is important because breast cancer is the most common cancer in women
in many parts of the world and it is the second leading cause of cancer deaths.
In rural and medically underserved areas, mammography rates are lower than
in urban areas for a variety of reasons, including lack of dedicated screening
facilities and/or personnel, poor compliance, and large distances between pa-
tients and clinics (making it difficult to return for follow-up care). Once possi-
ble cancers are detected, biopsies are performed but in many cases reports are
very slow to get back to the patient and/or local clinician impacting treatment
and follow-up. Telepathology can address this situation. Patients may also re-
quire oncology services and in rural areas they are often limited or non-existent.
Real-time teleoncology services can facilitate treatment and counseling. Finally,
breast care support and education can be facilitated by virtual support groups
and broadcasting education lectures.
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Real-Time Tissue Elastography:

Theory and Usefulness for Breast Cancer
Diagnosis

Tsuyoshi Shiina

Department of Human Health Sciences, Graduate School of Medicine,
Kyoto University, Kyoto, Japan

shiina@hs.med.kyoto-u.ac.jp

Disease tissues, such as breast cancer, become hard as the disease progresses.
Therefore, ultrasound tissue elasticity imaging, i.e., elasography has attracted
much attention as a modality that provides novel diagnostic information regard-
ing tissue stiffness, and various techniques for elasography have been proposed
in the last two decades.

The most widely available commercial elastography method today is strain
imaging using external tissue compression and generating images of the resulting
tissue strain. The most fundamental external force is manually applying pressure
with a probe on the body surface, similar to an ordinary ultrasound examination,
which is referred to as strain elastography.

Advantages of ultrasonic examination, such as real-time and simple (free-
hand) operation, must be preserved in the ultrasound elastography system. In a
freehand compression, it is necessary to have a large dynamic range of strain for
stable measurement that does not depend on a compression speed and quantity.
The Combined Autocorrelation Method (CAM) was developed by our group as
an image reconstruction method suited for clinical application. It produces an
elasticity image with high-speed processing and accuracy, and achieves a wide
dynamic range for strain estimation by combining envelope correlation and phase
shift while avoiding aliasing errors. As a result of collaboration of our group and
Hitachi Medical Corporation the first practical system of ultrasound elastogra-
phy based on strain elastography was released in 2003 based on the CAM.

Its efficacy was demonstrated in the diagnosis of breast-cancer tumors to-
gether with an elasticity score proposed at the same time, and it is currently
being used in various fields of clinical medicine other than breast-cancer diagno-
sis, such as prostate-cancer, arteriosclerosis, chronic hepatitis.

Strain elastography has the advantages of being easy to use and providing
elasticity images in real time and with a high spatial resolution in a manner
similar to conventional ultrasonography. Many manufacturers today produce ul-
trasonographic equipment with a strain elastography function. Recently, another
elastography approach (shear wave imaging) that provides stiffness images based
upon the shear wave propagation speed has been practically applied. Features
and equipment of each method, i.e., their merits and limitations, must be clarified
for their appropriate use. Recently, to help users of ultrasound elastography, aca-
demic societies of medical ultrasound, such as WFUMB, EFSUMB, and JSUM,
have started to prepare guidelines.
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Elastography further improves the value of ultrasonography with the ability
to provide new diagnostic information related to tissue characterization. On the
other hand, it is still an evolving technology with much technical potential for
clinical application in the future including expanding its scope of application,
quantification, 3D measurement, and treatment support, etc. One might antic-
ipate that it will further evolve in the future and attain a position as a third
mode of ultrasound imaging behind B-mode and Doppler method.
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Abstract. Validation of any imaging system is challenging due to the huge 
number of system parameters that should be evaluated. The ultimate metric of 
system performance is a clinical trial. However, the use of clinical trials is li-
mited by cost and duration. We are strong proponents of a preclinical alterna-
tive, in the form of Virtual Clinical Trials (VCT), which model human anatomy, 
image acquisition, display and processing, and image analysis and interpreta-
tion. A complete VCT pipeline was envisioned by combining the breast anato-
my and image acquisition simulation pipeline developed at the University of 
Pennsylvania, with the MeVIC image display and observation pipeline devel-
oped by researchers at Barco. Today an integrated virtual clinical trial design 
program, VCTdesigner, and a virtual clinical trial management program, 
VCTmanager, are freely available (www.VCTworld.org). The pipeline design is 
flexible and extensible, making it possible to add functionality easily and rapid-
ly. It is our hope that by freely distributing the VCTmanager software, our field 
can standardize on this platform for running VCT.   

Keywords: Virtual clinical trials, observer models, anatomy models, imaging 
simulations, breast cancer, imaging. 

1 Introduction 

Validation of any imaging system is challenging due to the huge number of system 
parameters that should be evaluated.  The ultimate metric of system performance is a 
clinical trial.  However, the use of clinical trials is limited by cost and duration.  In 
addition, trials involving ionizing radiation require repeated irradiation of volunteers, 
which may be impractical.  In particular, breast-screening trials have a low incidence 
of disease; therefore, radiation must be used judiciously.  We are, therefore, strong 
proponents of a preclinical alternative, in the form of Virtual Clinical Trials (VCT), 
which model human anatomy, image acquisition, display and processing, and image 
analysis and interpretation. 

We coined the phrase “Virtual Clinical Trials” in 2009, in anticipation of the grow-
ing abilities of anatomy and imaging system simulations, together with innovations in 
observer models. A complete VCT pipeline (Fig. 1) was envisioned by combining the 
breast anatomy and image acquisition simulation pipeline developed at the University 
of Pennsylvania, with the MeVIC image display and observation pipeline developed 
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by researchers at Barco, Inc.  Today an integrated virtual clinical trial design pro-
gram, VCTdesigner, and a virtual clinical trial management program, VCTmanager, 
are freely available (www.VCTworld.org). 

We believe that VCTs have at least two significant roles:  quantitative and objec-
tive assessment of system performance in the design of novel imaging methods; and, 
validation of clinical trial designs prior to execution of real clinical trials.  Tradition-
ally, novel imaging methods (whether acquisition systems, display systems or image 
processing solutions) are evaluated with simple test objects (uniform fields, edges, 
etc.) and limited clinical data sets.  Similarly, clinical trials are restricted to volun-
teers meeting specific entry criteria, such as age or absence of prior disease, to simpli-
fy study design and data analysis.  These traditional evaluation methods provide 
tractable results that allow one to grade or rank systems in terms of superiority vis-a-
vis that specific test or that particular patient group; however, these tests do not neces-
sarily predict clinical performance in the full clinical population. 

By contrast, a VCT is cast in terms of close surrogates of real clinical tasks, such as 
the detection or classification of calcifications or masses in the breast, or the estima-
tion of breast density or parenchymal properties. Thus, it is expected that rankings 
obtained by a VCT would closely match clinical performance.  We also expect that 
results of a VCT can act as a guide for the design of actual clinical trials, by allowing 
clinical researchers to simulate various trial designs a priori and to calculate the effect 
and power more accurately when designing clinical trials.  VCTs can also extend the 
results of a clinical trial by simulating patients otherwise excluded (e.g., detection of 
multifocal disease in women with surgical clips). 

While we have concentrated, to date, on VCT for x-ray imaging of the breast, the 
methods presented here are general and thus are applicable to imaging other body 
parts with a variety of image modalities.  In addition, while we explicitly discuss the 
use of observer models as surrogates for human observers, it is also relevant to con-
sider VCT for quantitative measurement systems, such as computer-aided diagnosis 
(CAD) systems and systems designed to estimate breast density or breast cancer risk. 

2 VCTworld 

The VCTmanager simulation pipeline is implemented in an extensible C++ and 
OpenCL software platform. The structure of the pipeline is illustrated in Fig. 1. Synthet-
ic breast images are generated using the breast anatomy and imaging simulation me-
thods developed at the University of Pennsylvania (UPenn) over the last two decades 
[1-5]. Normal breast anatomy is simulated with a recursive partitioning algorithm using 
octrees [5]. Lesions can be included automatically based upon a configurable set of 
rules [6]. Phantom deformation due to clinical breast positioning and compression is 
simulated using a finite element (FE) model and rapid post-FE software [7]. DBT image 
acquisition is currently simulated by ray tracing projections through the phantoms, as-
suming a polyenergetic x-ray beam without scatter, and an ideal detector model. 
Processed or reconstructed images are obtained using the Real-Time Tomography, LLC 
(RTT) image reconstruction and processing software [8]. Other imaging modalities are 
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also supported, although not yet fully integrated, including dedicated breast CT, mag-
netic resonance imaging, and ultrasound imaging. 

The display and virtual observer simulation is based upon MeVIC (Medical Virtual 
Imaging Chain) [9-11] developed at Barco. Datasets (volumes of interest) of projection 
images or tomographic image stacks, with and without simulated lesions, are input to the 
display and virtual observer portion of the simulation pipeline. Each stack is first decom-
posed into spatiotemporal frequency components using a 3D fast Fourier transform 
(FFT). Various elements of the human visual system (HVS) are simulated in the Fourier 
domain. Then, a 3D inverse FFT is applied to the perceived amplitudes to transform the 
perceived image(s) back into the space-time domain. Finally, the results are input to a 
multi-slice channelized Hotelling observer (msCHO) developed by Platiša et al [12]. 
Further details of the simulation have been provided previously [11]. 

The simulation modules in the pipeline are interconnected using an XML-based 
dynamic parsimonious data representation, offering a high level of control for the 
simulations. The data are structured at two levels. At a high-level, the clinical trial is 
defined in terms of the research arms (e.g., defining the modalities or modality para-
meters to be tested, and the patient population). At the next level, virtual patient or 
virtual imaging study data are defined that parallel the DICOM metadata for an 
equivalent imaging procedure on the system(s) being simulated together with such 
demographic data as can be simulated. For example, this information can include a 
unique name and numerical identifier; study information such as modality, date and 
time; series and image information including acquisition parameters and desired dis-
play state (for presentation/for processing); and demographic data including breast 
size, breast density, etc. These data both guide the simulation and serve as the source 
of the DICOM metadata for the image files that are created. 

An example of the simulation is shown in Fig. 2. A single slice from the breast 
anatomy model containing a calcification cluster is shown in Fig. 2A. The actual 
model consists of a 450 mL breast compressed to 5 cm with isotropic voxels of di-
mension (200 µm) [3]. The choice of voxel size is modality and task dependent. Each 
voxel is assigned a unique tissue type (adipose, fibroglandular, calcification, etc.) that 
is indicated by the grayscale in the figure. A projection mammogram is shown in 
Fig. 2B, simulating a Selenia Dimensions (Hologic, Bedford MA) 2D acquisition, and 
processed with Adara™ (RTT, Villanova PA). A magnified region is inset. Finally, a 
tomosynthesis reconstruction in shown in Fig 2C, simulated with a 3D Selenia Di-
mensions acquisition geometry, and reconstructed with Briona™ (RTT).   

Trial design is performed using the matching VCTdesigner software. At the current 
time, we use simulations of full calcification clusters and complex breast masses for 
human observer trials; while for the virtual clinical trials, we typically simulate a 
single calcification or a simple mass. Typical VCT trials can involve 3,000-30,000 
image datasets per condition, depending upon the desired statistics.  The vast majori-
ty of the VCTworld software is optimized to run on the GPU allowing us to simulate a 
single image (breast generation through observer simulation) in less than a minute, 
and thus simulate complete VCT in less than a day. 
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The VCT pipeline has been validated for a variety of applications, including the vali-
dation and optimization of digital breast tomosynthesis (DBT) reconstruction methods 
[13-15], DBT image denoising methods [16], ultrasound tomography (UST) reconstruc-
tion and segmentation methods [17], analysis of power spectra descriptors in simulated 
phantom DBT images [18], analysis of texture properties in digital mammography (DM) 
and DBT images [19, 20], analysis of tumor detectability in DBT [21, 22], and breast 
imaging dosimetry [23].  

Next, once we develop a validation method, we attempt to automate the process. 
This allows for regression testing of future software generations. Given the complexi-
ty of the simulation software, regression testing allows us to determine whether pros-
pective changes to the software alter the fundamental operation of the pipeline.  
These tests are hierarchical, allowing testing from individual components to the entire 
pipeline. As functionality is added to the pipeline, more extensive testing with human 
observers or machine observers is periodically necessary; when applicable, these new 
tests are added to the regression test set. 

Finally, physical versions of the 3D anthropomorphic phantom have also been pro-
duced and used to validate various applications [24, 25]. This phantom provides the 
ultimate validation of the acquisition simulation method, as it is possible to compare the 
simulated and real images of the phantom directly. The addition of simulated lesions  
to the phantom provide further opportunities for validation, as it is then possible to 
compare human and machine detection directly. 

4 The Future of VCTs 

In the last five years, the term “Virtual Clinical Trials” has entered into routine use in 
our field.  There is substantial research on the topic, both by our collaborators and by 
other labs.  It is our hope that by freely distributing the VCTworld software, our field 
can standardize on this platform for running VCT.  The pipeline design is flexible 
and extensible, making it possible to add functionality easily and rapidly. 

There is an increasing demand for features, as the use of VCTs increase. We need 
to create models with increased realism and of all body parts, to extend the use of 
VCT. Similarly, we need observer models that better match human observers in terms 
of the tasks that are to be evaluated. Observer models that involve search and models 
that can detect complex lesions are required; for example, support of calcification 
clusters having a variety of sizes and numbers of calcifications, or models that can 
detect masses with a variety of shapes and sizes, or models that can detect lesions 
with both calcifications and masses. Ultimately, we will need to create general  
observers; observers that can read medical images of any body part or disease.  
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Abstract. This review paper encapsulates the presentation of the computer-
aided diagnosis (CAD) development in the session of US imaging at IWDM 
2014. The development includes novel methodologies in conventional B-mode 
and modern ultrasound modalities such as elastography and automated breast 
ultrasound. For B-mode images, gray-scale invariant texture features were pro-
posed to solve the changing of echogenicities from various ultrasound systems. 
Speckle patterns were analyzed to show the properties of tiny scatterers with 
microstructure contained in breast tissues for tissue characterization. Using 
quantified sonographic findings in tumor classification can achieve better diag-
nostic result than combining all features together. Elastography CAD systems 
use automatic tumor segmentation and clustering method to reduce operator-
dependence. Dynamic sequence features were extracted from a sequence of  
elastograms to provide tumor stiffness without selecting slices. Another ap-
proach was selecting slices with quality evaluation methods. Both approaches 
reduced the overloads of physicians in slice selection. Automated breast ultra-
sound system is developed to automatically scan the whole breast and build the 
volumetric breast structure. Three-dimensional morphology, texture, and speckle 
features were proposed and combined to provide more diagnostic information 
than two-dimensional features. These CAD systems for B-mode, elastography, 
and automated breast ultrasound are good at malignancy evaluation and would 
be helpful in clinic use. 

Keywords: Computer-aided diagnosis, breast cancer, ultrasound. 

1 Introduction 

Breast cancer has become the most common cancer in women [1]. Early detection and 
treatment are useful to reduce the mortality [2]. Ultrasound (US), as an imaging tool, 
is widely used on clinical breast examination. The sonographic appearances of breast 
tumors are interpreted by radiologists to distinguish between malignant and benign 
tumors [3]. With the development of imaging technology, more and more US-related 
modalities are proposed to provide diagnostic information. These modalities either 
present the underlying tissue composition for characterization or establish the  
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volumetric breast structure for reviewing. The growing data generated from various 
modalities is useful for radiologists to make more accurate diagnostic decision. How-
ever, it would be a time-consuming task to review various US images. Computer-
aided diagnosis (CAD) systems are emerging tools to give assistance in clinical use. 
The advanced CAD systems integrate interdisciplinary knowledge including digital 
imaging processing, pattern recognition, artificial intelligence classifier, and statistical 
analysis to speed up the diagnostic procedure and reduce oversight errors. The quan-
titative analysis generated by CAD systems also provides more details for malignancy 
estimation and treatment evaluation. Besides, CAD systems can be installed in com-
mon computers and be automatically updated via internet. The state-of-art CAD  
system technologies for various US modalities were presented in the session of US 
imaging at IWDM 2014 as addressed in this review paper. Section 2 describes the 
novel CAD technologies for breast US modalities including B-mode, elastography, 
and automated breast ultrasound. 

2 Novel CAD Technologies 

2.1 B-Mode 

After transferring the US wave to tissues, the return echo is detected and measured to 
construct a two-dimensional image known as brightness mode (B-mode) frame.  
B-mode is the most common US imaging technique used on clinical examination. 
Developing breast CAD based on B-mode images provides an immediate assistance 
for diagnosis. American College of Radiology establishes the standard Breast Imaging 
Reporting and Data System (BI-RADS) Lexicon [4] to describe the dominant sono-
graphic findings of a tumor in B-mode. Including shape, orientation, margins, lesion 
boundary, echo pattern, and posterior acoustic features are classified into morphology 
or texture features and are quantified in various CAD systems. Morphology features 
presenting the shape characteristics of tumors are almost invariant under different US 
parameter settings. However, texture features based on gray-scale analysis are easily 
affected by the changing of echogenicities. Yang et al. [5] proposed using ranklet 
transform to rearrange the pixel values by their intensity rankings in an image. Ex-
tracting gray-level co-occurrence matrix (GLCM) texture features from the multi-
resolution and orientation-selective transformed images resulted in better diagnostic 
performance than those from wavelet transform. Three databases from different US 
systems were used in the experiment including Acuson Sequoia (Acuson Siemens, 
Mountain View, CA, USA), GE LOGIQ 7 (GE Medical Systems, Milwaukee, WI, 
USA), and Voluson 730 expert (GE Medical systems, Kretz Ultrasound, Zipf, Aus-
tria). Via ranklet transform, the performances of area under receiver operating charac-
teristic curve (AUC) were 0.918, 0.943, and 0.934 while the wavelet transform 
achieved 0.847, 0.922, and 0.867. For the generalization ability of CAD systems, the 
texture analysis based on ranklet transform would be more robust. 

More quantitative features were extracted from B-mode images to provide extra 
diagnostic information over conventional features. Moon et al. [6] extracted speckle 
patterns in B-mode to analyze the scatterers with microstructure contained in breast 



 CAD for B-Mode, Elastography and Automated Breast Ultrasound 11 

 

tissues. Tiny scatterers such as tissue parenchyma generate the constructive and de-
structive interference called speckle presented by granular appearance in US images. 
The AUC of speckle features is significantly better than that of conventional B-mode 
features (0.93 vs. 0.86, p-value=0.0359). 

Different classification method used in CAD systems can also lead to different re-
sult in distinguishing malignant from benign tumors. Moon et al. [7] suggested quan-
tifying six BI-RADS descriptive categories rather than combing all features together 
for tumor classification. Multiple quantitative features were used to interpret a BI-
RADS descriptive category such as shape. In the classification, if one or more malig-
nant findings were shown on a tumor, it was classified to be malignant. Otherwise, it 
was benign. The CAD based on quantified BI-RADS findings achieved significantly 
better partial AUC (over 90% sensitivity) than that of the conventional CAD using all 
features together (0.90 vs. 0.76, p-value<0.05). The performance is promising in eva-
luating tumor malignancy to avoid missing carcinomas. Fig. 1 shows a B-mode US 
image. 

 

Fig. 1. A B-mode ultrasound image acquired from an ATL HDI 5000 scanner (Philips, Bothell, 
WA, USA) 

2.2 Elastography 

Elastography is a dynamic imaging technique using US to estimate tumor stiffness 
under an external force. In the acquisition, a B-mode image is displayed side by side 
with the corresponding elastogram to provide anatomical information. A sequence of 
elastograms containing 50-90 slices is stored during the manual compression. The 
gray-scale value of elastogram pixels is 0-255. Harder tissues are darker with lower 
pixel values while softer tissues are closer to 255. Automatic tumor segmentation [8] 
was proposed to delineate the tumor contour in both B-mode images and elastograms 
to reduce user-dependence and accurately estimate tumor stiffness. Fuzzy c-means 
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clustering was used in classifying the pixels within a delineated tumor into bright or 
dark clusters rather than using a fixed intensity threshold. 

To extract more complete stain information from the dynamic elastography, tumor 
boundary tracking mechanism was used in a CAD [9] to calculate stiffness features of 
the total sequence to reduce the influence of slice selection. The segmentation result 
of the first slice, as a template, was applied on adjacent slices. The method considered 
the variation caused by manual compression and save time of physicians in slice se-
lection. The performance of whole sequence analysis achieved significantly better 
AUC than that of using only a selected slice (0.90 vs. 0.75, p-value=0.002). 

Another CAD [10] automatically chooses a slice with the best quality for diagno-
sis. The quality was determined based on the signal-to-noise (SNR) ratio within the 
segmented tumor or the contrast-to-noise (CNR) ratio between the segmented tumor 
and surrounding normal tissues on a elastogram. As a result, both strain features ex-
tracted from the SNR and CNR slices can achieve as good performance as those of 
the physician-selected slice. Combining B-mode and strain features together obtained 
the best accuracy whether by CNR (86.1%), SNR (90.1%), or physician-selected 
(89.4%). The CAD approach reduces the overload of physicians in selecting slices 
and generates a promising diagnostic performance for clinical use. Fig. 2 shows an 
image slice extracted from an elastogram sequence. 

 

Fig. 2. An elastogram acquired by an ACUSON S2000 ultrasound system (Siemens Medical 
Solutions, Mountain View, CA) 

2.3 Automated Breast Ultrasound 

Early detection is helpful to reduce the mortality of breast cancer [2]. However, con-
ventional US equipped with hand-held probe which highly depends on operator expe-
rience is not practical to be used in screening. The standardization of scanning and US 
documentation is necessary to control the examination quality. Performing screening 
of thousands of patients using manual US is also time-consuming. With the growing 
of imaging techniques, automated breast ultrasound (ABUS) systems have been de-
veloped to make the US screening become acceptable. ABUS systems automatically 
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scan the whole breast and build the volumetric three-dimensional (3-D) breast struc-
ture for reviewing. The ABUS systems have been used on clinical examination to 
improve the detection rate of breast cancers [11]. CAD systems for ABUS systems 
were also developed to provide more diagnostic information. 

Moon et al. [12] extracted quantitative 3-D morphology and texture features after 
applying 3-D segmentation on ABUS images. The morphology features such as mar-
gin and compactness of volume structure were described using the distances between 
tumor center and boundary voxels. More features were calculated from the difference 
between the tumor contour and the best-fit ellipse including surface ratio, volume 
overlapping ratio, and number of non-overlapping regions on the boundary. For tex-
ture features, GLCM was used to analyze the correlations between voxels in the seg-
mented tumor volume. The performance of the best combination of 3-D features 
achieved the AUC of 0.9466. In the further study [13], the statistics and texture of 
speckle voxels mentioned in the previous B-mode section were extracted from ABUS 
images to explore more diagnostic information. The performance of the speckle fea-
tures was comparable to that of the morphological features (AUC=0.91 vs. 0.91,  
p-value>0.05).  Upon the complementary advantage, combining the speckle and 
morphology features obtained a significantly better AUC than using the morphology 
features alone (0.96 vs 0.91, p-value=0.0154). Fig. 3 shows the illustration of ABUS 
images. 

 

Fig. 3. A 3-DABUS image volume acquired by a SomoVu ScanStation (U-system, San Jose, 
CA, USA) can be observed from axial (top), sagittal (left), and coronal (right) view 
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3 Conclusions 

Nowadays, more and more modalities are developed to provide novel information 
about the physical and mechanical properties of breast tissues. The overloads of im-
age examinations need to be reduced to deal with the growing population suffering 
from breast cancer. CAD systems proposed to accelerate the diagnostic procedure and 
quantify the likelihood of malignancy are significant tools in future health care. The 
advances of breast US CAD systems for B-mode, elastography, and ABUS were pre-
sented in the session of US imaging at IWDM 2014 as addressed in this review paper. 
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Abstract. Breast density is loosely defined as the amount of fibroglandular tis-
sue in the breast compared to the total amount of breast tissue. In this review 
paper we consider the three ways of describing breast density as seen on a 
mammogram: pattern-based, area-based and volumetric-based and explain the 
rationale for each along with detailing the various ways of estimating each of 
them (visual, semi-automated, and fully automated). We also consider the use 
of other imaging modalities of estimating breast density, including CT. Clini-
cally, breast density has now moved from being a controversial, even derided 
subject to one which is widely accepted with an expanding number of clinical 
uses. It is proven that a woman’s breast density is a strong predictor of the 
failure of mammographic screening to detect breast cancer and thus can be 
used to indicate where alternate modalities might be considered. It is proven 
that breast density is a strong predictor of the risk of developing breast cancer 
and thus can be used to start to consider tailored screening programs. We re-
view the current widely known clinical uses along with the lesser known uses, 
such as assessing the benefits of chemoprevention and generating more accu-
rate radiation dose estimates. Breast density is becoming an increasingly im-
portant clinical tool; there is an increasing need for accurate and consistent 
density measures along with an understanding of how the various measures 
compare. 

Keywords: BI-RADS, breast cancer, breast density, mammography, volumetric 
breast density. 

1 Introduction 

Breast density is loosely defined as the amount of fibroglandular tissue in the breast 
compared to the total amount of breast tissue. It is a strong predictor of the failure of 
mammographic screening to detect breast cancer lesions [1]. It is also a strong pre-
dictor of the risk of developing breast cancer [2] with increased density tending to be 
associated with higher breast cancer risk (after adjustments for other parameters)  
[3, 4]. It is the goal of many researchers and companies to develop a reliable and 
realistic measure of density, not subject to human interpretation, i.e., objective and 
reproducible. 
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2 Measurement of Mammographic Breast Density Today 

2.1 Visual Assessments 

Radiologists have been assessing breast density visually and subjectively from two 
dimensional images of breast since the mid-1970s. Wolfe [5] and Tabár [6] are the 
two best known pattern-based visual assessment methods but have proven hard to 
implement in practice due to subjectivity whereas the more quantitative BI-RADS 
breast density category system has proven more popular. The BI-RADS [7] works by 
dividing density into four gross categories. Initially, those categories were simple 
descriptive terms (“fatty”, “scattered density”, “heterogeneously dense”, “extremely 
dense”), but the BI-RADS 4th Ed. [8] included quantitative elements: fatty was 
“<25%” glandular; scattered density was “25%–50%” glandular; heterogeneous den-
sity was “51%–75%” glandular; and extremely dense was “>75%” glandular. Howev-
er, the 5th Ed. [9] removed the quantitative elements because, the authors argued, it 
made no difference to US radiologists’ judgment of density. 

Table 1. Overview of development of pattern-based breast density assessment methods 

Year Method/ 
References 

Brief Description 

1976 Wolfe 
Wolfe [5] 

Qualitative classification of mammographic density 
into four parenchymal-patterns. 

1997 Tabár 
Gram et al. [6] 

Classification of mammograms in 5 patterns based 
on a histologic-mammographic correlation with a 
3D, thick-slice technique, and on the relative pro-
portion of four “building blocks”. 

1993 BI-RADS (3rd Ed) 
ACR [7] 

Standardized reporting system by ACR for classify-
ing mammography into four categories.  

2013 BI-RADS (5th Ed) 
ACR [9] 

Comprehensive guide by ACR providing standar-
dized breast imaging terminology, report organiza-
tion, assessment structure, and classification system 
for mammography (four-category), ultrasound, and 
MRI of the breast. 

2.2 Quantitative Area Assessments 

Breast density can be estimated by area assessment, i.e., fraction of 2D breast image 
that appears dense. Several methods have been developed to quantify the dense areas 
based upon segmentation [10] and interactive thresholding methods [11]. 

The quantitative semi-automatic threshold method, as implemented by the Cumulus 
software has been the mainstay for screen-film mammography. However, this method is 
observer-dependent, labor-intensive and time-consuming. One challenging question 
remains: How to delineate the dense area accurately, objectively, and speedily? 
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Table 2. Overview of development of areal breast density assessment methods 

Year Method/ 
References 

Brief Description 

1988 SCC 
Boyd et al. [12] 

Based on mammographic density percentage given 
by radiologists and divided into six categories of 
unequal intervals. 

1994 Cumulus 
Byng et al. [11] 

The boundaries of the breast tissue and the threshold 
for dense tissue are identified, and the software 
calculates the areas of the breast and dense tissue. 

1998 Madena 
Ursin et al. [13] 

Identify and quantify radiographic density patterns 
by measuring the percentage of the mammogram 
that contains densities in a specified range. 

2000 ABDM 
Heine et al. [14] 

A statistical method based on a chi-square proba-
bility analysis that allows the automated discrimi-
nation of fat from fibroglandular tissue. 

2003 BI-RADS (4th Ed) 
ACR [8] 

Quantitative classification, modification of Wolfe’s 
classification, and is defined using percentages of 
density divided into quartiles. 

2012 M-Vu Breast Den-
sity (VuCOMP) 
www.vucomp.com/
products/breast-
density [15] 

Computer algorithms which evaluate breast struc-
tures and textures to differentiate between fatty and 
dense regions. Dense breast area is then converted 
to one of the four density categories corresponding 
to BI-RADS. 

2012 ImageJ 
Li et al. [16] 

Automated analysis of breast density to construct a 
measure that mimics Cumulus. It includes addi-
tional features of mammograms for improving the 
risk associations of breast density and breast cancer 
risk. 

2012 AutoDensity 
Nickson et al. [17] 

Segmentation and classification similar to Cumulus 
by identifying white tissue as ‘dense’ (breast densi-
ty segmentation). The method finds an optimal 
threshold for each mammogram independently. 

2.3 Quantitative Volumetric Assessments  

Fully automated methods have been developed to measure the true physical breast 
density, these methods measure volume of fibroglandular tissue (dense tissue),  
volume of breast and then compute the ratio, the volumetric breast density (VBD). 
VBD has the advantage of being independent of equipment, exposure factors and 
radiographic technique. Results so far suggest that volumetric measures are at least as 
strongly associated with breast cancer risk as those produced by the area-based ap-
proaches. 
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Table 3. Overview of development of VBD assessment methods 

Year Method/ 
References 

Brief Description 

1989 hint 

Highnam       
et al. [18] 

A method to normalize mammograms by calculating 
anatomical information from it. From the hint image, 
each pixel represents the thickness of ‘interesting’ (non-
fat) tissue of the compressed breast on that pixel during 
acquisition.  

1999 SMF 
Highnam et al. 
[18]; Brady   
et al. [19] 

SMF provides a representation of the amount of non-fat 
tissue at each location in a mammogram. From the com-
pressed breast thickness, the SMF representation pro-
vides a volumetric estimate of dense tissue in the breast.  

2003 Cumulus V 
Pawluczyk    
et al. [20] 

The method is based on initial calibration of the imaging 
system with a tissue-equivalent device and the subse-
quent correction for variations through images of a step 
wedge placed adjacent to the breast during imaging. 

2005 BD (SXA) 
Shepherd       
et al. [21] 

The method measures breast composition (Breast Com-
positional Density) using single X-ray absorptiometry 
techniques (SXA). Breast density is measured by com-
paring the opacity to two reference standards imaged 
with each breast. 

2008 Quantra 
Hartman        
et al. [22] 

The method estimates the thickness of fibroglandular 
breast tissue for each pixel and aggregates these values 
to compute the total breast volume. The fibroglandular 
tissue volume is found by referencing each pixel’s atten-
uation to the attenuation of pixels for fat.  

2010 Volpara 
Highnam et al. 
[23]; van  
Engeland       
et al. [24] 

The method is based on a relative physics model, and is 
an extension of hint and SMF representations. The key 
differences with SMF are in the robustness and reliabili-
ty of the results, especially in dense breasts, and not 
including skin in the dense tissue volume. 

2010 Spectral 
Ding et al. 
[25] 

Differences in the energy spectrum are used to differen-
tiate between adipose and fibroglandular tissue to pro-
vide objective VBD measurement. 

2.4 Breast Density from other Imaging Modalities 

Computed Tomography (CT). The most straightforward method of measuring  
volumetric radiological density is from CT as it enhances visualization of glandular 
tissue and architecture with its volume data as compared to other breast imaging tech-
niques [26]. It also eliminates the influence of overlapping tissues, and adds to detailed 
quantitative analysis of breast tissue composition and structural organization [27]. 
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Magnetic Resonance Imaging (MRI). MRI images can be produced that provide 
signals related to the fat and water composition of the breast. Since the water compo-
sition is highly correlated with the amount of fibroglandular tissue, these images are 
useful for breast density assessment. Several groups are developing approaches to 
quantify breast density using MRI. As an example, van Engeland et al. [24] reported a 
method to segment glandular tissue in MRI data. 

Ultrasound. Several novel methods for measuring breast density and breast cancer 
risk have been developed. These depend on the acoustic velocity difference in breast 
tissue. Ultrasound percent density was determined by segmenting high sound speed 
areas from each tomogram, integrating over the entire breast, and dividing by total 
breast area. Their results showed that utilizing sound speed in tissues could be  
implemented to evaluate breast density [28]. 

Digital Breast Tomosynthesis (DBT). DBT could provide more accurate measures 
of the dense breast tissue and ultimately result in more accurate measures of risk. 
Early work suggests this is more difficult than might seem due to blurring of density 
across slices. Still, this is projection x-rays, thus, volumetric measurements seem to be 
very likely. Current research focuses on developing VBD estimation techniques and 
new approaches to characterize the volumetric complexity of the breast tissue using 
DBT parenchymal texture analysis [29]. 

3 Clinical Uses of Breast Density Today 

A major problem with screening younger women is that mammographic density is 
higher than in older women and this would obscure detection of cancers. The obscur-
ing effect is due to the dense fibroglandular tissue and cancers having very similar  
x-ray attenuation properties. Density measures are being used to determine women 
who would benefit from adjunctive screening. 

Breast density measurements have been used to track changes in density patterns 
which occur over time or with medical treatment. This is useful to assess the effec-
tiveness of chemoprevention such as the administration of Tamoxifen [30]. 

In the US, many states now have laws stating that women have to be informed of 
their breast density so that they understand the risk of their cancer being missed and 
the risk of cancer developing. As of November 1, 2013, thirteen states have enacted as 
law, fourteen other states have introduced bills, and a federal law is being proposed. 
An advocate group, Are You Dense, Inc. (www.areyoudense.org), is spearheading the 
public awareness about breast density and suggesting to women that they should  
enquire about an ultrasound or MRI in addition to their mammograms. 

4 Clinical Uses of Breast Density Tomorrow 

Both global and regional breast density changes over time could be monitored using 
VBD tools, and this would be very useful for management of the disease, and detec-
tion of the early signs of breast cancer. 
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As risk models are becoming more robust and useful, and since breast density is an 
independent variable in the equation, the accurately measured density value is impor-
tant. Risk models including dense fibroglandular volume may more accurately predict 
breast cancer risk than current risk models [31] and be used to adjust screening  
intervals. 

VBD also enables us to estimate breast specific personalized radiation dose. Glo-
bally accepted and validated algorithm along with knowledge of VBD allows for 
more accurate mean glandular dose comparison and standardization [32]. 

Information of population-based VBD would also enable us to determine at what 
age screening should begin [33], and there is some discussion now of base-line  
scans to determine tailored breast screening programs at an early age. Breast density 
information should be told to surgeons and it influences patient selection for breast-
conserving surgery. 

5 Conclusions 

Breast density has several clinical uses today, and many more being investigated, but 
we must be cognizant that other variables such as BMI need to also be factored in for 
some of the uses, especially related to risk of developing breast cancer. There are 
various ways of estimating breast density, and ultimately the ways which provide the 
most useful clinical information for the specific purpose will be used. For many uses, 
accuracy of assessment is not critical, but for others such as tracking of Tamoxifen 
effectiveness, greater accuracy might be needed. Researchers and commercial compa-
nies are now bringing systems to market which look promising to resolve the clinical 
needs. 

In the quest for the ideal breast density system that should have access to a dataset 
of breast consisting of a voxel by voxel description of the breast tissue in all its forms 
(glandular, fibrous, fat, etc.). In reality we need a good measure which is highly corre-
lated to risk of missing cancer to decide who should get adjunctive imaging. Volume-
tric measures of breast density are more accurate predictors of breast cancer risk than 
risk factors alone and than percent dense area. 

Furthermore, for special cases such as chemo-prevention analysis (hormone replace-
ment therapy) we might need greater accuracy, that might be derived from mammogra-
phy and better quality control, or from tomosynthesis, or from CT and/or MRI. 

Standardization is essential for international comparison studies due to variation in 
mammographic density assessment arising from different techniques and radiologists. 
Breast cancer risk assessment and patient education can be combined to empower 
women with knowledge about their personal risk and provide a fully automated risk 
assessment tool for physicians. An internationally standardized breast density notifi-
cation protocol is necessary to rectify the growing diversity [32]. 

The development of a valid universal standard tool for measuring mammographic 
density is vital for accurate risk prediction (on a population and individual level) and 
to tailor preventive measures, including breast screening, according to a woman’s 
risk. 



22 K.-H. Ng and S. Lau 

 

Acknowledgement. This research was supported by the High Impact Research Grant 
UM.C/HlR/MOHE/06 from the Ministry of Higher Education, Malaysia. 

References 

1. Pisano, E.D., Gatsonis, C., Hendrick, E., Yaffe, M., Baum, J.K., Acharyya, S., Conant, E.F., 
Fajardo, L.L., Bassett, L., D’Orsi, C., Jong, R., Rebner, M.: Diagnostic Performance of  
Digital versus Film Mammography for Breast-Cancer Screening. N. Engl. J. Med. 353, 
1773–1783 (2005) 

2. Boyd, N.F., Guo, H., Martin, L.J., Sun, L., Stone, J., Fishell, E., Jong, R.A., Hislop, G., 
Chiarelli, A., Minkin, S., Yaffe, M.J.: Mammographic density and the risk and detection of 
breast cancer. N. Engl. J. Med. 356, 227–236 (2007) 

3. Boyd, N., Martin, L., Yaffe, M., Minkin, S.: Mammographic density and breast cancer 
risk: current understanding and future prospects. Breast Cancer Res. 13, 223 (2011) 

4. Yaffe, M.: Mammographic density. Measurement of mammographic density. Breast  
Cancer Res. 10, 209 (2008) 

5. Wolfe, J.N.: Risk for breast cancer development determined by mammographic paren-
chymal pattern. Cancer 37, 2486–2492 (1976) 

6. Gram, I.T., Funkhouser, E., Tabár, L.: The Tabár classification of mammographic paren-
chymal patterns. Eur. J. Radiol. 24, 131–136 (1997) 

7. ACR: Breast Imaging Reporting and Data System® (BI-RADS®). 3rd edn. American  
College of Radiology, Reston (1998)  

8. ACR: Breast Imaging Reporting and Data System® (BI-RADS®), 4th edn. American  
College of Radiology, Reston (2003)  

9. ACR: Breast Imaging Reporting and Data System® (BI-RADS®) Atlas, 5th edn. American 
College of Radiology, Reston (2014)  

10. Sivaramakrishna, R., Obuchowski, N., Chilcote, W., Powell, K.: Automatic segmentation 
of mammographic density. Acad. Radiol. 8, 250–256 (2001) 

11. Byng, J.W., Boyd, N.F., Fishell, E., Jong, R.A., Yaffe, M.J.: The quantitative analysis of 
mammographic densities. Phys. Med. Biol. 39, 1629–1638 (1994) 

12. Boyd, N., Byng, J., Jong, R., Fishell, E., Little, L., Miller, A., Lockwood, G., Tritchler, D., 
Yaffe, M.: Quantitative classification of mammographic densities and breast cancer risk: re-
sults from the Canadian National Breast Screening Study. J. Natl. Cancer Inst. 87, 670–675 
(1995) 

13. Ursin, G., Astrahan, M.A., Salane, M., Parisky, Y.R., Pearce, J.G., Daniels, J.R.,  
Pike, M.C., Spicer, D.V.: The detection of changes in mammographic densities. Cancer 
Epidemiol. Biomarkers Prev. 7, 43–47 (1998) 

14. Heine, J.J., Velthuizen, R.P.: A statistical methodology for mammographic density  
detection. Med. Phys. 27, 2644–2651 (2000) 

15. http://www.vucomp.com/products/breast-density 
16. Li, J., Szekely, L., Eriksson, L., Heddson, B., Sundbom, A., Czene, K., Hall, P., Humphreys, K.: 

High-throughput mammographic-density measurement: a tool for risk prediction of breast  
cancer. Breast Cancer Res. 14, R114 (2012) 

17. Nickson, C., Arzhaeva, Y., Aitken, Z., Elgindy, T., Buckley, M., Li, M., English, D.,  
Kavanagh, A.: AutoDensity: an automated method to measure mammographic breast  
density that predicts breast cancer risk and screening outcomes. Breast Cancer Res. 15, 
R80 (2013) 



 Measurement and Clinical Use of Breast Density 23 

 

18. Highnam, R., Brady, M.: Mammographic Image Analysis. Kluwer Academic Publishers 
(1999) 

19. Brady, M., Gavaghan, D., Simpson, A., Parada, M.M., Highnam, R.: eDiamond: A Grid-
Enabled Federated Database of Annotated Mammograms. In: Grid Computing, pp. 923–943. 
John Wiley & Sons (2003)  

20. Pawluczyk, O., Augustine, B., Yaffe, M., Rico, D., Yang, J., Mawdsley, G., Boyd, N.: A 
volumetric method for estimation of breast density on digitized screen-film mammograms. 
Med. Phys. 30, 352–364 (2003) 

21. Shepherd, J., Herve, L., Landau, J., Fan, B., Kerlikowske, K., Cummings, S.: Novel use of 
single X-ray absorptiometry for measuring breast density. Technol. Cancer Res. Treat 4, 
173–182 (2005) 

22. Hartman, K., Highnam, R.P., Warren, R., Jackson, V.: Volumetric Assessment of Breast 
Tissue Composition from FFDM Images. In: Krupinski, E.A. (ed.) IWDM 2008. LNCS, 
vol. 5116, pp. 33–39. Springer, Heidelberg (2008) 

23. Highnam, R., Brady, S.M., Yaffe, M.J., Karssemeijer, N., Harvey, J.: Robust breast com-
position measurement - volparaTM. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) 
IWDM 2010. LNCS, vol. 6136, pp. 342–349. Springer, Heidelberg (2010) 

24. van Engeland, S., Snoeren, P., Huisman, H., Boetes, C., Karssemeijer, N.: Volumetric 
breast density estimation from full-field digital mammograms. IEEE Trans. Med. Imag-
ing 25, 273–282 (2006) 

25. Ding, H., Molloi, S.: Quantification of breast density with spectral mammography based 
on a scanned multi-slit photon-counting detector: a feasibility study. Phys. Med. Biol. 57, 
4719–4738 (2012) 

26. Boone, J.M., Kwan, A.L., Yang, K., Burkett, G.W., Lindfors, K.K., Nelson, T.R.: Com-
puted tomography for imaging the breast. J. Mammary Gland Biol. Neoplasia 11, 103–111 
(2006) 

27. Nelson, T.R., Cervino, L.I., Boone, J.M., Lindfors, K.K.: Classification of breast computed 
tomography data. Med. Phys. 35, 1078–1086 (2008) 

28. Glide, C., Duric, N., Littrup, P.: Novel approach to evaluating breast density utilizing  
ultrasound tomography. Med. Phys. 34, 744–753 (2007) 

29. Dobbins III, J.T., Godfrey, D.J.: Digital x-ray tomosynthesis: current state of the art and 
clinical potential. Phys. Med. Biol. 48, 65–106 (2003) 

30. Li, J., Humphreys, K., Eriksson, L., Edgren, G., Czene, K., Hall, P.: Mammographic density 
reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmeno-
pausal patients with breast cancer. J. Clin. Oncol. 31, 2249–2256 (2013) 

31. Shepherd, J., Kerlikowske, K., Ma, L., Duewer, F., Fan, B., Wang, J., Malkov, S.,  
Vittinghoff, E., Cummings, S.: Volume of mammographic density and risk of breast  
cancer. Cancer Epidemiol Biomarkers Prev. 20, 1473–1482 (2011) 

32. Ng, K.H., Yip, C.H., Taib, N.A.: Standardisation of clinical breast-density measurement. 
Lancet Oncol. 13, 334–336 (2012) 

33. Lokate, M., Stellato, R.K., Veldhuis, W.B., Peeters, P.H., van Gils, C.H.: Age-related 
changes in mammographic density and breast cancer risk. Am. J. Epidemiol. 178, 101–109 
(2013) 



 

H. Fujita, T. Hara, and C. Muramatsu (Eds.): IWDM 2014, LNCS 8539, pp. 24–29, 2014. 
© Springer International Publishing Switzerland 2014 

Low-Dose Molecular Breast Imaging - Diagnostic and 
Screening Applications in Women with Dense Breasts 

Michael K. O’Connor  

Department of Radiology, Mayo Clinic, Rochester, MN 
mkoconnor@mayo.edu 

Abstract. Approaches to imaging the breast with nuclear medicine and/or 
molecular imaging methods have been under investigation since the early 
1990s. Nuclear medicine procedures, which detect the preferential uptake of a 
radiotracer in breast lesions, have the potential to offer valuable functional 
information that complements conventional anatomical imaging techniques 
such as mammography and ultrasound.  

Despite initial enthusiasm for scintimammography, nuclear medicine 
techniques in general have struggled to gain mainstream acceptance by the 
breast imaging community. In the last 5-10 years, older-generation scintillating 
gamma systems, such breast-specific gamma imaging systems, have been 
replaced by a new generation of dual detector cadmium zinc telluride [CZT] 
detectors that perform direct conversion [DC] of gamma ray energy to signal 
and yield improved spatial and energy resolution. Using CZT-based detectors, 
DC-Molecular breast Imaging [DC-MBI] has demonstrated the ability to 
reliably detect breast tumors in a variety of diagnostic and screening settings. 
Recent improvements in both the detector technology and patient preparation 
have enabled the associated radiation dose from DC-MBI to be reduced to less 
than 1.5 mSv. The most robust evidence for the clinical use of DC-MBI is in the 
screening of women with dense breast tissue. In two large screening studies, the 
addition of DC-MBI to mammography was significantly more sensitive than 
mammography alone in detecting cancer (91% vs. 25%, p <0.001).  
Supplemental screening with DC-MBI detected an additional 8.3 cancers per 
1000 women, which compares very favorably to other modalities in screening 
women with dense breasts. 

1 Introduction 

Women with mammographic breast density in the upper quartile have an associated 
three to five time’s greater risk of developing breast cancer relative to women with 
breast density in the lower quartile. Although mammography is the standard tool for 
breast cancer screening and the only method shown to significantly decrease breast 
cancer mortality, its sensitivity is strongly inversely related with breast density. In the 
U.S., recognition of this limitation of mammography has spurred patient advocacy 
groups for new legislation that would mandate disclosure of breast density informa-
tion directly to women. 

How this disclosure will impact patients is not yet fully understood. However, it is 
likely to accelerate the development of supplemental screening techniques as patients 
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look for alternatives to mammography. The most obvious candidates are ultrasound, 
contrast-enhanced breast MRI and tomosynthesis. An option not generally considered 
is molecular breast imaging [MBI]. This presentation will review the recent develop-
ments in MBI technology. It will also review potential diagnostic applications of 
MBI, including monitoring response to neoadjuvant chemotherapy and present clini-
cal results from 2 large screening studies. 

2 Molecular Breast Imaging – Recent Developments 

Molecular breast imaging is a nuclear medicine procedure that employs a dedicated 
dual-head gamma camera for imaging uptake of a radiopharmaceutical, typically Tc-
99m sestamibi, in the breast. In the last 5 years, older-generation scintillating gamma 
systems, such breast-specific gamma imaging [BSGI] systems, have been replaced by 
a new generation of dual detector compact gamma cameras. These systems perform a 
direct conversion [DC] of gamma ray energy to electronic signal (non-scintillating) 
using solid-state cadmium zinc telluride [CZT] detectors and yield improved spatial 
and energy resolution compared to BSGI systems. Using CZT-based detectors, DC- 
MBI has demonstrated the ability to reliably detect breast tumors in a variety of diag-
nostic settings. Detection of breast cancer with MBI relies on differences in functional 
uptake of Tc-99m sestamibi, rather than differences in the attenuation coefficients of 
tissues in the breast as with mammography. DC-MBI has been studied in both the 
diagnostic and screening settings. A key issue in the use of DC-MBI in both settings 
is the radiation dose associated with this procedure. Over the last 5 years, significant 
improvements have been made in the DC-MBI technology which now allow count 
density and diagnostic accuracy to be maintained at administered doses of ~240 MBq 
(6.5 mCi) giving an effective (whole-body) radiation dose of 1.9 mSv (1-3). More 
recent work in patients has shown that improved control over patient metabolic status 
(e.g. requiring that patients fast for >4 hours prior to injection of the Tc-99m sestami-
bi) enables further reduction in the administered dose to <190 MBq (<5 mCi) Tc-99m 
sestamibi giving an effective radiation dose of <1.5 mSv. This is now comparable to 
the effective dose from mammography and tomosynthesis and is low enough to  
allow consideration of widespread use of MBI for both diagnostic and screening  
applications.    

3 Diagnostic and Screening Applications of MBI 

The potential uses of MBI in the clinical setting are listed below. Best uses include 
screening, which is discussed in more detail below, evaluation of patients who are 
unable or unwilling to undergo MRI, and monitoring response to neoadjuvant chemo-
therapy (NAC). 
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Fig. 2. A) Screening mammogram (Left CC view). No evidence of malignancy. B) Left CC 
views from upper and lower detector on MBI study performed 1 week after mammogram. 
Arrows indicate area of focal uptake. C) Ultrasound of area of concern showed a 6 x 7 x 6 mm 
hypoechoic mass with irregular margins confirmed at biopsy as an invasive tubular carcinoma. 
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Mayo showed that a simple measurement of tumor / background ratio [T/B] could 
differentiate between pathological responders and non-responders as early as 3 - 5 
weeks after initiation of NAC (4). Taking a threshold of 50% reduction in T/B at 3-5 
weeks, MBI had an accuracy of 89.5% for predicting the presence or absence of resi-
dual disease at surgical resection (Figure 1). While these results are promising, larger 
studies evaluating the use of Tc-99m sestamibi and dedicated gamma cameras are 
needed to support these findings. A large multi-center trial (ContraMIBI) is currently 
in progress in the U.S. with one of its aims being to confirm these findings. 

4 MBI in Screening 

Over the last 5 years two separate screening trials have been completed. In each trial 
women presenting for screening mammography with heterogeneously or extremely 
dense breasts on last mammogram were invited to undergo MBI, performed with Tc-
99m sestamibi. The first trial was conducted between 2008 and 2010 and enrolled 936 
women. For that trial the administered activity was ~740 MBq Tc-99m sestamibi (5). 
After improvements to the technology, a second trial was conducted between 2011 
and 2013 and enrolled an additional 1612 women. In this second trial, the adminis-
tered activity was reduced to ~240 MBq Tc-99m sestamibi. Bilateral, 10 min-per-
view craniocaudal and mediolateral oblique projections were acquired (comparable 
positioning to what is used in mammography). Breast radiologists interpreted the  
 

Table 1. Combined results of Two Screening Trials of MBI  

(Abbr: DMX: digital mammography, Yield: # cancers per 1000 screened, PPV1: # cancers per 
abnormal screen, PPV3: # cancers per biopsy performed) 

 DMX 
alone 

DC-MBI 
alone 

p-value 
(DMX 
alone vs. 
DC-MBI 
alone 

Combination 
of DMX + 
adjunct DC-
MBI 

p-value 
(DMX 
alone vs. 
DMX + 
DC-MBI) 

Yield 3.1 
(8/2548) 

10.2 
(26/2548) 

<0.001 11.4 
(29/2648) 

<0.001 

Sensitivity 25% 
(8/32) 

81% 
(26/32) 

<0.001 91% 
(29/32) 

<0.001 

Specificity 90% 
(2262/2516) 

93% 
(2345/2516) 

<0.001 84% 
(2115/2516) 

<0.001 

Recall Rate 10% 
(264/2548) 

7.7% 
(196/2548) 

<0.001 16.8% 
(427/2548) 

<0.001 

PPV1 3.0% 
(8/264) 

13% 
(26/196) 

0.003 6.8% 
(29/427) 

0.111 

PPV3 21% 
(8/38) 

31% 
(27/88) 

0.451 27% 
(30/113) 

0.643 
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MBI studies while blinded to mammography findings. Assessments of 1-5 (paral-
leling BI-RADS) were assigned; 3 or higher was considered positive. Positive MBI 
studies were then compared with screening mammogram to rule out benign explana-
tion for MBI findings; diagnostic workup was performed if assessment remained posi-
tive. Reference standard was determined by pathology findings within 365 days of 
imaging or negative findings on next annual screen. Both trials yielded essentially 
identical results in terms of sensitivity and specificity. Between the two trials, a total 
of 32 patients were diagnosed with breast cancer: 3 were detected by mammography 
only, 21 by DC-MBI only, 5 by both, and 3 by neither. Performance characteristics of 
mammography, DC-MBI, and the combination are given in Table 1. Adjunct screen-
ing with DC-MBI in women with dense breasts significantly increased yield by 8.3 
cancers per 1000 screened; this supplemental yield is higher than that observed for 
supplemental ultrasound (3.5 – 4.4). Positive predictive value was not reduced with 
adjunct MBI as has been observed with adjunct ultrasound or MRI. 

5 Conclusions 

With the improvements in the underlying technology behind DC-MBI and optimiza-
tion of patient preparation, we believe that MBI has a role to play in both the diagnos-
tic and screening setting and may be of particular value as an adjunct technique to 
mammography and tomosynthesis in screening women with dense breast tissue.  
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Abstract. Since its commercial introduction in 1998, Mammography computer-
aided detection (CAD) has been one of the few CAD technologies widely im-
plemented in clinical practice.  The original concept of CAD marks as overlays 
on images has been broadly accepted, although new paradigms have been pro-
posed and successfully tested that could one day challenge that original ap-
proach.  But now, as breast imaging evolves further with the advent of digital 
breast tomosynthesis, new image processing techniques are developing that 
may cause us to re-evaluate the clinical requirements for Mammography CAD 
as we know it.  What clinical problems in breast imaging are not solved by to-
mosynthesis, and how can CAD help us with those problems? 

Keywords: Mammography, Tomosynthesis, Generated 2D, Computer-aided 
Detection, CAD. 

Authors‘ Note:  This paper is not intended as a scientific paper.  Instead, it is intended 
to be a bit controversial – to foster thought and get the research community thinking 
about how Mammography CAD should be adapted in a changing Breast Imaging 
world. 

1 Introduction 

In the United States, approximately 82% of full-field digital mammography (FFDM) 
machines (~10,000 of 12,2461) feed images to a Mammography CAD system; that 
82% number is referred to as the “adoption rate”. The adoption rate in other countries 
is lower, such as in Spain (~46%) and Taiwan (~35%). 

The effectiveness of Mammography CAD has long been the subject of debate. 
Several important studies have demonstrated benefit from the use of CAD2,3,4,5, while 

                                                           
1  Data from US FDA website for MQSA National Statistics as of January 1, 2014. 
2  Freer TW et al. Screening Mammography with Computer-aided Detection: Prospective 

Study of 12,860 Patients in a Community Breast Center. Radiology 2001; 220:781–786. 
3  Cupples et al. Impact of computer-aided detection in a regional screening mammography 

program. AJR. 2005;185: 944-950. 
4  Gromet M. Comparison of Computer-Aided Detection to Double Reading of Screening 

Mammograms: Review of 231,221 Mammograms. AJR. 2008;190: 854-859. 
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others have questioned those benefits6,7.  Even though CAD has been successful in 
finding cancers at earlier stage3, using a CAD system as a 2nd reader ensures an in-
creased recall rate; the radiologist has already read the case prior to seeing the CAD 
marks, so additional cancers can only be found if additional cases are recalled. 

1.1 The Very Real Problems Mammography CAD Was To Solve 

In Spain, CAD adoption was driven by the cost savings associated with no longer 
double-reading and the potential for a higher cancer detection rate; in the United 
States, CAD adoption was driven by a very favorable reimbursement climate and the 
potential for finding cancers earlier. 

Interviews with radiologists reveal: 

1. Most clinicians value Mammography CAD because of its very high sensitivity, es-
pecially for detecting small and subtle calcification clusters. 

2. Most clinicians do not value the mass detection capability because of poor specific-
ity, despite CAD’s high sensitivity and the fact that it correctly marks many can-
cers in prior mammograms8. 

This gives us hope that CAD is addressing the major human failings in mammo-
graphy reading – observational oversight and satisfaction of search. 

Most Mammography CAD systems operate as second-readers.  After a first review 
of the images, the workstation shows the CAD marks.  Often, the radiologist has al-
ready looked at those locations and can quickly dismiss the false marks (especially for 
calcifications).  Most mass marks can be similarly dismissed, but some areas of super-
imposed tissue masquerading as potential mass lesions and marked by CAD may 
cause the radiologist to worry – to second-guess if they are real lesions or not – slow-
ing down reading (especially for readers with less experience). 

Mammography CAD users want improved CAD performance and clinical effec-
tiveness. But, to a large extent, CAD algorithms may not improve much further be-
cause they share the same limitations as human observers; super-imposed tissue limits 
sensitivity and specificity because lesions simply cannot be seen, or because normal 
overlapping tissue looks disturbing. 

2 The Introduction of Digital Breast Tomosynthesis 

The application of tomosynthesis in breast imaging was proposed by Niklason et al9 
in 1997. By acquiring a number of low-dose X-rays of the breast from different angles  
                                                                                                                                           
5  Gilbert FJ et al. Single Reading with Computer-Aided Detection for Screening Mammogra-

phy. N Engl J Med 2008; 359:1675-1684. 
6  Gur D et al. Changes in Breast Cancer Detection and Mammography Recall Rates After the 

Introduction of a Computer-Aided Detection System. J Natl Cancer Inst (2004) 96 (3): 185-
190. 

7  Fenton JJ et al. Influence of Computer-Aided Detection on Performance of Screening 
Mammography. N Engl J Med 2007; 356:1399-1409. 

8  FDA PMA P970058.  Data on file. 
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Fig. 1. Adoption of FFDM systems and Tomosynthesis systems in the US from date of first 
FDA approval10,11 

within a narrow sweep, Niklason showed that reconstruction of planes within the 
breast had the potential to mitigate the issues of overlapping tissue. 

In the years since that first paper, tomosynthesis has taken root. Now FDA ap-
proved, and validated through a series of large, peer-review clinical studies12,13,14, 
tomosynthesis is gaining clinical adoption in the United States at a rate almost twice 
that of digital mammography (Fig. 1). 

The recent and large studies referenced above confirm clinical evidence from earli-
er, smaller studies.  All told, tomosynthesis has demonstrated the potential to increase 
the detection of invasive cancers by as much as 40%12, and decrease the recall rate by 
as much as 37%14. 

                                                                                                                                           
9  Niklason L et al. Digital tomosynthesis in breast imaging. Radiology. 1997 Nov;205(2):399-

406. 
10  http://www.auntminnie.com/default.asp?Sec=sup&Sub= 

wom&Pag=dis&ItemId=51831 
11  http://www.bizjournals.com/milwaukee/stories/ 

2002/04/15/daily40.html 
12  Skaane P et al. Comparison of Digital Mammography Alone and Digital Mammography 

Plus Tomosynthesis in a Population-based Screening Program. Radiology. 2013 Apr; 
267(1):47-56. 

13  Ciatto S et al. Integration of 3D digital mammography with tomosynthesis for population 
breast-cancer screening (STORM): a prospective comparison study. The Lancet Oncology, 
Volume 14, Issue 7, Pages 583 - 589, June 2013. 

14  Rose SL et al. Implementation of breast tomosynthesis in a routine screening practice: an 
observational study. AJR Am J Roentgenol. American Journal of Roentgenology. 2013;200: 
1401-1408. 
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Most of the work in these studies was done using “Combo” mode (3D+2D). The 
breast is compressed while both a tomosynthesis scan and a conventional 2D image 
are acquired. Combo mode was a means to study tomosynthesis while ensuring that 
the “standard of care” 2D mammogram was also available.  Clinical studies showed 
significantly better reader performance with 3D+2D compared to 2D alone. 

What, if any, is the clinical problem that tomosynthesis cannot solve, and which 
could be helped with a new CAD methodology?  Masses and architectural distortions 
are better appreciated in tomosynthesis due to the removal of overlapping tissue; indi-
vidual calcifications actually have higher local contrast in many cases than in 2D, yet 
may be distributed over many slices so the clusters may not be as well appreciated. 

Determining that a microcalcification is in fact part of a three-dimensional cluster 
spread across several (potentially non-adjacent) slices is a very real challenge. For a 
human observer it may mean jogging up and down through the stack of slices to build  
a model of the cluster in the clinician’s mind, slowing down reading and contributing 
to fatigue, which is proven to lead to reduced accuracy of reading mammograms15. 

 

Fig. 2. A Comparison of Reading Times in Screening16,17 

2.1 Tomosynthesis Reading Time 

Reading time is important in screening.  Two recent papers provide differing pictures 
of reading time ranges (one is single-reading, one is double-reading with consensus). 

                                                           
15 Krupinski EA. Reader Fatigue Interpreting Mammograms, Digital Mammography Lecture 

Notes in Computer.  Science. Vol 6136, 2010, pp 312-318. 
16  Dang PA et al. Addition of tomosynthesis to conventional digital mammography: effect on 

image interpretation time of screening examinations. Radiology. 2014 Jan;270(1):49-56. 
17  Skaane P et al. Trends in Time to Interpretation of Tomosynthesis Based Screening Exami-

nations with Increasing Experience. RSNA 2013 Presentation SSK01-04, Weds, 2013-12-04 
10:30 – 12:00, Arie Crown Theater. 
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Both studies (Fig. 2) demonstrated an increase in reading time when tomosynthesis 
was added, but the Oslo study goes further by showing that reading time dropped 30% 
over the course of the study, as the radiologists gained experience. 

These studies, though, do not break down the tasks involved in reading. What frac-
tion of their time is spent trying to perceive microcalcification clusters? 

2.2 Introduction of Tomosynthesis Calcification CAD 

The first commercially-available Tomosynthesis CAD product was a calcification 
cluster detection tool18; it provided marking of clusters and individual calcifications 
detected (Fig. 3) in tomosynthesis slices. 

 

Fig. 3. Tomosynthesis Calcification CAD mark (left) indicating a detected cluster of calcifica-
tions; the outline indicates the X/Y extent of the cluster 

Because of the additional reading time associated tomosynthesis slices, the success 
of tomosynthesis CAD will be closely tied to the efficiency of tools offered by 
workstation vendors.  Adding CAD marks on individual slices may help with percep-
tion of clusters of calcium, but will it provide the efficiency needed to use tomosyn-
thesis and Tomosyntheses CAD in screening? 

2.3 Introduction of C-View 2D Generated Images 

During the FDA’s presentation to the Radiological Devices Panel reviewing Tomo-
synthesis, FDA stated that the benefit from tomosynthesis in screening “outweighed 
                                                           
18  Hologic® ImageChecker® 3D Calc CAD. 
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any risk from the additional X-ray dose”. But, despite the relatively low dose of 
Combo mode, at least compared to screen film, clinicians remain concerned about the 
dose of tomosynthesis Combo mode. 

A new technology for generating a 2D image from tomosynthesis slices (known as 
“C-View”) was developed to preserve the primary benefit of tomosynthesis -- reduced 
impact of super-imposed tissue – and still provide a 2D image for use in temporal 
comparison in future years. Ideally, reading tomosynthesis slices plus generated 2D 
images would give clinical benefit equivalent to reading a Combo mode study, but at 
half the dose. 

Most tomosynthesis-ready workstations provide the ability to “slab” together adja-
cent slices using the Maximum Intensity Projection (MIP) method. When applied to 
tomosynthesis images, MIP has the unfortunate side-effect of re-introducing tissue 
super-imposition from other slices, which makes the 2D MIP image blurry. For that 
reason, MIP should probably not be used in the context of digital breast tomosynthe-
sis, although it can help make appreciation clustered calcifications easier. 

 

Fig. 4. C-View 2D image (left) and Tomo MIP image (right) taken from of all slices of the 
breast 

C-View is different – it uses a series of complex filters to preserve the local con-
trast of “interesting” structures in tomosynthesis slices, such as bright spots, linear 
structures, and the edges of lobulated and microlobulated forms. A weighted sum then 
integrates the filtered slices. Fig. 4 clearly shows the difference between MIP and  
C-View representations of the same set of tomosynthesis slices. 

Clinically, the C-View algorithm results in some types of lesions becoming more 
conspicuous (such as the stellate lesion central in the breast in Fig. 4 Insets) because 
of the removal of super-imposed tissue due to the weighted sum favoring “interest-
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ing” characteristics of the image, such as radiating lines, lobulated density or clusters 
of bright spots. 

 

Fig. 5. Close-ups of conventional 2D (left) and C-View (right) images of a breast demonstrat-
ing improved calcium conspicuity in C-View 

Consider the selected regions from a pair of 2D and C-View images acquired in 
ComboHD mode (3D+2D+C-View) (Fig. 5).  There is reasonable similarity between 
the 2D and C-View images.  The calcification cluster is much more conspicuous in 
the C-View 2D image region. 

 

Fig. 6. Close-ups of conventional 2D (left) and C-View (right) images demonstrating better 
linear structure conspicuity in C-View 

Fig. 6 shows a large stellate lesion that might be unappreciated in the conventional 
2D image –a notable area of high density slightly inferior may distract the reader. But 
the C-View image clearly demonstrates a large area of architectural distortion, with 
linear structures radiating from a central area. 

The first large study performed with C-View was the Oslo study19. Dr. Skaane reported 
that reading tomosynthesis images with C-View 2D images “performed comparably” to 

                                                           
19 Skaane et al. Two-View Digital Breast Tomosynthesis Screening with Synthetically Recon-

structed Projection Images: Comparison with Digital Breast Tomosynthesis with Full-Field 
Digital Mammographic Images. Radiology. January 2014, ePub ahead of print. 
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Combo imaging “in terms of cancer detection and false-positive scores” and should be 
considered “acceptable for routine use in mammography screening”. 

3 A New and Different CAD for Tomosynthesis 

The development of C-View images led to an alternative solution for CAD in tomo-
synthesis imaging … simply apply Mammography CAD algorithms to C-View im-
ages. The approach had some attractive advantages: first, it might be possible to adapt 
existing 2D CAD algorithms to C-View, rather than developing a new algorithm from 
the ground up; second, the concept would preserve the well-accepted CAD reading 
paradigm (marks on 2D images). 

Our solution was to create a CAD system architecture that would transform  
C-View image pixels into a “For Processing” equivalent use solely for 2D CAD 
processing. The C-View CAD algorithm received US FDA approval in early 2014. 

This method, while expedient, can certainly be improved further. The existing 
Mammography CAD algorithms have been trained on images where lesions include 
the effects of super-imposed tissue; our next step will be to re-train the CAD  
algorithm on C-View cases alone. 

4 Conclusion 

The demonstrated clinical benefits of tomosynthesis are putting very strong pressure 
on breast imagers to shift away from conventional digital mammography; Mammo-
graphy CAD developers must adapt in the same way. We suspect that human readers 
are still prone to the same sorts of perceptual errors when reading tomosynthesis 
(E.g., satisfaction of search) that caused the development of Mammography CAD in 
the first place, so there presumably is room for a new CAD of some form.  

It is now up to us, the CAD developers of the world, to put our heads together and 
invent the next perception aid tool that will help radiologists efficiently read tomosyn-
thesis and C-View images with fewer perceptual errors.  Whether it be CAD as in the 
past, or a new generation of C-View image in the future, radiologists still need our help. 
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Abstract. Teleradiology services are very common worldwide, and Full Field 
Digital Mammography (FFDM) systems have made it possible to include 
mammography. This is important because breast cancer is the most common 
cancer in women in many parts of the world and it is the second leading cause 
of cancer deaths. In rural and medically underserved areas, mammography rates 
are lower than in urban areas for a variety of reasons, including lack of dedicat-
ed screening facilities and/or personnel, poor compliance, and large distances 
between patients and clinics (making it difficult to return for follow-up care). 
Once possible cancers are detected, biopsies are performed but in many cases 
reports are very slow to get back to the patient and/or local clinician impacting 
treatment and follow-up. Telepathology can address this situation. Patients may 
also require oncology services and in rural areas they are often limited or non-
existent. Real-time teleoncology services can facilitate treatment and counsel-
ing. Finally, breast care support and education can be facilitated by virtual sup-
port groups and broadcasting education lectures. 

Keywords: telemammography, telepathology, teleoncology, virtual support 
groups, distance education. 

1 Introduction 

Breast cancer is the most common cancer in women in many parts of the world and it 
is the second leading cause of cancer deaths. [1] Cancer prevention services are  
generally provided by primary care health professionals, but specialized genetic and 
high-risk follow-up and prevention is generally provided in cancer centers by cancer 
specialists. For many patients, however, getting access to specialized cancer services 
is a significant challenge. For example, Onega et al. studied access to oncology care 
in the US and found that travel to a National  

Cancer Institute (NCI)-designated cancer center was an hour or more for the major-
ity of patients. [2] Travel times are even greater for Native American, suburban and 
rural populations, to both NCI-designated cancer centers and any other cancer treat-
ment center. Since about 25% of the US population lives in remote or rural areas, 
there are significant 
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Limitations to access to medical care exist around the world so ways to extend and 
improve access to care using telemedicine is a valuable opportunity to improve health 
outcomes.  

2 Telemammography 

The Department of Radiology at the University of Arizona has been providing tele-
mammography services since 2001 to seven communities around the state as part of 
its teleradiology outreach program. The outreach service was initiated in 1997, and 
operates using the telemedicine network infrastructure that was designed, built and is 
now maintained by the Arizona Telemedicine Program (ATP). The Arizona Teleme-
dicine Program is a private Asynchronous Transfer Mode (ATM) network from  
commercial carriers. [3-5]  

The ATP was created in 1996 by the Arizona State Legislature as a multidiscipli-
nary, university-based program to provide telemedicine services, distance learning, 
informatics training, and telemedicine technology assessment throughout the state. It 
was mandated by the Legislature that the program provide services to a range of 
healthcare service users including geographically isolated communities, Native Amer-
ican communities, and the Department of Corrections’ rural prisons. After initial  
implementation in 1997 with eight pilot sites, the ATP now operates a broadband 
telecommunications network that links over 150 not-for-profit and profit healthcare 
organizations, functioning as a "virtual corporation". The ATP’s core mission is to 
provide access to specialty health care services for medically underserved communi-
ties in the rural areas of the state, and to date nearly 250,000 Arizonians have received 
healthcare services via telemedicine. These services are provided over a private ATM 
network, operating over an infrastructure of T-1 and T-3 circuits leased from com-
mercial vendors. Both store-and-forward and real-time interactive applications are 
used, providing clinical consultations in over 55 sub-specialties. 

The telemammography service provides image interpretations to very rural areas 
that generally have no sub-specialty radiologists such as mammographers or even 
have no on-site radiologists at all. Prior to telemammography being available, mam-
mography services were sporadic and many women did not receive necessary screen-
ing and/or follow-up imaging and care. If they did get a screening exam at their local 
clinic or via a mobile van service, neither provided rapid turn-around interpretations. 
Women often went home after being imaged and it was very difficult to contact them 
if additional images or tests were required because they often have no phones or  
reliable mail service.  

To address this issue, the telemammography service requires that once a case is 
transmitted from the acquisition site, screening exams must be interpreted within 45 
minutes and diagnostic exams must be interpreted within 30 minutes. Most women 
are willing to wait for this amount of time and follow-up services (e.g., additional 
imaging or biopsies) are provided in a much more efficient and timely manner.  
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To date we have done nearly 30,000 cases and the telemammographers have been 
able to meet the turn-around time requirements in over 95% of cases transmitted. 
Longer times have occurred mostly due to transmission difficulties, not because of 
prolonged times once the images arrived at the interpretation workstation. 

Mammographic interpretation is only one link in the breast care chain. If some-
thing is found on mammography follow-up imaging is generally required. Most of 
these rural sites do not have MRI, but ultrasound is available and very useful in many 
situations. Thus, the telemammography program also provides interpretations of 
breast ultrasound images, and to date we have done nearly 3,000 breast ultrasound 
interpretations via teleradiology. 

3 Telepathology 

When biopsies are required the same challenges regarding getting results to the local 
clinician and the patient in these rural areas exist with pathology services as with 
radiology. When a finding suspicious of breast cancer is found, the process from 
mammography to clinical consultation with the oncologist generally takes about 28 
days before treatment begins. It is even longer for women in rural areas because they 
typically need to travel to an urban hospital for care, but in both scenarios (urban or 
rural), there are long waiting time between initial diagnosis, getting the pathology 
results, and receiving an oncology consultation. All of this waiting and uncertainly 
can be extremely stressful for the patient. To help reduce these waiting times, we have 
evaluated rapid-processing and digitization of breast biopsy samples for telepathology 
interpretation.  

Prior to investing in starting up a telepathology service for this application area, we 
had to consider the business model. Therefore as an initial step we surveyed patients 
at the university breast clinic to determine if and how much they would be willing to 
pay for faster biopsy results, since it was not clear if insurance companies and other 
payers would be willing to pay. The study had 312 breast center clients responding. If 
diagnosed with cancer, 92% of the respondents said they would seek an expert second 
opinion. Asked if they would pay a co-payment for a second opinion if their insurance 
covered the benefit, 97% responded yes. Thirty-five percent reported they would pay 
more than $50, although significantly more would be willing to pay only $25 or less. 
When asked how far they would be willing to travel for such a service, 33% reported 
a willingness to travel over 50 miles and 47% were willing to travel between 11 and 
50 miles.  

For the telepathology component, biopsy tissue specimens are acquired and 
processed by a Vacuum Histoprocess and ultra-rapid fixation system. They are con-
verted to a digital image by a DMetrix scanner, and sent via the telemedicine network 
to the pathology department. In the program, patients receiving a biopsy before noon 
can utilize this Ultra-Clinic® process and the telepathology reports are relayed back 
to the breast center later that day in the majority of cases. [6] 
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4 Teleoncology 

If the pathology report comes back positive, the patient then needs to receive treat-
ment. In many cases the patient still needs to travel to a dedicated oncology and/or 
radiation oncology site, but some of the preliminary and post-treatment meeting travel 
can be avoided using teleoncology. In rural areas many women do not have the time 
or transportation to make these trips and often end up going untreated. Teleoncology 
uses the real-time videoconferencing capabilities of the network to connect the rural 
patient with the teleoncologist. A healthcare provider (often a nurse or promotora) is 
generally located in the room with the patient to provide additional support and advice 
while the teleoncologist explains the diagnosis, prognosis, and treatment options to 
the patient. Ideally this occurs during the same day as the telemammography and 
telepathology services but is often the hardest to schedule as it is real-time and  
requires the oncologist to arrange her schedule to make the meeting which can be 
difficult. [7] 

5 Counseling and Patient Education 

There is a known sub-set of women who are at increased risk for breast cancer 
(BRCA1/BRCA2), but in order to verify whether or not someone has this particular 
genetic risk testing is required. Once the risk is known, counseling is often required as 
well. Again however, genetic counseling services are not often available outside of a 
university or tertiary care center. Genetic health-care delivery often relies on a spe-
cialists traveling to communities in need. Unfortunately, this results in sporadic care 
that can leave patients and families unsupported for long periods of time. 

The Arizona Telemedicine Program established a telegenetics program to provide 
genetic counseling. These are real-time telecounseling sessions in which a certified 
genetic counselor meets virtually with the patient (and family on many occasions), 
providing advice and options with respect to living with a significant genetic risk for 
cancer. The service was evaluated and patients strongly agreed that they found telege-
netics consultation to be beneficial; that having the telemedicine visit was preferable 
to waiting for a face-to-face appointment with the same doctor; and patients did not 
see a need to seek in-person genetic counseling services in the future as they were so 
satisfied with the telegenetics service. [8,9] 

We have also investigated the use of virtual support groups for breast cancer pa-
tients. [9] In many cases a breast cancer patient may be the only one of one of very 
few in their community if they live in a rural area. This makes it very difficult for 
them to form or attend a support group. Virtual support groups help alleviate this 
problem to some extent by bringing patients together virtually in real-time. Success of 
these virtual groups depends a bit more on the group members and the level of inte-
raction than in-person groups – sometimes members in the virtual group take more 
time to “warm up” to each other and get used to sharing without being in the same 
physical location. 



42 E.A. Krupinski 

 

Finally we have developed a breast cancer health education series as part of our 
overall distance learning program [4] that is offered to patients, families, and primary 
care providers using statewide simultaneous teleconferencing in English and Spanish. 
The program is called Vida! and was started in 2008. Since then there have been 28 
broadcast lectures with 456 attendees from 11 sites. As this is a CME accredited ac-
tivity for healthcare providers we collect evaluation data and overall the attendees 
find the lectures to be very useful, provide new information, and will likely provide 
them with the knowledge and skills to better care for breast cancer patients. Topics 
have included body image concerns, diet and nutrition, links between breast and ova-
rian cancers, exercise, heredity issues, depression, and many more issues of relevance 
to breast cancer patients and providers. 

6 Challenges 

There are some components of this “bundled” telebreast care service that have been 
easier to implement and sustain than others. The easiest has been telemammography 
as many rural sites have invested in FFDM technologies, are connected to the ATP 
and thus our Department of Medical Imaging for efficient and effective interpretation 
of mammograms and ultrasound exams. Telepathology has had some challenges for 
two reasons. The first is that there is not always someone at the rural site qualified to 
do the biopsy. If there is, the second challenge has been the cost to the sites for pur-
chasing the units required to prepare the biopsies (Vacuum Histoprocess and ultra-
rapid fixation system) and scan and transmit the images to the pathology department. 
This equipment is rather costly and use is limited to a few cases per month making it 
difficult to convince financially strapped clinics and hospitals to purchase.  

The virtual support groups have waxed and waned over the years, as noted above 
depending on the make-up of the individual group members, how well they interact 
with each other, and how well they maintain meeting attendance. What has been in-
teresting is the mix of cultures – Native American, Hispanic, Caucasian, Asian and 
African American women have participated and found numerous common topics, 
feelings and challenges to discuss. The Vida! education series has also been very 
successful with an average of 6 healthcare providers (range 1-18) attending each 
broadcast for CME credit and about 12 patients attending each one. 

In order to further expand the program and truly provide one-day breast care  
tele-services we would require a rather significant investment in the accessory tech-
nologies required to do the telepathology component. Getting clinicians motivated to 
participate is a minor challenge but could be overcome by volume. If the patient vo-
lume was high enough to establish a set teleoncology clinic (like our other real-time 
clinics), the tele-oncologist would be better able to fit the sessions into her schedule 
on a regular basis. Overall however this innovative approach to providing care across 
the spectrum of clinical areas associated with breast care has been successful in terms 
of providing patients with timely and expert breast care that they otherwise would not 
have likely received. 
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Abstract. The goal of computer-aided detection (CADe) in screening mammo-
graphy is to help radiologist avoid missing breast cancer.  Thus when designing 
a CADe system it is important to know how different methods and parameters 
would affect radiologists’ ability to use the system effectively.  Short of  
conducting an observer study or a clinical trial, this is not possible.  In this pa-
per, we present preliminary results on a model that can predict how many addi-
tional cancers a radiologist would detect, if they used a CADe system.  The 
model uses the results of radiologists’ reading of a set of screening mammo-
grams without using CADe to predict the probability that a radiologist would 
miss a cancer when reading without CADe and the probability that the radiolo-
gist would recall the woman if CADe flagged the missed cancer.  In our initial 
study, 8 radiologists read 300 screening mammograms containing 69 cancers 
with and without CADe.  Our model predicted that on average a radiologist 
would detect 4.7 extra cancers while the actual number of extra cancers detected 
per radiologist was 3.6.  Bootstrapping across readers, the 95% CI for the differ-
ence between the predicted and actual number of extra cancers was [-1.52, 3.30]. 
The overall ability of the model to discriminate between lesions detected as a  
result of CAD flag and other lesion examinations was moderately high, with  
c-index of 0.77  (95% CI of [0.6, 0.91]).  We are currently conducting a study 
with larger number of radiologists and cases to obtain better estimates of the  
accuracy of our model. 

Keywords: computer-aided detection, screening, mammography, modeling. 

1 Introduction 

Computer-aided detection (CADe) is being used to assist radiologists in detecting 
breast cancer in mammographic screening.  It is important, then, that CADe algo-
rithms be developed with the specific goal of assisting radiologists.  This is not prac-
tical currently.  CADe systems are developed to have high sensitivity for detecting 
breast cancer while maintaining a reasonably low false-detection rate.  It is not 
known whether this approach actually produces a CADe system that is optimally 
beneficial to radiologists.  We are developing a method that can be used to optimize a 



 Predicting the Benefit of Using CADe in Screening Mammography 45 

 

CADe algorithm so that it provides maximum benefit to the radiologist (i.e., increases 
their sensitivity without a large increase in their callback rate).  In our initial method, 
we estimate the probability that a radiologist will miss a cancer and the probability 
that if the radiologist missed a cancer and CADe marked the cancer, the radiologist 
would recall the woman.  We propose to estimate both of these probabilities from a 
single reading of a mammogram by a group of radiologists reading without CADe.  

2 Method 

2.1 Observer Study 

We conducted an observer study to measure the benefits of using CADe in screening 
mammography [1].  Eight MQSA radiologists read 300 cases that contained 69 biop-
sy-proven cancers.  Each case consisted of the standard 4-view screen-film mammo-
grams of the index exam and, when available, a previous exam.  The index cancer 
cases were selected based on the presence of a cancer that was missed clinical, but 
was visible retrospectively.  

For each case, the radiologist first read the mammograms without CADe and rec-
orded the location of any suspicious lesions and whether they would recall the woman 
for a diagnostic workup of the lesion.  The radiologist were then shown the results of 
the CADe system and rescored the case. 

We used a commercial CADe system in our study.  For the 300 cases, the CADe 
system had a sensitivity of 55% with an average of 2.4 false detections per case. 

2.2 Model 

The objective is to measure the change in the number of cancers detected (∆NCa) 
when CADe is used.  In its simplest form, which assumes only 1 lesion per case 
(these equations can be generalized to an arbitrary number of cancers per case): 

ΔN
Ca

= Pr
i
(miss)Pr

i
(det |CADe+,miss)Pr

i
(CADe+ | miss)

i=1

NC


           

(1) 

where Nc is the number of cases with cancer.  Pri(miss) is the probability that the  
radiologists will miss the lesion in the ith case when reading unaided.  
Pri(det|CADe+,miss) is the probability that the radiologist will detect the originally 
missed lesion in the ith case, if it is marked by CADe.  Pri(CADe+|miss) is the proba-
bility that CADe detects the lesion in the ith case, if the radiologist missed the cancer. 
Each product is the probability that a given lesion is detected due to the CADe output 
(i.e., missed before CAD, detected by CAD, and reported by a radiologist after CAD). 
However, the probability of the CADe system detecting the given cancer is indepen-
dent of whether the radiologist detected or missed that cancer.  Therefore, 
Pri (CADe+ | miss) = Pri (CADe+)  and Eq. (1) becomes: 
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where Pri(CADe+) is the probability that CADe detects the lesion in the ith case. It 
is either 0 or 1. This is easily measured by running the case through the CADe  
system.  

In their landmark paper, Berhenne et al. estimated Pri(det|CADe+,miss) as the 
probability that a radiologist would detect the lesion unaided [2].  Their rationale was 
that a radiologist is more likely to react to a CADe prompt if the CADe-marked lesion 
looks more like a cancer.  However, their analysis does not account for the probabili-
ty that a radiologist would miss the cancer, Pri(miss).  We estimate that as 1.0 minus 
the probability the lesion is detected (without CADe), which is the number of radiolo-
gists detecting the lesion divided by the total number of radiologists. 

We will show that Eq. 2 can estimate the actual increase in the number of cancers 
detected when a radiologist uses CADe using data from the observer study. 

2.3 Statistical Analysis 

We performed two analyses to evaluate the model.  The first was to compare the  
predicted and actual number of extra cancers found by a radiologist using CADe.  
We used bootstrapping across both readers and cases to measure the 95% CI in the 
difference between predict and actual values. 

For second analysis, we evaluated the ability of discriminative ability of the model 
using c-index as a figure of merit. We examined each decision made the eight radiol-
ogists on the 69 cancers, a total of 552 decisions.  The 552 decisions were grouped 
into cancers that the radiologist found only by using CADe (designated as positive 
cases) of which there were 29 cases; and all other cases (designated as negative cas-
es).  We then rank-ordered the cases based on the predicted probability that a radiol-
ogist would detect the cancer by using CADe (Eq. 2).  We computed the correspond-
ing c-statistic and the corresponding 95% confidence interval using bootstrap over 
readers and cases. Values of the c-statistic above 0.5 indicate a nontrivial (better-than-
chance) performance of the model (or that lesions detected with CAD tend to have 
higher probability predicted by the model 

3 Results 

Table 1 summarizes the results of the observer study with regards to the model.  The 
model predicted that on average each radiologist would detect 4.6 additional cancers 
when using CADe, whereas the actual number from the observer study was 3.6 can-
cers. The difference was 0.98 with 95% CI of [-1.52, 3.30].   

Computing the c-statistic, which is a measure of the accuracy of the model, a value 
of 0.77 was found with 95% CI of [0.60, 0.91]. 
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Table 1. The predicted benefit and actual benefit of using CADe 

# of Rad. 
detecting 
a given  

Ca     
unaided 

Total # of 
Ca  

detected 
by Rad. 
unaided 

Prob 
Rad. 

misses 
Ca    

unaided 

Prob Rad. 
detects 

missed Ca 
with CADe

Total # of 
Ca de-

tected by 
CADe 

Prob 
CADe 
detects 

Ca 

Model 
predic-
tion* 

Total  # 
of Ca  

detected 
by Rad. 
using 
CADe 

Actual 
Benefit* 

0 12 1 0 5 0.42 0.00 6 0.75 
1 5 0.875 0.125 1 0.2 0.11 0 0.00 
2 5 0.75 0.25 1 0.20 0.19 0 0.00 
3 4 0.625 0.375 1 0.25 0.23 1 0.13 
4 3 0.5 0.5 2 0.67 0.50 6 0.75 
5 6 0.375 0.625 5 0.83 1.17 7 0.88 
6 12 0.25 0.725 7 0.58 1.31 5 0.63 
7 14 0.125 0.875 10 0.71 1.09 4 0.50 
8 8 0 1 5 0.625 0 0 0 

Total 69   37  4.61 29 3.63 
95% CI    [28,46]  [3.1,6.2] [11,51]  [1.4,6.4] 

A B C=1-A/8 D=A/8 E F=E/B ‡G=C*D
*F*B 

H I=H/8 

P(miss) 
P(det| 

CADe+,miss) P(CADe+) ∆Ncancer

* cancers (Ca) per radiologist (Rad.); prob=probability 
Column B is the number of cancers of the category given in Col A that radiologists detected 
(e.g., there were 12 cancers that were detected by exactly 6 radiologists).  
Column E and H need to be interpreted together (e.g., in the second row, CADe marked 5 
cancers and the 8 readers reading those 5 cases found 6 cancers out of the total of 40 oppor-
tunities [8 radiologists times 5 CADe-marked cancers]). 
‡ By multiplying by B, each row is a sum over a subset of cases that depends on the number 
of Rad. detecting the cancer unaided.  Then summing column G produces a sum over all 
the cancers, Eq. 2. 

4 Discussion 

The model was fairly accurate at discriminating lesions-examinations that would ben-
efit from CAD from the rest (c-index of 0.77). The predicted number of cancer-
detection added due to CAD was predicted up to within 1 cancer per radiologists; 
however the current study does not exclude the possibility for the difference to be 
anywhere in (-1.55, 3.30) range.  We are in the process of conducting a larger expe-
riment with 30 radiologists and 100 cancers. 

In addition to the low statistical power, the relatively small number of radiologists 
in our study limits the accuracy of the probability estimates needed in Eq. (2). That  
is, the probability estimates are quantized into 8 values.  With more radiologists dis-
crepancies between the predicted and actual number of additional cancers detected by 
using CADe can be reduced.  For example, for the data line in Table 1, cancers that 
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were missed by all 8 radiologists contribute 0 to the predicted benefit because the 
probability that a radiologist detects a missed cancer flagged by CADe is 0.  Howev-
er, the actual benefit of CADe for those cancers was 0.75.  With more readers, we 
anticipated that the number of cases with all radiologists missing the cancer will be 
reduced.  In the study that is currently underway, 30 radiologists will quantize the 
probabilities in increments of 0.033 compared to 0.125 with 8 radiologists used in the 
study reported here. 

Currently the model is relatively simple.  The model could potentially be im-
proved by adding factors related to the whether the cancer is marked by CADe in both 
views (assuming the cancer is visible in both views) and the number of false detec-
tions per case.  Both these factors have been report in the literature to influence radi-
ologists’ ability to use CADe effectively [3-5] 

In the initial that we present here, we have only modeled detection of cancers.  It 
is also necessary and important to model radiologists’ detection of false positives and 
the effect that CADe has on increasing radiologists’ false detection rate.  We antic-
ipate that this will require a different model or at least an additional term to the model 
for cancer detection presented in this paper.  Whereas, cancers detected by a radiolo-
gist correspond to an actual lesion, some false detections correspond to a super-
position of normal breast tissue that looks like a cancer.  Since there is no actual  
lesion, these types of detection tend to be more random when comparing false detec-
tions from different radiologists.  There may be a based line of “random” detections 
that needs to be added to the model proposed here.  That is a number of detections 
that only 1 radiologist would detect.  We will be able to estimate this baseline from 
the larger experiment that we are currently collecting. 

Obuchowski has published a multiple-variable logistic regression model to predict 
the performance of an improved CADe scheme for detection of lung nodules in chest 
radiographs based on results of observer study of the original CADe scheme [6].  Her 
method is analogous to our method described here.  The main difference with her 
approach is that she infers the factors that influence radiologists’ ability to use CADe.  

A model of CADe, such as the one proposed here, has several potential applica-
tions.  It could be used to optimize a CADe algorithm to maximize the benefit to the 
radiologist as oppose to optimizing stand-alone performance (sensitivity and false 
detection rate) as is done now.  Further, the model could be used to assist in deciding 
the operating point on the CADe algorithms FROC curve.  Currently this is done in a 
very subjective manner.  

In summary, we present preliminary results of a model that helps assess the benefit 
of use CADe in screening mammography.  Although this initial study was relatively 
small, the model demonstrated good discriminative ability.  The larger study we are 
currently conducting will help better evaluate the model, in particular in terms of the 
accuracy of the predicted total number of extra lesions. 
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Abstract. There is currently rapid development of imaging technologies for 
breast cancer screening. In addition there is considerable controversy regarding 
the optimal screening strategy, including the ages at which screening should 
begin and end, the interval between screens and the imaging modality or modal-
ities which should be used. Furthermore, there are major economic considera-
tions related to whether screening should be done and how it should be done. 
Here, we describe the use of the Wisconsin CISNET computer model of breast 
cancer development to predict key outcomes associated with breast cancer, in-
cluding incidence, mortality and life-years lost due to breast cancer. The sensi-
tivity and specificity of the detection method and their dependence on factors 
such as age and breast density are implemented in the model through use of 
empirical data. Distributions of cancer characteristics are used to determine the 
type of modern therapy utilized and its effectiveness. Using this framework, the 
effectiveness of a particular screening strategy can be compared with other sce-
narios such as not screening at all or following published recommendations. 
The model can directly inform a cost-effectiveness or cost-utility analysis.    

Keywords: breast cancer screening, modeling, mammography, outcomes, cost-
effectiveness. 

1 Introduction 

The efficacy and effectiveness of mammography screening have been topics of heated 
debate for many years. Part of the underlying motivation of such debate is that screen-
ing programs utilize very substantial resources, resources that might be applied to 
other challenges in health. Decisions regarding whether to screen, who to screen, what 
modalities should be used and how frequently screening should occur are best made 
when there is an understanding of the trade-offs between improved health outcomes, 
potential harms, limitations and monetary costs of the intervention. There have been 
several previous cost-effectiveness analyses of mammography screening.[1–3] Most 
of these were conducted some time ago and do not reflect the performance of the 
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methods currently used for detection or for treatment of breast cancer. Here we de-
scribe work using a validated model of breast cancer development to predict cancer 
outcomes associated with various screening strategies. We consider benefits in terms 
of lives saved and women-years saved through screening and limitations in terms of 
missed cancers and women recalled for further examination when they don’t have 
breast cancer.  The model is being employed to drive cost-effectiveness and cost-
utility analyses for mammography screening, which will be reported elsewhere. 

2 Methods 

2.1 Breast Cancer Model 

To model the development of cancer in a cohort of women, we used the University of 
Wisconsin Breast Cancer Epidemiology Simulation Model[4], developed under the 
US National Cancer Institute-funded Cancer Intervention and Surveillance Modeling 
Network (CISNET) program[5].  The model was originally developed and calibrated 
such that it reflected US breast cancer incidence and mortality trends from 1975-
2000[4].  Details of the model have been described elsewhere and are available at 
www.cisnet.cancer.gov.  We recalibrated the model to describe cancer incidence in 
Canada[6].  

We began with a cohort of 2,000,000 women, born in 1960. The model “follows” 
them through their lives, randomly “seeding” breast cancers with a distribution of 
frequencies and growth characteristics derived from population statistics. Cancers are 
modeled as spheres that grow according to a Gompertz type growth function. Four 
“stages” of cancer – in situ, local, regional and distant – are defined according to the 
size of the sphere at detection. Treatment options are based on these stages, which 
also influence survival. Women are followed through the model until they die of 
breast cancer, some other cause or reach age 99. 

2.2 Cancer Detection and Treatment 

Although the model could be applied to any mode of cancer detection, here we only 
considered screening mammography. Empirical data on the sensitivity and specificity of 
mammography from The Breast Cancer Surveillance Consortium[7] and from The 
Screening Mammography Program of British Columbia[8] were used to inform the 
model. Sensitivity and specificity data of modern digital mammography were used and 
these were available for age bands over the range 40 to 80 years, for the four BIRADS 
breast density categories and for initial and recurring screening examinations. 

The model also randomly assigned prognostic characteristics to each cancer that 
developed according to population frequencies for these characteristics. The original 
CISNET model included hormone receptors ER and PR; as part of our modifications 
we have added HER2/neu[9]. In the treatment section of the model, therapies includ-
ing surgery, radiation therapy and adjuvant chemotherapy are assigned according to 
modern clinical practice guidelines, with the use of tamoxifen, aromatase inhibitors 
and trastuzumab where there was receptor positivity for these drugs[10].  
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2.3 Screening Outcomes 

From the model, age-specific incidence and mortality can be estimated. In addition, 
we can calculate age-specific incidence-based mortality, i.e., the number of breast 
cancer deaths that would eventually occur, associated with the detection of breast 
cancer at a particular age, and this was done for a number of screening strategies  
(Table 1) that are either used in some jurisdictions or that have been suggested. We 
also included “no screening”, i.e. women receive no routine mammography screening 
at all during their lifetimes, as a reference. In addition to mortality (lives lost), we 
calculated the number of women-years of life lost for cancer detected at each age. 

Table 1. Screening scenarios modeled 

No Screening  

Digital Mammography Film Mammography 

Annual 40-49 Annual 40-49 

Annual 40-69  Annual 40-69 

Annual 40-74 Annual 40-74 

Annual 50-69 Annual 50-69 

Annual 50-74 Annual 50-74 

Biennial 50-69 Biennial 50-69 

Biennial 50-74 Biennial 50-74 

Triennial 50-69 Triennial 50-69 

Triennial 50-74 Triennial 50-74 

Annual 40-49, Biennial 50-69 Annual 40-49, Biennial 50-69 

Annual 40-49, Biennial 50-74 Annual 40-49, Biennial 50-74 

3 Results 

Fig. 1 shows the modeled age and stage specific incidence of breast cancer for the 
cohort. At left, in the absence of screening, there is a relatively high incidence of 
“Regional” disease. This would correspond to lymph node positive cancer. At right, 
for biennial screening with digital mammography from ages 50-74 the Regional and 
Distant components drop sharply due to earlier detection of localized cancers, while at 
the same time there is a marked increase in in situ cancer, because it can now be de-
tected through microcalcifications seen on mammography. The “spikes” in incidence 
seen at the initiation of screening represent cancers that had been present in previous 
years, but undetectable in the absence of screening. To avoid a large oscillation in the 
incidence between alternate years in which screening is or is not performed, for this 
graph the cohort was split into two, with each group screened in odd or even years 
only. In Fig. 2 at left, age-specific mortality is compared between two screening  
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regimens and no screening. At right, the number of breast cancer deaths (at any age) 
in the cohort is plotted versus the age at which the cancer is diagnosed. This graph 
describes the burden of breast cancer in terms of when it arises, while both graphs 
illustrate the impact of screening. 

4 Discussion 

Screening is seen to shift the detection of breast cancer to an earlier time and to re-
duce the stage at which it is detected. Note that shortly after screening is discontinued, 
there is a shift back to the incidence of more advanced cancers. The spike in inci-
dence-based mortality at the onset of screening on the graph right side of Fig.2 indi-
cates that these cancers indeed have the potential to kill and are not just indolent  
cancers that don’t require detection. When a number of screening scenarios are mod-
eled, it is seen from Fig. 3, that in general, the benefit, in terms of number of women-
years saved through screening, continues to increase with the total number of screens 
that a woman receives, over the age range 40-74 years. Clearly, some approaches 
provide greater benefit for the same number of screens and would therefore be more 
efficient. Of course, this benefit must be considered in light of the number of times 
women would be recalled for additional imaging due to suspicious additional findings 
on screening, the number of additional negative biopsies required and the cost of 
screening. These are being assessed in ongoing cost-effectiveness and cost-utility 
studies driven by results from this model. The model can also be used to estimate the 
amount of overdetection (frequently mistakenly referred to as “overdiagnosis”), i.e. 
the number of cancers that would be detected by screening which would never other-
wise appear in a woman’s lifetime.  Costs can be considered both as those incurred 
by a health care system or those to society, the latter including the lost productivity of 
an individual who dies prematurely due to breast cancer.  

The current breast cancer growth model is relatively simple; for example there is 
no growth rate dependence of cancers based on the woman’s age. In future work we 
will consider more sophisticated algorithms and possibly more targeted approaches to 
screening based on factors such as breast density and risk. 

 

 

Fig. 1. Incidence for each modeled stage. ( L) No Screening, (R) Biennial from 50-74 y. 
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Fig. 2. (L) Mortality rates (per 100,000) for No Screening (blue), annual screening from 40-49 
followed by biennial screening from 50-74 (red) and biennial screening from 50 to 74 years of 
age (green) with digital mammography. (R) Number of deaths (from initial birth cohort of 
2,000,000) versus age at which cancer was detected for no screening, for annual screening from 
40-74 and for annual screening from 50-74. 

 

Fig. 3. Number of life-years gained through screening versus the total number of lifetime 
screens received by each participant. Squares represent current screening methods while trian-
gles indicate the potential performance if the screening sensitivity were 100%. 
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Abstract. As digital mammography has largely replaced analogue mammogra-
phy for screening, we examine the impact of the change on clinical outcomes. 
Data were obtained for 62,599 women undergoing routine screening mammo-
graphy between January 2010 and March 2012 during the transition from  
analogue to digital screening, and on a monthly basis for the two years  
following complete conversion to digital mammography. With digital mammo-
graphy, the recall rate increased from 3.58% to 4.69% (p<0.001) and the  
biopsy/cytology referral rate increased from 1.49% to 1.88% (p=0.01) whilst 
the cancer detection rate did not change significantly. The recall rate showed a 
strong positive correlation with time (r=0.71, p<0.001) and biopsy rate showed 
a moderate positive correlation (r=0.52 p=0.011). The cancer detection rate 
showed a moderate negative correlation with time (r=-0.567 p=0.05). Whilst all 
the outcome measures reported meet the standards set by the national screening 
programme, these results indicate a need for regular monitoring following 
changes to screening technology.    

Keywords: Screening, recall, biopsy, cancer detection, film, digital, mammogram. 
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1 Introduction  

1.1 Breast Screening  

Despite recent controversies, the UK national breast screening programme has been 
shown to significantly decrease mortality, offering an estimated 20% relative risk 
reduction to women who are screened every three years over a 20 year period and 
thus saving one breast cancer death for every 250 women invited for screening [1]. 
This equates to an estimated 1300 deaths from breast cancer saved per year. Nearly 
2.2 million women aged between 45 and 74 were screened in 2010-11, with on aver-
age, 4.1% of women recalled for assessment [2]. For those women undergoing their 
first screening examination (the prevalent screen), the recall rate was 7.9% with 1.8 
benign biopsies per 1000 women and 5.0 invasive cancers per 1000 women. The 
published standards are <10%, <=3.6 and >=2.7 respectively. For women undergoing 
a subsequent (incident) screen, the recall rate was 3.1% and the benign biopsy and 
invasive cancer rates were 0.5 and 6.1 respectively. Published standards are <7%, 
<2.0 and >=1.6 respectively.  

Nationally, between 2008-9 and 2010-11 recall rates for age 45-74 (prevalent 
screen) fell from 8.7% to 7.9%, whilst the benign biopsy rate dropped from 2.0 to 1.8 
per 1000 and invasive cancer rate from 5.3 to 5.0 [2,3]. For incident screens, the recall 
rate fell from 3.4% to 3.1% with the benign biopsy rate dropping from 1.0 to 0.5 and 
the invasive cancer rate from 6.2 to 6.1. During the earlier period almost all screening 
was undertaken using film-screen systems, although by July 2011 85% of screening 
units had at least one Full Field Digital Mammography (FFDM) system [2]. 

Rates vary across the country, and in the region studied in this paper, in the 50-70 
age group at the 2010-11 prevalent screen the recall rate was 8.5%, benign biopsies 
were carried out in 1.9 per 1000 women screened and 5.2 cancers were detected for 
every 1000 women screened. For incident round screening these figures were 3.3%, 
0.05 and 6.4 respectively [2]. 

1.2 The Introduction of Full Field Digital Mammography  

FFDM has several inherent practical advantages over screen film (analogue) mam-
mography including the possibility of electronic archiving and image transfer between 
sites, on-screen image manipulation, reduction in storage requirements and reduction 
in dose [4,5]. In terms of diagnostic performance, initial studies in the U.S.A. found 
that FFDM was at least as good at detecting cancer in women with an abnormal ana-
logue screening mammogram [6]. The American College of Radiology Imaging Net-
work subsequently set up the Digital Mammographic Imaging Screening Trial 
(DMIST) in which each woman received both forms of mammogram [7]. The results 
showed for the screening population as a whole, screen film mammography (SFM) 
and FFDM had very similar screening accuracy and no significant difference in recall 
rate (8.4% for both). FDDM was however shown to be more accurate for three popu-
lation subgroups: those under 50, those with very dense breasts and those who are pre 
or peri-menopausal. Several further studies have since been conducted, and the con-
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sensus is that FFDM is at least as good as, if not better than analogue mammography 
for cancer detection [8].  

Recalls due to poor quality images or technical problems are widely reported as be-
ing lower in FFDM since the mammograms are available for review by the radio-
grapher at the time of imaging [9, 10]. Despite this, out of ten studies reviewed by 
Skaane in 2009, in two the overall recall rate was found to be lower with FFDM, in 
five higher and in three there was no significant difference [8]. More recent studies 
suggest that the introduction of FFDM does lead to increased recall rates. In Europe, a 
retrospective analysis of the effects of introducing FFDM showed a significant in-
crease in both cancer detection and recall rates the year after FFDM was introduced. 
Subsequently recall rates decreased, but remained higher than the original pre-FFDM 
levels [11]. The authors postulated that the use of analogue mammograms for refer-
ence may have contributed to the increase in recall rates. In 2011, a U.S. study dem-
onstrated an increase in recall rate with the introduction of FFDM, and the rate con-
tinued to increase over the next two years [12]. The cancer detection rate also in-
creased for the first two years of digital screening, but then dropped to a level that was 
not significantly greater than the previous screen film mammography level. The au-
thors suggested that the increase was due to readers learning how to interpret the 
digital images.  

2 Aims  

The aims of this research were to determine whether digital and film-screen mammo-
graphy yielded significantly different recall rates, biopsy/cytology referral rates and 
cancer detection rates in a large screening programme making the transition from 
analogue to digital mammography, and to determine whether any changes persisted 
over time. 

3 Method  

We retrospectively compiled breast screening data gathered from January 2010 to 
March 2012 by the Nightingale Breast Centre, which is responsible for National 
Health Service breast cancer screening and diagnosis for over 50,000 women per year 
in Greater Manchester, UK. During this period the screening service made the transi-
tion from screen film mammography to FFDM. Data were compiled from standard-
ised statistical reports produced to enable ongoing assessment of performance by the 
Department of Health. Data were gathered from four Primary Care Trusts (PCTs) 
covered by the screening programme, all of which converted to digital mammography 
between March and July 2010.  

The clinical outcomes measured were recall rate, biopsy referral rate and cancer 
detection rate. Recall rate is generally expressed as a percentage of the total number 
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of women screened. The cancer detection rate is the number of cancers detected per 
1000 women screened and the biopsy/cytology referral rate is expressed as a percent-
age.  

The data were grouped into monthly intervals, covering the periods prior to, during 
and after the conversion to FFDM. All women who underwent breast screening dur-
ing the 26 months from January 2010 to March 2012 were included in the study: inci-
dent and prevalent; all ages and all referral pathways. For each PCT, data from the 
month of transition from SFM to FFDM contains a mixture of both forms of mammo-
gram and was excluded from analyses.   

The FFDM images were all taken using GE Senographe Essential digital mam-
mography equipment, from both static sites and mobile screening units. Reader ex-
perience varied, but all readers had at least four years experience reading mammo-
grams.  

Since we were not able to gather retrospective data regarding the use of prior 
mammograms, in order to assess whether the interpretation of priors influenced the 
outcome measures, the analysis was performed separately for prevalent screens where 
no prior mammograms exist for comparison, and for incident screens. 

3.1 Analysis  

Overall recall rates and core biopsy/cytology referral rates were recorded.  Direct 
comparisons of aggregate outcome measures between analogue and digital mammo-
graphy were performed using chi-squared tests. Analogue rates were calculated from 
data pertaining to the months preceding digital mammography and digital rates were 
calculated using data after the transition. 

Data starting immediately after the transition to digital mammography was aggre-
gated for the 4 PCTs using months post conversion as a measure of time. Least 
squares regression lines were plotted and Pearson’s correlation coefficient calculated 
for each outcome measure. The final 2 months were excluded from the regression 
analysis as only 2 of the 4 PCTs had data covering this length of time post conversion 
to digital mammography. 

4 Results  

Recall rate results are presented in Table 1. Whilst there was a significant difference 
(p<0.001) in recall rates overall and for incident screens, with a higher proportion 
recalled from digital screening, the difference between recall rates for prevalent 
screens was not significant. For biopsy/cytology referral rates (Table 2), the differ-
ence was statistically significant overall (p=0.01), with a higher percentage of biop-
sies with FFDM. There was a significant increase in incident screening (p<0.001), but 
not in prevalent screening. Cancer detection rates for the two modalities are shown in 
Table 3. There were no significant differences between modalities. 
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Table 1. Recall rates for digital and analogue mammography. * denotes a statistically 
significant difference between the two modalities. 

 Total Prevalent Incident 
Analogue Digital Analogue Digital Analogue Digital 

Number Re-
called 

328 2505 162 976 166 1529 

Number 
Screened 

9155 53444 1898 10462 7257 42982 

% Recall 
Rate 

3.58%* 4.69%* 8.54% 9.33% 2.29%* 3.56%* 

Table 2. Biopsy/cytology referral rates for digital and analogue mammography. * denotes a 
statistically significant difference between the two modalities. 

 Total Prevalent Incident 
Analogue Digital Analogue Digital Analogue Digital 

Number Biop-
sy/Cytology 

136 1005 68 382 68 623 

Number  
Screened 

9155 53444 1898 10462 7257 42982 

Biopsy/Cytology 
Rate (%) 

1.49%* 1.88%* 3.58% 3.65% 0.94%* 1.45%* 

Table 3. Cancer detection rates for digital and analogue mammography  

 Total Prevalent Incident 
Analogue Digital Analogue Digital Analogue Digital 

Cancers 
Detected  

56 358 15 64 41 294 

Number 
Screened 

9155 53444 1898 10462 7257 42982 

Cancer 
Detection 
Rate/1000 

6.15 6.74 7.97 6.16 5.68 6.89 

 
Figure 1 shows the recall rate plotted as a function of time since conversion to digi-

tal mammography. The recall rate is positively correlated with months post conver-
sion: for total screens (r=0.71, p<0.001). The biopsy/cytology referral rates were 
positively but only moderately correlated with months post conversion to digital 
mammography for total screens (r=0.52, p=0.011); this is illustrated in figure 2. There 
was a moderate negative correlation between cancer detection and time post digital 
conversion for total screens (r=-0.567, p=0.05). This was evident in the incident 
screens (r=-0.643, p=0.001); there was no statistically significant correlation for the 
prevalent screens. 
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Fig. 1. Recall rates post conversion from analogue to digital mammography 

 

Fig. 2. Biopsy referral rates post conversion from analogue to digital mammography 

5 Discussion  

Our results indicate that the introduction of FFDM resulted in an increase in recall 
and biopsy/cytology referral rates (statistically significant in incident round screening) 
but with no corresponding increase in cancer detection. The biopsy rate and recall rate 
continued to increase for the two years after conversion to digital mammography, 
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however the most recent available data from the screening programme (covering the 
period from April 2012 to March 2013) suggest that the recall rates are returning to a 
similar level to that prior to the introduction of FFDM, particularly in the prevalent 
screening round: current rates based on digital mammography are 8.47% (prevalent 
round) and 3.53% (incident round) as opposed to 8.54% and 2.29% for analogue 
recalls and 9.33% and 3.56% for FFDM recalls in the period immediately following 
the introduction of FFDM. The most recent figures for benign biopsy rates are 2.06 
per 1000 women in the prevalent round and 0.31 per 1000 women in the incident 
round. It should be noted that whilst the NHS screening programme uses benign biop-
sy rates as a key performance measure, the analysis in this paper looked at the biopsy 
referral rate.  

High recall rates increase the costs of screening, lead to the over-investigation of 
healthy women and increase patient anxiety. Had our results demonstrated that the 
increased recall and biopsy rates also resulted in an increased cancer detection rate, 
some benefit would have been apparent, but these data suggest that the introduction of 
digital mammography resulted in some negative effects overall. It should, however, 
be noted that the three groups shown by the DMIST trial to benefit most from FFDM 
(those under 50, those with very dense breasts and those who are pre or peri-
menopausal) were a relatively small part of our population, and low numbers prec-
luded separate analysis of these groups.  

It is of interest that the effects were most apparent in the incident group, where 
comparison with previous mammograms involved the use of film priors. The current 
recall rate for the incident round (3.53%) is still based on film priors, so this could 
explain the differences observed between the incident and prevalent rounds in terms 
of achieving similar recall rates to those before the introduction of FFDM. The preva-
lent round recall rate has now dropped to a level lower than that observed during 
analogue screening, possibly reflecting the value of improved image quality, whereas 
the incident round recall rate has not yet reduced to a pre-FFDM level. Our next step, 
when sufficient data become available, will be to investigate whether women 
screened using FFDM with digital priors are less likely to be recalled than those with 
film priors.  
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Abstract. Nipple position provides useful diagnostic informations in
reading automated 3D breast ultrasound (ABUS) images. The identi-
fication of nipples is required to localize and determine the quadrants
of breast lesions. Additionally, the nipple position serves as an effec-
tive landmark to register an ABUS image to other imaging modalities,
such as digital mammography, breast magnet resonance imaging (MRI),
or tomosynthesis. Nevertheless, the presence of speckle noise induced
by interference waves and variant imaging directions in ultrasonogra-
phy poses challenges to the task. In this work, we propose a fast and
automated algorithm to detect nipples in 3D breast ultrasound images.
The method fully takes advantages of the consistent characteristics of
ultrasonographic signals observed at nipples and employs a multi-scale
Laplacian-based blob detector to eventually identify nipple positions.
The accuracy of the proposed method was tested on 113 ABUS images,
resulting in a distance error of 6.6± 8.9 mm (mean± std).

1 Introduction

In complement to mammography, automated 3D breast ultrasound (ABUS)
emerges as an important imaging modality applied in breast cancer, especially
on patients with dense breasts where the sensitivity of mammography is poor.
Recent studies reported that supplemental ABUS increases detection rate of
small and mammography occult breast cancers [1,2]. Hence, the interpretation of
ABUS data has gained significant interests in computer-aided diagnosis (CAD) of
breast cancer [3,4,7]. In a CAD system, nipple position is an important reference
marker which allows for localizing the quadrants of breast lesions. Furthermore,
given data acquired in other imaging modalities, such as mammography, MRI
or tomosynthesis, registering images across multiple modalities requires nipple
positions as effective reference landmarks to improve registration accuracy. In
this work, a fast and automated method that focuses on precise detection of
nipple positions in ABUS is implemented and tested.
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2 Materials and Methods

2.1 Dataset

We collected 113 ABUS image sequences acquired by Siemens S2000 ABVS
systems as part of the iMODE-B (imaging and molecular detection for breast
cancers) study at the University Breast Center Franconia, University Hospital
Erlangen, Germany. The study was approved by the Ethics Committee of the
Medical Faculty, Friedrich-Alexander University Erlangen Nuremberg and all
patients gave written informed consent. Breasts were scanned in five possible
imaging views: anterior-posterior (AP), medial (MED), lateral (LAT), superior
(SUP) and inferior (INF) (as shown in Fig. 1). Acquisitions in different views
involve different compressions of breasts, which leads to variant imaging char-
acteristics of nipples. The presence of nipples varies according to different ac-
quisition views. The locations of nipples were clearly identified in AP views and
distributed in peripheral regions in other views. For several extreme cases where
the nipples were pushed to the image borders, a portion of the nipples were still
visible. The image resolution of the collected ABUS volumes is 719× 516× 318,
associated with in-plane voxel spacing of 0.2 × 0.07 mm and slice thickness of
0.525 mm. To validate the performance of our method, an experienced radiol-
ogist annotated all images by pinpointing the tip points of nipples (a tip point
is the most anterior point of a nipple in coronal planes), serving as the ground
truth.

(right breast) (left breast)

Fig. 1. ABUS scans for the right and left breasts of a patient, illustrating nipple posi-
tions in different imaging views: AP, MED, LAT, SUP and INF
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2.2 Methods

The method is comprised of several pre-processing steps to find the region of
interest (ROI) of the nipple and build a binary mask that excludes background.
Then, a multi-scale blob detector is employed to detect the nipple tip point. A
schematic overview of the entire detection workflow is illustrated in Fig. 2.

Fig. 2. A schematic overview of the detection workflow

Pre-processing. Normally, ABUS volumes are scanned in transversal planes.
In pre-processing step, we reformatted all images to coronal planes, because
the features extracted from coronal planes will be analyzed in subsequent steps.
Depending on different scanning views, the ultrasound transducer panel touches
and compresses the target breast in different ways. Usually, in coronal planes,
the nipple is imaged in the center of an ABUS volume scanned in AP view,
whereas other views, such as MED or LAT, can push the nipple to peripheral
imaging borders. One of the key anatomical observations is that the nipple is
always near to the transducer panel, despite its centric or peripheral positions.
Therefore, the nipple always appears in a bunch of anterior coronal slices that
are not far away from transducer. Based on this observation, a nipple slab with
the thickness of 1.5 mm enclosing a pile of anterior coronal slices is extracted,
which starts with the slice with a distance of 0.35 mm to the transducer panel.
The nipple slab defines a ROI, where subsequent nipple detection algorithms
are applied to localize nipple tip points. In addition, to get rid of background,
another mask slab with the same thickness of 1.5 mm following the nipple slab
is extracted (see Fig. 3).
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Fig. 3. 3D visualization of the extracted nipple slab (yellow) and mask slab (green)

Then, the minimum intensity projection (MinIP) image over all slices of the
mask slab is calculated, resulting in a 2D projected image where the intensities of
background areas are almost zero (Fig. 4(1)). By a simple thresholding process,
a binary mask containing the pixels with intensities larger than 1 is obtained.
Followed by a morphological closing operation with a kernel size 5× 5, possible
holes and gaps of the binary mask are filled (Fig. 4(2)). Similarly, the maximum
intensity projection (MaxIP) image of the nipple slab is computed, resulting in a
2D map, in which the nipple tip point will be searched for (Fig. 4(3)). To reduce
computational expense, the MaxIP image of the nipple slab and the mask image
are down-sampled to a lower in-plane resolution defined by a fixed scale factor:
0.125 × 0.125. To eliminate disturbing structures, the MaxIP image is further
smoothed by a Gaussian kernel with σ = 3 (Fig. 4(4)).

Blob Detection. A key observation is that the nipple appears as a 2D dark
blob structure in the MaxIP image of the nipple slab, which can be enhanced
by a commonly used blob descriptor: Laplacian of Gaussian filter (LoG) [5].
Given a MaxIP image I(x, y) and a Gaussian kernel at scale σ: g(x, y, σ), the
MaxIP image convolved with multiple Gaussian kernels with variant sizes leads
to a scale-space representation: L(x, y, σ) = I(x, y)�g(x, y, σ) [6]. The Laplacian
operator ∇2L = Lxx + Lyy is then calculated at each scale σ, which produces
strong negative response in dark blob regions (Fig. 4(5)). We adopted a multi-
scale LoG filter with variant σ ranging from 1.5 to 15 mm with a step size of 1.5
mm. The optimal scale that delivers the global minimal response is selected, and
the corresponding 2D coordinate in the MaxIP image is recorded as the nipple
position in X and Y dimensions. To fetch the Z dimension, we projected the
2D point back to the middle slice of the nipple slab, which reconstructs the 3D
position of the nipple (Fig. 4(6)).
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Fig. 4. workflow of blob structure detection: (1) MinIP image of the mask slab; (2)
generated binary mask; (3) MaxIP image of the nipple slab; (4) down-sampled and
smoothed MaxIP image; (5) response of LoG filter at scale σ = 6; (6) extracted global
minima and detected nipple position (red).

3 Evaluations and Results

We ran the algorithm on 113 ABUS volumes in the testing data set. The average
computation time per ABUS volume was 0.6 seconds on a machine with a 3.7GHz
CPU. The detection accuracy was quantitatively measured by calculating the
root-mean-square distance in mm (RMSD) between detected nipple positions
and annotated ground truth in 3D. Statistical analysis of the distance error were
conducted, obtaining a result of 6.6±8.9 mm (mean±std). Figure 5 demonstrates
the histogram analysis of RMSD, showing the majority of distance deviation
falls in the interval of (0, 15) mm. Moreover, the distribution of detection rates
against variant tolerant thresholds of distance errors is depicted in Fig. 5. It is
noticed that nearly half of the test images achieved a distance error less than 4
mm, and more specifically when setting tolerance as 8 mm, where is the average
size of the nipples in our database, nearly 78% of test images were correctly
detected. Several successfully detected cases with various nipple positions are
demonstrated in Fig. 6.

Nevertheless, one can easily notice that there were two outliers with extreme
large errors observed in the diagram of distance histogram (see again Fig. 5).
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By investigating these two cases, we find that the method might fail when nip-
ples were pushed to image borders during acquisition and imaged partially in
extracted nipple slabs (see Fig. 7 (a)). Besides, the LoG filter was proved to per-
form stably in detecting global minimal response that is supposed to associate
with the target nipple position. However, when the breast mask extracted from
mask slab is not sufficiently accurate, or a lesion that mimics the features of
the nipple appears in the nipple slab, the LoG filter might be attracted by the
spurious structure and recognizes it as the nipple position (see Fig. 7(b)).

Fig. 5. Histogram analysis of RMSD (left). Detection rates against variant tolerant
distance errors (right).

Fig. 6. Four successful cases overlaid with the detected nipples (red) and the annotated
markers (yellow); each column represents one case
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(a) (b)

Fig. 7. Two failed cases overlaid with the detected nipples (red) and reference markers
(yellow): (a) the first failed case with RMSD= 43.1 mm, where the nipple is imaged
partially and very close to borders; (b) the second failed cases with RMSD= 78.4 mm,
where the minimal detected by LoG filter does not correspond to the nipple

4 Conclusion and Discussions

In this work, we presented a fast and automated method to detect nipple po-
sitions in ABUS scans. The method fully takes advantages of anatomical and
ultrasonographic properties of nipples in coronal planes. A multi-scale blob de-
tector based on Laplacian filters permits the detection of nipples with variant
sizes and signal strengths. A test on 113 ABUS volumes shows its capability of
precisely detecting nipples.

The proposed method assumes that nipple is imaged near to the transducer
panel and should appear within several anterior slices in coronal planes. In case
the nipple is not sufficiently scanned in the field of view, or the structures, such
as lesions, which mimic the properties of nipples, exist in the nipple detection
slab, the LoG filter might be attracted to these spurious regions and deliver false
results. Normally, for these cases, the second minimal points are associated with
the nipples. Therefore, a natural improvement is to take more candidate minimal
points into account instead of always choosing the first one. By analyzing features
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of these candidates and selecting the one with the best fitting with the target
nipple, the detection rate could be further improved.
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Abstract. Ultrasound Computer Tomography (USCT) is a promising
modality for breast imaging. We developed and tested the first full 3D
USCT system aimed at in-vivo imaging. It is based on approx. 2000 ultra-
sound transducers surrounding the breast within a water bath. From the
acquired signal data, reflectivity, attenuation and sound speed images
are reconstructed. In a first in-vivo study we imaged ten patients and
compared them to MRI images. To overcome the considerably different
breast positioning in both imaging methods, an image registration and
image fusion based on biomechanical modeling of the buoyancy effect and
surface-based refinement was applied. The resulting images are promis-
ing: compared with the MRI ground truth, similar tissue structures can
be identified. While reflection images seem to image even small struc-
tures, sound speed imaging seems to be the best modality for detecting
cancer. The registration of both imaging methods allows browsing the
volume images side by side and enables recognition of correlating tissue
structures. The first in-vivo study was successfully completed and en-
courages for a second in-vivo study with a considerably larger number
of patients, which is currently ongoing.

Keywords: Ultrasound Computer Tomography, 3D Breast Imaging,
Multimodal Image Registration.

1 Introduction

Ultrasound Computer Tomography (USCT) is a promising modality for breast
imaging. Although the principle is known since the 1970s [1], increasing com-
putational power just recently made it possible to develop systems capable of
in-vivo imaging. First USCT systems are currently evaluated in first clinical tri-
als [2,3]. In contrast to slice-acquiring 2D systems [3,4], we have developed the
first full 3D USCT system aimed at in-vivo imaging (Fig. 1) [5,6]. USCT al-
lows simultaneous acquisition of reflection, attenuation and sound speed images,
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Fig. 1. Left: 3D USCT device. Top right: Detailed view of the transducer aperture.
Bottom right: Illustration of the patient positioning during image acquisition.

and offers high image quality compared to conventional ultrasound. Due to the
defined patient positioning, images are reproducible. Our 3D USCT overcomes
the large slice thickness respectively anisotropic resolution of 2D systems and
promises a considerably faster data acquisition since the raw data for a 3D image
volume is acquired in parallel.

Recently we conducted a first in-vivo study with ten patients at the Univer-
sity Hospital of Jena, Germany [7]. For comparison MRI images of the same
patients were acquired. In this paper we briefly describe the system setup, imag-
ing principle and image reconstruction methods before presenting clinical results
of our first pilot in-vivo study. For evaluation of the diagnostic value, a visual
comparison with MRI images was carried out. Due to the different imaging con-
ditions (e.g. buoyancy in USCT) this turned out to be challenging. To support
the comparison, an image registration respectively image fusion was developed
and applied to overcome the considerably different breast positioning. The focus
of this work is to carry out a first visual comparison of USCT images and MRI
images using the proposed image registration method.

2 Methods

2.1 Data Acquisition and Image Reconstruction

The KIT 3D USCT has a semi-ellipsoidal aperture filled with water, which acts
as coupling medium. The aperture has an inner diameter of 26 cm and a height
of 18 cm. It is equipped with 628 ultrasound emitters and 1413 receivers (Fig.
1). The aperture and data acquisition hardware as well as the electric and water
supplies are integrated into a patient bed, on which the patient lies prone with
one breast freely immersed into the aperture. The data acquisition is carried
out by sequentially sending out an approx. spherical wave front from a single
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emitter at 2.5MHz center frequency (50% relative bandwidth). The transmitted
and reflected wave is recorded by all receivers surrounding the breast. Despite
the high number of emitters and receivers, the aperture is sparse as two orders
of magnitude more transmitters would be needed to fulfill the sampling theorem
[8]. The sparsity results in artifacts due to grating lobe effects in the resulting
images [9]. Rotational and translational movement of the aperture creates further
virtual positions of ultrasound transducers to reduce the sparsity of the system
and enhance the image contrast.

Depending on the number of aperture movements, up to 80GB of signal data is
acquired with an FPGA-based system using 480 parallel channels for digitization
at 12Bit and 20MHz sampling frequency. To excite the ultrasound emitters,
linear frequency coded chirps are applied in order to enhance the signal-to-noise
ratio. The measurement is controlled by a graphical user interface, including a
preview for correct patient positioning. The signal data is buffered in the data
acquisition system and afterwards transferred to a image reconstruction server.

From the acquired signal data, three types of images can be reconstructed:
reflection images displaying the morphology of the breast as well as attenuation
and sound speed images, which are expected to quantitatively characterize dif-
ferent types of tissue [10]. The applied reconstruction algorithm for reflectivity
imaging is a 3D synthetic aperture focusing technique (SAFT) [11]. It calculates
at each image voxel the mean of all reflections which might originate from its
spatial position. Before the SAFT reconstruction is applied, the acquired signal
data is pre-processed using a matched filter, an envelope transformation followed
by a maximum detection and a convolution with an optimal pulse [12]. The re-
flection imaging reconstruction runs on a GPU cluster to reduce the computation
time considerably [13].

Attenuation and sound speed imaging uses a ray-based approach for recon-
struction. The transmission signals are detected and the relative signal energy
resp. time-of-flight are applied in an algebraic reconstruction technique. Com-
pressive sampling, i.e. a 3D adaption of TVAL3 using total variation minimiza-
tion is employed for optimization [14].

After performing the reconstruction of reflection, sound speed and attenuation
images, the water background is removed for improved visualization and further
processing using a segmentation method applied to the reflection image. The
method is based on detecting the breast boundary in a subset of coronal slices
using a Canny edge detection algorithm followed by a surface fitting to inter-
resp. extrapolate the 3D breast surface [15].

2.2 Image Registration and Image Fusion

For comparison of the reconstructed USCT images to an established modality,
MRI images of all patients included in the first in-vivo study were acquired at
the same day. In MRI the breast is positioned pendulous in prone position within
a dedicated breast coil. However due to buoyancy in USCT and deformations
of breast when contacting the MRI coil, direct voxel comparison is not possible.
Due to immersing the breast into the water bath, it buoys up resulting in e.g.
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Fig. 2. Illustration of the registration processing steps. The images show semi-
transparent renderings of the FEM model, which is built based on the segmented
MRI volume representing fat (blue) and glandular tissue (red/purple). After the buoy-
ancy simulation is applied, the surface of the deformed FEM model is compared to the
surface of the USCT volume (green) and displacement vectors are defined. For better
visualization this process is illustrated in 2D.

a shortening of approx. 15% in anteroposterior direction while it is broadened
at the chest wall. Complex interactions within the breast result in nonlinear
deformations of tissue structures.

We developed and applied an image registration to minimize the differences
of the deformation state. The registration is based on biomechanical modeling
of the breast using the MRI volume. The biomechanical model originates from
our earlier work; for more details refer to [16]. To build up the model, the MRI
is segmented into background, fat and glandular tissue using a combination of a
Level-Set-Evolution algorithm based on [17] and Fuzzy-C-Means clustering. To
simulate the effect of buoyancy, a gravity load is applied in anteroposterior direc-
tion using a Finite Element simulation (Fig. 2). Nodes at the back of the breast
model are fixated to model the connection of the breast at the chest wall. The
mechanical parameters are optimized based on surface agreement of deformed
MRI volume and USCT volume with an exhaustive search. Due to the complexity
of the deformation, not all effects of the different breast deformation states can
be modeled with the buoyancy simulation since e.g. manual adjustments of the
breast positioning as well as the contact interaction of the breast with the MRI
coil are unknown. A surface-based refinement simulation is carried out after-
wards to compensate for these effects and obtain overlapping breast boundaries.
In this simulation displacement vectors between the outcome of the buoyancy
simulation and the USCT volume are defined based on the surface normals of
the breast shape and a closest point assumption (Fig. 2, right). The finally regis-
tered MRI image is reconstructed by applying the computed deformation fields
to the voxel images using a three-dimensional linear interpolation.

Diagnostic information of USCT may thereafter be superimposed on MRI
images for evaluation of corresponding structures, i.e. an image fusion can be
carried out. In this work we combine the quantitative sound speed values mea-
sured in USCT with the MRI images. The sound speed is color-coded and then
semi-transparently rendered on top of the gray scale MRI images. Thresholds
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Fig. 3. Transversal slice image of (A) T1 weighted MRI before registration, (B) USCT
reflection image, (C) T1 weighted MRI after the registration was applied. After regis-
tration, the corresponding tissue structures are depicted at the same slice position and
the breast shape in the MRI image equals the breast shape in the USCT image. Note
the different slice position in the unregistered MRI image, which necessitates individual
browsing of the image stack.

on the sound speed overlay can be applied to highlight only tissue with a suspi-
ciously high sound speed.

3 Results

The first in-vivo study was carried out successfully with ten patients (mean age:
55.6 years ± 13.5 years, breast sizes: B-, C-, D-cup). The study was aimed on
testing the image acquisition and reconstruction methods in a clinical setup. For
most patients, the breast diagnosed with lesions was imaged with ten aperture
positions. The contra-lateral breast was imaged with four aperture positions.
In average, the image acquisition took 7min. 30 sec. using ten aperture posi-
tions resp. 3min. using four aperture positions, which is already in a clinically
applicable range.

Reflection volumes were reconstructed with a main lobe width of the optimal
pulse of 2μs which corresponds to a Full Width Half Maximum (FWHM) of
the point spread function of approx. 1.5mm. The voxel size was set to isotropic
0.7mm to fulfill the sampling theorem and approximately match the in-plane
resolution of the MRI images (voxel size (0.9mm)2, spacing between slices:
3.0mm). Transmission volumes, i.e. sound speed and attenuation volumes were
reconstructed with an isotropic voxel size of 2.7mm.

We found out that patient movement seems to be a minor problem. No definite
movements between reconstructions of the single aperture positions could be
detected. Furthermore breathing motion seems to have no effect on the breast.
This might be due to the patient position on the USCT device (Fig. 1) and the
water bath, which damps breast movements.

After reconstructing all USCT modalities, the registration and image fusion
were applied to achieve comparable images and visually evaluate the USCT
images against the ground truth MRI (Fig. 3).

For two patients diagnosed with a large carcinoma, USCT was able to de-
pict a region of high sound speed at the corresponding position. Fig. 4 shows a
transversal slice image of a 64 year old patient with a large inflammatory car-
cinoma. The fused image (right) combines the gray scale MRI image with the
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Fig. 4. Transversal slice image of a patient with an inflammatory carcinoma (green
marker) in the registered T1 weighted MRI image (left) and fused image of the MRI
with the USCT sound speed image (right). The sound speed information is color-coded
and rendered semi-transparently on the MRI slice.

Fig. 5. Coronal slice image of a non-cancerous patient (left) and enlargement of a
tiny tissue structure in a transversal slice (right). Each case depicts the registered T1
weighted MRI image and the corresponding USCT reflection image.

color coded USCT sound speed image. A high sound speed value (red) indicates
the cancer at approx. the same position it is positioned in the registered MRI
image.

The image registration allowed us to identify corresponding tissue structures
in USCT and MRI images at the same slice position. Fig. 5. (left) depicts coronal
slice images of a 39 year old patient. The predominant structures visible in the
MRI image can as well be identified in the reflection USCT image. Fig. 5 (right)
shows an enlarged detail of a transversal slice of the same patient, in which a
tiny tissue structure can be identified in both images.

4 Discussion and Conclusion

We successfully developed and tested a 3D Ultrasound Computer Tomography
system for dedicated breast imaging and achieved our initial design goals. The
imaging process, i.e. data acquisition, data pre-processing and image reconstruc-
tion, could be successfully evaluated in a first in-vivo pilot study with ten pa-
tients. The feedback of patients indicates a convenient patient comfort. The
resulting images are promising: compared to the MRI ground truth, similar tis-
sue structures can be identified. While reflection images seem to image even
small structures, sound speed imaging seems to be the best indicating modality
for detecting carcinomas at the current status. A second in-vivo study with a
considerably larger number of patients is currently launched to systematically
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analyze the applicability to different tumor entities and further investigate the
diagnostic value of the three modalities provided by USCT. Furthermore the
results of this first in-vivo study will lead to future optimization of the system.

Without registration it was difficult to recognize corresponding inner struc-
tures in both imaging methods. Hence we applied an image registration to over-
come the differences of the breast shapes in USCT and MRI images. This allows
browsing the volume images side by side and makes it easier to identify corre-
lating structures. It is currently used for further investigation of the diagnostic
value of USCT images. In our ongoing work we are focusing on an evaluation of
the proposed image registration method in terms of registration accuracy and
limitations. Along with this evaluation the registration method will be described
in more detail. Challenges for the registration still remain in cases with large de-
formations of the breast in MRI due to narrow breast coils resulting e.g. in skin
strains. Our future work will focus on adapting the registration to such cases as
well.
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Abstract. Mammographic density in digital mammograms can be assessed vi-
sually or using automated volumetric methods; the aim in both cases is to iden-
tify women at greater risk of developing breast cancer, and those for whom 
mammography is less sensitive. Ideally all methods should identify the same 
women as having high density, but this is not the case in practice. 6422 women 
were ranked from the highest to lowest density by three methods: QuantraTM, 
VolparaTM and visual assessment recorded on Visual Analogue Scales. For each 
pair of methods the 20 cases with the greatest agreement in rank were compared 
with the 20 with the least agreement. The presence of microcalcifications, skin 
folds, suboptimally positioned inframammary folds, and whether or not the nip-
ple was in profile were found to affect agreement between methods (p<0.05). 
Careful positioning during mammographic imaging should reduce discrepancy, 
but a greater understanding of the relationship between methods is also  
required. 

                                                           
*  Corresponding author. 
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1 Introduction 

Breast density is usually assessed in X-ray mammograms. It varies greatly between 
women and is influenced by a number of factors including genetics, menopausal sta-
tus, age and body mass index (BMI) [1]. There are several methods for measuring 
breast density including subjective area-based methods such as Visual Analogue 
Scales (VAS), and Breast Imaging and Reporting Data System (BI-RADS) categories 
for breast density [1,2]. More recently objective volumetric methods have been devel-
oped including Quantra™ [3] and Volpara™ [4]. The exact methods for quantifying 
density used by the manufacturers of Quantra™ and Volpara™ are commercially 
sensitive, but it is known that different calibration methods are employed, and that the 
contribution of the skin is disregarded when calculating density measures for Volpa-
ra™ therefore we expect the results for Volpara™ to be lower than those for Qua-
ntra™. The aim of this study was to identify differences in breast density assessments 
by Quantra™, Volpara™ and VAS, and to seek to identify patient characteristics, 
mammographic features and imaging parameters associated with these differences. 

2 Methods 

Women were recruited from the Predicting Risk of Cancer At Screening (PROCAS) 
study [3]. PROCAS includes approximately 50,000 women invited for routine breast 
screening who consented to participate and provided additional information on risk 
factors for breast cancer by completing a 2-page questionnaire at the time of screen-
ing. Women were included if they had density measurements from Quantra™ version 
1.3 and Volpara™ version 1.4.0, and from VAS as assessed by two independent read-
ers (VAS1 and VAS2) from a pool of consultant radiologists and advanced radio-
graphic practitioners. VAS forms consisted of four 10cm lines (one for each mammo-
graphic view) marked 0% and 100% at each end. Readers place a vertical mark on the 
line to indicate their assessment of percentage density for each view. Women with 
missing data for BMI, or with BMI values out with the range 16 to 60 were excluded.  

For each measurement method (Quantra™, Volpara™, VAS1, VAS2, VAS aver-
age (the average of VAS1 and VAS2)) densities were ranked in ascending order. The 
range of density measures is different for each method, therefore calculating the dif-
ference in breast density between methods would not necessarily identify the most 
discrepant cases. On the other hand, discrepancies in ranking enable the identification 
of subjects where one method assigned a high density score and another method a low 
density score for the same case. A similar method was used to find the least discre-
pant cases for each of the pairs of methods. Differences in rank between each pair of  
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methods were sorted in descending order and the cases with the 20 largest and smal-
lest differences for each pair of methods (Quantra™ vs Volpara™; Quantra™ vs 
VAS average; Volpara™ vs VAS average; and VAS1 vs VAS2) were selected. 
Where there were ties in the differences in rank between methods these were in-
cluded, so some groups contain more than 20. Mammograms for each of these women 
were retrieved and information was extracted by one film reader using a pro-forma.   

The pro-forma gathered information on: patient details (age, body mass index); 
mammographic abnormalities (masses, calcification, distortion, asymmetry, previous 
breast surgery, previous biopsy (including markers from biopsy)); density results 
(VAS1, VAS2, Quantra™, Volpara™); positioning (pectoralis muscle – optim-
al/suboptimal, inframammary folds (IMFs) – optimal/suboptimal, nipple in profile, 
skin folds, image blurred); radiographic parameters (tube voltage(kV), tube current 
(mA), breast compression thickness (mm), compression force (N)); and other parame-
ters (visible skin texture, objects in film, non-uniform glandular tissue distribution, 
prominent vascular markings, prominent lymph nodes). T-tests were carried out for 
continuous data and Chi-square tests were carried out for categorical data for each of 
the pairs of methods. Results were considered significant if the p-value was ≤ 0.05. 

3 Results 

In total,  6422 women met the entry criteria and had density readings for all three 
methods. The mean age was 59.3 years (SD 6.7) and mean BMI was 27.9 kg/m2 (SD 
5.5). Mean densities were 6.8 (SD 3.7), 15.5 (SD 5.7), 29.6 (SD 17.3) and 26.9 (SD 
20.0) for  Volpara™, Quantra™, VAS1 and VAS2 respectively. Figure 1 shows the 
level of agreement between the ranks for each pair of methods as well as the least and 
most discrepant cases selected for the study.   

Comparison between Quantra™ and Volpara™  
When comparing Quantra™ and Volpara™, presence of calcification was significant-
ly different between the two measurement methods with those in the most discrepant 
group having more calcifications than those in the least discrepant group. There were 
also significantly more suboptimally imaged IMFs in the most discrepant group (Ta-
ble 1). In addition, there was a significant difference in age between the most and 
least discrepant groups (p=0.036) with those in the most discrepant group being older 
(mean 61.5) than those in the least discrepant group (mean 56.6).  

Comparison between Quantra™ and VAS Average 
For the comparisons between Quantra™ and average VAS scores, the nipple was not 
in profile for the LCC view significantly more in the most discrepant group compared 
to the least discrepant group (Table 2). Similarly, skin folds for the LMLO view were 
present significantly more in the most discrepant group. Breast thickness (mm) after  
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compression was significantly higher in the most discrepant group for three out of the 
four mammographic views (RMLO, RCC and LCC) when comparing the difference 
between Quantra™ and average VAS scores (Table 3). There were no other signifi-
cant results between Quantra™ and VAS . 

 

Fig. 1. Ranks for each pair of methods (eg. Quantra™ with Volpara™). Those selected for  
the current study are highlighted-least discrepant cases shown in green and most discrepant 
cases in red. 

Table 1. Comparisons between Quantra™ and Volpara™ 
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Table 2. Comparisons between Quantra™ and VAS average  

 

Table 3. Comparison of breast thickness (mm) between Quantra™ and average VAS  

 

Comparison between  Volpara™ and Average VAS  
The number of women with suboptimal IMFs, for left and right MLO views, were 
significantly higher in the most discrepant group compared to the least discrepant 
group. The nipple was also less often in profile, for the RCC view, for the most dis-
crepant group. There were significantly more skin folds in the least discrepant group 
than the most discrepant group (Table 4). There were also significant differences be-
tween compression force for the most and least discrepant groups. Compression force 
(N) was greater for the most discrepant group for three (RMLO, RCC and LCC) out 
of the four mammographic views (Table 5).  

Table 4. Comparison between Volpara™ and the average VAS scores 
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Table 5. Comparison of compression force (N) between Volpara™ and average VAS  

 

Table 6. Difference in tube current (mAs) between VAS1 and VAS2 

 

Comparison between VAS1 and VAS2 
There was a statistically significant difference between the tube current recorded for 
the RMLO and LCC views, with the mean being significantly higher in the least dis-
crepant group. There were no other significant results between VAS1 and VAS2.  

4 Discussion 

When comparing the different methods for density measurement in the most and least 
discrepant cases there were a number of interesting findings. Calcification and IMFs 
were found to be present more often in the most discrepant group when comparing 
Quantra™ and Volpara™, implying that the two technologies do not agree. How 
these are dealt with by the computer software designed to measure volumetric density 
is not publicly known. Those in the most discrepant group also tended to be older than 
those in the least discrepant group suggesting that volumetric methods may find it 
more difficult to agree on density of older women’s mammograms. Generally, the 
volume of fibroglandular tissue decreases with age, therefore it is possible that volu-
metric technologies find smaller volumes of fibroglandular tissue more difficult to 
interpret, although interestingly, there were no such differences between volumetric 
methods and VAS density results.   

When comparing densities between Quantra™ and VAS average considerably 
fewer nipples were in profile in the most discrepant group than the least discrepant 
group for the LCC view. In some images the automated method may have interpreted 
the nipple as fibroglandular tissue whereas VAS readers would recognise this as a 
positioning issue. However, this was not found in the three other mammographic 
views. There was a similar finding for the presence of skin folds. Compression  
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thickness was also significantly different for three mammographic views when Qua-
ntra™ and VAS were compared. Compressing the breast minimises movement and 
spreads the fibroglandular tissue, and dense tissue may be more difficult to assess 
accurately in a projection image when less compression is used.  Interestingly, differ-
ences in compression force were not significant in any of the views when comparing 
these two methods.  

Like the comparisons between Quantra™ and VAS, there were a number of signif-
icant differences between Volpara™ and VAS for IMFs, nipple not in profile and skin 
folds. Compression force was found to be higher in the most discrepant group for all 
four views suggesting less agreement when a larger force is applied. 

A limitation of the current study was that density methods were measured across 
all four views, however the assessment of positioning and information extracted on 
radiographic parameters from the DICOM headers was for individual mammographic 
views. It would be interesting to see whether the discrepancies in density are specific 
to individual mammographic views. Furthermore, assessment of image positioning 
relied on the interpretation of a single film reader. However images were anonymised 
and assessed in random order so the reader was blind to which group they came from.  

5 Conclusions 

This study looked at different methods of measuring breast density: Quantra™, Vol-
para™ and VAS. There was significantly more calcification and suboptimal IMFs in 
the most discrepant group when comparing Quantra™ and Volpara™. We also found 
significant results when comparing the computerised methods with VAS. There were 
more skin folds in the most discrepant group when comparing Quantra™ and VAS, 
and the compressed breast thickness was also significantly larger in the most discre-
pant group. Comparing Volpara™ and VAS found that suboptimal IMFs contributed 
to disagreement in breast density. Compression force was also significantly higher in 
the most discrepant group.  

At present, there are important differences between different methods of breast 
density assessment. A greater understanding of the reasons behind such differences 
coupled with careful radiographic technique should lead to a reduction in these  
discrepancies.   
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Abstract. Mammographic scoring of density and texture are estab-
lished methods to relate to the risk of breast cancer. We present a method
that learns descriptive features from unlabeled mammograms and, using
these learned features as the input to a simple classifier, address the
following tasks: i) breast tissue segmentation ii) scoring of percentage
mammographic density (PMD), and iii) scoring of mammographic tex-
ture (MT). Our results suggest that the learned PMD scores correlate
well to manual ones, and that the learned MT scores are more related
to future cancer risk than both manual and automatic PMD scores.

Keywords: Unsupervised feature learning, deep learning, breast cancer,
mammograms, prognosis, risk factor, segmentation.

1 Introduction

Breast cancer is the most common cancer (non-melanoma skin cancer excluded)
worldwide, with more than 430,000 deaths in 2010 alone [1]. In order to reduce
breast cancer mortality, it is important to identify, monitor, and possibly treat
high risk patients early. One of the strongest known risk factors for breast cancer
is the relative amount of radiodense tissue in the breast, expressed as mammo-
graphic density (MD) [2][3]. Widespread MD scores range from manual categori-
cal (e.g., BI-RADS, Wolfe [4], Tabár [5]) to continuous scores (e.g., Cumulus-like
thresholding). A major problem is that fully manual or user-assisted scoring is
subjective and time-consuming. There has been a trend towards fully automating
MD scoring, but most of these approaches rely on handcrafted features with sev-
eral adjustable hyperparameters. Similarly, mammographic texture (MT) scoring
methods, describing mammographic heterogeneity, have used manually encoded
and selected features.

In this paper, we investigate a method to automatically learns features that
best describe mammogram appearance patterns. These data-driven features can
be used to address three breast cancer risk related tasks that have previously
been modeled in very different ways: breast tissue segmentation, percentual
mammographic density (PMD) scoring, and mammographic texture (MT)
scoring.

H. Fujita, T. Hara, and C. Muramatsu (Eds.): IWDM 2014, LNCS 8539, pp. 88–94, 2014.
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2 Materials and Method

2.1 Materials

We have evaluated our method on 495 right and corresponding left mediolateral
(RMLO and LMLO) mammograms from a previously published case-control
study from the Dutch screening program. This study was originally designed for
investigating the effect of recall rate within the Dutch biennial breast screening
program [7]. Selected mammograms from this study contained 250 controls and
245 cases of which 123 were diagnosed with an interval cancer and 122 with a
screen-detected cancer. The case mammograms were selected 4 years prior to a
screen detected and 2-4 years prior to an interval cancer. The mammograms of
the controls remained cancer free in the subsequent 4 years. The participants of
the study were between 49 and 81 years old and the study groups were matched
for age. The mammograms were digitized with a Vidar scanner that provided
an image resolution of roughly 1500×2500 pixels on 12-bit gray scale and 50×50
microns. On the RMLO mammograms, a trained radiologist annotated the skin-
air boundary and the pectoral muscle by a polygon tool, and estimated BI-RADS
and PMD using a Cumulus-like approach.

2.2 Methods

The employed texture scoring method learns a deep hierarchy of increasingly
more abstract features from unlabeled data and maps the final feature repre-
sentation to the label of interest. Depending on the task, these per pixel labels
are i) segmentation: background (BG), pectoral muscle (PM), and breast tissue
(BT) ii) PMD scoring: fatty tissue, and dense tissue iii) MT scoring: healthy, and
diseased (each pixel is associated with the cancer outcome label). The employed
model is called a convolutional sparse autoencoder (CSAE [6]) and processes
small patches at multiple image scales from the mammogram.

The training data is collected by randomly drawing 50,000 patches across a
set of training mammograms and by associating them with the label of interest.
An unseen mammogram is segmented or scored by applying the trained model
in a sliding window approach. At the image boundary, the image is padded
with a constant value. A label posterior of the disease class is gained for each
location, and afterwards averaged to produce a single score per mammogram. In
the following, we summarize the ingredients of the CSAE model: a convolutional
architecture as the model representation, and a sparse autoencoder for learning
the model parameters.

Convolutional architecture A convolutional Architecture. is suited for learn-
ing a deep feature hierarchy from structured data [8]. It is similar to neural
networks, but has two advantages: First, convolutional architectures model the
topology of the input in each layer, e.g., images as a 2D grid. Second, they
are able to scale to much larger inputs by constraining the number of trainable
parameters.
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Fig. 1. Deep convolutional architecture. Patches are extracted from multiple scales of
the image and fed to the convolutional architecture. The patch (or feature map) at
scale t + 1 only considers every second pixel, such it has the same size as the patch
from scale t. The small subregions within the extracted patches are referred to as local
receptive fields. We refer to the text for more details.

The hidden layers of a convolutional architectures consist of convolutional and
pooling layers, usually in alternating order. In our convolutional architecture, we
have replaced one pooling layer by a convolutional layer to have invariance to
noise, but still pick up details that could benefit the segmentation or scoring
task. This design choice was confirmed by slightly better results.

Convolutional layers are similar to hidden layers in a traditional neural net-
work. They are parameterized by trainable weight parameters that can be inter-
preted as features. However, rather than connecting each unit to all input units,
convolutional units are only connected to spatially close units. Each set of input
units usually corresponds to a small squared subregion of the input grid and is
collectively referred to as a local receptive field. In Figure 1, the local receptive
fields are connected with red, blue, or green lines to a unit of an output fea-
ture map. Weighting the units within a local receptive field is equivalent to a
convolution of the input feature map.

In a convolutional architecture, the layer units are not stored as a vector, but
in a multi-channel grid structure. The convolutional layer convolves the input
of each channel, sums the responses, adds a bias term, and sends the result
through a scalar-wise nonlinear activation function to create one output feature
map. This nonlinear multi-channel processing is repeated with different filter
weights to create multiple output feature maps. Thus, each convolutional layer
is fed with multiple input feature maps and applies different convolutions to
create multiple output feature maps. Formally, the jth output feature map of a
convolutional layer is given by

zoutj = σ(wj ∗ z + bj1m′) , (1)

where wj denotes the filter for the jth output map, z all input feature maps as a
tensor, bj the bias for the jth map, and 1m′ denotes an m′ ×m′ matrix of ones.
The activation function is denoted by σ(x) = max(x, 0).
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Table 1. Comparison of expert’s PMD scores with expert’s BI-
RADS and automated CSAE PMD scores

Method Case Control RPMD AUC (95% CI)

PMD 0.20 ± 0.13 0.18 ± 0.13 - 0.56 (0.51, 0.61)

BI-RADS 2.23 ± 0.72 2.10 ± 0.76 0.87 0.55 (0.50, 0.60)

PMDCSAE 0.21 ± 0.11 0.18 ± 0.13 0.87 0.56 (0.51, 0.61)

The output of the convolutional layer is often fed to a pooling layer which
summarize the distributions within small (non-overlapping) spatial regions. The
final architecture layer maps the output of the last hidden layer to the labeled
data, in the same way as it is modeled in a neural network.

Figure 1 illustrates our convolutional architecture for processing multiscale
input patches. The large rectangles denote feature maps, whereas the small rect-
angles represent local receptive fields. We employ one pooling layer (blue) and
three convolutional layers (red), which are trained in an unsupervised way by
sparse autoencoders (see next Section). The last two layers are finally trained
by a classifier to map the output to the labels of interest.

Sparse Autoencoder. Here, we describe how the wj weights from the con-
volutional layer described above are trained by reconstructing the inputs of a
convolution operation, i.e., patches of the size of local receptive fields, using an
encoder-decoder architecture [9]. The encoder maps the input to a hidden layer
and uses the same activation function that was defined in the convolutional layer.
The decoder maps the hidden layer to the output layer, which is set to be the
same as the input. This autoencoder structure enables to learn features with-
out using the label information. As a refinement to this architecture, we have
incorporated a sparsity regularizer to control the capacity of this model.

3 Results

3.1 Breast Tissue Segmentation

The mean and standard deviation of the Dice coefficient for automated vs. ex-
pert’s breast tissue segmentation (BG: 0.99 ± 0.01, PM: 0.95 ± 0.08, and BT:
0.98± 0.01).

In the following, the automated breast tissue mask is used as a region of
interest in both scoring tasks.

3.2 Mammographic Density Scoring

The CSAE model was trained to automatically compute PMD. Table 1 presents
i) mean and standard error for cancers and controls, ii) Pearson’s R correlation
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Fig. 2. Automated PMD. From let to right: original image; dense tissue (in red) based
on expert Cumulus-like score; PMDCSAE posterior of dense tissue class.

Table 2. Comparison of auto-
mated texture scores

Method AUC (95% CI)

MTkNN (R) 0.62 (0.57, 0.67)

MTCSAE (R) 0.65 (0.60, 0.70)

MTCSAE (L) 0.65 (0.60, 0.70)

coefficient between automated and manual PMD scores, and iii) the area under
the ROC curve (AUC ). We see that our automated PMD scores are well corre-
lated to manual PMD and equally discriminative. A typical density segmentation
result is shown in Fig. 2.

3.3 Mammographic Texture Scoring

The CSAE model has been evaluated on the LMLO and RMLO mammograms
of the Nijmegen dataset. Since manual breast segmentations were only available
for the RMLO view, we applied the segmentation model trained on the RMLO
view to the LMLO mammograms. The obtained automated segmentations were
scored with the texture model that was trained on the RMLO mammograms
as well. In both experiments, the RMLO mammograms in the cross validations
folds were replaced with their LMLO counterparts.

Table 2 summarizes the obtained AUCs for our model applied to RMLO,
MTCSAE (R), and LMLO, MTCSAE (L). We also compared these models to the
previously best performing MT scoring method by Nielsen et al., MTkNN (R)[10].
Pearson’s R correlation of the two automated MT scores to manual PMD is low
(both RPMD = 0.10), suggesting that our MT scores add to manual PMD in
terms of risk segregation.

Figure 3 illustrates the correlation of the automated MT scores on LMLO and
RMLO view (Pearson’s R = 0.85), which compares to widespread volumetric
density scores like VolparaTM (R = 0.92 on 2217 mammograms) [11].



Breast Tissue Segmentation and Mammographic Risk Scoring 93

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Left

R
ig

ht

Fig. 3. Correlation of texture scores between left and right breast. The black line is
the identity line. The corresponding Pearson’s R correlation coefficient is 0.85.

4 Conclusion

We have presented an unsupervised feature learning method for breast region
segmentation, automatic PMD scoring, and automatic MT scoring. The model
learns features across multiple scales and harnesses correlations in the target
values. Once the features are learned, they are fed to a simple classifier that is
specific to the task of interest. The CSAE model achieved state-of-the-art results
on each of the three different breast cancer related tasks.
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Abstract. Columnar structured cesium iodide (CsI) scintillators doped with 
Thallium (Tl) have been used extensively for indirect X-ray imaging detectors. 
Here, theoretical modeling was performed to assess the impact of CsI thickness 
on optimal acquisition spectra for dual-energy iodine-enhanced breast com-
puted tomography (bCT). Contrast-to-noise ratio (CNR) between iodine-
enhanced and non-enhanced breast tissue normalized to the square root of the 
total average glandular dose (AGD) was computed as a function of the fraction 
of the AGD allocated to the low-energy images. Peak CNR/√AGD and optimal 
low-energy AGD allocations were identified for small, average and large un-
compressed breasts. Optimal high-energy spectra were found to be almost inde-
pendent of CsI thickness and occurred just above the Cs and I K-edges (range 
34 to 36 keV), while optimal low-energy spectra varied largely with CsI thick-
ness, ranging from 25 keV to 33 keV for 100 µm to infinite CsI scintillator 
thicknesses. 

Keywords: breast, computed tomography, dual energy, scintillator. 

1 Introduction 

Indirect flat-panel imagers with CsI:Tl scintillators have been widely used for digital 
breast X-ray imaging since last decade. Several publications have investigated their 
imaging performance at typical X-ray spectra for conventional digital mammography, 
digital breast tomosynthesis and dedicated breast computed tomography [1–4]. So far, 
no study has been dedicated to the energy-dependent imaging performance of CsI as a 
function its thickness for dual-energy applications. Here, we investigate the impact of 
CsI scintillator thickness on the optimal spectra for dual-energy breast imaging com-
bined with a vascular iodine-based contrast agent. Theoretical modeling was per-
formed to assess optimally enhanced iodine-equivalent images, with contrast-to-noise 
ratio (CNR) between iodine-enhanced and unenhanced tissue normalized to the 
square root of the average glandular dose (AGD) as Figure-of-Merit. Our investiga-
tion is demonstrated for dual-energy contrast-enhanced breast CT (CE-bCT). 
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2 Theory 

2.1 X-ray Photon Detection 

Assuming a mono-energetic X-ray beam, a breast image formed only by primary  
X-rays photons and an energy-integrating quantum-noise limited detector which does 
not introduce any blurring can be calculated as: 

             , ,  (1) 

where  is the per-pixel signal intensity,  is a constant representing optical quanta 
generation and other scaling factors,  is the X-ray energy,  denotes a Poisson 
distribution, ,  is the photon fluence at energy  generated by a monochromatic 
point source  towards a detection element , ,  is the linear attenuation of the 
imaged breast at energy  and position  in its volume,  is the incremental thick-
ness of the traversed breast in the path  to  and  is the quantum efficiency of 
the detector at energy . 

The function  can be extremely complex accounting for different energy-
dependent inefficiencies during the detection process. In this work we assumed  
to depend only on CsI scintillator thickness: 

              1  (2) 

where  is the linear attenuation coefficient at energy  of a continuous and 
homogenous CsI layer and  is the oblique thickness of the scintillator at detec-
tor element . For simplicity, X-ray beam obliquity was disregarded in  calcula-
tion since it would entail only small differences in signal intensities for small incident 
angles [5]. Therefore,  values are same at all detector positions. 

2.2 Image-Based Dual-Energy Recombination 

In an iodine-enhanced dual-energy breast imaging setup, the breast can be approx-
imated as being composed of three basis materials: adipose, fibroglandular tissue and 
the injected iodine. Moreover, the composition of every unit of volume in the breast 
can be assumed to be an ideal solution of these three materials, i.e. with final volume 
equal to the volume of its constituent parts (volume conservation): 

        1 (3) 

where ,  and  are the volume fractions of adipose,  
fibroglandular tissue and iodine, respectively, at position  in the breast volume. 

After tomographic reconstruction, low-energy (LE) and high-energy (HE) cross-
sectional images can be described by the expressions: 

  (4) 
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where  and  are the measured linear attenuation coefficients of the 
breast at LE and HE at position  in their respective volume, and , , ,  and ,  are the linear attenuation coefficients of adipose, fibroglandular tissue and of 
iodine uptake at LE and HE. 

The slice images obtained by solving the system of the three above equations for 
 are hereafter referred to as iodine-equivalent images, as their intensity values 

are proportional to the quantity of iodine inside each voxel. 

3 Materials and Methods 

3.1 Breast Phantom and X-ray Image Simulation 

To mimic small, average and large uncompressed breasts of a woman in prone posi-
tion, three 50% fibroglandular equivalent analytic cylindrical phantoms with a 10, 14 
and 18-cm diameter and a height equal to three-quarters of their respective diameter 
were simulated [6]. The phantom includes 10-mm diameter spherical inserts, distri-
buted in a coronal plane at mid-depth of the cylinder (Fig. 1a). The inserts are com-
posed of homogeneous mixtures of fibroglandular and adipose-equivalent tissues, as 
well as homogeneous mixtures of 50% fibroglandular equivalent tissue and 0.5, 1.0, 
2.5 and 5.0 /  iodine concentrations. All homogeneous mixtures in the phan-
tom were obtained respecting volume conservation (Equation 2). 

A cone-beam breast CT topology similar to that published by Boone et al. [7] was 
considered (cf. Fig. 1b) assuming a quantum-limited, energy-integrating (Equation 1) 
detector with 0.776  detector element pitch. CsI scintillators with 100, 250, 400, 
600 and 780  thicknesses, as well as a perfect energy-integrating detector with 1 regardless of the energy value, were investigated. Per scan, three-hundred 
projection images were acquired using an analytic ray-tracing projector and mono-
energetic, primary X-rays only. The projections were reconstructed by filtered  
 

 

Fig. 1. Illustration of (a) a cylindrical phantom with spherical iodine inserts and (b) the cone-
beam CT geometry used to assess the effect of CsI scintillator thickness on optimal acquisition 
spectra for dual-energy iodine-enhanced bCT 
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back-projection with ideal ramp filter, to obtain 512 512 coronal images with 0.41 0.41  pixel size, and 1  slice thickness. 
Average Glandular Dose (AGD) was estimated using a Monte Carlo simulator; two 

million photons undergoing Rayleigh, Compton and photoelectric interactions were 
tracked in voxelized versions of the analytical phantoms, sampled at 2 2 2  
voxel sizes. X-ray beam fluence was adjusted to provide a total AGD of 100 mGy and 
achieve adequate detector incident X-ray photon fluence and the desired quantum 
statistics for all experimental conditions. 

Analytical projections, tomographic reconstructions and radiation dose were simu-
lated using CatSim, an X-ray imaging system simulation platform previously devel-
oped and validated at General Electric [8]. 

3.2 Optimization Criteria 

Contrast-to-Noise-Ratio per pixel between iodine-enhanced breast tissue and back-
ground breast tissue normalized to the square root of the total AGD (CNRD) was used 
as the Figure-of-Merit for the detectability of iodine in iodine-equivalent images: 

  (5) 

where  and  are the mean per-pixel signal intensities ( ) in an iodine-
enhanced region-of-interest (ROI) and a non-iodine enhanced neighboring ROI,  is 
the standard deviation of the  in the non-iodine enhanced ROI and  is the 
sum of AGD delivered during LE and HE acquisitions. 

Assuming quantum noise only, the standard deviations of the signal intensities in 
LE and HE images are inversely proportional to AGDLE and AGDHE, respectively. 
If   /  is the LE dose allocation, it can be shown that 

 is independent of the total AGD and depends only on  [9, 10]. 
 was calculated in iodine-equivalent images obtained by recombin-

ing LE and HE images acquired at X–ray beam energies ranging from 20 to 80  
in 5  increments, except around the iodine K-absorption edge (33.2 ) where 1  increments were investigated. For each LE and HE X-ray beam pair, AGD 
allocation to the LE images was varied from 20% to 80% in 5-10% steps. Optimal LE 
and HE beam energies and optimal LE AGD allocation, , maximizing 

were identified for  equal to 100, 250, 400, 600 and 780  and 
for a perfect detector absorption efficiency 1. 

4 Results 

Fig. 2a shows  as a function of incident photon energy for three CsI thicknesses 
and for the perfect energy-integrating detector with 1. It can be seen that 

 increases with scintillator thickness and all curves show discontinuities at the K-
edges of Cs (36 ) and I (33.2 ), due to the sudden increase in their attenuation 
coefficients.  
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In this study, simplified assumptions on X-ray image generation were made. A 
point source, emitting mono-energetic X-ray beams was assumed. Although the adop-
tion of polychromatic spectra would degrade iodine uptake detectability, our results 
can be used as a preliminary detectability evaluation for polychromatic X-ray beams 
with average energy coincident with the studied monochromatic energies. X-ray scat-
ter was not modeled. As shown by Glick et al. [11], X-ray scattering has a moderate 
degradation effect on lesion detectability. Nonetheless, this effect showed little ener-
gy-dependency and has thus little impact on optimal dual-energy spectra. 

Idealistic hypothesis for the detector model were also made. Optical glare, the scat-
ter of optical photons within the phosphor layer of the detector, and its degrading 
effect on the detector pre-sampling MTF was disregarded. Our results showed that 
CNRD increases with increasing scintillator thickness. However, it is known that the 
detector pre-sampling MTF degrades with increasing scintillator thickness, especially 
at high-frequency components. A blur-free assumption would in this case be interest-
ing to evaluate iodine uptake detectability through low-frequency metrics such as 
CNRD, but would possibly be insufficient for the assessment of iodine uptake mor-
phology and other Figures-of-Merit sensible to high-frequency variations in signal 
intensity. 

X-ray beam obliquity was not taken into account when computing in . By 
geometric calculation, it can be demonstrated that oblique X-ray beam incidence en-
tails up to ~5% increase in  values (at the largest obliquity, for the largest phan-
tom) and, as consequence, ~3% average increase in . In cross-sectional images 
reconstructed at the phantom’s mid-depth, differences in lesion CNRD values would 
be below 1% and, therefore, with imperceptible impact on the results presented above. 
Further studies including more realistic detector models will provide better under-
standing on the impact of different CsI scintillators on iodine uptake detectability and 
characterization. 

In this work, results were shown for a cone-beam breast CT geometry, for which 
the breast is not compressed during imaging (10 to 18  in diameter). These find-
ings can explain the behavior of optimal spectra previously found for dual-energy 
contrast-enhanced mammography with compressed breasts (2 to 8 cm thick) [9, 12]. 

6 Conclusions 

Several research papers on optimizing LE and HE X-ray spectra for dual-energy con-
trast-enhanced iodine breast imaging found counter-intuitive results; optimal spectra 
do not bracket the K-edge of iodine as closely as expected. Our work presents prelim-
inary evidence that optimal X-ray spectra strongly depend on detector scintillator 
thickness. Detector energy-dependent absorption inefficiencies should therefore be 
taken into account when designing X-ray imaging systems for spectral applications. 

Acknowledgements. This study was funded by the ANRT, under the PhD CIFRE 
convention 2010/756. 
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Abstract. Energy weighting techniques are known to improve the
contrast-to-noise (CNR) ratio in energy-sensitive, x-ray photon detec-
tion, in particular in the absence of scattered radiation. In spite of the
rather moderate reported improvements in CNR, typically ranging be-
tween 5-10%, it is of high relevance to quantify the potential for saving
radiation dose in a mammography screening environment. In this paper
we experimentally investigate the possible improvements to be obtained
by energy-weighting of data acquired with a Philips MicroDose SI mam-
mography system. We compare three schemes to combine the raw data
consisting of counts registered in the low- and high-energy bins, respec-
tively: conventional summation, linear weighting and non-linear weight-
ing of the two energy bins. Measurements on a dedicated phantom were
analyzed to quantify the potential for reduction of patient dose of linear
and non-linear energy weighting. By averaging improvements of CNR
achieved over several pairs of regions-of-interest (ROI) we report a po-
tential to reduce the patient dose by 7% for linear- and 9% for non-linear
energy weighting, in good agreement with expectation.

Keywords: Energy weighting, digital mammography.

1 Introduction

Contrast in radiographic x-ray imaging is a strongly decreasing function of en-
ergy [1]. The acquisition of two, spectrally different attenuation measurements in
the Philips MicroDose SI mammography system (see Refs. [2,3,4]) offers the pos-
sibility to give higher weight to the low energy measurement and, thus, increase
the contrast in the resulting image compared to an equally (energy-)weighted
summation image [5,6]. The latter is derived from the sum of the counts regis-
tered in the low- and high-energy bins. Noise limits the gains expected by this
procedure, called energy-weighting. Image noise affects the low-energy bin more
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strongly than the high-energy bin. This is due to the beam-hardening effect that
deprives the transmitted spectrum predominantly of low-energy photons. This
effect will be most dominant for thick and/or dense breasts, when the low-energy
bin will receive much fewer counts than the high-energy bin. Therefore, the gain
in contrast has to be put in proportion to the increase of image noise [7]. It should
be mentioned that in the MicroDose SI mammography system the thresholds are
optimized depending on breast thickness and corresponding kVp setting of the
scan. This compensates for the loss of low-energy counts for thicker or dense
breasts.

This paper is structured in the following way: in Section 2 we outline the
linear- and non-linear image weighting schemes we employed in this work. We
furthermore describe the dedicated phantom scanned to investigate the contrasts
and noise in various regions of different tissue composition and define the figure-
of-merit (FOM) used to optimize the energy-weighting image. Note that the
phantom is designed such that it almost completely covers the range of breast
tissue thickness compositions which are expected in clinical practice. In Section 3
we put together the gains measured in the FOM by linear- and non-linear energy
weighting. As a reference, we used the conventional ”sum-image” obtained by
a simple addition of counts from low- and high-energy bins. We summarize our
results in Section 4 and also discuss possible shortcomings and future extensions
of this approach.

2 Methods

2.1 Image Weighting Schemes

Let us denote the number of counts registered for a given detector pixel in
the low- and high-energy bins by l1 and l2, respectively. We then choose to
parameterize a non-linear combination of low-energy counts l1 and high-energy
counts l2 in the following way [8,9]:

LNL = Al1 + (1 −A)l2 +B11l
2
1 +B12l1l2 +B22l

2
2 , (1)

where the double appearance of the constant A is reminiscent of the reduction
of the degree of freedom related to the scaling of the image LNL by a global
factor. In this work we will be concerned exclusively with image combinations
of the form (1). Note that in the case B11 = B12 = B22 = 0, the above equation
reduces to

LL = Al1 + (1−A)l2 , (2)

which is the case of linear energy-weighting. When choosing A = 1/2, we obtain,
up to scaling by a factor of 2, the case of the ”sum-image” conventionally used
for image presentation:

LS =
1

2
(l1 + l2) . (3)
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In order to quantify the potential improvements in image quality by energy
weighting, we define the following figure-of-merit (FOM) function

FOMM
R1R2

(A,B11, B12, B22) = 2
(LM

R1
− LM

R2
)2

σ2
LM

R1

+ σ2
LM

R2

(4)

for each pair of regions-of-interest (ROI) R1 and R2. This FOM takes the two
dominant effects of energy weighting into account, namely contrast enhancement
and noise increase.

In Eq. (4) M = S,L,NL stands for the weighting method used, denoting the
sum-image, linear weighting and non-linear weighting, respectively. The depen-
dence on the parameters A,B11, B12, B22 is via all four terms with σ2

LM
R1

and

σ2
LM

R2

denoting the noise in the weighted images in the two ROIs. The FOM

defined above is given by the square of the contrast between the image values in
the weighted images in the two ROIs R1 and R2 divided by the average noise
variance in the two ROIs. The optimization of the parameters is based on a
Nelder-Mead Simplex Algorithm.

2.2 Phantom Description

The phantom we used to evaluate the improvements in contrast-to-noise ratio
(CNR) by energy-weighting consists of three main blocks each containing nine
steps of aluminum (Al) heights and eight steps of polyethylene (PE) heights. The
Al heights range from 0.0 to 4.0 mm in steps of 0.5 mm while the PE heights are
5.0, 10.0, 16.3, 26.3, 41.3, 56.3, 71.3 and 86.3 mm, respectively. This results in
various segments with different combinations of Al and PE heights (see Figs. 1
and 2).

Fig. 1. Aluminum segments of the used phantom. For testing the algorithm only the
central block is evaluated.
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Fig. 2. Polyethylene segments of the used phantom. For testing the algorithm only the
central block is evaluated.

For example, the aluminum height is the same for all segments in one row while
it increases with the line number. The PE height is the same for all segments in
one column. The segments of the leftmost column have the minimum height of
5 mm while the segments of the following PE height of 10 mm are in the rightmost
column. The height of the PE segments increases alternatingly regarding the
position of the columns.

The phantom consists of three identical blocks of Al- and PE-height com-
binations while only the central block is evaluated for testing the algorithm.
Contrasts were optimized for regions R1 in one row and R2 located in the row
below. The phantom is designed such that it covers a wide range of realistic
breast thicknesses and tissue compositions by various combinations of Al and
PE steps.

3 Results

Fig. 3 and Fig. 4 show the values of the optimized figure-of-merit normalized
to the conventional FOM from the sum image for four selected pairs of ROIs
between 3.5 and 4.0 mm Al (lines 8 and 9), 2.0 and 2.5 mm Al (lines 5 and 6),
1.0 and 1.5 mm Al (lines 3 and 4), and 0 and 0.5 mm Al (lines 1 and 2).

Each Al-signal difference is measured with additional PE material, the thick-
ness of which is increasing with the column index. Therefore, this measurement
simulates the signal difference of a lesion in a variety of breast thicknesses and
in various breast compositions representing extremely dense to predominantly
adipose surrounding breast tissue.

Non-linear energy weighting always produces results superior to the linear
energy weighting, as an obvious consequence of Eq. (2) being contained within
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Fig. 3. Figure of merit (FOM) normalized to the sum image for comparison between
Al thicknesses of 3.5 and 4.0 mm (left) and 2.0 and 2.5 mm (right)

Fig. 4. Figure of merit (FOM) normalized to the sum image for comparison between
Al thicknesses of 1.0 and 1.5 mm (left) and 0 and 0.5 mm (right)

the range of parameterizations of Eq. (1). As a reference, the conventional FOM
from the sum image is given which is unity by definition. In quantitative terms,
this means that the typical gain in FOM is 7% for linear energy weighting and
9% for non-linear energy weighting.

4 Conclusions

We verified the potential to improve CNR by means of linear, and non-linear
energy weighting of energy-selective photon-counting raw data acquired in two
energy bins on a MicroDose SI spectral mammography imaging unit. The im-
provements demonstrate well the potential of the technique to further reduce the
dose delivered to the breast during digital breast x-ray examinations. Compared
to an equally-weighted summation image, a dose reduction of 7% and 9% could
be achieved without loss in CNR by linear and non-linear energy weighting, re-
spectively. We noticed a dependence of the improvement from non-linear energy
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weighting over linear energy weighting on the Al thickness, with higher gains ob-
served for smaller Al thickness corresponding to a predominantly adipose breast
composition. The present study was performed on a phantom with varying PE
thickness between 5 and 90 mm which is representative for a wide range of breast
thicknesses found in practice. Furthermore, constant CNR is no guarantee for
unchanged image quality (at reduced dose) as many other measures of image
quality exist. Hence, care must be taken to verify, that no contrasts would be
suppressed during energy weighting. In addition, the local optimization of the
non-linear weights for a given pair of regions must be generalized to a global de-
termination of weights for the entire mammogram before the quality of a larger
number of clinical mammograms can be assessed.
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Abstract. Purpose: To investigate the lesion discrimination ability of 
compositional 3-component breast imaging technique (3CB) of patients with 
suspicious breast lesions (BIRADS 4 or greater). 

Materials and Methods: A novel dual-energy 3CB imaging technique 
concludes in quantifying of the lipid, protein, and water thicknesses. The 
protocol was designed to be performed on a standard full-field digital 
mammography system by imaging additional high-energy image using a 3-mm 
Al filter. A pilot study of 43 abnormal breast findings on diagnostic 
mammography was performed using the 3CB protocol. The lesion groups 
include fibroadenoma (FA), invasive (IDC), DCIS and benign tissues. The 
lesions were delineated by the radiologist on CC and MLO views, and the 
compositional measures of the whole breasts, local areas within lesions and 
their peripheries were derived. Univariate logistic regression statistics was 
applied to analyze lesion different group separation. The variable statistical 
significance of MLO, CC views and their average was also compared. 

Results: We found for FA/rest group discrimination that water and lipid 
difference between lesion and periphery are significant for CC and MLO views. 
In addition, the breast fibroglandular dense volume are also significant for both 
views. Lesion to background water difference predicted FA with an odds ratio = 
4.4 , ROC area of 0.8. For cancer/non cancer groups there were no variables 
showing the significance for both views. However, for IDC/rest groups lipid 
thicknesses within breast and at the periphery normalized by total thicknesses 
become significant for both views.  

Conclusion: Our pilot set data demonstrates that the technique provides 
biologically meaningful compositional components of lesion, its periphery and 
breast which are statistically significant for FA/rest and invasive cancers/rest 
group separation. 

Keywords: Breast composition, dual energy digital mammography, cancer 
lesion, logistic regression. 
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1 Introduction 

X-ray mammography is the primary technique for breast cancer screening, its  
early detection and diagnostics. However, mammography has some limitations 
especially for breasts with dense tissue. As only 20% of biopsies are breast cancer, 
finding a way to avoid biopsies would make an important impact in terms of reducing 
unnecessary biopsies. We propose to improve the utility of quantitative imaging  
analysis (QIA) programs for mammography by increasing the number of invasive 
cancers diagnosed without increasing the harms to women through unnecessary  
additional imaging and biopsies. To advance CAD/QIA methods, biologically-
relevant information is needed from the breast image. We are developing novel 
mammographic biomarkers, lipid-protein-water signatures [1], to determine if compo-
sition alone or combined with an established and validated CAD/QIA methods  
can improve the diagnostic accuracy of imaging, and reduce the number of unneces-
sary biopsies. Invasive cancers are expected to show high degrees of vascularity.  
Because vasculature structures and other tissue components are expected to differ in 
elemental composition, compositional information from imaging is expected to 
provide information that may be used to determine whether a tissue is benign or 
malignant. Moreover, some compositional measurements of ex-vivo breast tissues 
demonstrate the existance of unique signature of lesion water, lipid and protein 
content helpful for lesion type discrimination. The purpose of this paper is to 
investigate the lesion discrimination ability of a compositional 3-component breast 
imaging technique (3CB) for patients with suspicious breast lesions. We present in 
vivo results of compositional properties of women with fibroadenama and invasive 
lesion types. 

2 Methods 

2.1 Datasets  

All selected participants were women with a BIRADS diagnostic category of 4 or 
greater who were scheduled to receive a biopsy. They were recruited and imaged with 
the 3BC technique before their biopsies. We use the following exclusion criteria: failure 
to receive a biopsy, known prior breast cancer, known prior biopsies, protocol failure, 
inability of our radiologist to identify the breast lesion by mammography, inability to 
schedule additional imaging prior to biopsy. Breast biopsies were clinically reviewed by 
our Pathology Department. The lesions were delineated by the radiologist on CC and 
MLO views, and the compositional measures of the whole breasts, local areas within 
lesions and their peripheries were derived. In all, there were 43 lesions that satisfied our 
quality control procedure. All women were imaged using the 3CB protocol. The lesion 
were classified into four groups: fibroadenoma (FA, n=11), Invasive (IDC, n=9), ductal 
carcinoma in situ (DCIS, n=5), benign lesions (n=18).  
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2.2 Method Description  

The dual-energy 3CB imaging protocol was designed to be performed on a standard 
full-field digital mammography system by imaging additional high-energy image 
using a 3-mm Al filter [2]. The dual-energy X-ray attenuations along with an accurate 
measure of breast thickness for each pixel provided the means to solve for three 
unknown materials in the breast. We chose to represent the breast as its molecular 
compartments of lipid, water, and protein. In more detail, we measured the x-ray 
attenuation in a standard screening mammography image, the x-ray attenuation in a 
high energy/low dose mammography image, and modeled thickness using phantom. 
Then individual thickness compositional maps were extracted by multiple  
linear regression analysis. We used a single Hologic Selenia full-field digital 
mammography system (Hologic, Inc., Bedford, MA). The first exposure was made 
under the regular clinical screening mammogram conditions. The second 
mammogram was acquired at a 39 kVp/Rh filter combination. An additional 3-mm 
thick X-ray filter was placed in the beam. The total dose of this procedure to be 
approximately 10% more than of average screening mammography. Regions 
containing calcifications, the chest wall, or the breast edge were excluded. The breast 
edge was defined as the region within one-quarter of the estimated median breast 
thickness. Three composition maps as an example of  the method output  are  
presented at Fig. 1.  

 

    

Fig. 1. The method output images from the left to the right: mammogramm, water, lipid, and 
protein maps 

2.3 Variables and Statistics  

The lesion compositions were reported as the pixel component thicknesses divided by 
the total pixel thicknesses averaged within deliniated region (dROIx) where x means 
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W, L and P for water, thickness and protein respectively. The background 
compositions were reported as the pixel component thicknesses divided by the total 
pixel thicknesses averaged in a region of interest 0 to 2.5 mm from the lesion edge 
(dBCK1x). We use absolute composition thicknesses of lesion (ROIx) and 
background (BCK1x), and lesion area (ROIA). In addition, the composional 
differences between lesion and background (tdifROIx = ROIx – BCK1x) were 
estimated. Fig. 2 demonstrates an example of the mammogram image of the patient 
diagnosed with IDC. The central part delineation is the lesion boundary drawn by 
radiologist. Other three delineation lines are located at 2.5 mm equal distance from 
the boundary. The area between lesion boundary and the further first line characteriz-
es the background. Alongside with local measures, global lesion compositions such as 
the pixel component thicknesses divide by total pixel thickness averaged for the 
whole breast (dBreastx) were reported. Other breast measures used in analysis were 
percent fibroglandular volume (%FGV), fibroglandular tissue volume (FGV) and 
absolute breast volume (Volume). Univariate logistic regression statistics were 
applied to analyze the lesion into different groups. The variable statistical significance 
of MLO, CC views and their averages were also compared. Threshold level of 
significance was chosen as p-value < 0.05. 

 

 

Fig. 2. The mammogram image of the patient diagnosed with IDC. The central part line is the 
lesion boundary drawn by radiologist. Other three delineation lines are located at 2.5 mm equal 
distance from the boundary and each other. 

3 Results  

Table 1 represents odds ratios, ROC areas and p-values of FA/rest group discrimation 
obtained by univariate logistic regression analysis. Only variables significant ( p < 
0.05) for one of CC or MLO views are shown. As can be seen, the difference between  
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lesion and background for water and lipid components tdifROIW and tdifROIL were 
significant for both views. Lesion water tdifROIW parameter predicted FA with an 
odds ratio = 4.4 , ROC area of 0.8 for average of MLO and CC views. Lesion lipid 
tdifROIL parameter predicted FA with an odds ratio = 0.31, ROC area of 0.72 for 
average of MLO and CC views. FGV was also significant for both views with an odds  
ratio of 2 and ROC area of 0.65. In addtion, lesion area ROIA and protein at the 
periphery BCK1P are significant for one of veiws and their average. The Table 2 
shows odds ratios, ROC areas and p-values of cancer (IDC + DCIS)/rest and IDC/rest 
group discrimation. As can be seen, no one cancer variable showed significance for 
both views. At the same time, background water dBCK1W, lipid dBCK1L and 
%FGV demonstrate significance for one of veiws and their average. But for IDC/ rest 
separation we can observe two variables: differential lipid lesion dROIL and back-
ground dBCK1L which became significant for both views. Other variables which are 
significant for IDC/rest group are lesion water dBCK1W, breast water dBreastW and 
lipid dBreastL thicknesses.  

Thus, FA/rest group shows the best performance of composition component univa-
riate analysis. The lesion lipid, water and breast dense tissue demonstrated signific-
ance. As this is only pilot study with limited number of lesions the more robust study 
is necessary to exclude random contribution and noise influence. But if we observe 
the variable for both views it is more likely that we have less probability of random 
contribution, artifacts or noise. It should be noted that IDC alone demonstrates better 
results than together with DCIS. The lipid content of lesion and background is found 
to drive IDC cancer separation from the rest of lesions. In contrary to IDC, the differ-
ence between ROI and periphery for lipid and water plays the main role for FA/rest 
group discrimation.  

Table 1. Odds ratios, ROC areas and p-values of FA/rest groups 

 CC Views MLO Views CC and MLO view aver-
ages 

 
Effect Odds 

Ratio 
ROC 
Area 

Pr > 
Chi-
Square 

Odds 
Ratio 

ROC 
Area 

Pr > Chi-
Square 

Odds 
Ratio 

ROC 
Area 

Pr > 
Chi-
Square 

dBCK1W 0.464 0.699 0.069 0.418 0.692 0.077 0.421 0.703 0.066 

tdifROIW 4.610 0.761 0.009 2.834 0.749 0.021 4.409 0.797 0.005 

tdifROIL 0.319 0.710 0.017 0.355 0.747 0.015 0.309 0.719 0.013 

ROIA 1.871 0.588 0.069 2.440 0.647 0.024 2.226 0.636 0.035 

BCK1P 2.164 0.707 0.041 2.009 0.678 0.075 2.083 0.709 0.047 

FGV 2.008 0.641 0.049 2.036 0.649 0.043 2.042 0.646 0.041 

Volume 1.825 0.666 0.089 1.866 0.674 0.077 1.864 0.670 0.075 
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Table 2. Odds ratios, ROC areas and p-values of cancer/rest and IDC/rest groups 

 
 

 
CC Views 

 
MLO Views 

 
CC and MLO view average 

 
Effect  

 
Odds 
Ratio  

 
ROC 
Area  

Pr > 
Chi-
Square 

 
Odds 
Ratio  

 
ROC 
Area  

Pr >  
Chi-
Square 

 
Odds 
Ratio  

 
ROC 
Area  

Pr > 
Chi-
Square  

dROIW  
(cancer) 2.508 0.709 0.026 1.416 0.548 0.303 1.903 0.622 0.081 

dROIW  
(IDC) 2.910 0.742 0.022 1.921 0.597 0.104 2.384 0.671 0.040 

dROIL 
 (cancer) 

0.555 0.611 0.087 0.631 0.619 0.171 0.564 0.622 0.086 

dROIL  
(IDC) 0.456 0.683 0.043 0.428 0.727 0.036 0.393 0.720 0.019 

dBCK1W  
(cancer) 3.112 0.749 0.012 1.743 0.614 0.129 2.382 0.693 0.034 

dBCK1W  
(IDC) 

2.965 0.765 0.019 1.975 0.618 0.089 2.403 0.689 0.036 

dBCK1L 
 (cancer) 

0.496 0.675 0.043 0.525 0.650 0.062 0.495 0.667 0.039 

dBCK1L 
 (IDC) 0.473 0.709 0.042 0.424 0.724 0.028 0.412 0.740 0.019 

BCK1W  
(cancer) 

3.277 0.746 0.022 1.290 0.557 0.452 2.103 0.671 0.057 

BCK1W  
(IDC) 

2.081 0.745 0.102 1.348 0.565 0.432 1.702 0.657 0.186 

dBreastW  
(cancer) 1.724 0.650 0.114 1.924 0.626 0.067 1.912 0.633 0.066 

dBreastW  
(IDC) 

2.104 0.686 0.049 2.033 0.621 0.057 2.267 0.649 0.033 

dBreastL 
 (cancer) 

0.622 0.579 0.144 0.531 0.660 0.061 0.559 0.618 0.073 

dBreastL  
(IDC) 0.565 0.628 0.100 0.471 0.718 0.036 0.472 0.709 0.031 

%FGV  
(cancer) 

1.676 0.621 0.118 2.057 0.676 0.035 1.935 0.656 0.047 

%FGV 
(IDC) 

1.656 0.636 0.156 1.962 0.675 0.056 1.981 0.677 0.051 

4 Conclusions  

In conclusion, our pilot study demonstrates that multiple compositional compartments 
are independent associated with fibroadenomas and invasive cancers. The combina-
tion of these biologically-relevant compartments may provide additional information 
to mammograms and lower the risk of unnecessary biopsies. 
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Abstract. We compared the usefulness of the presentation of likelihood of his-
tological classifications with that of malignancy evaluated by a CAD scheme in 
the differential diagnosis of clustered microcalcifications (MCs) on magnified 
spot mammograms. The likelihood of histological classifications was evaluated 
by the CAD scheme using 5 objective features that radiologists commonly use 
for describing MCs. The likelihood of malignancy was evaluated based on  
the likelihood of histological classifications. Unknown cases for an observer 
study consisted of 22 benign MCs (15 micro-cysts and 7 mastopathies) and 26 
malignant MCs (10 DCISs of comedo type and 16 DCISs of noncomedo type). 
Thirteen observers independently provided their confidence level regarding the 
malignancy of the unknown case before viewing the evaluated result by the 
CAD scheme, after viewing the likelihood of malignancy and after viewing the 
likelihood of histological classifications. The results were evaluated with multi-
reader, multi-case receiver operating characteristic (ROC) analysis. The average 
area under the curve (AUC) for all observers without CAD, with CAD for  
malignancy and with CAD for histological calcifications was 0.670, 0.802 and 
0.819 (P < .01), respectively.  The presentation of the likelihood of histologi-
cal classifications improved radiologists’ performance than that of malignancy 
in the differential diagnosis of MCs. 
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Keywords: Computer-aided Diagnosis, Clustered Microcalcifications, Magni-
fied spot mammogram. 

1 Introduction 

Computer-aided diagnosis (CAD) is one of the solutions for improving radiologists’ 
performance [1]. The usefulness of the CAD scheme for distinguishing between be-
nign and malignant lesions at mammography has been shown on many studies. Jiang 
et al. conducted the observer studies for distinguishing between benign and malignant 
MCs with and without the computer output indicating the likelihood of malignancy. 
The AUC was thus found to increase from 0.61 to 0.75 by the computer aid (P 
< .0001) [2]. Timps et al. showed the radiologists’ performances to improve signifi-
cantly (P < .05) when they used the computer output for the characterization of be-
nign and malignant masses on mammograms using a temporal change analysis [3].  

In differential diagnosis on medical images such as X-ray image, CT image and MR 
image, experienced radiologists usually take into account the histopathological images 
associated with a lesion. To reduce the number of unnecessary biopsies, clinical deci-
sions for biopsy or follow-up on clustered microcalcifications are also made by taking 
into account possible histological classifications on magnification mammograms [4,5]. 
Therefore, the computerized analysis of lesions in determining not only the likelihood 
of malignancy but also the likelihood of histological classifications may be helpful to 
radiologists for their decisions on patient management. We have developed a CAD 
scheme for determining the histological classification of MCs on mammograms based 
on the approach employed for clinical diagnosis [6]. Our CAD scheme can evaluate the 
likelihood of micro-cysts, mastopathies, DCISs of comedo type and DCISs of nonco-
medo type when analyzing MCs on magnified spot digital mammograms. In this study, 
we compared the usefulness of the presentation of the likelihood of histological classi-
fications with that of malignancy evaluated by the CAD scheme in the differential 
diagnosis of MCs. 

2 Materials 

Our database consisted of 48 regions of interest (ROIs) with MCs which were ob-
tained at Hokuto breast cancer center from May 2011 to March 2013. It included 22 
benign MCs (15 micro-cysts and 7 mastopathies) and 26 malignant MCs (10 DCISs 
of comedo type and 16 DCISs of noncomedo type). These images were obtained from 
48 patients using a digital mammography system (Senographe DS, GE Healthcare). 
All cases had already been pathologically proven. 

3 Method 

In our CAD scheme, individual microcalcifications were first segmented by use of a 
novel filter bank and a thresholding technique [7]. Five objective features on MCs 
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were determined by taking into account subjective features that experienced radiolo-
gists commonly use to identify possible histological classifications. These objective 
features were: (1) the variation in the size of microcalcifications within a cluster, (2) 
the variation in pixel values of microcalcifications within a cluster, (3) the irregularity 
measure in the shape of microcalcifications within a cluster, (4) the extent of linear 
and branching distribution of microcalcifications, and (5) the distribution of microcal-
cifications in the direction toward the nipple. The Bayes decision rule with five  
objective features was employed for distinguishing between four histological classifi-
cations. The classification accuracies of the CAD scheme based on the leave-one-out 
testing method for the 48 MCs were 86.6% (13/15) for micro-cysts, 71.4% (5/7) for 
mastopathies, 70.0% (7/10) for DCISs of comedo type, and 81.3% (13/16) for DCISs 
of noncomedo type, respectively. The sensitivity and the specificity based on the clas-
sification results of the histological classification were 86.3% (19/22) and 84.6% 
(22/26), respectively. 

3.1 Observer Study 

In the observer study for comparing the usefulness of the presentation of the likelih-
ood of histological classifications with that of malignancy evaluated by the CAD 
scheme in the differential diagnosis of MCs, an unknown image was first displayed in 
the center of monitor, as shown in Fig.1. The observer was then asked to mark his or 
her confidence level regarding the malignancy of the unknown case on a continuous 
rating scale from 0 to 1 corresponding “definitely benign” and “definitely malignant”, 
respectively. The likelihood of malignancy for the unknown case evaluated by the 
CAD scheme was then displayed after the observer marked the initial confidence 
level. The observer was asked again to mark his or her confidence level. The likelih-
ood of histological classifications for the unknown case evaluated by the CAD 
scheme was displayed after the observer marked the second confidence level. The 
observer was asked again to mark his or her confidence level. Thirteen radiologists 
independently participated in the observer study.  

The observers were instructed that: 1) The purpose of this study is to compare the 
usefulness of the presentation of the likelihood of histological classifications with that 
of malignancy evaluated by a CAD scheme in distinguishing between benign and 
malignant MCs on magnified spot digital mammograms. 2) You are asked to provide 
your confidence level regarding the malignancy (or benignity) of MCs on a bar using 
a mouse first, and then the system shows the evaluated likelihood of malignancy and 
histological classifications. You are asked to provide your confidence levels again 
after viewing the estimated likelihood of malignancy and after viewing the estimated 
likelihood of histological classifications. 3) Forty eight unknown cases are included in 
this study. 4) There is no time limit. 
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6 Conclusion 

The presentation of the likelihood of the histological classification evaluated by the 
CAD scheme showed beneficial effects for most cases, and it improved the clinicians’ 
performance in the observer study. 
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Abstract. We investigated a potential usefulness of breast radiographers’ re-
porting, in terms of a second opinion for improving radiologists’ diagnostic per-
formance in the detection of microcalcifications in digital mammography. This 
simulation study was conducted, by use of an existing jackknife free-response 
receiver operating characteristic (JAFROC) observer study data obtained with 
75 cases(25 malignant, 25 benign, and 25 normal cases) of digital mammogram, 
selected form the digital database for screening mammography (DDSM) pro-
vided by University of South Florida. Each of rating scores obtained by 6 breast 
radiographers was utilized as a second opinion for 4 radiologists’ reading with 
radiographers’ reporting. Average figure of merit (FOM) of radiologists’ per-
formance was generally improved by use of radiographer’s reporting, and sig-
nificant improvements were found in case of 3 out of 6 radiographers’ reporting 
used. 

Keywords: Radiographer reporting, digital mammography, microcalcification, 
observer study, jackknife free-response receiver operating characteristic 
(JAFROC). 

1 Introduction 

The number of mammogram exams has been increasing, and thus, the reading time of 
radiologist becomes a major concern in screening mammography. The use of comput-
er-aided diagnosis (CAD) system would be expected as one solution for this problem. 
In fact, many research groups have demonstrated the clinical usefulness of various 
CADs and they led a common use of CADs in the US [1-3]. On the other hand, as 
another approach to aid radiologists’ reading, utilization of radiographers’ reporting 
(RR) as a second opinion has been recommended in a number of countries [4-7]. 
                                                           
*  Corresponding author. 
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However, a few studies have been reported for investigating the method to utilize RR 
in radiologists’ interpletations, and for demonstrating the evidence of the clinical 
utility of RR. The aim of this study is to investigate a practical methodology and  
potential usefulness of breast radiographers’ reporting by use of an existing free-
response receiver operating characteristic (FROC) observer study data set. 

2  Materials and Methods 

This simulation study was conducted by use of an existing free-response receiver 
operating characteristic (FROC) observer study data set [8], which was obtained with 
75 digital mammograms and performed for comparing diagnostic performances be-
tween radiologists and breast radiographers. Each of rating scores obtained by 6 
breast radiographers was utilized as a second opinion for 4 radiologists’ reading with 
radiographer’s report (RR). The radiologists’ rating with RR was simulated by com-
bining each of rating scores obtained by a radiologist and a breast radiographer, as 
described later. Average figure of merit (FOM) of radiologists’ performance was 
statistically analyzed by using jackknife free-response receiver operating characteris-
tic (JAFROC) to verify the effectiveness of RR. 

2.1 Dataset 

We used 50 digital mammograms with microcalcifications (25 malignant and 25 be-
nign) and 25 normal cases, which were selected from The Digital Database for Screen-
ing Mammography (DDSM) provided by University of South Florida (USF) [9, 10].  

2.2 Observer Study 

Digital mammograms were displayed on a high resolution liquid crystal display 
(LCD) for mammography (Nio 5M, BARCO) and observed by using a publically 
available computer interface (ROC Viewer ver 11.4.0.3 developed by Japanese Socie-
ty of Radiological Technology) [11].  

FROC observer study was conducted by 10 observers (4 board-certified radiolo-
gists/breast surgeons and 6 board-certified breast radiographers) for detection of ma-
lignant microcalcifications. Observers determined the locations and confidence rat-
ings on 75 digital mammograms (4 images /case, R-MLO, L-MLO, R-CC, L-CC). 
The observers provided written informed consent regarding use of results obtained 
from the observer study prior to participation. 

2.3 Simulation of Radiologists’ Rating with Radiographers’ Rating 

Radiologists’ ratings with RR were simulated by combining each rating score of radi-
ologists with those of radiographers, and utilized for JAFROC analysis. Figure 1 
shows examples for producing radiologist’s rating scores with RR by using the rules 
employed in this simulation study. In the initial step of combination, a lesion marked 
by both radiologist and radiographer with a distance less than 20 mm was considered 
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to be the same lesion. If a lesion was marked by both radiologist and radiographer, 
one mark with higher rating was remained as a rating score with RR (A < A’ → A’’). 
If a lesion was marked only by either a radiographer or a radiologist, the mark was 
remained as a rating score with RR only if the rating was higher than pre-determined 
threshold value (i.e. 0.20) (B → B’’, D→ D’’). On the other hand, if a lesion was 
marked only by either a radiologist or a radiologist with a low rating less than pre-
determined threshold value (i.e. 0.20), the mark was rejected in a rating score with RR 
(C → rejected).  In order to investigate the effect of improvement in radiologists’ 
performance, we changed threshold values for the mark selection from 0.1 to 0.5, in 
increments of 0.1. 

 

Fig. 1. Example of selections of responses for simulated radiologist’s rating with radiograph-
er’s reporting (RR) 

2.4 Statistical Analysis 

Statistical analysis was performed by using JAFROC ver. 4.2, provided by Chakra-
borty DP et al [8]. Figure of merit (FOM) was calculated as a measure of diagnostic 
accuracy for the detection of malignant microcalcifications. Average FOM of 4  
radiologists’ performance with/without RR was statistically analyzed by JAFROC 
Analysis 3 (Random Readers and Fixed Cases ) with one-tailed test (p=0.05). 

3 Results and Discussion 

Average value of figure of merit (FOM) of radiologists’ performance was generally 
improved by use of radiographer’s reporting (Fig. 2), in most of combinations of radi-
ologists and radiographers (Table 1, 2, 3). These results indicated that radiographer’s 
reporting could be used as a second opinion in case of readings of microcalcifications 
on digital mammography. Significant improvements were found in case of 3 out of 6 
radiographers’ reporting used (Table 4). In particular, radiologists’ performance was 
significantly improved by using highly skilled radiographers’ RR, with high FOM or 
low FP. When the threshold value of 0.2 was applied, radiologists’ performance 
showed the highest level (Fig. 3). It could be more effective to set criteria for use of 
rating score provide by radiographers as a second opinion. 
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4 Conclusions 

We investigated a potential usefulness of breast radiographers’ reporting by use of 
JAFROC analysis employing existing observer study data set. In conclusion, an ap-
propriate use of radiographer’s reporting would be useful as a second opinion for 
improving radiologists’ diagnostic performance in the detection of microcalcifications 
in digital mammography. In order to address clinical effectiveness, further studies for 
investigating improvements of radiologists’ performances with the selected radio-
graphers’ reporting determined in this study would be required. 
 
Acknowledgment. This study was partially supported by Foundation for Promotion 
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Abstract. This paper presents effective detective quantum efficiency (eDQE) 
results for a digital breast tomosynthesis (DBT) system. Poly(methyl methacry-
late) (PMMA) blocks of thickness 2, 4, 6 and 7 cm were imaged under automat-
ic exposure control (AEC) in standard 2D digital (planar) mammography (with 
anti-scatter grid) and DBT mode (without anti-scatter grid). Modulation transfer 
function (MTF) for the projection images was measured in the front-back and 
left-right (i.e. tube-travel for DBT) directions using a 0.8 mm thick steel edge at 
positions 2, 4, 6 and 7 cm above the breast table. NNPS data required for eDQE 
calculation were calculated from the AEC projection images (the ~0° projection 
AEC image for DBT). The eDQE at 0.5 mm-1 in planar mammography mode 
was relatively stable at ~0.25 as PMMA thickness changed from 2 to 7 cm. For 
DBT, blurring from the focus motion and scattered radiation reduced eDQE at 6 
and 7 cm PMMA. 

1 Background 

In the construction of digital breast tomosynthesis (DBT) systems, engineers face a 
number of design choices including whether to use a moving (“flying focus”) or static 
focus (“step and shoot”) during x-ray exposure. It has been shown that the use of a 
flying focus can severely limit the sharpness of the clinical detail in the DBT projec-
tion images [1]. A further choice is whether an anti-scatter grid should be used when 
acquiring the projection images. Given the direction of x-ray tube motion and the 
geometry of the standard linear grid used (grid lines running front to back) across the 
detector, this would require an anti-scatter grid implementation with lamellae running 
in the direction x-ray tube motion (left-right across the detector). When assessing the 
image quality performance of x-ray imaging systems, detector performance is normal-
ly specified via detective quantum efficiency (DQE) [2], which quantifies the effi-
ciency with which the detector captures the signal-to-noise ratio (SNR) present within 
the incident x-ray beam. However, DQE is a detector-based metric [2] in which the 
influence of x-ray source size and scattered radiation on detector efficiency are mini-
mized. In order to assess the impact of focus size and scattered radiation on DBT 
system efficiency, this paper uses the effective quantum efficiency (eDQE) [3], which 
gives a measure of system efficiency that includes source size and scattered radiation 
rejection technique. This was done for standard 2D digital (planar) mammography 
with anti-scatter grid in place and for the DBT mode, without anti-scatter grid. 
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2 Methods and Materials 

2.1 AEC Settings and Response Function 

Data were acquired for a Hologic Selenia Dimensions units (Hologic Inc. Massachus-
setts, USA) digital breast tomosynthesis mammography system. The Hologic acquires 
15 projections over an angular range of 15° in DBT mode. Native pixel pitch of the 
detector is 0.07mm and this pitch is used for planar 2D mammography; 2x2 pixel 
binning is applied to the DBT projections. First, the AEC response was assessed using 
poly(methyl methacrylate) (PMMA) slabs of thickness 2, 4 , 6 and 7 cm, placed on 
the breast support table. AUTOFILTER mode with AEC sensing region 2 was used. 
Tube voltage, target/filter (T/F) and tube current-time product (mAs) values are given 
in table 1. System response was then measured with a 2 mm Al sheet placed at the 
tube exit port. For the planar mode response, 29 kV W/Rh was set while 29 kV W/Al 
was used for the DBT mode response. An RTI Barracuda solid state dose detector was 
placed at the reference position: 6 cm from the chest-wall edge and positioned central-
ly left-right. The detector air kerma (DAK) per unit mAs was measured using static 
tube mode (0° DBT). Uniformly exposed (flood) images were acquired over a range 
of DAK settings for planar and DBT (anti-scatter grid removed for both modes). Pixel 
value (PV) was measured from DICOM “FOR PROCESSING” images using a 5 x 5 
mm ROI placed in the image at the reference position. The PV was plotted against 
DAK to give a system response curve for each beam quality, for planar and DBT 
modes.  
 
Table 1. Hologic Dimensions tube voltage, target/filter and mAs set by the AEC for planar 
and DBT modes. Number of photons q0 mm-2 µGy-1 calculated using Boone model [4]. 
 

 Planar 2D mammography DBT 

PMM
A (cm) 

q photons 
(mm-2µGy-1) kV 

 
TF 

target/ 
filter  

mAs 
q photons 

(mm-2 µGy-1) kV 
 
TF 

target/ 
filter 
 

mAs 

2 5320 25 0.155 W/Rh 54 5529 26 0.141 W/Al 48 
4 6159 28 0.046 W/Rh 105 7531 30 0.059 W/Al 65 
6 6951 30 0.016 W/Rh 259 10421 36 0.036 W/Al 100 
7 7441 31 0.013 W/Ag 366 12701 42 0.043 W/Al 95 

2.2 Modulation Transfer Function  

The system MTF was measured in the projection images using a steel plate MTF tool 
of dimension 120 mm x 60 mm and thickness 0.8 mm [2]. Images were obtained at 29 
kV with a 2 mm thick Al filter placed at the x-ray tube; T/F was W/Rh for planar 
mode while DBT projection images of the steel plate were acquired using W/Al. The 
MTF was measured at heights of 0, 2, 4, 6 and 7 cm above the breast table by support-
ing the edge on small plastic blocks. No PMMA or scattering material was present for 
these measurements. The steel plate was positioned to give an edge response function 
in the left-right (i.e. tube-travel direction for the DBT mode) and front-back direction, 
in separate acquisitions. For DBT mode, edge images were acquired with standard  
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x-ray tube motion and a typical clinical mAs such that the x-ray pulse length per pro-
jection was typical for clinical acquisitions; the MTF was calculated from the 0° pro-
jection (the 8th projection). 

2.3 Noise Power Spectrum, Scatter Fraction and Narrow Beam Transmission 

The normalized noise power spectrum (NNPS) was calculated for the different 
PMMA thicknesses, from regions extracted from the images acquired under AEC 
control. The regions were positioned 6 cm from the chest wall edge and centrally left-
right with respect to the detector. Noise power spectra for planar and DBT mode were 
linearized and normalized using the respective response function. Scatter fraction data 
required for the eDQE calculation were taken from literature [5]. Narrow beam 
transmission of the PMMA blocks was measured using a collimated beam with the 
RTI Barracuda dosemeter. 

2.4 Effective Detective Quantum Efficiency 

The eDQE [3] was calculated using the equation: 

    2

0

2

)1(
)'(

)'(
)'( SF

qTFEuNNPS

uMTF
ueDQE −

⋅⋅⋅
=     (1) 

where u’ is spatial frequency scaled to the object plane, NNPS(u’) is the normalized 
noise power spectrum, MTF(u’) is the pre-sampled modulation transfer function, SF is 
the scatter fraction, TF is the narrow beam transmission factor of PMMA, E is the 
pre-phantom exposure corrected to the detector plane and q0 is the number of photons 
µGy-1 mm-2 (table 1). 

3 Results and Discussion 

MTF curves measured as a function of height above the breast table are plotted in 
figure 1. A small reduction in MTF is seen for planar mode in going from 0 cm to 7 
cm above the table. This is the increasing influence of focus size (0.3 mm nominal 
dimension) as the edge is moved towards the source (standard geometric unsharp-
ness). In DBT mode, the MTF curves are notably lower for two reasons. First, the 
DBT projection images are binned 2x2 to give a 0.14 mm pixel spacing for the pro-
jections, a step that reduces the pre-sampled MTF due to the  reduced pixel aperture. 
Second, extended focus size of the tube due to motion of the focus during exposure 
causes a reduction in MTF [1]. Figure 1 shows this blurring occurs just in the tube-
travel direction; this effect is progressively greater as the height of the object above 
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the table increases. This blurring is anisotropic; the effect is absent in the front-back 
direction where there is no component of focus motion. Exposure pulse length for the 
DBT exposures was 30 ms, leading to less blurring compared to previously reported 
data, where a pulse length of 50 ms was measured [1]. 
 

  

Fig. 1. Hologic pre-sampled MTF measured as a function of height above the table for planar 
and DBT modes in the left-right (tube travel) direction (left) and front-back direction (right) 

Figure 2 plots eDQE for the tube-travel and front-back directions, where a progres-
sive reduction in eDQE is seen in going from 2 cm PMMA to 7 cm PMMA for both 
directions, from ~0.35 to 0.11. At low spatial frequencies (~0.5 mm-1) there is only a 
small difference in eDQE and the reduction is largely due to the influence of scattered 
radiation (SF) on the eDQE. At ~3 mm-1, eDQE in the front-back direction falls  
 

 

Fig. 2. eDQE for the Hologic Dimensions system measured as a function of position above the 
table for planar and DBT modes in the left-right (tube travel) direction (left) and front-back 
direction (right) 
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from 0.15 to 0.04 while for the tube-travel direction eDQE falls from 0.13 to 0.01, 
showing the influence of reduced MTF from tube-motion. Overall though, the influ-
ence of focus motion blurring is small and eDQE for tube-travel and front-back direc-
tions is similar in both shape and magnitude.  

Figure 3 compares the eDQE curves at 2 cm and 7 cm PMMA in planar mode (2D 
with grid) and in DBT mode (without grid). For planar mode, eDQE is reasonably 
stable in shape and magnitude, showing a small reduction from 0.28 to 0.25 (at  
0.5 mm-1). This suggests only a small change in MTF shape and that the grid is con-
trolling scatter well for planar mode. The eDQE at 2 cm PMMA for DBT mode is 
actually slightly higher than for the planar mode and hence scatter is not a source of 
image quality loss in DBT image quality when imaging smaller breasts. At 7 cm 
PMMA, eDQE for the DBT projections is notably lower in both the front-back and 
left-right directions than planar mode (with grid). This reflects the influence of scat-
tered radiation: the scatter fraction for 7 cm with grid is ~ 0.06 compared to ~0.53 
without grid. These data suggest that for binned projections, focus blurring is not  
 

 

Fig. 3. eDQE for the Hologic system measured as a function of position above the table for 
planar and DBT modes in the left-right (tube travel) direction (left) and front-back direction 
(right) 
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one of the main causes of reduced system SNR efficiency and the main way to  
improve DBT at thicker breasts for the Hologic would be to reduce the influence of 
scattered radiation. Note that eDQE is limited to ~3.5 mm-1 due to the use of binned 
projections; projections in planar mode show SNR transfer beyond 5 mm-1. 

It should be remembered that eDQE is not an explicit measure of image quality but 
instead quantifies system SNR transfer efficiency, indicating the potential for the 
system to produce images of good quality. A system with low eDQE will have to be 
operated at higher exposures to match the image quality of a system with high eDQE. 
The term effective noise equivalent quanta (eNEQ) per projection gives the actual 
number of exposing quanta used to form the projections and determines the quantum 
noise present in the projections. Future work will compare eNEQ for a planar projec-
tion versus the combined eNEQ from the DBT projections. Finally, we note that while 
eDQE can quantify system SNR transfer efficiency, this parameter is calculated from 
and applies to the projection image data. One of the fundamental factors affecting 
object detectability in DBT is the ability of the system to suppress out of plane ana-
tomical noise and this depends largely on the DBT angular range chosen. The above 
results have shown that eDQE is a straightforward metric for quantifying the influ-
ence of system design parameters such as focus motion blurring and scattered radia-
tion. The ultimate validation of this new approach to predict the DBT imaging per-
formance will come from quality assessment performed from reconstructed planes, a 
step that also includes the influence of reconstruction algorithm on image quality. The 
final measure of DBT system image quality should therefore include the ability of the 
system to suppress anatomical noise. 

4 Conclusions 

This paper has shown that eDQE can be measured for a DBT imaging system and can 
quantify differences in imaging system efficiency between standard planar imaging 
mode (with grid) and DBT mode (without grid). As expected, both blurring from the 
moving focus and scattered radiation, are factors reducing system efficiency, with 
scattered radiation being the dominant factor for this Hologic system. The detrimental 
influence of these factors on eDQE increases progressively for thicker breasts and at 
higher positions within the breast. The parameter eDQE can usefully identify aspects 
of system SNR transfer performance where improvements can be made.  
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Abstract. The development of objective detection performance measures is of 
great value for both optimization purposes and inter-comparison of different 
mammographic (2D) or digital breast tomosynthesis (DBT) systems. They 
would be valuable as an alternative for human observer studies. In this study, 
we have calculated contrast (C), signal-difference-to-noise ratio (SDNR) and a 
NPWE model observer (d’) for spherical densities and microcalcifications in 
patient 2D and DBT images. Contrast was higher in 2D compared to DBT re-
constructions. In contrary, SDNR values were higher in DBT for the spheres 
and were comparable between 2D and DBT for the microcalcifications. A com-
parison between d’ and SDNR showed a strong correlation between these two 
measures for both spheres and microcalcifications in 2D and DBT. Only weak 
and moderate correlations were found for SDNR and d’ versus human confi-
dence scores, indicating that there is room for improvement for the NPWE 
model observer as a theoretical predictor of human detection performance. 

Keywords: digital breast tomosynthesis, digital mammography, signal-
difference-to-noise ratio, model observer, human observer study. 

1 Introduction 

Image quality and performance measures have a crucial role in the acceptance or the 
optimization of X-ray imaging systems, and this is particularly true for two-
dimensional (2D) digital mammography. To date, most measures, such as signal-
difference-to-noise ratio (SDNR) and threshold contrast-detail (c-d) detectability, are 
assessed from test objects with a homogeneous background. In clinical practice, how-
ever, detection of lesions is affected by the amount of overlying or surrounding glan-
dular tissue. With the introduction of digital beast tomosynthesis (DBT), the overlying 
breast tissue is reduced due to the pseudo-3D presentation of the breast. Recent clini-
cal trial studies have shown that this results in a significant improvement for the  
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detection of masses in DBT compared to 2D [1], while it is less clear whether DBT 
offers any improvement (or can match) microcalcification detection achieved in 2D 
mammography. A more direct, objective parameter that quantifies this difference has 
not yet been proposed. Much research effort goes into predicting the radiologists’ 
clinical detection performance using model observers that link measured image quali-
ty parameters to a detectability index (d’). Comparisons between human and model 
observer readings have been made for 2D mammography but only limited literature is 
available for DBT and for real patient backgrounds.  

In this study, we will investigate the correlation between SDNR, Fourier-based 
non-prewhitening with eye filter (NPWE) model observer and human observer detec-
tion results for spherical densities and microcalcifications inserted (1) in images of 
homogenous polymethyl methacrylate (PMMA) and (2) in real patient images for 2D 
digital mammography and DBT. 

2 Methods and Materials 

2.1 Image Dataset and Human Observer Study 

In order to provide data for a basic validation, images of the quality assurance phan-
tom, Agatha [2] (Leeds Test Objects, UK), were acquired at constant beam quality 
(W/Rh 29 kV) and increasing tube load (56, 100, 140, 220 and 400 mAs) on a Sie-
mens Inspiration mammography system with tomosynthesis option (Siemens, Erlan-
gen, Germany). This phantom is made of homogeneous PMMA and includes a 5 mm 
diameter sphere of 70% glandular tissue equivalent material and a microcalcification-
like object made of Aluminum with a 0.5 mm diameter. 

A dataset for human observer studies was previously created using a hybrid tech-
nical-clinical method to insert spherical densities or groups of microcalcifications in 
patient data [3,4]. The method used 2D and DBT images that had been randomly 
selected from our patient database.  

Attenuation templates of spheres made of 0%, 30% and 50% glandular tissue 
equivalent material (CIRS, Norfolk VA, USA), with a diameter of 5 mm and embed-
ded in vegetable oil of variable breast equivalent thicknesses, were generated. For the 
microcalcifications, spheres of calcium carbonate (CaCO3) were taken from the Vox-
mam phantom (Leeds Test Objects, UK). In this phantom, groups of calcifications are 
embedded in 1 cm of PMMA and each group consists of five calcifications within a 
certain diameter range: 354-224, 283-180 and 226-150 µm. The thickness of the 
PMMA was varied to obtain variable breast equivalent thicknesses. Within these 
stacks, the Voxmam phantom containing the calcifications was placed at two heights 
above the detector. To create the templates, projection image(s) with object were 
divided by the image(s) of the background only. Next, spheres and calcification 
groups were segmented and this resulted in the final templates. The templates were 
then multiplied in unprocessed 2D and DBT projection images of patients. Finally, 
the Opview2 processing was applied to the 2D images while the DBT projections 
were reconstructed with the clinical standard filtered back projection (FBP) based 
algorithm (Siemens, Erlangen, Germany). In total, the dataset consisted of 178 2D 
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and DBT images with spheres and of 321 2D and DBT images with microcalcifica-
tions. An example of 2D processed and DBT reconstructed hybrid patient images with 
an inserted sphere and microcalcification group are shown in figure 1.  

For the detection study, seven observers scored the absence or presence of the 
sphere in the center of a highlighted region via a 5-point confidence rating scale (1 = 
definitely absent, 2 = probably absent, 3 = possibly present, 4 = probably present, 5 = 
definitely present). For each image, the median confidence score of all 7 observers 
was used in the further analyses. 

 

Fig. 1. Example of 2D processed (A, C) and DBT in focus reconstructed (B, D) patient images 
with inserted spherical density of 30% glandular density equivalence (A, B) and microcalcifica-
tions of sizes 283-180 µm (C, D) 

2.2 SDNR and Contrast Measurements 

2.2.1 Spherical Densities 
Signal-difference-to-noise ratio (SDNR) and contrast (C) of the spheres were meas-
ured in unprocessed 2D images and DBT in-focus reconstructed planes. For the 
spheres, mean pixel value (PV) and standard deviation (σ) were measured in a circular 
region of interest (ROI) with a diameter of 46 pixels. In order to measure the PV and 
σ of the background with anatomical noise, 18 half overlapping ROIs were drawn at a 
distance of 23 pixels from the sphere center (Figure 2(a)). The average PV and σ of 
these 18 ROIs were calculated and used as background value. 

 

Fig. 2. Example of region of interest selection for SDNR and contrast measurements for spheri-
cal inserts and surrounding anatomical background (A) and for microcalcification groups seg-
mented and separated (B) from the local background (C) 

2.2.2 Microcalcifications 
Peak SDNR and peak contrast of the microcalcifications were calculated in unprocessed 
2D images and DBT in-focus reconstructed planes. Each group of calcifications was 



 Comparison of SNDR, NPWE Model and Human Observer Results 137 

selected within a squared region of 80 x 80 pixels and segmented by using the function 
‘find edges’ and manual threshold in ImageJ (NIH, USA). In this way, microcalcifica-
tions could be distinguished from the background and PV of the microcalcifications and 
background could be measured individually (Figure 2 (b, c)). 

2.3 NPWE Model Observer 

The NPWE model observer in equation (1) was used to calculate the detectability 
index d’: 

      √ | ||  |  (1) 

where C is the contrast measured in the 2D unprocessed and DBT reconstructed im-
ages, f is the spatial frequency, MTF(f) is the modulation transfer function, NPS(f) is 
the noise power spectrum and VTF(f) is the Visual Transfer Function. The VTF fol-
lows the version given by Kelly et al [5]. The signal was defined as a 2D Gaussian 
profile using equation (2) [6]: 

          exp  (2) 

For the spheres, a radius (r) of 2.5 mm was used while for the microcalcification 
groups the maximum radius of the calcification size range was chosen. The calcula-
tion of d’ requires a measurement of detector pre-sampling MTF and NPS. For the 
NPS, half overlapping records of size 128 x 128 pixels were drawn similarly to the 
background ROIs for the SDNR calculation of the spherical densities. For the micro-
calcifications, the NPS was measured in a square of 128 x 128 pixels within the origi-
nal 2D and DBT patient images before insertion of the microcalcifications but at the 
same position where the microcalcifications were afterwards inserted. These were 
input to a 2D NPS calculation with a Hann window applied to each record. The final 
NPS was the radial (R) average of the ensemble, including the 0° and 90° spatial fre-
quency axes. Normalization of the NPS was performed by dividing by the square of 
the mean signal. In the case of the DBT reconstructed images, however, axial NPS in 
both tube-travel (TT) and front-back (FB) directions were measured and no normali-
zation was applied. In-plane MTF was measured in TT and FB directions using a 25 
µm W wire at the same height above the detector as where the sphere/calcifications 
were initially imaged. This resulted in two d’ values for DBT images, one for each 
direction. 

3 Results and Discussion 

Figure 3 shows the results of SDNR and d’ (for both TT and FB directions), calculated 
in DBT planes of the Agatha phantom for the sphere and calcification at increasing 
tube load. Taken individually, both SDNR and d’ showed a square root dependence 
with changing tube load (exposure), as expected for objects imaged in x-ray quantum 
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noise (homogeneous background). Plotting SDNR against d’ showed a good correla-
tion for these homogeneous background images [7], both increasing with increasing 
tube load. 

Table 1 and 2 summarize the mean PV and σ of C, SDNR, d’ and human confi-
dence ratings for the three spherical densities and three microcalcification groups in 
2D and DBT patient images. Although contrast was significantly lower in DBT com-
pared to 2D for the spherical densities (p<0.0001), SDNR values were higher in DBT 
(p=0.005), possibly illustrating the effect of the reduced anatomical noise (reduced 
signal variation). Also for the microcalcifications, contrast was higher in 2D com-
pared to DBT images (p<0.0001). Then again, SDNR values remained slightly but not 
significantly higher in 2D (p=0.099). The absolute values of the model observer re-
sults cannot be compared between 2D and DBT since neither linearization nor explicit 
normalization were applied to the NPS calculation in DBT. In the human observer 
study the presence of the spherical densities was rated with a higher confidence in 
DBT than in 2D, contrary to the microcalcifications which were better detected in 2D. 
This indicates that the visibility of calcifications is degraded less by overlapping 
breast tissue, thus the ability of DBT to reduce this anatomical noise will have less 
influence on (successful) microcalcification detection. It is also possible that micro-
calcifications are imaged more faithfully (sharper) in 2D mode compared to DBT.  

 

Fig. 3. Correlation of SDNR and d’ for DBT reconstructed planes of a 70% glandular tissue 
equivalent sphere (A) and an Aluminum calcification (B) embedded in 45 mm PMMA acquired 
with increasing tube load 

Figure 4 shows plots of SDNR versus d’ values for both imaging modalities and 
for spheres and microcalcifications separately. SDNR and d’ values are normalized 
against the maximum value for better interpretation and plotting of the data. A strong 
correlation between SDNR and d’ was found in 2D for both spherical densities 
(r=0.81) and microcalcifications (r=0.78). Also in DBT these correlations remained 
between SDNR and d’ in both tube-travel and front-back direction for spherical densi-
ties (r=0.62 and r=0.66 respectively) and microcalcifications (r=0.66 and r=0.64  
respectively). This indicates that basic SDNR measurements can already give an indi-
cation of detectability d’ in DBT reconstructed planes, despite not taking into account 
the correlations present in signal and noise. For microcalcifications in 2D these results 
are not surprising since previously published work found that c-d threshold values 
could be predicted by a NPWE model observer [7]. Another paper has shown that 
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even in structured phantom images for small details in 2D, SDNR and d’ behave simi-
larly [8]. More studies with human observers should ultimately lead to a better under-
standing and a more sophisticated model. 

Table 1. Mean values ± σ of C, SDNR, d’ and human confidence score for 2D and DBT 
reconstructed images for each spherical density separately. (NA = not applicable) 

Modality 2D DBT 

Spherical 

density (%) 
50 30 0 50 30 0 

C (%) 7.8±3.6 6.8±3.4 5.3±3.9 4.9±1.6 3.7±1.1 2.2±1.4 

SDNR 2.1±0.93 1.8±0.85 1.2±0.82 2.6±0.80 2.0±0.69 1.2±0.68 

d’(R) 2.0±1.1 1.8±0.94 1.1±0.75 NA NA NA 

d’(TT) NA NA NA 1.2E-03±0.65 0.91E-03±0.53 0.55E-03±0.42 

d’(FB) NA NA NA 0.50E-03±0.25 0.37E-03±0.21 0.22E-03±0.14 

Confidence 

score 
4.7±0.84 4.1±1.1 2.5±0.88 5.0±0.0 5.0±0.0 4.2±0.93 

Table 2. Mean values ± σ of C, SDNR, d’ and human confidence score for 2D and DBT 
reconstructed images for each microcalcification size group separately. (NA = not applicable, 
NM = not measured) 

Modality 2D DBT 

Microcalcification 

size range (µm) 
354-224 283-180 226-150 354-224 283-180 226-150 

C (%) 20±3.4 17±4.6 11±4.8 11±5.5 7.5±4.6 5.4±3.4 

SDNR 4.2±1.6 3.9±1.6 2.4±1.1 5.3±2.2 3.6±2.0 2.1±0.98 

d’(R) 8.8±2.7 6.8±2.4 4.0±1.8 NA NA NA 

d’(TT) NA NA NA 5.2E-03±3.2 3.2E-03±2.3 NM 

d’(FB) NA NA NA 5.0E-03±2.9 3.0E-03±2.0 NM 

Confidence score 5.0±0.0 4.9±0.29 4.4±1.1 4.9±0.53 4.1±1.4 2.5±1.1 

 
Spearman correlation coefficients for SDNR versus human confidence scores were 

0.35 and 0.44 for the spheres and 0.35 and 0.71 for the calcifications for 2D and DBT 
respectively. In figure 5 model observer results are plotted as boxplots for each confi-
dence score separately, allowing a visualization and comparison of the trend that d’ 
follows versus the human confidence score. Model observer results were overlapping 
for the different confidence rates in both modalities and for both spheres (Spearman 
coefficient of 0.39 in 2D and 0.34 in DBT), and calcifications (Spearman coefficient 
of 0.40 in 2D and 0.25 in DBT), resulting in only weak or moderate correlations be-
tween the two measures. However, average d’ values for the highest confidence score 
were higher compared to the d’ values for the other confidence ratings in all plots 
(Figure 5).  
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Fig. 4. Graphs illustrating the correlation between SDNR and d’ for 2D and DBT (tube-travel 
and front-back direction) for spheres (A) and microcalcifications (B) 

 

Fig. 5. Boxplots showing minimum and maximum (whiskers), standard deviation (rectangular 
box) together with mean d’ value (square) for each human confidence score for 2D (radial) and 
DBT (tube-travel and front-back) for spherical densities (A,B,C) and microcalcifications 
(D,E,F) 

Best results were achieved for detectability indices for microcalcifications in 2D 
with increasing average d’ values for increasing confidence score and a small varia-
tion in d’ for each confidence score separately (Figure 5(d)). In contrast, for spheres 
d’ fails to predict human detection results in 2D images, showing large variations of 
d’ for all scores (Figure 5(a)). It is interesting to note the smaller variation for the 
spheres in DBT (Figure 5(a) vs (b) and (c)), perhaps consistent with lower structural 
noise, however correlation with reader score remains low. We attribute this to the 
relatively low number of spheres with low confidence scores in DBT: even spheres 
with very limited contrast remained well visible in DBT. 
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Some limitations are worth emphasizing. First, we are comparing data calculated 
using ‘FOR PROCESSING’ for the 2D versus reconstructed data for the DBT results. 
Second, the linearization of NPS in the calculation can influence model observer  
results and therefore further work should examine the dynamic range of the recon-
structed image, its dependence on image content and its influence on NPS magnitude. 

4 Conclusions 

We have demonstrated good correlation between NPWE model observer and SDNR 
values for spheres and microcalcifications in 2D and DBT images of patients. While 
reasonably good correlation was found between NPWE data and human observer 
results for microcalcifications in 2D mammography, only weak or moderate correla-
tions were seen for sphere data. This can be partly due to the limitations of the dataset 
which contains a majority of obvious spheres in DBT at the one side and easily de-
tectable microcalcifications in 2D on the other side. In conclusion, the NPWE model 
observer described in this paper is a start for the development of a theoretical predic-
tor of human detection performance in real DBT patient images but needs further 
optimization and databases with a large number of subtle or small lesions. 
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Abstract. We evaluated the diagnostic performance of a novel 3D visualization 
approach (rotating mammogram, RM) in combination with DBT compared with 
that of FFDM and DBT alone.. FFDM, DBT alone and DBT images plus recon-
structed RM from 110 breasts (34 cases of breast cancer and 76 normal breasts) 
were evaluated and rated independently by 6 readers. DBT plus RM demon-
strated superior diagnostic accuracy compared to FFDM (p<0.05) and a small 
improvement in performance compared to DBT alone. Visualization of micro-
calcifications was significantly better on RM than DBT (p<0.05) for all 14  
microcalcification-dominant cancer lesions. Adjunction of RM to DBT will of-
fer the benefit of increased diagnostic accuracy and contribute to more accurate 
assessment of DBT alone. 

Keywords: Digital Mammography, Tomosynthesis, Rotating Mammogram. 

1 Introduction 

DBT has been demonstrated to be a promising imaging technique for breast cancer 
detection. While breast structures are superimposed in 2D FFDM images, the slice 
images reconstructed from DBT acquisitions have decreased overlap of breast tissue. 
Compared with 2D mammography, DBT provides an advantage in the detection of 
breast masses and reduces false positive detections caused by overlapping anatomical 
structures [1-5]. However, in case of microcalcification-related lesions, 2D mammo-
graphy shows some advantage compared to DBT [6-7]. On DBT slice images, it is 
often difficult to assess the overall appearance of clustered microcalcifications and to 
analyze the morphology of each microcalcification’s outline. 
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In this study, we evaluated a novel 3D visualization approach (rotating mammo-
gram). This approach generates a 3D overview rendering of a reconstructed DBT 
volume which can be viewed at from different angles. The RM could be used for 
improved 3D visualization of structures, e.g. microcalcifications, in DBT and could 
lead to faster DBT reading times. The purpose of this study is to compare the diagnos-
tic accuracy of FFDM and DBT using and not using RM and to determine whether 
DBT plus RM will contribute to the assessment of breast cancer. 

2 Materials and Methods 

This study was approved by the IRB at our institute. Clinical image data were ac-
quired by an a-Se FFDM system with a detector pixel pitch of 85µm (MAMMOMAT 
Inspiration, Siemens AG, Germany; MAMMOMAT Inspiration Tomosynthesis is not 
commercially available in the U.S.). Two-view DBT (rotation angle interval ±25°) 
was performed with the same compression pressure as with the FFDM. With one-
view DBT, the radiation dose was 1.5 times when compared to one-view FFDM. 
DBT images were reconstructed by filtered back projection (FBP). The RM recon-
struction technique is based on a 3D volume rendering method [8]. Using the recon-
structed tomosynthesis volume, new 2D projection images are pre-computed at differ-
ent angles. The user can interactively change the projection angle when viewing the 
RM. The RM algorithm contains parameters that control the visualization of micro-
calcifications and soft tissue. In this study, our settings were optimized for the visuali-
zation of microcalcifications, rendering soft tissue almost transparent. FFDM, recon-
structed slice image of DBT and RM rendering were reviewed on a dedicated 
workstation (syngo MammoReport, Siemens AG, Germany). 

A total of 110 breasts (55 patients) including 34 breasts with cancer and 76 normal 
or benign breasts were used. The thirty-four cancers were diagnosed using a core or 
vacuum-assisted biopsy procedure under ultrasound or stereotactic imaging guidance, 
and final histopathologic diagnoses were obtained at surgery. 

Examinations were interpreted by 6 dedicated breast imaging radiologists with ex-
perience varying from 5 to 10 years. All readers were trained and certified in tomo-
synthesis interpretation. In order to evaluate the effectiveness of RM, observer per-
formance studies were conducted for receiver operating characteristic (ROC) analysis. 
The 55 patient cases were randomly divided into two groups: group A (containing 28 
patients) and group B (containing 27 patients). All readers read all patients. The sche-
dule of the reading workflow for each reader is shown in Fig. 1. At first, FFDM from 
group A and DBT with and without RM from group B were evaluated. Second, DBT 
with and without RM from group A and FFDM from group B were evaluated. Each 
participant completed two reading sessions spaced 4 weeks apart to minimize recall 
bias.  



144 H. Tani et al. 

 

 

Fig. 1. Schedule of reading workflow for each reader 

For observer performance evaluation, two different scales were used to capture 
each reader’s interpretation: modified BI-RADS and percentage probability of malig-
nancy scale (POM: 0-100%, i.e., each reader’s subjective assessment of the probabili-
ty that the breast had malignant foci). The reader-specific area under the curve (AUC) 
for BI-RADS and POM were analyzed and the average AUCs of all readers were 
calculated. The visualization of masses and microcalcifications as well as the appear-
ance of noise were also compared and scored separately for each case in DBT and 
RM on a 4-point scale from 0 to 3 (0, equal or not better; 1, slightly better; 2, better; 
3, significantly better). For ROC analysis, the software DBM MRMC version  
2.33 [9,10] was used. Differences in observed AUCs and the visualization score of  
microcalcifications were assessed using a t-test. A p-value < 0.05 was considered 
statistically significant. 

3 Results 

Of the 34 malignant cases, 24 lesions were invasive ductal carcinoma, 5 were ductal 
carcinoma in situ (DCIS), 3 were invasive lobular carcinoma, 1 was mixed of DCIS 
and lobular carcinoma in situ, and 1 was acinic cell carcinoma. Fourteen malignant 
lesions were microcalcification-dominant breast cancer and 20 were mass-dominant 
breast cancer.  

Table 1 summarizes the AUCs by each reader and the average of all readers. For 
the BI-RADS scale, the average AUC for DBT plus RM was 0.907, DBT alone 0.901 
and FFDM was 0.793 (Fig.2A). For POM, the average AUC for DBT plus RM was 
0.915, DBT alone 0.907 and FFDM was 0.799 (Fig.2B). DBT plus RM demonstrated 
superior diagnostic accuracy compared with FFDM alone, as shown by significant 
difference in the average AUC (p<0.05). In terms of average AUC, only a small im-
provement was seen by DBT plus RM compared to DBT alone. Difference in the 
average AUC in BI-RADS between DBT plus RM and DBT alone was 0.006 and in 
POM was 0.008.  
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Table 1. AUC for each reader and the average of all readers 

 BI-RADS scale POM scale 

 
FFD
M 

DBT 
DBT+
RM 

FFDM DBT 
DBT+
RM 

Reader 
1 

0.80
3 

0.880 0.883 0.826 0.887 0.899 

Reader 
2 

0.74
1 

0.857 0.853 0.769 0.875 0.865 

Reader 
3 

0.83
3 

0.911 0.916 0.814 0.916 0.936 

Reader 
4 

0.80
4 

0.955 0.958 0.834 0.967 0.971 

Reader 
5 

0.78
2 

0.953 0.960 0.762 0.951 0.958 

Reader 
6 

0.79
4 

0.853 0.871 0.786 0.844 0.862 

Aver-
age 

0.79
3 

0.901 0.907 0.799 0.907 0.915 

 

 

Fig. 2. Receiver operating characteristic curves - A. BI-RADS scale B. POM scale 

Regarding BI-RADS scale (dichotomized at category 2 or less vs 3 or greater), 
summary measures of accuracy are presented in Table 2. The average sensitivity for 
DBT alone was 0.888, for DBT plus RM was 0.878, and the average specificity for 
DBT alone was 0.754, for DBT plus RM was 0.781. Equality or little improvement in 
specificity and positive predictive value (PPV) was seen in all 6 radiologists. 
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Table 2. Performance in reading study of DBT alone and DBT + RM using BI-RADS scale 

 DBT  

 
Reader 

1 
Reader 

2 
Reader 

3 
Reader 

4 
Reader 

5 
Reader 

6 Average 
Sensitivity 0.882 0.853 0.824 0.941 0.971 0.794 0.888 
Specificity 0.776 0.750 0.711 0.776 0.737 0.776 0.754 
PPV 0.638 0.604 0.560 0.653 0.623 0.614 0.615 
NPV 0.937 0.919 0.900 0.967 0.982 0.894 0.933 

 DBT＋RM  

 
Reader 

1 
Reader 

2 
Reader 

3 
Reader 

4 
Reader 

5 
Reader 

6 Average 
Sensitivity 0.882 0.794 0.794 0.941 0.971 0.824 0.878 
Specificity 0.829 0.789 0.724 0.789 0.776 0.776 0.781 
PPV 0.698 0.628 0.563 0.667 0.660 0.622 0.640 
NPV 0.940 0.896 0.887 0.968 0.983 0.908 0.930 

 
For all 14 cancers manifesting as microcalcifications, the visualization was signifi-

cantly better on RM than DBT (p<0.05, Fig. 3). All readers confirmed that RM was 
useful for analysis of microcalcifications because RM clarified the distribution and 
extent of microcalcifications at a glance. The noise and overall image appearance of 
RM were found to be acceptable. Examples of microcalcification-dominant breast 
cancer cases are shown in Fig.4-6 (the screenshot of 0° view of RM is shown). 

 

Fig. 3. Results of assessment of visualization of microcalcifications in DBT and RM 
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Fig. 4. FFDM (Fig.4A ) demonstrated grouped amorphous microcalcifications in the right 
breast. In DBT (Fig.4B ) microcalcifications’ outline is blurred. RM (Fig.4C) showed clustered 
microcalcifications clearly.  

 

Fig. 5. FFDM (Fig.5A) showed grouped pleomorphic microcalcifications in the left breast. RM 
(Fig.5C) clarified microcalcification outlines better compared to DBT (Fig.5B). 
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Fig. 6. FFDM (Fig.6A) demonstrated segmental pleomorphic microcalcifications in the right 
breast. It is difficult to assess the extent of microcalcifications and to analyze the morphology 
of each microcalcification in DBT (Fig.6B). RM (Fig.6C) clarified the distribution and extent 
of microcalcifications at a glance. 

4 Discussion 

Previous studies reported that adjunction of DBT to FFDM contributes not only to 
detecting the lesions, but also improves the diagnostic accuracy, especially with  
regard to mass-related lesions. However, DBT can complicate the assessment and 
diagnosis of microcalcifications when the calcification particles are distributed over 
several slices.  

In this study, we evaluated the performance of DBT plus RM for breast cancer as-
sessment, compared with FFDM or DBT only. The benefit of DBT plus RM com-
pared to FFDM was demonstrated with statistically significant difference. On the 
other hand, our preliminary results based on this version of the RM with the specific 
parameter settings indicate that DBT with RM translated to only a small overall AUC 
improvement compared with only DBT. The analysis of the reader-specific AUCs 
revealed little reader-to-reader variability in the effect of RM use on interpretive accu-
racy. However, for visualization of microcalcifications, RM demonstrated better di-
agnostic performance compared with DBT. Early studies suggested that radiologist 
interpretation time will increase with DBT and may not improve even with extensive 
training. If RM was evaluated before DBT, the interpretation time of DBT might be 
shortened especially in cases manifesting as microcalcifications. This can be assessed 
in future studies.  

The algorithm parameters in this study were optimized for microcalcification visu-
alization. Adjustment of parameters in order to visualize microcalcifications together 
with masses and soft tissue could further increase the diagnostic usability of the RM. 
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5 Conclusion 

The visualization of microcalcifications was significantly better on RM than DBT. 
With the RM parameter settings used in this study, the combination of DBT plus RM 
showed only small improvement compared to that of DBT alone in terms of ROC 
curve area, sensitivity and specificity. Adjunction of RM to DBT will offer the benefit 
of increased diagnostic accuracy and contribute to more accurate assessment of DBT 
alone. 
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Abstract. In this paper, the impact on image quality and dose reduction related 
to the use of a synthesized 2D image in digital breast tomosynthesis examina-
tions is analyzed. 2D and 3D images of the TORMAM phantom were acquired 
at clinical conditions. Syntesized 2D images (C-View) were also obtained. Sev-
en observers scored the detectability and visibility of microcalcification (MC) 
clusters in both types of images. Low contrast objects were studied measuring 
contrast-to-noise ratio (CNR) and applying a non-prewhitening matched filter 
(NPW) model observer. Glandular doses were estimated from a sample of 50 
patients. The detectability and visibility of the microcalcification clusters were 
higher in C-View than in 2D images (50% and 100%, respectively). CNR val-
ues were higher for C-View for all contrasts. The NPW got slightly higher de-
tectability values for the lowest contrast details in C-View. We have estimated a 
dose reduction of 43% by replacing the conventional 2D by the C-View image.  

Keywords: Digital breast tomosynthesis, synthetic 2D breast image, glandular 
dose, image quality, model observer. 

1 Introduction 

 Digital breast tomosynthesis (DBT) is a radiographic technique based on the acquisi-
tion of a series of 2D low-dose projections over a limited angular range from which 
the whole breast volume is reconstructed in 3D slices. These 3D slices have the  
advantage of reducing tissue superposition which improves lesion detectability partic-
ularly in dense breasts [1].  

Several clinical studies involving a large number of patients have proved the bene-
fits of this technique especially when DBT is used in combination with digital con-
ventional mammography (2D) [2]. The breast radiation dose involved in this practice 
(as it was approved by the FDA) approximately doubles the one delivered in 2D con-
ventional mammography [3]. The main motivation to follow this protocol (2D+3D) 
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arises from radiologists’ experience, who find that some lesions, in particular micro-
calcification clusters, are easier to detect and more correctly interpreted in conven-
tional 2D images.  

Recently, a synthesized 2D image reconstructed from DBT datasets has been intro-
duced in clinical practice to replace the conventional 2D image with the aim of reduc-
ing radiation dose [4].  

The objective of this work is to evaluate the dose saving and the impact on the im-
age quality of the synthesized image (SI). Few commercialized phantoms with a 
proper design to assess the image quality of DBT systems are available to date. We 
selected the TORMAM phantom, traditionally used to evaluate the image quality in 
2D mammography. The main reason for this choice is that this phantom has a section 
with a structured background containing several microcalcification (MC) clusters of 
different sizes which allow assessing the ability of the SI to show MC and compare 
with their visibility in the conventional 2D image.  Furthermore, the noise structure in 
the SI of the phantom section with a uniform background can affect the visibility of 
low contrast (LC) details. The detectability of the LC inserts has been evaluated based 
on the non-prewhitening matched filter (NPW) model observer [5].  

The dose reduction achieved with the replacement of the 2D image by the synthe-
sized image was estimated for a sample of patients. 

2 Material and Methods 

This work is based on the images obtained with the DBT Hologic Selenia Dimensions 
(Hologic Inc., Bedford, USA) system, licensed to reconstruct the synthesized 2D im-
age commercialized as C-View.  For 2D image acquisition, the system selects W/Rh 
and W/Ag anode/filter combinations depending on the breast thickness. DBT images 
are acquired using W/Al and the grid is removed. In both modalities, the tube kilovol-
tage is selected as a function of compressed breast thickness and the tube loading 
depends on the breast attenuation. In the tomosynthesis modality the device acquires 
15 low-dose projections over 15° (-7.5 - +7.5). Reconstruction is performed using a 
FBP algorithm obtaining contiguous planes 1 mm thick. 2D and DBT images are 
acquired within one scan in the same breast compression (COMBO mode). The syn-
thesized image is produced from the reconstructed planes using a Hologic proprietary 
algorithm [4].  

Image quality evaluation was based on the TORMAM phantom (Leeds Test Ob-
jects Ltd, Boroughbridge, UK). The middle right of the phantom test plate (15 mm 
thickness) simulates the appearance of breast tissue (structured background) and it 
contains 6 microcalcification clusters with sizes of: 354-224, 283-180, 226-150, 177-
106, 141-90, 106-93 m (Fig. 1). The exact location of the MC clusters in the struc-
tured background is unknown. The middle left with uniform background contains 18 
low contrast objects (3 mm diameter) distributed on six groups. The nominal contrasts 
of these objects range between 0.5 and 4 (Fig. 2). The test plate was positioned on top 
of PMMA of 3 cm thickness. Eight phantom images were acquired with the COMBO 
mode and C-View images were also synthesized. The exposure technical parameters 
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that is cross-correlated with the dots/bg samples. A high resolution template was 
created and downsized to fit it to the samples. From the test-statistics, a detectability 
index d’ can be derived, as follows:  

 

         
2
2

2
1

21

2
1

2
1

TT
d

σσ +

−
='                                         (2) 

 
where <T>i represents the mean value and σi the statistical deviation of the dots/bg 
samples after correlating them with the template [6]. An average d’ was obtained for 
each nominal contrast following the same procedure as with CNR. 

 

Fig. 2. ROI distribution for the LC objects/background samples for low contrast analysis in the 
TOR MAM phantom. The nominal contrasts are 4% (A), 3% (B), 2% (C), 1.5% (D), 1% (E) 
and 0.5% (F). 

A sample of 50 patients who underwent COMBO acquisitions for the two common 
views (CC and MLO) was included to estimate the mean glandular dose (MGD). 
MGD calculation was performed using the method proposed by Dance [7] for 2D and 
DBT, respectively: 

 MGD = K gcs T  (3) 

where K is the incident air kerma at the upper surface of the breast and g, c and s are 
the conversion factors of air kerma to glandular dose, respectively. The tomo factor T 
is included for MGD calculations for DBT modality. All these factors are tabulated as 
a function of breast thickness, glandularity and X-ray beam quality. Air kerma and 
half-value layer (HVL) were measured with a 10x5-6M Radcal ionization chamber. 
High purity aluminum foils were also used for HVL measurements. The exposure 
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technical factors (target, filter, kVp and mAs) and the compressed breast thickness 
where obtained from the DICOM header of the patient images.  

3 Results 

Statistically significant differences were found for the detectability and visibility of 
MC clusters in 2D and C-View images independently of the phantom background 
(table 1). The detectability (visibility) of the MC in the structured background for the 
C-View image increased by 50% (100%) compared to the 2D images. The results for 
the uniform background showed the same detectability values and a slight degradation 
in visibility (9%) for the C-View images (table 1). As it was expected, the presence of 
the structured background reduces the detectability and visibility of MC clusters. This 
is more noticeable for 2D images where a strong reduction of 100% and 267% respec-
tively was found.  

Table 1. Summary of the statistics for the scores of detectability and visibility of the 
microcalcification clusters in the C-View and 2D images for the structured (SB) and uniform 
(UB) backgrounds  

 
2D C-View 

Detectability  (0-6) 
SB UB SB UB 

Average 1.6 4  2.6  3.8  
Median 2 4 3 4 
Range 1-3 4-4 2-3 3-4 

Visibility (0-18) 
SB UB SB UB 

Average 3.2 11.3  6.1  9.9  
Median 3 11 6 10 
Range 2-4 10-14 4-7 9-11 

 
C-View offers an average improvement in CNR for all the analyzed details compared 
to 2D (Fig 3). Some visible artifacts were present in the image, which led to some 
unexpected values (like one negative CNR for one of the objects). The exact location 
of some of the objects had to be done approximately as they were hardly visible in the 
sets of images, especially both upper groups (Fig. 2). The NPW model obtained im-
proved detectability (higher d’) with increasing contrast as expected for both 2D and 
C-View images. Detectability values for some objects were not taken into a count in 
this calculation as they did not follow this general trend, probably due to artifacts and 
inexact object location. The model got slightly higher values in C-View compared to 
2D images for the lowest contrast objects (0.5 and 1%) (Fig.4). The linear fits of this  
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Fig. 3. Contrast-to-noise ratio (CNR) of the LC objects as a function of their nominal contrast. 
Symbols correspond to average values for each individual object. Lines represent the mean 
CNR for the details with the same nominal contrast (dash ---2D, —CView).   

preliminary results (d’ as a function of contrast) showed that the model obtained a 
higher slope for 2D images than for CView. Further investigation is needed, as it can 
be seen that the range of d’ obtained for each condition was wide, especially for the 
higher contrasts. This limitation could be overcome with bigger sets of images, as for 
this study only 3 images per set were available.  

 

Fig. 4. Detectability index d’ obtained with the NPW model observer as a function of the ob-
jects nominal contrast. Linear fits are overlaid for the 2D and the CView image sets.    
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Table 2 shows MGD for several breast thickness ranges. MGD per exam (COMBO 
CC + COMBO MLO) for the most frequent breast thickness (range 50 - 60 mm) is 
7,34 ± 0,16 mGy being the MGD for the 2D exam 3,24 ± 0,14 mGy and the MGD for 
the tomo exam 4,10 ± 0,04 mGy. Thus, by replacing the conventional 2D image by 
the C-View image results in a dose saving of 43%.  

Table 2. MGD (mGy) per image for 2D and 3D (DBT) and MGD (mGy) per view (CC or 
MLO) for the COMBO mode. Last column are the acceptable values for MGD per image from 
the European and IAEA protocols (there are no recommended acceptable values for DBT 
examinations in these protocols). 

Compressed 
breast thickness 

(cm) 

2D MGD  
(mGy) 

3D MGD  
(mGy) 

COMBO 
MGD (mGy) 

Acceptable 
Values (mGy) 

>3 - ≤4 0,92 ± 0,03 1,15 ± 0,02 2,08 ± 0,05 <1,5 
>4 - ≤5 1,13 ± 0,04 1,47 ± 0,02 2,60 ± 0,05 <2,0 
>5 - ≤6 1,62 ± 0,07 2,05 ± 0,02 3,67 ± 0,08 <2,5 
>6 - ≤7 1,96 ± 0,07 2,76 ± 0,03 4,72 ± 0,08 <3,0 
>7 - ≤8 2,29 ± 0,12 3,51 ± 0,04 5,80 ± 0,13 <4,5 
>8 - ≤9 2,01 ± 0,01 4,30 ± 0,10 6,31 ± 0,10 <6,5 

4 Conclusions 

C-View images present superior image quality than 2D images for both microcalcifi-
cation clusters detectability and visibility in the structured phantom background.  

The measured contrast-to-noise ratios were higher for the C-View set. The NPW 
model obtained slightly higher values for the lowest contrast details in C-View im-
ages compared to conventional 2D images. In the near future this will be investigated 
more in detail, selecting bigger sets of 2D and C-View images acquired in the same 
conditions. The model observer will be also modified to include an eye filter to take 
into account the human eye response to contrast. These results are of limited value 
since clinical studies are needed to provide more relevant conclusions regarding  
microcalcification characterization. The replacement of the 2D acquisition by the 
synthesized image results in a significant dose reduction (43%). 
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Abstract. Minimising the mean glandular dose (MGD) received by the patient 
whilst maximising image contrast during mammographic imaging is of para-
mount importance due to the widespread use of the modality for screening, 
where subjects are for the most part healthy. The advent of digital mammogra-
phy brought about a general reduction in MGD, however the introduction of 
tomosynthesis, particularly when used in combination with conventional projec-
tion mammography has the potential for unwanted and often unnecessary MGD 
increases. We describe a method to calculate the patient-specific MGD using a 
representation of the patient’s volumetric breast density to derive the breast 
glandularity. This personalises the MGD to the individual woman, rather than 
assuming a constant value, or one that depends solely on compressed breast 
thickness. The calculated patient specific MGDs are compared to those reported 
by the manufacturer for a database of 2D mammograms.  Though agreement is 
generally good for dense breasts, we have found that the MGD is underesti-
mated in fatty breasts.  A separate database of 2D mammogram and 3D tomo-
synthesis acquisitions acquired in “combo” is also analysed.   In general, the 
MGDs are approximately equal for dense (VDG 3 and 4) breasts, but fatty 
(VDG 1 and 2) breasts exhibited significant differences with tomosynthesis 
MGDs being higher than mammogram MGDs for these cases. 

Keywords: Personalised Patient Mean Glandular Dose, Volumetric Breast 
Density. 

1 Introduction 

The breast is among the organs most sensitive to radiation [1], and it is therefore es-
sential to keep x-ray mean glandular dose (MGD) as low as possible, while achieving 
as diagnostically useful an image as possible, for fear of inducing cancers during 
mammography and/or tomosynthesis screening.  The ACRIN DMIST study summa-
rized the paired screen-film mammography (SFM) and digital mammography (DM) 
MGDs to over 5000 women, reporting DM as being 22% lower per view, with two-
view DM MGDs averaging 3.7 mGy [2].  Subsequently, the introduction both of 
breast tomosynthesis and of shorter screening intervals for high-risk women  
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potentially erode this reduction in patient MGD.  This in turn has renewed interest in 
the accurate MGD calculation, tracking, and accountability on an individual patient 
basis. 

A number of different algorithms have been published to estimate of the MGD for 
any x-ray examination, for example those of Dance et al [3]–[7], Wu et al [8]–[10], 
and Boone et al [11].  Each of these algorithms embodies slightly different assump-
tions about the anatomy and the image formation process in the associated Monte-
Carlo simulations, for example in the subcutaneous fat surrounding the breast. 

A crucial issue arising in breast dosimetry is how to ascertain a key parameter in 
all MGD calculations, namely the percentage of the breast that contains glandular 
tissue (the “glandularity”).  This has been estimated simply from the compressed 
breast thickness, or, with even less justification but most commonly, a fixed percent-
age is assumed for all breasts.  In this paper we describe how to use the Volpara™ 
(Matakina, Wellington NZ) volumetric breast density measurement software to esti-
mate the glandularity of each breast from the mammogram, and the MGD calculation 
method presented by Dance et al [4], to yield a patient-specific MGD.  We compare 
the values calculated by our method with those reported by the manufacturer (as 
specified in the DICOM header).  We also compare results for 2D projection images 
and 3D tomosynthesis acquisitions in “combo” mode. 

2 Materials and Methods 

As an illustration of our approach, the method of Dance et al [3]–[7] was selected for 
calculating MGD, however the approach is equally applicable to other methods in the 
literature.  The method employs a series of multiplicative factors derived from exten-
sive Monte Carlo simulations that are applied to a measure of the incident air kerma 
upon the upper surface of the breast (the “entrance dose”).  In the case of mammog-
raphy, three factors are used:  

(i) The incident air kerma to MGD conversion factor - this depends on 
beam quality (measured via the Half Value Layer (HVL)) and the com-
pressed breast thickness;  

(ii) A correction for any difference in breast composition from 50% glandu-
larity – this also depends on the beam quality measured via HVL and 
compressed breast thickness; 

(iii) A correction for different anode or target materials (which naturally 
generate different x-ray spectrums).   

A further factor is included in the case of tomosynthesis MGD to take considera-
tion of the angle of the x-ray beam.   

The Volpara volumetric breast density software quantifies the proportion of the 
breast occupied by fibroglandular tissue by assessing the difference between the inci-
dent photon fluence and that measured by the detector (the output), in terms of the 
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3 Results 

Fig. 2 shows the relationship between the MGD calculated using the proposed tech-
nique including the volumetric breast density derived glandularity, and the MGD 
reported by the manufacturer in the DICOM header, for the lowest density (fatty) 
VDG1 (the volumetric correspondent to BIRADS 1) and highest density VDG4 
(BIRADS 4).  An underestimation of the MGD in the fatty category may be ob-
served, together with a general trend for higher MGDs in the denser cases, as is to be 
expected from the greater photon fluences required to give an optimal contrast-to-
noise ratio in dense tissue. 
 

 

Fig. 2. The relationship between the proposed MGD calculation and the manufacturer reported 
dose for the dataset of 403 2D projection mammograms 

Fig. 3 shows the relationship between the tomosynthesis and mammographic pro-
jection acquisitions for the personalised patient MGD using the glandularity derived 
from the volumetric breast density. The Pearson correlation coefficient between the 
personalised patient MGDs for tomosynthesis and projection mammography is 0.608. 

Fig. 4 shows the same relationship between the two acquisition types, but uses the 
manufacturer reported MGD included in the DICOM metadata header. The Pearson 
correlation coefficient in this case being 0.578. 

The Pearson correlation coefficient between the personalised patient MGD and the 
manufacturer reported MGD is 0.970 in the case of projection mammography, and 
0.974 for tomosynthesis acquisition. 

It may be observed, for both the personalised MGD, and the manufacturer reported 
MGD, that at lower breast density (specifically VDG 1 and 2) the mammographic 
MGD is lower than the tomosynthesis MGD, but at higher breast density (VDG 3 and 
4) the MGDs are approximately equal (though where a high MGD is delivered tomo-
synthesis gives the lower MGD). 
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Fig. 3. The relationship between the tomosynthesis MGD and the 2D projection mammogram 
patient specific MGD for the dataset of 91 “combo” mode acquisitions, categorised by volumet-
ric breast density 

 

Fig. 4. The relationship between the tomosynthesis MGD and the 2D projection mammogram 
manufacturer reported MGD from the DICOM metadata for the dataset of 91 “combo” mode 
acquisitions, categorised by volumetric breast density 
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4 Discussion 

The pertinent question arising from the results in Fig. 3 and Fig. 4, is whether or not 
the higher tomosynthesis MGD in the case of low density breasts\is a fundamental 
characteristic of the image formation process, i.e. the relation between the incident 
photon fluence and the contrast-to-noise characteristics of the detector, or a lack of 
optimisation in the automatic exposure control (AEC) algorithms. This phenomena 
has also been observed in a compressible water-oil mixture phantom study presented 
in the literature by Feng et al [12]. They reported that for a breast with a compressed 
thickness of 50 cm and a 50% glandularity, a tomosynthesis acquisition resulted in an 
8% higher MGD than an project mammogram (1.30 and 1.20 mGy, respectively); 
whilst for a breast with a compressed thickness of 60 mm and a 14.3% glandularity, 
tomosynthesis resulted in an 83% higher MGD than the mammogram (2.12 and 1.16 
mGy, respectively). The tomosynthesis acquisitions are all acquired using a Tungsten 
anode, and a 0.7mm thick Aluminium filter, so the only variation in the beam quality 
selected by the AEC results from the tube voltage (kVp). Fig. 5 shows a histogram 
depicting the variations in tube voltage over the four VDG categories. Generally, 
lower density breasts, are imaged at higher tube voltages.  

 

 

Fig. 5. The variation in tube voltage selected by the AEC for the tomosynthesis acquisitions 
with volumetric breast density, categorised using VDG  

Fig. 6 shows the relationship between the beam quality selected by the AEC (ex-
pressed using the HVL), and the compressed breast thickness, for both projection 
mammography, and tomosynthesis acquisitions. The near linear relationship, with coef-
ficients of determination of almost unity, confirms the AEC is placing considerable 
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emphasis on the compressed breast thickness to select the beam quality. This is to be 
expected, since the difference in the attenuation coefficients of adipose and fibroglandu-
lar tissue are small compared to the significantly different attenuation of air. Therefore 
the changes in breast density are of secondary effect in terms of the total attenuation of 
the breast, and hence the incident photon fluence on the detector, compared to a change 
in compressed breast thickness.  

Since superposition leading to feature noise (and hence potential masking) is lim-
ited in low density breasts, this raises the question of whether the increased MGD in 
the tomosynthesis exam is beneficial compared to that of the mammo, since the clini-
cal benefit of the 3D slices in this situation is unclear.  Investigating this topic is an 
area of our future work. 

 

 

Fig. 6. The dependency of the beam quality selected by the AEC, as measured by the HVL, on 
the thickness of the compressed breast, for both mammography and tomosynthesis acquisitions. 

5 Conclusion 

In order to calculate accurate MGD estimates the patient specific glandularity should 
be included: one generic method of doing so is through the use of the volumetric 
breast density, and an illustrative example is shown in this paper. Manufacturer re-
ported MGD estimates appeared to underestimate MGD in the case of fatty (low den-
sity) breasts in comparison to our calculations, but gave good agreement in the case of 
dense breasts. When comparing MGD in “combo” mode tomosynthe-
sis/mammography examinations, at lower breast density the mammographic MGD is 
lower than in tomosynthesis, but at higher density the MGDs are approximately equal. 
This raises the issue of whether the higher tomosynthesis MGDs for low density 
breasts with limited to no tissue superposition, and hence unlikely to contain masked 
malignancies, is beneficial. 
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Abstract. The purpose of our work was to evaluate contrast-detail performance 
for a range of full field digital mammography systems using Hotelling observer 
SNR analysis and ascertain whether it can be considered an alternative to 
CDMAM evaluation. Five FFDM systems were evaluated, which differed in 
generation (age), Automatic Exposure Control (AEC) behaviour, tube/target 
combination and detector type. Contrast-detail performance was first analysed 
using CDMAM phantom analysis and then using the Hotelling observer SNR 
methodology. The Hotelling observer SNR was calculated for input signal ori-
ginating from gold discs of varying thicknesses and diameters and then used to 
estimate the threshold gold thicknesses for each diameter as per CDMAM anal-
ysis. There were small differences between the two techniques, especially in 
small diameter details, which can be attributed to structural characteristics of 
the CDMAM phantom. The Hotelling observer SNR technique showed lower 
variability than results from CDMAM analysis. Overall, the Hotelling observer 
SNR methodology showed variations in the FFDM systems performance con-
sistent with previous findings, demonstrating its value as a performance as-
sessment metric. 

Keywords: CDMAM, Hotelling Observer, Ideal Observer, image quality. 

1 Introduction 

The main methodology used to evaluate mammographic image quality in European 
quality control programmes is based on the analysis of threshold detectability charac-
teristics, using the contrast-detail phantom for mammography (CDMAM) [1-3]. Im-
ages acquired using the CDMAM phantom can be analysed either with observer or 
automated readings. Observer-based readings are affected by intra-observer error, 
which can compromise the reliability and confidence of the results. In addition, read-
ing CDMAM images can be time consuming, and therefore often not practical for 
routine assessment of image quality. Although recent work has tried to link automated 
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readings with human-observer performance, results can be further dependent on struc-
tural differences between CDMAM phantoms [3-4]. 

As an alternative to CDMAM analysis, the ideal-observer methodology can be 
used to evaluate threshold detectability characteristics of FFDM systems. An ideal 
observer is a hypothetical device that performs a given task at the optimal level possi-
ble, given the available information and any specified constraints. The correlation 
between ideal observer results and human performance is dependent on the type of 
ideal observer used. In this study we used the Hotelling ideal observer as it takes into 
account both first- and second-order statistics of image data to incorporate some of 
the human observer limitations [5-6]. Previous work has generalised the definition of 
Hotelling observer to include the effects of focal spot unsharpness, magnification and 
scattering, and successfully applied the methodology in the evaluation of FFDM sys-
tems [7-12]. The purpose of our work was to study the threshold detectability perfor-
mance for a range of FFDM systems, using both CDMAM and ideal (Hotelling) ob-
server analysis and ascertain whether the ideal observer methodology can offer some 
advantages over CDMAM evaluation. 

2 Materials and Methods 

The FFDM systems included in our study are shown in Table 1 and the properties of 
their detectors are shown in Table 2.  

Table 1. List of FFDM systems included in the study 

Manufacturer System Type Installation  AEC setting 
GE Healthcare Senographe DS July 2007 Contrast 
GE Healthcare Senograhe Essential August 2010 Standard 
Hologic Selenia (Mo target) June 2007 Autofilter  
Hologic Selenia (W target) March 2011 Autofilter  
Hologic Dimensions November 2010 Autofilter  

Table 2. Detector properties of FFDM systems included in the study 

Manufacturer System Type Detector Type Size 
(cm) 

Pixel size 
(µm) 

GE Healthcare Senographe DS CsI (indirect) 19x23 100 
GE Healthcare Senographe Essential CsI (indirect) 24x29 100 
Hologic Selenia (Mo target) Selenium (direct) 24x29 70 
Hologic Selenia (W target) Selenium (direct) 24x29 70 
Hologic Dimensions Selenium (direct) 24x29 70 

 
The FFDM systems differ with respect to generation, detector, tube technology, as 

well as the behaviour of their Automatic Exposure control (AEC) and the subsequent 
choice of target/filter combination, tube potential (kVp) and mAs for clinical  
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exposures. The AEC setting used in this work is the same as what is currently applied 
on each system for breast screening studies of 60mm breast thickness, as prescribed 
by European and UK evaluation protocols [1], [13]. All FFDM systems had a nominal 
focal spot of 0.3mm. 

2.1 CDMAM Methodology 

FFDM systems were evaluated with the CDMAM phantom following the methodolo-
gy described by EUREF, the European Reference Organisation for Quality Assured 
Breast Screening and Diagnostic References [1] and the NHS Breast Screening pro-
gramme [13]. For each of the FFDM systems listed in Table 1, sixteen “for 
processing” CDMAM images were evaluated using the CDMAM Analyser (version 
1.5.5) and CDCOM (version 1.6), software provided by EUREF.  

Threshold detectability was also evaluated with five different CDMAM phantoms, 
currently in use by mammography physics services in London, as shown in Table 3. 
CDMAM data acquisition and analysis was repeated on the same FFDM system (GE 
Healthcare, Senograph DS) and results were compared to identify variability across 
CDMAM phantoms. 

Table 3. CDMAM phantoms used in cross-phantom evaluation 

CDMAM # Serial # Clinical site 
1 1013 The Royal Marsden NHS Trust 
2 1036 Bart’s Health NHS Trust 
3 1683 Imperial College Healthcare NHS Trust 
4 1227 Mount Vernon Hospital - Hillingdon Hospital NHS Trust 
5 1512 Royal Free London NHS Foundation Trust 

2.2 Hotelling Observer SNR Methodology 

GNNPS and GMTF Data Acquisition. Estimating the Hotelling observer SNR re-
quires calculation of the Generalised Modulation Transfer Function (GMTF), Genera-
lised Normalised Noise Power Spectrum (GNNPS) and their respective Generalised 
Noise Equivalent Quanta (GNEQ). The steps involved in the calculation of the Mod-
ulation Transfer Function (MTF), Normalised Noise Power Spectrum (NNPS) and 
Noise Equivalent Quanta (NEQ) have been described extensively in previous work, 
for example by Marshall (2006) [14]. The Generalised definition of MTF includes the 
effect of detector blur, focal spot unsharpness, magnification and scatter properties of 
the system [11]. In our work, the GMTF was measured by calculating the MTF on an 
image acquired by placing a thin (0.2mm), sharp edge of tungsten foil between two 
slabs of 25mm PMMA, at a slightly oblique angle (1-2°). The Generalised definition 
of the NNPS includes the effect of scatter on the input signal and was measured by 
calculating the NNPS of four “for processing” images of 50mm of PMMA, using the 
same exposure settings as for the CDMAM methodology. By using the GMTF and 
GNNPS we then calculated the GNEQ as: 
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 GNEQ(fx,fy )=
GMTF(fx,fy )

2

GNNPS(fx,fy )
 (1) 

where fx and fy is spatial frequency in x and y directions, respectively. 

Hotelling Observer SNR Calculation. The Hotelling observer SNR can be calcu-
lated for any given signal. In order to compare results with CDMAM methodology, 
the signal (ΔS) used in this study is the Fourier transform of golden discs with varying 
thickness (h) and diameter (r): 

 ∆S f,h,r =α h . √3r
4f

.J1.(2πfr) (2) 

where f is the vectorial sum of fx and fy, J1 is the Bessel function of the first kind and 
α(h) is the radiographic contrast of gold at thickness h. The attenuation characteristics 
of gold for each kVp and filter/target combination were based on work published by 
the National Health Service Breast Screening Programme (NHSBSP) and are differ-
ent for each kV and spectrum (target/filter) [13]. The SNR for this signal was calcu-
lated as an integral of the GNEQ over all spatial frequencies, weighted by the  
spectrum of the signal ΔS [15]: 

 SNR2= GNEQ fx,fy  ∆S f,h,rfx,fy 
dfx dfy  (3) 

The SNR calculated for a disc of set diameter and thickness was then compared to a 
threshold SNR value to determine whether the disc can be considered detected. In 
order to have a detection task comparable to CDMAM analysis, the threshold SNR 
was determined on the basis of multiple alternative forced choice (MAFC) analysis, 
as the CDMAM methodology requires the observer to make a decision on which of 
four corners the signal is present. Work performed by Burgess (1995) [16] outlines 
the probability of detection in a MAFC experiment for a given SNR. As typical for 
4AFC tests, CDMAM details were considered detected when the probability of detec-
tion, based on their Hotelling observer SNR, was equal or higher than 0.625, which is 
the midway point between 0.25 (random guessing) and 1.00 (perfect response). 
 
Intra-System Reproducibility. In order to compare the short-term reproducibility of 
CDMAM and Hotelling observer SNR methodologies, the GE Healthcare, Seno-
graphe Essential, FFDM system was evaluated at the same time (noon) over a period 
of five consecutive working days. The mean and standard deviation values of the 
threshold detectability values were then calculated for results from each methodology.  

3 Results and Discussion 

Fig. 1 shows the magnitude difference between CDMAM results from each phantom 
and the overall mean value. The dotted lines in the figure show the average error mar-
gin (2sem) expected from CDMAM results at each disc diameter, and indicate that the 
magnitude difference at small details is equal or greater than the error margin. It is 
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Table 4. Average ratio of threshold detectability results (New-to-Old FFDM system) 

 GE Sen. Essential/ 
GE Senog. DS 

Hologic Selenia (W)/ 
Hologic Selenia (Mo) 

Hologic Dimensions/ 
Hologic Selenia (Mo) 

CDMAM fit 
to predicted 

0.83 0.89 0.99 

Hotelling   
observer 

0.89 0.90 0.89 

Fig. 3 shows the mean and standard deviation of threshold detectability results us-
ing both methodologies on the same FFDM system for five consecutive days. The 
standard deviation, as indicated by the error bars in Fig. 3, is a measure of the intra-
system variability of results from each methodology. On average, there was 7% varia-
tion in CDMAM results, reaching 10% for small details (0.08mm diameter). Results 
using the Hotelling observer SNR methodology were more consistent, with average 
variation of approximately 1%. 

 

Fig. 3. Mean and standard deviation (error bars) of threshold detectability results using both 
methodologies on the same FFDM system for five consecutive days 

Threshold detectability results using the Hotelling observer SNR methodology 
were consistently lower than CDMAM results, across all detail diameters and for all 
FFDM systems, as shown in Table 5. This may reflect the structural characteristics of 
the CDMAM phantom #3 used in this study, which appears to be overestimating thre-
shold detectability, as previously discussed. The difference between threshold detec-
tability results is higher at small diameter details, which is also consistent with the 
behaviour of the CDMAM phantom #3, as shown in Fig. 1. 



172 I. Delakis et al. 

 

Table 5. Average ratio of threshold detectability results (Hotelling observer-to-CDMAM 
methodology) for each FFDM system 

Manufacturer System Type Ratio 
GE Healthcare Senographe DS 0.67 
GE Healthcare Senographe Essential 0.71 
Hologic Selenia (Mo target) 0.83 
Hologic Selenia (W target) 0.85 
Hologic Dimensions 0.74 

4 Conclusions 

Threshold contrast detectability was evaluated on a number of FFDM systems using 
both CDMAM and Hotelling observer SNR methodologies. Results showed that the 
Hotelling observer SNR methodology can be used as a performance metric for FFDM 
systems, displaying differences with respect to system generation and detector type, in 
the same way as CDMAM analysis. In addition, Hotelling observer SNR results 
showed lower variability than CDMAM analysis results in intra-system evaluation.  

Our work also identified differences in threshold contrast detectability results when 
different CDMAM phantoms were used, indicating a potential dependence on struc-
tural characteristics of phantoms. The CDMAM phantom used for inter-system com-
parison in our study appeared to overestimate threshold contrast detectability across 
all diameter details. CDMAM results were also consistently higher than Hotelling 
observer SNR results, reflecting a similar behavior. 

In conclusion, we have shown that the ideal observer methodology could provide a 
more reproducible and performance-representative alternative to CDMAM analysis, 
as it is shows lower variability and is not phantom-specific. The ideal observer me-
thodology also requires fewer exposures than CDMAM methodology, which can be 
of practical benefit for regular quality control of a large number of clinical FFDM 
systems, as is the case for large-scale breast screening programmes. 

Future work will extend the range, type and number of FFDM systems evaluated 
using both methodologies, and will perform further comparisons between different 
CDMAM phantoms.  
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Abstract. A test set of 150 digital mammograms were examined by 14 radiolo-
gists, seven of which underwent eye-position recording. Mammograms were 
classified into low- and high- density cases, in order to investigate the impact of 
density on readers' performance and visual search patterns. Lesions overlaying 
were compared to those outside the dense fibroglandular tissue. Our results 
suggest that when the lesion was overlaying the fibroglandular tissue, readers' 
performance significantly improved in high- compared to low- density cases. 
Also the dense area of breast parenchyma attracted the radiologists’ visual at-
tention, in both low- and high- mammographic density cases. When the lesions 
were outside the dense fibroglandular tissue, no difference was noted in radiol-
ogist' performance. In conclusion, dense areas of the breast parenchyma at-
tracted the radiologists’ visual attention, in both low- and high density cases, 
which might improve lesion detection when the malignancy is overlaying the 
dense parts of the breast tissue. 

Keywords: Mammographic breast density, digital mammography, readers'  
performance, visual search pattern. 

1 Introduction 

Mammography generates an image that represents the breast tissue including fatty and 
fibroglandular tissue. The proportion of fibroglandular tissue in relation to the fatty 
tissue in the breast is called 'mammographic density’ [1] . Mammographic density is 
associated with a 4- to 6-times increased risk for breast cancer in women with high 
mammographic breast density [2, 3]. The contrast between cancerous lesions and the 
dense fibroglandular tissue is low; therefore, it is assumed that lesions overlaying the 
fibroglandular tissue are difficult to be detected.  

The evidence with screen-film mammography suggests that increased mammo-
graphic density has the potential to decrease sensitivity [4-6] and specificity [7, 8]. In 
addition, higher density in the film screen era was associated with increased risk of 
interval cancers [4, 9], as well as increased numbers of large screen-detected tumours 
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(>15mm) [10-13]. Studies that have compared digital with screen-film mammography 
have incidentally found that sensitivity may increase marginally in high- (83.6%) 
compared with low- (68.1%) mammographic breast density cases [14, 15]. The in-
creased performance in high density breasts was also shown by a recent study, were 
they found that false positive rates were higher in low mammographic density images 
[16]. However the precise effect of density in the digital era remains under-explored, 
especially with the availability of post processing tools, potentially allowing better 
differentiation between dense fibroglandular tissue and cancer. Moreover, the effect 
of mammographic density on radiologists' searching patterns has not been fully stu-
died, in the sense that it is unclear whether the dense areas of the parenchyma have a 
distracter or attractor effect for visual attention. If mammographic density impact is 
fully understood, we will be able to optimize viewing algorithms and design training 
strategies. 

The purpose of this study is to determine the impact of mammographic breast den-
sity on radiologists’ performance and in their visual search processes, using digitally 
acquired and displayed mammograms.  

2 Methods 

Institutional ethical approval was granted, patient consent waived and participated 
radiologists signed a consent form for their participation. Fourteen radiologists volun-
tarily participated in this study and seven underwent eye-position recording. From 
BreastScreen NSW, Australia, a test set of 150 cranio-caudal (CC) digital mammo-
graphic cases with a range of mammographic breast densities were selected. All pa-
tient identification was removed from the mammograms. The test set included 75 
malignancy-free mammograms and 75 cases with 78 biopsy proven malignant lesions. 
Malignancy-free images were confirmed after two years of follow up. Cancerous 
lesions had a median diameter of 12 mm (min of 8 mm; max of 20.6 mm). Malignan-
cy containing cases were chosen depending on whether or not the lesion was com-
pletely overlaying or whether it was completely outside the fibroglandular tissue. An 
expert radiologist (who did not participate as a reader in the study), outlined the “true” 
locations of all malignancies with the help of pathology reports.  

Mammographic density was classified according to the Synoptic Breast Imaging 
Report of the National Breast Cancer Centre (NBCC, now Cancer Australia), en-
dorsed by the Royal Australian and New Zealand College of Radiologists (RANZCR) 
[17], which is similar to the 4th edition American College of Radiology Breast Imag-
ing Reporting and Data System (BI-RADS) [18]:  

1) Low mammographic density cases: RANZCR/NBCC first level (<25% glandu-
lar tissue) and second level (25-50%);  

2) High mammographic density cases: RANZCR/NBCC third level (51-75% glan-
dular tissue) and fourth level (>75%). 

 
In low mammographic density category, 18 cases had the lesion completely over-

laying and 19 cases had it outside the fibroglandular tissue. In high mammographic 
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density cases, 21 and 16 had the lesion completely overlaying and outside the fibrog-
landular tissue, respectively. 

The study included two concurrent phases that were performed in a single viewing 
session: 1) Visual search and; 2) Reporting and localizing detected cancers. Mammo-
grams were displayed on 5 Mega-pixel medical LCD monitor (EIZO, Japan) driven 
by SECTRA (Sectra Imtec AB, Sweden) workstations with ATI FirePro V5800 
(FIREGL) video cards (Sunnyvale, California). The display was calibrated using Dig-
ital Imaging and Communications in Medicine (DICOM) part 14 standard. The ob-
servers freely examine each case until they confidently provided an initial impression 
of the case (namely normal or abnormal). They had full access to standard post-
processing tools, including windowing, zooming and panning. If the case was deemed 
abnormal, radiologists reported the locations of all malignant masses that they believe 
to be present, using a mouse-controlled cursor. Their confidence level was also re-
ported on a scale from 1–5, with a higher number indicating increased confidence. 
Radiologists' performance was evaluated using metrics such as specificity (correct 
identification of malignancy-free images), location sensitivity (correct localization of 
true cancers with a confidence score of 3, 4 or 5), and jackknife free-response receiver 
operating characteristic (JAFROC) figure of metric (FOM).  

For a sub-group of participants visual search was recorded using the Mobile Eye 
XG (MEXG) eye-tracking system (Applied Sciences Laboratories, Bedford, MA, 
USA) to calculate line-of-gaze by monitoring pupil and corneal reflection. The system 
has 0.5-1° of visual angle accuracy with 30 Hz frequency for data collection. Radiol-
ogists were seated on an average of 60 cm distance from the diagnostic monitor. Fixa-
tion was defined by at least three sequential eye-position points within a circle of 
diameter 0.5° of visual angle with a duration of ≥ 100 ms. Using the Applied Science 
Laboratories ASL Results Plus software, fixation location ((x,y) coordinates) and total 
fixation duration (in ms) were collected, in 3 areas of interests (AOI): background 
breast parenchyma, dense areas of breast parenchyma and lesion. An interactive semi-
automated thresholding Cumulus algorithm [19] was used to segment the dense areas 
of the breast parenchyma from the background breast parenchyma. 

The following visual search parameters were calculated: 1) Total reading time, 2) 
Time to first fixate a lesion, 3) Total gaze time in each AOI, per case and 4) Number 
of hits in each AOI per case. 

The impact of mammographic density on the readers' performance and visual 
search was assessed by comparing low- with high- mammographic density cases us-
ing two groupings: 

1. Lesion overlaying the dense fibroglandular tissue; 
2. Lesion outside the dense fibroglandular tissue. 

 
Statistical analyses was performed using the non-parametric Wilcoxon signed-rank 

test, while visual search was contrasted using the non-parametric Mann-Whitney U 
test. For all analyses, significance was set at P < 0.05. 
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3 Results 

Results are described in two comparisons for the impact of mammographic density on 
readers' 1) performance and 2) visual search. 

3.1 Impact of Mammographic Density on Readers' Performance 

Lesion Overlaying the Fibroglandular Tissue. Table 1 shows the readers' perfor-
mance when lesions are completely overlaying the fibroglandular region. As shown, 
lower location sensitivity (50.0 vs 59.1) (W=-71, P =0.03) and JAFROC FOM (0.63 
vs 0.68) (W=-64, P =0.05) were observed between low- and high- mammographic 
density cases, respectively. 

Table 1. Mammographic density impact on readers' performance: lesion overlaying 
fibroglandular dense tissue. Median values (IQR) are presented. 

Metrics Low density High density  P value 

Specificity 77.0 (25.68) 76.3 (38.16) 0.41 
Location sensitivity 50.0 (20.84) 59.1 (38.64) 0.03 
JAFROC 0.63 (0.1) 0.68 (0.13) 0.05 
IQR, Inter-quartile Range    

Lesion Outside the Fibroglandular Tissue. Table 2 shows the readers' performance 
when lesions are completely outside the fibroglandular region. No significant changes 
were found in readers’ performance. 

Table 2. Mammographic density impact on readers' performance: lesion outside fibroglandular 
dense tissue. Median values (IQR) are presented. 

Metrics Low density High density  P value 

Specificity 77.0 (25.68) 76.3 (38.16) 0.41 
Location sensitivity 65.8 (35.52) 62.5 (39.06) 0.22 
JAFROC 0.71 (0.14) 0.72 (0.09) 0.13 
IQR, Inter-quartile Range    

3.2 Impact of Mammographic Density on Readers' Visual Search  

Lesion Overlaying the Fibroglandular Tissue. No significant differences were 
noted in total reading time and time to first fixate a lesion between high and low 
mammographic density images when the lesion was overlaying the fibroglandular 
tissue. As shown in table 3, significant increases in total gaze time (Z= -4.672, P< 
0.0001) and number of hits (Z= -5.02, P< 0.0001) were observed on dense areas of 
the breast parenchyma in high- compared to low-density mammograms. 
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Table 3. Impact of mammographic density on readers' visual search when lesion overlaid  the 
fibroglandular tissue Median values (IQR) are presented. Times are shown in seconds. 

Parameter AOI Low density High density P 

Total 
gaze time 

 

 Background  4.91 (3.37) 5.17 (3.2) 0.72 

 Dense  0.715 (2.48) 1.26 (4.8) <0.0001 
 Lesion  1.76 (5.72) 1.67 (4.68) 0.391 

Number 
of hits per 

AOI 
 

 Background  18 (28.25) 20 (27.71) 0.332 

 Dense  3 (9.73) 6 (18.34) <0.0001 

 Lesion  7 (13.5) 6 (11.01) 0.444 

IQR, Inter-quartile Range 

Lesion Outside the Fibroglandular Tissue. No significant differences were noted in 
total reading time and time to first fixate a lesion between high and low mammo-
graphic density cases when the lesion was outside the fibroglandular tissue. Table 4 
presents the comparison between low- and high- mammographic density cases when 
the lesion was outside the fibroglandular tissue. As presented, total gaze time on 
dense areas of the breast parenchyma was significantly shorter (Z=-2.95, P =0.003) 
and the number of hits was lower (Z=-2.628, P =0.009) in low- compared to high- 
mammographic density images.  

Table 4. Impact of mammographic density on readers' visual search when lesion was outside 
the fibroglandular tissue. Median values (IQR) are presented. Times are shown in seconds. 

Parameter  AOI Low density High density P 

Total  
gaze time 
 

 Background  4.38 (3.65) 4.64 (3.5) 0.954 
 Dense  0.97 (3.93) 1.65 (5.81) 0.003 

 Lesion 1.13 (4.57) 1.04 (3.16) 0.265 
Number 

of hits per 
AOI 

 

 Background  18 (3.34) 17 (5.26) 0.993 

 Dense  4 (15.95)  7 (22.45) 0.009 

 Lesion  4 (13.67) 4 (8.96) 0.387 

IQR, Inter-quartile Range 

4 Discussion 

The evidence with screen-film mammography suggested that lesion detection may 
decrease with high density breasts. However, with digital mammography it has been 
conjectured that readers' performance increases in high- compared to low- density 
cases [14-16]. A better understanding of the precise impact of mammographic density 
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on readers' performance and visual search patterns when reading digital mammo-
grams would present a basis for improving lesion detection. 

The results of this study suggest that high mammographic density cases improve 
the radiologists’ performance with regards to location sensitivity and JAFROC FOM, 
when lesion was overlaying the dense fibroglandular tissue. One potential explanation 
is the fact that high mammographic density is associated with increased risk of breast 
cancer; therefore dense areas of breast parenchyma may attract readers’ visual atten-
tion. In this study radiologists had longer gaze time and higher number of hits on 
dense area of breast parenchyma, perhaps to look for possible lesions hidden in the 
dense tissue. This will improve radiologists' performance when examining high 
mammographic density cases in the digital systems, where high mammographic den-
sity resulted in higher mammographic sensitivity [14, 15] and lower false positive 
rates [16] when compared to low density mammograms. This finding is supported by 
a recent study [20], where radiologists' performance was significantly higher in high- 
compared to low- mammographic density cases in terms of sensitivity (P=0.0174) and 
Receiver Operating Characteristic (ROC) area under the curve (P=0.0001). When the 
lesion was outside the dense tissue, readers' performance did not change significantly 
between high- and low- mammographic density cases, although dense areas of breast 
parenchyma received longer gaze time. Therefore, post processing tools in digital 
mammography made lesion detectability easier, perhaps because it allows the separa-
tion of targets from the background. Hence, lesions being masked by dense fibroglan-
dular tissue are not a major issue when using digital mammographic units. 

In conclusion, the results of this study suggest that dense parenchyma areas attract 
readers’ visual attention, leading to improved performance in high- compared to low- 
mammographic density images. 
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Abstract. The detection sensitivity of screening mammography is reduced for 
dense breasts where the appearance of fibroglandular tissue can mask suspi-
cious lesions. A measure of the degree of masking expected for a mammogram 
could be useful for informing the decision to direct some women to supplemen-
tal imaging procedures not affected by density. Here, we present an adaptation 
of a model observer to estimate the detection task SNR, , of a lesion em-
bedded in various portions of the breast to indicate the level of detection diffi-
culty. Rank correlation of mean mammogram  with density category is 
ρ=−0.58. Correlation of fractional area of mammograms with low <2 ver-
sus density category is ρ=0.61. This suggests that a metric based on  may 
be useful in quantifying masking effects of breast density.   

Keywords: Breast density, mammography, sensitivity, masking, detectability. 

1 Introduction 

Women presenting with mammographically dense breasts have increased risk of devel-
oping breast cancer[1, 2]. In addition, screening mammography has been shown to have 
reduced sensitivity for dense breasts[3]. While there is considerable interest in quantifi-
cation of mammographic density, little attention has been directed at developing an 
index that reflects the “difficulty” of interpreting a mammogram related to that density.  

The mechanisms of masking by dense tissue are likely related to 1) low contrast 
between lesion and dense tissue, 2) the increased complexity of the background struc-
tures surrounding the lesion, and 3) potentially reduced x-ray fluence behind dense 
structures. Model observers have been developed that can incorporate each of these 
parameters and may be useful in identifying images where lesion conspicuity may be 
compromised by density.    

Here, we propose the use of a simple signal-known-exactly, background-known-
statistically (SKE/BKS) model observer to create a map of the SNR of a detection 
task (d′) and compare to perceptions of radiologists’ difficulty of reading. 

2 Methods 

A formal model for d′ across a full clinical mammogram that matches a radiologist’s 
performance, i.e., incorporating all of the visual scanning behaviours and considering 
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all of the likely signs of cancer would be extremely difficult to formulate.  Here, we 
will focus on a single task: detection of a simple known lesion shape in a statistically 
defined background and calculate it over all regions-of-interest (ROI) in the mammo-
gram.  This would be equivalent to asking a radiologist to view each ROI extracted 
from the mammogram, in turn, and attempting to detect a lesion within each ROI 
without the context of the rest of the mammogram. The process would be repeated for 
each ROI from the mammogram. 

Because we are not calculating the conventional observer SNR in the full mammo-
gram, we propose to use the symbol  to emphasize that the SNR is calculated 
only in localized ROIs.  As such,  for a non-prewhitening (NPW) model  
observer can be calculated from the known system response, (MTF, NPS, etc.) as  
follows 

 ²  , ,, , , , (1) 

where ,  are spatial frequencies in the x and y direction, ,  is the MTF of 
the system, ,  is the task function and ,  is the normalized noise 
power spectrum. In this case, we will consider each ROI as an independent image.   

Although we can extract a direct measure of the NNPS from each ROI, we believe 
that such an approach would lead to  values with high variability. Instead, a 
simple model was created to estimate an appropriate NNPS from each ROI.  We can 
estimate the NNPS, building on an approach previously published[4],  

 p s pp s p s s  (2) 

where  is the radial spatial frequency, Φp and Φs are the absorbed fluences in the 
detector due to the primary and scattered x-rays respectively. The absorbed fluences 
include the effects an antiscatter grid (primary and scatter transmissions of Tp=0.66 
and Ts=0.15 respectively) and quantum efficiency (η=0.77) was assumed to be the 
same for both Φp  and Φs . Average primary transmission was estimated from the 
calculated thickness and volumetric breast density (VBD)[5]. The anatomic noise 
power spectrum is modeled as an inverse power-law of the form / 1 / , where K is a scale factor related to the signal difference between fat 
and fibroglandular tissue,   is the estimated power-law spectrum exponent extracted 
from the ROI and 0 0.1 mm-1 to provide a stable equation at low spatial frequen-
cies. Scatter was added to the model using the scatter point spread function from 
Boone, knowing the thickness and composition of the breast[6]. The MTF of the Se-
nographe 2000D was measured in the horizontal and vertical directions using a 
slanted-edge method [7]. For simplicity we assumed that the x-ray spectrum was mo-
noenergetic and we ignored added electronic noise. Estimates of the incident fluence 
were obtained by extracting the imaging technique factors from the DICOM headers. 
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Finally, to ensure that the NNPS is scaled appropriately to the clinical image, the 
modeled NNPS is rescaled such that 

    , , , (3) 
and 

    
, , (4) 

where , 4 mm , 5 mm  denotes the region of the NNPS that is assumed 
to be dominated by quantum noise rather than the anatomic component and is likely 
to be relatively stable between measurements.   

The model for the NNPS incorporates both the quantum noise effects related to the 
incident x-ray exposure, the x-ray transmission through the breast and the mammo-
graphic texture as modeled by the inverse power law spectrum equation and its  
factor.  Thus, we have  that is sensitive to breast density and to the general 
texture of the mammographic background.  

The task assumed here is the detection of a uniform disk of radius R=2.5 mm, 
whose task function,  2 / , the Fourier transform of a uniform 
disc and  is the Bessel function of the first kind, and the object signal difference 
(‘contrast’) is assumed to be ∆  where ∆  is the difference in linear attenua-
tion between lesion and adipose tissue and 2  is the thickness of the simulated 
lesion.  

3 Results 

De-identified mammograms (n=138) were selected from a previous study.  Images 
were acquired on a GE Senographe 2000D (GE Healthcare, Chalfont St. Giles, UK) 
between 2002 and 2003. DICOM for-processing images were used for the density 
calculation and the subsequent  calculation. Fig. 1 shows examples of mammo-
grams and the corresponding   maps generated using Eq. (1). Darker regions of 
the  map are those where it is expected to be more difficult to detect lesions. In 
general, these areas correspond to areas of increased density, although texture clearly 
plays a role in decreasing detectability as well.  

Fig. 2 (left) shows the average   plotted against the volumetric breast density 
measured using a volumetric density algorithm, Cumulus V[5]. There is evidence of a 
trend with very large  values for the fattiest breasts and decreasing for the high-
est density categories.  The Pearson correlation between log local  and VBD was 
r=−0.82. The background texture appears to have a strong impact on dlocal. As shown 
in Fig. 2 (right), there appears to be an almost linear relationship between log local  
and  with a Pearson’s correlation of r=−0.90.   

Fig. 3 (left) shows the average  for each radiologist-reported density catego-
ry. The Spearman ranked correlation between  and BIRADS category is 
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ρ=−0.58. The average  is not likely to be a reliable indicator of the difficulty of 
the mammogram. In other words, mammograms with high average  could still 
contain very difficult-to-read areas.  To capture this effect, the fractional area of each 
mammogram that was below an arbitrary threshold of =2 was also calculated 
and is presented in Fig. 3 (right). Here, the fattiest breasts have the smallest fractional 
areas with low  and the densest breasts generally contain much higher fractions 
with this characteristic. The ranked correlation between  and BIRADS category 
is ρ=0.61. Note however, that the densest category in these analyses is underrepre-
sented and this may bias the results. 

 
(a)                   (b) 

(c)         (d) 

 

Fig. 1. Examples of mammograms (unprocessed, raw) and their corresponding dlocal maps.  
The VBD for the images are (a) 9.1 (b) 17.7 (c) 50.5, and (d) 5.06. The grayscale range for the 
dlocal is set between 0 (black) and 4 (white) for all maps.  
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Fig. 2. Average dlocal versus VBD (%) (left) and  (right) 

 

Fig. 3. Average dlocal (left) and fractional area of the breast that has dlocal less than a threshold of 
2.0 (right) versus BIRADS density category 

4 Discussion 

The signal propagation model used in this analysis is very simple and does not incor-
porate several effects, including stochastic blurring in the noise model and added 
electronic noise. As a result, the scaling factor required to match the model NNPS to 
the measured NNPS was not close to 1 and highly variable across ROIs (range ~0.01 
to ~1.5, mean 0.27). In addition, an isotropic inverse power-law model for the back-
ground structure is also crude and lacks several texture features including that of tex-
ture directionality, which has been shown in mammograms[8]. Nevertheless, the  
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preliminary results here suggest that a measure like dlocal may be a useful method of 
quantifying detectability in clinical mammograms.  

5 Conclusions 

A novel approach to evaluating the impact of density masking on lesion detectability 
has been proposed. Initial investigations have suggested that this measure appears to 
be very sensitive to both parenchymal density and texture.  Such a tool may prove 
useful in helping to identify mammograms with a potential for limited observer SNR 
for more careful assessment, to help improve CAD algorithms, or as a quantitative 
measure to identify women who should be invited to be screened with alternative 
imaging modalities. The approach is in early development, and further work is re-
quired for refinement and validation against radiologist performance in reader studies 
and against clinical detection rates.   
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Abstract. The purpose of this study was to characterize the three dimensional 
(3D) x-ray dose distributions in a target scanned with different acquisition tra-
jectories for dedicated breast CT imaging. Monte Carlo simulations were used 
to evaluate two acquisition trajectories: circular azimuthal (no tilt) and complex 
sinusoidal (saddle) orbit with ±15o tilts around a pendant breast. Simulations 
were performed with tungsten (W) and cerium (Ce) filtration of a W-anode 
source; the simulated source flux was normalized to the measured exposure of a 
clinically used W-anode source. A water filled cylindrical phantom, was di-
vided into 1cc voxels, and each voxel was set to track the cumulative energy 
deposited. Energy deposited per voxel was converted to dose, yielding the 3D 
distributed dose volumes. Results indicate that the mean absorbed dose at the 
isocenter of a volume for the un-tilted acquisition is ~10% higher than that from 
a saddle scan, regardless of filtration used.  

Keywords: Breast CT, dosimetry, cone beam CT, Monte Carlo simulations. 

1 Introduction 

For any clinical imaging system, minimizing the dose delivered to and absorbed by the 
target volume is important for the patient. The American College of Radiology (ACR) 
stipulates that 6 mGy is the upper limit of the average absorbed dose from dual-view 
mammography for a 4.2 cm thick, compressed, 50-50% adipose-glandular breast volume. 
A few institutions in the USA are investigating pendant breast CT imaging systems [1-
12]; however there still exists a dearth of an equivalent dosimetry standard. Therefore, 
despite the fact that we acquire hundreds of projection images on a cone beam CT sys-
tem, we adhere to the mammography standard and try to restrict the cumulative absorbed 
dose by the breast to <6 mGy without compromise to reconstructed image quality. In-
deed, the exposure efficiency (SNR2/exposure) has been shown to be more than a factor 
of 2 better with certain breast CT systems due to the x-ray beam quality [13,14]. Cumula-
tive absorbed dose for a tomographic scan depends on numerous factors – mean x-ray 
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beam energy and flux [6,12] mass of the target volume, material composition of the vo-
lume [12], etc. Therefore, all these factors have to be taken into consideration for evaluat-
ing dose delivered by a breast CT system. 

Dose studies have previously been performed on our fixed tilt angle, dedicated 
breast CT system with a quasi-monochromatic x-ray beam [15]. Both geometric and 
anthropomorphic phantoms were used and results have shown that the average ab-
sorbed doses in the volumes for 100% glandular-equivalent and 100% adipose-
equivalent tissue are 4.5 mGy and 3.8 mGy, respectively [15]. Also, other studies 
have demonstrated the benefit of using complex 3D acquisition trajectories that utilize 
the system’s polar tilting capability [16]. Such trajectories overcome the cone beam 
under-sampling problem while also promoting imaging further into the breast volume,  
resulting in more uniformly sampled images. With the inclusion of complex 3D ac-
quisition trajectories in the proposed future iterations of the hybrid breast SPECT-CT 
system [17], it is imperative to characterize the differences between the dose distribu-
tion within a breast volume for a simple azimuthal (fixed tilt) and complex 3D acqui-
sition trajectories.  

2 Materials and Methods 

The simulation program Monte Carlo N-Particle (MCNP 5.0) [18] was used to per-
form the dosimetry studies. A fully 3D tilt capable breast CT imaging system [19]  
consisting of a flat panel detector, tungsten anode x-ray source with a 16 degree anode 
angle, and a source to image distance (SID) of 70cm was used as the basis for the 
simulations (Fig 1). The exposure of this system at 49kVp potential and 1.25 mAs 
technique was measured at the iso-center with an exposure meter and was found to be 
4.11 mR. Fig1 shows a schematic of the system set up and illustrates the tilting mo-
tions. The simulations only model the x-ray spectra and tilting capabilities based on 
the system depicted in Fig 1, and do not include a flat panel detector.  
 

 
Fig. 1. (LEFT)Schematic showing the geometrical set-up of a tilt capable breast CT system 
where the source and detector tilt ±15o.GRAY dotted lines represent the central X-ray beam 
and the vertical BLUE dotted line represents the Axis of rotation of the system. (RIGHT) Polar 
plot depicting the AZOR and Saddle orbits about a 360 degree azimuthal trajectory path. 
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X-ray spectra were modeled in the XSPECT simulation package [20], a validated x-
ray system simulation program that models the output of an x-ray tube under various 
operating parameters such as tube potential, anode material, anode angle, and the 
thickness and composition of absorbing materials in the beam path. Two different 
spectra, with external Tungsten (W, 0.005cm) and Cerium (Ce, 0.0506cm) filtration 
were modeled to simulate x-ray beam filtration used on our breast CT system [18]. The 
flux of the simulated W spectrum was calibrated to match the physically measured 
exposure (4.11 mR) at the iso-center of the real system.The Ce spectrum was scaled 
such that the total number of x-ray photons emitted from the source matched that of the 
W spectrum (60.2 Million/cm2 at iso-center), to allow for similar noise characteristics 
on both sets of data. The XSPECT spectra (Fig 2) were used in this simulation as a 
probability density input model of the x-ray source distribution in MCNP. 

 

 
Fig. 2. X-ray spectra simulated from XSPECT using Tungsten and Cerium filters  

In MCNP, the X-ray source was modeled as a point source emitting a 32 degree 
full cone angle towards the target volume. A 10 cm diameter, 10 cm tall, cylindrical 
phantom was used as the target volume in the modeled CT system (Fig 3). The cy-
linder was composed of water, a common substitute for glandular tissue in physical 
phantom studies, and was divided into 1x1x1 cm3 voxels (Fig 3). 240 projection im-
ages were acquired over 360 degrees for each scan. Simulations were performed with 
2 different orbits – 1) Azimuthal orbit (AZOR) which is the simple no tilt trajectory 
around the volume, and 2) Complex 3D (Saddle) orbit including polar tilts (up to 
±15o) following a two lobed sinusoidal path around the pendant object (Fig 1, right). 
Two sets of these simulations were performed for each trajectory: once with the W 
filter and then again with the Ce filter.  

Each cubic voxel of the object was defined as an individual ‘detector element’  
recording the total energy deposited. The elements recorded the deposited energy 
regardless of interaction type, including photoelectric absorption, Compton and cohe-
rent scattering. Fig 3 shows a subset of accumulated histories at a single projection 
angle from a simulated run with 10,000 incident photons. The MCNP visualization 
tool depicts scatter events with absolute position (x,y,z, coordinates); however only 
the cumulative energy deposited in every 1 cm voxel is extracted for the final dose 
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deposition volumes. The energy deposited (MeV) in each individual voxel was di-
vided by the mass of the voxels (1 g), converted to Joules (1 MeV = 1.60218E-13 J), 
and finally converted to dose (Gy = joules / kg), yielding a voxelized, 3D representa-
tion of absorbed dose in a volume.  

 

 

Fig. 3. MCNP geometry set-up showing scatter plot of collisions in the volume from 10,000 
photons emitted from the point source. Solid lines represent the cone beam boundary, dotted 
line represents the central X-ray beam and the red dots depict collisions / scattered events in air 
and within the target volume itself. (LEFT) Lateral view and (RIGHT) zoomed superior view 
of the voxelized cylinder depicting scatter events. 

In order to voxelize a 10x10x10 cm3 cylinder, a cubic 11x11x11 cm3 grid was used 
resulting in the edges of the cylinder having only fractions of voxels (Fig 3, Right). 
The energy deposited in each voxel in the volume is divided by its mass (1 gm) to 
convert it to dose. However, the mass of the partial edge voxels would be less than 1 
gm, thereby underestimating the dose in these voxels.  

Due to the enormous number of particle interactions (in the target volume as well 
as in the air at standard temperature and pressure around the object) that occur with 
60.2 million incident x-ray photons per projection, our fastest computer (Intel’s 3rd 
generation i7 extreme processor 3.7GHz, 12 cores, 24GB RAM) took ~20 minutes per 
simulation projection, i.e. 80 hours of CPU processing for a 240 projection CT scan, 

which is about three and a half CPU-days per data set, whereas on an average com-
puter, the simulations took 1 hour per projection, indicating 240 hours or 10 CPU-
days per data-set. 

3 Results 

The average dose values, measured on the central sagittal slice of the volumes, obtained 
from the simulations compare well with other Monte Carlo studies [6] as well as physi-
cal measurements [15,21] and are reported in Table 1. Dose distribution volumes were 
calculated as described in the previous section (Fig 4), and profiles were plotted near the 
chest, mid and nipple region of central slices (Fig 5). The profiles clearly illustrate that 
for the AZOR scan, since the x-ray cone beam is centered on the target volume, the mid 
region (medial volume) has the highest deposited dose, and that it tapers symmetrically 
towards the chest (top) and nipple (bottom) as the divergence of the x-rays increases 
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Source       
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(Fig 1). For the saddle scan, there are an equal number of projection angles where the 
central ray of the x-ray cone beam is closer to the chest or nipple regions, yielding a 
more uniform dose distribution at the edges (sagittal slice on Fig 4). Regardless of the 
filtration type (W or Ce), the overall distributions and profiles had identical patterns, and 
only differed in absolute values of the absorbed doses (the minimum values within each 
simulated volume for each condition are included in Table 1).  

The total mean absorbed dose was measured on the central sagittal slice using a 
9x9 pixel ROI, ignoring partial edge pixels, for all filtration conditions and trajecto-
ries. For the Ce filtered beam, the average dose deposited for an AZOR scan is 9.6% 
higher than for the saddle scan (Table 1). For the W filtered beam, the average dose 
deposited for the AZOR scan is 9.8% higher than for the saddle scan. Note the larger 
standard deviations for the saddle scans. The average dose deposited throughout the 
entire volume was also measured using a 9x9x9 voxel volume of interest (VOI), con-
tinuing to ignore the partial edge voxels. For the Ce filtered case, the average dose 
deposited was 5.46 mGy for the saddle orbit and 5.50 mGy for the AZOR orbit; whe-
reas for the W filtered case, the average dose throughout the volume was 5.38 mGy 
for the saddle orbit and 5.43 mGy for AZOR. 

 
 
 
 
 
 
 
 
 

Fig. 4. Cumulative dose map for the Ce filtered case - (LEFT to RIGHT) Sagittal slice through 
the center of the cylinder depicting the 2D dose map for AZOR orbit, Saddle orbit, Coronal 
slice through center of Saddle orbit and 3D volume rendered image of dose distribution for 
Saddle orbit. Dotted lines indicate location and direction of the profile plots (Fig 5). Black 
indicates lowest dose and white the highest dose. 

 

Fig. 5. Plotted dose profiles near the chest, middle and nipple regions of the central sagittal 
slice of the cylinder for the Ce filtered case (Fig 4). Dose deposited at the edges is considerably 
higher than the center of the volume. Absorbed dose for the Saddle orbit is consistently lower 
than the AZOR. 
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Table 1. Total average and minimum absorbed doses (mGy) measured in the central slice of the 
cylinder 

Condition Average Central Slice Dose (mGy)
 Ce W 

Saddle  
Average 5.16 ± 0.61 5.05 ± 0.66 

Minimum 4.12 3.98 
AZOR   

Average 5.21 ± 0.62 5.10 ± 0.68 
Minimum 4.09 3.95 

4 Discussion and Conclusions 

The dose distribution in a target volume was characterized for different acquisition 
trajectories and various x-ray spectra for dedicated breast CT imaging, using Monte 
Carlo simulations. For a fixed tilt trajectory (i.e. AZOR), the distribution of tilted  
x-rays from the 2-dimensionally divergent cone beam is fixed, and cumulative as the 
source moves around the object. However for the sinusoidally variant trajectory (i.e. 
saddle), the cone beam divergence is fixed, but the distribution of x-rays changes and 
therefore the energy deposited is more uniformly distributed throughout the volume. 
The mean dose absorbed from a scan with a saddle orbit around a pendant breast is 
~10% lower than a traditional circular acquisition. However, the difference is within 
the standard deviations measured (Table 1) and therefore is statistically insignificant. 
Multiple replications of the simulations are necessary to determine the significance of 
these results, in addition to physical measurements on a real breast CT system. 

The 10cc cylindrical volume is divided into voxels using an 11cc cubic grid result-
ing in fractional voxels near the edges of the cylinder. Ignoring the fractional voxel 
from the dose calculations results in a slight underestimation of the average dose de-
posited in the volume. However, the amount of underestimation is constant across all 
the different scans and therefore does not affect the inter-comparison made between 
orbits. Thus one caveat of this set-up is that proper normalization with accurate 
masses of the individual voxels is further required for accurate absolute dose  
measurements.  

Given otherwise identical irradiation conditions (normalized flux and irradiation 
trajectories), there was a marginally higher overall dose delivered to the target vo-
lumes with the Ce-filtered x-ray beam versus the more traditional W-filtered beam. It 
remains to be determined how the dose efficiencies (SNR2/dose) of these two spec-
trally different beams compare. Previous results indicate that the more quasi-
monochromatic beam yields a more favorable exposure efficiency (a surrogate for 
dose efficiency) [13,14], thus indicating that the marginal dose advantage of W-
filtration determined here is compensated by a necessarily increased flux (hence dose) 
in order to yield a similar dose efficiency. 

In the future, results of the Monte Carlo simulations will be validated with physical 
experiments similar to previous measurements [15]. 
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Abstract. The goal of our study was to investigate the potential usefulness of 
quantitative MRI analysis (i.e., phenotyping) in characterizing and data mining 
the molecular subtypes of breast cancer in order to better understand the differ-
ence among HER2, ER, and PR expression, triple negative, and other molecular 
classifications. Analyses were performed on 168 biopsy-proven breast cancer 
MRI studies acquired between November 2008 and August 2011, on which mo-
lecular classification was known.  MRI-based phenotyping analysis included: 
3D lesion segmentation based on a fuzzy c-means clustering algorithm, compu-
terized feature extraction, leave-one-out linear stepwise feature selection, and 
discriminant score estimation using Linear Discriminant Analysis (LDA). The 
classification performance between the molecular subtypes of breast cancer was 
evaluated using ROC analysis with area under the ROC curve (AUC) as the 
figure of merit. AUC values obtained for 26 HER2+ vs. 142 HER2-, 118 ER+ 
vs. 50 ER-, 93 PR+ vs. 75 PR-, 40 Triple Negative (ER-, PR-, and HER2-) vs. 
128 all others are 0.65, 0.70, 0.57, and 0.68, respectively for the combined data-
sets that included images from both 1.5T and 3T scanners.  Contributions to the 
classifiers come from the shape, texture, and kinetics of the lesion, triple nega-
tive cases exhibiting increased margin variability, distinct kinetics, and in-
creased surface area. Analyzing the datasets within magnet strength substantial-
ly improved performances, e.g., the AUC for triple negative vs. all other cancer 
subtypes increased from 0.69 (SE=0.05) to 0.88 (SE=0.05). The results from 
this study indicate that quantitative MRI analysis shows promise as a means for 
high-throughput image-based phenotyping in the discrimination of breast can-
cer subtypes. 

Keywords: Computer-aided diagnosis, Breast MRI, image-based phenotype, 
molecular classifications. 

1 Introduction 

Breast cancer is the most frequently diagnosed cancer and is the second leading cause 
of death in women [1]. Dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) of the breast has been increasingly used in clinical practice for screening 
and diagnostic imaging as well as post-treatment evaluation [2, 3]. MRI in addition to 
mammography was recommended for screening of women at high-risk of developing 
breast cancer by the American Cancer Society in 2007 [4]. 
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Breast cancer can be classified based on the receptor status (ER, PR, and HER2) 
traditionally identified by immunohistochemistry. HER2+ breast cancers tend to be 
more aggressive and have a poorer prognosis than HER2/neu-negative cancers.  
However, it is not clear whether HER2/neu status is an independent risk factor. ER+ 
and PR+ cases have lower risks of mortality compared to women with ER- and/or PR- 
disease. Triple negative cases (HER2-, ER-, PR-) overall do not respond well to 
treatment, and thus account for a large portion of breast cancer deaths [5]. 

The goal of our study was to investigate the potential usefulness of quantitative 
MRI analysis (i.e., phenotyping) in characterizing and data mining the molecular 
subtypes of breast cancer in order to better understand the difference among HER2, 
ER, and PR expression, triple negative, and other molecular classifications. Identifica-
tion of the molecular subtypes of breast tumors is expected to allow for improved 
prognostic assessment and more effective cancer treatment plans.   

2 Materials and Methods 

2.1 Database 

Breast DCE-MR images used in this study were obtained retrospectively under an 
IRB-approved protocol at the University of Chicago Medical Center. Table 1 lists the 
acquisition parameters.  

Table 1. Summary of DCE-MR imaging protocols. TR=repetition time, TE=echo time. 

 1.5 Tesla DCE-MRI 3 Tesla DEC-MRI 

Magnet 1.5 T Philips Achieva 3T Philips Achieva 

Number of Coil Channels 16 16 

Acquisition Plane Axial Axial 

Pulse Sequence 3D Gradient Echo (THRIVE) 3D Gradient Echo (THRIVE) 

TR/TE (ms) 5.5 / 2.7 5.0 / 2.5 

Flip Angle (degrees) 12 10 or 12 

Voxel Size (mm3) 0.74 x 0.74 x 1 0.60 x 0.60 x 0.80 

Temporal Resolution 60 70 

Number of Post-Contrast 6 5 

Fat Suppression (Y or N) Y Y 

Parallel Imaging (Y or N) Y Y 

 
Analyses were performed on 168 biopsy-proven breast cancer MRI studies ac-

quired between November 2008 and August 2011, on which molecular classification 
was known as listed in Table 2. All cases are invasive ductal carcinoma. 
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Table 2. Molecularclassifications and distribution of the dataset 

 Molecular Classifications and Distribution of the 168 cases 
   
HER2 HER2- HER2+ 
 142 26 
   
ER ER- ER+ 
 50 118 
   
PR PR- PR+ 
 75 93 
   
Triple Negative Triple Negative All Others 
 40 128 

2.2 MRI-Based Phenotyping Analysis 

MRI-based phenotyping analysis included several steps: (1) 3D lesion segmentation 
based on a fuzzy c-means clustering algorithm [6], (2) computerized feature extrac-
tion [7-9], leave-one-out linear stepwise feature selection, and discriminant score 
estimation using Linear Discriminant Analysis (LDA) in a leave-one-out evaluation.  

2.3 Performance Evaluation 

The classification performance between the molecular subtypes of breast cancer was 
evaluated using receiver operating characteristic (ROC) analysis [10-12] with area 
under the ROC curve (AUC) as the figure of merit.  The AUC values were calculated 
to assess the discrimination performance of the individual lesion features/phenotypes 
as well as the merged lesion signatures in the tasks of distinguishing between HER2+ 
and HER2-, ER+ and ER-, PR+ and PR-, and triple negative and all others. 

3 Results 

The performance of individual lesion characteristics/phenotypes in terms of AUC 
value in the task of distinguishing molecular subtypes is shown in Figure 1. 

AUC values obtained for 26 HER2+ vs. 142 HER2-, 118 ER+ vs. 50 ER-, 93 PR+ 
vs. 75 PR-, 40 Triple Negative (ER-, PR-, and HER2-) vs. 128 all others are 0.65, 
0.70, 0.57, and 0.68, respectively for the combined datasets that included images from 
both 1.5T and 3T MR scanners. Contributions to the classifiers come from the shape, 
texture, and kinetics of the lesion, triple negative cases exhibiting increased margin 
variability, distinct kinetics, and increased surface area. One example of image-based 
phenotype arrays showing the color map of individual features and the output from 
LDA output on ER status is shown in Figure 2. 
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Fig. 1. Lesion features were automatically extracted from dynamic contrast-enhanced 
breast MRI images (obtained with both 1.5T and 3T scanners) and analyzed on their own as 
well as merged into lesion signatures for the assessment of molecular classification.  Individual 
lesion features were only weak classifiers, as evidenced by the modest areas under the ROC 
curve (AUC value). When artificial intelligence was used, however, to merge the features into 
lesion signatures, performance substantially improved.  

 

Fig. 2. Image-based phenotype arrays showing the color map of individual features of ER- and 
ER+ subjects. The individual subjects are ordered based on the output values from the LDA 
classifier. Values in parentheses corresponded to AUC using image-based phenotypes as deci-
sion variables in the task of distinguishing between ER- and ER+ subjects. For each image-
based phenotype, red corresponds to high value and green corresponds to low value [13]. 
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Analyzing the datasets within magnet strength substantially improved perfor-
mances, e.g., the AUC for triple negative vs. all other cancer subtypes increased from 
0.69 (SE=0.05) to 0.88 (SE=0.05) as shown in Table 3. This difference in terms of 
two AUC values is statistically significant with a p-value of 0.0017 (95% Confidence 
Interval of ΔAUC [-0.3593, -0.0832]). This performance difference within magnet 
strength needs to be further investigated with a larger dataset. 

Table 3. Classification performance in the task of distinguishing triple negative cases from 
other molecular subtypes within magnet strength 

 1.5T 3T 

   

Cases 117 51 

Triple Negative Cases 29 11 

Others 88 40 

   

Features AUC AUC 

Size 0.63 0.70 

Kinetics 0.61 0.71 

Shape 0.56 0.70 

Texture 0.56 0.80 

   

Classifier (LDA) AUC (SE) AUC (SE) 

 0.69(0.05) 0.88 (0.05) 

4 Conclusion 

The results from this study indicate that quantitative MRI analysis shows promise as a 
means for high-throughput image-based phenotyping in the discrimination of breast 
cancer molecular subtypes. 
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Abstract. Automated segmentation of mammograms is an important initial step 
in a wide range of applications including breast density and texture analysis and 
computer aided detection of abnormalities. In this paper, we propose a unified 
machine learning framework that enables simultaneous segmentation of the 
breast region, fatty tissue, glandular tissue, pectoral muscle and nipple region in 
full field digital mammograms. We calculate both a multi-label segmentation 
mask and a probability map associated with each of the segmented classes. The 
probability map facilitates interpretation of the segmentation mask prior to fur-
ther analysis. The method is evaluated using left or right MLO views from 100 
women in a 5-fold cross validation manner. Our framework is shown to be ro-
bust and accurate, achieving sensitivity/specificity from 82.7% to 98.5% at the 
equal-error-rate point of the ROC curves and area under the ROC curve values 
from 0.9220 to 0.9998 for the corresponding segmentations.  

Keywords: Mammogram, fat, gland, pectoral muscle, nipple, breast, segmenta-
tion, machine learning. 

1 Introduction 

X-ray mammography is one of the most effective tools for the diagnosis and evalua-
tion of breast cancer. With the advent of Full Field Digital Mammography (FFDM), 
opportunities have arisen for applications of automated analysis including abnormali-
ty detection, breast density estimation and breast cancer risk prediction. A fundamen-
tal and crucial step for computer aided diagnosis and detection systems is the accurate 
segmentation of key anatomic features in the mammograms, including the breast  
region, fatty tissue, glandular tissue, pectoral muscle and nipple location.  

The relationship between area of dense tissue expressed as a percentage of the 
breast area and risk of developing breast cancer is well established [1]. A semi-
automatic tool (CUMULUS) [2] is well recognized for estimation of mammographic 
breast density (MD), but requires a considerable amount of user interaction and suf-
fers from intra and inter user variability. Automated segmentation of fatty and glandu-
lar tissue will enable fully automated MD analysis [3], and also facilitate development 
of density-adjusted Computer Aided Detection (CAD) tools.  
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The pectoral muscle region is frequently excluded from the breast area when ana-
lyzing density in the Medio-Lateral Oblique (MLO) mammographic view. Automatic 
segmentation of pectoral muscle has been addressed previously [4], but still remains a 
difficult problem to be solved robustly. Initial assumption of a straight pectoral  
muscle line is often used, followed by refinement processes [5]. The nipple is an im-
portant anatomic feature which can be used as a reference point for establishing intra- 
and inter- breast correspondence. A number of nipple detection methods have been 
proposed [6], which mainly rely on some initial assumption of locations and characte-
ristic along the breast contours. Robust detection of the nipple remains the most chal-
lenging problem in mammographic segmentation. For instance, the nipple may lie 
inside the breast or have very low contrast. Whilst identifying the breast edge is 
straightforward, estimation of the other features remains challenging due to the varia-
bility in appearance of glandular tissue, pectoral muscle and nipple. Such variations 
occur due both to differences in anatomy and in imaging parameters and practice. 
Current mammogram segmentation methods are either designed for one or two specif-
ic features or are less robust in certain situations [3-6].  

To the authors’ best knowledge no single system that is able to segment all of the 
above mentioned anatomic features in a unified framework has previously been de-
scribed. The contribution of this paper is a novel machine learning framework that 
enables simultaneous segmentation of the breast region, fatty tissue, glandular tissue, 
pectoral muscle and nipple in full field digital mammograms. We calculate both a 
multi-label mask and a probability map associated with each of the segmented classes. 
The probability map facilitates interpretation of the segmentation mask prior to fur-
ther analysis. A detailed description of the method and its evaluation are given in the 
following sections.   

2 Method 

In machine learning algorithms, image features and their associated labels are learnt 
from a training data set. When a similar unknown image feeds into the resulting  
model, pixels of each class in the new image can be estimated according to their cor-
responding feature descriptors. In [7], the authors described a system that combines 
the dual-tree complex wavelet transform (DT-CWT) [8] and random forest (RF) [9] 
classifier for detection and classification of linear structures in mammograms. We 
have adapted this method and applied it for the purpose of anatomic feature segmenta-
tion in mammograms.  

The DT-CWT combines the outputs of two discrete transforms, using real wavelets 
differing in phase by 90 degrees, to form the real and imaginary parts of complex 
coefficients. It provides a directionally selective representation with approximately 
shift-invariant coefficient magnitudes and local phase information. In our implemen-
tation, the DT-CWT is applied to a 6-level image pyramid. Each level is a down-
sampled version of its immediate higher level by a factor of 0.5. Additionally, the  
DT-CWT is performed at six different orientations (±15°, ±45°, ±75°) at each pyra-
mid level. The six sub-bands are then multiplied by {i, -i, i, -1, 1, -1} respectively, so 
that the phase at the centre of the impulse response of each wavelet is zero. Finally, to 
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3 Evaluations 

3.1 Dataset 

The dataset used in this study comprised anonymised, randomly selected MLO view 
images of 50 women without cancer and 50 with cancer from the Nightingale Breast 
Screening Centre at the University Hospital of South Manchester. The 50 without 
cancer (referred to as controls) were confirmed by a subsequent normal screening 
mammogram approximately 3 years later. The 50 cancer mammograms were obtained 
from the most recent screen-detected unilateral malignant cancers identified, and the 
contralateral breasts were used for analysis. The ratio of left to right MLO views of 
the non-cancer images was controlled to match the ratio in the cancer images. All the 
images had been acquired using GE Senographe Essential mammography systems 
with a pixel size of 94.1 µm. Raw (unprocessed) FFDM images were pre-processed 
by applying the logarithm of the original pixel values, and right MLO images were 
laterally inverted to facilitate analysis. If not mentioned otherwise, all the described 
evaluation experiments in section 3 were performed in a 5-fold cross validation man-
ner. The dataset was randomly grouped into five subgroups (20 images each, with 10 
cancers and 10 controls). Four groups of images were used for training and tested on 
the remaining group and alternate until all groups are tested.     

3.2 ROC Performance 

For each of the images tested, the estimated probability maps of each class were ob-
tained and compared with the corresponding ground truth mask. The ground truth 
masks were obtained as described in section 2. By feeding the estimated probability 
values and their corresponding ground truth labels, the receiver operating characteris-
tic (ROC) curves for each of the classes are shown in figure 4. Note that, for the 
breast/background class, all pixels in the image are used as the input to the ROC cal-
culation. For the fatty tissue, glandular tissue, pectoral muscle and nipple classes, only 
pixels from the breast region are used as the input to the ROC calculation. This is 
because by taking the background pixels (predominant the image) into account will 
lower the sensitivities to small error changes in classes with small region (e.g. the 
nipple region). It is seen from figure 4 that all of the five anatomic features are 
achieved very good performance. The area under the ROC curve (AUC) values range 
from 0.9220 to 0.9998, with sensitivity/specificity from 82.7% to 98.5% at the equal-
error-rate point of the ROC curves. To test the reliability and repeatability of the  
system, we repeated the 5-fold cross validation process for five times, each with ran-
domly divided groups. The mean and standard deviation of the AUC values for each 
class are shown in Table 1. The high mean and low standard deviation of AUC values 
demonstrated a good repeatability and reliability of the proposed system. It is note-
worthy to mention that the nipple region achieved higher AUC values than expected. 
This is due to the effect discussed earlier, where the nipple region is small compared 
with the breast region. The majority of pixels in the breast region were correctly clas-
sified as not belonging to the nipple region. This makes the ROC calculation less 
sensitive to errors in the nipple region so we further evaluated our method using the 
Dice coefficient, which is more sensitive in detecting differences in small regions. 
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Fig. 4. ROC curves for each of the estimated classes 

Table 1. Mean and standard deviation (SD) of AUC values for five random tests of 5-fold cross 
validation  

 Mean of AUC SD of AUC 
Breast 0.9998 0.0000 
Fatty tissue 0.9546 0.0243 
Pectoral muscle 0.9902 0.0059 
Glandular tissue 0.9403 0.0259 
Nipple 0.9964 0.0004 

3.3 Dice Coefficient 

The Dice coefficient (DC) is designed for comparing the similarities of two samples 
[10]. In our case, the probability map of each class is firstly converted to a binary 
mask (1-foreground, 0-background) by setting a threshold (T) of the probability value. 
By overlapping the estimated binary mask with the ground truth mask, the number of 
pixels of the intersection region of the foreground is calculated, denoted as C. If A and 
B are the numbers of foreground pixels in the estimated binary mask and ground truth 

mask respectively, the DC is calculated as  
CA B . The Dice coefficient ranges from 0 

to 1, where 1 indicates perfect match and 0 means no overlapping. Hence the  
DC reflects differences not only in region size but also in location. We present the  
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Fatty tissue:              AUC=0.9374
Pectoral muscle:      AUC=0.9860
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evaluation results in Fig. 5. The horizontal axis in Fig. 5 is the threshold selected for 
converting the estimated probability maps to binary masks, ranging from 0 to 1 with 
step size of 0.01. The vertical axis is the corresponding DC at each threshold level. 
The circle on each line indicates the best DC of each class, which is listed in the  
legend of the figure. It is seen from figure 5, the regions of breast, fatty tissue and 
glandular tissue achieved very good results with DC of greater than 0.9. The DC of 
glandular tissue and nipple are lower, as the DC is very sensitive to small shifts from 
the target location, even they are quite close. As with the ROC performance tests, we 
calculated the DCs for the 5-fold cross validation tests of five randomly sampled 
groups. The mean and standard deviation of the tests are shown in Table 2, which also 
demonstrate a high repeatability of the system.  
 

 

Fig. 5. Dice coefficients (DC) of each class at corresponding probability threshold levels (T) 

Table 2. Mean and standard deviation (SD) of Dice coefficients (DC) for five random tests of 
5-fold cross validation  

 Mean of DC SD of DC 
Breast 0.9958 0.0000 
Fatty tissue 0.9224 0.0006 
Pectoral muscle 0.9047 0.0001 
Glandular tissue 0.6065 0.0011 
Nipple 0.5749 0.0007 
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Pectoral, T=0.52, DC=0.9046
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Nipple, T=0.72, DC=0.5744
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4 Conclusions and Discussion 

We have presented a fully automated and unified framework for simultaneously  
segmentation of the breast region, fatty tissue, glandular tissue, pectoral muscle and 
nipple region. With the estimated segmentation mask and associated probability map, 
the proposed method achieved accurate and robust segmentation, with the area under 
the ROC curve values range from 0.9220 to 0.9998 for the corresponding segmented 
features. We also confirmed the evaluation of our method by Dice coefficient (DC) 
calculation. The DC values of the breast, fatty tissue and pectoral muscle are greater 
than 0.9, where the DC for glandular and nipple are lower. We also demonstrated the 
repeatability and reliability of the system by repeated 5-fold cross validations on ran-
domly sampled groups. We foresee this fundamental tool contributing to breast per-
centage density estimation and robust texture analysis for breast cancer predication, 
and to the development of density and location specific CAD tools. Robust identifica-
tion of the nipple position will facilitate the establishment of a consistent coordinate 
system for bilateral and temporal data comparison.  
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Texture-Based Breast Cancer Prediction in Full-Field 
Digital Mammograms Using the Dual-Tree Complex 
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Abstract. In this paper we describe a novel methodology for texture-based 
breast cancer prediction in full-field digital mammograms. Our method employs 
the Dual-Tree Complex Wavelet Transform for texture-based image analysis 
and representation, and Random Forest classification for discriminative learning 
and breast cancer prediction. We assess the ability of our method to identify 
women with breast cancer using raw images, processed images and Volpara™ 
density maps of two case-control datasets. We also investigate whether different 
regions of the breast exhibit different predictive power with respect to breast 
cancer. The best results are obtained using the processed images of a case-
control dataset consisting of 100 cancers and 300 controls, where we achieve an 
area under the ROC curve of 0.74 for a texture model based on the whole breast 
and an equal area under the ROC curve when the most predictive regional mod-
el is used. 

Keywords: Breast cancer, texture, wavelets, Random Forest, risk, mammo-
gram. 

1 Introduction  

The reliable identification of women at increased risk of developing breast cancer will 
pave the way for personalized screening and early intervention [1]. Percentage mam-
mographic density (PD) is an established independent risk factor for breast cancer, 
and research has also provided evidence that mammographic image texture may con-
tribute differently from PD to breast cancer prediction [2, 3, 4].  

Image-based methods related to breast cancer prediction analyze mammograms of 
controls and cancer-cases prior to diagnosis, and attempt to predict future incidents of 
cancer. They usually assign a single score corresponding to risk for breast cancer to a 
set of mammograms through analysis of the entire breast area of each image [2, 3, 4]. 
However, it is of interest to assess whether different image regions of the breast exhi-
bit different predictive power for breast cancer, since the anatomy of the breast is such 
that different regions have different tissue composition and organization. It is also 
important to determine whether methods perform better on the unprocessed (raw) 
images or on processed versions (often referred to as ‘For Presentation’ images), since 
routine storage of raw images is not widespread. 
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2 Methods 

2.1 Datasets 

We use two different case-control datasets. The first dataset consists of 100 mammo-
grams in which a screen detected cancer was present (denoted ‘cancer-cases’) and 300 
screening mammograms without cancer (denoted ‘controls’). We refer to this as the 
100/300 dataset. In this dataset no matching was performed between cancer-cases and 
controls. The second dataset consists of 113 cancer-cases and 226 controls; we refer 
to this as the 113/226 dataset. In this dataset every cancer-case had been age-matched 
with two controls. There is some overlap between these two datasets, with images 
from a small number of women appearing in both image sets. All images had pre-
viously been anonymized and are FFDM images obtained from the Greater Manches-
ter Breast Screening Service at the Nightingale Breast Centre. All the images had 
been acquired using GE Senographe Essential mammography systems with a pixel 
size of 94.1 µm. The cancer-cases were selected randomly from the most recent 
screen-detected malignant breast cancers identified in the screening database. Interval 
cancers and mammograms showing bilateral breast cancer were excluded. The con-
trols were selected from a list of women who attended for routine screening on two 
occasions and did not have cancer. The list was sorted according to the time interval 
between the two visits. In order to reduce the likelihood that the selected images show 
any early signs of cancer, the images from the earliest visit were selected. For the 
100/300 dataset, the mean age of the cancers and the controls is 60.83 and 58.13 years 
with a standard deviation of 7.38 and 5.91 years respectively. For the 113/226 dataset, 
the mean age of both cancers and controls is 59.03 years with a standard deviation of 
6.42 for the cancer-cases and 6.40 years for the controls. 

For each woman one mediolateral oblique (MLO) view was selected. In all cancer-
cases, the contralateral breast was used as a surrogate for the prior mammogram. For 
the 100/300 dataset, the ratio of left to right MLO views of the controls was con-
trolled to match the cancer-cases. For the 113/226 dataset, the views of the controls 
were the same as their matching cancer-case. For all images, ground truth masks were 
generated interactively. These masks exclude the pectoral muscle and divide the 
breast area into six equally sized regions (fig. 1). The Volpara™ density maps are 
downscaled by a factor of 3 compared to the resolution of the original input images. 
In order to allow for the direct comparison of our framework’s performance on differ-
ent type of images, we also downscaled the raw and processed images by a factor of 3 
before our experiments took place.    

2.2 Dual-Tree Complex Wavelet Transform 

In the first stage of our method we employ the DT-CWT as means of texture-based 
mammographic analysis. Wavelets provide both temporal and spectral information of 
the events of a signal and are widely used in textured-based image analysis [6]. The 
DT-CWT enhances the discrete wavelet transform by improving issues related to shift 
variance and lack of directionality [7]. In this study we perform the DT-CWT in a 
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multi-resolution fashion using an image pyramid. Each level in our pyramid consists 
of a downscaled version of the image of the immediate lower level by a factor of 0.5. 
The overall pyramid consists of six different levels with the lowest level being the 
original image downscaled by a factor of 0.5. For each image in the pyramid the DT-
CWT produces real and imaginary responses at six different orientations (±15°, ±45°, 
±75°), thus providing good angular resolution. For each orientation and scale we 
compute the magnitude and phase of the processed signal. The overall analysis results 
in a signature that consists of 72 features for each pixel, which are its magnitude and 
phase DT-CWT coefficients at different scales and orientations computed via efficient 
interpolation of the pyramid results.  

2.3 Random Forest 

In the second stage of our method we employ a RF classification scheme to learn the 
pixel signatures derived from the DT-CWT coefficients of training images of two 
different classes, cancer cases and controls. RF is an ensemble classifier that consists 
of decision trees combined via a majority voting scheme [8, 9]. In this study, once the 
RF models are trained, they are used to classify each pixel signature of a test image 
into cancer or control. The number of votes of the individual trees represents the con-
fidence of the overall classifier regarding its task. This is considered as a likelihood 
estimate. For each pixel of a specific breast region of a test image, we record the like-
lihood estimate for it being a cancer-case pixel. Subsequently, we compute the risk for 
breast cancer of a test image segment by averaging the likelihood estimates for all 
pixels of this segment. In order to compute the overall risk of a test image, the risk 
estimates of the different segments are averaged. However, we also observe how in-
dividual segments perform, in order to assess whether a weighted sum approach 
shows promise as a future research direction. 

3 Experiments and Results 

We assess the performance of our framework following a 5-fold cross validation ap-
proach. For the experiment related to the 100/300 dataset, in each fold 320 images (80 
cancers and 240 controls) and 80 images (20 cancers and 60 controls) are used for 
training and testing respectively. The images used in each fold are selected randomly. 
For the experiment related to the 113/226 dataset, in the first two folds 273 images 
(91 cancers and 182 controls) and 66 images (22 cancers and 44 controls) are used for 
training and testing respectively, whereas in the remaining three folds 270 images (90 
cancers and 180 controls) and 69 images (23 cancers and 46 controls) are used for 
training and testing respectively. In each fold of this experiment the cancer images are 
selected randomly, whereas the images of the controls are from those matching the 
cancers.  

In this study the RF models consist of 200 trees. Each tree in the forest is trained 
using a random subset of the initial features. In our experiments each random feature  
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subset consists of 8 features. This is derived from the integer square root of 72, which 
is the total number of computed DT-CWT coefficients per pixel. These settings are 
according to published guidelines [8].  

For each regional RF model, 5K pixels are used for training. This size of the train-
ing sample was selected after several experiments aiming at tuning our algorithm. In 
these experiments we used gradually increasing sizes of training pixel samples, which 
varied from 1K to 10K pixels. Our observation was that all RF regional models had 
reached their plateau in terms of their predictive accuracy when pixel samples consist-
ing of 5K pixels were employed for their training. A sample of this size is drawn from 
approximately 16% of the pixels that constitute a breast region. The pixels used for 
training are selected via uniform random sampling. However, in order to allow for the 
direct comparison of our framework’s performance on the three assessed types of 
images, in all three cases the RF regional models were trained using the same random 
training pixel samples.   

Tables 1 and 2 summarize the area under the ROC curve (AUC) results of our ex-
periments. Overall, our framework achieves the highest AUC when it operates on 
processed images. The AUC is also higher when raw images are used compared to the 
AUC obtained when Volpara™ density maps are used. It is noteworthy that in all our 
experiments our texture-based approach achieves better discrimination between can-
cers and controls than volumetric percentage density (PD) computed by Volpara™. 
For the experiment related to the 100/300 dataset, the texture-based model that com-
bines all regional models via averaging achieves an AUC of 0.74 compared to an 
AUC of 0.50 when PD is used (table 1). Similarly, for the experiment related to the 
113/226 dataset, the texture-based model that combines all regional models via aver-
aging achieves an AUC of 0.67 compared to an AUC of 0.50 when PD is used (table 
2). The AUC results of our approach are comparable to those reported in the literature 
when different texture measures are utilized for the same task. 

Table 1. Area under ROC curve (AUC) results of the 5-fold cross validation experiment using 
the 100/300 dataset. The results with an asterisk are statistically significant according to the 
Mann-Whitney U statistic test (p<0.05) and those in bold are the best for each image type. The 
AUC obtained using PD is 0.50. 

       Breast 
       region  
AUC by 
image type 

R1 R2 R3 R4 R5 R6 
Total breast 

area 

Raw 0.63* 0.67* 0.70* 0.71* 0.66* 0.69* 0.70* 
Processed 0.71* 0.70* 0.71* 0.74* 0.69* 0.70* 0.74* 
Volpara™ 0.56 0.61* 0.55 0.52 0.55 0.55 0.59* 
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Table 2. Area under ROC curve (AUC) results of the 5-fold cross validation experiment using 
the 113/226 dataset. The results with an asterisk are statistically significant according to the 
Mann-Whitney U statistic test (p<0.05) and those in bold are the best for each image type. The 
AUC obtained using PD is 0.50.  

       Breast 
       region 
AUC by 
image type 

R1 R2 R3 R4 R5 R6 
Total breast 

area 

Raw 0.61* 0.64* 0.65* 0.60* 0.59* 0.62* 0.63* 
Processed 0.65* 0.63* 0.64* 0.64* 0.67* 0.68* 0.67* 
Volpara™ 0.50 0.60* 0.55 0.57* 0.65* 0.57* 0.61* 

 
Lastly, in this set of experiments we observe that all regional RF models demon-

strate comparable predictive accuracy. The RF regional model that demonstrates the 
highest predictive performance is different for every different type of image used, and 
the differences in the AUC between that RF regional model and the remaining RF 
five regional models are small and potentially within the limits of statistical variation. 
In an attempt to estimate empirically the variability of our experiments, we performed 
10 repetitions of the experiment using the Volpara™ density maps of the 113/226 
dataset. The observed 95% confidence intervals (1.96 × standard error) were found to 
be equal to 0.004 or less. Furthermore, we observe that the texture-based model that 
combines all regional models via averaging achieves an AUC that is close to the AUC 
of the RF regional model with the highest predictive performance. Taking also into 
account the statistical variability, this indicates that averaging all the RF regional 
models may be the most robust/reliable strategy towards the computation of the over-
all risk of a test image. Averaging all the RF regional models is in effect the same 
approach as the one that employs one global RF model trained using samples of pix-
els drawn from the whole breast area via uniform random sampling. 

4 Concluding Remarks 

In this paper we introduced a novel framework for texture-based breast cancer predic-
tion. This employs the DT-CWT for texture-based analysis of FFDMs and a RF clas-
sifier for discriminative learning and breast cancer prediction. The results presented in 
this paper demonstrate that our approach exhibits AUC results comparable to results 
reported in the literature and that it therefore shows promise in tackling the task of 
texture-based breast cancer prediction. Further validation on different and potentially 
larger datasets will be able to support this claim with greater confidence in the future. 

In addition, we assessed our framework with respect to its ability to determine the 
breast cancer status of women on different versions of images that are often available 
in the field of mammography, namely raw images, processed images and Volpara™ 
density maps. The results of the experiments reported in this paper suggest that our 
framework operates well on the three types of images. However, it achieves its best  
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performance when operating on processed images. An explanation for the frame-
work’s lower performance on Volpara™ density maps could be that the measure-
ments in the peripheral region of the breast in this type of image may be unreliable 
due to lack of accurate knowledge of compressed breast thickness in the periphery. 
Due to the random nature of our pixel selection strategy during the construction of the 
training pixel samples for each breast region, these pixels are also included as candi-
dates. Selection of such pixels may have compromised the learning part of the RF 
regional models and subsequently their ability to discriminate between cancer and 
control pixels. It is our intention to investigate this further and assess whether we can 
improve the performance of our framework when using Volpara™ density maps by 
excluding pixels close to the periphery of the breast during the construction of the 
training pixel samples for each breast region. 

Furthermore, in this study we used two different case-control datasets, one consist-
ing of 100 cancers and 300 controls with no matching between cancers and controls, 
and one consisting of 113 cancers and 226 controls with age-matching between can-
cer and controls. The sizes of the two datasets are similar; therefore the differences in 
the results could be attributed to the effect of age-matching. Using the 113/226 data-
set, we observe worse AUC results when our framework operates on raw and 
processed, and slightly better AUC results when it operates on Volpara™ density 
maps, compared to the respective AUC results when the 100/300 dataset is used. The 
effect of age on the texture-based analysis is of particular interest and deserves further 
investigation, as age is a strong risk factor for breast cancer. Also, as a woman ages 
the texture patterns observed in her mammograms will most likely alter, therefore it 
may not be appropriate to train RF models on images drawn from a certain age group 
and apply them on images drawn from a different age group. We acknowledge that 
this potential flaw exists in both experiments presented in this paper. A solution to 
this is to construct n-fold cross validation experiments, in which the age distribution 
of the selected images is the same across all folds.   

Lastly, we also investigated whether different regions of the breast exhibit different 
predictive power with respect to breast cancer. The underlying assumption of this 
hypothesis testing was that the anatomy of the breast is such that different regions 
have different tissue composition and organization. The reported results suggest that 
this hypothesis may not hold and that the analysis of pixels drawn randomly from the 
whole breast area may be the most robust/reliable strategy towards the computation of 
the overall risk of a test image, as long as the size of the pixel sample is large enough 
to represent reliably the total breast area. We also have to acknowledge the fact that 
our approach gives no guarantee that the same sector will correspond to the same 
anatomical area between the breasts of two images. Also the production of the masks 
that define the six regions for each image suffers of subjectivity due to its interactive 
nature. A more robust regional assessment analysis of a mammogram could be based 
on our scheme combined with image registration or on a coordinate system for mam-
mograms similar to the one described by Brandt et al. in [10]. In the future we also 
intend to assess whether texture-based analysis of regions consisting predominantly  
of fatty tissue have different predictive potential with respect to breast cancer from 
regions consisting of dense tissue. In order to assess this hypothesis, we will utilize 
our recent segmentation framework presented in Chen et al. [11], which is able to 
distinguish robustly these two types of tissue. 



216 E. Moschidis et al. 

 

Acknowledgements. We thank Elaine Harkness and staff at the Nightingale Breast 
Centre for assisting us with data selection and retrieval. We thank Mike Berks for 
providing useful comments, insight and code related to the DT-CWT. We would also 
like to acknowledge the assistance given by IT Services and the use of the Computa-
tional Shared Facility at The University of Manchester. We are grateful to Matakina 
Technology Limited for their support in our use of VolparaTM. This work was per-
formed in the ASSURE project, which is supported by the European Union under the 
7th Framework Programme for Health Research. 

References 

1. Evans, D.G.R., Warwick, J., Astley, S.M., Stavrinos, P., Sahin, S., Ingham, S., McBurney, H., 
Eckersley, B., Harvie, M., Wilson, M., Beetles, U., Warren, R., Hufton, A., Sergeant, J.C., 
Newman, W.G., Buchan, I., Cuzick, J., Howell, A.: Assessing Individual Breast Cancer Risk 
within the U.K. National Health Service Breast Screening Program: A New Paradigm for  
Cancer Prevention. Cancer Prevention Research 5(7), 943–951 (2012) 

2. Nielsen, M., Karemore, G., Loog, M., Raundahl, J., Karssemeijer, N., Otten, J.D.M.,  
Karsdal, M.A., Vachon, C.M., Christiansen, C.: A novel and automatic mammographic 
texture resemblance marker is an independent risk factor for breast cancer. Cancer  
Epidemiology 35, 381–387 (2011) 

3. Manduca, A., Carston, M.J., Heine, J.J., Scott, C.G., Pankratz, V.S., Brandt, K.R., Sellers, 
T.A., Vachon, C.M., Cerhan, J.R.: Texture Features from Mammographic Images and Risk 
of Breast Cancer. Cancer Epidemiology Biomarkers and Prevention 18(3), 837–845 (2009) 

4. Häberle, L., Wagner, F., Fasching, P.A., Jud, S.M., Heusinger, K., Loehberg, C.R.,  
Hein, A., Bayer, C.M., Hack, C.C., Lux, M.P., Binder, K., Elter, M., Münzenmayer, C., 
Schultz-Wendtland, R., Adamietz, B.R., Uder, M., Beckmann, M.W., Wittenberg, T.:  
Characterizing mammographic images by using generic texture features. Breast Cancer 
Research 14(2), 1–12 (2012) 

5. Highnam, R., Brady, S.M., Yaffe, M.J., Karssemeijer, N., Harvey, J.: Robust Breast  
Composition Measurement - VolparaTM. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. 
(eds.) IWDM 2010. LNCS, vol. 6136, pp. 342–349. Springer, Heidelberg (2010) 

6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall (2001) 
7. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The Dual-Tree Complex Wavelet 

Transform. IEEE Signal Processing Magazine, 123–151 (2005) 
8. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001) 
9. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996) 

10. Brandt, S.S., Karemore, G., Karssemeijer, N., Nielsen, M.: An anatomically oriented 
breast coordinate system for mammogram analysis. IEEE Transactions on Medical Imag-
ing 30(10), 1841–1851 (2001) 

11. Chen, X., Moschidis, E., Taylor, C., Astley, S.: A Novel Framework for Fat, Glandular 
Tissue, Pectoral Muscle and Nipple Segmentation in Full-Field Digital Mammograms. In: 
Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 201–208. 
Springer, Heidelberg (2014) 

 



 

H. Fujita, T. Hara, and C. Muramatsu (Eds.): IWDM 2014, LNCS 8539, pp. 217–224, 2014. 
© Springer International Publishing Switzerland 2014 

Evaluation of a New Design of Contrast-Detail Phantom 
for Mammography: CDMAM Model 4.0 

Celia J. Strudley and Kenneth C. Young 

National Coordinating Centre for the Physics of Mammography (NCCPM), Guildford, UK 
celia.strudley@nhs.net 

Abstract. The standard test object used to assess the imaging performance of 
digital mammography systems in Europe is the CDMAM model 3.4. The re-
cently released CDMAM model 4.0 differs from the model 3.4 in the layout, 
number and range of thicknesses of gold contrast details used to assess thre-
shold contrast detail detection. In order to evaluate CDMAM 4.0 we compared 
its performance with that of the CDMAM 3.4 using several digital mammogra-
phy systems at various dose levels. We also assessed the reproducibility of the 
results compared to that of the previous model. CDMAM 4.0 results were com-
parable to results for CDMAM 3.4 for detail diameters in the range 0.1 to 
0.5mm and for the larger detail diameters there were increased differences as 
would be expected due to the design differences of the CDMAM 4.0. The re-
producibility of CDMAM 4.0 results was found to be better than that of 
CDMAM 3.4 results. 

Keywords: CDMAM 3.4, CDMAM 4.0, CDMAM Analysis, threshold contrast 
detail detection, image quality, digital mammography. 

1 Introduction 

The standard test object used to assess the imaging performance of digital mammo-
graphy systems in Europe is the CDMAM model 3.41. The recently released 
CDMAM model 4.02 [1] differs from the model 3.4 in the number and range of thick-
nesses of the gold contrast details used to assess threshold contrast detail detection. 
The changes increase the number of details within the critical range for determination 
of threshold gold thickness relative to the minimum acceptable and achievable stan-
dards of image quality defined in the European protocol [2]. The layout of the new 
phantom also differs from the previous model and incorporates additional high con-
trast discs which are placed to assist automatic reading software in locating the exact 
position of the matrix of gold details. Fig. 1 shows images of the two phantoms and 
Fig. 2 shows the ranges of thickness and diameter of the contrast detail diameters for 

                                                           
1  UMC St. Radboud, Nijmegen University, Netherlands. 
2  Artinis, Netherlands. 
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the two phantoms compared to the threshold gold thickness standards defined in the 
European protocol. Automated software, CDCOM3, is commonly used to read 
CDMAM 3.4 images and this has formed the basis for new software, CDCOM44, for 
reading CDMAM 4.0 images. NCCPM have previously developed CDMAM analysis 
software to calculate the predicted human threshold gold thickness results using the 
output from CDCOM for CDMAM 3.4. We have recently upgraded this software so 
that it now performs the same analysis for CDMAM 4.0.  
 
 
 

 

Fig. 1. Mammographic images of the CDCOM 3.4 (left) and CDCOM 4.0 (right) 

In order to evaluate CDMAM 4.0 we compared its performance with that of the 
CDMAM 3.4 by imaging using four digital mammography systems at multiple dose 
levels. We also assessed the reproducibility of the results compared to that of the pre-
vious model. 

                                                           
3  www.euref.org 
4  Artinis, Netherlands. 
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Fig. 2. Comparison of the range of detail diameter and thickness for the two phantoms: Grey 
and black points show the diameter and thickness of each gold disc in CDMAM 3.4 and 
CDMAM 4.0 respectively. The threshold gold thickness limits as defined in the European pro-
tocol are shown, as well as the threshold gold thickness for automatic reading that corresponds 
to the achievable level for human reading. 

2 Method 

A recently manufactured CDMAM 3.4 (serial number 1897) was used to make the 
comparison with the new CDMAM 4.0 (serial number 4004). Sets of sixteen images 
of each phantom were acquired following the method described in the European  
protocol. 

Version 1.6 of CDCOM (currently available for download from the EUREF web-
site5 ) was used to read images of the CDMAM 3.4 test object. For the CDMAM 4.0 
images, the version of CDCOM4 used was cdcom4_artinis1024. 

The results from reading the images of both phantoms were analyzed using our 
own recently revised CDMAM analysis software, which runs on a Java platform and 
deals with both phantom designs in an equivalent manner. The method of analysis has 
been described in detail previously [3]. CDCOM outputs for a set of repeat images are 
averaged to create a detection probability matrix, which is smoothed using a simple  
 

                                                           
5  www.euref.com 
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algorithm. Psychometric curves are fitted to plots of detection probability versus con-
trast, enabling a threshold contrast to be found for each detail diameter. The threshold 
contrasts are converted to predicted human results using previously determined ratios 
for each detail diameter [3]. The threshold contrasts are converted to threshold gold 
thicknesses, and a contrast detail curve is fitted to the results. 

The reproducibility of CDMAM 4.0 results was assessed using a sampling method. 
A large set of 64 images was acquired of the CDMAM 4.0 phantom, and multiple sets 
of 16 images were randomly selected from the set of 64 images. Results for the sets of 
images were analyzed and the means and standard deviations of results were used to 
calculate the coefficient of variation for the predicted human threshold gold thickness 
and for the fit to predicted human threshold gold thickness for sets of 16 images. The 
coefficients of variation were used to estimate the 95% confidence levels for results 
produced by our CDMAM analysis software for the CDMAM 4.0. The error esti-
mates were repeated three times using the three different sets of 64 CDMAM 4.0 
images. Using the same method, the errors were also calculated for the CDMAM 3.4 
for one set of 64 images. 

3 Results 

Threshold gold thickness results for CDMAM 4.0 and 3.4 are shown for each of the 
systems in Figures 3-6. Results for the systems in terms of the differences between the 
results for the two phantoms for the four detail diameters which are common to both 
phantoms are shown in Table 1. 

Table 1. Differences between results for CDMAM 4.0 and 3.4 fit to predicted human threshold 
gold thickness 

 Detail diameter 
System and dose setting 0.1mm 0.25mm 0.5mm 1.0mm 

Hologic Dimensions: Double AEC dose 0% 6% 22% 56% 
Hologic Dimensions: AEC dose -1% 6% 18% 53% 
Hologic Dimensions: Half AEC dose 1% 10% 13% 17% 
Hologic Selenia: AEC dose 18% 13% 15% 34% 
GE Essential: AEC dose 11% 7% 7% 22% 
GE Essential: Half AEC dose -13% -6% -2% 6% 
Fuji Innovality: Double AEC dose -14% -8% -10% -1% 
Fuji Innovality: AEC dose -18% -9% -7% 4% 
Fuji Innovality: Half AEC dose -29% -9% -7% 0% 

Average -5% 1% 5% 21% 
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Fig. 3. Comparison of CDMAM 4.0 and CDMAM 3.4 results for images acquired at three 
different dose levels on Hologic Selenia Dimensions 

 

Fig. 4. Comparison of CDMAM 4.0 and CDMAM 3.4 results for images acquired at one dose 
level on Hologic Selenia 
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Fig. 5. Comparison of CDMAM 4.0 and CDMAM 3.4 results for images acquired at two dif-
ferent dose levels on GE Senographe Essential 

 

Fig. 6. Comparison of CDMAM 4.0 and CDMAM 3.4 results for images acquired at three 
different dose levels on Fuji Amulet Innovality 
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The reproducibility results for sets of 16 images are summarized in Table 2 (unfitted 
data) and Table 3 (fitted data). 

Table 2. Estimated 95% confidence limits on predicted human threshold gold thicknesses for 
the two CDMAMs 

 0.1mm 0.25mm 0.5mm 1.0mm 2.0mm 

CDMAM 3.4 ±9.8% ±10% ±12% ±20% - 

CDMAM 4.0 ±7.0% ±7.0% ±7.9% ±8.0% ±10% 

Table 3. Estimated 95% confidence limits on the fit to predicted human threshold gold 
thicknesses for the two CDMAMs 

 0.1mm 0.25mm 0.5mm 1.0mm 2.0mm 

CDMAM 3.4 ±7.7% ±7.6% ±9.1% ±14% - 

CDMAM 4.0 ±5.3% ±4.5% ±4.8% ±4.6% ±8.5% 

4 Discussion 

In Figures 3-6 and Table 1 it can be seen that there is mostly fair agreement between 
results for the two phantoms for 0.1mm to 0.5mm details, with the majority of differ-
ences between fit to predicted human threshold gold thicknesses being less than 15%, 
and a maximum difference of 29%. For the larger 1.0mm details, differences in re-
sults for the two phantoms are in some cases greater (up to 56%) where image quality 
significantly exceeds the achievable level. This is as expected because the CDMAM 
3.4 does not have sufficiently thin gold thicknesses for the larger details to cover the 
range of automatic threshold gold thicknesses for better than the achievable level of 
image quality. Some of the difference in threshold gold thickness results between the 
two phantoms may be explained by a change in the impact of the heel effect due to 
the difference in layout of the discs. In the past, inter-phantom variations have been 
found for the model 3.4 phantom [4], and some differences between the results for the 
3.4 and 4.0 are therefore to be expected. A limitation of the evaluation carried out was 
that only one sample each of the CDMAM 4.0 and CDMAM 3.4 were used. 

The reproducibility of CDMAM 4.0 results for predicted human gold thicknesses 
and for fitted data were found to be better than for CDMAM 3.4. 

The results of this evaluation are dependant, not only on the CDMAM phantoms 
used, but also on the software used to read the images and analyze the results. Our 
analysis software was designed to carry out equivalent analysis for the two phantoms 
designs. Since this evaluation, CDCOM4 has undergone further development, and the 
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version of CDCOM4 which we used has been superseded. It will therefore be neces-
sary to repeat the evaluation using the latest version of CDCOM4. 

5 Conclusions 

The design of the CDMAM 4.0 is an improvement on the design of the CDMAM 3.4, 
with a range of detail diameters and thicknesses better suited to measuring the imag-
ing performance of good digital mammography systems. For the CDMAM reading 
and analysis software used, CDMAM 4.0 results were comparable to results for the 
older CDMAM 3.4 for detail diameters in the range 0.1 to 0.5mm and for the larger 
detail diameters there were increased differences as would be expected due to the 
design improvements of the CDMAM 4.0. The reproducibility of CDMAM 4.0 re-
sults in terms of fit to predicted gold thickness was also improved. 
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Abstract. Task-based measures estimated by model observers may provide a 
more clinically relevant and objective way of assessing image quality and sys-
tem performance for quality control of digital mammography.  One approach is 
to calculate the required threshold thickness (tt) of a material necessary to ren-
der test objects just visible, using the detectability index (d´) calculated from 
measured system parameters and a non-prewhitening observer model incorpo-
rating an eye-filter and internal noise (NPWE).  Our previous work developed 
methodology for simply measuring the parameters required to calculate d´ and tt 
using a NPWE model.  Here we test the sensitivity of tt to changes in image 
quality by varying entrance exposure and by imaging with and without a grid.  
Calculated tt values are compared with those reported by automated analysis of 
CDMAM (TM) phantom images (CDCOM).  Sensitivity to dose changes was 
seen, and good correlation was achieved between CDCOM and our model.  

Keywords: quality control, threshold thickness, noise-equivalent quanta, model 
observer. 

1 Introduction 

Conventional quality control (QC) methods for digital mammography are limited by 
their subjectivity and by not making full use of the digital image data.  More objec-
tive and analytical measures of system performance such as the detective quantum 
efficiency are challenging to perform and interpret, lacking a clear connection to 
clinical image quality. Using task-based measures based on model observers may 
provide a more clinically relevant and objective way of assessing image quality and 
system performance for QC of digital mammography systems.  One approach is to 
calculate the required threshold thickness (tt) of a material necessary to render test 
objects of varying sizes just visible, using the detectability index (d´) calculated from 
measured system performance parameters and a non-prewhitening observer model 
incorporating an eye-filter and internal noise (NPWE).   

In previous work, we have developed a phantom for measuring the parameters re-
quired to calculate d´ and tt for a NPWE model [1].  The eye filter and internal noise 
parameters were fit empirically to match the results of a 4AFC reader study.   
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Here we test the sensitivity of threshold thickness to changes in image quality by 
imaging at different entrance exposures, with and without a grid.  The results of the 
model are compared with the results of automatically analyzing images of the 
CDMAM phantom (version 3.4, Artinis, St. Walburg 4, 6671 AS Zetten, The Nether-
lands), acquired under the same conditions using the manufacturer supplied software, 
CDCOM (v 1.6). 

2 Methods 

2.1 Model Observer 

The detectability index (d´) of a detection task is a signal to noise ratio. It can be cal-
culated using a non-prewhitening model observer with eye filter and internal noise as 
follows [1]: 

 ΄ Δ ,  , ,, , ,  , ,,  , (1) 

where W is the task function, MTF´ is the adjusted measured system modulation 
transfer function, NNPS is the measured normalized noise power spectrum, E is a 
filter intended to model the contrast sensitivity of the human eye, and ΔS is the radio-
logical subject contrast. Here subject contrast is defined as the signal difference be-
tween the object and the background. It is believed that a human observer cannot 
make efficient use of the information degraded by long-tailed PSFs, as in the scatter 
signal.[2] As a result, the matched filter to mimic the human , , ,  uses the adjusted system ,  which is the sys-
tem MTF with removal of the long-tail component that was due to scatter and/or 
glare. The numerator of equation 1 is the integral of the matched filtered representing 
the perceived signal present in the image. The denominator consists of two terms, the 
first being the integral of the matched filter multiplied by the perceived noise in the 
image and the second is the internal noise of the viewer (Ni). The task function is the 
Fourier transform of the discs being modeled is described by: 

 ,  (2) 

where d is the disc diameter and  is the Bessel function of the first kind.  The 
eye filter it is taken to be of the form: 

 , (3) 

where ρ is the radial spatial frequency. This assumes a radially symmetric eye filter.  
The parameters for the eye filter were taken to be n=0.79 and c=2.69, based on pre-
vious work with a 4AFC reader study involving the detection of discs. 
The internal noise was assumed to be of the form:  

 , (4) 



 Threshold Target Thickness Calculated Using a Model Observer 227 

where αN is the induced internal noise (proportional to the image noise) and β is an 
independent internal noise component. The noise parameters were taken from the 
reader study results to be α=1.61 and β=0.35. 

2.2 System Parameters 

To measure most of the physical parameters required for the model observer a simple 
phantom designed for evaluation of the noise equivalent quanta (NEQ) was imaged.  
This phantom consisted of stacks of 1 cm thick slabs of PMMA to create total thick-
nesses of 3, 4 or 8cm, a slanted brass edge at a level 2cm above the breast support 
plate for the measurement of the system modulation transfer function, , and a lead 
disc, positioned on the top surface of the phantom, for the estimation of the scatter 
fraction. A uniform region of the phantom was used for the measurement of the noise 
power spectrum. The measurement of MTF and NPS was done following previously 
published methodology [3]. 

For the comparison with CDMAM results, the radiological contrast for the calcula-
tion of d´ and tt was determined from signal levels in regions of interest behind and 
adjacent to the 1 mm diameter gold discs on the CDMAM phantom, over the thick-
ness range of 0.10 to 0.71 μm of gold. The signal difference values from repeated 
images of the CDMAM phantom were averaged together to reduce variability caused 
by measuring in the small regions of interest behind the discs. A linear least squares 
fit between gold thickness and ΔS was then performed.  

2.3 Imaging Conditions 

Images were acquired on a Senographe Essential (GE Healthcare, Chalfont, St. Giles, 
UK). The standard technique was chosen to closely match the parameters selected by 
the automatic exposure control when 3, 4 or 8 cm-thick uniform blocks of PMMA 
were in the beam and the “CNT” mode (optimized for image contrast) was selected.  
The technique factors are listed in Table 1. Images were taken at the standard tech-
niques with and without the grid in place.  Images were also taken at approximately 
half and double the standard mAs, with the grid in place, for the 4 cm phantom (63 
mAs and 225 mAs) to evaluate the sensitivity of tt to dose.  For each imaging condi-
tion, 12 images were taken of both the NEQ phantom and the CDMAM phantom. 

Table 1. Technique factors used for imaging of the NEQ and CDMAM phantoms. Techniques 
indicated with an asterisk (*) were those closest to the technique selected by the AEC, and were 
used for images with and without grid. 

Phantom Thickness (cm) Anode Filter kV mAs MGD (mGy) 
3* Mo Mo 26 63 1.3 
4 Mo Rh 27 63 1.2 
4* Mo Rh 27 110 2.1 
4 Mo Rh 27 225 4.2 
8* Rh Rh 31 160 3.0 
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2.4 Automatically Analysing the CDMAM Images 

The images of the CDMAM phantom were automatically analysed to determine the 
threshold thicknesses of gold using the CDCOM software (v 1.6), as described by 
Karssemeijer and Thijssen[4].  The 95% confidence intervals (1.96 × the standard 
error) in the resulting values of tt were taken from the estimates generated using the 
Guildford CDMAM Analyzer1 software, version 1.5.5. 

The CDCOM software is known to over-estimate the threshold thicknesses of the 
different diameter discs compared to human readers.  We attempted to account for 
this by applying the correction proposed by Young et al.[5], using equation 5 

 predicted auto  (5) 

where Tauto is the threshold thickness determined by the CDCOM software, Tpredicted is 
the predicted threshold thickness seen by human readers and a and m are fitted para-
meters.  For this work we used the published parameters, a= 1.192 and m = 0.880. 

3 Results and Discussion 

Preliminary results for different entrance exposures and imaging with and without the 
grid are shown in Figure 1, where threshold thickness is plotted against disc diameter. 
Calculated values of tt from measurements using 12 separate repeated images of the 
parameter measurement phantom showed good repeatability with an average coeffi-
cient of variation (COV) of 0.01% and a maximum COV of 2.43%.  Qualitatively the 
values of tt calculated through the model and using CDCOM track as expected when 
the dose is changed. When the grid is removed, no change in tt is seen with either 
method for 3 and 4 cm thick phantoms, while for the  8 cm thick phantom a modest 
decrease in threshold thickness is seen when using a grid, which is consistent with 
recent reports in the literature[6].  The modeled tt values are plotted versus the cor-
rected results of running the CDCOM software on images of the CDMAM phantom 
in Figure 2. A linear least squares fit between the two approaches gives a Pearson’s 
correlation coefficient of 0.92, showing good correlation, however, even with the 
applied correction to make the results match a set of human readers, CDCOM reports 
higher performance compared to our model, with a lower value of tt.  The discrep-
ancy between the two approaches requires further investigation to better determine the 
relationships with human observer performance.  It may be that the parameters used 
in our model need adjustment for use with the greater range of disc diameters present 
in the CDMAM phantom.  The reader study used to establish the parameters used 
discs ranging from 0.625 to 2.5 mm, while the CDMAM phantom diameters range 
from 0.06 to 2.0 mm. 

                                                           
1  http://www.euref.org/downloads?download=41:cdmam-analyser-

version-1.5.5 
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Fig. 1. Threshold thicknesses for different disc diameters, as measured using the NPWE model 
and CDCOM software.(a), (b) and (c) show system behaviour with and without a grid for the 
different phantom thicknesses while (d) shows the effect of varying the entrance exposure for 
the 4 cm thick phantom with the grid in place.  The error-bars shown for the CDCOM meas-
urements are 2x the estimated standard error, as reported by the CDMAM analyser software.  

In future work, the measurement phantom will be modified to include gold discs of 
different thicknesses to directly measure subject contrast in a single image.  The sen-
sitivity of tt to other imaging conditions will be tested, including varying beam qual-
ity, and using an air gap with and without a grid.  The model will also be further 
validated with a human reader study on the mammography system used here.  The 
greater simplicity of the measurements with this technique than CDMAM, the ability 
to extend the model to more realistic imaging targets than discs and its potential to 
predict clinical image quality encourages further work.  In the future we plan to in-
corporate more anatomic-like backgrounds and other shapes and discrimination tasks. 
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Fig. 2. Threshold thicknesses as calculated using the NPWE model observer plotted versus 
those measured using the CDMAM phantom and CDCOM software. The solid line shows the 
linear-least squares fit between the two. 
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Abstract. Contrast-enhanced digital mammography (CEDM), promises to im-
prove diagnostic accuracy as an adjunct to mammography, especially for wom-
en with dense breasts. Here we review 98 enhancing lesions from a previously 
published dual-energy CEDM study of 120 women to identify enhancing lesion 
morphologies and to characterize their sizes and margins as detected in CEDM. 
We have designed a phantom based on these clinical data that incorporates rea-
listic enhancing lesion morphologies for CEDM evaluation. The phantom in-
cludes elements of four lesion types observed in CEDM, which broadly follow 
analogous categories developed from the MRI Breast Imaging, Reporting and 
Data System (BI-RADS) lexicon. This phantom uses solid iodinated plastic fea-
tures with accurate iodine concentrations for detection sensitivity experiments. 
We believe that comparisons of the lesion morphologies through quantitative 
metrics and reader studies will be useful to test lesion classification and dis-
crimination tasks that can contribute to CEDM performance evaluation. 

Keywords: CEDM dual-energy mammography iodine morphology phantom. 

1 Introduction 

Contrast-enhanced digital mammography promises to be a cost-effective and accurate 
alternative to breast MRI to assess hypervascularized tissues that may be related to 
tumour angiogenesis [1, 2]. One approach to CEDM is a dual-energy (DE) technique, 
where an iodinated contrast agent is administered intravenously and then a pair of 
low-energy (LE) and high-energy (HE) mammograms are acquired with mean x-ray 
beam energies below and above the iodine K-edge [3]. The LE and HE images are 
combined in a manner to cancel the appearance of normal breast tissue and to reveal 
regions of increased iodine uptake. Currently, there are no standardized classifications 
for radiologists reporting on CEDM tumour morphology, and relatively few published 
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observations of lesion enhancement types. Investigators have generally relied on the 
MRI BI-RADS lexicon to provide guidance on classifications for enhancing lesions in 
CEDM [1, 2, 4]. In this work, we review enhancing lesion morphologies observed by 
Dromain et al. in a DE CEDM clinical pilot study of 120 women who were recalled 
from screening with unresolved findings after mammography and ultrasound [4]. The 
shape, margin appearance and extent of the enhancing regions were analyzed. 

Typically discs or spheres are used as physics test objects for CEDM [5]. These 
simplified lesions may not represent the characteristics of real enhancing lesions such 
as the margin appearance, and consequently may not assess the frequency content 
important for diagnostic detection and discrimination tasks. Thus, the clinical charac-
teristics of enhancing lesions on CEDM evaluated in this work as used to design a 
physical phantom with corresponding simulated lesions. We present a novel descrip-
tion of a CEDM morphology phantom with iodinated features, and perform prelimi-
nary detection sensitivity testing of these inserts under clinical imaging conditions. 

2 Methods 

2.1 CEDM Lesion Morphology 

In the original clinical study [4], eight separate categories were used to classify the 
morphology of enhancing lesions. These categories included focus < 5 mm, focal 
mass, focal zone, regional, multiple regional, linear, ductal or segmental, and diffuse. 
In the present work these categories were pared down to three main types to be more 
consistent with those defined in the MRI BI-RADS lexicon and based on experience 
from the clinical study [6]. Some of the previous categories were combined to update 
the CEDM morphology lexicon as: 1) focal mass (focus < 5 mm, focal mass, focal 
zone); 2) regional (regional, multiple regional, and diffuse) and; 3) ductal or segmen-
tal (linear, and ductal or segmental). The numbers of malignant and benign lesions in 
each category were determined to get an indication of the morphology type preva-
lence, and their positive predictive values (PPV) in this diagnostic population. 

The margin appearance and lesion maximum extent were evaluated by Dr. Dro-
main in the original study, with the margins classified as smooth, irregular and spicu-
lated. The frequency of margin appearance and lesion extent for each enhancing  
lesion type were studied here to refine the enhancement morphology characteristics. 

2.2 Phantom 

Using a series of simplified shapes, phantoms with iodinated features at realistic con-
centration were developed to represent enhancing CEDM lesion morphologies. The 
margin characteristics, internal enhancement, and lesion sizes were designed to be 
consistent with those observed in the clinic and to present a representative visual test. 

For this first-generation morphology phantom, two margin types, smooth and spi-
culated, and two types of internal enhancement, homogeneous and rim, were selected 
for phantom testing. Rim enhancement refers to the appearance of enhancing lesions 
when a highly vascularized region surrounds a necrotic core, which was not reported 
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in the Dromain et al. dataset, but is commonly seen on breast MRI [7], and has been 
previously reported in CEDM [8]. Based on the observed margin types and their max-
imum extents, lesion diameters of 5 and 10 mm were specified for the outer diameters 
of central masses in each of smooth and rim morphologies. Rim thicknesses of about 
1 to 2 mm are expected from breast MRI and histology observations. This was simu-
lated by creating a shell of iodinated material of 2 mm thickness around a central core 
without iodine. Finally, a linear enhancement morphology was designed to represent 
ducts with 1, 2 and 3 mm diameters, with the smallest diameter also presenting a test 
for spicule identification. Schematics of the morphology designs are shown for one 
half of each phantom type in Fig. 1. In each case, two mirrored phantom sections, 
each 1 cm thick and with hemisphere or half-cylinder iodinated inserts, were stacked 
to compose a 2 cm thick phantom with three-dimensional (3D) features. 

a) b)  

c)   

Fig. 1. CEDM morphology phantom schematics for: (a) smooth mass; (b) rim enhancement; 
and (c) ductal/segmental and spiculated. Morphologies (a) and (b) have 5 and 10 mm central 
masses, and (c) has 1, 2, and 3 mm diameter cylinders. Each schematic shows a 1 cm thick half 
of a two-part phantom, that together compose a 2 cm thick phantom with 3D features. 

Iodinated features were created by hollowing out epoxy sections to form a mould into 
which uncured iodinated epoxy could be poured. The iodinated epoxy was made us-
ing a procedure previously developed to have good 3D uniformity and concentration 
accuracy [9]. Iodine concentrations of 1 and 2 mg/mL were used for the central 
masses, with cylinder concentrations selected to be 6 and 10 mg/mL, near a subjective 
detectability threshold determined for a 4 cm thick, 50% fibroglandular, 50% adipose 
breast. Attenuation measurements were made to verify iodine concentrations using 
iodinated samples cured in spectrophotometer cuvettes (cat.# 67.738, Sarstedt, Mon-
treal QC, Canada). The samples were irradiated using a microfocus x-ray tube, and 
detection was performed using a CdTe spectrometer (Amptek, Bedford MA, USA), 
with corrections applied for K-fluorescence, charge trapping and pile-up [10, 11]. 

2.3 Detection Sensitivity 

A feature detection sensitivity test was performed by imaging each morphology phan-
tom stacked with 2, 4 and 6 cm poly(methyl methacrylate) (PMMA) to simulate a 
range of breast thicknesses and compositions. Images were acquired with a commer-
cial DE CEDM system (Senobright® and Senographe® Essential, GE Healthcare, 
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Chalfont St. Giles, UK) using automatic exposure control (AEC)-selected technique 
factors. DE image decomposition was performed using an algorithm packaged with 
the system [12]. 

Lesion detection was quantified in terms of the signal-difference-to-noise ratio 
(SDNR) measured in DE decomposed CEDM phantom images. Regions of interest 
(ROI) for SDNR measurement were manually placed in a central region of the iodi-
nated features to determine the average signal and an ROI in the adjacent surrounding 
background to determine the average background intensity. For consistency, the same 
signal and background ROI were used for each measurement of a particular morphol-
ogy phantom combined with a given thickness of PMMA. Noise was defined as the 
standard deviation of the image pixel intensities within background ROI. 

3 Results 

3.1 CEDM Lesion Morphology 

The numbers of enhancing malignant and benign lesions of each morphology type, 
and an example case to illustrate the category are shown in Table 1. 

Table 1. Summary of 98 enhancing lesions from Dromain et al. DE CEDM study [4], classified 
by lesion enhancement morphology type 

Enhancement 
morphology (#) 

Cancer Benign 
Example Lesion 

               LE                                         
DE 

Focus / focal 
mass (89) 

65 24 

 

Regional (6) 3 3 

 

Ductal / seg-
mental (3) 

3 0 
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Given that mass enhancement was the most commonly observed morphology type, 
there was a large enough sample to study the characteristics of these enhancing re-
gions further. Margin appearance was identified based on 3 types: smooth, irregular, 
and spiculated. Fig. 2 shows frequency histograms of the enhancing mass lesion mar-
gin types and maximum extents. The average maximum extent of all enhancing 
masses was 15 ± 11 mm (range 4 to 65 mm), with similar size distributions between 
cancers and benign lesions. 

a)  b)  

Fig. 2. Enhancing mass characteristics on DE CEDM by; (a) margin type; (b) and maximum 
extent for cancerous (shaded) and benign lesions 

3.2 Phantom Evaluation 

Example DE decomposed images of each phantom type and an example CEDM clini-
cal case with corresponding enhancement morphology are shown in Fig. 3. 

a)   b)   c)   

Fig. 3. (a) to (c) Examples of clinically observed lesions in CEDM images are on the left and a 
DE CEDM image of the corresponding phantom is on the right for: (a) smooth mass; (b) rim 
(single-energy CEDM clinical image); and (c) ductal/segmental enhancement morphologies. 
All phantom images show a 2 cm thick phantom acquired with an AEC-selected technique. 

The SDNR measured from DE decomposed phantom images versus the iodinated 
feature outer diameters are plotted for each combination of the 2 cm morphology 
phantoms, as imaged with 2, 4 or 6 cm blocks PMMA placed on top of the phantoms 
in Fig. 4(a), (e) and (i). To illustrate the relative change in the detectability of the 
morphology inserts that the SDNR values represent, the DE CEDM images of the 
inserts are also shown in Fig. 4 for each imaging condition. All example DE decom-
posed iodinated insert images are displayed at the same window width of 50 ADU 
and a constant level relative to the image background signal intensity. 
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a)  b)   c)  d)  

e)  f)  g)  h)  

i)  j)  k)  l)  

Fig. 4. (a) to (d) 1 mg/mL smooth mass; (e) to (h) 2 mg/mL rim; and (i) to (l) 10 mg/mL duc-
tal/segmental and spiculated enhancement morphologies. The plots in (a), (e) and (i) show 
SDNR versus feature outer diameter with 2 (), 4 (), and 6 cm () PMMA stacked on the 2 
cm phantom. Phantom images shown with 2 cm (b, f, j), 4 cm (c, g, k) and 6 cm (d, h, l) 
stacked PMMA. All DE phantom images are displayed with equal window widths of 50 ADU. 

4 Discussion 

In a review of 98 enhancing lesions in 120 clinical CEDM cases, 89 enhancing lesions 
(91%) were found to be of a mass-like morphology, with a PPV of 72% for malignan-
cy. Most of these enhancing mass lesions had irregular (47%) or spiculated (33%) 
margins. Although mass-like lesions were most common in this study population, we 
recognize that the sample size is small, especially for benign lesions, and larger stu-
dies are needed to have adequate statistics to make strong conclusions about CEDM 
morphology frequency. Also, the clinical protocol and imaging techniques applied 
likely play important roles in determining the observed morphologies. For example, it 
is possible that the imaging system was not sensitive to enhancement from very small 
features such as spicules or ducts, and regions that may have otherwise expressed 
these types of enhancement morphologies may have been missed. Therefore, it is one 
of the goals of this study to develop a morphology phantom that can be used to study 
such system sensitivity to lesion morphology. 
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Using the results of the clinical morphology review as a guide for phantom design, 
we incorporated iodinated features to cover the typical lesion enhancement shapes. 
Towards testing system detectability limits for these morphologies, the feature sizes 
and iodine concentrations were carefully selected to present both an 'easy' test with an 
average clinically observed size and iodine concentration (e.g., 10 mm diameter and 2 
mg/mL iodine), and a difficult test (e.g., 5 mm diameter and 1 mg/mL iodine). 

The SDNR measurements demonstrated that quantitative analysis of the morphol-
ogy features can be useful to guide morphology-based detection limits. For example, 
the DE images in Fig. 4(j) to (l) illustrate that the cylinder conspicuity correlates with 
SDNR plotted in Fig. 4(i), with a subjective detection cutoff of about 0.3. It is encour-
aging that this same SDNR detectability threshold of about 0.3 appears to also apply 
to the smooth mass and rim enhancement morphologies since this threshold should be 
independent of the lesion characteristics. However, although the absolute values of 
the SDNR are roughly equivalent between the different morphologies presented in 
Fig. 4, each of the morphology phantoms analyzed has a different iodine concentra-
tion. While it is reasonable that a tumour with a large amount of angiogenesis around 
its rim could have a higher iodine concentration within the rim (i.e., 2 mg/mL) than 
that throughout a comparable solid smooth mass (i.e., 1 mg/mL), a very high iodine 
concentration of 10 mg/mL is required for similar detection of the small linear fea-
tures. Such a high iodine concentration may not be physiological, and suggests that 
the CEDM system is likely limited for the visualization of the ductal/segmental and 
spiculated morphologies. This finding may at least partly explain the low number  
of lesions with ductal/segmental enhancement in Table 1. One hypothesis to explain 
the comparatively high numbers of enhancing masses with spiculations is that the  
conventional mammogram, read in combination with the CEDM, influenced the radi-
ologist's interpretation of the margin appearance on CEDM. It is also possible that 
spicules appeared to be visible on CEDM due to motion artifact in the images. 

5 Conclusions 

A review of a DE CEDM clinical study with 98 enhancing lesions over 120 cases was 
carried out to characterize the morphology of these enhancing lesions. Common le-
sion shapes, margins and extents of enhancement were identified. These features were 
used to guide the design of a morphology phantom that can be used to test system 
detection limits of these enhancement morphologies. This type of sensitivity testing 
can be used to improve system performance and guide radiologist morphology inter-
pretation through an understanding of the system limitations. 

Apart from the assessments of lesion detectability considered here, these phantoms 
could be used to test classification and discrimination tasks for a comprehensive 
CEDM performance evaluation. Also, their 3D nature allows for a comparison  
with CE breast tomosynthesis/CT. In future work we suggest the use of a metric that 
accounts for lesion spatial frequency content in a comprehensive manner, such as a 
detectability index, where the margin appearance has greater importance than in 
SDNR. The iodinated features could also be revised to test different tasks such as  
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diameter discrimination, with linear features of the same length at different diameters, 
rather than discrimination between identical shapes at difference scales. In addition, a 
human reader study is important to calibrate detectability limits. 
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Abstract. The purpose of this study is to investigate the categorization
and variation of serial mammogram pairs in dense and non-dense classes.
When introducing density based stratified screening, the differences in
density between screening rounds should be as small as possible to pre-
vent women and clinicians losing confidence in the stratification scheme.
A total of 8843 mammogram pairs (current and prior, mean screening in-
terval 22.65 months) were categorized in dense and non-dense cases based
on percent density and volume of glandular tissue. The reproducibility of
the categories (prior to current) was tested with simple kappa statistics
and the causes for a category change were investigated.
When comparing two examinations, the majority of pairs remained in
the same category, with κ= 0.783 and κ = 0.696 based on percent den-
sity and glandular tissue volume respectively. For most women, glandular
tissue volume and percent density decreases with age. However in 3.2%
(4.6%) of the pairs an examination was classified as non-dense followed
by dense based on percent density (glandular tissue volume). Natural cir-
cumstances can lead to a change in category, for example glandular tissue
volume decreases with age, or increases with the use of HRT. However
a higher reproducibility in categorization in dense and not-dense classes
based on automatic breast density calculations was found, than reported
in the literature based on visual assessment. The reproducibility was
higher when using percent density for classification.

Keywords: Digital mammography, volumetric breast density, temporal
change.

1 Introduction

An association between breast density and breast cancer risk is well
established[1,2]. Several studies show that the risk of developing breast can-
cer is 1.8-6.0 times higher for women with dense breasts than for women in the
lowest density category[4,5]. The most common breast density reporting method
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uses the four density categories of the Breast Imaging Reporting and Data Sys-
tem (BI-RADS)[6]: (1) almost entirely fat (2) scattered fibroglandular densities
(3) heterogeneously dense and (4) extremely dense.

Several clinics offer women with dense breasts, which is BI-RADS category
3+4, additional screening with (automatic 3D) ultrasound. It is important to
have a consistent, objective and reproducible measurement of breast density
to determine an unambiguous classification and to maintain the confidence of
the women and clinicians in the stratification process. The BI-RADS categories
are not suited for this, as several studies show a high inter and intra reader
variability[7]. The temporal aspect of classification is important, as it may make
women insecure if additional screening is offered in an irregular pattern.

To objectively investigate the variations we calculated percent density: glan-
dular tissue volume over breast volume. Each examination was categorized into
dense or non-dense classes based on glandular tissue volume or percent density.

2 Material

Screening mammograms from the Dutch Breast Cancer Screening Program,
Bevolkingsonderzoek Midden-West were used. The full field digital mammo-
grams (FFDM) with a pixel size of 70 μm were acquired on a Hologic Selenia
system for the period 2006-2008. All women with two digital examinations and
available Volpara score (VolparaAlgorithm 1.5b, Matakina) were included. For
mammograms with breasts implants or if the breast did not fit on the detec-
tor, no Volpara score was available. This resulted in 8844 mammogram pairs.
Women in the Netherlands aged 50-75 receive a biennial invitation for breast can-
cer screening, the average screening interval in our case sample is 22.65 ± 1.89
months. After the introduction of the first FFDM system at the screening center
in 2003, women who came for their first screening were given a higher priority
for digital screening than older women. Women who started with digital screen-
ing continued with FFDM, so no film mammograms are available for them, thus
more FFDM data is available for women aged 60 or under.

3 Methods

For all images, breast volume, volume of glandular tissue, and percent density
were calculated with Volpara including tilt correction. Volpara averages results
obtained for available images to come to a single score.

All examinations were categorized in dense and non-dense using the Volpara
density grade (VDG). VDG is a four point scale analogous to the BI-RADS
categories and based on percent density[8]. Studies with a VDG one and two
classification were categorized as non-dense; studies with a VDG three and four
as dense.

To find a threshold for the division into dense and non-dense classes using
glandular tissue volume, we required that the percentage of studies categorized
as dense was the same as for percent density.
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Density assessment at both screenings was analyzed using simple kappa statis-
tics. For women with a dense categorized current examination, while the previ-
ous one was categorized as non-dense, the change of breast and glandular tissue
volume, and percent density was analyzed using box plots.

We performed subgroup analysis for different age groups, depending on age
at prior screening. The groups were: age <55, 55-59, 60-64, 65-69, and age ≥70.

4 Results

The categorization of all studies into dense and non-dense classes based on per-
cent density is presented in Table 1a. The second screening is represented by the
columns, the previous study is given per row. Most women have two studies cat-
egorized as non-dense (57.8%). Both examinations are labeled as dense in 32.1%
of the pairs. The kappa value is 0.783 (0.679-0.796 95% CI). The well-known de-
crease in density is visible, the percentage of pairs with two dense examinations
decreases with age.

Table 1b shows the categorization into dense and non-dense classes based on
glandular tissue volume. For most age groups, the percentage of pairs with both
examination in the same category is less than compared with the categorization
based on percent density, a kappa of 0.696 (0.680-0.712 95% CI) was calculated.
The number of pairs with one dense and one non-dense examination increased
compared with percent density.

Fig. 1 compares the subgroup ’non-dense → dense’ to all pairs. The difference
in breast and glandular tissue volume, and percent density is given as percent-
age of the prior screening, eg (V2-V1)/V1 with V1 and V2 the breast volume
at the prior and current screening respectively. On average, breast volume did
not change between two screenings. The glandular tissue volume decrease with
subsequent screening causes a decrease in percent density. Using percent den-
sity, it can be observed that a density increase can be caused by an increase of
glandular tissue volume and a decrease of the measured breast volume. When
using glandular tissue volume to classify in dense and non-dense classes, women
showed an increase in both breast and glandular tissue volume.

5 Conclusion and Discussion

In this study, we demonstrated a high reproducibility of breast classification
in dense and non-dense classes in two serial examinations. 89.7% of the mam-
mogram pairs remained in the same category. In 3.2% of the pairs, a percent
density increase led to a change from the non-dense to dense category. When
using glandular tissue volume to classify in dense and non-dense classes, less
pairs had the same category: 4.6% of the pairs have a non-dense prior and a
current dense mammogram. On average, the breast volume and glandular tis-
sue volume increased in these pairs. This might be caused by inaccuracy of the
breast thickness measurement reported in the dicom header of the images, a
property used by Volpara. As the breast thickness inaccuracy effects the breast
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and the glandular tissue volume in the same way, the effect is less strong on
percent density.

We compared our results to visual density grading by radiologists using results
by Spayne[9]. In the study, 34 radiologists interpreted between 119 and 1033 film
mammogram pairs in a total of 11755 women. The screening interval of these
pairs was between 3 and 24 month. When summarizing the cases with BIRADS
1 and 2, and 3 and 4 to non-dense and dense categories respectively, 7.1% of
the pairs have a prior categorized as non-dense with a dense current. A higher
reproducibility is observed using an automatic breast density estimate than with
using visual assessment by an radiologist.

Volpara provides us with a 4 point density scale, while in this paper a bi-
nary classification is used for the analysis. This indicates a loss of information.
However for breast density stratified screening or additional screening with ul-
trasound, a binary categorization in dense and non-dense classes is necessary as
the advice is either positive or negative for an additional examination. Here we
suppose that breast density itself is the basis for the stratification and we inves-
tigated the temporal consistency. Though a change in density could be used as
additional factor in the stratification process. Then the 4 point scale or percent
breast density should be used instead of the binary classification.

Table 1. Number of pairs (%) categorized in non-dense and dense for the different age
groups. The second column gives the number of current non-dense examinations, the
third column the current dense examinations. The categories are percent density (a)
or glandular tissue volume (b) based.

(a) (b)
current current

age non-dense dense non-dense dense
all pairs non-dense 5109 (57.8) 280 (3.2) non-dense 4928 (55.7) 408 (4.6)

dense 618 (7.0) 2836 (32.1) dense 851 (9.6) 2656 (30.0)

< 55 non-dense 1781 (46.0) 100 (2.6) non-dense 1953 (50.5) 180 (4.7)
dense 308 (8.0) 1680 (43.4) dense 391 (10.1) 1345 (34.8)

55 – 59 non-dense 1280 (59.4) 65 (3.0) non-dense 1200 (55.7) 108 (5.0)
dense 167 (7.7) 643 (29.8) dense 203 (9.4) 644 (29.9)

60 – 64 non-dense 890 (67.3) 65 (4.9) non-dense 782 (59.1) 58 (4.3)
dense 75 (5.7) 293 (22.1) dense 115 (8.7) 368 (27.8)

65 – 69 non-dense 823 (76.1) 33 (3.0) non-dense 694 (64.1) 44 (4.1)
dense 50 (4.6) 176 (16.3) dense 107 (9.9) 237 (21.9)

≥ 70 non-dense 335 (80.9) 17 (4.1) non-dense 299 (72.2) 18 (4.3)
dense 18 (4.3) 44 (10.6) dense 35 (8.5) 62 (15.0)
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Fig. 1. Change in breast and glandular tissue volume, and percent density as percent-
age of the quantity at the prior screening, for the subset where the category changed
from non-dense to dense based on percent density (left/red) and glandular tissue vol-
ume (middle/blue), and the full data set (right/black).

Acknowledgements. The research leading to these results has received fund-
ing from the European Union’s Seventh Framework Programme FP7 under grant
agreement no 306088.
Special thanks to Bevolkingsonderzoek Midden-West for providing the images
and Ralph Highnam at Volpara for providing access to the Volpara Software.

References

1. Wolfe, L.N.: Risk for breast cancer development determined by mammographic
parenchymal pattern. Cancer 37, 2486–2492 (1976)

2. van Gils, C.H., et al.: Changes in mammographic breast density and concomitant
changes in breast cancer risk. Eur. J. Cancer Prev. 8(6), 509–515 (1999)

3. McCormack, V.A., et al.: Breast density and parenchymal patterns as markers of
breast cancer risk: A meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15, 1159
(2006)

4. Boyd, N.F.: Quantitative classification of mammographic densities and breast can-
cer risk: results from the Canadian National Breast Screening Study. J. Natl. Cancer
Inst. 87(9), 670–675 (1995)



244 K. Holland et al.

5. Mandelson, M.T.: Breast density as a predictor of mammographic detection: compar-
ison of interval- and screen-detected cancers. J. Natl. Cancer Inst. 92(13), 1081–1087
(2000)

6. American College of Radiology Breast Imaging Reporting and Data System
(BI-RADS), 2nd edn. (1995)

7. Ciatto, S., et al.: Categorising breast mammographic density: intra- and interob-
server reproducibility of BI-RADS density categories. The Breast 14, 269–275 (2005)

8. Highnam, R., et al.: Assessing breast density change over time. In: 5th Inter-
national Workshop on Breast Densitometry and Breast Cancer Risk Assessment,
p. 38 (2011)

9. Spayne, M.C., et al.: Reproducibility of BI-RADS Breast Density Measures Among
Community Radiologists: A Prospective Cohort Study. Breast J. 18(4), 326–333
(2012)



Breast Density Classification Based

on Volumetric Glandularity Measured
by Spectral Mammography

Henrik Johansson, Miriam von Tiedemann, and Björn Cederström

Philips Women’s Healthcare,
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Abstract. Observations of significant variability in radiologists’ clas-
sification of breast density signals the need for objective classification
methods. In this study, we develop a model for a radiologist’s BI-RADS
classification based on the volumetric glandularity image measured by
spectral mammography and a reader study where ten MQSA certified
radiologists assigned BI-RADS scores to 300 screening cases. Several
combinations of features such as area glandularity based on a certain
volumetric glandularity threshold, breast thickness and the spread of
glandular tissue were tested as linear classifier parameters. Logistic re-
gression was used to optimize the parameters and cross-validation to
assess the agreement with the radiologists’ majority vote, regarded as
truth. We show a clear indication that the automatic classification al-
gorithm performs on par with or better than the average individual
radiologist.

Keywords: breast density, spectral imaging, glandularity, classification.

1 Introduction

It is well established that breast density, i.e. the amount of fibroglandular tis-
sue in the breast, is directly correlated to the risk of developing breast cancer
[1,2], and to the diagnostic accuracy of mammography [3,4]. Quantifying breast
density shows great promise in clinical decision support, e.g. in individualizing
screening programs. The most common way of quantifying breast density is by
subjective assessment by a radiologist according to the ACR BI-RADS breast
composition categories [5]. However, a significant observer variability has been
seen, indicating uncertain reproducibility [6,7].

In this study, we aim to develop an objective model of a radiologist’s BI-
RADS classification, using spectral breast density measurement on a commer-
cially available photon counting mammography system [8], extraction of features
from a volumetric glandularity image and a linear classifier. The model is based
on the results of a reader study where ten MQSA certified radiologists assigned
BI-RADS scores to 300 screening cases.
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2 Materials and Methods

2.1 Measuring Volumetric Glandularity

For the spectral mammography system, detected photons are binned according
to their energy, into a low energy and a high energy bin. Obtaining the volumetric
density from spectral x-ray projection data corresponds approximately to solving
the following equation:

Ibin =

∫ E2

E1

ν(E)S0(E) exp[−μtissue(E, g)× tbreast]dE, (1)

where Ibin is the photon count in the energy bin defined by the threshold energies
E1 and E2, ν is the quantum efficiency, S0 is the incident spectral density, and
tbreast is the thickness of the traversed breast tissue of glandularity g.

For most natural body constituents at mammographic x-ray energies, x-ray
attenuation is dominated by only two interaction effects: photoelectric absorp-
tion and scattering processes. The x-ray attenuation depends on density and
atomic number, resulting in a unique attenuation energy dependence per mate-
rial. This makes it possible to represent the attenuation of one material with a
linear combination of any two reference materials according to:

μtissue(E)× tbreast = t1μ1(E) + t2μ2(E). (2)

By inserting Eq. 2 into Eq. 1, and given the known attenuations of the refer-
ence materials (μ1, μ2), and given that we know the incident flux, we can solve
the system of equations for t1 and t2. Suitable reference materials for breast
density measurement are adipose and fibroglandular tissue.

2.2 Clinical Data and BI-RADS Classification

A reader study was performed where ten MQSA certified radiologists assigned
BI-RADS breast composition scores to 300 screening cases. A number of con-
ditions had to be fulfilled for spectral breast density measurements to be per-
formed, including a compression height between 20 and 110 mm and require-
ments on the mammography system configuration and validity of calibration
data. The conditions were met by 289 of the 300 examinations.

We define a “true” BI-RADS score for a case as the majority vote, which was
calculated as the mode (the most frequent value) of the radiologists’ scores. As
figure of merit we use fraction of agreement, fa, i.e. the fraction of cases where the
majority vote equals the individual score. To assess the performance of individual
radiologists, the majority vote was calculated without the contribution from the
individual radiologist to avoid bias. The mean fa between the radiologists was
0.75± 0.03 (1 SD).
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Fig. 1. Area glandularity as a function of glandularity threshold for different BI-RADS
categories. The dashed line indicates a threshold optimal for a one-parameter model
based solely on area glandularity.

2.3 Indicators of BI-RADS Classification

With this study we aim to develop a few-parameter model of a radiologist’s
BI-RADS classification. From the ACR definition of the BI-RADS breast com-
position categories we expect the classification to correlate to the relative amount
and spatial structure of dense tissue as observed on a mammogram. The spec-
tral breast density measurement results in images with pixel values of volumetric
breast glandularity and breast thickness, from which further parameters can be
derived. The following parameters were investigated in this study.

Volumetric Glandularity, gv, is a measure of the relative amount of dense
tissue in terms of volume.

Area Glandularity, ga, is a measure of the relative amount of dense tissue in
terms of area. Based on a volumetric glandularity threshold, pixels are classified
as dense or non-dense. ga is then defined as the ratio of dense area to total breast
area. From a previous investigation we know that a glandularity threshold of 11%
is close to optimal for a one-parameter model based solely on area glandularity.
Here, we have also found optimal glandularity thresholds for a two-parameter
model based solely on area glandularity, resulting in threshold values of 2%
and 33%. Fig. 1 shows area glandularity as a function of glandularity threshold
for different BI-RADS categories. The observed optimum was quite broad and
threshold values in the range 0 – 5% and 30 – 36% yielded similar performance.
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Glandular Spread, σg, is a measure of the spatial extension of the glandular
tissue. σg is defined by the area of the ellipsoid given by the covariance matrix
of the x- and y-coordinates of dense pixels, divided by the total breast area.

Breast Thickness, i.e. the compression height reported from the system. We
expect breast thickness to have an impact on image processing, which in turn
may affect the perception of dense tissue on a mammogram. Furthermore, there
may be anatomical differences depending on breast size that affect the radiolo-
gist’s classification.

2.4 Classification Algorithm and Evaluation

The model describes decision boundaries between the breast composition cat-
egories. To avoid overfitting, a linear model including no more than two pa-
rameters was chosen. Decision boundaries were optimized in a one-vs-all fashion
using logistic regression. A decision boundary is illustrated in Fig. 2. The per-
formance of the model was evaluated using 12-fold cross validation, i.e. the data
was randomly divided into 12 complementary subsets and the perfomance on
each subset was evaluated based on parameters optimized based on the other 11
subsets.
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Fig. 2. Decision boundary between BI-RADS categories 2 and 3, based on area glan-
dularity and breast thickness. Here, optimization was performed on the full dataset for
illustrative purposes.
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3 Results

The outcome from the cross-validation for four different parameter sets is shown
in Fig. 3. We omitted the combination of volumetric glandularity and area glan-
dulatity, as this only marginally improved the performance compared to area
glandularity alone. The uncertainty of the expectation value of fa is computed
as the standard deviation of the subset results divided by the square root of the
number of subsets, and a ±1σ confidence interval is given, as well as indicated
by the shadowed regions in the graphs.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4

fraction of agreement

area gland. with 2% threshold / area gland. with 33% threshold

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4
area gland. with 11% threshold / glandular spread

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4
area gland. with 11% threshold / compression height

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4
area gland. with 11%-threshold / none

Mean misclass. per subset
1<>2 2<>3 3<>4
2.6 2.7 1.3

Mean f  :  0.726
Std.dev. f  : 0.072

68% conf. int.: 0.70 - 0.75

Mean misclass. per subset
1<>2 2<>3 3<>4
2.7 2.1 1.2

Mean f  :  0.753
Std.dev. f  : 0.076

68% conf. int.: 0.73 - 0.78

Mean misclass. per subset
1<>2 2<>3 3<>4
2.8 1.8 1.6

Mean f  :  0.743
Std.dev. f  : 0.097

68% conf. int.: 0.72 - 0.77

Mean misclass. per subset
1<>2 2<>3 3<>4
2.4 2.0 0.7

Mean f  :  0.788
Std.dev. f  : 0.078

68% conf. int.: 0.77 - 0.81

Fig. 3. Cross-validation results for the four sets of classification parameters. The 68%
confidence interval on the estimated fraction of agreement is indicated by the shaded
area.

4 Conclusions

Based on a dataset with 289 screening cases scored by ten MQSA certified ra-
diologists, we have evaluated the performance of four one- or two-parameter
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models describing a radiologist’s BI-RADS classification. Evaluating more com-
plex models would require a larger dataset. The parameter area glandularity is
shown to be a particularly good indicator, and performance is improved fur-
ther by inclusion of an additional parameter. The best result is obtained by
using two area glandularity parameters with different thresholds, for which the
fraction of agreement was 77–81%. This is higher than reported for a method
based on volumetric glandularity assessed by non-spectral means [9]. There is a
clear indication that the performance of the investigated automatic classification
method is better than the mean performance of individual radiologists.
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Abstract. Previous studies have shown that breast cancer has been linked to 
breast density as well as obesity. We aim to investigate the relationships be-
tween body mass index (BMI), body fat mass (BFM), waist-hip ratio (WHR), 
age and ethnicity with volumetric breast density (VBD) among Malaysian 
women. In this context, VBD is defined as the ratio of fibroglandular tissue  
volume to total breast volume. We collected anthropomorphic and body compo-
sition data for 2457 subjects undergoing mammographic examination at the 
University of Malaya Medical Centre, Kuala Lumpur. The data included 
weight, height, BMI and BFM which were measured with a body composition 
analyzer. We also measured waist and hip circumferences for 500 of these  
subjects. A VBD assessment system (Volpara) was used to analyze mammo-
grams. Our results showed that VBD is not significantly correlated with BMI  
(r2 = 0.17), BFM (r2 = 0.19), WHR (r2 = 0.11). We also noted that VBD is high-
est among Malaysian women below 40 years old. VBD is highest for Chinese 
(mean = 11.3%), followed by Malay (mean = 10.1%) and Indian (mean = 
9.4%). In conclusion, VBD is dependent on age and ethnicity (ANOVA, 
p<0.05) but not on BMI, BFM and WHR. 

Keywords: Body fat mass, body mass index, breast cancer, volumetric breast 
density, mammography, obesity, waist-hip ratio. 

1 Introduction 

Previous studies have shown that breast cancer has been linked to obesity [1,2] and 
also to breast density [3,4,5]. Researchers had reported that there is an inverse rela-
tionship between obesity and breast cancer for premenopausal women. However, they 
stated that there is an increased risk of developing postmenopausal breast cancer 
among obese women [6]. Two studies on breast density among the three major ethnic 
groups in Malaysia (Chinese, Malay and Indian) had been published [7,8]. In this 
study, we investigated the relationships between body mass index (BMI), body fat 
mass (BFM), waist-hip ratio (WHR), age and ethnicity with volumetric breast density 
(VBD). 
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2 Methodology 

2.1 Subjects 

There were 2457 subjects involved in this study. They comprised of women who 
underwent mammographic examinations at the University of Malaya Medical Centre 
(UMMC), Kuala Lumpur, either for first time or subsequent examinations. 

2.2 Data Collection 

Height, weight, BMI and BFM from these subjects were collected using a body com-
position analyzer (Tanita Corporation, Japan). The waist and hip circumferences to 
derive WHR were also measured for 500 of these subjects. 

2.3 Image Processing 

Raw mammographic images were acquired from two clinical mammography systems 
(GE Essential and Siemens Novation) installed at the UMMC. The images were then 
analyzed using a VBD assessment system (Volpara 1.4.3, Matakina Technology, New 
Zealand) to obtain VBD values for all the subjects who underwent mammographic ex-
aminations. The VBD estimated by Volpara is expressed as the ratio of volume of fi-
broglandular tissue in the breast to the total volume of the breast, in percentage (%) [9]. 

2.4 Volumetric Breast Density Measurement 

Volpara, the VBD assessment system, is based on a “relative physics” model given by 

the equation below [9,10,11]. , ln , ⁄
 

An area of the breast that corresponds to an entirely fatty tissue is set as a reference 
level (Pfat) to compute the thickness of the dense tissue (hd) at each pixel (x,y). The 
pixel value (P) is assumed to be linearly related to the energy imparted to the x-ray 
detector. µfat and µdense are the effective x-ray linear attenuation coefficients for fatty 
and dense tissues respectively. The volume of dense tissue is computed by integrating 
hd(x,y) over the entire digital mammographic image, whereas the volume of the breast 
is the product of the area of the breast and the compressed breast thickness. The VBD 
is the ratio of volume of the dense tissue to volume of the breast [9,10,11]. 

2.5 Data Analysis 

All the data collected were analyzed using a statistical package (SPSS V16.0). Univa-
riate analysis was used to investigate the relationships between BMI, BFM, WHR, 
age and ethnicity with VBD. 
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3 Results and Discussion 

Table 1. Demographic, anthropomorphic and body composition data for the three ethnic groups 
studied. The values are presented as (mean ± s.d.) 

 

 
Fig. 1. The relationship between VBD with body mass index (BMI) 

Table 1 summarizes the measured data for the subjects involved in this study. They 
consist of women from three ethnic groups, namely Chinese (50.8%), Malay (26.5%) 
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and Indian (22.7%). The mean age for these women is 58 ± 9.2 yrs. There are small 
differences in BMI between the three ethnic groups. Indian women have the highest 
BFM (26.9 kg) followed by Malay (26.4 kg) and Chinese (20.4 kg). For VBD, Chinese 
women have the densest breast (11.3%) followed by Malay (10.1%) and Indian (9.4%). 

 

Fig. 2. The relationship between VBD and body fat mass (BFM) 

 

Fig. 3. The relationship between VBD with waist-hip ratio (WHR) 
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Fig. 4. Boxplot of VBD with respect to age group for Chinese, Malay and Indian 

We observed that VBD is not correlated with BMI (Fig. 1), BFM (Fig. 2) and 
WHR (Fig. 3). Statistical analysis of data also showed that the VBD is not significant-
ly related to BMI (r2 = 0.17), BFM (r2 = 0.19) and WHR (r2 = 0.11). We noted that 
VBD decreases with age (Fig. 4). We also observed that VBD is highest for Chinese 
(mean VBD = 11.3%), followed by Malay (mean VBD = 10.1%) and Indian (mean 
VBD = 9.4%) in Malaysia. The current finding is in agreement with the studies by 
Zulfiqar et al. [7] and Jamal et al. [8] which reported that Chinese women have the 
highest breast density among the three ethnic groups. 

In conclusion, there is no correlation between VBD with BMI, BFM and WHR on 
the Malaysian women whom we studied, nevertheless VBD is significantly dependent 
on age and ethnicity respectively (ANOVA, p<0.05 for both parameters). Further 
study using multivariate analysis would be able to elucidate further the complex  
relationships between VBD and anthropomorphic as well as body composition  
parameters. 
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Abstract. Interest is growing in the developing automated breast density 
measures because of its strong association with breast cancer risk. Although a 
number of automated methods to quantify mammographic and volumetric 
density appeared, they still have issues with accuracy and reproducibility; there 
is demand for developing new accurate and automated breast density estimation 
techniques. The purpose of this paper is to design and to test a new approach for 
automatically quantifying true volumetric fibroglandular tissue volumes from 
clinical screening full-field digital mammograms.  

The approach consists in building a statistical model using a training set of 
digital mammograms with known measures of percent fibroglandular tissue 
volume, breast volume and fibroglandular tissue volume calculated by phantom 
based calibration method. To derive these measures, we follow the standard 
procedure in machine learning: feature generation, feature selection, regression 
classification of outputs, final model building and testing. 

 The correlation of features to known volumetric breast volumes was 
analyzed. In addition, the performance of models created from different groups 
of features were studied. By building a statistical model with 28 degrees of 
freedom, we achieved an R2=0.83 between the predicted and measured 
volumetric breast densities for the testing set of 2000 mammograms which were 
independent of the training set of 2000 images. 

Keywords: Volumetric breast density, mammographic features, statistical 
model, regression. 

1 Introduction 

Interest is growing in the developing automated breast density measures because of its 
strong association with breast cancer risk. Although a number of automated methods 
to quantify mammographic and volumetric density appeared they still have issues 
with accuracy and reproducibily, and there is a demand to developing new accurate 
and automated breast density estimation thechniques. The purpose of this paper is to 
design and to test new approach for automatically quantifying true volumetric 
fibroglandular tissue volumes from clinical screening full-field digital mammograms.  
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The measure of dense breast tissue volume from mammograms has been shown to 
be a strong risk factor for breast cancer. There are several approaches to automatically 
estimate planimetric mammographic and true volumetric breast densities. We could 
classify them as in-image phantom based calibration [1-3], prior calibration [4,5], 
physical image formation model [6,7], image processing adaptive thresholding [8-12], 
and statistical model building [13,14] approaches.  

Recently, single energy absorptiometry (SXA) - an automated method for 
quantifying fibroglandular tissue volume has been developed [1]. It demonstrated  
good accuracy and precision for a broad range of breast thicknesses, paddle tilt 
angles, and percent fibroglandular tissie volume  (%FGV) values.  The method uses a 
breast tissue-equivalent phantom in the unused portion of the mammogram as a 
reference to estimate breast composition. To perform quality control monitoring and 
cross-validation between sites and machines a new modified calibration approach for 
the SXA method [15] was developed. It provides stable thickness measurements and 
grayscale to density pixel conversion and different machine and sites cross-validation. 
The cross-calibration is achieved by quality control monitoring with specially 
designed calibration phantom to control thickness and grey-scale conversion stability 
by the phantom weekly scanning.  Thus, quality control allowed us to derive accurate 
and precise %FGV estimates measured during long period of time for mammography 
machines of different centers and manufacturers. Clinicaly, acquiring a calibrated 
SXA image is difficult because of SXA phantom. Thus, we introduced a novel 
method to automatically quantify volumetric fibroglandular tissue volumes from 
clinical screening full-field digital mammograms without usage of the SXA phantom.  
The new high throughput automated approach for volumetric breast density 
estimation proposed  in this paper combines volumetric density measures derived by 
the SXA method and statistical model building technique based on image parameters 
extracted from the mammogram. Thus, we can achieve automatic volumetric breast 
density estimation from digital mammograms not using the SXA phantom.    

2 Methods 

Our approach consists in building statistical model using training set of digital 
mammograms with known measures of percent fibroglandular tissie volume, breast 
volume and fibroglandular tissie volumes (FGV) measured by SXA. To derive 
predicted  %FGV we followed the standard classification/regression procedure in 
machine learning: feature generation, feature selection, regression classification of 
outputs and final model building and testing.  

2.1 Datasets  

The training and testing sets were created to build and to test the models. To create 
training set we used 2000 full field digital mammograms from the  San Francisco 
Mammography Registry with known volumetric breast density measures. The 
mammograms in this study were obtained during 2.5 period of time on 3 Hologic 
Selenia machines at California Pacific Medical Center, San Francisco. The %FGV, 
FGV and breast volumes were  calculated by the phantom based calibration method 
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[1]. Moreover, weekly recalibration was applied to realize quality assurance 
procedure using weekly scans of specially designed quality assurance phantom. All 
images that contained implants were excluded from analysis. The training and testing 
sets consisted of randomly selected mammograms representing %FGV from 0% to 
100%. 

2.2 Feature Generation  

The following several groups of mammographic morphological and texture features 
(number = 45) were calculated.  

The first-order features are calculated from the histogram of pixel grey values  
in the images. They included image standard deviation, skewness, kurtosis, balance 
[16, 17].  

The second-order features considered spatial relationships between pixel intensities 
were derived from two matrixes: grey-level co-occurrence matrix (GLCM) and 
neighbourhood gray-tone difference matrix (NGTDM). The Energy, Enthropy, 
Dissimilarity, Contrast, Homogeneity, Correlation, Mean and Variance were 
estimated from the GLCM matrix. And Coarseness, Contrast, Complexity, Strength 
and Busyness were extracted from the NGTDM matrix [16-18].  

By using Fourier Transform (FT) operation to images we estimated the following 
features in frequency domain: root mean square (FT_RMS), first (FT_FMP) second 
moments (FT_SMP) of power spectrum, and fractal dimension (FD) from power 
spectrum exponent (FT_FD) [16].  

A set of FD and FD-like features such as FD with threshold at X% of the total 
contrast, FD_TH_X where X = 5, 10, 15….85, FD of the standard deviation 
(FD_Sigma), intercept of the plot of the standard deviation of the high frequency 
image as a function of the size the kernel (CD_Yint), slope of the plot of the standard 
deviation of the high frequency image as a function of the size the kernel (CD_Slope), 
standard deviation of the mean value of the breast pixels rows (HZ_PROJ), FD of the 
surface of the breast considering the gray value represent the height 
(FD_CALDWELL), and FD from morphological image operations (FD_Minkowski) 
[19, 20]. As a result of edge frequency analysis mean gradient parameter was created 
[16].  

Another group of features were extracted from DICOM image file headers. We 
used the following DICOM tags characterized physical conditions and parameters of 
x-ray image formation such as mAs, kVp, DetectorTemperature, EntranceDoseInm-
Gy, ExposureTime, HalfValuelayer, force, BodyPartThickness, image file size (or 
paddle type), and filter/target combination.  

In addition, a group of image breast regions of interest (ROI) such as the breast 
area, width of image (nipple to chest wall) and height of image (top to bottom)  
was obtained from images using global threshold segmentation and skin detection 
algorithm.  

We considered that by combining these parameters and features together we would 
be able to maximally boost the performance of the final model and to predict 
efficiently %FGV.  
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2.3 Statistics  

The linear regression method was used to build statistical model. The SAS proc 
glmselect with different options was used. The forward selection and backward 
elimination, stepwise selection and elimination, ten-fold cross-validation, and LASSO 
(least absolute shrinkage and selection operator) selection methods with different stop 
criteria were investigated to build the optimal model matched number of features 
selected and average error of prediction achieved. The Schwarz Bayesian information, 
Akaike’s information, predicted residual sum of squares statistics (PRESS), and  
adjusted R-square statistic criteria were monitored. 

3 Results  

A %FGV frequency distribution of  the training set of 2000 mammograms is shown at 
Fig. 1. It is characterized by the following parameters: mean = 32.8%, median = 
27.8%, standard deviation = 18.3, minimum = 1.2%, maximum = 99.8%. The Table 1 
represent linear correlation coefficients between features and %FGV, FGV and breast 
volume. The features under investigation were found to correlate highly and mod-
erately to breast %FGV, dense tissue and actual volumes (see Table 1). The highest 
Pearson correlation coefficients were equal 0.96 and 0.94 for relationship between 
actual breast volume, and the breast area and Fourier FT_RMS parameter, respective-
ly. The high correlation to %FGV demonstrates all three groups: mammographic 
features, DICOM header parameters, and ROI image parameters. The correlation with 
r around 0.55-0.6 showed kVp, breast thickness, height of breast ROI, mean of gra-
dient, CD_Slope, and FT_FD. The highest Pearson correlation coefficients to dense 
tissue volumes demonstrated two mammographic features, and r values were 0.61 and 
0.69 for CD_Yint and FT_RMS features respectively.  

 

Fig. 1. %FGV frequency distribution of 2000 mammogram training set 

The models outputs of different groups of features such as 45 mammographic  
features, 10 physical parameters from DICOM, 3 breast ROI parameters, and all 58 
features together presented at Table 2. The models were created using 10-fold cross 
validation for different feature groups. The selection stopped at a local minimum of 
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the cross validation PRESS. As one seen the mammographic features and DICOM 
header parameter groups showed the same association with %FGV equal 0.68 but the 
latter group needs only 6 features in comparison with 20 features of the former 
groups.  The breast ROI image parameters demonstrate r2 = 0.36 association with 
%FGV using two features. By adding groups together we managed to increase ad-
justed r2 value to 0.84 using 58 features. 

Table 1. Correlation coefficents between features and %FGV, FGV and breast volume 

_NAME_ %FGV Volume FGV 

%FGV 1.0000 -0.4867 0.2476 
Volume -0.4867 1.0000 0.5655 

FGV 0.2476 0.5655 1.0000 
mAs 0.5105 -0.1181 0.3558 

kVp -0.5901 0.6433 0.2794 
Entrance Dose In mGy 0.1378 0.1537 0.4332 

Exposure Time 0.5015 -0.0918 0.3670 
Half Value Layer -0.3864 0.4749 0.1953 
Force -0.2128 0.3491 0.1850 
Body Part Thickness -0.5635 0.6615 0.3111 
Technique_id -0.3167 0.5100 0.1893 
breast area -0.4413 0.9641 0.5793 
ROI_width -0.4158 0.9140 0.5814 
ROI height -0.5928 0.8462 0.4355 
FD_TH_75 -0.523 0.348 -0.184 
FD_RMS -0.210 0.426 0.329 
CD_Yint -0.466 0.860 0.608 
CD_Slope 0.551 -0.560 -0.143 

FD_CALDWELL -0.292 0.392 0.147 
GLCM_Enthropy 0.311 -0.417 -0.061 
GLCM_Dissimilarity 0.470 -0.742 -0.452 
GLCM_Contrast 0.349 -0.639 -0.463 
GLCM_Homogeneity -0.500 0.744 0.419 
GLCM_Correlation -0.275 0.555 0.429 
GLCM_Mean -0.248 0.601 0.418 
NGTDM_Coarseness 0.280 -0.349 -0.268 

NGTDM_Strength 0.294 -0.405 -0.145 
Mean_Gradient 0.543 -0.641 -0.143 
FT_RMS -0.376 0.945 0.688 
FT_FMP 0.429 -0.758 -0.521 

FT_SMP 0.387 -0.639 -0.460 
FT_FD 0.581 -0.574 -0.110 

 
In addition to the cross-validation method we tested the final model using two in-

dependent training and testing sets. Fig. 2 demonstrates progression of average 
squared errors for %FGV while adding the new features in the order of  their contri-
bution performance. The linear regression model with stepwise selection method and 
significance level selection criterion was used. We applied a set of entry and stay 
significance levels from 0.00001 to 0.1. The optimal entry and stay significance levels 
had value 0.001. It provides a trade-off between a number of features in the model 
and prediction efficiency, and it could prevent the model from using highly interactive 
features.  
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Table 2. Feature selection with 10-fold cross validation for different feature groups. Selection 
stopped at a local minimum of the cross validation PRESS. 

Groups Number R_square Number  
selected 

Mammographic features 45 0.68 20 
DICOM header parameters 10 0.68 6 
ROI image parameters 3 0.36 2 
All features together 58 0.84 36 

 

 

Fig. 2. Progression of Average Squared Errors by Role for %FGV 

By building a statistical model with 28 degrees of freedom, we achieved an 
R2=0.83 between the predicted and measured volumetric breast densities for the 
testing set of 2000 mammograms which were independent of the training set of 2000 
images. The progression dependence is characterized by continuously decreasing of 
average square errors, with a fast drop at the beginning and slow monotonous 
downward trend for the rest of features. The sets follow the same trend but the errors 
of the testing set are a little bit higher than ones for the training set. We consider that 
obtained correlation between the predicted and measured volumetric breast densities 
is good enouph for clinical studies. We noted that the study presented in Tables and 
Figures relied on the same manufacture (Hologic); in addition, these results are not 
representative of all types of manufacture machines. Perhaps other conclusions would 
be obtained by the use of different manufacture machines. Further exploring and test-
ing of this approach for different centers and manufacturers are required. 

4 Conclusions  

We applied statistical model approach for automated volumetric breast density esti-
mation. The models combined different groups of features such as mammographic 
features, DICOM header parameters, and ROI image parameters were analyzed. By 
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building a statistical model with 28 degrees of freedom, we achieved an R2=0.83 
between the predicted and measured volumetric breast densities for the testing set of 
2000 mammograms which were independent of the training set of 2000 images. Fur-
ther exploring and testing of this approach is warranted. There are several ways to 
expand on this paper. One way is to use different machines and manufactures, i.e., GE 
and Philips. Another way would be to improve the calibration method [15] to increase 
%FGV accuracy. 
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Abstract. The detection of breast cancer relies on high-quality images from 
digital mammography. Optimal levels of compression force are unknown, and 
UK national guidelines recommend forces of less than 200N.  However, large 
variations in compression forces exist and may be influenced by the mammog-
raphy practitioner and the breast size and pain threshold of the patient. This 
study examined the relationship between breast density and compression force.  
Women attending for routine breast screening and who had a mammogram 
taken by the same practitioner on the same equipment were included in the 
study (n=211). Volumetric density measurements were obtained using Vol-
para™ and details on imaging parameters were obtained from the DICOM 
headers. There was a strong, positive correlation between compression force 
and fibroglandular tissue. There was also evidence of a significant positive as-
sociation between compression force and breast volume which was independent 
of the volume of fibroglandular tissue present.  

                                                           
* Corresponding author. 
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1 Introduction 

The production of high-quality images during mammography is necessary for the 
adequate detection of breast cancer. Breast compression is used to enhance mammo-
graphic image quality by immobilising the breast and reducing superimposition of 
overlying breast tissue. It also reduces the radiation dose by reducing breast thickness 
[1]. There is conflicting opinion related to the optimum level of compression force 
that should be applied [1]. The UK National Health Service Breast Screening Pro-
gramme guidelines recommend a compression force of less than 200 N [2], however 
the level actually applied depends on a number of factors including practitioner tech-
nique [3] and the pain threshold of the patient.  

Breast density has been shown to be one of the strongest risk factors for breast 
cancer [4,5], but high breast density may also make it more difficult to detect cancer 
due to masking [6]. It has been hypothesised that higher compression forces applied 
to dense breasts may lead to less superimposition of tissue and to better visualisation 
of lesions [7].  

The aim of this study was to examine the relationship between breast density and 
compression force.  Furthermore, the study aimed to look at the relationship between 
these measurements and radiation dose, and fibroglandular and breast volume.  

2 Methods 

A sample of 211 women who had been invited for routine mammographic screening 
in Greater Manchester, UK and had agreed to take part in the PROCAS (Predicting 
Risk Of Cancer At Screening) study were included in the current study. Women tak-
ing part in PROCAS attend routine NHS breast cancer screening and provide addi-
tional information in relation to family history, hormonal and lifestyle factors by 
completing a 2-page questionnaire which they bring with them to their screening ap-
pointment [8].  

The women included in this study all had a full-field digital screening mammo-
gram taken by a single practitioner on the same equipment.  The practitioner had 
over 13 years of experience, and the mammograms were taken between July 2012 and 
October 2012. One woman was excluded from the study because the compression 
force recorded was invalid (0 N). There were no other exclusion criteria, and data 
were not corrected for any other risk factors.  Volumetric breast density (VBD %), 
fibroglandular volume (cm3) and breast volume (cm3) were calculated using Vol-
paraTM 1.4.0 [9]. Details of imaging parameters (compression force (N), breast thick-
ness (mm) and estimated dose (dGy)) were extracted from the information recorded in 
the DICOM headers at the time of image acquistion.  

Relationships were tested for statistical significance using Spearman's Rank Order 
coefficient. Linear regression was used to examine the relationships between com-
pression force, breast thickness and radiation dose with fibroglandular and breast 
volumes.  All analysis was performed using SPSS version 20.0. 
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3 Results 

Compression force  
There was a significant negative correlation between compression force and volumetric 
breast density for the left (LCC) and right crano-caudial (RCC) views (r=-0.22 and  
-0.32 respectively) i.e. the compression force applied was lower in those with larger 
volumetric breast density (p<0.01). There was no association with compression force 
and volumetric breast density for the medio-lateral oblique views (LMLO or RMLO) 
(Table 1). Fibroglandular and breast volume were both significantly correlated with 
compression force for all four mammographic views, indicating larger forces were ap-
plied for larger breasts; but also, for breasts with higher fibroglandular volumes (Table 
1). Figure 1 shows the relationship between compression force (recorded to the nearest 
10N) and fibroglandular volume for the LCC view.  

Table 1. Correlations between compression force and volumetric breast density (VBD), 
fibroglandular and breast volume for each mammographic view (* p<0.05, ** p<0.01) 

 View VBD Fibroglandular 
volume 

Breast  
Volume 

 RMLO -0.078 0.169* 0.193* 

Compression LMLO -0.106 0.196* 0.226** 

Force RCC -0.317** 0.333** 0.526** 

 LCC -0.224** 0.244** 0.377** 

 

Fig. 1. Compression force versus fibroglandular volume in the LCC view 
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In univariate linear regression fibroglandular and breast volume were significantly 
associated with compression force for all mammographic views (p<0.01).  
However, when fibroglandular and breast volume were both included in the model, 
only breast volume was significantly associated with compression force for three  
of the four mammographic views (Table 2). Fibroglandular and breast volume  
were significantly correlated across all four views (correlations between r=0.57  
and 0.66). 

Table 2. Regression results for compression force (standard deviations from the mean)  

 RMLO LMLO RCC LCC 

Constant 99.9 

(2.70)*** 

96.2 

(3.18)*** 

86.8 

(2.38)*** 

88.3 

(2.82)*** 

Fibroglandular volume  0.051 

(0.059) 

0.095 

(0.065) 

-0.002 

(0.051) 

0.024 

(0.063) 

Breast volume  0.005 

(0.003)* 

0.007 

(0.003)*** 

0.017 

(0.003)*** 

0.014 

(0.003)*** 

R-squared 0.061 0.121 0.242 0.140 

Adjusted R-squared 0.049 0.110 0.232 0.129 

N 161 160 160 160 

Standard errors are reported in parentheses 
*p<0.1, **p<0.05, ***p<0.01 
 
 
 
Breast thickness  
Breast density had a negative correlation with breast thickness across all four views (p 
< 0.01). Higher volumetric breast density percentage was associated with lower breast 
thickness measurements. Figure 2 shows this relationship for the LCC view. Larger 
fibroglandular and breast volumes were significantly positively correlated with breast 
thickness i.e. breast thickness was increased in those with larger fibroglandular and 
breast volumes (Table 3). Linear regression demonstrated a similar relationship to that 
for compression force, in that, fibroglandular and breast volume were significantly 
associated with breast thickness for all four mammographic views in the univariate 
analysis. However, when both fibroglandular and breast volume were included in the 
model, only breast volume was significantly associated with breast thickness.   
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Fig. 2. Breast thickness versus volumetric breast density in the LCC view 

Table 3. Correlations between breast thickness and volumetric breast density (VBD), 
fibroglandular and breast volume for each mammographic view (* p<0.05, ** p<0.01) 

 

 View VBD Fibroglandular 
Volume Breast Volume 

 RMLO -0.622** 0.505** 0.822** 

Breast LMLO -0.615** 0.551** 0.836** 

Thickness RCC -0.470** 0.340** 0.637** 

 LCC -0.441** 0.394** 0.643** 

 
X-ray dose 
There was a negative correlation between x-ray dose and volumetric breast density for 
the MLO views, but positive significant correlations for CC views. There was also a 
positive correlation for fibroglandular and breast volumes and x-ray dose for all four 
views (Table 4).  Again in the univariate linear regression both breast and fibroglan-
dular volume were significantly associated with x-ray exposure, however when both 
breast and fibroglandular volume were included in the regression model, both vari-
ables were independent predictors of radiation dose for three of the four mammo-
graphic views. For the LCC view, only fibroglandular volume was an independent 
predictor of radiation dose.  
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Table 4. Correlations between x-ray dose and volumetric breast density (VBD), fibroglandular 
volume and breast volume for each mammographic view (* p<0.05, ** p<0.01) 

 View VBD Fibroglandular 
Volume 

Breast Volume 

 RMLO -0.148 0.668** 0.565** 

X-ray Dose LMLO -0.272** 0.640** 0.624** 

 RCC 0.257** 0.585** 0.229** 

 LCC 0.172* 0.553** 0.286** 

4 Discussion 

Previously it was not known whether greater forces of compression are used in 
women with denser breasts. Breast density was calculated using volumetric methods. 
Calculating percentage density of the breast utilises volumetric measurements of 
breast and fibroglandular tissues and creates a ratio of these two values. Compression 
force was correlated with breast and fibroglandular volume, but negatively associated 
with volumetric breast density. As the breast volume increases so too does compres-
sion force, but since breast volume is also correlated with fibroglandular volume, and 
fibroglandular volume also increases but not to the same extent, the overall percent-
age of volumetric breast density decreases.  

The other results confirmed the earlier hypotheses, in that strong, positive correla-
tions were found between higher compression forces and fibroglandular and breast 
volumes. This was also true for larger fibroglandular and breast volumes, and breast 
thickness and mean X-ray dose. These values signify that larger breasts and breasts 
with abundant fibroglandular tissue will require higher X-ray doses, despite using 
greater forces to reduce their comparatively-larger compressed breast thicknesses. 
Linear regression analysis was employed to determine whether the association  
between the size of a breast and greater compression forces were due to greater  
fibroglandular volumes. However, fibroglandular volume was not found to be an in-
dependent predictor of compression force when breast volume was added to the  
regression model, suggesting that breast volume drives the relationship with compres-
sion force.  A similar relationship was found for breast thickness.  

X-ray dose demonstrated associations with VBD for all four mammographic views 
which were inconsistent, however the correlations with fibroglandular volume tended 
to be much stronger than those for breast volume for the CC views. In linear regres-
sion with both breast and fibroglandular volume included in the model both variables 
were found to be independent predictors of x-ray dose for three of the four mammo-
graphic views.  

Women included in this study were a sample of women seen by one practitioner 
with thirteen years of experience.  The practitioner was blind to the nature of  
the study.  However, whether the sample was representative of the screening popula-
tion more generally and whether the current findings would be replicated for other 
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practitioners is not known.  In addition, it would be of interest to look at the relation-
ship between compression force and density measures after adjusting for other known 
breast cancer risk factors such as age, BMI, menopausal status and HRT use. Age has 
been found to be correlated with increased compressibility of the breast [10]. It is 
believed that this is due to a reduction in breast density and a greater proportion of 
fatty tissue, thus lowering the amount of force required for optimal breast compres-
sion. Therefore the amount by which a breast is compressed not only changes with the 
machine used, the mammographic view and the operator, but also with time.   

5 Conclusions 

Greater densities may influence image quality if breast thickness is not reduced 
[5,11], which also has implications for the X-ray dose [12,13] to the breast. Greater 
forces applied, however, may lead to a negative and painful experience and impact on 
screening attendance rates [10,14].  

Our results show that there was evidence of a significant positive association be-
tween compression force and breast thickness with breast volume which is independ-
ent of the volume of fibroglandular tissue present.  

A more objective process where compression force is tailored to an accurate repre-
sentation of the composition of a breast is needed. Current methods involve either 
visual or automated systems which utilise different parameters for evaluating the in-
ternal structures of a breast, resulting in differences in measured breast density.  
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Abstract. Breast cancer incidence has previously been shown to be greater in 
women of higher socio-economic status (SES), although the picture is complex 
due to variations in breast cancer risk factors. We have investigated the rela-
tionship between one of the strongest risk factors, breast density, with SES in a 
population of 6398 post- and peri-menopausal women. Volumetric breast densi-
ty was measured using QuantraTM and VolparaTM, and SES was based on the 
Index of Multiple Deprivation (IMD) associated with each woman’s postcode. 
The mean IMD score was 26.39 (SD 16.7). Our results show a weak but signifi-
cant association between SES and volumetric breast density; women from more 
deprived areas have slightly less dense breasts. After controlling for age, BMI 
and HRT use the relationship remained significant for density measured by 
VolparaTM (gradient -0.01, p <0.005) but not QuantraTM (gradient -0.007, 
p=0.07). 
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Keywords: digital, mammogram, volumetric breast density, socio-economic 
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1 Introduction 

Breast cancer incidence has been shown to be associated with higher socioeconomic 
status (SES) [1-3]. The relationship between higher SES and breast cancer risk factors 
has been explored in a number of studies and it is still contentious whether the per-
ceived SES gradient in breast cancer incidence is independent of established breast 
cancer risk factors [1-3].  

Heck et al. found that after controlling for several known breast cancer risk factors, 
the relationship between breast cancer risk and higher education levels became non-
significant, confirming that the higher incidence seen among well-educated women is 
likely to be attributable to established breast cancer risk factors [1].  Higher levels of 
education and higher SES have been shown to be associated with later age of primi-
parity and low total parity, both established breast cancer risk factors [4,5]. However, 
a strong positive association between SES and breast cancer risk persists after adjust-
ments for fertility, marital status, education and late primiparity [6]. HRT use, which 
is both a breast cancer risk factor and a cause of increased breast density [7], has also 
been shown to be significantly higher among women of higher SES [8]. In addition, 
high BMI is associated with lower breast density and women in developed societies 
are more likely to be obese [9]. Furthermore, women of higher SES are more likely to 
attend routine breast screening which may lead to better detection rates [10]. 

Despite the evidence for the relationship between SES and breast cancer risk, there 
is a gap in the literature regarding the relationship between SES and breast density. 
Educational level is inversely associated with breast density among premenopausal 
women but not postmenopausal women [11]. In premenopausal women breast density 
was negatively associated with SES, however this was mainly attributable to BMI 
[12]. Given changes in breast density following the menopause, it is important to 
establish the relationship in peri-and post-menopausal women using a more compre-
hensive marker of SES.  

This study aimed to investigate the relationship between SES and volumetric breast 
density in peri- and postmenopausal women. 

2 Methodology 

The Predicting Risk of Cancer At Screening (PROCAS) study was used to obtain 
information on breast density and other breast cancer risk factors from approximately 
50,000 women in Greater Manchester, UK. Women attending routine breast screening 
are invited to participate in the study and for those that consent to take part informa-
tion on a number of breast cancer risk factors are collected via a questionnaire [13]. 
Premenopausal women were excluded from the study as were women with missing 
postcode, age or density data. Only women with a BMI value within the range 16-65 
were included. 
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Mammographic breast density measurements were performed on the screening 
mammograms of eligible women using two fully-automated volumetric methods 
(QuantraTM version 1. 3 [14] and VolparaTM version 1.4.0 [15]) to assess the volumet-
ric percentage of fibroglandular tissue in the breast. To be included in the study 
women had to have breast density measurements for both QuantraTM and VolparaTM.  
QuantraTM data provides an average volumetric density measurement per breast  
and an overall average for breast density for each woman that was used in the study. 
VolparaTM provides a volumetric breast density measurement for each mammographic 
view of each breast (CC and MLO). The average was calculated from these four  
values.   

SES for each patient was based on the Index of Multiple Deprivation (IMD) asso-
ciated with their postcode [16]. The IMD is a single score created using information 
from the UK National Census which combines several indicators of deprivation: in-
come, employment, health, education, crime, access to services and living environ-
ment. A high IMD score correlates to high levels of deprivation i.e. a low SES. The 
scale ranges from 0 (no deprivation) to 100 (most deprived) and is a continuous 
measure of relative deprivation with no single cut off point defining a deprived or 
affluent area [16].  

3 Analysis 

Descriptive analyses were performed to assess the characteristics of the sample. Pear-
son correlations were calculated to establish the existence of a relationship between 
IMD and breast density and to estimate the degree of association between the va-
riables. Linear regression models were used to assess the dependence of breast density 
on IMD. Similar models were used to assess the effect of potential confounders (age, 
BMI or HRT use). 

As the sample size was so large, disproportionately strong significance can be  
attributed to relationships. Furthermore, the use of continuous variables on large sam-
ples can mask relationships. For this reason, breast density measurements were di-
vided into categories so the average IMD for women with different breast densities 
could be computed. VolparaTM density grades (VDG) exist to correlate VolparaTM 
density scores with the Breast Imaging Reporting and Data System (BI-RADS) densi-
ty category (BIRADS 1:  <4.5% VolparaTM; BIRADS 2: 4.5 - 7.5% VolparaTM; 
BIRADS 3: 7.6 - 15.5% VolparaTM; BIRADS 4: >15.5% VolparaTM) [17]. A similar 
categorisation is not available for QuantraTM and thus categories were based on  
quintiles.  

4 Results 

A total of 6398 women were included in the sample. The average age was 60.3 years 
and ranged from 46 to 74 (Table 1). The majority were white (92%) and the average 
IMD score was 26.39 (SD 16.7), ranging 2.96 to 81.58.  
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Data on body mass index were available for 5965 women. The average BMI was 
27.9 kg/m2 (SD 5.5), and ranged from 17.1 kg/m2 to 61.1 kg/m2). Approximately 40% 
(n=2577) of women were taking HRT.  Average breast density as measured by Quan-
traTM was 15.2% (SD: 5.4, range: 6-50) compared to 6.6% as measured by VolparaTM 
(SD: 3.5, range: 1.9-29.2%). The Pearson correlation coefficient for average breast 
density between QuantraTM and VolparaTM was 0.88.  

Table 1. Descriptive analysis of the women in the sample 

 Mean SD Minimum Maximum Number 

Age 60.3 6.4 46 74 6398 

IMD 26.39 16.7 2.9 81.5 6398 

BMI 27.87 5.53 17.1 61.1 5965 

Density QuantraTM 15.17 5.35 6 50 6398 

VolparaTM 6.59 3.5 1.8 29.2 6398 

 
The Pearson Correlation coefficient between IMD and density was -0.11 for Vol-

paraTM (Figure 1) and -0.067 for QuantraTM (Figure 2). When displayed as scatter 
plots the absence of a strong correlation between IMD and breast density is clear, 
regardless of the measurement technique used. 

 
 

 
Fig. 1. Relationship between IMD and breast density for VolparaTM 
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Fig. 2. Relationship between IMD and breast density for QuantraTM 

 
Fig. 3. Box plots of VolparaTM average density by IMD score categorised into quintiles  
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The linear regression model to examine the relationship between IMD and breast 
density (as measured by QuantraTM) had a β coefficient of -0.021, p <0.001 (95% CI -
0.029 to -0.014) demonstrating a marginal negative dependency between IMD and 
breast density. A similar relationship was seen when breast density was measured 
with VolparaTM, with a β coefficient of -0.023, p <0.001 (95% CI -0.028 to -0.012). 

After controlling for BMI, age and HRT use the gradient was -0.007 and was not 
significant (p=0.069) when density was measured with QuantraTM. However, re-
mained significant when measured with VolparaTM (β=-0.01, p <0.005). When BMI 
alone was included in the model, the relationship between IMD and density (as meas-
ured by QuantraTM) was no longer significant (p=0.077). However, when VolparaTM 
measurements were used, a significant relationship remained (p<0.005). When con-
trolling for either age or HRT use independently, the relationships remained statisti-
cally significant (p<0.005). 

When IMD scores were categorised into quintiles, there was a negative significant 
relationship with mean density when measured by VolparaTM and QuantraTM. Figure 3 
illustrates the relationship for VolparaTM.  

To identify any relationships that may have been masked by the continuous nature 
of the scales, we also examined the relationship between breast density categories and 
IMD scores. No obvious relationship was seen between IMD and breast density as 
measured by QuantraTM. However, when VolparaTM categories corresponding to BI-
RADS were used the average IMD scores decreased with increasing breast density 
(Figure 4), with a difference of 7.4 between the average IMD score for the most and 
least dense groups. This analysis did not adjust for any other risk factors. 

 

 
 

Fig. 4. Graph showing negative trend in the mean IMD for women with different categories of 
breast density 
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5 Discussion 

Our results show a weak association between SES and volumetric breast density in 
peri- and post-menopausal women, with women from more deprived areas having 
slightly less dense breasts. This association persisted after after controlling for age, 
BMI and HRT use for VolparaTM.  By contrast, for QuantraTM the relationship re-
mained significant after controlling for age or HRT use, however further adjustment 
for BMI rendered the relationship non-significant, suggesting that the association 
between SES and breast density may be primarily explained by a higher mean BMI  
in women with a lower SES. This reflects the results found by Aitken et al. [12].  
This could be an artefact of the data or it may be due to differences between the two 
systems; one may be more accurate and therefore more sensitive to slight associa-
tions. VolparaTM differs from QuantraTM in that it adjusts for skin volume when  
assessing the volume of the breast. This may impact on the findings and warrants 
further investigation. 

The current study did not adjust for differences in parity. Age at first pregnancy, 
number of full term births and pregnancy are associated with both breast cancer risk 
and SES. Differences in parity and breast feeding are cited as responsible for at least 
some of the disparities in breast cancer incidence seen between affluent and develop-
ing countries and the same may be true between affluent and deprived societies within 
individual countries.  

One limitation of this study is the measurement used to assess SES. The use of 
IMD is a generally accepted method in health research, but only considers community 
level SES, rather than individual factors.  Furthermore women who attend screening, 
and who agree to take part in health research studies, are generally more likely to be 
from the less deprived areas of the population [18].  Women in the current study had 
a wide range of IMD scores, however the mean was relatively low suggesting that the 
sample may not be representative of the population as a whole. A potential area for 
further research would be to make efforts to recruit women from deprived back-
grounds to obtain a sample which is representative of the entire population. If evi-
dence suggests that women from a higher SES have denser breasts, these women 
would be at a higher risk of both developing breast cancer and of having a breast can-
cer missed at screening due to masking. This may have clinical significance when 
tailoring breast screening programmes to the risk of individual women. 

It may also be interesting to repeat this analysis using an absolute measure of dense 
tissue volume within the breast, rather than the percentage breast density. By measur-
ing only the volume of dense tissue within the breast and therefore removing the mea-
surement of fatty tissue, it would be possible to eliminate the confounding effect that 
BMI has on the results and may reveal a direct relationship between SES and actual 
quantity of dense tissue.  

6 Conclusion 

This study suggests that there is weak but significant relationship between volumetric 
breast density and SES as measured by IMD. It is likely that established SES gra-
dients in breast cancer risk are a result of other SES related factors, primarily BMI, 
rather than mammographic breast density. 
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The study found a difference between the results obtained using density data from 
the two respective volumetric density techniques, QuantraTM and VolparaTM. This 
may be an artefact of the data however, and further work is required to assess their 
reliability and accuracy. 
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Abstract. Body Mass Index (BMI) is an important confounding factor for breast 
density assessment, particularly where a relative measure (percentage density)  
is used. Since height and weight are not routinely collected at screening, we  
investigated the relationship between breast and fat volumes computed by  
QuantraTM and VolparaTM and weight/BMI in 6898 women for whom  
self-reported values are available. A significant positive correlation was found 
between breast volume and fat volume with both weight and BMI. BMI and 
VolparaTM average fat volume showed the strongest positive relationship (r = 
0.728, p<0.001). Using these results we predicted weight and BMI for a separate 
group of women; these showed moderate intraclass correlation (ICC) agreement 
with self-reported weight and BMI. The strongest relationship was with weight 
predicted using QuantraTM average fat volume (ICC = 0.634, CI = 0.573-0.689, 
p<0.001), however our results suggest that it is not possible to accurately predict 
individuals’ weight and BMI from volumetric breast density measures.  

Keywords: Body Mass Index, breast density, mammogram, weight, breast  
volume, fat volume. 
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1 Introduction and Aims 

Mammographic density is one of the strongest modifiable risk factors for breast can-
cer [1]. It is usually reported as a relative measure, describing the proportion of the 
breast area or volume occupied by radio-dense tissue. However, there is evidence that 
when women gain weight, they gain breast fat [2]. This results in a decrease in per-
centage breast density and hence a decrease in the apparent risk of developing breast 
cancer despite the gain in weight conferring an actual increase in risk for postmeno-
pausal women. Similarly, loss of weight (which is beneficial in terms of breast cancer 
risk) leads to an increase in percentage density and apparent risk. For this reason, 
breast density measurements made for the purpose of assessing cancer risk are often 
corrected for Body Mass Index (BMI) or weight as well as age[3,4].  

As weight is not routinely recorded at mammographic screening, and the weight of 
many women changes between screens, it would be advantageous to find a surrogate 
measure that could be used to correct relative density measures. It has been proposed 
that the breast volume or fat volume computed by commercial breast density software 
could be used in this way [5]. The aim of this research is to evaluate whether this 
would be appropriate. 

2 Method 

Data for women recruited to the Predicting Risk Of Cancer At Screening (PROCAS) 
study were obtained for this analysis. Women in PROCAS complete a questionnaire 
giving personal information including height, weight and clothes size at the time of 
screening, and their digital screening mammograms were analysed with QuantraTM 

(Version 1.3; Hologic Inc.) and VolparaTM (Version 1.3.1; Mātakina International 
Ltd.) to provide volumetric breast density data. QuantraTM output total breast volume 
and dense tissue volume for both breasts, combining data from craniocaudal (CC) and 
mediolateral oblique (MLO) views. A single average total breast volume was calcu-
lated for each case. The fat volume was obtained by subtracting the dense tissue vol-
ume from the total breast volume. A single average fat volume measurement was 
obtained in each case. VolparaTM gave measures of average breast volume and aver-
age fat volume from both left and right breast. It also provided average total breast 
volume and average fat volume for each case.  

Women were excluded if they had had a previous breast cancer or tissue biopsy; if 
essential data were missing or invalid; or if their recorded clothes size was unrealistic 
for their calculated BMI. We thus analysed a sample of 7398 records out of which 
500 randomly selected records were set aside for evaluation purposes leaving a sam-
ple population of 6898 records. Weight ranged from 36kg to 172kg and BMI from 
15.17 to 62.38, with 95.7% declaring themselves to be White British or Irish.  

To test the significance of a possible association between weight or BMI and the 
volumetric breast measures Pearson correlation was used. This was run as a two-tailed 
test and a correlation co-efficient (r) > 0.4 was taken as a positive correlation between 
two variables. Due to the large population size, an additional criterion of r>0.7 was 
used to indicate a significant association, in this instance the correlation squared (r^2) 
is 0.49 which would indicate that almost half of the variation in 'true' BMI (or weight) 
between women could be explained by the prediction model.  
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VolparaTM Breast Volume (cm3) 

Linear regression was used to produce predictive models for weight and BMI from 
the sample population; these models were applied to the test set data in order to pre-
dict weight and BMI for these 500 women.  Predicted values were then compared 
with self-reported weight and BMI values and analysed by calculating intraclass cor-
relation.  

Finally, to increase the data available for testing, the predictive models were ap-
plied to the entire data set available and histograms plotted to show the differences 
between self reported and calculated weights and BMIs. 

3 Results 

All volumetric breast measurements showed a positive correlation with either weight 
or BMI (Table 1). Figure 1 shows an example plot for weight vs VolparaTM breast 
volume. In general the points on the graphs become more scattered with increasing 
volumetric measurements, suggesting that predictive models may perform better for 
women of lower weight /BMI. 
  

 
 

Fig. 1. Self-reported weight plotted against breast volume measured by VolparaTM 

Table 1. Correlations between density measures and self-reported weight and BMI in the 
sample population  

Breast Density  measure Weight or BMI Co-efficient Value p value 
QuantraTM Breast Volume  Weight 0.688 <0.001 

QuantraTM Fat Volume  Weight 0.695 <0.001 
VolparaTM Breast Volume  Weight 0.709 <0.001 
VolparaTM Fat Volume  Weight 0.712 <0.001 

QuantraTM Breast Volume  BMI 0.701 <0.001 
QuantraTM Fat Volume  BMI 0.710 <0.001 
VolparaTM Breast Volume BMI 0.724 <0.001 
VolparaTM Fat Volume BMI 0.728 <0.001 
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Regression lines were plotted for the sample population of 6898 women, and for 
data from a separate group of women; an example is shown in figure 2. These graphs 
show a discrepancy between the two respective regression lines. 

 

 
 

 

Fig. 2. A pairwise scatterplot of VolparaTM breast volume measurements and self-reported 
weight from a separate group of 237 women with the regression line (steeper gradient,  
depicted in red) and the corresponding regression line (depicted in black) from the  sample 
population 

For illustration of the application of a prediction model, the self-reported and pre-
dicted values for the minimum, maximum and mean self-reported weights and BMIs 
in a separate group of women were obtained and are presented for QuantraTM in table 
2 and for VolparaTM in table 3.   

Intraclass correlation (ICC) was used to assess agreement between predicted and 
self-reported values. For all predicted values, the ICCs indicated moderate agreement. 
For weight, the ICC ranged between 0.609 - 0.634. The lowest ICC agreement was 
obtained when using the values predicted using VolparaTM breast volume data where 
the ICC = 0.609 (CI = 0.522 – 0.683, p < 0.001). The highest ICC agreement was 
obtained when using the values predicted using QuantraTM fat volume data, where the 
ICC = 0.634 (CI = 0.573 – 0.689, p < 0.001). 

For BMI the ICC ranged between 0.594 - 0.629. This indicates a slightly weaker 
agreement between these predicted values and self-reported values than for weight. 
The lowest ICC agreement between self-reported and predicted values was obtained 
with values predicted using VolparaTM breast volume data where the ICC = 0.594 (CI 
= 0.505 – 0.671, p < 0.001). The highest ICC was the same for two of the sets of pre-
dicted values analysed against self-reported values, the values predicted using Quan-
traTM breast volume data and those predicted using QuantraTM fat volume data where 
the ICC = 0.629 (CI = 0.567 – 0.685, p < 0.001).  
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Table 2. Self-reported and predicted weight and BMI in a separate group of 408 women. The 
predicted values were obtained using the appropriate regression formula obtained from 
QuantraTM measurements in the sample population. Bracketed values are percentage difference 
between self-reported values and predicted values rounded to two decimal places. 

Variable Minimum Maximum Mean Standard 
Deviation 

Self-reported 
weight 48 121 72.95 14.88 

Weight predicted 
from breast vo-
lume  

55 (14.58) 114 (5.78) 72.62 (0.45) 10.31 

Weight predicted 
from fat volume  

55 (14.58) 111 (8.26) 72.83 (0.16) 10.51 

Calculated BMI 19.79 47.71 27.97 5.37 

BMI predicted 
from breast vo-
lume 

21.13 (6.77) 44.57 (6.58) 28.17 (0.72) 4.05 

BMI predicted 
from fat volume 

21.16 (6.92) 41.44 (13.14) 27.68 (1.04) 3.82 

Table 3. Self-reported and predicted weight and BMI in a separate group of 237 women. The 
predicted values were obtained using the appropriate regression formula obtained from 
VolparaTM measurements in the sample population. Bracketed values are percentage difference 
between self-reported values and predicted values rounded to two decimal places. 

Variable Minimum Maximum Mean Standard 
Deviation 

Self-reported 
weight 49 132 72.90 13.85 

Weight predicted 
from Breast Vo-
lume  

56 (14.29) 125 (5.30) 73.32 (0.58) 11.47 

Weight predicted 
from Fat Volume  

56 (14.29) 123 (6.82) 72.94 (0.05) 11.31 

Calculated BMI 19.49 53.15 27.96 5.45 

BMI predicted 
from Breast Vo-
lume 

21.37 (9.64) 46.58 (12.36) 27.80 (0.57) 4.17 

BMI predicted 
from Fat Volume 

21.35 (9.54) 45.98 (13.49) 27.66 (1.07) 4.11 
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Frequency histograms showing the difference between actual (self-reported) and 
predicted weight and BMI values and those calculated by applying the predictive 
models to the entire dataset are shown in figure 3.  

 
 

 

Fig. 3. Frequency histograms showing the difference between actual (self reported) and pre-
dicted weight (top row) and BMI (bottom row) for all data using models based on VolparaTM 
(left column) and QuantraTM (right column) 
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4 Conclusions and Discussion 

One of the limitations of this work is that we have assessed the volumetric measures 
against self-reported, rather than measured, values. It is known that self-reported data 
are subject to errors, particularly in people who are overweight [6], and this could 
potentially have contributed to the greater spread of data seen with increasing weight. 
For similar reasons it is unsurprising that prediction of BMI was less successful than 
prediction of weight since the calculation of BMI involved the use of two self-
reported data items, weight and height.  It is, however, difficult to obtain measured 
values for weight and height in a screening setting, where appointments are short and 
space and privacy on mobile units are limited, so the use of self-reported data is a 
pragmatic solution. Should risk-adapted screening be introduced, it is likely that much 
of the data collected will be self-reported, and verification will only be implemented 
should women fall into high risk groups, or the borderline between average and  
high risk. 

Our results indicate that volumetric breast measurements made from mammograms 
are not an adequate surrogate for self-reported weight and BMI. A correlation of 
0.634 does not provide evidence of accurate prediction (the correlation squared is 
only 0.40, which can be interpreted as the proportion of variation in 'true' BMI be-
tween women explained by the prediction model – this is not a large proportion).  

However, volumetric measurements could be used as a sanity check on self-
reported data, rather than asking about clothes size, for example, which is itself error-
prone because of variations in size between clothing manufacturers. They could also 
be used in cases where women fail to provide self-reported data. 
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Abstract. The aim of this research is to investigate, in a screening population, 
the relationship between mammographic density and tumour characteristics 
including size, invasiveness and mammographic features. Mammograms of 105 
women with screen detected breast cancer were analysed; 111 lesions were 
identified. Volumetric density measurements were obtained using Quanta™ and 
Volpara™. Histological information was extracted from the screening database 
and radiological features were assessed by two expert breast radiologists. 
Statistical analysis was performed using Mann-Whitney U test and Spearman’s 
rank order correlation. The median percentage density by Volpara™ of women 
with invasive cancers was significantly higher than those with DCIS (6.5 vs 5.0, 
p =0.046). Similar results were replicated in the Quantra™ measurements, 
however the results were not statistically significant (17 vs 16, p = 0.19). 
Further analysis showed a significant positive association between whole 
tumour size and volumetric density for invasive lesions. Architectural distortion 
was the only mammographic feature associated with a significant difference in 
percentage density.    
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1 Introduction  

1.1 Breast Density  

Breast density, measured as the proportion of the breast occupied by radiodense 
fibroglandular tissue, is an important risk factor for breast cancer, with women with 
relatively large proportions of fibroglandular tissue at greatly increased risk compared 
with those with predominantly fatty breasts [1]. High breast density has also been 
shown to adversely affect cancer detection in mammograms, and has been related to 
an increased risk of recurrence after treatment [2,3]. The majority of studies using 
breast density have involved subjective assessments, with or without assistance from 
software that allows the user to manipulate a threshold on the mammogram’s grey 
levels to select regions of density [4]. These measures are usually relative (expressing 
the proportion of dense tissue relative to the overall size of the breast) and area-based. 
Recent technological developments, and especially the advent of Full Field Digital 
Mammography (FFDM), have resulted in commercially available software that 
automatically calculates volumetric breast density from digital mammograms [5,6], 
paving the way for more robust studies of the relationship between breast density and 
other factors. These methods also permit measurement of the absolute volumes of 
dense and fatty tissue rather than relative measures. In this paper we investigate the 
relationship between volumetric breast density and the characteristics of screen-
detected cancers. 

1.2 Breast Cancer 

Breast cancers can be classified according to the site of origin (e.g. lobular, ductal) 
and the level of invasiveness (invasive versus non invasive).  

Ductal carcinoma in situ (DCIS) is a type of non-invasive breast cancer where the 
malignant cells have not proliferated beyond the basement membrane. It is considered 
to be a precursor of invasive carcinoma and must be treated appropriately. DCIS can 
be classified according to its architectural structure (e.g. cribriform, papillary, etc), 
tumour grade and the presence of comedo necrosis (associated with poorer 
prognosis). It is usually asymptomatic, presenting as clustered microcalcifications on 
screening mammograms. Lobular carcinoma in situ (LCIS) is similar to DCIS, but 
originates in breast lobules rather than ducts. It does not behave like DCIS, as it does 
not become cancerous if left untreated. 

In invasive breast cancer (primary or secondary), the malignant cells have 
infiltrated the tissues beyond the basement membrane of the duct or lobule. Once this 
has spread beyond the breast tissues and the ipsi-lateral lymph nodes, it is termed 
metastatic breast cancer. 
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Suspicious breast lesions are usually evaluated using the ‘triple assessment’ 
method. This consists of clinical examination, followed by imaging (e.g. 
mammography, ultrasound) and image guided biopsies (e.g. fine needle aspiration, 
core needle biopsy). This method can reliably discriminate malignant masses from 
benign ones. 

2 Aims  

The aims of this work are to determine, in screen detected mammograms, if larger 
tumours are found in denser breasts, and whether the lesions detected in denser 
breasts are more invasive. 

3 Method  

A total of 105 consecutive women with screen detected cancer, for whom density had 
been measured by two volumetric breast density methods, were identified from a UK 
National Health Service Breast Screening Programme database. Prevalent round 
cancers were excluded, and all the women included had previously been screened by 
mammography approximately 3 years before detection of cancer. Since 2 of the 
women had 3 identified lesions and 2 further women had 2 separate lesions, 111 
lesions were included in the analysis  

Two experienced radiologists assessed the mammographic features found on the 
mammograms. All suspicious lesions were classified into five categories: spiculated 
mass; ill defined mass; microcalcifications; architectural distortion; and asymmetrical 
density. Along with the mammographic features, further information regarding the 
size of the tumours was also collected from histology reports recorded in the national 
screening database. All data were anonymised. 

Breast density was measured by Quantra™ version 1.3 from Hologic and  
Volpara™ software version 1.4.0 from Matakina; the volumetric percentage density 
per breast was used in subsequent analyses. As the data were not normally distributed, 
Spearman’s rank-order correlation coefficient was calculated to assess the relationship 
between volumetric density and the tumour size. Comparison of density in invasive 
and non-invasive cancers was undertaken using the Mann- Whitney U test. 

4 Results  

Table 1 shows the frequencies of lesion characteristics in the study population; the 
majority of lesions were invasive, and the most common sign of abnormality was 
microcalcifications. Table 2 shows median percentage volumetric breast density in 
invasive and non-invasive cancers; density was significantly higher when assessed 
with Volpara™, and the density distributions are illustrated in Figure 1. 
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Table 1. Characteristics of lesions in the dataset 

Characteristics of lesion Left Breast Right Breast Total 
Ill defined mass 13 8 21 
Spiculated Mass 13 16 29 
Microcalcifications 24 20 44 
Asymmetric density 11 11 22 
Architectural distortion 8 4 12 

Invasive cancers 42 35 77 
DCIS 22 12 34 
Total  64 47 111 

Table 2. Median contralateral breast density of women with invasive and non-invasive 
unilateral screen detected cancers  

 Density (QuantraTM) Density (VolparaTM) 
Invasive 17 6.5 
Non-invasive 16 5.0 

P value 0.189 0.046 

Table 3. Correlation between density measure and whole tumour size for invasive and in situ 
tumours  

 Spearman’s rank correlation 
coefficient (rho coefficient) 

p value 

Invasive tumours   
Quantra™ 0.284 0.013 

Volpara™ 0.355 0.002 
In Situ tumours   

Quantra™ -0.114 0.523 

Volpara™ -0.036 0.841 
All tumours    

Quantra™ 0.100 0.296 

Volpara™ 0.160 0.093 
 
 
Table 3 shows the Spearman rank correlations for the whole tumour size vs density 

for the invasive (significant positive association) and in situ cancers (negative but 
non-significant) separately, and for all tumours.  No significant correlation was found 
between tumour size and mammographic density in the contralateral breast for either 
density method for invasive cancers or for DCIS.  
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Fig. 1. Volpara™ density distribution for invasive cancers (blue, left hand side) and non-
invasive cancers (green, right hand side) 
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Fig. 2. Whole tumour size (mm)  vs volumetric breast density for in situ cancers 

Figures 2 and 3 show whole tumour size vs breast density for in situ and invasive 
lesions respectively. 
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Figures 4 and 5 depict the difference in density between the affected and 
unaffected breast; the differences were obtained by subtracting the volumetric breast 
density in the normal breast from the volumetric breast density in the breast  
containing the lesion or lesions. Results from QuantraTM are presented, but those from 
VolparaTM yield a similar pattern of results. The range of QuantraTM breast density 
values for all images was 9-48 with the lowest density being in an image showing 
cancer and the highest in a normal breast. The maximum difference in density 
between the two breasts was 8 percentage points, and the largest differences were 
found in mammograms containing microcalcification.  
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Fig. 3. Whole tumour size (mm) vs volumetric breast density for invasive cancers 

Comparing those cancer cases with a particular sign of abnormality with those 
without, the only sign in which significantly higher breast density was found was 
architectural distortion (p=0.002 for density measured with QuantraTM and p=0.007 
for density measured by VolparaTM). 

5 Discussion  

Previous studies have shown a positive link between percentage density and tumour 
size. Our results were consistent with this in that the relationship for invasive  
lesions was positive. Such an association could be attributed to the masking effects of 
dense glandular tissue so lesions are not detected during earlier screening 
mammograms. However, we did not observe a similar relationship for in situ breast 
cancer.  
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Fig. 4. The difference between volumetric breast density in the affected breast and in the 
unaffected breast (measured by QuantraTM) for different lesion types 
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Fig. 5. The difference between volumetric breast density in the affected breast and in the 
unaffected breast (measured by QuantraTM) for invasive and in situ lesions 

In this study, density difference between the affected and unaffected breasts 
showed a similar pattern for invasive and in situ cancers and did not show a 
systematic increase in density in the affected breast. The larger differences were not 
due to asymmetries, but tended to be in breasts in which there was microcalcification.  
This merits further investigation of the degree of microcalcification and the density of 
the breast.  
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Breasts containing architectural distortion had significantly higher density to those 
without, possibly reflecting the more extensive nature of the sign.  

The mean percentage density of the invasive cancer group was significantly higher 
than DCIS group. This is consistent with an association between dense glandular 
tissues and high concentrations of insulin like growth factor (IGF-1), which may 
promote cellular activity and growth, resulting in tumours of a more invasive nature.  
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Abstract. Tiled images are sometimes obtained for women with large breasts, 
which is a limitation of receptor size. In this retrospective HIPAA compliant 
study, automated breast density measurements for tiled images are compared 
with full MLO and CC views. Women with tiled views between July and De-
cember 2007 followed by full views within 15 months were included. Volume-
tric breast density (VBD) for tiled MLO views had very good correlation with 
full views (r = 0.88), while correlation between tiled and full CC views was 
poor (r = 0.31). VBD for all women requiring tiled CC views was low (<10%). 
In conclusion, VBD measured from a tiled MLO view is a reasonable substitute 
for a full MLO measure. Attributable risk of breast density for women requiring 
tiled CC views may be sufficiently low compared other factors such as high 
body mass index. 

Keywords: Breast density, Mammography, Measures, Risk Models. 

1 Introduction 

Mammographic breast density is an important risk factor for breast cancer. Women 
with high mammographic breast density are at 4-fold higher risk for breast cancer 
compared with women with fatty breasts [1-2]. Incorporation of breast density into a 
breast cancer risk model may improve accuracy of risk assessment. For optimal use in 
a risk model, the measurement of mammographic breast density must be automated, 
accurate, and reproducible.  

The accuracy of a measurement depends upon both the validity and reproducibility of 
the measure. A recent study has found high correlation between the percent breast den-
sity obtained using an automated volumetric measurement from mammography (Volpa-
ra, Volpara Solutions, Wellington, NZ) and breast magnetic resonance imaging (MRI) 

                                                           
* Corresponding author. 
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[3]. Typically, the measurements from all craniocaudal (CC) and mediolateral oblique 
(MLO) views are averaged together. However, images without a complete skin line 
cannot be analyzed using this software. This can occur when multiple projections are 
obtained due to large breast size relative to the size of the imaging receptor.  

Digital mammography receptors vary in size from 19 x 23 cm to 24 x 30 cm. 
Women with small to average sized breasts will typically have two views of each 
breast for a screening mammogram; craniocaudal (CC) and mediolateral oblique 
(MLO) views. However, many large breasts cannot be completely imaged on a small 
receptor. These women may require two or three images to completely visualize the 
breast tissue for each projection. Measuring breast density on these tiled images may 
or may not reflect density measures that would be obtained using a single image of 
the same breast using a larger detector. The goal of this study is to evaluate if the 
volumetric breast density (VBD) of tiled MLO or CC images may reasonably approx-
imate the VBD of the full view.  

2 Methods  

This retrospective study was HIPAA compliant and approved by our Institutional 
Review Board. A waiver of consent was granted.  

We performed a retrospective review of women who underwent mammography on 
a small image receptor between July and December 2007 at our screening facility to 
identify women with tiled images.  The primary screening site at one author institu-
tion (JAH) added a large receptor mammography machine in 2008. Women with ei-
ther tiled CC or MLO images on a small receptor followed by a single projection 
image on a large receptor within 15 months were included in the study. Women with 
a full view obtained greater than 15 months later were excluded as there may be other 
reasons for changes in breast density such as normal involution.  

Breast density was measured on tiled and single projection images using a  
validated automated measurement software program (Volpara, Volpara Solutions, 
Wellington, NZ). Briefly, Volpara applies an advanced method to identify a fatty 
reference point, such that there is less dependence upon accuracy of the compressed 
breast thickness readout [4].   

Pearson correlation coefficients were obtained for each dataset, comparing results 
for tiled versus full views.  

3 Results 

Over 1800 women underwent screening mammography on the small image receptor 
machine between July and December 2007. Of these, only eight women with 15 
breasts had tiled MLO views followed by a single projection MLO view on a large 
receptor within 15 months (Figure 1). Likewise, only seven women with 14 breasts 
underwent tiled CC views followed by a single projection CC view on a large recep-
tor within 15 months (Figure 2). Two of these patients were excluded; automated 
density readings could not be obtained as a skin line was not detectable on the images, 
leaving five patients with tiled CC views for analysis.  
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Fig. 1. Tiled MLO views were required to completely image the left breast on the first study 
(A), but could be completely imaged in one view on the second study (B) 

 

Fig. 2. On the first study (A), the medial left breast was not imaged on the receptor, so a clea-
vage view was obtained. The entire breast was imaged completely on the larger receptor used 
on the second study (B).  

For the MLO views, VBD for tiled views ranged from 2.0 to 18.9% (mean 6.0%, 
while VBD for full views ranged from 2.5 to 17.2% (mean 5.9%). Only one patient 
had a VBD of greater than 10%. Correlation between tiled and full VBD was very 
good (r = 0.88) (Figure 3). Body mass index (BMI) for these patients ranged from 
24.2 to 37.8 (mean 30.0); one patient was normal weight, three patients were over-
weight, and four patients were obese.  
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breast density, their breast cancer risk may be more significantly driven by their obes-
ity. Because BMI and breast density are independent breast cancer risk factors that 
can influence each other, the breast cancer risk associated with breast density must be 
adjusted for BMI.  

Our study has limitations. Although the review included a large number of women, 
only a small number met inclusion criteria, which is a major limitation of our study. A 
prospective study with a larger number of women may be helpful to confirm these 
results. A second limitation is the use of only one type of automated density software.  

In summary, our study shows that an automated measurement of breast density us-
ing a single tiled MLO image may be an adequate reflection of the density obtained 
from a full mammographic image. The use of VBD from a tiled CC view may not 
correlate as well with VBD obtained using the full CC view. However, this may be 
less important given the overall low density of women requiring the use of tiled 
views. Breast cancer risk for these women may be driven more significantly by high 
BMI than dense breast tissue.  
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Abstract. The aim of this study is to evaluate the reliability of the mammo-
graphic density estimations in follow-up examinations as measured by using a 
fully automated density estimation tool in terms of reproducibility and temporal 
stability. In our previous study, we have developed the fully automated mam-
mographic density estimation method named as SIGMAM, which is based on 
the prior statistics of mammograms integrated into a novel level set scheme dri-
ven by a population-based tissue probability map (PTPM). This scheme was de-
signed to capture the implicit knowledge of experts' visual systems in which the 
learned knowledge was modeled as the PTPM, which was shown to provide 
relatively high correlation coefficient of 0.93 with experts' estimations in a sin-
gle equipment study (Senographe 2000D, GE). In this study, we evaluate the re-
liability of our SIGMAM method in follow-up mammogram examinations with 
respect to temporal stability and reproducibility. For evaluation of temporal sta-
bility, we selected 170 pairs of CC-view mammograms of 170 female patients 
taken with the same equipment (Senographe 2000D, GE) within one year from 
the breast cancer screening database in our institute. On the other hand, we col-
lected pairs of mammograms taken with switched equipment: switched from 
GE (Senographe DS or Essential) to Hologic (Selenia). In total, 53 pairs of CC-
view mammograms from 38 female patients taken within one or two months 
regarding the menstrual cycle were established as a dataset for reproducibility 
validation. The correlation coefficient of density estimates in temporal stability 
mammograms was 0.92, while that of the reproducibility mammograms was 
0.87. In conclusion, our SIGMAM method showed relatively high reliability in 
both reproducibility and temporal stability. 

Keywords: CAD, level set, prior knowledge, density, estimation, evaluation. 
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1 Introduction 

Mammographic breast density (MBD) refers to the proportion of glandular tissues 
within the breast area, which has been regarded as a strong biomarker for breast can-
cer since the pioneering report by Wolfe [1], and Boyd et al. showed that higher 
mammographic density increases the risk of the breast cancer [2]. Accumulated stu-
dies also revealed that MBD can be utilized as an effective surrogate for monitoring 
all stages of patient care with breast cancer: the screening of breast cancer as a risk 
factor [3], the monitoring of treatments [4,5], and the prediction of recurrence for 
breast cancer [6]. Despite its effective role in aforementioned procedures, to date, 
MBD has been qualitatively measured in accordance with the Breast Imaging Report-
ing and Data System (BI-RADS) that requires experts' visual assessment assigning 
mammograms into one of four categories with 25% interval [7]. Alternatively, an 
interactive thresholding technique has been widely used for clinical studies to meas-
ure the MBD quantitatively [8], but it still requires experts' intervention so as to de-
termine two thresholds for breast and dense area which is time consuming and results 
in inter- and intra-rater variation. Accordingly, fully automated measurement of MBD 
is desirable for studies regarding the relation between MBD and breast cancer risk as 
well as the retrospective examination of patients using large population database. To 
this end, we have developed a fully automated MBD estimation method, which is 
based on the prior statistics of mammograms integrated into a novel level set scheme 
driven by a population-based tissue probability map (PTPM). This scheme was de-
signed to capture the implicit knowledge of experts' visual systems where the learned 
knowledge was modeled as the PTPM.  

In this paper, we briefly introduce the PTPM-driven level set method for the fully 
automated MBD assessments, specifically focusing on the evaluation of the method in 
terms of temporal stability and reproducibility. For the evaluation of the temporal 
stability, we utilized the mammograms from same patient taken within one year from 
the breast cancer screening database, and a pair of mammograms taken with different 
equipment were used for the evaluation of reproducibility. 

2 Database 

This study received institutional review board (IRB) approval from Seoul National 
University Hospital for the study of fully automated mammographic density estima-
tion and its association with breast cancer, and we collected full-field digital mammo-
grams (FFDMs) taken from various equipment: Senographe 2000D, DS, and Essential 
by GE; and Selenia by Hologic. The FFDMs from Senographe 2000D, DS, and Es-
sential have a resolution of 100 μm/pixel and a pixel matrix 2294 × 1914. They were 
post-processed using Premium View (GE Healthcare) software, which produced 
adaptive histogram equalized 12-bit gray-level images, whereas FFDMs from Selenia 
have a resolution of 70 μm/pixel and a pixel matrix 3328 × 2560 were post-processed 
using AWS (Hologic) software version 3.1. In this study, patients with prior breast 
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cancer surgery or with any abnormal findings (i.e., micro-calcifications, mass, or 
implant) were excluded. 

3 PTPM-Driven Level Set Method for Fully Automated MBD 
Assessments 

The key notion of the PTPM-driven level set method is to utilize the nature of  
mammograms in that dense regions (i.e., fibroglandular tissues) tend to have higher 
intensity and heterogeneity than fatty regions (i.e., adipose tissues). These intrinsic 
information were trained as prior statistics: mean and standard deviation of dense and 
fatty regions. The trained prior statistics were modeled as PTPM, which cooperated 
with the imaging feature of a given mammogram so that the prior statistics serve as 
global information while the imaging features give local information. 

In order to construct the PTPM, we first extracted the prior statistics from mam-
mograms where the boundary between dense and fatty region was drawn by radiolo-
gists. The statistics were calculated in circular region of interests (ROIs) of 1cm in 
diameter as shown in Fig. 1. 

The extracted statistics were mean intensity, μ , and standard deviation, σ , in-

side each ROI obtained. The offset mean and standard deviation were computed after 
the alignment of the histogram since the intensity distribution of mammograms is 
varied, so the intensity value of α  percent of the maximum intensity of the histo-
gram was subtracted from whole pixel intensities in the breast area so that the intensi-
ty distribution of a given mammogram is normalized. With means and standard devia-
tions from each ROI in mammograms, 2D scatter plot of statistical samples were 
obtained as shown in Fig. 2. 

 

Fig. 1. ROI selection for extracting regional statistics in a mammogram: (a) an experts׳ interac-
tive thresholding for separating fatty and dense regions in which the boundary between two 
regions are shown as a color overlay of red solid contour, (b) the selection of ROIs within 
dense and fatty regions with red and green circles, respectively, determined by the expert. 
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Fig. 2. 2D scatter plots of the extracted regional statistics from mammograms taken with (a) 
Senographe 2000D, GE and (b) Selenia, Hologic 

The dense and fatty regions were determined if an ROI contains more than 95 per-
cent of dense and fatty tissues. By using the statistical samples, the probability density 
functions (PDFs) of dense and fatty region were generated by non-parametric proba-
bility estimation method (i.e., Parzen windows). Based on the PDFs shown in Fig. 3, 
we obtained the class probability as follows: 
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The energy functional that is minimized when the initial contour reaches the de-
sired boundary between dense and fatty region was defined to integrate the class 
probability shown in Fig. 4 and regional features from the given mammogram. The 
defined energy functional is as below: 

 ( )( ) ( )( ) ( )( ), , , ,i o prior image i oE x E x E xφ μ μ φ φ μ μ= +  (3) 

 ( )( ) ( ) ( )( ) ( ) ( )( )( )log log 1prior D FE x P x H x dx P x H x dxφ φ φ
Ω Ω

= − − −   (4) 

 

Fig. 3. Estimated PDFs of (a) dense region, ( ),dp μ σ , and (b) fatty region, ( ),fp μ σ  
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Fig. 4. The PTPMs of mammograms taken with (a) Senographe 2000D, GE and (b) Selenia, 
Hologic obtained from the extracted regional statistics modeled by non-parametric probability 
density function estimation 
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 (5) 

where iμ  and oμ  are the mean of inside and outside of the current contour, respec-

tively, ( )xφ  is an intrinsic signed distance function, ( )H   is a characteristic func-

tion, and Ω  is a set of pixels inside of the breast region. The energy of regional 
features in (5) was proposed by Chen et al. that is minimized when the contrast be-
tween inside and outside of the contour is maximized [9]. Finally, using Euler-
Lagrange equation in (9), the motion equation of the contour was obtained as in (10). 

 
( ) ( )( )
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 (6) 

 

Fig. 5. The evolution of the initial contours approaching the desired boundary between dense 
and fatty region at (a) initial, (b) 5, (c) 10, (d) 30, and final iterations, respectively 
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Fig. 6. 2D scatter plots of (a) retrospective and (b) reproducible estimations by PTPM-driven 
level set scheme. The correlation coefficients are displayed near the trend line drawn as red 
dotted lines with linear equations. 
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Figure 5 shows an example of the evolution of the initial contours by using the  
motion equation (10). 

4 Experimental Results 

4.1 Temporal Stability 

For the evaluation of temporal stability, 170 pairs of CC-view mammograms of 170 
female patients were selected taken with the same equipment (Senographe 2000D) 
with one year interval. In Fig. 6(a), the 2D scatter plot of the retrospective estimations 
by PTPM-driven level set scheme is shown, in which the trend line is drawn as red 
dotted line with linear equation. As a result, the correlation coefficient between cur-
rent screenings and next screenings was 0.92. 

4.2 Reproducibility 

In order to validate the reproducibility with respect to various equipment, we estab-
lished the database of mammogram pairs taken with switched equipment: switched 
from GE (Senographe DS or Essential) to Hologic (Selenia). In total, 53 pairs of CC-
view mammograms from 38 female patients taken within one or two months regard-
ing the menstrual cycle. As shown in Fig. 6(b), the correlation coefficient between 
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estimation results by using mammograms from different equipment was 0.87, which 
was satisfactory regarding various imaging protocols. 

4.3 Visual Assessment 

Figure 7 compares the final estimation results using mammograms from different 
equipment where the mammographic percent densities are annotated at the bottom of 
each estimation result. As seen in the figure, the estimation results closely match 
those by different equipment proving that the PTPM-driven level set method is quite 
reproducible. 

5 Discussion and Conclusion 

The correlation coefficient of density estimates in terms of temporal stability was 
0.92, while that of the reproducibility was 0.87. These results showed that the PTPM-
driven level set method can be a reliable tool for applying to retrospective clinical 
studies relating the MBD to breast cancer risk with large databases regardless of 
equipment. As a future work, we will establish a larger database of paired mammo-
grams taken with different equipment of same patient for studies investigating the 
factors influencing the reproducibility of MBD between equipment and potential im-
provements of reproducibility. 

 

Fig. 7. A comparison of estimations between mammograms from (a) GE and (b) Hologic de-
vices. The boundaries between fatty and dense regions are drawn with red solid lines where 
percent mammographic densities are annotated below. 
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Abstract. We evaluated the usefulness of DBT and automated volume analysis 
with DCEB MRI to assess its potential role in estimating viable tumor volume 
in pre-and pos-t NAC images in response to treatment in comparison with 
FFDM and US. Twenty women having 21 lesions, in total were recruited for 
this study.The diagnostic procedures were performed within one month prior to 
surgery. FFDM, DBT, US and DCEB MRI were performed on each of the pa-
tients before and after NAC. The imaging data was analyzed by a medical 
workstation dedicated to breast MRI imaging. Utilizing the dynamic contrast 
images from 1st to 4th phase, volume statistics with VOI (volume of interest) 
and the volume was automatically calculated and evaluated as to the efficacy of 
NAC. DBT has the advantage of providing macroscopic pathological fidings in 
total without utitiling contrast medium. On the other hand, DCEB MRI has the 
advantage of providing numerical and detailed vascularity details of viable 
areas. In accordance with the results, a combination of DBT and automated vo-
lume analysis of DCEB MRI will contribute to more accurate diagnosis in the 
assessment of pathological response to NAC. 

Keywords: DBT, MRI, Breast, Automated Volume Analysis. 

1 Introduction 

Digital breast tomosynthesis (DBT) has been only recently applied clinically. The 
diagnostic advantages in comparison to mammography have been reported on, includ-
ing the fact that the slice images can be evaluated because tomosynthesis decreases 
the overlap in breast tissue. DCEB MRI provided a more accurate assessment of tu-
mor extent with respect to pathological findings in cases of breast cancer. Although 
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the results supported the usefulness of measurement by 2D MRI in improving the 
estimation of out of frame tumor size, this measurement does not evaluate actual vo-
lume of viable lesions after NAC. This is  because shrinkage of the mass lesion, in-
cluding fibrotic change after NAC, makes it difficult to evaluate the viable lesion by 
2D MRI images only. According to the background in this study, we evaluated the 
usefulness of DBT and automated volume analysis with DCEB MRI to assess its po-
tential role in estimating viable tumor volume in pre- and post- NAC images in re-
sponse to treatment in comparison with FFDM (Full Field Digital Mammography) 
and US.  

2 Methods and Materials 

Twenty women (ages 29-64, mean age, 47.3 years old) having 21 lesions in total were 
recruited for this study. Pathological diagnosis was confirmed by Core Needle Biopsy 
(CNB). Pathological subtypes were Invasive Ductal Carcinoma, Sci (n=10: 47.6%);  
Invasive Ductal Carcinoma, Sol-Tub or Pap-Tub (n=8: 38.1%); Invasive Ductal Car-
cinoma, Apocrine (n=1: 4.8%);  Invasive Lobular Carcinoma (n=1: 4.8%),  and Inva-
sive Micropapillary  Carcinoma (n=1: 4.8%). The clinical stages of the patients before 
NAC were II or III. All patients underwent surgery based on their response to NAC. 
Residual tumor size estimated by diagnostic imaging was compared with the residual 
tumor size determined by surgical pathology. The diagnostic procedures were per-
formed within one month prior to surgery. FFDM, DBT, US and DCEB MRI were 
performed on each of the patients before and after NAC. The diagnostic procedures 
were performed within one month prior to surgery. Breast MRI was performed with a 
3-Tesla system. The four phase dynamic contrast enhanced images were taken with an 
intravenous injection of 0.1mmol of Gd-DTPA/Kg of body weight. The post-
processing procedures of the 2D slice images included multiplanar reconstruction 
(MPR) by slices and the construction of maximum intensity projection (MIP) images. 
These images were evaluated by one radiologist and three breast surgeons before the 
operation. The imaging data was analyzed using a medical workstation dedicated to 
breast MRI imaging. Utilizing the dynamic contrast images from 1st to 4th phases, the 
time intensity curve of wash-in and wash-out was automatically determined. The 
patterns of enhancement were classified into the initial phase (slow, medium, and 
rapid) and the delayed phase (persistent, plateau, and wash-out). In addition, we 
measured the positive enhancement integral (PEI). PEI calculates the areas under the 
enhancement curve over the entire time sequence. It was evaluating by color overlay 
maps (Type 1:<100 Arbitrary Units (AU), Type 2: 500AU>Type2 >100 AU, and 
Type 3: >500 AU). In addition, for reference, not only the clinical target lesion, but 
also normal breasts were evaluated for background. Referring to the color maps of 
PEI, the viable lesions (Type 2 or Type 3) were traced as VOI (volume of interest) 
and the volume was automatically calculated and evaluated as to the efficacy of NAC. 
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Volume statistics with VOI analyzed wash-in and  wash-out rates of the pixels within 
the sphere utilizing the 2nd and 3rd dynamic images (Fig.1). 

 

                 

    Fig. 1. a. PEI Image               Fig. 1. b 2D Coronal Image      

 

Fig. 1. c. VOI Analysis 

 

The clinical response to NAC was classified into the following categories, based 

on the response evaluation criteria in solid tumors  (RECIST)  using the measure-
ments obtained with the following different imaging methods: 1) Complete Response 
(CR), no clinical evidence of residual tumor;  2) Partial Response (PR), reduction in 
size of the tumor by more than 30%; 3) Non-Responders , Stable disease (SD), reduc-
tion in size of the tumor by less than 30%;  4) Progressive disease (PD), increase in 
size of tumor or presence of new lesions. Pathological response to NAC was classi-
fied into four categories: Grade 0 (No Response), Grade 1 (Slight Response), Grade 2 
(Fair Response), and Grade 3 (Complete Response). 
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3 Results and Discussion 

Pathological responses of the lesions to NAC were Grade 1 or Grade 2 (n=17), and 
Grade 3 (n=4). FFDM findings only of pathological Grade 3 (n=4) were diagnosed  
as clinical CR (n=2/4, 50.0%) and clinical PR (n=2/4, 50.0%). DBT findings were 
diagnosed as clinical CR (n=2/4, 50.0%) and clinical PR (n=2/4, 50.0%). US findings 
were diagnosed as clinical CR (n=1/4, 25.0%) and clinical PR (n=3/4, 75.0%). 2D 
MRI findings were diagnosed as clinical CR (n=2/4, 50.0%) and clinical PR (n=2/4, 
50.0%). Among pathological Grade 1 and Grade 2 lesions (n=17), 16 lesions were 
evaluated as clinical PR and  one lesion was evaluated as SD by FFDM, DBT, and  
2D MRI. Fifteen lesions were evaluated as clinical PR and 2 lesions were evaluated  
as SD by US (Table 1). In addition, regarding the evaluation of residual tumor size,  
its size was over-estimated in one lesion (n=1/17, 5.9%) or under-estimated in six  
lesions (n=6/17, 35.3%) by FFDM. By US, it was over-estimated in two lesions 
(n=2/17, 11.8%) or under-estimated  in three lesions (n=3/17, 17.6%). By DBT, it was 
over-estimated in only two lesions (n=2/17, 11.8%). By 2D MRI findings, the viable 
area was  over-estimated in one  lesion (n=1/17, 5.9%) or under-estimated in six  
lesions (n=6/17, 35.3%), when only 2D MRI findings were used.  

 

Table 1. Comparison of NAC Response by Diagnostic Evaluation and Pathological Evaluation 

Pathological Response FFDM                                   US                 (n=21) 
Grade 1 or 2 (n=17)        *PR  (n=16/17, 94.1%)            PR  (n=15/17, 88.2%) 

SD  (n=1/17, 5.9%)                SD  (n=2/17, 11.8 %)
Grade 3 (n=4)                    CR  (n=2/4, 50.0%)               CR  (n=1/4, 25.0%)

PR   (n=2/4, 50.0%)           PR  (n=3/4, 75.0%)

Pathological Response DBT                                 MRI          (n=21) 
Grade 1 or 2 (n=17)       PR  (n=16/17, 94.1%)          PR  (n=16/17, 94.1%)   

SD  (n=1/17, 5.9%)              SD  (n=1/17, 5.9 %)
Grade 3 (n=4)                    CR (n=2/4, 50.0%)              CR (n=2/4, 50.0%)

PR  (n=2/4, 50.0%)              PR  (n=2/4, 50.0%)
 

Table 1.   * The clinical response to chemotherapy was classified in accordance with RECIST 

 
According to the PEI with color overlay maps, the residual viable areas were 

shown as Type 2 or Type 3, corresponding  to pathological Grade1or Grade 2 and the 
non-residual viable areas were shown as Type1, corresponding to pathological Grade 
3 or the same pattern as the normal background breasts. There was no discrepancy 
with the results of pathological response. In addition, compared to pathological  
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response, volume analysis with VOI referring to PEI with color mapping made a more 
accurate diagnosis compared to the reference to 2D MRI images only. Colored  
volume analysis will be able to qualify the volume of viable area. Distribution of the 
enhancement pattern will be able to provide a detailed vascularity pattern in the viable 
area (Fig.3-4). 

4 Conclusion 

DBT has the advantage of  providing macroscopic pathological fidings in total with-
out utitiling contrast medium. On the other hand,  DCEB MRI has the advantage of 
providing numerical and detailed vascularity details of viable areas. In accordance 
with the results, a combination of DBT and automated volume analysis of DCEB 
MRI will contribute to more accurate diagnosis in the assessment of pathological 
response to NAC. 
 
 

Fig. 2a                        Fig.  2b                          Fig.  2c                           Fig.  2d
FFDM: Pre NAC          FFDM: Post NAC        DBT: Pre NAC           DBT: Post NAC 

Fig.  2e. US: Pre NAC                                               Fig.  2f.  US: Post NAC
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 Fig.  2g. MRI Coronal Image: Pre NAC Fig.  2h.  MRI Coronal Image: Post NAC

   
Fig. 2. Case 1: Pathological Grade 3  

Fig. 3a. Saggital Image                                     Fig. 3b. PEI Image 

             
Fig. 3c.VOI Analysis 

 

Fig. 3. Case 2: Pathological Grade 2a: Pre NAC 
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FFDM (Fig.2a-b) demonstrated a reduced mass with micro-calcifications after 
NAC (white arrow). DBT (Fig.2c-d) demonstrated microcalcifications with scar with-
out core density inside of the corresponding lesion after NAC (white arrow). US 
(Fig.2e-f) demonstrated a reduced hypo-echoic mass as a suspicious residual lesion 
after NAC (white arrow). The coronal Image of CE-MRI (Fig.2g-h) demonstrated 
small enhanced nodules as a suspicious residual lesion after NAC (white arrow). Pa-
thological diagnosis demonstrated residual DCIS corresponding to the enhanced le-
sions by CE- MRI. In accordance with MMG, US and 2D MRI findings, residual 
lesion was suspected and the efficacy of NAC was underestimared. The findings of 
DBT corresponded to pathological results.  

 

Fig. 4a. Saggital Image                                  Fig. 4b. PEI Image 

                   
Fig. 4c. VOI Analysis 

 

Fig. 4. Case 2: Pathological Grade 2a: Post NAC  
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MRI saggital image (Fig. 3a, Fig. 4a) demonstrated a reduced mass after NAC 
(white arrow). The pathological grade was Grade 2a and the size of residual lesion 
was ILC, 110x44mm. The residul lesion size was  underestimated by 2D MRI. On  
the other hand, PEI image and VOI statistics demonstrated that larger residual area 
(white circle: Fig. 4b) and 65.9% area suggested non-viable area and others suggested 
viable area (white arrow: Fig. 4c).The findings of PEI image and VOI analysis  
corresponded to pathological results more acculately in comparison with 2D MRI 
images. 
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Abstract. Digital breast tomosynthesis (DBT) slices are reconstructed from 
projections acquired within a limited angular range. Out-of-plane artifacts are 
inevitable in reconstructed DBT images. In this study, we evaluated novel im-
age processing techniques in the framework of filtered backprojection (FBP) 
and compared the results with reconstruction using a previously used FBP me-
thod. The novel FBP reconstruction has an adapted filter kernel, uses unbinned 
projections, performs an adaptive collapsing scheme and statistical artifact re-
duction, and applies iterative filtering in the image domain. Fifty-four image 
pairs were evaluated by three experienced radiologists. The images were com-
pared on a 7-point scale (-3, -2, -1, 0, +1, +2, and +3) according to the follow-
ing five categories: (1) visibility of noise, (2) diagnostic certainty regarding 
masses, (3) diagnostic certainty regarding microcalcifications, (4) visibility of 
structures in the pectoral muscle, and (5) overall image quality. The results 
showed a statistically significant superiority of the novel FBP reconstruction in 
comparison with standard FBP (p < 0.05). In particular, the improvement of the 
diagnostic certainty related to microcalcifications with the novel FBP is note-
worthy. 

Keywords: Tomosynthesis, Image Processing, DBT, FBP. 

1 Introduction 

Digital breast tomosynthesis (DBT) provides an advantage in detection of breast 
masses compared to 2D mammography since it allows to separate the tissue layers 
and to noticeably reduce occlusions caused by overlapping anatomical structures (1-6). 
The 3D representation of the breast is reconstructed from projections acquired only 
within a limited angular range. Because of this acquisition procedure out-of-plane 
artifacts are inevitable in reconstructed DBT images. 
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There are many algorithms designed to reduce these kinds of artifacts (7). 
Metal artifact reduction methods coming from CT are often based on segmenting 

the metal objects in the sinogram or in projection images and removing them before 
the reconstruction by interpolation of neighboring values (8). Such methods are of 
very limited use in DBT, where artifacts are caused mainly by the missing data of the 
tomosynthesis acquisition and originate around dense tissue, masses or calcifications. 
It is not feasible to detect and remove these in the low dose projections. 

One of the state-of-the-art artifact reduction methods specific to tomosynthesis is 
the slice thickness filter which is used in FBP reconstructions (9). The slice thickness 
filter is a low-pass filter which reduces the frequency response in z-direction. It al-
lows maintaining constant slice thickness and limits the out-of-plane artifacts but 
reduces the sharpness of high frequency features in the projections with high angle of 
incidence. Other methods suggest using statistical outlier detection tests during back 
projection to further reduce artifacts (10, 11). 

Optimization of FBP for DBT reconstruction to reduce artifacts and improve image 
quality is an ongoing research topic. In this work, we evaluated a novel image 
processing technique within the framework of FBP. We compared it with standard 
FBP reconstruction regarding image quality and diagnostic certainty utilizing clinical 
images.  

2 Methods and Materials 

The clinical data sets were acquired with a DBT system (MAMMOMAT Inspiration, 
Siemens, Germany; MAMMOMAT Inspiration Tomosynthesis is not commercially 
available in the U.S.). The images were reconstructed into 2 mm thick slices having 
1mm overlap with high in-plane resolution of 0.085 mm × 0.085 mm. For each pa-
tient, CC and MLO views were taken for diagnosis. With one-view DBT, the radia-
tion dose, utilizing the ACR phantom 156, was 1.80mGy. The image reconstruction 
technique was based on FBP. The previously employed FBP reconstruction that we 
here call standard FBP reconstruction used a filter kernel that was dominated by  
the ramp filter for small spatial frequencies for tomosynthesis image reconstruction 
(Fig. 1a).  

The novel FBP reconstruction has an adapted filter kernel which preserves more of 
the lower frequencies and provides a different image impression. In addition, the im-
ages were reconstructed from unbinned projections at high z-resolution, and a subse-
quent adaptive collapsing scheme to generate thicker slices was applied. A statistical 
artifact reduction was used to mitigate out-of-plane artifacts (11). In addition, iterative 
filtering in image space was employed to suppress noise (Fig. 1b). A more detailed 
description of the image processing algorithms together with a phantom-based evalua-
tion is provided in (12). Note that in this work we focus on a clinical evaluation of the 
novel reconstruction. 

Fifty-four females who had been recalled for further diagnosis were enrolled in this 
study. The clinical study had been approved by the ethics committee. Informed con-
sent was obtained from all patients. The study population is characterized as follows. 
The mean age of the women was 51.0 years old (25.0 to 79.0 years old). The findings 
with FFDM and DBT of the cases in this study were masses (n=27; 50.0%) and  
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microcalcifications (n=28; 51.9%). The breast density was rated as ACR 1 (n=7; 
13.0%), ACR 2 (n=20; 37.0%), ACR 3 (n=20; 37.0%), and ACR 4 (n=7; 13.0%) with 
FFDM (Table 1). Table 2 shows the distribution of the microcalcification-related and 
mass-related lesions with respect to two breast density categories (ACR 1 or ACR 2 
versus ACR 3 or ACR 4). 

The image pairs (two-view standard FBP vs. two-view novel FBP) were evaluated 
by three radiologists, each of them having more than five years of experience of inter-
preting mammograms. In a blinded side-by-side reading of the image pairs, the radi-
ologists compared the images on a 7-point scale (-3, -2, -1, 0, +1, +2, and +3) and 
evaluated according to the following five categories: 1. visibility of noise, 2. diagnos-
tic certainty: mass, 3. diagnostic certainty: microcalcifications, 4. visibility of struc-
tures in the pectoral muscle, and 5. overall image quality. The p-values corresponding 
to the paired t-test were analyzed by SPSS Statistics 17.0 (IBM, USA). The signific-
ance level was 0.05. 

 

                             

Fig. 1a. Standard FBP reconstruction     Fig. 1b. Novel FBP reconstruction 

Table 1. Distribution of breast density patterns 

Breast Density Patterns 
                

n=54 
ACR 1  7 (13.0%) 

ACR 2  20 (37.0%) 

ACR 3  20 (37.0%) 

ACR 4  7 (13.0%) 
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Table 2. Number of lesions according to breast density patterns 

  

Breast Density Patterns 
  

  

ACR 1 or ACR 2 ACR 3 or ACR 4 

Microcalcifications (n=28) 13 (46.4%) 15 (53.6%) 

Masses (n=27) 17 (63.0%) 10 (37.0%) 

3 Results and Discussion 

The results from the reading study are shown in Table 3. Positive mean values indi-
cate that the novel FBP reconstruction was preferred in comparison with standard 
FBP. The p-values corresponding to a paired t-test show a statistically significant 
superiority of the novel FBP reconstruction in comparison with standard FBP for all 
categories (p < 0.05). 

Table 3. Results for the reading study comparing image pairs consisting of the novel FBP 
reconstruction and standard FBP on the 7-point scale 

Category n Mean Value & SD p-value 

1. Visibility of noise 54 0.488±0.724 p < 0.001 

2. Diagnostic certainty: Mass 27 0.222±0.612 p < 0.05 

3. Diagnostic certainty: Microcalcifica-
tions 

28 0.560±0.782 p < 0.001 

4. Visibility of structures in the pectoral 
muscle 

54 0.245±0.973 p < 0.05 

5. Overall image quality 54 0.346±0.775 p < 0.001 

 
Results from category 1 (visibility of noise) and category 3 (diagnostic certainty 

regarding microcalcifications) demonstrated higher mean values compared to other 
categories. The improvement can be attributed to the reconstruction from unbinned 
projections at high z-resolution, the statistical artifact reduction, and the iterative fil-
tering. Those reconstruction techniques that are part of the novel FBP method gener-
ally result in microcalcifications being visualized clearer and less noisy compared to 
standard FBP. The results suggest that the novel image processing technique contri-
buted to the reduction of out-of plane artifacts, especially caused by calcifications. 

We also investigated if the ratings of the readers for the lesions with masses de-
pended on the breast density pattern. For these cases, no dependency with respect to 
the breast density pattern was found. On the other hand, for the lesions with microcal-
cifications, the novel FBP demonstrated lower values in two out of 28 (8.7%) lesions  
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Fig. 2a. Case1: Standard FBP reconstruction      Fig. 3a. Case1: Novel FBP reconstruction 

 

Fig. 2b. Case 1: Standard FBP reconstruction       Fig. 3b. Case 1: Novel FBP reconstruction 

Fig. 2-3. In case 1 with breast density ACR 3, the novel FBP reconstruction provided a better 
visualization of microcalcifications (arrow) 
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Fig. 4a. Case 2: Standard FBP reconstruction      Fig. 5a. Case 2: Novel FBP reconstruction 

 

Fig. 4b. Case 2: Standard FBP reconstruction       Fig. 5b. Case 2: Novel FBP reconstruction 

Fig. 4-5. In case 2 with breast density ACR 1, the standard FBP reconstruction provided a 
better visualization of microcalcifications (arrow). In two of the 28 cases having microcalcifi-
cations-related lesions the visualization was rated better in standard FBP. 

which were rated as ACR 1 or ACR 2. All lesions with the new FBP that were rated 
as ACR 3 or ACR 4 demonstrated higher values in comparison with the standard FBP 
(Fig. 2-3). According to our preliminary results, the new FBP might demonstrate low-
er values among relatively fatty breast patterns. The findings showed that the adapted 
filter kernel made evaluation of microcalcifications more difficult because of de-
creased density contrast between dense breast tissue and fat compared to cases with 
relatively dense breast patterns (Fig. 4-5). 
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4 Conclusion 

In our clinical evaluation, the novel FBP reconstruction resulted in better image quali-
ty compared to the standard FBP reconstruction. The improvements could be attri-
buted to the change in the algorithm. In particular, the improvement of the diagnostic 
certainty related to microcalcifications with the novel FBP is noteworthy. 
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Abstract. Mammographic risk assessment is used to determine the
probability of a woman developing breast cancer and it plays an impor-
tant role in the early detection and disease prevention within screening
mammography. Tabár and Birads are two fundamentally different risk
schemes, one is assessed based on mixtures of breast parenchyma and
the other one is assessed based on the percentage of dense breast tis-
sue. This paper presents findings on the correlation between these two
mammographic risk assessment schemes; aspects with respect to reader
experience and related inter reader variability were also investigated.
As a follow up (revisit) investigation to a previously published paper,
the new results have shown a strong correlation between Tabár and
Birads with the highest Spearman’s correlation coefficient > 0.92 and
κ = 0.86% (almost perfect agreement). The statistical results vary with
readers’ mammographic reading experience, which also indicated subtle
information such as that some mixture of breast parenchma (Tabár spe-
cific mammographic building blocks) may be more likely to cause inter
reader variability.

Keywords: Tabár, Birads, risk assessment, digital mammography.

1 Introduction

Breast cancer has been considered a major health problem and is the commonest
cancer in the UK and across Europe [1]. It is estimated that between one in eight
and one in twelve women will develop breast cancer during their lifetime [2].
Recent statistics indicate a rise in breast cancer incident rates in certain segments
of the population [3], and the disease development is not fully understood [4].
From a disease prevention point of view, early detection through breast screening
programmes is by far the most effective way to tackle breast cancer [4]. Computer
aided detection/diagnosis (CAD) systems play a vital role in aiding radiologists
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to achieve breast cancer prevention and early intervention, leading to a rise in the
number of diagnosed cases and people surviving, after a 5 year cancer treatment
period [3].

Within screening mammography, the likelihood of a woman developing breast
cancer can be determined through mammoraphic risk assessment [5]. Tabár [6]
and Birads (American College of Radiology’s Breast Imaging Reporting and
Data System) [7] are two fundamentally different risk assessment schemes, one
is assessed based on mixtures of breast parenchyma and the other one is assessed
based on the percentage of dense breast tissue. It should be noted that currently
Birads is widely used through North America and Europe, and unlike the UK
five-point based scoring system [8]. It should be noted that the aforementioned
risk assessment schemes are image based, which have not fully integrated into
non-image based models (e.g. the Gail [9] and the Tyrer-Cuzick model [10])
which focus on patient-specific and enviromental aspects (e.g. family history,
diet and genetic markers) [4].

Tabár et al. proposed a model based on mixtures of four mammographic build-
ing blocks representing the normal breast anatomy, covering nodular, linear, ho-
mogeneous and radiolucent tissue [6]; see Fig. 1 for examples. Nodular densities

Fig. 1. Example mammographic building blocks, from left to right: nodular, linear
structure, homogeneous and radiolucent

mainly correspond to Terminal Ductal Lobular Units (TDLU); linear densi-
ties correspond to either ducts, fibrous tissue or blood vessels; homogeneous-
structureless densities correspond to fibrous tissue; radiolucent areas are related
to adipose fatty tissue. Strongly influenced byWolfe’s original work [11], Tabár et
al. divided mammograms based on parenchymal patterns into five risk classes [6].
Each risk class has a distribution pattern of the four mammographic building
blocks (i.e. [nodular%, linear%, homogeneous%, radiolucent%]); patterns I to V
represent low to high mammographic risk: pattern I is composed as [25%, 15%,
35%, 25%]; pattern II is composed as [2%, 14%, 2%, 82%]; pattern III is similar
in composition to pattern II, except that the retroareolar prominent ducts are
often associated with periductal fibrosis; whilst in pattern II such an association
occurs less frequent; pattern IV is composed as [49%, 19%, 15%, 17%]; whilst
pattern V is composed as [2%, 2%, 89%, 7%]; see Fig. 2 for examples. Note that
in pattern IV the relative proportion of the four building blocks can vary due
to involution, which is a process of tissue changes (e.g. total fatty replacement)
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TI/B2 TII/B1 TIII/B1 TIV/B4 TV/B5

Fig. 2. Example mammographic images with Tabár (‘T’) risk classifications from low
to high, and their equivalent according to the Birads (‘B’) scheme

that is highly individual and can be caused by hormone replacement or preg-
nancy. This regression also happens in pattern I, leading for pattern I to change
to either Pattern II or III [6].

Birads was developed to standardise mammography reporting and reduce con-
fusion in breast imaging interpretations. It is used as a quality assurance tool
which covers the significant relationship between increased breast density and
decreased mammographic sensitivity in detecting cancer [12]. Each mammog-
raphy report starts with a breast density description which is used to inform
the clinician about possible effect of the sensitivity of the examination due to
the mammographic density of the patient [13]. Mammographic breast composi-
tion is categorised into four classes: Birads 1, the breast is almost entirely fat
(< 25% glandular); Birads 2, the breast has scattered fibroglandular densities
(25%−50%); Birads 3, the breast consists of heterogeneously dense breast tissue
(51% − 75%); and Birads 4, the breast is extremely dense (> 75% glandular);
see Fig. 3 for examples.

Muhimmah et al. [14] used the MIAS database which contains digitised mam-
mograms and established a strong correlation (Spearman’s correlation coefficient
> 0.9) between Wolf, Boyd and Birads based classification, but their correlation
with Tabár based classification are less clear (Spearman’s correlation coefficient
< 0.5). This paper is a follow up study to [14] with a focus on the correlation

B1/TIII B2/TI B3/TIV B4/TV

Fig. 3. Example mammographic images with Birads (‘B’) risk classifications from low
to high, and their equivalent according to the Tabár (‘T’) scheme
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between Tabár and Birads based classification, using full field digital mammog-
raphy. In addition, aspects with respect to reader experience and related inter
reader variability were also investigated. The reader is referred to [14] for the
details of the study on the correlation between Wolf, Boyd and Birads based
classification, using digitised mammograms.

2 Data and Method

The dataset consists of 360 ‘for presentation’ mammographic images processed
for optimal visual appearance to radiologists. Three radiologists participated in
an independent mammographic risk classification process evaluation, and have
different mammogram reading experience at junior (J), expert (E) and consul-
tant (C) levels. Here, we consider a mammogram reader’s experience from 0
to 3 years is junior, 3 to 10 years is expert and over 10 years is consultant. A
consensus (S) ground true was generated based on J, E, and C; in the case of a
tied (mutually exclusive) rating, a weighting mechanism was imposed to assign
weights 1.0, 1.5 and 2.0 to J, E and C, respectively. It should be noted that the
reader experience categorisation used is for the evaluation purpose; in clinical
practice, there is no clear agreement to the categorisation. Table 1 shows inter
reader variability; the classification discrepancies in Tabár are more or less the
same amongst the radiologists; whilst in Birads, the discrepancies are lower be-
tween the consultant and expert radiologists (i.e. C-E), moderate between the
expert and junior radiologists (i.e. E-J), and relatively higher between the ju-
nior and consultant radiologists (i.e. J-C). Cohen’s Kappa (κ) and Spearman’s
correlation coefficient were used to investigate the correlation between Tabár
and Birads based classification, including individual vs. individual, individual
vs. consensus.

Table 1. Inter reader variability (agreement) for Tabár (left) and Birads (right) clas-
sification schemes

Tabár
Reader E C S

T
a
b
á
r J 58% 58% 77%

E 51% 71%
C 81%

Birads
Reader E C S

B
ir
a
d
s J 65% 59% 75%

E 74% 90%
C 85%

3 Results and Discussion

Table 2 shows Tabár and Birads classification agreement matrices between the
three radiologists and consensus data. The risk mapping used between Tabár
and Birads classification in Table 2 (a), (b) and (c) are: (TI→B1, TII/III→B2,
TIV→B3, TV→B4), (TII→B1, TIII→B2, TIV→B3, TV→B4), and (TII/III→B1,
TI→B2, TIV→B3, TV→B4), respectively. The results shown in Table 2 (b) were
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used as a direct comparison with [14], in which the agreement were calculated
between the two schemes with Tabár I left out. Note that the tissue composi-
tions for Tabár II and III are the same as described in Tabár scheme. The results
shown in Table 2 (a) were based on the assumption that for a similar mammo-
graphic appearance, Tabár and Birads have similar perception of breast risk,
despite the quantification methods used to measure the risk are fundamentally
different. However, the agreement calculated based on the mapping tells other-
wise, as the vast majority of the TI are B2, and TII/TIII are spread across B1. If
only considering the three radiologists’ results (excluding the consensus data),
the derived average agreement between such a risk mapping is 61%; this is 10%
improvement when compared to the results in [14]; which may indicate that by
using digital mammography with improved contrast and texture appearances,
the inter reader variability is noticeably reduced. The results shown in Table
2 (c) were based on swapping the risk mapping between TI and TII/TIII to B2

and B1, respectively. Such a mapping shows on average higher correlation be-
tween Tabár and Birads based classification, which indicates that for a similar
mammographic appearance, Tabár has a different perception to Birads in low
breast risk (i.e. TI, TII/III, B1 and B2). According to the results in Table 2 (c),
the highest agreement is 92% (Spearman’s correlation coefficient > 0.9, κ = 0.86
almost perfect agreement) for the consultant radiologist; the lowest agreement
is 52% (Spearman’s correlation coefficient > 0.8, κ = 0.29 fair agreement) for
the junior radiologist; the highest and lowest inter reader agreement are 77%
and 63%, respectively. Table 3 (a-1,2) and (b-1,2) are the original confusion
matrices and confusion matrices with the risk mapping according to Table 2
(c), for the consultant (i.e. C(Tabár) vs. C(Birads)) and junior (i.e. J(Tabár)
vs. J(Birads)) radiologists, respectively. When comparing these four tables, the
results indicate that to a less experienced radiologist the confusion may occur
more often between TI, TII/TIII, B1 and B2. This confusion may be caused due
to that low risk Tabár I consists of 25% nodular (e.g. TDLU) and 35% homoge-
neous (e.g. fibroglandular) tissue, and both may appear as high intensity dense
tissue on mammograms; whilst the proportion of these two types of tissue is
close to the tissue composition for Birads 2, where the breast has 25% − 50%
scattered fibroglandular densities. From clinical practice point of view, density
based mammographic risk classification is now widely used in clinical environ-
ment, and Tabár based mammographic risk classification may be less practised
amongst less experienced radiologists.

4 Conclusions

The correlation is much stronger between Tabár and Birads based classification
when the risks are mapped as Tabár II/III, I, IV, V to Birads 1, 2, 3, 4. Inter
reader variability is reduced; this may partially due to sharper image quality
offered by digital mammography. Readers’ mammographic reading experience
can be linked to the correctness in assessing low breast risk when using Tabár
scheme. To our knowledge, this is the first time a direct strong correlation is
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Table 2. Inter reader variability (agreement); Tabár vs. Birads with different risk
mappings

Birads
Reader J E C S

T
a
b
á
r J 39% 28% 22% 32%

E 34% 23% 17% 23%
C 22% 17% 25% 20%
S 28% 18% 21% 20%

(a)

Birads

J E C S

83% 67% 60% 74%

77% 61% 50% 61%

55% 43% 51% 51%

79% 61% 61% 68%

(b)

Birads

J E C S

52% 67% 75% 69%

63% 66% 65% 66%

64% 77% 92% 86%

64% 76% 86% 83%

(c)

Table 3. The original and merged confusion matrices for the highest and lowest agree-
ment between Tabár and Birads, according to the risk mapping in Table 2 (c). Table 4
shows the corresponding results based on Tabár and Birads low and high risk classes.

Birads
1 2 3 4

T
a
b
á
r

I 24 121 2 0
II 44 0 0 0
III 102 2 0 0
IV 0 0 41 4
V 0 0 0 20

(a-1)

Birads
1 2 3 4

T
a
b
á
r

II/III 146 2 0 0
I 24 121 2 0
IV 0 0 41 4
V 0 0 0 20

(a-2)

Birads
1 2 3 4

T
a
b
á
r

I 0 19 77 0
II 83 3 0 0
III 31 82 9 0
IV 0 0 52 4
V 0 0 0 0

(b-1)

Birads
1 2 3 4

T
a
b
á
r

II/III 114 85 9 0
I 0 19 77 0
IV 0 0 52 4
V 0 0 0 0

(b-2)

Table 4. The corresponding confusion matrices for the highest and lowest agreement
based on the low and high risk classes between Tabár and Birads, and according to the
risk mapping in Table 2 (c). Note that Tabár I, II and III are low risk classes, Tabár
IV and V are high risk classes; whilst Birads 1 and 2 are low risk classes, Birads 3 and
4 are high risk classes. The agreement between Tabár and Birads for the consultant
and junior radiologist are 99% and 76%, respectively.

Birads
Low High

T
a
b
á
r L
ow

293 2

H
ig
h

0 65

(a)

Birads
Low High

T
a
b
á
r L
ow

218 86

H
ig
h

0 56

(b)
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established between Tabár and Birads based classification, which can be a useful
knowledge in computer aided mammographic risk assessment.
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Abstract. Early classification of breast cancers by molecular subtype allows for 
expeditious characterization of the disease and selection of appropriate treat-
ment options. This ability is especially a concern for “triple-negative” cancers, 
which lack expression of the three cell surface receptors that most breast cancer 
hormonal therapies target, tend to be the most aggressive/metastatic compared 
to other subtypes, have lymph node involvement at diagnoses, and have rela-
tively poor prognoses. In this study, we aim to develop predictive models using 
Dynamic Contrast-Enhanced (DCE) MRI-extracted features to identify triple-
negative cancers and axillary lymph node metastasis at the time of diagnostic 
imaging. Using only morphological, pharmacokinetic, densitometric, statistical, 
textural, and textural kinetic features obtained from DCE-MRI, we were able to 
classify 91.3% of 69 lesions correctly for triple-negative status with a sensitivi-
ty of 55.6%, a specificity of 96.7, and an AUC of 0.889; 71.6% of lesions cor-
rectly for lymph node metastasis with a sensitivity of 50.0%, a specificity of 
82.2%, and an AUC of 0.677. 

Keywords: Breast cancer, molecular subtypes, triple-negative, axillary lymph 
node, metastasis, Dynamic Contrast-Enhanced MRI, imaging biomarkers, tex-
ture, textural kinetics, classification. 

1 Introduction 

Prognosis and treatment regimens of breast cancers differ based on molecular sub-
type. So called “triple-negative” breast cancers (TN), which do not exhibit estrogen 
(ER), progesterone (PgR), nor human epidermal growth factor receptor 2 (HER2) 
receptors on their cell surface are especially difficult to treat since the disease cannot 
benefit from receptor-specific therapies. TN tumors are generally larger in size, of 
higher grade, have lymph node involvement at diagnosis, and are more aggressive [1]. 
For these reasons, it is of significant interest to identify patients who fall into this 
category as early as possible. As less than 30% of patients with metastatic TN breast 
cancer survive 5 years [2], it is of even greater priority to identify those with disease 
further complicated by metastasis. 
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The purpose of this study is to develop models to predict TN cancers and axillary 
lymph node metastasis of breast cancer using features obtained from dynamic con-
trast-enhanced (DCE) MR imaging before surgery. 

2 Methods 

2.1 Subjects 

This retrospective study included 64 women, presenting mass lesions pathologically 
proven as invasive carcinoma, who underwent 3.0T breast DCE-MRI before their 
surgical procedure between February 2012 and March 2013. Two of the subjects pre-
sented 2 unilateral lesions and 3 presented bilateral lesions. Of the 69 lesions total, 58 
were characterized as invasive ductal carcinoma, 4 as invasive lobular carcinoma, and 
7 as other. Ages of women included ranged from 40 to 79, averaging 60. 

The following health features of subjects were included in the analysis: age, height, 
weight, body mass index (BMI), age at menarche, days since last menstrual period, 
and parity status. 

2.2 Imaging 

MRI. All subjects were imaged using one 3.0T Philips Achieva TX system with a 7-
channel breast coil while lying in the prone position. Gadolinium-enhanced fat-
suppressed 3-D T1-weighted images were acquired bilaterally in the axial plane using 
a protocol capturing four time points: one immediately before contrast agent injection 
(t1), two early phase (t2 and t3, at 1 and 2 minutes after injection respectively), and 
one late phase (t4, at 6 minutes after injection). Between t3 and t4, a high-resolution 
fat-suppressed 3-D T1-weighted image was also acquired unilaterally of the diseased 
side breast in the sagittal plane. 

Radiologist Review. A board-certified radiologist specializing in breast imaging with 
13 years of experience reviewed all cases. Both DCE-MRI and high resolution sagittal 
imaging were used. Morphology of the mass (shape, margin, internal enhancement 
characteristics), kinetics (initial rise, delayed phase), and associated findings for nip-
ple and skin were evaluated for each lesion according to Breast Imaging Reporting 
and Data Systems (BI-RADS) MRI and included in the analysis. Mass size, lesion 
laterality, additional findings (necrosis, degeneration, cystic formation in mass), find-
ings of ductal spread (status, morphology, distribution), axillary lymphadenopathy 
suspicion, and size of axillary lymph node were also evaluated and included.  

2.3 Image Processing 

All image processing was performed using custom MATLAB R2012b (MathWorks, 
Inc., Natick, United States) software.  
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Tissue Compartment Segmentation. Segmentation of the affected breast’s tissue 
into four compartments was performed from the image at t3. Breast segmentation was 
performed by automatic detection of the skin edge and semi-automatic delineation of 
the chest wall in every slice. Lesion segmentation was performed semi-automatically 
using a grey-level intensity threshold region-growing method seeded by the user. 
Parenchyma and adipose tissue segmentation was performed automatically using a 
Fuzzy C-means clustering technique within the region previously identified as breast. 
Each voxel of the breast compartment, except that identified as lesion, was clustered 
using a fuzzy membership function into either parenchyma or adipose tissue cluster 
by similar grey-level intensity. 

Pharmacokinetic Modeling. Pharmacokinetic modeling based on signal intensity 
change over time was performed on each image. The following parameters were cal-
culated for each voxel designated as breast tissue, resulting in 10 parameter maps: rate 
in, mean rate in, peak time, max rate, rate out, percent enhancement, signal enhance-
ment ratio, initial area under the enhancement curve (iAUC) at 1 minute, iAUC at 2 
minutes, and iAUC at 6 minutes. 

Features. The four tissue compartments’ regions of interest obtained from t3 were 
duplicated onto the t1, t2, and t4 image maps and also onto each of the 10 pharmaco-
kinetic parameter maps. Features were calculated from either the tissue compartments 
themselves or from each combination of the compartments and 14 maps (56 regions 
of interest total), including morphological, densitometric, first-order statistical, 
second-order statistical, and textural kinetic measures. 

Three morphological features were calculated of the tissue compartments: volume, 
surface area, and compactness.  

One breast tissue density feature was calculated from the tissue compartments: 
percent fibroglandular volume. Associated volumes of breast tissue compartments 
(fibroglandular/parenchyma and adipose volume themselves), commonly labeled 
density features, are also included, having been calculated in morphological analysis 
step above. 

Twelve first-order statistical features were calculated of each region of interest: 
mean, median, mode, minimum, maximum, standard deviation, variance, skewness, 
kurtosis, sum, range, and interquartile range. Twelve second-order statistical features, 
also known as Haralick texture features [3] or grey-level co-occurrence texture fea-
tures, were calculated at 4 voxel offset distances (48 total) of each region of interest: 
energy, contrast, correlation, variance, homogeneity, sum mean, entropy, maximum 
probability, inertia, cluster shade, cluster prominence, and inverse difference. Each 
second-order statistical feature calculated was averaged across voxel offsetting in 26 
directions of 3-D space. 

Textural kinetic modeling [4] based on feature value change over time was per-
formed on each statistical feature (12 first-order + 48 second-order) using the same 10 
parameters calculated in pharmacokinetic modeling above, only per region of interest 
instead of per voxel. 

In all, 5776 features were calculated from image processing. 
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2.4 Pathology Findings 

Expression of ER, PgR, and HER2 receptors was examined by immunohistochemistry 
in specimens. Axillary lymph node metastasis was determined by sentinel lymph node 
biopsy or axillary lymph node dissection. 

2.5 Predictive Modeling 

All modeling was performed using Waikato Environment for Knowledge Analysis 
3.6.9 [5] (University of Waikato, Hamilton, New Zealand). 

Class Definition. Two models were created. Cases were classified as TN if the lesion 
lacked expression of ER, PgR, and HER2, else they were classified as non-triple-
negative (non-TN). Cases were also classified by using results of lymph node pathol-
ogy findings as metastatic or non-metastatic. Nine lesions were found to be TN and 
60 were found to be non-TN. Twenty two exhibited axillary lymph node metastasis, 
while 45 did not. In 2 subjects, metastasis status was not known. 

Classification. Supervised learning of class was performed on the two models de-
scribed above. A logistic regression classifier with restricted maximum likelihood 
regularization was used [6]. Generalization performance of classifiers were estimated 
by use of 10-fold randomized and stratified cross-validation [7] where performance 
metrics were averaged over the folds. 

Feature Reduction. As the number of imaging features was quite large, feature re-
duction was performed within cross-validation folds of each model. A Subset evalua-
tion method was used on each of the 10 training subsamples defined by cross-
validation, which evaluated feature subsets found by backtracking-augmented greedy 
hill-climbing against accuracy in predicting the class in the corresponding validation 
subsamples also by logistic regression with regularization. 

Performance Metrics. Classification performance was quantified using four metrics: 
accuracy, sensitivity, specificity, and area under the receiver operating characteristic 
curve (AUC). The latter three measures were computed relative to the minority 
classes TN and metastatic. 

3 Results 

On average, 2.6 features survived feature reduction per fold in the TN status model’s 
cross-validation tests. The features found as most significant predictors of TN status 
were: standard deviation of the parenchyma’s pharmacokinetic rate in (Figure 1, left), 
mass shape, and kurtosis of the lesion’s pharmacokinetic rate in. 
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would be helpful in the selection of care. Much effort is being taken toward customi-
zation of healthcare toward personalized medicine and such a tool would benefit the 
cause. Of course, were such a prediction tool not only non-invasive, but also auto-
mated, it would be of even greater clinical value. As detailed in the results section 
above, nearly all of the features surviving feature reduction in this study were prod-
ucts of image processing. So while the developments here did not go as far as fully 
automating the predictive classifiers learned, it is our aim to do so in the future with 
continued investigation of the value of these and other imaging biomarkers in their 
ability to predict outcomes of breast cancer. 

Also of particular interest from the findings above, is one of the surviving features 
of the TN model - the “standard deviation of the parenchyma’s pharmacokinetic rate 
in”. It is worth noting this feature again for further discussion as it is essentially 
equivalent to the heterogeneity of the new imaging biomarker being heavily re-
searched as “background parenchymal enhancement” for its relationship to breast 
cancer risk and MRI diagnostic performance [8]–[10]. We show here that it also has 
predictive value in breast cancer subtyping. 

5 Conclusion 

We have developed models using diagnostic DCE-MRI-extracted features able to 
predict TN status at the time of diagnostic image examination with great accuracy and 
discriminative ability, and able to predict axillary lymph node metastasis with notable 
accuracy and discriminative ability. 
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Abstract. Despite the innovations in breast imaging technology, the miss rates 
of breast cancers at mammography screening have remained stable, ranging 
from 10-30% per year. While many factors have been linked to radiologist per-
formance (such as volume of cases read, years of experience reading mammo-
grams), little is known about the relationship between the cancers correctly  
reported by the radiologists and the characteristics of the background and the 
malignant lesion. In this study we have used the BREAST platform to allow 92 
radiologists to read a case set of 60 digital mammograms, of which 20 depicted 
cancer. Readers were divided in 4 groups, obtained from the quartiles of the 
median localization sensitivity performance. Median location sensitivity for all 
readers was 0.71 (IQR=0.21). Statistically significant differences were observed 
among the groups in correctly reporting several types of lesion; for example, 
stellate masses were correctly reported only 37.5% by the poorest performers 
(median location sensitivity < 0.5), vs 88.9% by the top performers (median lo-
cation sensitivity ≥ 0.92, z=-3.317, P=0.0017). When compared to top perfor-
mers, the poorest performers had more difficulty reporting smaller lesions 
(<10mm) (40.9% vs 90.9% from top performers, z=-3.354, P=0.0008). Results 
suggest a link between the types of lesions more often missed by radiologists 
and their median location sensitivity. 

Keywords: Digital mammography, radiologist performance, lesion characteris-
tics, lesion assessment, missed cancers. 

1 Introduction 

According to the GLOBOCAN, 3.3 million women died from cancer worldwide in 
2008, and from these, the greatest proportion lost their lives to breast cancer, which 
claimed 14% of all these deaths [1]. Despite the great advances in breast imaging 
technology, with screening programs migrating from a film-based environment to a 
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digital environment, no reduction has been observed in the rates of cancers missed, 
which have remained steady between 10-30% per year [2]. At first it was hypothe-
sized that these unreported lesions did not attract the radiologists’ visual attention, but 
eye-position studies have shown that up to 70% of these cancers do attract the radiol-
ogists’ gaze [3], often for as long as the lesions that are correctly reported [4]. Hence, 
the issue with missed cancers is not one of detection, but one of perception and deci-
sion making. In this domain, the literature is full of studies reporting high variability 
rates not only among radiologists but also within radiologists [5-7] and this variability 
has often been suggested as the main underlying cause behind detected but unreported 
malignancies. 

However, very little is known about the relationship between missed (or reported) 
lesion characteristics and radiologist performance. This is what we set out to explore 
in this study.  

2 Methods 

Institutional ethical approval was granted for this study. In addition, patient consent 
waived and participating radiologists signed a consent form before case reading.  
Ninety two radiologists who currently report breast images in Australia and New 
Zealand voluntarily agreed to participate in this study.  Radiologists provided some 
demographic information, such as their age, number of years reading mammograms 
and number of mammograms read per year, prior to the data collection. Data was 
collected at the 2011 Royal Australian and New Zealand College of Radiologists 
Breast Imaging Group meeting in Hobart, AU.  

Two Eizo Radiforce GS510 (21.3 inches) monochrome high- class LCD diagnostic 
monitors were used to display the images. On average, radiologists sat 40 cm away 
from the displays, in a reading room where the average ambient light ranged from 20-
30 lux.  

The Breast Screen Reader Assessment Strategy (BREAST) platform was used in 
this study. BREAST allows for online reading of digital case sets, lesion location 
marking, and reporting of confidence in lesion malignancy. The radiologists’ task was 
to detect and report breast lesions. They were allowed to digitally manipulate the 
images (such as panning, zooming). Upon detecting a lesion, radiologists used a 
mouse-controlled cursor to digitally mark the lesion’s location on the image. They 
also assigned a confidence score to their mark, where 2 = benign lesion and 3-5 
represented malignancy, with a higher value indicating higher confidence. If they 
thought the case was normal, they just used the mouse to click on “next case”, and a 
confidence score of 1 (=normal) was automatically assigned to the case. This classifi-
cation is based on the grading system for mammographic lesions endorsed by the 
Royal Australian and New Zealand College of Radiology [8]. 

Albeit the radiologists did not report lesion or background characteristics, all 
marked lesions were contrasted with those contained in the “truth table”, which was 
generated using additional imaging and pathology reports, for characterization. These 
characteristics were chosen according to the Synoptic Breast Imaging Report of the 
National Breast Cancer Centre (NBCC, now Cancer Australia), endorsed by the Royal 
Australian and New Zealand College of Radiologists (RANZCR), which is similar to 
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the 4th edition American College of Radiology Breast Imaging Reporting and Data 
System (BI-RADS).  

Background characteristics used consisted of breast density, which was categorized 
as 

i. Scattered fibroglandular density; 
ii. Heterogeneously dense; 
iii. Extremely dense. 

 
True lesions correctly localized (as well as those not reported by the readers) were 

characterized according to: 
i. Lesion Type:  

a. cluster of calcifications;  
b. stellate mass;  
c. spiculated mass. 

ii. Lesion Margin:  
a. spiculated;  
b. indistinct;  
c. stellate. 

iii. Lesion Shape: 
a.  irregular;  
b. architectural distortion;  
c. round/oval. 

iv. Lesion Size:  
a. <10mm;  
b. 10mm ≤ size < 20mm;  
c. ≥ 20mm. 

 
In this way, false alarms on normal or abnormal cases were not included in the 

analysis of lesion characterization, as no characteristics could be attributed to these 
reports.  

No restrictions were imposed on reading time, and clinical history for each case 
was not provided to the radiologists. Moreover, information on the proportion of 
normal/abnormal cases in the set was also not provided.  
 
Data Analysis 
Radiologists’ performance was calculated using location sensitivity, sensitivity and 
specificity. Radiologists were divided into 4 groups according median group location 
sensitivity: 

i. First Quartile (1st QTL): location sensitivity < 0.5 
ii. Second Quartile (2nd QTL): 0.5 ≤ location sensitivity < 0.71 
iii. Third Quartile (3rd QTL): 0.71 ≤ location sensitivity < 0.92 
iv. Fourth Quartile (4th QTL): location sensitivity ≥ 0.92. 

According to this criterion, radiologists in the First Quartile were the poorest per-
formers whereas those in the Fourth Quartile were the best performers.  
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Correlation between performance level (quartile) and demographic data was calcu-
lated. Kruskall-Wallis test was used to determine statistically significant differences 
among the 4 groups. The non-parametric Mann-Whitney U-test was used to determine 
whether significant differences existed between poorest (1st quartile) and best (4th) 
performers, as well as between radiologists in the 2nd and 3rd quartiles. For all tests, 
statistical significance was set at P<0.05. 

3 Results 

Median location sensitivity for the entire group was 0.71 (Inter-Quartile Range =  
IQR = 0.21). Table 1 shows the radiologists’ demographic data, per quartile.  

As shown, most radiologists’ performance fell either into the 2nd (33 radiologists) 
or 3rd (45) quartiles, with fewer radiologists performing either poorly (only 8 readers 
in the 1st quartile) or displaying outstanding performance (6 readers). These radiolo-
gists read the largest mean number of mammograms per year (6300), as opposed to 
the poorest performers, who read the lowest number (3750). This difference, however, 
was not statistically significant (z=-0.801, P=0.4231). Radiologists in the 1st quartile 
had a median location sensitivity of 0.440, which significantly contrasted from 0.940 
for those in the 4th quartile (z=-3.416, P=0.0006). Conversely, they had higher median 
specificity (0.855) when contrasted to those in the 4th quartile (0.690) (z=-2.228, 
P=0.0259). 

Comparisons between radiologists in the 2nd and 3rd quartiles suggested significant 
differences for location sensitivity (z=-7.761, P<0.0001) and for specificity (z=-2.006, 
P=0.0449). 

Correlation analysis showed no significant relationships between the quartile the 
radiologist was assigned to and either (i) the number of years reading mammograms 
(z=0.301, P=0.764) or (ii) the number of mammograms read per year (z=0.696, 
P=0.487). Specificity, however, was significantly correlated to quartile assignment 
(z=-2.456, P=0.014), with lower performers showing higher specificity. 

Table 1. Demographic data per quartile 

 1st QTL 2nd QTL 3rd QTL 4th QTL 

Number of radiol-
ogists 

8 33 45 6 

Mean number of 
years reading 
mammograms 

6.875 13.000 9.044 15.833 

Mean number of 
mammograms/year 

3750 4924 4729 6300 

Median location 
sensitivity 

0.440 0.580 0.790 0.940 

Median Specificity 0.855 0.800 0.730 0.690 
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Table 2. Assessment of mean percent correct responses accorgin to breast density, per quartile. 
All values given as percentages 

 1st QTL 2nd QTL 3rd QTL 4th QTL 

Heterogeneously 
dense 

32.3 53.3 77.9 90.3 

Extremely Dense 55.0 73.3 85.7 96.7 

Scattered fibrog-
landular density 

41.7 57.6 73.2 94.4 

 
Table 2 shows the mean percent correct responses, per quartile, according to breast 

density. 
Kruskall-Wallis test showed significant differences among the 4 groups for all den-

sity types (heterogeneously dense, H=63.587, P<0.0001; extremely dense, H=28.751, 
P<0.0001; scattered fibroglandular density, H=39.137, P<0.0001). As shown in Table 
2, higher performers were more likely to correctly report cancer than lower perfor-
mers in all density types: heterogeneously dense (z=-3.367, P=0.0008), extremely 
dense (z=-3.381, P=0.0007) and scattered fibroglandular (z=-3.405, P=0.0007) tissue. 
Comparisons were also significant between readers in 2nd and 3rd quartile for hetero-
geneously dense (z=-6.993, P<0.0001), extremely dense (z=-3.810, P=0.0001) and 
scattered fibroglandular (z=-4.347, P<0.0001) tissue. 

Table 3. Assessment of mean correct responses according to lesion characterization, per 
quartile. All values given as percentages. 

  1st QTL 2nd QTL 3rd QTL 4th QTL 
Lesion 
Type 

Cluster 25.0 36.4 63.8 77.8 

 Stellate 37.5 59.6 81.2 88.9 
 Spiculated 48.9 69.1 80.4 95.5 

Lesion 
Margin 

Spiculated 50.0 64.0 84.0 93.8 

 Indistinct 34.6 55.0 73.6 94.9 
 Stellate 37.5 59.6 81.2 88.9 

Lesion 
Shape 

Irregular 41.7 66.2 81.2 95.8 

 Architectural 
distortion 

50.0 65.2 87.5 91.7 

 Round/oval 33.3 38.4 62.3 100 
Lesion 

Size 
< 10mm 40.9 59.8 75.9 90.9 

 10mm ≤ size 
< 20mm 

37.5 55.6 76.8 88.9 

 ≥ 20mm 43.8 60.6 84.2 100 
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Correlation analysis showed significant relationship between the quartile the radi-
ologist was assigned to and their correct response rates in backgrounds of different 
densities, for (i) heterogeneously dense (z=11.385, P<0.0001), extremely dense 
(z=6.684, P<0.0001) and scattered fibroglandular (z=7.942, P<0.0001) tissue.  

Finally, Table 3 shows the mean percent correct responses for different lesion cha-
racteristics. Kruskall-Wallis test showed significant differences in mean correct res-
ponses according to lesion characteristics amongst the 4 radiologist groups for all 
characteristics listed in the table. For all tests, P<0.0001. 

Contrasting the poorest performers (1st quartile) with the best performers (4th quar-
tile) yielded significant differences in mean correct responses for all lesion characteri-
zation metrics used (P<0.05). Similar results were obtained for the comparison  
between 2nd and 3rd quartile radiologists. 

Correlation analyses showed significant relationships (P<0.0001) between mean 
correct responses according to all lesion characterization measures used and the quar-
tile the radiologist was assigned to. 

4 Discussion 

Although variability in the performance of radiologists reading screening mammo-
grams has been well documented (for example, see [5-7]), the actual factors influen-
cing reader performance are not well understood. Some factors have been repeatedly 
reported as influencing reading outcome, such as number of years reading mammo-
grams and number of mammograms read per year [9,10], with a general agreement 
that more years reading and more mammograms read per year lead to better reader 
performance (as measured by the area under the Receiver Operating Characteristic 
curve). However, the relationship between the correctness of the radiologists’ res-
ponses and both the background characteristics and the cancer characteristics has not 
been properly investigated, and it is the objective of this study. 

Our data suggested that the poorest performers (radiologists whose median location 
sensitivity was less than 0.5) only correctly reported 25% of the microcalcification 
clusters, 37.5% of the stellate masses and 48.9% of the spiculated masses. This is in 
stark contrast with the top performers (median location sensitivity ≥ 0.92), who re-
ported 77.8% of the clusters, 88.9% of the stellate and 95.5% of the spiculated 
masses. Moreover, lesions with indistinct margins were only reported correctly 34.6% 
of the time by the poorest performers, vs. 94.9% by the top radiologists. Similar stag-
gering differences were observed for the other lesion types.  

These results suggest that not only the poorest performers but also the radiologists 
in the 2nd QTL (with location sensitivity greater than 0.5 but less than the median for 
the entire group, which was 0.71) had difficulties reporting certain lesion types, with 
microcalcification clusters and stellate masses being the least frequently correctly 
identified (36.4% and 59.6%, respectively). Round masses or those with indistinct 
margins did not fare well either (being correctly reported by this group of radiologists 
only 38.4% and 55%, respectively), when contrasted with a correct report rate of 
100% and 94.9%, respectively, for the best performers.  
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Interestingly, the best performing radiologists (4th quartile, with median location 
sensitivity of 0.94) had the lowest median specificity (0.690), whereas the poorest 
performers (1st quartile, with median location sensitivity of 0.440) had the best speci-
ficity (0.855). This trade-off between experience/sensitivity and specificity is in 
agreement with previous reports [11]. 

Our study had several limitations, amongst them the small number of cases used. 
In addition, radiologists were not given any clinical/history information on the cases, 
and this has been shown to significantly affect their performance when reading 
mammograms [12], which limits the generalizability of our conclusions. Finally, we 
divided the radiologists in a non-standard way using the groups’ median location 
sensitivity. Certainly use of different criterion to group the radiologists would have 
led to different conclusions for this study. 

In summary, our data suggests that background and lesion characteristics are sig-
nificant components of variability in radiologist performance when reading digital 
mammograms. Hence, perhaps a way to improve reader performance in this task 
would be to gear radiologist training to perceptual identification of the types of le-
sions shown herein (and in the assessment of breast screening programs) to be the 
most challenging for them to correctly report. 
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Abstract. Software anthropomorphic breast phantoms have been used in virtual 
clinical trials for preclinical validation of breast imaging systems. Virtual trial 
quality depends largely on the realism of the simulated breast anatomy. Our 
phantom design has been focused on the simulation of large-scale and meso-
scale anatomical structures, including the breast outline, skin, and matrix of 
Cooper’s ligaments and tissue compartments.  Realism of such a design has 
been confirmed in comparative studies of phantom and clinical power spectra 
and parenchymal texture. We present a novel method for simulating the hierar-
chical organization of breast tissue subcompartments, seen in detailed histologi-
cal images. The subcompartmentalization introduces microstructure in breast 
phantoms, resulting in improved realism of phantom images. The qualitative 
validation of phantoms with simulated microstructure is discussed in this paper; 
the quantitative validation in ongoing. 

Keywords: Software breast phantoms, virtual clinical trials, small-scale tissue 
simulation, stereology, testing realism. 

1 Introduction 

Virtual clinical trials (VCTs) have received considerable attention recently; a VCT is 
an efficient way to perform optimization and preclinical validation of novel breast 
imaging systems (1, 2). VCTs are based upon sophisticated computer simulations of 
breast anatomy, image acquisition, image processing and display. The synthetic im-
ages generated by VCT can be assessed by model or human observers.  

The quality of a VCT depends upon a number of factors including phantom  
realism; the phantom realism needs to be commensurate with the diagnostic task in 
question. The University of Pennsylvania (UPenn) breast anatomy model is based 
upon the simulation of large-scale and meso-scale anatomical structures; a variety of 
features are modelled, including the overall breast outline, the skin, the matrix of 
Cooper’s ligaments and tissue compartments, and the assignment of adipose and fi-
broglandular tissue to these compartments.(3) The validity of this design has been 
confirmed for a number of tasks, and the visual realism of the anatomy model is  
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supported by a number of  comparative studies of phantom and clinical power spec-
tra (4, 5) and parenchymal texture (6-8).   

That said, we are constantly striving to improve the breast anatomy model further.  
In this paper, we present a novel method for simulating the hierarchical organization 
of breast tissue subcompartments, seen in detailed histological images.  The introduc-
tion of a hierarchy of subcompartments into our breast anatomy model results in more 
realistic phantom images.   

2 Methods 

2.1 Histological Analysis 

Our existing method for simulating breast tissue structures was motivated by the ob-
served appearance of tissue compartments in existing histology and computed tomo-
graphy breast images.  In this paper we present a new analysis of histology slices 
from two breasts specimens; one obtained after breast reduction and another after 
mastopexy.  The patients were aged 33 and 50, respectively.  No abnormalities were 
detected in the two analysed breast specimens.  The histologic analysis was per-
formed at the University of Padova, Italy.  Ten histology slices were analysed, at 
least one slice from each breast quadrant.  
 

 
(a) (b) 

Fig. 1. An example of a breast histology image used in the size and shape analysis of adipose 
tissue compartments: (a) histology section with the Azan-Mallory staining; two analysed com-
partments are highlighted; (b) a binarized version of the same histology section 

Fig. 1(a) shows a detailed microscopic image of the breast obtained using Azan-
Mallory staining. The Azan-Mallory staining technique combines the original Mallory  
 



350 P.R. Bakic et al. 

connective tissue stain with azocarmine (9); as a result, collagen is stained blue, nuclei 
and cytoplasm are red, and elastic fibres are pink or unstained. The section in Fig. 1(a) 
is oriented so that the areolar region is superior.  In this example, the adipose tissue 
compartments are clearly encapsulated by the blue stained Cooper’s ligaments.  Two 
individual compartments have been highlighted to illustrate this observation.  

Digital images of the stained histologic slices were binarized by thresholding.  A 
binarized image of the matching tissue section is shown in Fig. 1(b).  The binarized 
sections were used to estimate the size and shape of the tissue compartments.  Two 
parameters, mean volume and axial ratio, were calculated using the stereological un-
folding method by Saltykov, which assumes an ellipsoidal compartment shape (10).  
From this, compartment size and shape distributions were calculated.   

Examination of Fig. 1 suggests that the thickness of the Cooper’s ligaments de-
pends upon the volume of the associated compartments.  Thus, we have also esti-
mated the volumetric fraction of the connective tissue and the average thickness of the 
Cooper’s ligaments. 

Finally, as seen in Fig. 1(a), the individual adipose compartments appear to be di-
vided into smaller compartments by interlobular fibrous septa.  Due to their small 
thickness, these interlobular fibrous septa may not be clearly visible in clinical breast 
images; however, they certainly contribute to the small-scale tissue variations seen in 
clinical images.  The combination of the thicker Cooper’s ligaments and the thinner 
interlobular fibrous septa indicate a hierarchical organization of tissue compartments.  
This observation has motivated the modification of our breast anatomy model.   

2.2 Computer Simulation 

In order to increase the realism of our breast anatomy model, we have included a 
simulation of subcompartments with septa of reduced thickness.  We begin by simu-
lating a baseline phantom, P, containing large compartments and correspondingly 
thick ligaments.  We then simulate a second subcompartment phantom, S, having the 
same size and outline as the baseline phantom, containing smaller compartments and 
thinner ligaments; the internal structure of the second phantom will form the structure 
of the subcompartments.  The final phantom is obtained by superimposing the sub-
compartment phantom on the baseline phantom.  Algorithmically, a voxel vp(x,y,z) of 
P at spatial coordinate x,y,z is replaced by the corresponding voxel vs(x,y,z) of S if and 
only if vs(x,y,z) is part of a ligament in S, and vp(x,y,z) belongs to a compartment in P.   

We tested this method with a set of preliminary models in which each compart-
ment in P was divided on average into thirty subcompartments.  In this test, we simu-
lated baseline phantoms with 333 compartments and subcompartment phantoms with 
10,000 compartments.  The simulated thickness of the interlobular fibrous septa was 
selected to be 200μm in the subcompartment phantoms, 3 times smaller than the 
600μm thickness of the primary Cooper’s ligaments in the baseline phantoms. 

The simulated microstructure was assessed subjectively based upon synthetic 
mammographic projections of phantoms with or without subcompartments.  The 
synthetic images were generated using the breast anatomy and imaging simulation  
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pipeline, developed at the University of Pennsylvania for the purpose of conducting 
VCTs of breast imaging systems (1).  The pipeline includes modules for the simula-
tion of normal breast anatomy, insertion of lesions, breast positioning and deforma-
tion, clinical image acquisition, image reconstruction and post-processing, image 
display, and image interpretation by model observers.  External modules may be 
included in the pipeline as plugins. 

The software breast phantoms with and without subcompartments were subject to 
simulated mammographic compression using a finite element deformation method 
(11).  Mammographic imaging was then simulated using a ray tracing projection 
method, assuming a poly-energetic x-ray beam without scatter, and an ideal detector 
model.  The quantum noise was simulated by adding a random Poisson process.  
The simulated image acquisition geometry corresponds to the Hologic Selenia Di-
mensions full-field digital mammography system (Hologic Inc., Bedford, MA).  The 
resulting synthetic raw projections are post-processed using a commercial software 
package (Adara, Real Time Tomography, Villanova, PA). 

3 Results and Discussion 

3.1 Histological Analysis 

Table 1 gives the values of average compartment volume, axial ratios and ligament 
thickness, as estimated from histology slides, in three different regions of the breast:  
subcutaneous (“Sub-Q”), posterior, and periglandular.  These values have been aver-
aged over 30 analysed adipose compartments.  Adipose tissue compartments have a 
larger volume in the subcutaneous (0.84 ml) and posterior (0.94 ml) regions, as com-
pared to the periglandular region (0.26 ml).  Visually, these estimates of compart-
ment volume agree with the observed appearance of breast tissue structures in these 
regions of clinical images.   

The orientation of the breast tissue compartments had relatively little dependence 
upon region; the axial ratio varied from 2.02 in the subcutaneous region to 2.91 in the 
posterior region.  This range of axial ratios corresponds to an angular difference of 
just 7 degrees.  The variation in angular ratios is considerably larger in the posterior 
region (0.30; i.e., 10% of the average angular ratio), as compared to the subcutaneous 
region (0.14; 6%) and periglandular region (0.12; 6%).  This suggests that some un-
derlying structure may exist in these areas, which constrains the shape and orientation 
of the compartments. 

Table 2 shows the volume fraction and thickness of the connective tissue, esti-
mated from the binarized images of the stained Cooper’s ligaments.  The tabulated 
values have been averaged over 10 analysed tissue slices.  The estimated average 
volume fraction was 12.3%, while the average thickness of Cooper’s ligaments was 
289 μm.  The estimated ligament thickness fits well within the range of thicknesses 
used in our previous computer simulation of Cooper’s ligaments: 200-600 μm.  The 
volume fraction showed 11% variation relative to the mean value, while the ligament 
thickness showed 5% variation relative to the mean value.   
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Table 1. Average values of compartment volumes and axial ratios in various breast regions, 
estimated from breast histological sections 

Region Volume (cm3) Axial ratio 

Sub-Q 0.84 ± 0.04 2.02 ± 0.14 
Posterior 0.94 ± 0.07 2.91 ± 0.30 
Periglandular 0.26 ± 0.01 2.04 ± 0.12 

Table 2. Average values of the connective tissue volume fraction and thickness, estimated from 
Cooper’s ligaments in breast histological sections 

 Volume fraction (%) Thickness (μm) 
Cooper’s ligaments  12.3 ± 1.4 289.2 ± 13.0 

3.2 Computer Simulation 

Fig. 2 shows preliminary results of the simulation of subcompartments in a breast 
phantom.  Fig. 2(a) show a cross-section of a baseline phantom simulated with  
 

 

 

 

 
(a) (b)  (c) (d) 

Fig. 2. Simulation of breast tissue microstructure by subcompartmentalization.  Shown are 
sections of a software phantom (a) with and (b) without subcompartments, with corresponding 
synthetic mammographic projections (c) with and (d) without subcompartments.  
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subcompartments, while Fig. 2(b) shows the same phantom without subcompart-
ments.  Figs. 2(c-d) show the corresponding synthetic mammographic projections of 
these phantoms.  In both cases, the phantoms have a total volume of 450 cm3, with 
100 μm voxels.  Subjectively, the projection image of the subcompartmentalized 
phantom shows a higher level of realism.  The simulated parenchymal pattern is en-
riched by the addition of small-scale structures.  In addition, the simulated Cooper’s 
ligaments appear less prominent and less geometric, as compared to the projection of 
the phantom without subcompartments.   

A quantitative analysis was performed by comparison of the Laplacian Fractional 
Entropy (LFE) in clinical and synthetic images.  The LFE measure describes the 
relative content of non-Gaussian statistics in breast images (12).  The LFE analysis of 
the phantoms confirmed that the addition of subcompartments yields a considerable 
improvement in the LFE measure; the phantom with subcompartments is much closer 
to clinical images (8).  The results of the LFE analysis are shown in Fig. 3.  At low 
spatial frequencies, the phantom without subcompartments exceeds the LFE estimated 
in clinical mammograms.  The peak LFE value of 92% occurs at 0.35 cyc/mm.  At 
spatial frequencies above this peak, the LFE drops to zero at 1.0 cyc/mm.  Subcom-
partmentalization reduces the LFE values, thus matching closely those estimated in 
mammograms.  Based upon our current simulation method, subcompartmentalization 
increases the simulation time proportional to the square root of the number of com-
partments.  This may be potentially prohibitive for real-time VCT simulations.  As a 
viable alternative, we could pre-compute a number of subcompartment phantoms to 
be combined randomly with baseline phantoms created in real time.  

 

Fig. 3. Laplacian Fractional Entropy (LFE) as a function of spatial frequency, estimated from 
phantoms generated with and without subcompartments.  The phantom LFE values are shown 
in comparison with those estimated from clinical mammograms and simulated Gaussian noise.  
Error bars show ±1 standard deviation.  (Reproduced with permission from Ref. #8.) 
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Our future work will include a more detailed analysis of phantoms containing sub-
compartments, and a more complete exploration of the various simulation parameters 
for each of the tissue regions analysed in this work (subcutaneous, deep, and 
periglandular).  In this way, we hope to add spatial dependence to our anatomy simu-
lation method, further improving realism.  

4 Conclusions 

We have simulated the microstructure of breast tissue by adding subcompartments to 
our current design of anthropomorphic breast phantoms.  This modification was mo-
tivated by the hierarchical organization of Cooper’s ligaments and interlobular fibrous 
septa, as shown by Azan-Mallory stained breast histologic slices. 

Subjectively, synthetic images of phantoms with subcompartmentalization show an 
improved level of realism; the simulated parenchymal pattern has been enriched, 
while the simulated Cooper’s ligaments appear less geometric.  The observed im-
provement in the appearance of phantom images is in agreement with a preliminary 
quantitative validation based upon Laplacian Fractional Entropy analysis.  
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Abstract. A highly realistic virtual imaging chain including a model of the hu-
man breast could become an important tool for breast imaging system develop-
ment, optimization and performance assessment. Here we propose a virtual 
modular breast model with mathematically defined complex anatomical struc-
tures that are each represented by a surface mesh. The anatomical structures are 
designed based on previously published descriptions of internal breast anatomy. 
Several phantom iterations were performed to tune simulated breast phantom x-
ray images visually to real patient images. X-ray image simulation was per-
formed using a polygonal projector. Visual assessment of simulated images of 
our breast phantoms has shown that our phantom can mimic the range of local 
features seen in mammograms, contrast-enhanced spectral mammography im-
ages and breast CT slices. Further understanding of the fibroglandular tissue 
structure and its spatial distribution are needed to improve our simulations. 

Keywords: Anthropomorphic breast phantom, simulation, breast imaging. 

1 Introduction 

Today, the diagnostic value of new breast imaging techniques is evaluated through 
clinical feasibility studies which are complex, require a huge amount of work and can 
be very expensive. A highly realistic virtual imaging chain including a computational 
model of the human breast might become an important tool to get an early indication 
of diagnostic accuracy without actual clinical study. Ultimately, such studies might 
allow for faster, cheaper and broader clinical trials - all happening in silica. During 
the last decade, there has been a considerable effort to develop virtual models of 
breast anatomy. They can be classified according to how the internal breast structures 
are modeled; either using mathematically defined structures [1,2,3] or based on seg-
mented clinical breast images [4,5]. Today’s mathematical breast phantom models are 
voxelized. The various anatomical structures are defined by relative simple geometric 
primitives and a 3D fractal noise model is used to simulate the fibroglandular tissue. 
These models allow simulating an infinite variety of breast morphometries, but their 
realism is limited due to the simplicity of the geometric primitives. Also, the uniform 
voxel size makes phantom and image simulations very time-consuming when small 
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voxels are used. Today’s empirical breast phantoms are created by segmenting high-
spatial resolution (~0.2 mm voxel size) clinical breast CT images according to breast 
tissue composition (i.e. adipose, fibroglandular, or skin) and then a surface mesh is 
created for each segmented tissue region boundary. The current phantom database is 
extended to 100 including a variety of breast morphmetries [5]. The flexibility to 
adapt mesh resolution according to the complexity of the segmented tissues allows 
minimizing phantom and image generation time. Simulated x-ray images have shown 
to be very realistic. Because phantoms are represented using a limited number of tis-
sue region boundaries based on x-ray attenuation properties, and not individual ana-
tomical breast structures, its customizability for specific (multimodality) optimization 
tasks may be somehow limited. 

We propose an alternative breast phantom model whereby complex anatomical 
structures are mathematically defined and each individual structure has its own sur-
face mesh. Due to its inherent characteristics, our model allows for an infinite variety 
of breast morphometries and is very highly customizable. We describe the methods 
used to create the model and we demonstrate the phantom’s ability to simulate multi-
modality imaging data. 

2 Phantom Simulation 

Our virtual breast model includes the skin with subcutaneous adipose columns, Coop-
er’s ligaments, adipose tissue compartments, ductal network, fibroglandular tissue and 
blood vessels. These are designed based on literature descriptions  on clinical radio-
logical [6,7,8,9] and histology images [10,11,12,13,14] and in-vivo observations [13]. 
Several iterations were performed to tune simulated breast phantom x-ray images 
visually to patient images. Internal structures are defined by triangular surface meshes 
and they are modeled using a variety of geometric mesh primitives, Bézier curves and 
Voronoi cells. Computerized operations, such as surface subdivision and mesh deci-
mation, are used for geometry deformation, curve to mesh conversion and mesh sim-
plification. Internal structures are constructed with Blender (v 2.63) [15], a free and 
open source computer graphics software product developed for creation of 3D anima-
tion, with Python (v 2.6.5) as internal scripting language and Voro++ [16], a free 
software library for computing 3D Voronoi tessellations. The main program is written 
in C++; C++ scripts serve to call Python for Blender scripts, to assess the Voro++ 
library and to convert the vertex and face coordinates of the mesh objects exported 
from Blender in a format compatible with our imaging simulation chain. 

Two breast outline configurations were modeled (Fig. 1); one outline represents a 
compressed breast in CC view during a mammography exam and one outline 
represents an uncompressed breast of a woman in prone position during a dedicated 
breast CT exam. The skin is modeled as a single layer with uniform user-configurable 
thickness (1 to 5 mm range [6]) by scaling a copy of the breast outline. Our model 
allows to model subcutaneous adipose columns by displacing the mesh vertices of 
the skin inner layer along the local normal (Fig. 2). 
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Fig. 1. Illustration of compressed and uncompressed breast outlines. The compressed outline is 
approximated by an ellipsoid truncated by three planes. The semi-axis lengths of the ellipsoids 
allow modifying the breast surface area and the shape of the breast edge that is not compressed 
while zp determines the compressed breast thickness. The uncompressed outline is modeled as a 
combination of a truncated right cone with circular base and a section of an ellipsoid. The cone 
height and the ellipsoidal semi-axis lengths are configurable so as to modify the total length and 
thickness of the uncompressed breast phantom. 

 

Fig. 2. Subcutaneous adipose columns are modeled by displacing the mesh vertices of the skin 
inner layer along the local normals using a Blender-specific “Displace modifier”. The simulated 
subcutaneous adipose columns are 2 to 3 mm spaced apart and their depth is on average 1 mm. 
These values are consistent with reported measurements on histological sections [14]. 

Subcutaneous, retromammary and intraglandular adipose tissues are modeled as 
cells of a 3D Voronoi diagram (Fig. 3) similarly as in the breast model of Pokrajac et 
al [2]. Seed points are randomly positioned over the phantom volume using two dif-
ferent uniform distributions; seed points in the intraglandular region are more closely 
positioned than those in the subcutaneous and retromammary regions. For each seed 
point, a single Voronoi cell is then computed as a collection of vertices connected by 
edges [16].  The number of adipose compartments is configurable by the user; typi-
cally 150-350 compartments are simulated. The Voronoi cell meshes are subdivided 
to smooth their edges and to create spaces between them of ~100-200 µm 
representing the Cooper’s ligaments. 

Lactiferous ducts are modeled as a concatenation of duct segments forming the 
branches of a random binary tree model [3]. Each duct segment is modeled starting 
from a Bézier curve which is converted to a 3D extruded tube. To match anatomical 
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realism, 5 to 9 ducts are simulated [13]. To mimic the radial divergence of real ducts, 
simulated ducts are positioned along virtual ellipsoids with apices at 1.2 cm from the 
areola (Fig. 4 a).  Fibroglandular tissue (Fig. 4 b and c) is modeled around the lacti-
ferous ducts. The fraction of ducts surrounded by fibroglandular tissue is user-defined 
(range 0 to 1). Fibroglandular tissue segments are also modeled starting from Bézier 
curves which are then converted to extruded mesh-type tubes. Next, large scale fi-
broglandular structures are created by displacing the mesh vertices along the local 
normal using Blender-specific displace modifiers. These modifiers allow for different 
breast tissue parenchymal patterns as observed in mammograms. To mimic fine fibr-
ous tissue details, a second displace modifier is applied along the principal axis of the 
duct branch. The fibroglandular tissue distribution within the phantom is configured 
by controlling 1) the minimum distance between the fibroglandular tissue and the skin 
surface, 2) the positions of the ducts in the breast quadrants and 3) the ellipsoid semi-
axis lengths along which the fibroglandular tissue is positioned. Blood vessels are 
modeled similarly as the lactiferous ducts but they have a smaller diameter. 

 

Fig. 3. (Left) Adipose tissue is modeled by modified 3D Voronoi cells. (Right) Illustration of 
Catmull-Clark mesh subdivision and decimation to smooth the Voronoi cell edges and simplify 
the meshes without noticeable reduced geometric detail. Catmull-Clark subdivision also creates 
~100-200 µm spaces between Voronoi cells representing the Cooper’s ligaments.  

 

Fig. 4. (a) Illustration of the positioning of simulated ducts along virtual ellipsoids with apices 
at 1.2 cm from the areola. Illustration of fibroglandular tissue modeled around (b) a single duct 
and (c) around all ducts. 
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3 Simulated Breast X-Ray Images 

Breast phantom x-ray images were simulated using a polygon projector implemented 
in CatSim, a virtual imaging platform previously developed and validated at GE 
Healthcare [17]. Typical system topologies were considered using perfect energy-
integrating, quantum-noise limited detectors. Acquisitions were simulated using 
mono-energetic x-ray beams and assuming only primary x rays. 

Fig. 5 shows mammographic realizations of a 5 cm thick breast phantom with com-
pressed outline. Fig. 5 a, b, c and d illustrate that different clinical realistic mammo-
graphic fibroglandular textures can be generated by using different Blender-specific 
mesh displacement modifiers to create the fibroglandular tissue. Fig. 5 e shows a 
mammographic projection through a region containing only adipose tissue. Note that 
the projections of the compartment boundaries, depicting the Cooper’s ligaments,  
are rather straight. Fig. 5 f demonstrates a mammographic depiction of the skin with 
adipose columns seen as radiolucent spots. 

Fig. 6 a and b illustrates our ability to create phantoms with different fibroglandu-
lar tissue distributions; the two mammograms were generated from 5-cm thick com-
pressed phantoms whereby the minimum distance between the fibroglandular tissue 
and the skin surface and the ellipsoid semi-axis lengths along which the fibroglandu-
lar tissue is developed were set different while all other phantom parameters were the 
same. The volumetric breast densities of these phantoms, defined as the volume frac-
tion of fibroglandular tissue, were also calculated. For this calculation the mesh data 
were first converted to 0.2 mm cubed voxels. Volumetric breast densities are equal to 
8% and 10%. These values are fairly realistic based on volumetric breast densities 
found in clinical images [18].  

Fig. 7 illustrates that our phantom design is highly customizable for various imag-
ing modalities; a simulated dual-energy recombined contrast-enhanced mammogra-
phy image is shown whereby the composition of the fibroglandular tissue was set as a 
mixture of pure fibroglandular tissue and 0.2 mg iodine/ml (Fig. 7 a).  Fig. 7 b illu-
strates a simulated breast CT slice of a phantom with uncompressed outline.  

4 Discussion 

We have proposed a new method to create virtual anthropomorphic breast phantoms 
based upon geometric internal structures, each represented by surface meshes, using 
computer graphics software. Our phantoms provide full ground truth tissue informa-
tion and high flexibility in covering wide anatomical variations and they are very 
highly customizable.  

Qualitatively, mammographic sub-regions containing fibroglandular and adipose 
tissue and skin provide a fairly high level of clinical realism. As illustrated, our phan-
toms were also found to be realistic in terms of volumetric breast density. The large 
scale tissues, including the physical breast edge and the borders between the adipose 
and fibroglandular tissue regions, as well as the borders of the adipose tissue com-
partments appeared with a more or less regular appearance in simulated mammo-
grams degrading the subjective perception of reality.  
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Fig. 5. Regions of interest showing mammographic depiction of (a, b, c, d): fibroglandular 
texture patterns obtained by using different displace modifiers to create the fibroglandular  
tissue, (e): adipose tissue compartments and Cooper’s ligaments, (f): the skin with adipose 
columns seen as radiolucent spots (arrow) 

 

Fig. 6. (a, b): Simulated mammograms of two phantoms with different fibroglandular tissue 
distribution but otherwise created with the same parameters; each phantom contains eight ducts 
of which 80% are surrounded with fibroglandular tissue that is created with the same Blender 
mesh modifiers 
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Fig. 7. (a): Illustration of a dual-energy recombined contrast-enhanced mammography image of 
a breast phantom of which the fibroglandular tissue exhibits a 0.2 mg/ml iodine contrast agent 
enhancement. (b): Simulated breast CT slice of an uncompressed breast phantom. 

Further understanding of the fibroglandular tissue structure and its spatial distribu-
tion is needed to improve the realism of our simulations. Application of finite element 
methods to deform the breast phantom with uncompressed outline to simulate breast 
compression during a mammographic exam might also reduce the geometric appear-
ance and thus improve realism. 

The use of the phantom is illustrated by simulated digital mammograms, breast CT 
and dual-energy recombined contrast-enhanced mammography images. However, the 
phantom design is also appropriate for simulating other imaging modalities such as 
breast MRI and breast ultrasound; these modalities can be simulated by applying the 
corresponding image acquisition model with appropriate physical properties of each 
tissue type. Considerable flexibility is provided through a script allowing to convert 
the phantom format from mesh-based data to voxels-based data. As said before, to-
day, we haven’t taken into consideration to simulate the deformation of breast tissue 
under compression. Inclusion of a model of breast compression will allow for a more 
broad use including straight multi-modality image comparison. 

5 Conclusion 

An alternative phantom model to simulate the female breast, based on mathematically 
defined complex anatomical structures that are each represented by a surface mesh, 
was demonstrated. Future work will involve full characterization and further optimi-
zation of the realism of the internal anatomical structures. The proposed model  
may provide an important tool to assess the performance of different breast imaging 
modalities. 
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Abstract. Simulated microcalcifciation clusters have been used in studies  
performed to investigate the effect of different imaging conditions on cancer de-
tection in breast screening.  This work compares the characteristics of the simu-
lated clusters to screen-detected calcification clusters.  Using a database of 271 
screen-detected cancers it was found that 67 (25%) presented radiographically 
as calcification clusters.  The characteristics of 1215 microcalcifications from 
all 67 clusters and 304 microcalcifications from 30 simulated clusters were 
quantitatively analysed.  The diameter of simulated calcifications were within 
the range of 99% of real calcifications.  The cluster diameters of the simulated 
clusters were within the range of 70% of the real clusters.  Our simulated calci-
fications had similar characteristics to real calcifications but were representative 
of smaller clusters which represent 17% of screen-detected cancers. Conse-
quently, a significant change in detection of our simulated clusters due to 
change in imaging condition has a predictable impact on cancer detection in 
screening. 

Keywords: Calcification, digital mammography, simulation, virtual clinical  
trials. 

1 Introduction 

Simulated cancers have been used in virtual clinical trials to determine if there are 
significant differences in cancer detection in breast screening between different imag-
ing conditions, such as different image processing or different detectors [1-3]. It is 
particularly useful to use simulated cancers in breast screening applications where 
prevalence of cancer is low and the use of real images of cancers may introduce a 
selection bias. In this work we concentrate on the use of simulated calcification clus-
ters. In order to relate the results of these studies to cancer detection in screening it  
is necessary to know how the simulated clusters compare to screen-detected cancers.  
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In this work quantitative characteristics such as calcification diameter and cluster 
diameter were compared for screen-detected calcification clusters and simulated  
clusters.  

2 Method 

2.1 Screen-Detected Cancers 

In the United Kingdom (UK) the National Health Service Breast Screening Pro-
gramme (NHSBSP) invites women aged 50-70 (extending to 47-73) years to undergo 
mammographic screening every 3 years. The examination consists of two views of 
each breast, a cranial-caudal (CC) view and a medio-lateral oblique view (MLO).  In 
our department we have a large database containing digital mammography images 
collected from two breast screening sites in the UK.  Images from the database of all 
267 patients with screen-detected cancers detected between June 2011 and December 
2012 were analysed.  All of the images were obtained using Hologic Selenia X-ray 
systems and processed and unprocessed images were available. Along with the digital 
images, the database also contains the associated biopsy and surgery results from the 
national breast screening information system (NBSS).  For four patients the NBSS 
and image data were inconsistent and these were excluded from the analysis.  The 
remaining 263 patients contained 271 biopsy confirmed cancers.  These will be 
termed the ‘real’ cancers.  The mammograms were annotated by an experienced radi-
ologist, who outlined the lesion on the mammogram corresponding to the cancer, and 
provided a description of the radiological appearance by selecting as many as appro-
priate from the following list: mass, architectural distortion, focal asymmetry or sus-
picious calcification.  Finally, the radiologist categorised the conspicuity of the lesion 
as ‘obvious’, ‘subtle’, ‘very subtle’ or ‘occult’. 

The percentage of cancers of each radiological type (non-calcification lesions, sus-
picious calcifications and both) was calculated.  Next the conspicuities of the lesions 
were analysed.  Each patient has two views of each breast acquired during a breast 
screening examination and so a lesion can assigned one of the four conspicuities 
above in each view.  Therefore, each lesion has two conspicuities, or a conspicuity 
pair).  In order to be marked a lesion had to be visible in at least one view and so the 
conspicuity pair “occult/occult” was not an option. Therefore there are nine different 
conspicuity pairs. Finally, using the NBSS data it was possible to determine the pro-
portion of invasive and in-situ cancers for each radiological type of cancer.  These 
two categories were then further divided according to histological grade. 

2.2 Simulated Calcification Clusters 

The simulated calcification clusters were generated using our published and validated 
method [4]. In this method images of calcification clusters were extracted from images  
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of sliced mastectomy samples acquired at times five magnification in a digital specimen 
cabinet. The simulated clusters were created from these extracted images and then in-
serted into digital mammograms taking account of the physical characteristics of the 
imaging system. A radiologist has inspected all the images of the simulated lesions and 
verified that the clusters were realistic in appearance. 

The expert radiologist also graded the conspicuity of each simulated calcification 
cluster within the mammogram.  The simulated clusters were only inserted into a 
single view since the simulated clusters were extracted from 2D images of mastecto-
my samples and could not be reoriented into the second view.  As such there were 
only three possible conspicuities – obvious (ob), subtle (s) and very subtle (vs). 

2.3 Quantification of the Characteristics of Real and Simulated Calcification 
Clusters 

The real and simulated calcification clusters were segmented from the unprocessed 
mammograms using a region-growing algorithm to form a binary image. This was 
used to determine the boundaries of each calcification and two parameters were calcu-
lated; diameter of individual calcifications and diameter of cluster. 

Diameter of a Calcification.  The diameter of each calcification was calculated by 
counting the number of pixels in each calcification.  From this the diameter of a disc 
with the same area was calculated.  This diameter was defined as the diameter of the 
calcification. 

Diameter of a Cluster. The diameter of each cluster was calculated by encompassing 
the calcifications by the convex hull.  The area of the polygon was then calculated and 
the diameter of a disc with the same area was determined.  This diameter was defined 
as the diameter of the cluster. 

For each statistic described above the percentage of real calcifications or clusters 
with characteristics within the range of the characteristics of the simulated clusters 
was calculated.  

3 Results and Discussion 

3.1 Screen-Detected Cancers 

It was found that 60% of the screen-detected cancers were identified as non-
calcification lesions, 29% were suspicious calcifications and 11% had a lesion with 
both calcification and non-calcification features.  The proportion of conspicuity com-
binations for the calcification lesions is shown in Figure 1.  For the calcifications the 
conspicuity was often similar in the two views.  The proportion of conspicuity combi-
nations for the non-calcification lesions is shown in Figure 2.   
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Fig. 1. Percentage of suspicious calcifications with each pair of conspicuities.  A cancer can 
appear in an image as obvious (ob), subtle (s), very subtle (vs) or occult (oc).  Each cancer is 
imaged in two views and so has a pair of conspicuities. 

 

 

Fig. 2. Percentage of non-calcification lesions with each pair of conspicuities.  A cancer can 
appear in an image as obvious (ob), subtle (s), very subtle (vs) or occult (oc).  Each cancer is 
imaged in two views and so has a pair of conspicuities. 
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For the non-calcification lesions the conspicuity was more often different in the 
two views. This would indicate that conspicuity of non-calcification cancers changes 
in different views due to the differing amounts of overlying and underlying breast 
tissue, but since calcifications are more attenuating than breast tissue and their con-
spicuity is not as affected by their position in the two views. 

Of the 271 cancers 74% were invasive and 25% were in-situ (1% not specified).  
Of the in-situ cancers, 79% presented radiographically as suspicious calcification, 
15% non-calcification lesions and 6% as both suspicious calcification and a non-
calcification lesion.  51%, 35% and 12% of the in-situ cancers were high, interme-
diate and low grade respectively (2% grade not specified).  In a national audit [5], it 
was found that 80% of cancers were invasive, 19% were in-situ and 1% micro-
invasive.  In the audit, 59%, 27% and 10% of the in-situ cancers were high, interme-
diate and low grade respectively (4% grade not assessable). Since these figures are 
similar to the data found in this work we can assume our cases are a representative 
sample of the cancers detected in screening in the UK.   

3.2 Simulated Calcification Clusters 

The radiologist also marked the conspicuities of the simulated clusters. 58% of the 
simulated clusters were obvious, 32% were subtle and 10% were judged to be very 
subtle in appearance. 

3.3 Comparing the Characteristics of the Real and Simulated Calcification 
Clusters 

As stated above 79 of the 271 cancers were annotated as suspicious calcifications.  
Twelve of these suspicious calcification lesions were categorized as segmental  
calcification covering over half the breast rather than a calcification cluster, leaving 
67 screen-detected calcification clusters for analysis.    The analysis included 1215 
real calcifications within 67 real clusters and 304 simulated calcifications within 30 
simulated clusters. 

The relative frequencies of calcification diameters for simulated calcifications and 
real calcifications are given in figure 3.  The mean diameter was 0.26mm (range: 
0.07-1.16mm) for the real calcifications and 0.24mm (range: 0.08-0.83mm) for the 
simulated calcifications.  The range of diameters of the simulated calcifications in-
cluded 1207 real calcifications (99% of calcifications). 

The relative frequencies of cluster diameters for simulated and real clusters  
are given in figure 4.  The mean diameter was 8.37mm (range: 0.91-31.34mm for the 
real clusters and 3.80 (range: 1.90-9.27mm) for the simulated clusters. The range  
of diameters of simulated clusters included 47 real clusters (70% of calcification  
clusters). 
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Fig. 3. Relative frequency of diameter of real and simulated calcification clusters.  The values 
on the ticks show the minimum and maximum values of each bin, i.e. the first bin shows the 
relative frequency of real and simulated calcifications of the diameter range 0-0.05mm. 

The limiting characteristic for the simulated clusters was the cluster diameter since 
this is representative of the smallest number of real clusters.  This is not a surprising 
result and is due to the simulation methodology.  The simulated calcification clusters 
were extracted from digital images of mastectomy samples.  These were imaged at 
times five magnification on a digital specimen cabinet, at which the field of view  
was 10×10mm. Therefore all simulated clusters had a diameter less than 10mm.  
However, encouragingly, the simulated clusters were representative of 70% of real 
calcification clusters, or 60% of suspicious calcifications if areas of segmental calcifi-
cation are also included.  Therefore, since suspicious calcification was 29% of the 271 
screen-detected cancers in this study, our simulated calcifications represent 17% of 
screen-detected cancers. 
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Fig. 4. Relative frequency of diameter of cluster for real and simulated calcification clusters. 
The values on the ticks show the edges of the bins, i.e. the first bin shows the relative frequency 
of real and simulated clusters of the diameter range 0-1mm. 

4 Conclusion 

From our analysis of 271 screen-detected cancers we found that 29% of screen-
detected cancers were detected as suspicious calcification only. Our simulated calcifi-
cations were representative of 99% of real calcifications in terms of calcification  
|diameter.  Due to the limited field of view of the images from which the simulated 
calcification clusters were extracted the simulated calcification clusters were typical 
of 60% of screen-detected cancers identified as suspicious calcifications. Therefore, 
the simulated clusters represent 17% of screen-detected cancers. Consequently, a 
change in detection of our simulated calcification clusters due to change in imaging 
condition is an important finding with a predictable impact on the detection of cancers 
in screening. 
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Abstract. Breast cancer screening with mammography has been shown to re-
duce breast cancer mortality. However the frequency and the age range for 
screening eligibility has been controversial. Individual risk based screening re-
gimens have recently been proposed to overcome some of the weaknesses of 
screening mammography. However, it is not possible to evaluate the full impact 
of such risk based individualized screening strategies in Canadian context. 
Therefore a mathematical cancer control model for breast cancer using care 
paths and cancer control data from the province of BC is being developed to 
model different early detection strategies. The model will incorporate the inci-
dence, detection, diagnosis, progression, and case fatality of breast cancer in BC 
as baseline to make projections of the population health and economic impacts 
of different early detection methods for breast cancer. Once the model is vali-
dated, it will be possible to test early detection pathways and strategies,  
frequencies and durations, as well as any health care costs associated with de-
tection, diagnosis, treatment and on-going care of breast cancer patients. 

Keywords: Breast Cancer, Screening, Modeling, Micro-Simulation. 

1 Introduction  

Breast cancer screening by mammography has been shown to reduce breast cancer 
mortality and screening stratiges continue to evolve as an understanding of the 
benefits and risk of screening are understood and new technologies become availible 
[1-4]. 

In addition, it is well known that the health benefits and cost utility of screening 
mammography may be strongly influenced by a woman’s risk for breast cancer, 
which can be estimated based on numerous risk factors such as her age, breast 
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density, history of breast biopsy and family history of breast cancer [5]. Therefore, 
there is a growing interest in personalized cancer screening [6,7]. Furthermore, other 
technologies such as tomosynthesis, ultrasound, and MRI are continuing to be consi-
dered for their potential role in screening. 

Although randomized clinical trials have long been the gold standard in assessing 
the benefit of screening strategies, these screening trials are very difficult to imple-
ment as they require a large population, significant organizational and implementation 
resources and long-term follow-up of at least 10 to 15 years. In addition, they are not 
able to identify the downstream impacts associated with a change in screening policy. 
For this reason, it would be valuable to be able to propose ‘what if’ scenarios that 
could evaluate the impact of a new population based screening strategy based on li-
mited factors such as a new strategy’s sensitivity, specificity and cost per screen. 

Mathematical models have the potential to help answer these questions for which 
empirical evidence is scarce or unattainable. One type of model known as micro-
simulation models operate at the level of the individual behavioral entity, such as a 
person, family, or group and simulate large representative populations of these low-
level entities in order to draw conclusions that apply to higher levels of aggregation 
such as an entire country. Once a base population is created, these models enable the 
entry of various known parameters associated with a proposed screening strategy. 
From this, a simulation can be performed and proposed outcomes, along with margins 
of confidence can be assessed. This approach enables multiple variations of proposed 
screening strategies to be investigated within hours or days [8,9]. 

Recognizing the potential that these mathematical models have, the Cancer Inter-
vention and Surveillance Modeling Network was developed [10]. These models have 
been able evaluate and provide evidence for various controversial topics in the area of 
cancer screening which have helped to guide screening policies in the USA. In addi-
tion, the Canadian Partnership Against Cancer (CPAC) recently developed and 
implemented the Cancer Risk Management Model (CRMM) platform to answer 
important questions in cancer control in a Canadian context [11]. The CRMM 
currently incorporates the lung and colorectal and cervical cancer however, there are 
no current, validated breast cancer models available that are based on data and care 
paths from Canada.  

2 Objectives 

At the BC Cancer Agency we are working to build a breast cancer microsimulation 
model based on professional practice guidelines, expert opinion and data from British 
Columbian Health and Oncology administrative data sources. 

This model will enable evaluation of the impact of different screening strategies for 
breast cancer and will incorporate incidence, detection, diagnosis, progression,  
case fatality and costing of breast cancer as baseline to make projections of the  
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population health and the economic impacts of different screening regimens.  Unlike 
existing models which are built exclusively on professional opinion or screening  
data from decades ago, we are incorporating modern data sources from the early 
2000s. 

Availability of such a model will enable researchers and policy makers to evaluate 
the effects and effectiveness of different screening strategies on population health and 
costs to the health care system before implementation. The ultimate goal is to improve 
the early detection of breast cancer. 

3 Methods 

The first step in developing the breast cancer micro-simulation model was to  
generate breast cancer care paths. The care paths were developed using information 
from expert opinions in the fields of radiology, radiation oncology, surgical  
oncology, medical oncology and palliative care, as well as concepts from the NCCN 
Oncology Guidelines, BC Provincial Breast Health Strategy, Cancer Care Ontario, 
and the Canadian Partnership Against Cancer’s Cancer Risk Management Lung  
Cancer Model & the Screening Mammography Program of British Columbia 
(SMPBC) and the Medical Services Plan of British Columbia & Ontario’s Case  
Cost Initative. This pathway was further revised and populated with one year of 
diagnosis and treatment data from the BC Cancer Agency Administrative Data 
Warehouses.  

4 Results 

The care pathway begins with early detection of breast cancer by screening mammo-
graphy or referral by a general practitioner as shown in Figure 1 and abnormalities 
found proceed to the diagnostic pathway.  Patients with false findings return to rou-
tine screening.  In the case of a positive finding, the clinical staging largely deter-
mines the treatment pathway which includes surgery, radiation therapy and systemic 
therapy as shown in Figures 2-4.   

The distribution of patients that flow through various treatment strategies (surgery, 
radiation, chemo/biological therapy and hormone therapy) is incorporated and  
stratified by TNM staging and sub-section of this component of the path is depicted  
in Figure 5 showing rates and corresponding confidence intervals from our prelimi-
nary 1 year of data.   This figure highlights the transition percentages, along with 
 95% confidence intervals, associated with each post-mastectomy treatment option  
for the patients who underwent mastectomy for T stage T1-T2, node negative breast 
cancer.    
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Fig. 3. Treatment paths for T1-T2 cancers. See Figure 4 for * and ^ which describe the systemic 
treatment pathway in greater detail. 

 

 
 

Fig. 4. Systemic therapy treatment path for non-metastic breast cancer patients 
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Fig. 5. An component of the treatment pathway populated with preliminary 1-year data show-
ing transition percentages and corresponding 95% confidence intervals in brackets 

5 Conclusion 

A preliminary model of a breast cancer care path has been developed and has been 
populated with one year of data.  Efforts are underway to expand the initiative by 
integrating full data (screening through to mortality) for breast cancer cases diagnosed 
in British Columbia between 2000-2005. 
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Abstract. Contrast-enhanced magnetic resonance imaging (MRI) has
shown variation in the stroma with distance from the tumor and this
correlates with histological microvessel density. To date, however, con-
ventional diffusion MRI has demonstrated limited sensitivity to these
changes. This study modelled the diffusion signal by intravoxel incoher-
ent motion (IVIM) to obtain parameters related to the vasculature and
tissue diffusion. This revealed a small vascular contribution to the signal
in tumor and peri-tumoral stroma within 8 mm. Monoexponential fitting
performed worse than the IVIMmodel in tumor and stroma within 8 mm,
but was sufficient in more distal stromal regions where lower microvessel
density is expected. Modelling diffusion MRI by IVIM provided a mea-
sure of vascularity that may complement information from DCE-MRI
and yielded additional information about diffusion in the extravascular
tissue.

Keywords: diffusion MRI, vascularity, stroma, modelling, IVIM, breast
cancer.

1 Introduction

As breast cancer treatment options increase, tools to predict tumor invasive-
ness and recurrence are needed. Changes in peri-tumoral stroma are potential
markers of outcome. For example, signal enhancement from Dynamic Contrast-
Enhanced Magnetic Resonance Imaging (DCE-MRI) correlates with tumor re-
currence [1] and survival [2]. There is also spatial variation: signal enhancement
ratio becomes less prominent with distance from the tumor, an effect that cor-
relates with microvessel density [3]. However, DCE-MRI signal at low temporal
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resolution depends on many physiological parameters, including the microvessel
density, blood flow, vessel permeability and the extracellular space into which
contrast agent leaks.

Diffusion MRI is also sensitive to the vasculature. The intravoxel incoherent
motion (IVIM) model separates vascular pseudodiffusion from diffusion in the
extravascular tissue and has recently been used to model the diffusion signal from
breast tumors [4,5], demonstrating a pseudodiffusive contribution to the signal of
6-10% for malignant tissues. This component was less than 2% in non-cancerous
fibroglandular tissue (FGT), but the regions analysed were in the contralateral
breast or at a distance from the tumor. The peri-tumoral stroma region remains
unexamined by IVIM.

McLaughlin et al. examined the diffusion signal in the peri-tumoral stroma
following taxane treatment with a monoexponential model and measurements at
two b-values [6]. They found a weak correlation between change in tumor volume
and change in monoexponential apparent diffusion coefficient (ADC) from pre-
treatment values. Furthermore, there was no significant difference between ADC
in stroma near (2-5 mm) and far (9-13 mm) from the tumor. This is somehwat
puzzling since microvessel density decreases with distance from the tumor [3]
and the protein content and density of the extracellular matrix also vary. This
may be because ADC lacks specificity to microstructural changes: a decrease
in vascular pseudodiffusion can be compensated for by faster diffusion in the
extravascular space.

The DCE-MRI signal enhancement variations in the peri-tumoral stroma and
the low specificity of monoexponential diffusion measures to vascular effects sug-
gest that a more complex diffusion model may be needed in the stroma. This
study modelled diffusion MRI data in breast using IVIM to examine vascular
perfusion and tissue diffusion effects in the tumor and the peri-tumoral stroma.
Results were compared to a monoexponential ADC method using the Akaike
Information Criterion (AIC).

2 Methods

2.1 Patients and Data Acquisition

Three pre-chemotherapy patients presenting with breast cancer were imaged on
a 3 T Siemens Trio (Siemens Healthcare, Erlangen) with a 7-channel InVivo
breast coil in compliance with Local Research Ethics Committee approval.

Diffusion data were acquired with a 2D fat-saturated Twice-Refocused Spin
Echo sequence at 5 b-values (50, 100, 200, 400-450 and 800 s/mm2), with at
least one unweighted image. Sequence parameters were: effective repetition time
TReff = 65 ms, echo time TE = 159 ms, 5 averages, in-plane resolution 1.77 x
1.77 mm2, slice thickness 4 mm, field of view 12.7 x 34.0 cm2 and 24-34 slices.

DCE-MRI data were acquired with a 3D fat-saturated Spoiled Gradient Re-
called sequence: TR = 3.8 ms, TE = 1.38 ms, 1 average, resolution 1.08 x 1.08
x 0.90 mm3, field of view 35.6 x 38.0 x 14.4 cm3. Patients received 0.1 mmol/kg
body weight Gadoteric acid (Dotarem, Guerbet). Temporal resolution was 49 s,
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but only the subtraction of the baseline image from the two-minute post-contrast
image was used to define the tumor region.

2.2 Registration, Region Selection and Noise Correction

Motion was corrected by non-rigid registration of the unweighted images using
NiftyReg (University College London, UK), a free-form registration implemented
using cubic B-splines [7]. The transformation was then applied to the correspond-
ing diffusion-weighted images in each direction.

Tumors were selected using a region-growing algorithm (MITK segmentation)
on the DCE-MRI subtraction images and verified by a radiologist. These were
transformed to the nearest diffusion-weighted slice and regions of interest (ROIs)
at varying distances from the tumor (0-4, 4-8, 8-12 and 12-16 mm; see Figure 1)
were generated. Each region was adjusted to exclude non-fibroglandular voxels
based on a manual breast contour and decrease in signal of less than 30% from the
50 to 800 s/mm2 images. Signal from voxels in each ROI was averaged to obtain
a mean. Non-Gaussian noise was corrected by subtracting a factor dependent
on the local noise [8]. All three diffusion-weighted directions were averaged to
obtain signal for fitting and all unweighted image values were combined to get
a single signal value for b=0 to use for fitting.

2.3 Data Fitting

Data were fitted to two different models: a monoexponential model

S = S0 exp (−b · ADC) , (1)

where S0 is the signal in the absence of diffusion weighting and ADC is the
apparent diffusion coefficient; and the biexponential IVIM model

S = S0 [fp exp (−b ·Dp) + (1− fp) exp (−b ·Dt)] , (2)

where S0 is as above, fp is the fraction of signal decay from pseudodiffusion, Dp

is the pseudodiffusion coefficient and Dt is the tissue diffusion coefficient.
Weighted least squares fits were performed using Python and the scipy opti-

mize minimize module with L-BFGS-B minimization. A lower bound of 0 was
used for all parameters and upper bound of 5x the unweighted signal for S0, no
bound for ADC or Dt and 1 for fp. The data have low sensitivity to Dp, so it
was fixed at 2 x 10-2 mm2/s similar to previous work [4,5].

The AIC indicates information lost by fitting while accounting for model
complexity (lower values indicate less loss) and was calculated by

AIC = χ2 + 2k , (3)

where χ2 is the reduced chi-squared and k is the number of fit parameters.
Parameter and AIC values were averaged across slices with visible tumor (n =

2, 5 and 1 for patients 1, 2 and 3 respectively) from all patients. Voxel-by-voxel
maps of the parameters were also generated.



Vasculature in Stroma Using Diffusion MRI and IVIM 383

Statistical errors in the fitted parameters were calculated by adjusting one
parameter at a time and re-fitting the remaining parameters until

χ2 ≥ χ2
0

[
1 +

np

N − np
F (np, N − np, 0.68)

]
, (4)

where χ2 is the reduced chi-squared from the fit with one fixed parameter, χ2
0 is

the reduced chi-squared from a fit where all parameters vary, np is the number of
parameters in the fit, N is the number of data points and F is the F distribution
function, calculated here for a 68% confidence interval.

3 Results

Figure 1 shows sample DCE and diffusion-weighted (b=200 s/mm2) images with
the tumor outlined in cyan and the surrounding fibroglandular regions (0-4 mm,
4-8 mm, 8-12 mm and 12-16 mm) in blue and purple. The mean SNR of the
unweighted images was 69 and in the surrounding regions (increasing distance):
40, 42, 38 and 27. In the second patient, regions beyond 0 mm had low SNR and
could not be analysed.

Fig. 1. (a) The post-contrast DCE and (b) diffusion-weighted (b=200 s/mm2) images
with the tumor (cyan) and surrounding ROIs of fibroglandular stroma outlined

Figure 2a shows the fits of the models to the diffusion data for one slice of a
tumor. Residuals are shown in 2b. Monoexponential fits are in solid blue (lines
for the 68% confidence interval of the ADC parameter calculated by Eq. 4 are
dotted) and biexponential fits are in red.

Figure 3 summarizes the parameters (mean +/- SD across the slices from
all patients) from the monoexponential and biexponential fits as a function of
distance from the tumor, as well as the AIC for each fit. Figure 4 shows maps of
the fit parameters through one slice of the tumor volume. The 68% confidence
intervals for the fit parameters in the tumor, given by Eq. 4, were 4% for S0 and
15% for ADC for the monoexponential fit and 6% for S0, 25% for Dt, 86% for
the lower error of fp and 107% for the upper error of fp for the biexponential
fit. Because the values of fp are relatively small, this translates to a parameter
range of 0.02 - 0.21.
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Fig. 2. Results of data fitting. (a) Signal as b value increases. Monoexponential fits to
the data are in solid blue and biexponential fits are in red. The dotted line shows the
fit using the ADC parameter error for the 68% confidence interval. (b) Residuals.

Fig. 3. Monoexponential (blue) and IVIM (red) fit parameters (a) ADC and Dt in
tumor and stromal regions and (b) fraction of pseudodiffusive signal (IVIM only). (c)
AIC. Bar graphs mean +/- SD for all patients, all tumor-containing slices.

Fig. 4. Maps of fit parameters. (a) ADC from the monoexponential fit, (b) Dt from
IVIM and (c) fp from IVIM.
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4 Discussion

For peri-tumoral stroma within 8 mm of the tumor, IVIM provided a better fit
to the diffusion data, shown by the lower and comparable AICs in this region,
as well as the residuals (blue points in Figure 2b), which were consistently below
zero for b-values of 100-200 s/mm2 and then rose above zero. Residuals for the
IVIM fit were more evenly distributed. IVIM did not add significant information
in more distal stroma, however.

The values of the diffusion coeffecient Dt = (1.4 +/- 0.2) x 10-3 mm2/s and
the pseudodiffusion fraction fp = 0.10 +/- 0.03 in the tumors themselves agreed
with previous IVIM results: Dt = (1.3 +/- 0.3) x 10-3 mm2/s and fp = 0.06 +/-
0.03 in [4] and Dt = (1.2 +/- 0.4) x 10-3 mm2/s and fp = 0.10 +/- 0.05 in [5].
It should be noted that Bokacheva et al. excluded tumor edges, which tend to
be more vascular, from their analysis, which may account for their slightly lower
average. The parameter maps (Figure 4) demonstrated some heterogeneity of
the parameters within the tumor. In addition, there may be differences in the
patient populations.

In the stroma, Dt was near that for free water and demonstrated an increas-
ing trend further from the tumor, which could be due to less dense extracellular
matrix or less cross-linking in this region. The monoexponential ADC showed
little variation with distance from the tumor, in agreement with [6]. The pseu-
dodiffusion fraction, fp, decreased with distance from the tumor (Figure 3b),
consistent with lower microvessel density [3] and previous DCE data [2]. These
IVIM parameters suggest that the smaller contribution of vascular perfusion to
the signal further from the tumor is compensated for by freer diffusion in the
extravascular space, resulting in a similar calculated ADC value throughout the
stroma when a two-point ADC method is used. Future work will attempt to
validate the IVIM findings using histological measures of microvessel density.

The IVIM model assumes that the extravascular tissue can be represented by
a single diffusion decay contribution. In the peri-tumoral stroma, there are very
few cells relative to the tumor itself and low b-values are insensitive to cellular
restriction, so this assumption is reasonable in this region. However, more com-
plex models may be needed to describe the tumor, such as those incorporating
restricted and hindered water diffusion by cells [9]. IVIM also assumes that wa-
ter does not move between the vasculature and the tissue during measurement,
which may affect parameter accuracy for leaky tumor vasculature.

This is the first study examining the diffusion signal in peri-tumoral stroma
for non-monoexponential behavior. Although this preliminary work examined
only a small number of patients, the results showed that a significant vascular
contribution to the signal exists in the stroma close to the tumor. These dif-
ferences could not be detected by a conventional monoexponential ADC model.
In light of the correlations observed previously between DCE-MRI stromal en-
hancement and tumor recurrence, models of MR diffusion signal that account
for vascular contributions deserve further study.
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Abstract. We study the resolution characteristics of a-Se semiconduc-
tor x-ray detectors using ARTEMIS, a detailed Monte Carlo transport
code that simulates the three-dimensional spatial and temporal trans-
port of electron-hole pairs under an external electric field. The model
takes into account generation and re-absorption of characteristic x rays,
spreading due to Compton scattering and high-energy secondary electron
transport, and drift and diffusion of electron-hole pairs under applied
bias. The point responses for a 200 μm thick mammography detector
for RQA radiation qualities are simulated using parallel processing. Line
spread functions and modulation transfer functions show a dependence
on incident x-ray energy and spatial frequency.

Keywords: detective quantum efficiency, ARTEMIS, Monte Carlo sim-
ulation, amorphous Selenium.

1 Introduction

Semiconductor based x-ray detectors convert x-ray photons directly into charge
signal without a scintillator material, and can be used to improve spatial reso-
lution compared to indirect based detectors. In particular, detectability of mi-
crocalcifications and small lesions in mammography has driven the development
of high spatial resolution imagers with small pixel pitch. Amorphous selenium
(a-Se) flat-panel x-ray imagers offer high resolution[1,2] and are currently used
clinically for mammography applications and actively researched for other novel
breast imaging modalities.

In this work, we study the resolution characteristics of an a-Se direct x-ray
detector for a range of RQA radiation qualities using Monte Carlo methods with
detailed simulations of charge carrier transport under the influence of applied
electric field.
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2 Method

2.1 Monte Carlo Simulations

This work utilizes an open source Monte Carlo transport code, ARTEMIS[3,4,5]
(pArticle transport, Recombination, and Trapping in sEMiconductor Imaging
Simulations) specifically developed for detailed simulation of electron-hole-pair
transport in direct x-ray detectors. The simulation of the signal formation pro-
cess in ARTEMIS is based on PENELOPE[6] for the simulation of photon and
secondary electron transport coupled with a detailed transport code for the spa-
tiotemporal simulation of electron-hole pairs, and the general-purpose simulation
package for PENELOPE[7], which contains a modular main program and sev-
eral tally options and source models that facilitate the simulation of medical
physics applications. This version of ARTEMIS includes a parallel processing
option, based on message passing interface (MPI) and allows for speed-ups in
simulations proportional to the number of processor cores available. This im-
provement is achieved by utilizing different computers and processing cores by
sending messages over the network to combine the simulation results in each
MPI thread.

For mammography applications, we model an a-Se detector with a thickness
of 200 μm. The line spread function (LSF) is calculated from the point response
across detector pixels, and the modulation transfer function (MTF) is obtained
by taking the Fourier transform of the LSF. The detective quantum efficiency
(DQE) at zero frequency is calculated with the expression[8]:

DQE(0) = ηAs, (1)

where η is the interaction efficiency, and As is the Swank factor. The detective
quantum efficiency (DQE) as a function of spatial frequency, is given by[9]:

DQE(ν) =
MTF 2(ν)

NNPS(ν)
, (2)

where MTF (ν) is the modulation transfer function and NNPS(ν) is the nor-
malized noise power spectrum.

2.2 Clinical Spectra

We used RQA beam qualities generated with methods described by Boone et
al.[10], with the parameters listed in Table 1. All beam qualities are taken from
the table of radiation qualities for the determination of MTF and DQE and corre-
sponding parameters in IEC document 62220-1-2 (2007) and 61267 (2005)[11,12].
The radiation qualities are shown in Figure 1.

3 Preliminary Results

Figure 2 and 3 show the simulated LSF and MTF. A million histories of incident
photons are simulated in each case, with the source incident perpendicular to a
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Table 1. Radiation Quality (IEC 61267:2005) for the determination of DQE

Radiation Quality Tube voltage (kV) HVL (mm Al) Filter (mm Al)
RQA3 50 4.0 10.0
RQA5 70 7.1 21.0
RQA7 90 9.1 30.0
RQA9 120 11.5 40.0
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Fig. 1. RQA beam qualities used for Monte Carlo simulations

200 μm thick a-Se detector biased at 10 V/μm. A pixel size of 5 μm is used with
256 pixels in both x and y directions.

The simulated DQE results are shown in Figure 4. The simulated DQE was
calculated by adding the frequency response of the signal and noise transfer and
taking into account the aperture of the sensor pixel, as shown in Equation 2.
The ARTEMIS code has been updated with the MPI parallel processing option,
and Table 2 and Figure 5 shows a comparison of the MPI processing times for
single core and multi-core processors for 1000 incident photons. The total time
is calculated from summing the initialization and simulation times. With the
MPI option, doubling the number of processors from one to two show a similar
linear increase in the number of simulated histories per second. However this
improvement is not linear for the one hundred threads case, mainly due to the
amount of time required to save a large amount of data, and relatively low
number of histories per core.
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Table 2. Simulation time in seconds as a function of number of MPI threads for a
total of 1000 x-ray histories

1 2 10 25 50 100
Initialization 10 11 11 12 16 16
Simulation time 2999 1487 363 223 144 68
Total time 3009 1498 374 235 160 84
Hist/sec 0.34 0.69 2.95 4.88 7.41 15.30

4 Conclusion

The LSF, MTF and DQE of an a-Se mammography detector for a range of RQA
radiation qualities are simulated using a Monte Carlo simulation package that
include detailed transport of electron-hole pairs under an external electric field
with parallel processing. As the number of MPI threads increases, the simulation
speed improves and the number of histories simulated per second increases. The
MPI parallel processing option in ARTEMIS can be used to signficantly reduce
simulation time.
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Abstract. An alternative method to evaluate the kVp on digital mammography 
units was developed using commercial metallic foils of different elements and 
an aluminum step wedge contained in a mammography test phantom developed 
at National University of México (UNAM) as a low cost tool. Relative response 
of metallic foils (Cu+5Al+8Al) / (Mo+Rh+Ag) vs kVp, for a numerical analysis 
and in experimental method of three FFDM systems,  shows a linear behavior 
and permits to calculate kVp with precision of ±0.4 kV. First results are shown 
and further work is still in process. 

Keywords: Digital mammography, quality control, kVp. 

1 Introduction 

One of the quality control tests for the mammography system is the evaluation of the 
kilovoltage (kV). Although the invasive methods to evaluate this parameter are more 
accurate these are not so practical to do, instead the non-invasive methods are pre-
ferred. There are several commercial systems to measure the kV, like those that use 
radiographic film or those that use digital detectors which can be expensive. Anther 
method using metallic foils have been developed2.  

The HG breast phantom1, developed at the National University of México 
(UNAM) as low cost tool to evaluate the performance of analog mammographic sys-
tems (film/screen), has several metallic foils to evaluate kV when  a three system 
equation is applied to the optical density (OD) values produced by these foils on the 
film. This phantom was a master’s thesis work and is being used at the National Can-
cer Institute of México (INCan) to further evaluate its utility. 

This phantom is composed of an acrylic block with dimensions of 10 cm long, 10 
cm width and 4.3 cm height, with a cavity of 0.3 cm height where several components 
are placed; the acrylic density used is 1.17±0.01g/cm3 (figure 1). Within the cavity 
there are 6 different diameters of nylon fibers to simulate glandular fibers, 5 different 
widths of polyethylene foils to simulate tumor masses, 5 different diameters of com-
pressed talc to simulate microcalcifications, a nonhomogeneous zone to simulate 
breast structure, an aluminum step wedge to evaluate the film processor and 6 differ-
ent metallic foils to evaluate the kV. The costs of the elements that composed the HG 
phantom is close to the $150 USD. 
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a) b) c) 

Fig. 1. a) Front view diagram of HG phantom, b) lateral view. C) Radiographic image of HG 
phantom. 

The aluminum step wedge produces a known attenuation pattern on the film, and 
when fix kVp and mAs are used, OD variations of the film due to the film processor 
can be tested. In order to use this phantom element, an initial calibration of the film 
and film processor must be done. 

The metallic foils of this phantom use the effect of k-edge discontinuity to evaluate 
the peak kilo-voltage (kVp). When an X-ray spectrum passes through a metalic ma-
terial, the attenuation it experiences will depend on the material's properties. If the 
material has a k-edge value within the spectrum's energy interval, it is possible to 
observe a drastic change on its attenuation due to the k-edge. Thus, using metalic 
materials with k-edge values within the clinical mammography energy range (22-33 
keV) is effective to evaluate the kV. To perform such evaluation using the HG phan-
tom, the OD produced by three different metalic materials is measured and three equ-
ations are applied. This method also require an initial calibration 

In this work we report a new and easy method to evaluate the kVp in FFDM sys-
tems using the step wedge and the aluminum foils of the HG phantom. 

2 Materials and Methods 

The step wedge is made of commercial aluminum, with 9 steps of 0.111, 0.222, 0.333, 
0.444, 0.555, 0.666, 0.888 and 1.110 mm thickness, and a step of 1.110 aluminum 
plus 1.0 mm lead. All steps have an area of 0.5 x 0.5 cm2. The measured aluminum 
density is 2.9±0.1 g/cm3. The metallic foils and its thickness are: copper (Cu) of 25 
μm, molybdenum (Mo) of 25 μm, rhodium (Rh) of 25 μm, silver (Ag) of 25 μm, 
cadmium (Cd) of 100 μm, and tin (Sn) of 25 μm. All metallic foils have an area of 0.5 
x 0.5 cm2, and purity above 99.9%. The thicknesses of the foils were determined by 
the commercial availability of the manufacturer. 

2.1 Analytical Method 

To understand the behavior of the metallic foils an analysis of the spectrum’s attenua-
tion was performed. The spectrums curves were obtained from [3] and the scatter 
radiation was not considered. The analysis reproduces the geometry parameters found 
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in a Selenia (HOLOGIC) mammography unit (table 1) for the combination molybde-
num/molybdenum (target/filter), and was done for a range of 25 to 33 kVp. Mass 
attenuation coefficients were obtained from [4, 5]. Exposure was normalized for each 
kVp to the value found clinically, at the entrance of the phantom. The numerical value 
of exposure at the entrance of the detector was used for the analysis. 

Table 1. Distances used in the analytic method 
 
Distance Distance Filter Mo Air thick- Compressor Grid factor Air thick- 

source image source base  ness thickness  ness 
    (lexan)   

66 cm 64 cm 0.0030 cm 59.8 cm 0.2 cm 0.68 cm2 

2.2 Experimental Method 

The The radiographic images from the HG phantom were obtained using a Selenia 
(HOLOGIC) mammography unit at the National Cancer Institute (INCan) and a Se-
nographe DS (GE) mammography unit at the UNAM Physics Institute. For the Sele-
nia units the mode semi was used, where the kVp is manually selected and the mAs is 
set by the unit; for the Senographe DS unit the MANUAL mode was used, where the 
kVp and mAs were fixed. The nominal values of the kVp used were 25 to 33 in steps 
of 1. Images were acquired in for processing mode and FIJI software was used to 
measure the mean pixel value (MPV) and the regions of interest used had dimensions 
3mm x 3mm. 

3 Results 

Values of the step wedge and the metallic foils from the analytical method are shown 
in figures 2a y 2b, which are normalized to the base value. Figure 2c shows the value 
for six selected elements. 

 

    
a)   b)   c) 

Fig. 2. a) Response of the step wedge normalized to base value. b) Response of the 6 metallic 
foils normalized to base value. c) Response of 6 selected elements. 

The numerical value of the step wedge and the copper foil shows an increase of the 
signal as the kVp increases; on the other hand the signal of the molybdenum, rhodium 
and silver foils shows a decrease in the signal as the kVp increases. The tin and  
cadmium foils show no dependency with kVp. Then, a relationship using this results 
was proposed as: 
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The three systems and the analytical method have a linear response, although the 
values of slope and interception are different. The origins of these differences could 
be due to differences in X-ray spectrum produced by each model of X-ray tube.  

4 Conclusions 

A linear relationship is found to evaluate the kVp using the response produced by a 
series of metallic foils. This response is only applied to the combination Mo/Mo and 
requires an initial calibration. Further work is needed to find the response to different 
combinations of target/filter and models of mammography units, which is in progress. 
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Abstract. Contrast Enhanced Spectral Mammography using energy subtraction 
technique (CESM) with iodinated contrast media is promising technology to 
improve the contrast of the image and detectability of tumor. One of the issues 
to be solved on this technique is giving additional radiation exposure to the pa-
tient compared with conventional mammography. We investigated phantom 
study to optimize scan protocol and parameter setting for reducing radiation 
dose without image degradation. We acquired the images with two different 
imaging conditions, fully-automated mode and manual mode, and evaluated 
image quality by image noise, contrast and exposure dose. On image quality 
evaluation in manual mode, the normalized noise power spectrum (NNPS) at 
low-energy image was increased and image quality became worse, but the qual-
ity of recombined image was not significantly different comparing to fully-
automated mode. The contrast at low-energy image in manual mode was 
slightly deteriorated, but at recombined image was not much different compar-
ing to auto mode. On the other hand, average glandular dose (AGD) was able to 
be reduced to 1.41 mGy from 1.96 mGy by setting manual mode. These results 
suggest it may possible to reduce the exposure dose by using manual mode in-
stead of fully-automated mode when CESM has performed in clinical service. 

1 Introduction 

Mammography is one of the most popular and widely used methods to detect breast 
cancer in clinical service. But it is sometimes difficult to identify a tumor lesion due 
to the low contrast image against the normal breast tissue. Contrast Enhanced Spectral 
Mammography (CESM) using dual energy subtraction technique is a new application 
system and recently available as the product for clinical service. 

CESM is a unique application in digital mammography system. About 2 min be-
fore data acquisition, iodinated contrast media was injected intravenously. Then, a 
pair of low- and high-energy X-ray was exposed to the patient sequentially as the one 
series of data acquisition. Data acquisition was performed completely same as stan-
dard mammography with both left and right breast in totally 4 views. It has been 
completed within 5 min from the beginning to the end of acquisition. Low energy of 
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X-ray has set below K-edge absorption of iodine and higher energy has upper K-edge 
and it has obtained the contrast enhanced image, so called recombined image, by sub-
tracting and processing low- and high-energy image data. This technique is used for 
detection of angiogenesis by tracking contrast media up-take and wash-out in tissues 
same as CT scan because of the use of same iodinated contrast media. Low-energy 
image is made of the exposure of X-ray at 26-32 kVp, and is used in interpretation as 
with conventional mammography. High-energy image is 45-49 kVp, and is used only 
for recombined image calculated with low-energy image. As the result, image can be 
obtained by the user is two : 1) low-energy image, 2) recombined image enhanced 
iodinated contrast media by processing[1-4]. 

In the clinical experience at our hospital, it was useful for dense breast and cases 
that can not be visualized a tumor in conventional mammography. However, this 
technique has a drawback to increase radiation exposure as compared with conven-
tional mammography. We found there are 2 main reasons of increasing radiation ex-
posure. The first reason is coming from high-energy X-ray exposure. Another reason 
is CESM mode can not use Automatic Exposure Control system (AEC) at low-energy 
exposure and the dose is determined by only the breast thickness. High-energy expo-
sure is an essential for CESM and the ratio of radiation dose from high-energy expo-
sure is relatively small. On the other hand, the conditions at the individual breast such 
as different breast density is varied even if the breast thickness is the same. And it has 
observed the exposure parameter is not optimized and the dose becomes excessive in 
many cases. So, there is some possibility to reduce the dose by optimizing exposure 
parameter at low-energy considering with not only breast thickness but also breast 
density and other parameters. 

The objectives of this study is to find optimal exposure parameter in CESM mode 
considering to both exposure dose and image quality using the phantom. 

2 Materials and Methods 

The study were performed with Senographe Essential made by GE Healthcare ( Chal-
font St. Giles, UK). It is full-field digital mammography system consisted of in-direct 
conversion flat panel detector with CsI absorber that has 1914 x 2294 pixels and pixel 
size of 100 micro-mm. The X-ray tube is available to deliver low (26-32 kVp) and 
high (45-49 kVp) energy X-ray by changing the voltage, materials of tube target and 
pre-filter. System is available to perform not only conventional mammography but 
also CESM with the specific software and hardware for data acquisition and image 
processing.  

Image data were acquired 3 times and calculated the average of these as the final 
result. ACR Mammographic Accreditation Phantom (Gammex 156) were used with 
the thickness of 45 mm. Focal spot size was 0.3 mm. 

The system is available to perform both conventional mammography mode and 
CESM mode. Both mode are available to perform manual mode. AEC is available 
when it is performed with fully-automated mode and exposure parameter is deter-
mined by pre-exposure. There are 3 selectable exposure mode in the system, namely 
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“contrast”, “standard” and “dose”. We use “standard” at this time as we normally use 
this mode in clinical service. 

First, we performed the study and took the image of 156 phantom with fully-
automated “standard” mode to identify exposure parameter in standard procedure. 
And then, we recorded target material, pre-filter, tube voltage, beam current and dura-
tion of exposure (mAs), entrance skin exposure (ESE) and average glandular dose 
(AGD). AGD was calculated the following formula proposed by Wu et al[5-7]. 

   (1) 

where  denotes AGD (mGy);  denotes the breast entrance skin exposure in air 
needed to produce a proper density image;  denotes the average glandular dose 
resulting from a breast entrance skin exposure in air 1 R (2.58x10-4 Ckg-1).  

Next, we performed the study and took the image of 156 phantom with fully-
automated “CESM” mode and recorded the same parameter in both low and high 
energy exposure. 

Then, we performed the study and took the image of 156 phantom with CESM 
mode with manual mode at low energy exposure. Parameter at high energy exposure 
had set to a configurable parameter value closest to value derived in fully-automated 
CESM mode. 

We analyzed NNPS of low-energy image and re-combined image about fully-
automated mode and manual mode. NNPS was calculated by setting the ROI in uni-
form area of 156 phantom and by performing digital Fourier transformation obtained 
from the power spectrum variation of digital values[8]. The analysis method was set-
ting and measuring ROI at 128 x 128 pixels, and used two-dimensional fast Fourier 
transform by “Image J” of a free analysis software. 

About contrast evaluation, a simulated mass with a diameter of 15mm was made 
from a filter paper impregnated with iodinated contrast media (300mgI/ml) that was 
diluted 40 times with water. The dilution ratio is the result of adjusting so that the 
value at which the digital value is not saturated. We put a simulated mass on 156 
phantom and measured digital values within the ROI at the portion of background and 
a simulated mass. We defined the difference of these average values as the contrast. 

 . .  (2) 

where  denotes average digital values within the ROI of a simulated mass on 
phantom; . .  denotes average digital values within the ROI of uniform area on 
phantom. . . was overlap part of the wax block and PMMA block at 156 phantom 
moreover nothing of the fibers, calcifications and masses. 

3 Results 

Exposure parameter and dose with fully-automated mode were following (Table.1). 
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Table 1. Exposure parameter and dose with fully-automated mode 

 
target 

material 
pre-
filter 

tube 
voltage 

beam current and dura-
tion of exposure 

ESE AGD 

standard Rh Rh 29 kV 40.4 mAs 3.90 mGy 1.05 mGy 

CESM 
low-energy Rh Rh 29 kV 61.7 mAs 5.53 mGy 1.47 mGy 

high-energy Rh Cu 45 kV 161.8 mAs 0.47 mGy 0.49 mGy 

 
AGD of CESM is represented by the total AGD, namely the sum of AGD of high-

energy image and low-energy image. This also applies to the ESE. Therefore, total 
ESE and total AGD were the followings, 

total ESE = 5.53 mGy (low) ＋ 0.47 mGy (high) = 6.00mGy 
total AGD = 1.47 mGy (low) ＋ 0.49 mGy (high) = 1.96mGy 

Exposure parameter with CESM mode with manual mode was following (Table.2). 

Table 2. Exposure parameter with manual mode. Parameter at low energy exposure had set to 
condition at fully-automated “standard” mode. Parameter at high energy exposure had set to a 
configurable parameter value closest to value derived in fully-automated CESM mode. 

 
target 

material 
pre-
filter 

tube 
voltage 

beam current and  
duration of exposure 

CESM 
manual 

low-energy Rh Rh 29 kV 40.0 mAs 
high-energy Rh Cu 45 kV 160.0 mAs 

Result of total ESE and total AGD at manual mode were the followings, 
total ESE = 3.58 mGy (low) ＋ 0.47 mGy (high) = 4.05mGy 
total AGD = 0.94 mGy (low) ＋ 0.47 mGy (high) = 1.41mGy 

In the comparison of NNPS, manual mode was larger than the fully-automated 
mode at low-energy image (Fig 1-2). Although NNPS value of manual mode was 
slightly higher, they are not widely different from each other (Fig.3-4). 

 

 

Fig. 1. NNPS about horizontal of CESM with fully-automated mode and manual mode at low 
energy image  
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Fig. 2. NNPS about vertical of CESM with fully-automated mode and manual mode at low 
energy image 

 
 
 
 
 
 

 

Fig. 3. NNPS about horizontal of CESM with fully-automated mode and manual mode at re-
combined image 
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Fig. 4. NNPS about vertical of CESM with fully-automated mode and manual mode at re-
combined image 

In the comparison of contrast, although between fully-automated mode and manual 
mode were slight differences, there were only difference of about 60 in the digital 
value. It was almost the same at re-combined image (Fig.5). 

 

 

Fig. 5. Contrast of CESM with fully-automated mode and manual mode 
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4 Consideration 

The comparison of low-energy image between fully automated mode and manual 
mode, the value of NNPS in fully-automated mode is better than manual mode. This 
comes from lower X-ray beam current at manual mode, namely manual mode was 
exposed about 20 mAs lower than fully-automated mode. However, there is no signif-
icant difference on NNPS value between fully-automated mode and manual mode in 
re-combined image. Re-combined image is calculated with specific software and im-
age processing. The detailed algorithm and method has not opened yet and it seemed 
there were some correction and/or processing, such as filtering, smoothing etc. that 
control re-combined image with certain noise level. In this study, there is almost same 
value of NNPS even if we acquire the data with reducing the exposure dose. In image 
contrast, there are some difference between fully-automated mode and manual mode 
on low-energy image but no significant difference on re-combined image. 

It is important to consider how to perform the interpretation in actual clinical site. 
Interpretation of CESM at our department is the followings, 

1. Read the low-energy image with conventional manner 
2. Confirm the presence or absence of abnormal legion using re-combined image 
3. 1) and 2) are performed iteratively 

Considering to this image reading process, the contrast of re-combined image is 
more important than that of low-energy image especially the case of dense breast and 
cases that can not be visualized abnormal legions in conventional mammography. 
Regarding to exposure dose, AGD was able to reduce 28 % from 1.96 mGy at fully-
automated mode to 1.41 mGy at manual mode in CESM mode. In comparison of total 
radiation dose, CESM with fully-automated mode was 1.86 times higher than conven-
tional mammography when it has performed with fully-automated mode but it be-
comes 1.34 times with manual mode. Based on mentioned above, we think there 
seems to be the worth to perform manual mode imaging condition at CESM. 

5 Conclusion 

CESM has very good tumor visualization capability among to the various application 
of digital mammography and it is promising technique in clinical diagnosis especially 
for dense breast patient. Further investigation for low-dose imaging is important and 
must be a positive impact for the diagnosis of breast cancer. 
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Abstract. Physics and radiographer QC procedures are urgently needed as the 
first few contrast-enhanced dual energy systems have been installed in the U.K. 
Preliminary work on one commercially available system has enabled us to pro-
pose new tests, relevant to the properties of dual energy imaging systems. Re-
sults are presented for measurements with the chosen phantom, which contains 
disks with a range of iodine content from 0.25 to 2 mg/cm2. Breasts of different 
thicknesses and different glandularity were simulated by adding slabs of CIRS 
material, of a range of compositions, on top of the phantom. The system tested 
had a response which was proportional to the iodine content of disks in the 
phantom, had good reproducibility, and did not change significantly when si-
mulated breast thickness and composition were varied. 

Keywords: mammography, contrast-enhanced, dual energy. 

1 Introduction 

The first few contrast-enhanced dual energy systems have been installed in the U.K. 
The performance of the low-energy component of the system can be tested in the 
usual way, following the U.K. and European protocols [1-2]. However, physicists also 
need to test the high-energy X-ray output and half-value layer (HVL), and the special 
imaging characteristics relating to iodine contrast medium in the image, in order to 
complete the acceptance and commissioning tests. As imaging of patients com-
mences, initially as part of clinical trials, radiographers also need a protocol for rou-
tine quality control (QC) tests, to ensure the reproducible behavior of the system on a 
day-to-day basis. The tests and results presented here have been developed by work-
ing on one system (GE SenoBright). When other systems become commercially 
available the proposed protocol may be revised or extended so as to be generally  
applicable. 
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2 Equipment and Methods 

2.1 Equipment 

After some initial work with diluted solutions of Iopamidol, a new phantom was made 
available for this work. It contains six rows of five disks, 5 mm in diameter, embed-
ded in 20 mm thick polymethyl methacrylate (PMMA). In each row the disks have the 
same Iopamidol content, giving a range of values from 0.25 to 2 mg/cm2 of iodine. A 
row with no Iopamidol and an empty row are also present. The phantom is described 
in detail in [3], and a dual-energy image is shown in Figure 1. Breasts of different 
thickness and different glandularity were simulated by adding slabs of CIRS material 
on top of the phantom. The following were used: 0%, 50% and 100% glandular ma-
terial, and randomly patterned CIRS BR3D, which is a 50:50 mixture of 0 and 100% 
glandular material. A low-energy image of the phantom with this material is also 
shown in Figure 1. In addition, layers of PMMA were used, as these are commonly 
available, although not exactly tissue-equivalent. 
 
 

  

Fig. 1. “Recombined” image (left) and low-energy image (right) of the iodine phantom with 
added CIRS BR3D tissue-equivalent material 

2.2 Measurement of Output and HVL 

Measurement of the high-energy component of the exposure presented some initial 
challenges, because 40-49kV is outside the normal mammographic range, and be-
cause the high energy exposure is always preceded by a low-energy exposure.  
Measurements were made with a mammography ion chamber, after verifying that  
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the results agreed with those obtained using an ion chamber designed for general ra-
diographic use, which had been calibrated over this kV range. Using the “pulse  
exposure” mode allowed the high-energy component to be measured without any 
contribution from the low-energy component. 

2.3 Mean Glandular Dose 

The mean glandular dose D was calculated using the equation 

 D = K g c s (1) 

where K is the incident air kerma calculated at the top of the breast with the compres-
sion paddle in place, and g,c, and s are published conversion factors [4, 5]. 

2.4 Reproducibility, Signal Variation with Iodine Content and Noise 

The phantom alone was imaged five times under automatic exposure control (AEC) 
and the reproducibility of the iodine signal difference (the difference between mean 
pixel values in the iodine disk and the adjacent background) was determined. Mea-
surements were made with ImageJ on the “combined” image, displayed by the system 
after suitably combining the low and high energy images. This processed image is the 
appropriate one for measuring the iodine signal as it is the one used clinically. 

The phantom was then imaged four times in manual exposure mode, using the 
same kV, target and filter for both high and low energy exposures as under AEC con-
trol, but with the mAs for each component selected to be 0.5, 0.75, 1.5 and then 2 
times the AEC-selected values. The signal difference, noise and signal difference to 
noise ratio (SDNR) were determined. 

2.5 Simulating Breasts of Different Thickness and Glandularity 

The phantom was imaged under AEC control, with 2-5 cm of CIRS BR3D material 
added on top, and subsequently with 2-5 cm of the different uniform CIRS materials 
in turn. The glandularity of the phantom and CIRS material combined varied between 
16% and 99.5% in the central region (excluding 5 mm adipose “skin” layers, in ac-
cordance with the Dance model). Finally 2-5 cm of PMMA was used, with spacers to 
adjust the paddle height to the appropriate equivalent breast thicknesses. 

3 Results 

3.1 Output and HVL 

The results for the low and high energy exposures are shown in Table 1. 
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Table 1. Output and HVL 

kV target 
filter 

Output 
(μGy/mAs 

at 1m) 

HVL 
(mm Al) 

kV target 
filter 

Output 
(μGy/mAs at 

1m) 

HVL 
(mm Al) 

25 Mo Rh 21.50 0.373 40 Mo Cu 0.485 2.68 

28 Mo Rh 32.33 0.412 43 Mo Cu 0.781 2.99 

31 Mo Rh 44.34 0.442 46 Mo Cu 1.158 3.27 

34 Mo Rh 57.54 0.463 49 Mo Cu 1.617 3.52 

28 Rh Rh 29.48 0.415 40 Rh Cu 0.538 2.65 

31 Rh Rh 40.46 0.458 43 Rh Cu 0.860 2.97 

34 Rh Rh 52.64 0.495 46 Rh Cu 1.271 3.25 

37 Rh Rh 66.02 0.524 49 Rh Cu 1.770 3.50 

3.2 Mean Glandular Dose 

Typical high-energy doses are shown in Table 2. These are for the iodine phantom 
with 10-50 mm 0% glandular CIRS material added. The calculated MGDs differ from 
those determined by the system, which are based on a different breast model. 
 

Table 2. Exposure factors, calculated MGD and organ dose displayed by the system, for the 
high energy exposure (phantom with added 0% glandular material) 

Phantom 
thickness 

(mm) 

kV target 
filter 

mAs HVL  
(mm 
Al) 

Glandularity 
of central 

portion (%) 

Calculated 
MGD 
(mGy) 

Organ 
dose 

(mGy) 

20 46 Mo Cu 72.3 3.3 97 0.21 0.26 

30 46 Mo Cu 72.3 3.3 49 0.21 0.26 

40 45 Mo Cu 112 3.2 32 0.28 0.35 

50 45 Rh Cu 165 3.2 24 0.43 0.48 

60 47 Rh Cu 185 3.4 19 0.60 0.71 

70 49 Rh Cu 185 3.5 16 0.72 0.91 

3.3 Reproducibility, Signal Variation with Iodine Content and Noise 

Reproducibility was satisfactory, with mean signal difference for 2 mg/cm2 of iodine 
details 73.8 ± 1.5 (2 SEM); the maximum deviation from the mean was 3.6%. The 
signal difference was linear with iodine concentration in the disks, as shown in Figure 
2. When incident air kerma K was varied, the signal difference remained constant, 
noise decreased as K-0.37, and SDNR increased as K0.37 , as shown in Figure 3. 
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Fig. 2. Signal difference as a function of iodine concentration in the disks. Error bars are 2 
SEM. 
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Fig. 3. SDNR variation with incident air kerma. Error bars are 2 SEM. 

3.4 Simulating Breasts of Different Thickness and Glandularity 

The iodine signal difference varied little over the wide range of thicknesses and mate-
rials of different glandularity used. Three representative graphs, shown in Figure 4 (a) 
to (c), were obtained when using different CIRS materials of glandularity 0%, 50% 
and 100%. PMMA showed a different variation of signal with breast thickness, but 
the signal difference variation was broadly similar, as shown in Figure 4(d). 

The response of PMMA differs from that of the tissue-equivalent materials, as 
shown by the variation of iodine signal (mean pixel value) with thickness in Figure 5. 
All the tissue-equivalent materials show a linear increase in signal, but for PMMA the 
signal remains constant. 
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Fig. 4. Variation of iodine signal difference with simulated breast thickness. (a), (b), (c) phantom 
with 0%, 50%, 100% glandular material respectively, d) phantom with PMMA and spacers. 
Error bars are 2 SEM. 
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Fig. 5. Variation of mean pixel value for an iodine insert with thickness, for CIRS 50% glandu-
lar material and PMMA 
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4 Discussion  

The results of the tests carried out indicate properties of the system tested that are 
desirable for clinical imaging, i.e. the signal difference has good reproducibility, does 
not change with incident air kerma, and is proportional to the iodine content of the 
phantom details. There is little change in the results when materials of different glan-
dularity are used. This suggests that iodine contrast would be equally visible in 
breasts of different densities, in the uniform background of the combined image. 

As other contrast-enhanced dual energy imaging systems become available, the 
tests may need to be developed further to ensure applicability to all systems. Even-
tually, performance standards could be set. 

There seems to be no phantom with a range of iodine content commercially availa-
ble at the present time. The phantom used in this study enabled a range of perfor-
mance tests to be carried out. Such a phantom, or as a minimum one with two or three 
different iodine area concentrations, could suffice for commissioning and routine 
physics testing. PMMA, while not tissue-equivalent, was found to give signal differ-
ence results that were broadly similar to those obtained with different CIRS materials. 
It could be used for routine testing if type-testing included PMMA results for  
reference. 

If a suitable phantom were available, radiographer QC could comprise a subset  
of the tests described here. There should be a daily constancy check of exposure pa-
rameters under AEC control, with a measurement of the iodine signal difference. 
Weekly or monthly tests should include measurements with added thicknesses of 
PMMA, which is similar to tests in the current QC protocols for 2-D imaging and 
tomosynthesis. 

5 Conclusion 

The suggested tests are practicable and form the basis of physics and radiographer 
testing protocols. A suitable phantom is needed to carry them out, and one with 
iodine-containing inserts embedded in PMMA was found to be practical and conve-
nient to use.  

The results of the physics tests carried out on the GE SenoBright system showed 
performance characteristics that would be desirable for clinical use. 
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Abstract.  
BACKGROUND: The Screening Mammography Program of British Columbia 
(SMPBC), Canada is a population based program that regularly performs quali-
ty assurance testing and outcomes analysis.  
METHODS: A study was conducted to analyze the trends in the SMPBC quali-
ty assurance data from 1994 onwards to investigate any correlation between 
improvements in image quality (IQ), changes in radiation dose delivered per 
screen and detection of breast cancers.  
RESULTS: Both IQ and cancer detection rates of invasive tumours ≤5 mm in-
creased over 1994-2011 which came at the cost of a 127% increase in radiation 
dose delivered to the breast between 1994-2005 (IQ increased 21%, tumours ≤5 
mm increased 107%). In subsequent years, as digital units started to replace 
film units the programs’ average IQ and CDRs remained unchanged, while the 
integration of digital units reduced the dose delivered at a populational level.  
CONCLUSION: Improvements in IQ coincided with increased detection of 
small tumours. 

Keywords: Quality Assurance, Screening Mammography, Cancer Detection 
Rates. 

1 Introduction 

Mammography has been a principal method of screening for breast cancer over the 
past several decades since randomized control trials suggested its benefit [1, 2]. Fur-
thermore, epidemiological modeling and meta-analysis studies have confirmed that 
mammographic screening is associated with a reduction in breast cancer mortality [3]. 
These studies demonstrate a benefit of screening mammography on breast cancer 
mortality; however, since these trials, image quality has significantly improved. The 
extent at which image quality has improved in recent decades is important when eva-
luating the effectiveness of mammography for the purposes of screening as trials that 
use less sensitive and specific imaging techniques may underestimate the impact of 
screening [4-7]. 
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Both technological advances in film screen mammography (FSM) (1990s) as well 
as the advent of digital mammography (2000s) have led to noticeable improvements 
in image quality. Studies from the U.S. FDA National Mammography Quality Stan-
dard’s Act and Screening Mammography Program of British Columbia (SMPBC), a 
population based screening mammography program, have shown that improvements 
in mammographic technologies improved image quality (IQ) over the 1990s and early 
2000s [8, 9]. These observations have been made from regular IQ quality assurance 
testing.  

Associated with the technological advances with FSM in the 1990s and early 
2000s, these quality assurance studies also show that the increases in image quality 
for film mammography came at the expense of roughly doubling the mean glandular 
dose (MGD), which is an estimate of the radiation delivered to the average women 
per mammogram. This dose increase can be attributed to the development of Min R 
2000 film and new x-ray tube target materials which necessitated radiation dose in-
creases for an improved image quality. Ideally, mammographic images should give 
optimal image quality with minimal radiation exposure for the patient because it has 
been shown that radiation exposure has the potential to induce cancer [10].   

Although this observed increase in dose and IQ has been described before, to our 
knowledge there is a limited understanding regarding if these increases in IQ influ-
enced the detection of cancers in a screening setting. 

Because increases in IQ for FSM also required increased radiation exposure it is 
relevant to understand if this increased radiation exposure risk also came with a bene-
fit of an increased detection of cancers. Furthermore, as full field digital mammogra-
phy (FFDM) units replaced FSM units, it is relevant to understand how dose and can-
cer detection rates change at a populational level.  

This study reports the trends of SMPBC quality assurance data from 1994 onwards 
and investigates potential relationship between improvements in film based mammo-
graphic image quality and cancer detection rates that occurred over 1995-2005. In 
addition, the study quantifies how the integration of digital screening units into the 
program is changing the program’s IQ, MGD and screening cancer detection rate 
(CDR).  

2 Methods 

The SMPBC was established in 1988 and was the first population based mammogra-
phy screening program in Canada. Women who are residents of British Columbia and 
aged 40 years and older are eligible to participate in screening mammography at no 
charge. The SMPBC began transitioning from FSM to FFDM in 2007 and currently 
52% of the screening centers employ FFDM.  In order to ensure a safe and effective 
screening service, the program performs regular quality tests on all of their units at 
each of their centers.  IQ and MGD calculations were extracted for each unit’s annual 
quality assurance report. The average IQ was measured by a Mammography Accredi-
tation (ACR) Phantom for each year. The phantom is a lucite block used to simulate 
the x-ray attenuation of a compressed 4.2 cm human breast composed of 50% adipose 
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tissue and 50% glandular tissue, containing details (masses, fibers and specks) rang-
ing from visible to invisible on a mammographic image. An increase in image quality 
is defined as an increase in specks, masses and fibers being visible on the phantom 
image. The minimum performance criterion to pass accreditation is visibility on a 
mammographic test image of four of the largest fibers, three of the largest speck 
groups and three of the largest masses.  

Furthermore, the MGD, defined as the mean (average) dose to the glandular tissue 
was calculated for each year between 1994-2013. The MGD is considered to be a 
reasonable measure for comparing relative risk from different mammography proce-
dures and the acceptable limit for the dose for the phantom is 3 mGy [11-13]. 

In order to evaluate the differences between FSM and FFDM in ACR and MGD 
scores, a one-way between groups Analysis of Variance (for MGD) and Student’s T 
Test (for ACR) for the years were calculated where both FSM and FFDM quality 
assurance tests were available (years 2008- 2013). Both the average MGD and IQ 
score along with 95% confidence intervals were plotted in Figures 1 and 2 for each 
year between 1994-2013. 

The SMPBC publishes annual reports that describe participation and screening 
outcomes. From these reports, basic demographic and program performance data was 
extracted for each year from 1994-2013. In these reports, cancer detection rates are 
stratified by both the size of the tumour and by age. From this data, the annual age-
standardized screen detected cancer rates for women between the ages of 40-79 be-
tween the years 1994-2011 were calculated for each range of tumour size reported (≤ 
5mm, 6-10mm, 11-15mm, 16-20mm, > 20mm). Age-standardized cancer detection 
rates (CDRs) were reported in rates per 10,000 screens. The calculation of this data 
enabled longitudinal comparison of CDRs against the provincial average IQ score. 

 In order to determine the extent of IQ, MGD and CDRs trends, a linear regression 
model based on mean values of IQ and MGD and the age standardized CDR were 
developed. Residuals were plotted to assess for model fit, and an analysis of variance 
testing was used to assess if trends significantly greater than 0.  

All statistical analyses were performed in SPSS and statistical significance was set 
at p< 0.05. 

3 Results  

Program Performance 
The screening program grew from 123,881 screens per year with 19 sites in 1994 to 
281,715 screens per year with 38 fixed and 3 mobile sites in 2012. Cancer detection 
rates fluctuated between 3.4-4.8 per 1000 screens and the programs’ sensitivity and 
specificity ranged from 84-88% and 39-94% respectively. These results suggest that 
as the program expanded to provide improved coverage to the population of BC, it 
was able to maintain a quality program with minimal year-to-year variability.   

 
Image Quality, Dose and CDR Years 1994-2005 
Both IQ and MGD increased from 1994-2005 (Figures 1-2).  During this period,  
IQ increased 21% (average 1994 ACR=10.2 to average 2004 ACR=12.3) and MGD 
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increased by 127% (average 1994 MGD= 0.98 mGy to average 2004 MGD= 2.22 
mGy). As described in Figure 3, there was also a significant increase in the detection 
of invasive tumours ≤5 mm over this time period. The age standardized CDR for  
tumors ≤ 5mm increased from 1.49 per 10,000 screens to 3.09 per 10,000 screens (a 
107% relative increase). This increasing trend was not observed for tumours greater > 
5mm (11% increase in CDR for tumours 6-10mm, 8% increase in CDR for tumours 
11-15mm, 3% decrease in CDR for tumours 16-20mm, and 11% increase for tumours 
> 20mm). 
 
Image Quality, Dose and CDR Years 2006-Current 
As depicted in Figure 1 and 2, in the years following 2005, IQ and MGD leveled off 
in the SFM units. As FFDM started to become integrated into the program (data 
available for years 2007-2013), MGD was reported to be significantly lower in FFDM 
units compared to SFM units (Average Film MGD = 1.88mGy, Average Digital, 
measured 45&8 method, MGD= 1.63mGy, Average Digital RMI method=1.49mGy, 
p=<.001)  

IQ scores were quite variable for FFDM units at the beginning, however, as the 
number of units within the program increased, and as quality assurance testing be-
came more developed and standardized, the variability in scores decreased, which can 
be visually seen by observing the confidence intervals in Figure 2. Although when 
comparing the aggregated IQ scores between the film and digital units for the years 
with digital IQ data available (2007-2013), there was no statistically significant dif-
ference in IQ between screening modalities ( Film N=208, mean =12.4, Digital N=80, 
mean=12.3, p=.552).  

Following 2005, CDRs of invasive tumours ≤5 mm varied significantly from 2.07 
to 3.23 cases per 10,000 screens. The most recent CDR data available is 2011 data, 
which suggest a CDR of 2.93 per 10,000 screens (97% increase from the 1994 CDR) 
and therefore most recent five year average CDR is 2.88 per 10,000 screens (93% 
increase from 1994 the CDR). No significant trends were observed for tumours >5mm 
with the exception of the CDR for tumours >20mm, which increased incrementally 
from 6.0 per 10,000 screens in 2005 to 8.5 per 10,000 screens in 2011.  

 
Correlation between IQ and MGD and IQ and CDRs  
For the years 1994-2005, based on linear modeling there was a significant correlation 
between ACR scores and dose (y=0.42x-3.13, R2= 0.92, p<.001) and a modest corre-
lation between ACR scores and CDR ≤ 5mm (y=0.58x-3.99, R2= 0.58 p<.001). How-
ever, when the correlation for average ACR scores (both digital and film unit scores 
included in average calculation) and CDR ≤ 5mm was extended to 2011, the resulting 
model suggested a lesser but still significant increasing relationship (y=.41x-2.13, 
R2=.33, p=.016). 

4 Discussion 

In the late 1990s and early 2000s the increased detection of small cancers within the 
SMPBC coincided with increases of image quality. To our knowledge this is the first 
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study that suggests that improvements in image quality in the context of screening 
mammography may be associated with increased detection of small cancers at a popu-
lational level; an improvement that came without a reduction in the program’s sensi-
tivity or specificity. In absolute terms, the increased CDR is modest (an increased 
CDR of 1.6/10,000 screens, or an additional 41 cancers detected in 2005 in this size 
category when compared to 1994 ≤ 5mm CDRs). Although the data compiled from 
2006 to 2011 suggests some variability, if an increased detection in these small tu-
mours is to be sustained in upcoming years, without a significant change in the overall 
screen detected cancer rate, it is possible that this could have an effect in shifting the 
T stage distribution of screened detected cancers towards a lower stage. In theory this 
could improve prognosis as reoccurrence, metastatic potential and prognosis of a 
breast cancer is thought to be significantly dependant on tumour size [14, 15].  How-
ever, a detailed and quantified estimation of this potential impact is beyond the scope 
of this study. 

With regards to the changes in dose over the course of the period of study, al-
though the MGD more than doubled between 1994-2005, this reported average MGD 
of 2.22 mGy is significantly less than the dose delivered in the early era of screening 
mammography in the United States when the MGD was estimated to be an average of 
14 mGy in 1974 [11]. The integration of digital units into the program has led to a 
decreased average dose being delivered to the screening population as a whole. Al-
though the risk of radiation-induced breast cancers from breast screening is thought to 
be minimal, such reductions implemented at a populational level may have relevant 
implications. 

There are a number of limiting factors that may influence this study results. It 
should be noted that the ACR score is a semi-qualitative score which is subject to a 
degree of intra- and inter- observer variability. However, it is likely that the potential 
variability would be minimized in our calculation of the average ACR score due to 
the large number of units measured each year. Finally, and perhaps most significantly, 
it is noteworthy to suggest that although there was an increased rate of detecting small 
cancers that correlated with  increases in image quality, other factors, could be in-
fluencing the observed change in CDRs of these small tumours. For example, it is 
possible that there was an improvement in the performance of the program’s radiolo-
gists between the years 1994-2005 which led to the increased detection of these small 
tumours.  

5 Conclusion 

These results describe a correlation between increase in image quality and the detec-
tion of small tumours in a population based organized screening mammography pro-
gram. This increased image quality originally came at the cost of an increased dose, 
but the MGD is now trending downward as digital units replace the film-screen 
mammography. These results suggest that improvements in image quality may influ-
ence the detection of small invasive cancers at a population based level. 
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6 Figures 

 
Fig. 1. Changes in Mean Glandular Dose (MGD) of the SMPBC with 95% confidence inter-
vals. The mean MGD peaks in 2005 at 2.22mGy (average based on the 49 available SFM unit 
MGD measurements). As of 2013, the integration of FFDM units has reduced the programs 
mean MGD to 1.69 mGy (average based on the 19 available SFM and 30 FFDM unit MGD 
measurements). 

 

Fig. 2. Changes in cumulative ACR IQ of the SMPBC with 95% confidence intervals. An 
increase in image quality indicates more specks, masses and fibers visible on the phantom 
image. 

 

Fig. 3. Age adjusted CDRs of invasive cancers ≤ 5mm per 10,000 screens between the years 
1994-2005. A linear trendline and 95% confidence interval of trendline is included. These 
CDRs encompass SMPBC screen detected cancer in women ages 40-79. The increasing trend 
seen above between years 1994-2005 was specific to invasive carcinomas ≤ 5mm and not ob-
served in cancers > 5mm. 
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Fig. 4. Age adjusted CDRs of invasive cancers ≤ 5mm per 10,000 screens with trendline and 
confidence intervals extended to 2011 
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Abstract. Digital breast tomosynthesis (DBT) images of a novel anthropomor-
phic breast phantom (UPenn phantom) acquired on two breast tomosynthesis 
systems were analyzed in terms of their power spectra (PS). The β and κ power 
law coefficients were estimated from 2D planar, tomosynthesis projection  
images and reconstructed planes. These data were compared to the PS characte-
ristics as retrieved from a group of patient data. Power spectra of the UPenn 
phantom images were very similar to the patient data, with power law parame-
ters in the range of values found in patients. Power law exponents were 2.99 
and 3.45 for 2D, 2.87 and 2.75 for DBT projections and, 1.92 and 3.10 for DBT 
reconstructions for the Siemens and Hologic system respectively. The agree-
ment was better than with other (non-anthropomorphic) 3D structured phan-
toms, making this phantom a good candidate test object for DBT performance 
testing. 

Keywords: digital breast tomosynthesis, digital mammography, phantom, 
breast structure, power spectrum analysis. 

1 Introduction 

Digital breast tomosynthesis (DBT) acquires a series of projections of the breast from 
which a stack of slices is reconstructed. DBT should improve the detection and charac-
terization of breast lesions based on two main features: (1) lesions show up in one or a 
few planes, providing depth information; (2) the tissue superposition from breast struc-
tures at a distance from the plane of interest is reduced, improving the detectability and 
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delineation of the lesions. In order to compare existing breast imaging modalities to 
DBT, these aspects have to be taken into consideration. Proper performance testing 
should define a task and an associated figure of merit. In the case of comparative studies 
between 2D mammography and DBT, the detection of a 3D lesion in a structured back-
ground would be a good candidate performance test. 

Most existing anthropomorphic test objects, developed for projection mammogra-
phy, have structures in a relatively thin 3D slab. There is therefore a need for another 
type of phantom, preferably a 3D anthropomorphic test object. This study focuses on 
a newly designed breast phantom (UPenn phantom, CIRS Inc., VA, USA), which is 
based on a previously developed anthropomorphic software phantom [1, 2]. The 
UPenn phantom had been developed for the use in preclinical and clinical assessment 
of image quality in 2D and 3D breast imaging systems. Whereas the anatomy of the 
breast has been mimicked as closely as possible, it remained to be determined how 
this structured phantom would compare to real patient data. In this paper, planar 2D 
and DBT images of this phantom, acquired on two different DBT systems, were eva-
luated in terms of power spectrum analysis. We calculated power spectra and power 
law coefficients of the newly designed phantom, acquired at different dose levels in 
2D and DBT mode. Then we compared the resulting power spectra to previously 
published power spectra of a group of patients and additionally also to the power 
spectra of three other phantoms developed for DBT [3]. Finally, mean glandular doses 
(MGD) of the phantom were compared to patient doses.  

2 Methods and Materials 

2.1 Anthropomorphic Phantom 

The design of the physical UPenn phantom (CIRS Inc., VA, USA) was based on the 
previously developed anthropomorphic software UPenn phantom which contains 
realistically arranged anatomical structures, including skin, adipose tissue compart-
ments, Cooper’s ligaments and regions of dense fibro-glandular tissue [1, 2]. By si-
mulating a realistic arrangement of breast tissue structures, the phantom provides an 
anatomically correct complex tissue background, designed for consistent validation of 
various breast imaging modalities. The phantom consists of precisely distributed 
breast equivalent materials that mimic the realistic arrangement of tissue structures, 
thus demonstrating in projection images how underlying targets can be masked by 
overlapping normal tissue structures. The complete phantom simulates a 450 ml 
breast with compressed thickness of 5 cm and volumetric breast density of 17% (ex-
cluding the skin). The accompanying software phantom provides detailed ground 
truth of the anatomy simulation, allowing for direct quantitative assessment of mea-
surements.  

2.2 Phantom Acquisitions and Patient Dataset 

Patient datasets together with their power spectrum and power law parameter calcula-
tions were previously described in literature [3]. Patients had been imaged on a Sie-
mens Inspiration (Siemens, Erlangen, Germany) and a Hologic Selenia Dimensions 
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The UPenn phantom was imaged on a Siemens Inspiration and a Hologic Selenia 
Dimensions tomosynthesis system in 2D and DBT mode under automatic exposure 
control (AEC) (Figure 1). Automatically selected exposure settings for both modali-
ties are tabulated in Table 1. Afterwards, a dose series was acquired by decreasing 
and increasing the automatically selected tube load (mAs) by 25% and 50% for both 
modalities.  

2.3 Power Spectrum Analysis 

Prior to the PS calculation, projection images were linearized using the detector re-
sponse curve. Since pixel values in the reconstructed planes are largely independent 
of the exposure used to acquire DBT images, linearization was not possible for recon-
structed images. A squared region adapted to the size of the phantom, was extracted 
from each projection and each reconstructed plane image in order to cover the center 
of the phantom. Records of size 128 × 128 pixels were taken from this region, half 
overlapping in both x and y directions. A Hanning window was applied to each record 
and the records were then input to a 2D PS calculation. The radial average of the 2D 
PS ensemble, including the 0° and 90° spatial frequency axes, was used for the power 
spectrum analysis. For projection images, normalization of the PS was applied by 
dividing by the square of the mean signal, while normalization was not applied to the 
PS results for the reconstructed planes. The changing in-plane pixel size of the Holog-
ic reconstructed images was taken into account in the PS analysis. Finally, power law 
exponents and magnitudes, β and κ, were assessed from power law fits over the spa-
tial frequency range of 0.2–0.7 mm-1. Power law parameters were averaged for all 15 
projection images and similarly for all reconstructed planes.  

3 Results and Discussion 

Table 2 gives an overview of the β and κ power law coefficients of the UPenn phan-
tom and the range of these coefficients (mean, min, max and stdev) of the patient 
images for both systems. The coefficients of the UPenn phantom are within the range 
of those of the patients, confirming that the phantom structure consists of a similar 
texture as in patients. Additionally, figure 2 illustrates the PS curves of the phantom 
images, acquired at different dose levels and plotted against the average patient PS 
curve. Figure 2a shows the comparison for 2D mammographic images of the Hologic 
system and figure 2b for the central ~0° DBT projection images of Siemens. These 
graphs show that the change in dose did not influence the slope and the magnitude of 
the PS curve (β and κ) in the low frequency region with coefficients of variation 
(COV) ranging from 1% to 6% in 2D and DBT projections. This indicates that there 
is no influence of quantum noise within the power law region and that the PS in this 
region is dominated by the phantom structure. At higher frequencies, however, the 
quantum x-ray noise dominates and the PS curves are decreasing with increasing dose 
as the PS data are normalized for the signal at the detector. Figure 2 also shows the 
close agreement between phantom and patient PS curves, confirming the earlier 
agreement in power law coefficients. 
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for Siemens, it is 0.74 mGy and 1.70 mGy for 2D and DBT respectively. The phan-
tom doses are within the patient dose range and below the achievable dose level set up 
for 2D mammography. However, 2D and DBT phantom doses fall within the lower 
segment of the patient dose range for Siemens. For Hologic, only a small difference in 
dose for 2D and DBT phantom exposures is found. 
 

 

Fig. 4. Mean glandular doses for 2D and DBT phantom and patient images for Hologic (A) and 
Siemens (B) 

A limitation of this study is that only a limited amount of patient data are included in 
our patient dataset. The launch of a general phantom validation procedure should start 
from a database that is representative for a general screening population. Finally, 
given the large technical differences between DBT systems, a general conclusion is 
only possible after tests on other DBT systems are completed. 

4 Conclusions 

In conclusion, this study tested the anthropomorphic structure of the newly designed 
UPenn phantom against patient breast structure for 2D and DBT imaging in terms of 
power spectra and power law coefficients. The phantom structure was found to be a 
good candidate for DBT performance testing with dose properties similar to patient 
doses. In future, simulated lesions or lesion-like objects will be inserted in the phan-
tom, allowing clinically relevant detection tasks.  
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Abstract. Some limitations of mammography that particularly affect diagnosis 
of women with dense breasts, such as tissue superposition and marginal cancer 
image contrast, can be overcome with the use of contrast-enhanced digital 
mammography (CEDM). CEDM uses iodinated contrast agents to increase at-
tenuation in areas exhibiting hyper-vascularization, potentially due to tumour 
angiogenesis, and image subtraction to cancel normal tissue signal. Here, we 
propose a method for objective task-based image quality evaluation of CEDM 
that can be routinely carried out in the clinic. A phantom was designed with fea-
tures that allow for practical measurements of MTF, NPS, and iodine contrast 
that were used to estimate a CEDM detectability index for a given imaging task. 
We present results from several months of weekly testing of a commercial dual-
energy CEDM system. From these data, we demonstrate measurement sensitivi-
ty to variations from standard acquisition conditions, suggesting the potential to 
identify system failure modes using this approach. 

Keywords: CEDM dual-energy mammography iodine detectability phantom. 

1 Introduction 

Contrast-enhanced digital mammography (CEDM) is a technique that uses intraven-
ous administration of a contrast agent to identify breast cancer on the basis of iodine 
signal enhancement from tumour angiogenesis [1–3]. CEDM potentially offers tissue 
functional information and image subtraction largely eliminates the tissue superposi-
tion that can limit mammography performance. Commercial systems for CEDM were 
introduced relatively recently and are generally being used in a diagnostic setting. It is 
important to monitor these systems to ensure consistent, high performance. 

Because CEDM systems are extensions of digital mammography (DM), many of 
the image quality elements are likely to be in common with those of DM, and are 
monitored through quality control procedures already in place. These include tests of 
x-ray beam quality, radiation dose, beam collimation, detector sensitivity, and system 
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resolution [4, 5]. However, compared to mammography where the detection task pri-
marily consists of the identification of calcifications and suspicious soft tissue masses, 
in CEDM iodine enhancement detectability is of main importance. Iodine detection 
can place different demands on the imaging system, and requires some adjustment to 
the conventional mammographic technique. For example, greater x-ray beam energies 
and specialized image processing are used [2, 3]. 

Model observers have been proposed as an efficient and objective means to predict 
human performance for mammography tasks of interest [6]. In this work we propose 
CEDM task-based performance evaluation that can be efficiently implemented in the 
clinic for routine quality assurance testing using a single phantom image. 

2 Methods 

2.1 Detectability Index 

One model observer that accounts for the contrast sensitivity of the human eye is the 
nonprewhitening observer with eye filter (NPWE) [7]. The NPWE detectability index, 

NPWE, was calculated for dual-energy (DE) CEDM (no internal noise) as: 
 

 NPWE
, task

2 , ,, , task
2 , , , (1) 

where  is the system modulation transfer function,  is the noise power 
spectrum, task is the product of a task function and the object-to-background con-
trast, task, and  is an eye filter. The task function is written as the Fourier trans-
form of the difference between two hypotheses, in this case between signal present 
( 1) and signal absent ( 2) to describe a detection task [8]: 

 task , task| 1 2 |. (2) 

The applied eye filter has the form [7]: 

 exp , (3) 

where  denotes the radial spatial frequency, and  and  are scalar factors that can 
vary with the viewing conditions and task. Values of 1.3 and 3, were used 
here that are consistent with common viewing conditions (50 cm distance) and have 
been shown to give reasonable agreement with human observers [7, 9]. 

In DE CEDM, a low-energy (LE) mammogram is acquired at x-ray energies below 
the K-edge of iodine and a high-energy (HE) image is acquired at energies predomi-
nantly above the K-edge. Richard and Siewerdsen demonstrated that when LE and HE 
image MTFs differ, the effective resolution in a DE image decomposed by weighted 
log-subtraction will be dependent on the object composition and weighting factor 
[10]. This situation can arise for a CsI-based detector under CEDM imaging condi-
tions [11], where the effective DE image MTF can be described as [10]: 
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 DE , , B LE , HE , B rel

B rel
, (4) 

where HE is the ratio of the MTFs for the HE and LE imaging, HE/ LE, and 

rel is the ratio of the LE-to-HE signal(task)-to-background differences. 

2.2 Phantom Design 

A 22×20 cm2, 4 cm thick poly(methyl methacrylate) (PMMA) phantom body was 
machined to mimic clinical imaging conditions to allow for system testing under au-
tomatic exposure control (AEC) operation. A 12.5 μm thick, 5×5 cm2 tin MTF tool 
was placed on the PMMA to represent a 10 mg/cm2 iodine detection task (higher than 
clinically expected, but practical for manufacture) against a uniform background. 

Two contrast-detail regions with 1 cm thick iodinated-epoxy resin discs were em-
bedded for contrast measurement [12]. Disc diameters of 3, 5 and 10 mm represent 
clinically relevant lesion sizes with iodine areal densities of 0.2, 0.6 and 1.0 mg/cm2 
[1]. One insert was embedded under uniform PMMA, and the other under a textured 
insert. The textured structure was fabricated by casting epoxy (no iodine) in a mold 
designed from a clinical mammogram region. These inserts were placed at the phan-
tom periphery, leaving a uniform 6×6 cm2 central region for NPS measurement. The 
proposed CEDM phantom is shown in Fig. 1, and is used at our institution for weekly 
physics testing of a commercial system (Senobright® and Senographe® Essential, GE 
Healthcare, Chalfont St. Giles, UK). 

a)  b)  c)  d)  

Fig. 1. CEDM phantom; (a) photograph; (b) HE image (Mo/Cu, 45 kV); (c) HE image texture 
insert; and (d) DE decomposed image of (c) and the LE image (not shown), revealing discs 
with 1.0, 0.6 and 0.2 mg/cm2 iodine areal densities from top to bottom, at diameters of 10, 5, 
and 3 mm from left to right 

2.3 Measurement Repeatability 

Reference detectability values were established by imaging the phantom 10 times at 2 
min intervals using an AEC-selected technique, moving the phantom slightly between 
exposures. The LE AEC technique used a Mo anode and Rh filter, 28 kV and 67 mAs, 
while a Mo anode, Cu filter and 45 kV, 110 mAs were used for the HE images. All 
DE image decomposition was performed using an algorithm integrated in the com-
mercial imaging system [13]. 
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The system MTF, NPS and contrast from the largest disc at each iodine areal den-
sity were measured from DE decomposed images and used to calculate NPWE for 
disc detection. The task function was defined analytically as the 2D Fourier Trans-
form of a disc. The system MTF was measured using the oversampled edge tech-
nique, sampling all four edges on the Sn MTF tool [14]. The 2D MTF was estimated 
using the MTF measurements in the x- and y-directions and calculating the 2D MTF 
radially. This is an approximation to the true 2D MTF, which likely has non-
rotationally symmetric components, for example, due to rectangular detector elements 
and an anti-scatter grid. The 2D NPS was measured using a uniform phantom region, 
512 pixels on a side [8]. The signal difference (termed 'contrast', task, in this work) 
between the average image intensity in a circular region within the largest iodinated 
disc, and the average of 6 regions surrounding the disc in the adjacent phantom back-
ground was measured to scale the task function. 

2.4 Sensitivity 

The tube potential (kV) and current and exposure time (mAs) for LE and HE images 
were each varied from the AEC-selected parameters to test detectability index sensi-
tivity to the imaging technique in the combinations listed in Table 1. 

Table 1. Technique factors used for CEDM disc detectablity sensitivity tests 

Test # 
LE image HE image 

Test # 
LE image HE image 

kV mAs kV mAs kV mAs kV mAs 
1 26 

63 

45 

110 

7 

28 

32 

45 

110 
2 30 8 63 

56 
3 

28 
43 9 32 

4 47 10 90 110 
5 25 42 11 63 

160 
6 31 49 12 90 

3 Results 

Fig. 2 shows the average of parameters used to calculate the reference NPWE. The 
DE system MTF, the contrast between a 1 cm diameter disc and background, and the 
NPS normalized by the mean ROI intensity squared (NNPS) are shown in plots (a) 
through (c), respectively. 

In Fig. 3(a) the NNPS, and task in 3(b), for cases 3 and 5 from Table 1, with lo-
wered tube potentials than those selected by the AEC, are compared to the average 
from the 10 reference repeated AEC-acquired images. The images in Fig. 3(c) to (e) 
illustrate the disc appearance for each case and the corresponding change in the values 
of NPWE. Example DE decomposed disc images are displayed at 100 ADU window 
width and a constant level relative to the image background signal. 
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Fig. 2. Experimental decomposed DE image average of: (a) MTF; (b) disc contrast ( task) vs 
iodine areal density; and (c) NNPS, for 10 AEC image acquisitions (LE: Mo/Rh, 28 kV, 67 
mAs; HE: Mo/Cu, 45 kV, 110 mAs). Selected points are shown with error bars in (a)-(c) 
represent the standard deviation. 

a) b)  

c)  d)  e)  
         LE/HE: 28/45 kV           28/43 kV   25/42 kV 

Fig. 3. (a) NNPS of DE decomposed images with LE and HE image kV of 25/42 kV (∗), 28/43 
kV (), and reference AEC kV (28/45, ), respectively. (b) Difference between contrast in DE 
images with varied kV and the task,10AEC  acquired at the reference settings.. DE images and 

NPWE for 1cm, 1 mg/cm2 iodine disc detection acquired using (c) AEC, 28/45 kV; (d) 28/43 
kV; and (e) 25/42 kV. 

A reference NPWE  value, ref , was established using the AEC-selected imaging 
technique, and making 10 repeated phantom images in a single session on a commer-
cial CEDM system. In Fig. 4, the differences between individual NPWE values esti-
mated from DE decomposed images of 1) 10 successive reference acquisitions, and 2) 
12 instances of weekly phantom imaging over a 3 month period, and ref are shown 
for 1 cm, 1 mg/cm2 iodine disc detection. Cases with non-AEC techniques (Table 1) 
are displayed on the same plot when the differences were more than 3 standard devia-
tions from ref. 

NPWE= 34    28             23  
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Fig. 4. Difference between individual and average reference NPWE (single session, ref,) for 1 
cm diameter, 1 mg/cm2 iodine discs in DE decomposed images acquired using the AEC (LE: 
Mo/Rh, 28 kV, 67 mAs; HE: Mo/Cu, 45 kV, 110 mAs), in one session (), at weekly intervals 
(), and acquired with the given technique factor () varied from the AEC as in Table 1 

4 Discussion 

A single DE decomposed phantom image was used to estimate disc detectability in 
CEDM for routine quality control testing. This work is based on the underlying as-
sumption that the NPWE observer can be predictive of human observer performance. 
While this has been shown to be a reasonable approximation in conventional mam-
mography[15] and DE chest radiography [9], it remains to be tested in CEDM. None-
theless, relative values of NPWE are expected to be useful to monitor CEDM imaging 
performance, and changes from a reference detectability value were studied. 

The standard deviation in ref was about 1.4, and represents the expected variation 
of detectability for a single imaging session for this system. However, some drift in 
the system parameters from day-to-day is anticipated, and can be tolerable, such as 
from variations in the number of image acquisitions made prior to system testing, 
affecting lag and ghosting, and temperatures of the detector and anode at the time of 
imaging. Indeed, these day-to-day variations, as monitored over a 3 month period, 
were observed to result in a greater spread in the differences between ref, and the 
individual measurements than imaging on a single day, as shown in Fig. 4. The 

NPWE weekly estimates fell within a range of ± three standard deviations of ref. As 
such, we set this range as a threshold, beyond which changes in detectability may 
indicate a degradation of system performance. 

Although it is expected to be a relatively rare failure mode [5], kV accuracy is im-
portant in CEDM to ensure good iodine contrast. Two cases, at lines 3 and 5 in Table 
1, where the HE image kV was too low, resulted in relatively large decreases in disc 
detectability as indicated in Fig. 4. The reasons for this drop in detectability are ex-
plored in Fig. 3(a) and (b), where it is revealed that a combination of increased NNPS 
and decreased contrast contribute to the lower detectability. Increased noise is visible 
in the phantom images by a comparison of Fig. 3(c) to (d) or to (e), and a marginally 
lower contrast is noticeable in Fig. 3(d) vs (c). Note that the discs displayed here have 
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detectabilities that are much larger than the anticipated detection threshold 
( NPWE~1.9) [16], and as such the changes in image appearance with kV are subtle. 
While discs with high detectability were convenient for evaluation here, small 
changes in NPWE  are likely to be important for lower contrast and smaller disc  
detection. 

Tube output is another important quality control parameter [5], as increased radia-
tion dose may be undesirable, and a dose that is too low could lower lesion detectabil-
ity. For cases 8 and 9 in Table 1, with half of the HE image AEC-selected exposure, 
disc detectability was lowered appreciably as shown in Fig. 4. Conversely, increasing 
the exposure by a factor of 1.5 for each of the LE and HE images did not result in 
improved disc detectability, suggesting no benefit of increased dose compared to the 
AEC-selected parameters for this detection task. 

It is interesting to note that in the tests of kV accuracy and tube output, detectabil-
ity changes were largest when the HE technique was varied. When the LE image ac-
quisition parameters were varied alone, the detectability did not change appreciably. 
For example, when the exposure was cut in half for the HE image (lines 8 and 9 of 
Table 1) the detectability decreased substantially, but not when the exposure was 
similarly decreased for the LE image alone (line 7 of Table 1). Thus, our results indi-
cate that NPWE  for the given task is more sensitive to technique changes for the  
HE image than for the LE image. This suggests that monitoring these technique  
factor elements for DE CEDM system performance may be more important than for 
conventional mammography systems, which use acquisition techniques similar to LE 
images. 

5 Conclusions 

An efficient and robust method to estimate DE CEDM system performance from a 
single image was demonstrated. The parameters required to estimate NPWE could be 
directly measured from a DE decomposed image of the CEDM phantom. Estimates of 

NPWE from DE decomposed images concurrently test system image quality factors, 
the DE algorithm, and can likely be used to predict human diagnostic performance. 
We have shown that NPWE is sensitive to CEDM image acquisition technique varia-
tions, which could be used to identify deleterious changes in system performance. 

Future work will involve establishing thresholds for the detectability index by cali-
brating the index values to those identified in a human reader study. Also, as more 
clinical experience is gained with this modality, relevant diagnostic morphologies and 
tasks can be identified and added to the testing protocol for a more comprehensive 
CEDM performance evaluation. 
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Abstract. Early diagnosis of breast cancer is highly dependent on quality breast 
imaging and precise image interpretation. The BREAST programme is an inno-
vative strategy for reader performance self-evaluation in breast cancer detec-
tion. Using an online system, detailed feedback on reader/image interpretation 
is given instantly. Our strategy is currently focused on mammograms but has 
the potential to be available for a wide range of medical imaging modalities. 
BREAST also serves a solution to researchers requiring large observer numbers 
by facilitating the involvement of experts wherever they are located. In sum-
mary, BREAST improves the efficacy of mammographic cancer detection 
through a system of reader performance monitoring and enables research stu-
dies with a large amount of robust data.  

Keywords: early diagnosis, mammograms, reading performance, reporting as-
sessment. 

1 Introduction 

Breast cancer is one of the most common types of cancer diagnosed in women. The 
rate of females developing breast cancer in Australia is one in nine [1] and the risk of 
mortality is one in thirty seven [2]. Mammography is a fundamental screening method 
in breast cancer detection, and in Australia breast x-rays are performed on over 
800,000 women each year. Nevertheless, approximately a third of cancers are not 
detected by radiologists when reading screening mammograms, although not all 
missed abnormalities were invisible on the images [3,4,5,6,7,8,9]. The success of 
screening programs depends on the accurate image interpretation of radiologists, im-
plying that if reader efficacy is monitored and individual-specific errors highlighted, 
underperformance can be identified and addressed.  
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Aiming to improve radiologist performance in breast cancer detection, a novel 
web-based solution known as Breast Screen Reader Assessment Strategy (BREAST) 
has been developed by the collaboration of experts in medical imaging at the 
University of Sydney, BreastScreen New South Wales and an information technology 
partner (Ziltron).  BREAST has been implemented in Australia since 2011 with the 
financial support of the Australian Department of Health and Aging. The scheme has 
recently secured additional funding from the National Breast Cancer Foundation for 
further infrastructure development.   

BREAST contains a comprehensive database of mammographic images and read-
ing decisions of radiologists that are widely accessible to researchers interested in 
identifying reasons for errors in mammogram reporting and in creating innovative 
solutions to reduce error rates. In order to acquire the data, our strategy uses an evalu-
ation tool from Ziltron (Ireland) which enables over 300 BreastScreen readers in Aus-
tralia and New Zealand to access test sets at their workstations and provide instant 
feedback.  Performance metrics such as specificity, sensitivity, location sensitivity, 
receiver operating characteristics (ROC) area under the curve (AUC) and Jacknife 
alternate free response operating characteristic (JAFROC) figure of merit (FOM) are 
presented promptly after readers have completed a single test set. Also our system 
enables participants to review their performance as their correct and incorrect deci-
sions are scored on each image. Although participant identity information is not pro-
vided to authors, data distributions of reader performance levels are available for in-
vestigation. 

As well as having clinical benefit, the system supports substantially the research 
activities of our group.  With a large number of radiologists examining high quality 
image data bases, topics such as the impact of disease prevalence, characteristics of 
missed cancers, the importance of breast density on detection, the efficacy of novel 
computer-aided diagnostic programs and the relevance of reader test set methodolo-
gies compared to clinical audit are being investigated [10,11,12,13]. 

2 Methodology 

2.1 Test Sets 

Since being established in 2011, the BREAST has three high quality, clinically-
relevant image test sets known as Hobart, Sydney and Darwin. Each set consists of 60 
cases in two view (craniocaudial and mediolateral oblique) bilateral mammograms 
and each case is classified as normal or malignant. All images were acquired by digi-
tal technology and de-identified after being collected from BreastScreen New South 
Wales Digital Breast Image Library.  

Cases were selected in order to be challenging to participants and thus offer both 
self-assessment as well as training value. Malignant cases were biopsy proven whilst 
negative cases were assessed by the consensus reading of at least two senior radiolo-
gists following the negative screen reports of two clinical radiologists. 
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2.2 Participants 

Participants are Australia BreastScreen readers, who might be radiologists or other 
accredited medical practitioners. BREAST has recently been introduced as a quality 
assurance and training tool to New Zealand’s BreastScreen Aotearoa. The demo-
graphic background of screen readers were collected via an on-line questionnaire 
including details on mammographic reading practice and the training interpretation 
courses that might have been undertaken. 

2.3 Procedure 

The BREAST program has been implemented as a quality assurance and training tool 
throughout BreastScreen Australia. Along with access details to Ziltron’s online sys-
tem, an external hard drive containing images in the test set was distributed to 
BreastScreen in each state to enable screen readers to investigate the images using the 
full resolution available through local Picture Archiving and Communication System 
(PACS) systems.  

For each image in the test set, readers are asked to record whether the case is nor-
mal or abnormal and for each abnormal finding that would warrant further mammo-
graphic assessment, lesion localization is required (Fig. 1). The radiologists need to 
classify according to the Australian version of the Breast Imaging Reporting and Data 
(BIRADS) system’s 5 point confidence rating system: 1-normal, 2-benign, 3-
indeterminate, 4-probally malignant and 5-definitely malignant. Ratings of 3, 4 and 5 
indicate a need for further assessment and constitute a positive result. Ratings of 1 and 
2 indicate that no further assessment is required and a negative result. The participants 
are not informed of the overall number of cancers that are present in the test set. 

 
 

 

Fig. 1. Ziltron’s user interface with a BREAST test-set 
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3 Results 

After 3 years, the BREAST programme is broadly available and well accepted in all 
states across Australia and has been introduced to New Zealand in late 2013. From 
2011 to 2013, over 300 readings have been performed by 180 screen readers, account-
ing for approximately 78% of BreastScreen readers. Australian Capital Territory is 
currently leading in program engagement where 100% of breast radiologists have 
completed at least one BREAST test set. South Australia and Tasmania have 89% and 
83% participation respectively. Two thirds of radiologists in New South Wales have 
undertaken the test sets and in Victoria, 55% of readers have participated. As Queen-
sland has recently implemented the program, the participation rate currently is lower 
than the national average, standing at 25%.  

From the data generated, it is possible to produce useful regional and national per-
formance distributions so that each reader’s performance can be judged against these 
distribution values. Each reader receives a report with details on correct recall cases, 
the percentage of correct negative cases, percentage of correct lesions, ROC AUC and 
JAFROC FOM scores. The Clinical Director of each BreastScreen Service also rece-
ives a quarterly report of participants within their service. The report provides the 
information relating to the performance across all participating screen readers and the 
level of variation across BreastScreen Australia along with potential reference levels 
of good performance (25th, 50th, 75th percentiles) (Fig. 2). Individuals with poor 
performance can be encouraged to undertake another dedicated training set which is 
targeted at mammographic features responsible for individual-specific errors.  

 
 

 

Fig. 2. Example of the data reported for participants and BreastScreen Services 
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According to the radiologists, BREAST has been playing an essential role in im-
proving the readers’ experience in breast cancer detection. In a recent survey, 96% of 
participants indicated that BREAST test sets have been important to their on-going 
professional development, and a further 86% of readers highlighted the value of this 
learning activity as an effective strategy for training them. 

4 Conclusion 

Over the last three years, the introduction of BREAST in Australia has been recog-
nized as an important strategy by scientists, clinicians and BreastScreen managers.  
With the highly encouraging level of reader engagement, it is anticipated that our 
novel approach will assist the optimization of mammographic readings and increase 
the radiologists’ ability to detect breast cancer.  The data has served our research 
community well with a series of publications in the leading radiologic journals.  We 
welcome collaborations to expand the use of the BREAST program. 
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Abstract. Quality control is a key factor in ensuring a high standard
of care in the field of mammography. We have found that abrupt ir-
regularities in image quality from mammography units can arise as the
result of factors ranging from vendor software upgrades, having software
parameters modified during unit maintenance, or even having detectors
replaced. We have developed both a simple weekly quality control test
performed on processed images that can quickly capture these changes in
image quality, as well as a centralized software platform that automates
our test across several mammography centers. Technologists acquire a
phantom exposure and upload it to our regional PACS network. The
images are then automatically downloaded, analysed, and the results
stored by the mammoQC software. These results are instantly available
to technologists via a web dashboard, where reports can be generated au-
tomatically. Our platform currently services over 25 locations in British
Columbia.

Keywords: mammography, quality control, qa, quality assurance,
mammo, web, online, dashboard, automated, image, processing.

1 Introduction

With the advent of digital mammography there have been many efforts to de-
velop quality assurance tests, programs, and policies in order to ensure and
maintain the performance of the equipment in digital mammography systems
- one of the most demanding imaging modalities with the most stringent re-
quirements. Great effort has been made to develop and recommend a uniform
set of quality assurance programs with tests designed to be the same across
multiple technologies, technical designs, and manufacturers. With the great im-
provements made in the technologies and technical designs utilized by modern
digital mammography systems, in addition to the advantages conferred by be-
ing digital, we propose a ”minimalist” approach for a simple and easy ”quality
monitoring” test that can be performed with ease by a technologist, in order
to monitor changes in quality for the acquisition components of a digital mam-
mography system. Due to the complexity of the various components that can
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be changed within a digital system, information regarding such changes made,
for example, by service personnel or by other colleagues, may not necessarily be
communicated properly to the operators or quality assurance staff of an insti-
tution. Even if such information were communicated properly, it can sometimes
be difficult to judge whether or not a full-blown assessment of the changes is
necessary.

2 Design

2.1 Signal Difference to Noise Ratio

Signal difference to noise ratio (SDNR), also sometimes referred to as contrast
to noise ratio, is considered to be the most critical image quality metric in
acquisition if only a single IQ metric is to be monitored [1]. It is defined as:

SDNR =
|Object Signal−Background Signal|

σ(Background)
(1)

For an imaging system with output linear to x-ray exposure the SDNR value
will remain constant both before and after proper conversion to logarithmic
space, which is the data space within which image processing algorithms typically
operate.

SDNR is often measured with a relatively large object providing a sizable
surface area within the image, and a background with similar surface area, so
as to allow for an adequate assessment of the required signals and standard de-
viation for the SDNR calculation. The choice of thickness for the SDNR object
should reflect the minimum subject contrast relevant to the imaging modality.
Currently a 25mm in diameter circular disk made of PMMA with a thickness
of 1mm has been proposed. The 1mm of PMMA represents roughly 5% of the
subject contrast in a typical x-ray spectrum used for imaging 53mm of breast.
Shown in Figure 1 is a photograph of the D-shaped phantom with the circular
disk under compression and ready for exposure.

2.2 SDNR Tracking

Depending on the resolution vs. noise trade off strategy, the image processing al-
gorithm applied to digital mammograms may change. This will impact the SDNR
value calculated from the processed image, relative to the raw, unprocessed im-
age; this can lead the SDNR value to lose its connection to the underlying physics
of the image (keeping in mind that the image processing algorithm is often a
black box). To ensure the quality of a black box is then to at least measure any
change in its output. Our proposal is to calculate the SDNR value using the
processed images, so as to include the effect of any applied image processing.
This is a different approach than that which is employed by most other similar
test proposals.
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Fig. 1. Photograph of the D-shaped phantom (double-stacked) and a circular disk with
a thickness of 1mm

We believe any measurable change to image quality should be reflected in both
the SDNR values and the background signal level. The extent of this impact,
such as the result of a reduction in resolution or increase in electronic noise, has
not yet been fully quantified. However, by monitoring changes in both SDNR
and background signal values, we should be able to determine any trends that
may indicate whether or not an issue has arisen that has a meaningful impact
on the images being produced. From practical experience, the quality assurance
staff in our screening program were once made aware of an image processing
software update that had not been communicated to them solely due to changes
in monitored SDNR values.

2.3 Image Acquisition

Images of the D-shaped phantom with the circular disk should be acquired un-
der the same exposure method used for typical imaging of 53mm of breast. For
instance, if an automatic exposure control (AEC) mode is used for image acqui-
sition, the same AEC mode should be used to acquire a diagnostic image of the
45mm thick D-shaped phantom. In such a case, the x-ray technique factors se-
lected by the AEC should be tracked together with the SDNR values. These are
critical pieces of information, and any significant change in their settings should
warrant further attention. For example, in most cases the kVp and target/filter
combination should remain the same for repeated phantom image acquisitions,
and any change in the mAs value determined by the AEC represents a change
in dose. In the event that the mAs values under the AEC remain unchanged,
but the background signal level drops significantly, there is a likely indication of
a reduction in the detector gain.
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3 mQC Software

3.1 Image Processing

In order to take full advantage of the nature of a digital system, calculating
SDNR values and tracking both SDNR and x-ray techniques should be fully au-
tomated. To do this, we have developed an algorithm that analyzes the D-shaped
phantom image, detects the circular disk, selects an appropriate background
ROI, and finally calculates the an SDNR value without any user intervention
required. This algorithm has been developed in to a DICOM server that can be
configured as a designated DICOM destination for the acquisition workstation,
and has been named ”mQC”. This software can be installed on any Windows-
based computer that has a network connection to the acquisition workstation.
The attending technologist is only required to send the acquired phantom images
to the mQC server, and the rest is taken care of automatically.

mQC automatically calculates SDNR values, and extracts all relevant x-ray
technique factors available in the DICOM header of the phantom image. This
information, along with acquisition date and time, is inserted in to a database
organized by location, and the stations within each location (so that individual
station results may be readily retrieved). As such, a single instance of mQC can
track phantom images from multiple independent stations.

Fig. 2. Screen capture of the mQC software. The processed D-shaped phantom image is
displayed in the upper left corner of the screen, along with the automatically detected
ROIs used for the SDNR calculation. Each row in the table on the right represents
the test results for individual phantom images, including x-ray factors as well as the
calculated SDNR values. The chart at the bottom of the screen shows trends for the
track data.

Figure 2 displays a screen capture of the mQC Server software. Currently
mQC uses the mean value of the first 5 images to establish a baseline SDNR
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value (indicated in blue on the trend graph in figure 2). Subsequent SDNR values
are then compared against this baseline, and plotted on the trend graph. Two
yellow lines on the graph represent the ± 10% difference from baseline and act
as warning margins. Two additional red lines represent the ± 15% margins and
indicate actionable limits. The baseline may be adjusted by the station operator.
In addition to SDNR values, both kVp and mAs values may also be plotted. A
detailed report on the station using windowed data (phantom image results
acquired within a specified time frame) can be generated for printing.

3.2 Web Application

A version of mQC that operates on a ”cloud” infrastructure has also been devel-
oped for institutions that consist of many digital mammography units located at
remote sites, such as the Screening Mammography Program of British Columbia,
Canada. It utilizes an existing DICOM network infrastructure that enables the
phantom images to be transferred from the aforementioned remote sites, to a
central server. In the BC Screening Mammography Program many of the remote
screening sites are operated by regional health authorities. Digital mammograms
can be transferred through each authority via internal networks, and transferred
province-wide through a provincial network (the ”transfer grid”). In a setup such
as this, rather than deploying a separate instance of mQC at each site, technol-
ogists are only required to ”push” the acquired phantom images to the transfer
grid directly from the acquisition unit. A custom watchdog application periodi-
cally polls the transfer grid for new diagnostic phantom images using the DICOM
C-FIND query command, and forwards the images to a central mQC server in-
stance. The results are processed like normal and stored in a database. The final
SDNR results, x-ray technique factors, and a preview image of the phantom
and the selected ROIs are then pushed to a secondary external database. This
database feeds the mQC Dashboard, which is a web interface that our technol-
ogists and physicists can use from any computer with internet access to review
QC test results for any station at any location.

The advantages of using a cloud-based mQC platform are obvious for insti-
tutions with many remote sites of operation. mQC software no longer needs to
be deployed individually to each site, negating several logistical issues (such as
obtaining a workstation to install mQC on, networking issues when connecting
with acquisition workstations, user accounts, remote tech support, etc). Future
software upgrades for bug fixes and feature enhancements can be applied imme-
diately, with all connected sites receiving the benefit of the upgrade simultane-
ously, as opposed to slowly rolling out the update to individual sites. Collection
and review of multiple sites is also made significantly easier and more efficient,
as the reviewing agency has immediate access to the most recent test results via
the web interface. Results no longer need to be collated at each respected site
and forwarded to the reviewing agency at regular intervals.
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Fig. 3. mQC architectural diagram. Phantom images are pushed to the transfer grid
and pulled down and processed by the mQC server. The results are then pushed out
through the PHSA firewall to a public webserver which hosts the mQC dashboard,
allowing the results to be reviewed online immediately.

3.3 DICOM Attribute Collection

Due to a number of incidents involving both detector changes and software
upgrades in various units utilizing the platform, the detector description, id,
calibration date, and current software version are tracked in addition to x-ray
technique factors. We have found that a change in software or detector is behind
the majority of test result discontinuities and it is helpful to be able to diagnose
this immediately via the mQC dashboard.

Currently only a preview of the processed image is stored in the database,
however in the future we may extend mQC to also store a copy of the raw pixel
data that the test was performed on, in order to allow us to retroactively perform
analyses. A large collection of such images is already being manually curated in
order to perform regression testing when software patches are being developed.

4 Results

4.1 Deployment Procedure

In its original implementation, the mQC software was developed as a single
stand-alone application that was installed on individual workstations at multi-
ple mammography centres. However issues with administrative permissions on
the workstations, firewall policies, and interference with retrieving the locally-
collected test results made it clear that this approach would require a fair bit
of labour to scale. The greatest difficulty came with attempting to upgrade the
installed software, as the lack of a remote upgrade capability often required one
of the researchers to travel to each site and perform the upgrade manually.

In response, the current centralized system was developed. While more com-
plicated (now consisting of the PHSA Transfer Grid, Grid Watchdog, mQC Pro-
cessing Server, and web dashboard) almost all of the aforementioned issues have
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been alleviated. All sites are now serviced by a central processing server, negat-
ing the issues of distributing software upgrades and collection. The transfer grid
was a pre-existing network solution, alleviating firewall and privacy issues.

When a new site is to be added to the mQC platform, they are only required
to push a phantom exposure to the transfer grid with the string ”SDNR” in the
patient name field. mQC will automatically pick up the image, process it, and
create a new section on the website for the unit. Units are organized by their
site location automatically. New units can be added to existing sites using the
same process.

4.2 Issues

The most immediate issue with the current design relates to using the location
and station identifiers stored in the DICOM header of each test image for catego-
rization of results. Often, after maintenance is performed on a unit, one or both
of these attributes has been modified. Because categorization of results utilizes
a string comparison, this will result in misplacing the new results from the unit
(usually by creating a new unit entry). Manual amalgamation of results is then
required.

4.3 Performance

mQC has been servicing public digital mammography screening sites across the
province of British Columbia for over 2 years. There are currently 27 sites and
34 units which have collected had 1594 test results analyzed. Some sites have
multiple units, and these sites in particular have voiced a noticeable improvement
in workflow (though we have not performed a rigorous study of this).

During its tenure mQC has identified several QA issues. In each of these cases
either a detector change or a unit software upgrade was responsible. On more
than one occasion routine unit maintenance by the vendor included a software
upgrade which altered the processed image output, but QA staff were not made
aware of the adjustments until after mQC detected the change and prompted an
investigation.

5 Future Development

mQC provides an efficient platform for collecting, organizing, storing, and re-
viewing QA test data. We hope to extend the platform using a software plugin
architecture, so that arbitrary tests may utilized the platform ad-hoc.

For example, the uniformity test is performed as a routine quality control
check to ensure relatively even output of radiation across the field of view of
the detector. We plan to implement automated versions of this test as specified
by various vendors in order to determine which method is most effective in an
automated system, alongside the existing SDNR implementation.
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Fig. 4. A graph of consecutive results generated by the mQC dashboard for technol-
ogists. The jump in SDNR values starting in the center was due to a detector change
in the unit, which was caught by mQC.

6 Conclusions

The ”Double D” phantom with a circular disk, and its companion mQC software,
is intended to serve as a simple and easy test suite to monitor changes in digital
mammography systems that impact image quality. It is not intended as a com-
prehensive tool that will check or benchmark all aspects of digital image quality.
Rather, it simply monitors several critical factors to ensure consistency in the
operation of the digital system. Various reviews and calls to action can be au-
tomatically triggered when test results surpass the user-defined warning/error
margins. Our platform provides an immediate feedback mechanism for major
changes in image quality, whilst requiring a minimum of operator effort. The
mQC software provides data analysis, data tracking and database management,
charting, and automatic report generation, and we hope to extend the platform
to include further QA tests.
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Abstract. Quality control (QC) procedures for digital breast tomosynthesis 
(DBT) systems are a crucial part of the acceptance of a new modality. In con-
trast to the situation in the US, the European approach is to provide a device in-
dependent protocol with limiting values that should be applied to all systems. A 
European QC protocol that deals with this challenge is being developed and is 
currently work-in-progress. In this paper four specific QC tests for DBT, which 
have reached an (almost) final stage, are presented: reproducibility, system  
projection MTF, z-resolution and missed tissue at the top and bottom of the re-
constructed volume. The proposed tests have been evaluated on several DBT 
systems. The encouraging results show that these tests will form an appropriate 
and necessary part of QC procedures for DBT.  

Keywords: Quality control, tomosynthesis. 

1 Introduction 

Digital breast tomosynthesis (DBT) systems are currently available on the market and 
their use is being considered for breast cancer screening. Therefore guidance on quali-
ty control (QC) measurements for DBT systems is required. In contrast to the situa-
tion in the US, the European approach is to provide a device independent protocol 
with limiting values that should be applied to all systems. In Europe QC using this 
approach on full field digital mammography (FFDM) systems is performed according 
to the fourth edition of the European Guidelines for breast cancer screening and diag-
nosis [1] and its supplement [2]. These documents are the starting point in the devel-
opment of a QC protocol for breast tomosynthesis systems [3]. The protocol remains 
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work-in-progress. However dosimetry for DBT systems has already been established 
[4] and the design and implementation of some other tests have are close to being 
finalized. In this paper four newly developed QC tests are presented.   

2 Methods 

2.1 Reproducibility 

DBT systems need to be sufficiently stable to provide high quality images and there-
fore the testing of reproducibility is a key aspect of QC procedures. The following 
reproducibility measurement is proposed: a 45 mm thick homogeneous polymethyl 
methacrylate (PMMA) phantom covering the whole image receptor is positioned on 
the bucky and 5 tomosynthesis images are acquired in the clinically used automatic 
exposure control (AEC) mode. The exposure factors and the angle of the projections 
are recorded from the DICOM header. From each exposure, the mean pixel value 
(MPV) and the standard deviation (SD), is recorded in the reference region of interest 
(ROI) of the first projection image. This reference ROI is defined as a square of 5x5 
mm 6 cm from chest wall side and centered laterally in the image. From these ROIs 
the average pixel value and standard deviation (SD) are measured and the signal-to-
noise ratio (SNR) calculated by dividing the pixel value by the SD. Projection images 
are low dose, therefore a higher precision might be obtained by summing the pixel 
values in the reference ROI for all projections and calculating SD over all projections 
as the square root of the summed variances to obtain the SNR over all projection  
images. For both methods the variance in SNR for the acquired DBT images is  
calculated. 

2.2 System Projection MTF 

In some DBT systems the X-ray tube moves during the exposure of a projection im-
age. This implies that the image is blurred in the direction of movement. This QC test 
quantifies this blur by measuring the MTF in projection images. 

For the determination of the amount of blurring it is important to use clinically re-
levant exposure factors. Therefore the exposure factors for a 45 mm thick homogene-
ous block of PMMA in fully automatic mode are used to measure system projection 
MTF. An aluminium attenuator of 2 mm thickness is positioned near the X-ray tube 
and the MTF test object is placed at the bucky at a slight angle to the columns and 
rows of the detector. An exposure in manual mode is made mimicking the exposure of 
the PMMA block. The MTF is calculated, as described in the 4th edition of the Euro-
pean Guidelines [1] for the zero degree projection image. The system projection 
MTFs for two DBT systems have been measured: one with step-and-shoot approach 
and one with continuous movement of the X-ray tube. 
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2.3 z-Resolution 

The z-resolution is related to the ability to remove overlying structures and the 
amount of artefact and noise due to out-of-focus structures in the image. The z-
resolution of reconstructed images is determined by the angular range at which the 
projection images are made. This implies that the z-resolution of images for the cur-
rently available DBT systems will differ. For the z-resolution measurement it is pro-
posed to image a 60 mm thick PMMA phantom containing a 1.0 mm diameter alumi-
nium sphere in the middle of the phantom in the clinically used AEC mode. On the 
resulting reconstructed tomosynthesis image the Slice Sensitivity Profile (SSP) along 
the z-direction is measured and the Full Width Half Maximum (FWHM) is deter-
mined [3]. This FWHM is taken as a measure of z-resolution. Results are given below 
for two types of  DBT systems: one with a small angular range and one with a large 
angular range. 

2.4 Missed Tissue at the Top and Bottom of the Reconstructed Tomosynthesis 
Image 

It is important that the reconstructed tomosynthesis image extends from the bucky 
surface to the compression paddle to avoid missing any breast tissue. To assess poten-
tial missed tissue several small pins are taped underneath the compression paddle and 
on the bucky. One pin is positioned near each corner of the expected reconstructed 
image using the indications on the bucky and compression paddle and one pin is posi-
tioned at the centre of the image on the bucky and underneath the compression pad-
dle. By positioning pins at several places, missed tissue is evaluated for the whole top 
and bottom of the reconstructed image. A homogeneous PMMA phantom (45 mm 
thick) is positioned on the bucky. The phantom is subsequently imaged in fully auto-
matic mode. In the resulting reconstructed tomosynthesis image, it is determined 
whether the pins are in focus in any of the focal planes. 

3 Results 

3.1 Reproducibility 

Typical reproducibility data from a single tomosynthesis acquisition are shown in 
table 1. The first exposure listed is the pre-exposure in zero degree position; the 
second exposure corresponds to projection image 1 and so on.  Either projection 
image 1, or all projections, are used for the calculations. It is noted from the DICOM 
header that the angles of the projection images range from -25 to + 20 degrees. The 
angle is not symmetrical with respect to the zero degree position, which was expected 
for this system. Note also the trend in pixel value in the reference ROI on the projec-
tion images due to the variation of the angle of incidence of the X-rays. 
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Table 1. Data from the DICOM header and average pixel value in the reference ROI of the 
projection images of one of the reproducibility measurement images 

Exposure 
 

Angle 
(°) 

mAs 
 

Average 
Pixelvalue

ROI 
Exposure

 
Angle 

(°) 
mAs 

 

Average 
Pixelvalue 

ROI 
1 0.00 5.00 229.5 14 -3.00 5.38 193.0 
2 -25.02 5.38 151.5 15 -1.07 5.38 193.4 
3 -24.06 5.38 157.6 16 0.84 5.38 193.6 
4 -22.12 5.38 163.0 17 2.70 5.38 193.4 
5 -20.20 5.38 168.3 18 4.63 5.38 192.5 
6 -18.28 5.38 173.0 19 6.54 5.38 191.4 
7 -16.39 5.38 177.3 20 8.48 5.38 189.8 
8 -14.48 5.38 180.6 21 10.40 5.38 188.1 
9 -12.56 5.38 183.9 22 12.29 5.38 185.4 
10 -10.64 5.38 186.7 23 14.23 5.38 183.0 
11 -8.70 5.38 188.8 24 16.16 5.38 180.0 
12 -6.82 5.38 190.6 25 18.08 5.38 176.8 
13 -4.89 5.38 192.3 26 19.98 5.38 173.1 

 
In Table 2 the results for the reproducibility measurement are given using projection 
image 1 and using the summed projection images. The variation of SNR between the 
images five tomosynthesis acquisitions is lower for the summed projections (0.4%) 
than for measurements made using only the first projection image (3.7%). 

Table 2. Reproducibility measurements using projection image 1 and using the combined 
projection images. Exposure factors: W/Rh 28 kV, 5.38 mAs per projection. 

DBT image SNR projection 1 SNR summed projections 

1 42.0 145.0 
2 40.7 144.7 
3 41.5 145.3 
4 41.9 145.2 
5 42.3 145.1 
   
Average 41.7 145.1 
Variation (%) 3.7 0.4 

3.2 System Projection MTF 

In figure 1 the results of the system projection MTF are shown. For the system using a 
step-and-shoot approach, it is observed that the MTFs in the x- and y-directions are 
almost equal. For the system using a continuous tube movement the MTF in direction 
of the tube movement (y-direction) is lower than in x-direction. This result is similar 
to that found previously by Marshall et al [5].  
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Fig. 1. MTF in x- and y-direction for a DBT system using a step-and-shoot approach (left) and 
a DBT system using a continuous tube movement (right) 

3.3 Z-Resolution 

In figure 2 the results of the z-resolution measurement are given for two different 
brands of DBT system. The FWHM for system 1 (small angular range) is 11.2 mm, 
for system 2 (large angular range) the FWHM is 5.5 mm.  
 

 

Fig. 2. Slice sensitivity profiles for two different types of DBT systems, system 1: FWHM = 
11.2 mm, system 2: FWHM = 5.5 mm 

3.4 Missed Tissue at the Top and Bottom of the Reconstructed Tomosynthesis 
Image  

Figure 3 shows that the images of the object (small pin) in the top and bottom focal 
planes of the reconstructed tomosynthesis image are in focus. In this example the 
reconstructed tomosynthesis image therefore extends from bucky to the compression 
paddle and all tissue in z-direction is included in the reconstructed image. 
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Fig. 3. View of an object (a small pin) taped on the bucky (left) and directly underneath the 
compression paddle (right) in respectively the top and bottom focal plane 

4 Discussion 

It is proposed to perform reproducibility measurements in projection images, due to 
the fact that advanced image reconstruction methods may influence the pixel values 
and SD in the reconstructed focal planes to such an extent that potential problems of 
reproducibility might not be detected. Reproducibility measured in the first projection 
image showed large variations in SNR due to the low detector air kerma per projec-
tion. Summing all projection images increases the accuracy of the measurement. It is 
suggested that the same limiting values as used in FFDM are applied: the variation in 
tube-time product for 5 subsequent images should be smaller than 5% and the varia-
tion in SNR in the reference ROI should be less than 10%. It can be seen that the  
system for which this measurement was performed did not have a symmetrical distri-
bution of the projection images around the zero degree position, which was as ex-
pected according to the specifications. The effect of this asymmetrical distribution of 
projection images on the quality of the reconstructed image is not known. At this 
moment most, but not all, DBT systems give access to unprocessed projection images. 
For the evaluation of reproducibility it is essential that access to this type of image is 
obtained for all brands of system. 

It is clear from the system projection MTF measurement that resolution in the tube 
movement direction will decrease for DBT systems with continuous tube movement. 
This result is in line with the study by Marshall and Bosmans [5]. It is likely that this 
will influence visibility of objects, however further study is required to investigate 
this more thoroughly. The MTF in both x- and y direction could be checked regularly 
to detect potential changes in the resolution of projection images over time. For this 
purpose the accuracy of the measurement technique proposed should be sufficient. 
However, due to the fact that projection images are low dose, it might be considered 
to use a 1 mm thick attenuator to increase the number of X-ray quanta reaching the 
image receptor which would reduce the noise on the measurement. The amount of 
blurring due to the movement of the X-ray tube depends on the distance from the 
point of interest in the imaged volume to the rotational axis of the tube and the  
distance from the detector. Therefore at acceptance or in type tests system projection 
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MTF could be also measured a number of positions above the bucky table (e.g. at 40 
and 70 mm) to evaluate blurring at different heights in the reconstructed volume. For 
the evaluation of system projection MTF access is given to unprocessed projection 
images is required.  

The z-resolution of DBT systems is related to the angular range over which the 
projections are acquired. The z-resolution influences the ability of the system to re-
move/minimize the influence of noise due to overlying tissue in a focal plane and the 
loss of signal of an object due to the distribution of the signal over one or more adja-
cent focal planes. This will influence the visibility of objects clinically, but further 
study is required to estimate the impact on tumor detection. Due to differences in the 
angular range of the current DBT systems, large differences in z-resolution are seen. 
The measured FWHM for system 1 and 2 are respectively 11.2 and 5.5 mm, differing 
by a factor of 2. Therefore we propose to quantify z-resolution in a QC test, even if 
the clinically required z-resolution in not (yet) known. Measured FWHM values could 
be used as a reference for subsequent QC tests. However, a disadvantage of this 
measure is the dependence of the FWHM on the attenuation and size of the imaged 
object. Therefore the object used for the measurement should always be specified 
when FWHM values are given. For the measurements in this paper the FWHM of an 
aluminium sphere with diameter of 1 mm has been chosen. This choice of material 
and size is a result of availability of materials and experience with measurements on 
several brands of DBT systems [6]. The z-resolution might also differ over the recon-
structed volume of a DBT system, due e.g. to the smaller number of projection images 
which are used in the reconstruction of the top lateral edges of the image. Therefore 
the z-resolution measurement could be performed at different positions in the recon-
structed volume in acceptance tests or typetests. It is also important to note that the 
measured z-resolution is larger than the spacing between focal planes in the recon-
structed image (typically 1 mm).  

In FFDM missed tissue is evaluated by measuring the distance between bucky edge 
and the edge of the image at chest wall side. This small part of the breast will not be 
imaged. In DBT, an additional measurement to evaluate missed tissue at the top and 
bottom of the reconstructed image seems reasonable. The proposed test checks 
whether all breast tissue is visualized in the z-direction. In the results obtained it is 
observed that all pins are in focus on both top and bottom focal plane of the image. 
This means that for the system under evaluation, the reconstructed image in z-
direction just extends from the bucky to the compression paddle. 

At this moment limiting values are difficult to set. For some measurements com-
mon sense is sufficient to set limits (e.g. no missing tissue between the bucky and 
compression paddle), for other tests results from clinical trials are required (e.g. what 
z-resolution is required for DBT systems, or which decrease of the MTF in the direc-
tion of tube movement could be allowed). Due to this lack of limiting values quality 
control at this moment assures stability of a system and does not have the ability to set 
major pass/fail criteria. This is a topic for further study. 

Beside this a test to quantify the image quality of the reconstructed image remains 
a work-in-progress. Existing methods of measurement and accompanying (non anth-
ropomorphic) phantoms cannot be used in DBT, because they do not take into ac-
count the effect of removing overlying breast tissue.  
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5 Conclusions 

Results are encouraging and show that the tests presented will form an appropriate 
and necessary part of QC procedures. For some of the proposed tests access to unpro-
cessed projection images is required, at this moment however this type of images 
cannot be obtained on all brands of system. Therefore access to such is requested in 
our draft QC protocol for DBT systems [3].  

Quality control procedures for DBT systems are still in development and the  
development of a test to quantify the reconstructed image quality and the setting of 
limiting values are challenges. A suitable image quality test is necessary for a QC 
protocol which aims at giving quantitative pass/fail criteria for DBT systems. The QC 
tests outlined here can assure system stability, but cannot separate good from subop-
timal systems. Our future work is therefore focused on the development of an overall 
image quality test and the setting of limiting values. 
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Abstract. The visualization of calcifications could be obscured in 
mammograms because of overlapping of tissue structures. Dual-energy digital 
mammography (DEDM) can generate tissue-subtracted image for improving 
the detectability of breast calcifications, but the mass information is missing. 
This paper proposes a conventional mammographic image generation method 
with increased calcification sensitivity based on DEDM. Firstly, a conventional 
mammographic image is generated with low-energy and high-energy images 
based on multi-scale decomposition and reconstruction. Secondly, the tissue-
subtracted “calcification image” is generated using a nonlinear inverse mapping 
function with calcification pixels marked. Finally, the density values of the 
marked calcification pixels in the reconstructed mammographic image are 
increased for better visualization. Preliminary results show that the proposed 
DEDM method can generate both calcification and conventional mammogram-
like images and the calcification sensitivity is increased. The CNR of 
calcifications of 50% glandular ratio has been increased from 2.75 to 9.32. 

Keywords: digital mammography, dual-energy, multi-scale, calcification 
sensitivity. 

1 Introduction 

Mammography is the gold standard for breast cancer screening. Calcifications are one 
of the earliest and main indicators of breast cancer. However, the visualization of 
calcifications could be obscured in mammograms because of overlapping of tissue 
structures. Dual-energy digital mammography (DEDM) is a promising technique to 
improve the detectability of calcifications since it can be used to suppress the contrast 
between adipose and glandular tissues of the breast. In DEDM, a pair of digital 
mammographic images, with low-energy (LE) and high-energy (HE), are acquired 
and a tissue-subtracted “calcification image” is generated using appropriate mathe-
matical manipulation [1, 2]. However, the masses, if present, are missing in tissue-
subtracted calcification image. The patient may need an extra conventional mammo-
graphy which is unacceptable. 
                                                           
* Corresponding author. 
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The purpose of this work is to develop a new technique based on DEDM. In this 
investigation, LE and HE images are combined to generate conventional mammo-
graphic image using multi-scale image decomposition and reconstruction method. At 
the same time, the tissue-subtracted calcification image is generated by the scatter 
corrected LE and HE images.  

The calcifications are more apparent in the “calcification image”. However, the ra-
diologists don’t get used to reading this image because there is no tissue structure for 
reference [3]. So the calcifications are detected in the calcification image, and the 
calcification information is overlaid onto the generated conventional gray scale 
mammogram for radiologist reviewing. This technique is presented as a practical way 
to use the increased calcification sensitivity of DEDM. We present the performance of 
this technique by breast phantom studies implemented on a commercial full-field 
digital mammography system. 

2 Method 

In DEDM, if HE and LE spectra are known, two unknowns (glandular ratio g and 
calcification thickness tc of the breast) can be solved pixel by pixel. If the spectrum is 
known, mammogram of any kV can be retrieved. In practice, it is hard to get the exact 
distribution of spectra, so we use inverse-map technique [4] to calculate tc and g and 
multi-scale technique [5] to reconstruct conventional mammographic image. 

2.1 Conventional Mammographic Image Generation 

Conventional mammographic image generation has four steps based on multi-scale 
decomposition and reconstruction frame.  

Data Preprocessing. A breast phantoms with 50% glandular ratio was exposed at 
fixed mAs and multi kVs, from the kV of LE to kV of HE with 2kV interval. The 
average gray value of each image was measured and the ratio coefficients between 
these gray values were calculated. And then, if we would like to generate a conven-
tional mammographic image of a certain kV, we should first do LE and HE images 
multiplied by the corresponding coefficients. 

Multi-scale Decomposition. After the preprocessing procedure, LE and HE images 
are decomposed from coarseness to detail as the scale of filter decreased. As illu-
strated in Fig.1, F0 is the input image data (LE or HE image), Gk ( k = 0,1, 2,.., N - 1 ) 
is the 3×3 Gaussian filter kernel, and * is the convolution operator. In each step, the 
previous high-pass residual image Dk-1 is smoothed by the filter kernel Gk [6]. N is the 
decomposition level and we adopted N=5 in this experiment. 

Component Reconstruction. For LE and HE images, we have FL
1, F

L
2, …, FL

5, D
L

4 
and FH

1, F
H

2, …, FH
5, D

H
4. Let FR

k ( k = 1, 2,.., 5 ) and DR
4 be the corresponding re-

constructed components. For low frequency components ( k = 1, 2): 
 



462 X. Chen and X. Mou 

 

 

Fig. 1. Decomposition Architecture 
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For high frequency components, FR
k ( k = 3, 4, 5 ) and DR

4 were reconstructed using a 
fusion strategy based on similarity measure [7]. M (M= F3, 4, 5 or D4 ) level was 
adopted as an example to illustrate the reconstruction process. FM(x, y) is the compo-
nent value of the pixel (x, y), the local energy EM(x, y) of 3×3 neighborhood centered 
on the pixel is: 
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λ is defined as the similarity threshold and is 0.75 in this investigation. If CM(x, y) > 
λ, the weights are: 
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The reconstructed component FR
M is: 

 ( ) ( ) ( ) ( ) ( ), , , , ,R L L H H
M M M M MF x y W x y F x y W x y F x y= +  (5) 

If CM(x, y) ≤ λ, the reconstructed component FR
M is: 

 
( ) ( ) ( ){ }, max , , ,R L H

M M MF x y F x y F x y=
 (6) 
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Conventional Mammographic Image Generation. The conventional mammograph-
ic image can be generated by the reconstructed components. The high frequency 
components were suppressed in order to reduce the quantum noise. The generation 
formulation is: 

 
4

0 5 4
1

0.4 0.1R R R R
k

k

F F F D
=

= + +  (7) 

2.2 Optimized Calcification Image Generation 

A nonlinear inverse mapping technique was used to generate DE calcification images 
from separately acquired LE and HE images. An inverse mapping function could 
adequately model the calcification thickness (tc) as a function of the LE and HE log-
signal (fl, fh): 

 
2 2 3 2 2 3
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2 2

0 1 2 3 4 5

l h l l h h l l h l h h
c

l h l l h h

a a f a f a f a f f a f a f a f f a f f a f
t

b b f b f b f b f f b f

+ + + + + + + + +
=

+ + + + +
 (8) 

where fj=ln(Irj/Ij) (j=l,h). This equation is applied pixel-by-pixel to the image. Irj is the 
reference signal. Ij is the transmitted fluence of the phantom. An algorithmic scatter 
correction method [8] was applied to in order to get an optimized DE calcification 
image. So there is no scatter fraction in Ij. The coefficients of the inverse-map func-
tion, ak (k=0,…,9) and bk (k=0,…,5) , were determined by a least-squares fit of the 
calibration data [4]. 

2.3 Calcification Sensitivity Enhancement 

Noise reduction techniques have been investigated to counteract the noise increase in 
DE calcification signal. In this study, a median filter (kernel = 3) was applied to the 
DE calcification image, and then a histogram of the smoothed image was made.  
The pixels, which had density values at highest 0.2% of the image, as determined in 
the histogram analysis were flagged. This essentially created a binary image, with 
0.2% of the pixels labeled 1. Since the conventional mammographic image and calci-
fication image were both generated by LE and HE images, they are exactly registered. 
In the conventional mammographic image, the pixels, whose corresponding pixels in 
the calcification image were labeled 1, were determined as calcification pixels. The 
density values of the marked calcification pixels in the generated conventional mam-
mographic image were increased by 10%. 

3 Results 

The full-field digital mammography systems used in this study was GE Senographe 
Essential system. 28 kV/50 mAs and 48 kV /12.5 mAs were used for DEDM with Rh 
target and Rh filter. A breast phantom and a calcification phantom were used as the 
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conventional  mammographic images before and after calcification enhanced was 
calculated [9]: 

 c BS S
CNR A

μ

σ
−

= ×  (9) 

where Sμc is the mean signal for each calcification which was determined by 
averaging the calcification signal over the pixels corresponding to that calcification 
size. SB and σ  are the mean and variance of the background  signal respectively of a 
31 × 31 pixel region in the image adjacent to each of the calcification clusters. A is 
the area of calcification in the image. The average CNR of calcifications of 50% 
glandular ratio is 2.75 in the generated conventional  mammographic image(Fig.3 
(a)). If we use the information from DE calcification image and increase the density 
values of calcification pixels by 10%, the average CNR can be increased to 9.32 
(Fig.3 (e)). 

The results listed in this abstract are the preliminary results of the proposed 
method. This method takes the advantage of DEDM that calcifications can be 
depicted in a largely uniform background. Therefore, both calcification image and 
calcification enhanced conventional mammogram-like image can be generated; the 
patient will not need more exposure to get the conventional mammogram in DEDM. 
However, as indicated in Fig3.(d) and (e), there are some false calcification signals 
because we used a simple calcification determination algoritnm while we believe it 
can be improved in future. On the other hand, the main advantage of DEDM 
techinique lies in its ability to remove tissue structures and to show calcifications in a 
largely uniform background, so breast phantom with tissue structures is a better 
choise for validation experiment. In the present experiment, we just used a uniform 
step breast phantom. Nevertheless, preliminary results has demonstrated the 
feasibility of this method. 

4 Conclusions 

A conventional mammographic image generation method from DEDM is proposed 
based on a multi-scale decomposition and reconstruction framework. The calcifica-
tion pixels were detected in DE calcification image, and the density values of the 
corresponding pixels in the reconstructed conventional mammogram-like image were 
increased. Preliminary results demonstrated that the proposed DEDM method can 
generate both calcification and conventional mammogram-like images, and calcifica-
tion sensitivity was increased. In the future, we will validate the proposed method by 
tissue structured phantoms and improve calcification detection algorithm. 
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Abstract. We have proposed a new mammography system using a cadmium 
telluride photon counting detector to reduce exposure dose. In conjunction with 
this, we propose a new high x-ray energy spectrum with tungsten/barium 
(W/Ba) as a target/filter. In this study, the usefulness of the W/Ba spectrum, in 
terms of image quality and dose distribution is evaluated through Monte Carlo 
simulation. The contrast-to-noise ratio and dose distribution are measured using 
polymethyl methacrylate phantoms of 2, 4, and 7 cm thickness. In each case, 
the result obtained using the W/Ba spectrum is better than that from conven-
tional mammographic spectra. The results of this study indicate that, by using a 
higher energy x-ray than in conventional mammography, it is possible to obtain 
significant exposure dose reduction without loss of image quality. 

Keywords: photon counting, mammography, dose reduction, Monte Carlo  
simulation. 

1 Introduction 

Recently digital mammography with photon counting technology has applied  
to silicon detector [1]. To reduce exposure dose, we have proposed a new mammo-
graphy system using a cadmium telluride (CdTe) photon counting detector.  
Because CdTe has high absorption efficiency over a wide energy range and  
electrical noise is not mixed in the proposed photon counting technique, we can  
utilize energy spectra that differ from the energy band used in conventional mammo-
graphy, allowing for a significant exposure dose reduction without loss of image  
quality.  

The purpose of this study is to investigate the effectiveness of high x-ray energy 
spectrum. Using Monte Carlo simulation, we evaluated the image quality and expo-
sure dose. 
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2 Materials and Method 

2.1 Monte Carlo Simulation Geometry 

All simulations were performed using the Electron Gamma Shower ver.5  
(EGS5) Monte Carlo code. Fig.1.(a) shows the simulation geometry used; the  
source-to-image-distance was 66 cm and the exposure area was 12 × 16 cm2.  
Polymethyl methacrylate (PMMA) phantoms of differing thickness (2, 4, and 7 cm) 
were compressed by a 0.25 cm compression plate (also composed of PMMA) and 
placed directly onto 0.1 cm-thick detector of pixel size 0.1 × 0.1 mm2. All scattered 
radiations were rejected, and neither electrical nor system noise were taken into  
account.  

Table 1 lists the simulation conditions for each PMMA phantom thickness. In or-
der to clearly compare our new system with a conventional mammography system, 
each condition of spectrum and detector was different.  

To test the new system, the detector was simulated as a type of photon counting de-
tector. It was composed of CdTe and can set several bins. By setting the threshold to 
25 keV in the lowest bin, it is possible to discard the photons of 25 keV or less with 
the electrical noise. Fig.1.(b) shows the spectral distribution of high energy x-rays 
used in the simulation, which were produced by an x-ray unit KXO-50G/DRX-
2924HD (TOSHIBA, Tochigi, Japan) with the tube voltage set to 40 kV and an imag-
ing plate (BaFX2+: Eu, X= Cl, Br, I) (FUJIFILM, Tokyo, Japan) added as a Ba filter. 

The standard mammography detector used for comparison was of a selenium-based 
flat panel detector. It measured the amount of absorbed energy in each pixel. The 
spectra used were based on published data [2] for a Molybdenum anode filtered with 
Molybdenum (30 µm) and Rhodium (25 µm) with the tube voltages set to 26, 28, and 
32 kV. These spectra are also represented by Fig.1.(b). 

Table 1. Simulation conditions 

PMMA 
thickness 

Target / filter Tube voltage Detector Pixel value 

20mm 
Mo/Mo 26kV a-Se 1mm Absorbed energy 
W/Ba 40kV CdTe 1mm Number of count 

40mm 
Mo/Mo 28kV a-Se 1mm Absorbed energy 
W/Ba 40kV CdTe 1mm Number of count 

70mm 
Mo/Rh 32kV a-Se 1mm Absorbed energy 
W/Ba 40kV CdTe 1mm Number of count 

 
 
To match the display characteristics of an analog system using the x-ray film, the 

pixel values were obtained by using a logarithmic transform. 
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ones in the 4 cm and 7 cm PMMA; that is, the contrasts in Mo/Mo 26kV are extraor-
dinarily higher than those in W/Ba 40kV. Based on these results, to get the effective-
ness of high energy x-ray is better to use a thicker object. 

In Fig. 7, in order to obtain an equivalent CNR at 2mm-thick step in the 4 cm 
PMMA, it is able to about 30 % for exposure dose reduction. It is seen from Fig. 8 
that a dose reduction of about 50 % is possible at the 2 mm-thick step of the 7 cm 
PMMA. 

This study did not take electrical noise in the conventional system into account, nor 
did it employ an energy weighting process to take advantage of energy discrimina-
tion; improved future results should be obtained by doing both of these. It will also be 
necessary to determine a more optimized spectrum in future study. 

5 Conclusion 

We investigated the effectiveness of a new imaging system using the high energy 
W/Ba spectrum through Monte Carlo simulation. By using the high energy spectrum, 
it was possible to effectively reduce the dose at the breast surface significantly, by 
obtaining an equivalent CNR at lower doses than under conventional conditions. This 
effect is especially useful with thick subjects. By adopting the spectral conditions 
examined in this study, we can expect significant exposure dose reduction without 
loss of image quality. 
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Abstract. We discuss a new mammography system using a cadmium telluride 
(CdTe) photon-counting detector for exposure dose reduction. We created a 
prototype system that uses a CdTe detector and an automatic moving stage. For 
a variety of conditions, we measured the image properties and evaluated the 
image quality produced by reconstructing scanning images from several 
thousand frame data elements obtained by shift-and-add method, from which it 
was demonstrated that the basic detector performance in terms of output 
linearity with respect to X-ray intensity was good. The spatial resolution under 
various conditions and the linearity of the relationship between the thickness of 
the acrylic step and reconstructed scanning images were also measured. Finally, 
we evaluated the image quality obtained by scanning a breast phantom. Our 
results show that the developed prototype system can improve image quality by 
optimizing the balance between the shifting-and-adding operation and the 
output of the X-ray tube. 

Keywords: photon counting, digital mammography, dose reduction. 

1 Introduction 

In the field of X-ray imaging, it is important to attain both high quality of images and 
low exposure dose. In this paper, we discuss the development of a new 
mammography system that uses a cadmium telluride (CdTe) photon-counting detector 
in order to reduce exposure dose without loss of image quality. Because CdTe has a 
high absorption efficiency over a wide energy range and electrical noise is not mixed 
in the proposed photon-counting technique, we can utilize a new energy spectrum that 
differs from the energy band used in conventional mammography.  

In this study, we created a prototype system consisting of a CdTe detector and an 
automatic movement stage, and we measured and evaluated the image properties and 
image quality produced by this system. 
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Table 1. Specifications of the CdTe detector 

Specification Realized Value 
Active area 

Modules 
Size of module 

Array configuration 
Pixel size 

Pixel depth 
Matrix size 
Frame rate 
Material 

8 × 144 mm2 
18 

8 × 8 mm2 
40 × 40 

200 × 200 μm2 

16 bits 
50 × 1573 

300 fps (×4 Bin) 
CdTe 1mm thick 

2.2 Detector Performance 

To evaluate the linearity of the relationship between detector output and X-ray 
intensity, we employed a digital X-ray unit, KXO-50G/DRX-2924HD (TOSHIBA, 
Tochigi, Japan), with the tube voltage set at 40 kV. Using an imaging plate (BaFX2+: 
Eu, X = Cl, Br, I) (FUJIFILM, Tokyo, Japan) installed as a Ba filter, the output of the 
detector was measured while changing the X-ray intensity from 0.032 to about 8.8 
μC/kg at 1.6 × 104 counts/s (cps) /pixel. By obtaining calibration data prior to data 
collection, the sensitivities of each module and of each pixel in the detector were 
corrected. 

2.3 Evaluation of Image Properties 

To measure the input-to-output linearity of the detector, we used the digital X-ray unit 
described above to image 10 acrylic steps with 1 mm intervals. The tube voltage and 
current were set at 50 kV and 4 mA, respectively, and a 0.5 pixel shift was used to 
implement the shifting-and-adding operation. 

To measure spatial resolution, we utilized a micro focus X-ray tube, L7901 
(Hamamatsu Photonics, Hamamatsu, Japan). A resolution chart with eleven slit 
patterns (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, and 10.0 lp/mm) and a tungsten 
edge were used to obtain, respectively, digital and presampled modulation transfer 
functions (MTFs).The tube voltage and current were set at 40 kV and 0.25 mA, 
respectively, the data acquisition time was 12 seconds, and several amounts of shift 
were used. Because the pixel size was 200 μm, the images were produced at a 
magnification of two in accordance with the planned use of the prototype for 
mammography. 

In experiments to evaluate the overall performance of the prototype as a 
mammography system, we obtained breast phantom RMI-156 images through scan-
ning. In this case, the digital X-ray unit KXO-50G/DRX-2924HD was used with the 
tube voltage and current set at 50 kV and 4 mA, respectively, at a source-image dis-
tance (SID) of 60 cm and a shift of 0.25 pixel. In addition, to compare the prototype 
system with the conventional mammography system, Mermaid (KONIKAMINOLTA, 
Tokyo, Japan) was used with the same surface dose conditions. In order to reduce the 
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In the proposed imaging system, the pixel size is larger (0.2 × 0.2 mm2) than that 
obtained using conventional mammography. However, by magnifying acquired 
images by a factor of two, the high frequency part of a chart clearly becomes 6.0 
cycles/mm. Our results show the change in MTF values in terms of the amount of 
shifting performed in the shift-and-add operation; that is, image quality improves as 
scanning speed and amount of shift decrease, although doing so increases the 
exposure dose as the scanning time increases. The values of digital MTF were higher 
than those of presampled MTF; however, we could not determine the reason for this. 
The spatial resolution in the detector direction was higher than in the scan direction; 
this result is similar to that of previous work [1]. 

Because of the lack of X-ray tube capacity available for this experiment, we were 
not able to compare the images obtained by our prototype system with that produced 
in conventional mammography under identical practical conditions. Although we 
would need to use an X-ray tube with larger output to obtain clinically useful images, 
we were able to see a mass on the breast phantom image even under the low exposure 
dose conditions in these experiments. 

5 Conclusion 

In this study, we developed a prototype mammography system using a CdTe detector 
to enable exposure dose reduction. In this system it is possible to improve image 
quality by optimizing the balance of shifting-and-adding with the output of the X-ray 
tube; correspondingly, in future work we will assess optimizing conditions and 
improvements based on the relationship between the amount of shift and the output of 
the X-ray tube as well and we will also determine an optimal X-ray spectrum. 
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Abstract. Visibility-contrast image obtained by the X-ray grating interferome-
ter reflects reduction of coherence due to the object's structures. In the case of 
the one-dimensional grating, visibility-contrast image is affected by relative an-
gle between the structures of the object and the grating. In this study, we have 
investigated the features of the visibility-contrast signal at the edge of the ob-
ject. We imaged the acrylic cylinder with the Talbot-Lau interferometer (Koni-
ca Minolta, Inc.) by rotating from -90 degrees to +90 degrees with respect to the 
grating's periodic direction, and measured its edge signal. The signal became its 
maximum at -90 degrees and +90 degrees, and became zero at 0 degree. This 
result showed a good agreement with the angle dependency of the x-ray refrac-
tion at the edge of the cylindrical structure. 

Keywords: Talbot-Lau interferometer, phase contrast, soft tissue. 

1 Introduction 

Talbot-Lau interferometer, which consists of a conventional x-ray tube, an x-ray  
detector, and three gratings arranged between them, is a new x-ray imaging s 
ystem using phase-contrast method for excellent visualization of soft tissue. So,  
|it is expected to be applied to an imaging method for soft tissue in the medical  
field, such as mammograms. Using the Talbot-Lau interferometer, three types  
of images, i.e., the absorption image, the differential phase contrast image and  
the visibility-contrast image can be obtained. The absorption image is equivalent  
to the conventional x-ray image. The differential phase contrast image shows the  
gradient of the refractive index of the object along the periodic direction of the  
grating. The visibility-contrast image reflects reduction of coherence due to the ob-
ject’s structures. Its well-known feature is the contrast due to the x-ray small-angle 
scattering.  
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2 Purpose 

The purpose of this study is to investigate the features of the visibility-contrast image. 
As mentioned above, the visibility-contrast image is sensitive to the object with tiny 
structures which generate x-ray small angle scattering. The visibility contrast also 
shows the distinct signal at the edge of the object. In the case of the one-dimensional 
grating, the signal value in visibility-contrast image is affected by relative angles 
formed by object’s structure and grating. In this study, we investigated the influence 
of the object orientation to the grating by experiment and evaluate the signal quantita-
tively in visibility-contrast image. 

3 Materials and Methods 

3.1 Talbot-Lau Interferometer 

Talbot-Lau interferometer is combined Talbot effect and Lau effect. 
・ Talbot effect  

Talbot effect is a phenomenon in which coherent light transmitted through the 
diffraction grating (G1 gating) forms an image of same pattern as the grating 
(self image) on a fixed distance downstream of the grating. 

・ Lau effect 
Talbot effect requires a coherent light source such as synchrotron radiation 

facility or micro-focus x-ray tube. However, we can utilize Talbot effect using 
an incoherent x-ray source by Lau effect. The G0 grating with x-ray source 
works as line source which emits partial coherent x rays. The pitch of the G0 
grating is designed to make the self images generated by each line source 
overlapped. 

・ Fringe scan method 
If we try directly to detect the phase sift, the spatial resolution of the detec-

tor is not sufficient. The fringe scan method introduces the moiré pattern by 
using G2 grating with the same period as the G1 grating. Then, it is required to 
obtain several images for detecting the phase sift of moiré pattern changed by 
sliding the G0 grating. In this experiment, the amount of sliding of the grating 
has a one-fourth of the period of G0 grating, and it is imaged four times to re-
construct one image (4 steps method). 

3.2 Imaging Methods 

We imaged acrylic cylinder (8 mm in diameter) using Talbot-Lau interferometer (Ko-
nica Minolta, Inc.) on the following imaging conditions while rotating by 15 degrees 
from -90 degrees to +90 degrees with respect to the grating’s periodic direction. 

・ Imaging conditions 
X-ray tube voltage: 40kV 
X-ray tube current: 100mA 
Current time product: 250mAs×4 steps (1000mAs) 
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However, signal value becomes lower than 1.0 if there is a subject. Therefore, we 
picked up minimum value in each row and column and calculated their average using 
spread sheets. The averaged minimum value in each row and column was compared, 
and the smallest signal at the edge of the acrylic cylinder was determined. In addition, 
we measured internal signal value which is the averaged signal value in acrylic cy-
linder, and we carried out these calculations on all angles. 

4 Results 

In visibility-contrast image, the object orientation affected to the edge signal of acryl-
ic cylinder, and the edge signal value became the maximum when the angle of acrylic 
cylinder with respect to the periodic direction of grating is -90 and +90 degrees. And 
the edge signal decreased as it approached to 0 degree, and the edge signal became 
zero when the 0 degree. 
 
 

 

Fig. 4. Measured signal (edge signal, internal signal and background) 

5 Introduction of the Estimation 

According to the value of the edge signal of the visibility-contrast image, only the edge 
signal increased or decreased by a change in the angle, and there was no effect on the 
internal signal. We thought that the signal value of visibility-contrast image had a rela-
tion to the x-ray refraction. In the case of the one-dimensional grating, Talbot-Lau inter-
ferometer detects the parameters along the periodic direction of the grating. 

5.1 Methods of Estimation 

As mentioned above, we thought that the signal value of visibility-contrast image 
reflected only the component of grating period direction in the refraction of x ray. So, 
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Abstract. A new imaging system based on an x-ray Talbot-Lau interferometry 
was developed. The preclinical study with mastectomy specimens was con-
ducted, and the three types of images, i.e., the attenuation contrast(ATT) image, 
the differential phase contrast(DPC) image, and the x-ray small angle scatter-
ing(SAS) image, obtained  by the system were compared to the pathological re-
sult. As a result, the SAS image showed micro-calcifications clearly. On the  
other hand, the inside of the mass with invasive carcinoma was visualized with 
relatively lower signal. The SAS image seemed to correspond to the homogenei-
ty of the breast tissues. The breast images obtained with Talbot-Lau interferome-
try showed the different aspects which cannot be depicted with the conventional 
x-ray image. Comparative reading of the three images would enable us to get  
additional information of breast tissues.  

Keywords: x-ray, phase contrast. 

1 Introduction 

X-ray imaging have been widely used in medical field since its discovery in 1895. 
The x-ray is one of the electromagnetic waves. When x-rays pass through an object, 
their phases as well as amplitudes are altered. Conventional x-ray imaging is based on 
the change in the amplitude by the interaction with objects. Therefore inside of the 
human body can be visualized by the attenuation of the amplitude depending on or-
gans or tissues. The soft tissues like articular cartilage, however, cannot be visualized 
with the conventional x-ray imaging, because the attenuation by them are weak and 
their attenuation characteristics are rarely different from their surroundings. On the 
other hand, x-ray phase contrast imaging has higher sensitivity to image soft tissues 
than the attenuation based imaging and its clinical application is expected.  
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X-ray phase contrast imaging has been actively studied since 1990s. However, 
most of the methods were limited to academic study. This is because it needed the 
special x-ray source, such as a synchrotron facility or a micro-focus x-ray tube. Re-
cently, an x-ray grating interferometer which works with a conventional x-ray tube 
has been developed. This is the modification of the x-ray grating interferometry based 
on the Talbot effect with one more grating aligned just behind the x-ray source[1,2]. 
This is called an x-ray Talbot-Lau interferometer. As it can utilize a medical x-ray 
tube, the imaging system based on a Talbot-Lau interferometry could be applied to 
clinical imaging.  

In the case of breast imaging, preclinical studies with mastectomy specimens have 
been already reported by some groups[3,4]. We also found that the intraductal com-
ponents which would contain micro-calcifications appeared more clearly in the im-
ages obtained by the Talbot-Lau interferometry[5]. In order to investigate the further 
features of the breast images obtained with grating interferometry, we imaged partial 
mastectomy specimens after formalin fixation and then compared to the pathological 
results.  

2 Methods 

2.1 Imaging System 

An X-ray Talbot-Lau interferometer consists of a conventional x-ray tube, an x-ray 
detector, and three gratings arranged between them. The left side of Fig.1 shows the 
arrangements of these devices. When the phase grating(G1) is exposed in coherent x-
rays, its self-image is generated downstream. This is Talbot effect. If an object is in 
 

 

Fig. 1. Talbot-Lau interferometer  
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the x-ray path, this self-image is deformed. The direct detection of this deformation, 
however, is difficult, because the pitch of the G1 grating is too small to be detected 
with a medical x-ray detector. Then, the absorption grating(G2) which has the same 
pitch as that of the G1 self-image is installed to generate the moiré image between 
them. The source grating installed just after the x-ray tube (G0) transforms incoherent 
x-rays by the x-ray tube to partial coherent x-rays as multiple line sources. The pitch 
of the G0 grating is designed to make x-rays emitted by each line sources overlap 
each other on the G2 grating.  

The right hand of Fig.1 shows imaging system we developed. The system was de-
signed at 28keV. The x-ray tube with a tungsten anode was operated at 40kV. A no-
minal size of the x-ray focus was 0.4mm.The x-ray detector was a flat panel detector 
with pixel size of 85μm. The distance between G0 and G2 grating was 1.36m. The 
sample position was in front of the G1 grating. Magnification factor at the object table 
was 1.23. The G2 grating used in this study was fabricated with LIGA process and the 
Au electroplating [6]. The pitch of the G2 grating was 5.3μm. 

2.2 Characteristics of the Images Obtained with Talbot-Lau Interferometry 

Imaging with grating interferometry is performed with one of the gratings scanned 
along the periodic direction of the grating. During the scan, the amount of the x-rays 
reaching to each pixel in the detector changes according to the relative positions of 
the gratings and it can be approximated by equation(1). 

 ( ) ( ) ( ) ( )





 ++= yx

d
yxayxayxI x ,2cos,,, 10 φχπ  (1) 

where I(x, y) is the x-ray intensity which detected with the detector pixel at the posi-
tion(x, y). The a0(x, y) is the average intensity, and the a1(x, y) is the amplitude of the 
moiré fringe created by three gratings, and the φx(x, y) is the phase shift of the interfe-
rence pattern due to  the object. The d and χ are the pitch of the scanned grating and 
the relative shift of the grating, respectively. In our imaging system, four images were 
obtained while the G0 grating scanned in steps of a quarter of its pitch, 5.7μm. Then, 
three parameters, a0, a1/a0, φx were calculated[7]. In general, the imaging with and 
without object compensate the imperfection of the gratings. The parameters a0, a1/a0, 
and φx correspond to the attenuation contrast(ATT), the x-ray small angle scatter-
ing(SAS), and the differential phase contrast(DPC), respectively. The ATT image is 
almost the same as the conventional x-ray images. The DPC image visualizes the 
refraction angle between different materials. As the DPC image has higher sensitivity 
to the soft tissues in human body, the surface of the articular cartilage was observed 
with this system[8]. The SAS image reflects the x-ray small angle scattering by mi-
croscopic structures comparable to the grating pitch[9].  
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2.3 Breast Tissues 

In order to investigate how these three images depict breast tissues, formalin fixed 
mastectomy specimens were imaged with this system. A specimen was slightly com-
pressed with plastic plates of 5mm thickness. We also imaged a piece of the specimen 
whose thickness was about 3.5mm. In this case, in order to eliminate artifact due to 
the air, the specimen was bathed in ethanol. Then, imaging results were compared to 
the pathological results. The protocol of this study was approved by the institutional 
review board of Nagoya Medical Center, Japan.   

3 Results 

According to the pathological result, the specimen included the tumor which con-
sisted of the invasive ductal carcinoma and the ductal carcinoma in situ(DCIS) around 
it. The invasive carcinoma partially showed the scirrhous component. Fig.2(a) shows 
the sliced specimens which positioned at the center of the lesion, and the results of the 
pathological examination are overplotted. The regions circled with red and yellow 
lines correspond to the area where the invasive ductal carcinoma and the DCIS were 
observed, respectively. Fig.2(b) is the pathological image of T11. 

 

Fig. 2. Pathological result of the imaging specimen 

 

Fig. 3. Images of the sliced specimen with Talbot-Lau interferometry 

The imaging result of T11 are shown in Fig3. Fig.3(a), (b) and (c) are the ATT  
image, the DPC image, and the SAS image, respectively. All three images depicted 
the calcifications clearly. In the SAS image, the calcifications as well as their  
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surroundings showed higher scattering signal. This result indicated that the region 
around the calcifications consisted of full of microscopic structures. On the other 
hand, the part of the mass was shown as low scattering signal, i.e., dark area in 
Fig3.(c). In the DPC image, the area was shown relatively flat. These results indicated 
that the invasive carcinoma observed in T11 was composed of relatively homogene-
ous structure. 

Fig.4 shows the imaging result of the partial mastectomy specimen, which was im-
aged before sliced as Fig.2(a). Thickness of the specimen was 19mm. Fig.4(a),(b), 
and (c) shows the ATT image, the DPC image, and the SAS image, respectively. The 
invasive ductal carcinoma and DCIS were observed on the lower left of each images. 
The SAS image showed the same features as that of the sliced specimen, i.e., the clear 
depiction of the calcifications and the lower signals inside the mass. The calcifications 
which were vague in the ATT image were distinctly observed in the SAS image. This 
result indicated that the SAS image would visualize the homogeneity of the breast 
tissues which could not be obtained with the conventional mammography.  

 

Fig. 4. Images of the partial mastectomy specimen with Talbot-Lau interferometry  

4 Discussion 

The breast images obtained with Talbot-Lau interferometry showed the different as-
pects which cannot be depicted with the conventional x-ray image. Comparative read-
ing of these three images would be useful for image diagnosis.  

In order to realize the clinical applications, some challenging subjects remain. The 
dose level of the imaging is more than ten times as high as the conventional mammo-
graphy in this study. And, the imaging area is limited to the 50x50mm2 due to the 
difficulty in the fabrication of the G2 grating. In order to overcome these problems, 
the upgrade of the gratings as well as the further optimization of the imaging system 
would be required.  
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Abstract. X-ray breast computed tomography (breast CT) was developed by 
some research groups to overcome the limitations of mammography. Breast CT 
is expected to be an effective diagnostic tool because it can generate three-
dimensional images of a breast. However, the spatial resolution of the existing 
system is not satisfactory for identifying microcalcifications within the breast. 
The purpose of this study was to develop a prototype of high-resolution breast 
CT system, and to evaluate the imaging properties of the developed system. Our 
experimental system consists of a microfocus X-ray tube and a flat panel detec-
tor with a C-arm frame, a bed, and their controllers. Images were reconstructed 
by using cone-beam X-ray projections and the Feldkamp-Davis-Kress algo-
rithm. We used phantoms to experimentally evaluate three imaging properties 
and exposure dose. Consequently, the modulation transfer function value was 
0.1 at the frequency of 6.0 LP/mm, which is higher than that of clinical CT and 
breast CT. Breast phantom microcalcifications were observed clearly. Further-
more, entrance surface dose in the experimental system was similar to that of 
mammography. These results indicate that our experimental system overcomes 
the limitations of both the mammogram and existing breast CT systems. 

Keywords: Breast, computed tomography, microfocus X-ray. 

1 Introduction 

Breast cancer is the most prevailing cancer among women in the world; more than 
10% of women are likely to develop invasive breast cancer during their lifetime. 
Mammography is widely used for the detection of breast cancer. However, overlap-
ping breast tissue creates false shadow in many cases. Furthermore, mammography 
examination causes pain because of the application of pressure. X-ray breast com-
puted tomography (breast CT) was developed to overcome these mammography limi-
tations [1,2]. Breast CT can acquire a 3-dimensional image without incurring any pain 
by pressure. Breast CT systems have been installed in some research institutes and are 
currently under clinical evaluation. However, the spatial resolution of the existing 
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breast CT systems is lower than that of magnified mammogram; it is not sufficient for 
identifying microcalcifications within the breast [2]. In this study, we developed an 
experimental high-resolution breast CT system that aims to improve the spatial reso-
lution. The specific goal of this study was to obtain the sub-50 μm spatial resolution 
for clear observations of microcalcification. Furthermore, by using the developed 
system we evaluated its imaging properties and the exposure dose. 

2 Materials and Methods 

2.1 High-Resolution Breast CT System 

Figure 1 shows the scan part of our prototype system. It consists of a microfocus X-
ray tube (L7901, Hamamatsu Photonics, focus size: 5 μm, maximum tube voltage: 
100 kV, maximum tube current: 0.1 mA) and a flat panel detector (C7942CA, Ha-
mamatsu Photonics, indirect conversion type, pixel pitch: 50 μm, matrix size: 2366 × 
2368, bit depth: 12 bits) with C-arm frame, and computer for control. A woman lies 
face down on a table with one breast suspended through an opening. X-ray tube and 
flat panel detector rotate around the breast to collect the projection data. The proposed 
system obtains high-resolution image data by using geometric magnification. It can be 
adjusted by changing the position of rotational center. The maximum magnification is 
2.5; the spatial resolution reaches 20 μm.  

The projection images are reconstructed into a 3-dimensional (3D) image by using 
the Feldkamp-Davis-Kress (FDK) algorithm [3]. We employed ramp filter as the 
reconstruction function, and matrix size of the 3D image was 2048x2048x2048. Im-
age reconstruction is performed by original software that was developed and opti-
mized by using Intel C++, and calculation is conducted using personal computer 
(CPU: Intel Xeon 3.06 GHz, 12 cores, Memory: 32 GB). 

 

Fig. 1. The structure of the proposed system 

2.2 Performance Evaluation 

To evaluate the basic imaging characteristics of our system, the following evaluations 
were conducted. Phantoms, shown in Fig. 2 and Fig. 3, were employed for these  
evaluations. 
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(1) Uniformity of CT values 

    Image uniformity was evaluated by using the uniformity phantom [Fig. 2(a)]. The 
mean CT values of 5 regions of interest (ROIs) were calculated by using the axial 
image of the phantom. Then, the standard deviation of mean CT values at 5 loca-
tions was determined [4]. 

(2) Noise level 

    Noise level was evaluated by using the uniformity evaluation phantom and the 
noise evaluation phantom [Figs. 2(a) and 2(b)] [4]. Noise level was calculated as 
follows: 

                     Noise level AV·CS·µ  [%].                      (1) 

                       CS µ µCT CT  [cm-1 / CT value].                    (2) 

 

CS: Linearity index of CT value. 
 σAV: Standard deviation of mean CT values of water in axial image 

μw: Absorption coefficient of water (=0.195 cm-1). 
μair: Absorption coefficient of air (=0). 
CTw: Mean CT value of water in axial image inside the uniformity phantom. 
CTair: Mean CT value of air part in axial image. 

(3) Modulation transfer function 

    The modulation transfer function (MTF) of our breast CT was evaluated by using 
the MTF evaluation phantom, as shown in Fig. 2(c). The MTF phantom was 
scanned under the minimal resolution of 5 µm; cross-sectional image of Cu sheet 
was obtained. Pre-sampled MTF was calculated by using this image [5-7]. 

 

(4) Visibility of mass and microcalcifications 

    To evaluate the visibility of mass lesion and microcalcifications, we scanned the 
breast phantom (model013, CIRS) as shown in Fig. 3. This phantom was devel-
oped for the training of needle biopsy examinations, and was made from a gel 
with a physical consistency similar to the human tissue, including simulated mass 
lesions and microcalcifications. 

(5) Entrance surface dose 

    Entrance surface dose of breast was evaluated by using thermoluminescent do-
simeter (MSO-S, Kyokko). It was measured by using total filtration of 3.5 mm 
Al, tube voltage of 80 kV, tube current of 0.1 mA, and scanning time of 90 
seconds. 
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3.4 Exposure Dose 

The entrance surface dose of the proposed system was 14.11 mGy. A typical entrance 
surface dose in mammography is 10-20 mGy per breast [8]; the exposure dose of our 
system was similar to that of mammography. 

 
 

  
(a)                                    (b) 

 
(c) 

Fig. 6. Images obtained by using the proposed system (a) Axial CT images obtained by 
using the proposed system. (b) 3D rendered images. Brown regions and yellow dots represent 
mass lesions and microcalcifications, respectively. (c) Mammographic magnification image 
(Mammomat Novation, Siemens). 

4 Conclusions 

We have developed a prototype of high-resolution breast CT system with a microfo-
cus X-ray tube. In addition, we evaluated the imaging properties and the exposure 
dose of the proposed system. Furthermore, we evaluated the image quality by using 
breast phantom that included microcalcifications. The MTF of the proposed system 
was better than that of either a clinical CT or an existing breast CT, and microcalcifi-
cations in the breast phantom were observed clearly. These results indicate that our 
breast CT system overcomes the limitations of both the mammogram and the existing 
breast CT systems.  
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Abstract. In SPECT, scattered photons contribute to the detected signal, reduc-
ing contrast and quantification accuracy. Several methods exist to correct  
scatter, including the dual-energy window technique, but have not been fully 
evaluated on non-traditional SPECT trajectories. Using MCNP5, a Monte Carlo 
study was performed to analyze how incident scatter is affected by detector po-
sition for breast SPECT. An ideal detector was positioned at various azimuthal 
and polar angles relative to a pendant breast geometry. Detected scatter from 
the breast, heart, liver, torso, and lesion was linearly fit; the slope was used to 
characterize the distribution. Typical photopeak and scatter energy window ra-
tios were calculated. Results indicate detected scatter depends upon detector po-
sition and its vantage of major uptake organs; however, the effect is minimal for 
non-direct views, with a ratio of 0.37. A single coefficient for dual-energy win-
dow scatter correction should suffice for breast imaging trajectories ignoring di-
rect views of the heart/liver. 

Keywords: Breast imaging, SPECT, scatter, Monte Carlo, dual-energy window. 

1 Introduction 

During SPECT acquisitions, scattered photons originating within the body can contri-
bute significantly to the total detected signal. Due to various detector effects, includ-
ing incomplete charge collection in solid-state detectors, scatter within the detector, 
and the Poisson nature of photoelectron generation within scintillator detectors, ener-
gy resolution is limited, resulting in the need of a relatively large photopeak energy 
window for counting detected primary events [1-2]. Even with intrinsic, high-Z semi-
conductor detectors, the need for multiplexing signals in imaging detectors reduces 
the finer energy resolution possible with those devices. However, the addition of low-
angle (high energy) scattered photons hitting the detector contaminates the photopeak 
window data, resulting in reduced image contrast and quantification accuracy. Several 
scatter correction methods have been investigated in literature, ranging from simple 
subtraction methods to Monte Carlo or de-convolution approaches [3-8].  

One of the most straightforward and robust scatter correction techniques to implement 
is the dual-energy window (DEW) method [3]. This approach makes an assumption that, 
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for a given acquisition geometry and relatively symmetric object shape, the amount of 
scatter within the photopeak energy window is proportional to the scatter detected in a 
(lower-energy) scatter energy window. Through a series of calibration experiments, a 
coefficient (k-factor) can be determined that allows for a scaled subtraction of the scatter 
in the photopeak window: 

 ·                        (1) 

This technique is easily implemented and gives a fast method for scatter correction, 
provided the k-factor was calibrated for a similar geometry to the object being im-
aged. However, for non-traditional trajectories that deviate from a simple circular 
orbit, such as those used in dedicated breast SPECT for improved imaging of the 
chest wall, the underlying scatter distribution may change due to asymmetry of  
the breast and additional detected events originating from the torso, heart, and liver 
[9-10]. The goal of this simulation study is to determine how incident scatter is af-
fected by detector position, especially with non-traditional trajectories that allow bet-
ter volume imaging, and its effect on the application of the DEW method for scatter 
correction. This type of study can only be accomplished using Monte Carlo simula-
tion due to the very precise nature and fine energy sampling it affords. 

2 Materials and Methods 

A dedicated breast SPECT-CT system has been developed that offers the ability to 
acquire both low-dose, high-resolution 3D anatomical images with the CT subsystem 
and unique 3D functional images using Tc-99m Sestamibi (140 keV) and the SPECT 
subsystem [10-13]. The SPECT subsystem is capable of novel detector positioning, 
including tilting of the gamma camera, to allow projections into the chest wall with 
nearly-complete sampling trajectories. 

The SPECT subsystem, including gamma camera, was modeled using Monte Carlo 
N-Particle (MCNP5), including the prone-patient bed and detector. The detector has 
2.5 mm pixellation and a 2.54 cm long hexagonal lead collimator with 1.2 mm holes 
(flat to flat) and 0.2 mm Pb septa. The detector was modeled as an ideal detector, with 
100% sensitivity and perfect energy resolution, to determine the distribution of true 
incident scatter, regardless of detector-specific effects. Organs relevant to breast 
SPECT, including the breast (754mL), heart (251mL), liver (1272mL), torso 
(6400mL), and a large simulated lesion (33mL), were included in the simulation. The 
torso was modeled as an elliptical cylinder, while the breast was modeled as the ex-
cluded region of the intersection of an ellipsoid and the torso. The heart and liver 
were both modeled as simple cylinders, while the lesion was a simple sphere near the 
center of the breast. The simulation was designed from the perspective of the detector, 
with the patient and bed rotating about a fixed origin to simulate the non-traditional 
trajectories capable with the physical SPECT subsystem. This point of view was  
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Figure 5 shows the results of the ratio of true scattered events within realistic  
photopeak (>134keV) and scatter (113-133keV) windows binned from the complete 
spectral data. Additionally, the percent scatter originating from each source was also 
computed for the lesion and no-lesion cases, and the results for the two extreme detec-
tor tilts are also shown in Figure 5.  

4 Discussion and Conclusions 

Simulation results indicate that the detected scatter distribution is dependent on the 
relative detector and source locations and orientations. This is indicated by the chang-
ing magnitude of the fitted slope with detector tilt, especially for projections including 
direct views of the heart and liver. An increasing slope corresponds to an overall in-
crease in low-angle scatter detected, which may contribute more to the realistic pho-
topeak energy window. Within realistic energy windows, the ratio of true-scatter 
within the scatter window to true-scatter within the photopeak window (k-factor) 
changes significantly in projections containing the liver and chest wall. The averages 
for projections with and without direct views of the liver or heart are 0.47±0.04 and 
0.37±0.02, respectively. The observed change in k-factor illustrates the need to avoid 
direct projections of the liver and heart when attempting to more completely image 
the breast and associated chest wall. We have developed a variation of the presented 
PROJSINE trajectory (Fig. 1) that avoids direct views of the heart and liver, previous-
ly used for SPECT imaging in our lab [10,13-14]. When using this constrained acqui-
sition trajectory, the mean k-value was estimated (using linear-interpolation for  
non-simulated polar angles) to be 0.41±0.01, indicating minimal variation between 
projection angles. The results indicate that a universal k-value can be used for the 
application of the DEW method, and that the breast dominates the total scatter signal 
for most detector positions. Lastly, the presence of a large, high-uptake lesion in the 
breast does not change the overall results of the detected scatter distribution. Thus, the 
achievable accuracy with the application of the DEW method should not be compro-
mised for non-traditional trajectories that avoid direct projections of known high-
uptake organs.  
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Abstract. The realities of physical and psychological burden associated with 
mammography are not fully understood. We have measured the muscle activity 
and the sympathetic nervous activity of subjects during mammography to esti-
mate the burden. The experimental results suggested that positioning during 
mammography affects the muscle activity and the sympathetic nervous activity 
of the body. We carried out another preliminary experiment for decreasing the 
examinee's burden using humorous video. In the experiment, two groups ("hu-
mor group" and "neutral group") underwent mammography. The humor group 
was shown a humorous video during mammography. As a result, numerical rat-
ing scale scores of humor group on pain and experience time were higher  
than that of neutral group (no significant difference). In conclusion, the physical 
and psychological burden of mammography examinees could be evaluated  
by measuring the muscle activity and the sympathetic nervous activity. Humor-
ous video may be effective at increasing pain tolerance of subjects during 
mammography. 

Keywords: muscle activity sympathetic nervous activity numerical rating scale 
humorous video. 

1 Introduction 

Mammography is performed by pressing and stretching the breast using a thin radi-
olucent compression plate. During mammography, the examinee experiences a physi-
cal burden due to the positioning required, such as twisting the neck and raising the 
arm in addition to the breast compression. As a result, examinees are forced to endure 
pain caused by breast compression and immobilization. Additionally, in order to ob-
tain the most suitable image for diagnosis, the radiological technologist may directly 
touch the breast and press it further to spread it if necessary. Breasts are closely re-
lated to sexuality for women. Such procedures weigh heavily on examinees in some 
cases, causing psychological burden in addition to the physical burden. The burden 
should be measured quantitatively. 
   As for the physical and psychological burden experienced by the examinees at the 
time of mammography positioning, we have previously demonstrated the relationship 
between muscle activity and physical burden [1]. We have also investigated the rela-
tionship between sympathetic nervous activity and psychological burden [2]. In this 
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paper, firstly, some data extracted from the previous papers are indicated in Sections 2 
and 3. Next, we describe a preliminary study for decreasing the examinee's burden 
using humorous video in Section 4. Concluding remarks and discussion on future 
work are in Section 5. 

2 Measurement of Muscle Activity [1] 

We measured the muscle activity of subjects during positioning for mammography 
screening using surface electromyography to clarify the physical burden and pain 
involved in the positioning. The subjects consisted of 15 women (age: 44.4 ± 6.6 
years old, height: 160 ± 6.7 cm, weight: 55.1 ± 3.9 kg, body mass index: 21.4 ± 
2.2 %). Measurements were taken in the mediolateral oblique (MLO) position. The 
target muscles were the sternocleidomastoid, biceps, trapezius and gastrocnemius 
muscles. A portable multi-purpose bio-amplifier was used for measurements. A nu-
merical rating scale (NRS), which is a tool for self-assessment of subjective pain, was 
also used for pain measurement.  

As a result, analysis of variance showed the difference in the amount of muscle ac-
tivities to be significant between the relaxation phase before mammography position-
ing and the stress phase during mammography positioning in all the target muscles 
(Fig. 1 and Fig. 2). The sites where muscle activity increased were consistent with the 
sites of pain measured by the NRS (Table 1). These results suggest that positioning 
during mammography affects the muscle activity of the body and increased muscle 
activity could be related to the pain. Measurement of muscle activity during mammo-
graphy is expected to be used effectively, such as in the pain reduction program for 
the subjects undergoing mammography. 
 
 

 

Fig. 1. Muscle activities during right breast positioning. All data are expressed as means. ** P 
< 0.01 and * P < 0.05 vs. RP values for the same groups. 
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Fig. 2. Muscle activities during left breast positioning. All data are expressed as means. ** P < 
0.01 and * P < 0.05 vs. RP values for the same groups. 

Table 1. NRS scores at keep phase and pressure phase. The numerical value in parentheses 
indicates the number of trials. Values are presented as means ± standard deviation. 

Keep phase (KP) Pressure phase (PP) 

For all data (30) 3.7 ± 3.4 For all data (30) 6.7 ± 2.7 

shoulder (4) 5.5 ± 1.7 cervix (1) 8.0 ± 0.0 

armpit (8) 4.0 ± 3.3 waist (2) 4.8 ± 1.8 

breastbone and rib (3) 5.0 ± 5.0 breastbone and rib (3) 3.7 ± 3.2 

breast (5) 6.6 ± 1.9 breast (23) 7.5 ± 2.0 

3 Measurement of Sympathetic Nervous Activity [2] 

The physical and psychological burden on examinees during mammography was 
analyzed using the autonomic function index in 34 adult females (age: 28.5 ± 9.2 
years old, height: 160 ± 10.1 cm, weight: 54.6 ± 6.3 kg, body mass index: 20.2 ± 
6.3 %). The indices included heart rate (HR), high frequency (HF) of the R–R interval 
on an electrocardiogram, and the ratio of HF to LF (low frequency) (LF/HF). HR  
is an indicator of the degree of mental and physical activity, HF indicates the para-
sympathetic index and LF/HF indicates the sympathetic index. For the MLO view  
in mammography, autonomic function indices were measured before and during 
mammography.  

Table 2 summarizes the measured values of HR, HF and LF/HF. Statistical analy-
sis was performed by the Mann-Whitney U test and the significance level was set at 
5 %. The autonomic function indices were compared before and during mammogra-
phy and all showed no significant differences. The average value before imaging and 
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the reference value at rest were compared. The results showed that HR increased 1.3-
fold, HF increased 0.4-fold, and LF/HF increased 3.2-fold over reference values. The 
values of HR, HF and LF/HF before imaging were all found to be significantly differ-
ent from the reference values at rest. The chronological values of HR during mammo-
graphy were consistently more than 80 beats/min up to 120 seconds, showing a  
tendency to decrease slightly at the end of the mammography imaging (Fig. 3). In 
addition, chronological changes during mammography showed that HF increased and 
LF/HF decreased from 120 seconds after the start of imaging (Fig. 4). From these 
observations, it is evident that the state before mammography is not the same as the 
resting state and that the sympathetic index is dominant before imaging. They also 
suggest that some aspects of the psychological burden experienced during mammo-
graphy are not due to the pain of breast compression alone. 

Table 2. Measured values of HR, HF and LF/HF during mammography. Reference values at 
rest are also indicated [3],[4]. Values are presented as means ± standard deviation. (HR: heart 
rate, HF: high frequency (0.16 - 0.42 Hz) component, LF/HF: ratio of high frequency to low 
frequency (0.04 - 0.15 Hz) components). 

 
Entire 

mammography 
Before 

imaging 
During 
imaging 

Reference 
values at rest 

HR (beats/min) 81.1 ± 13.0 80.4 ± 12.7 81.8 ± 11.8 60.0 [3] 

HF (msec2) 407.3 ± 520.1 429.6 ± 601.7 391.4 ± 444.9 975.0 [4] 

LF/HF (msec2/msec2) 6.2 ± 4.2 6.5 ± 4.9 5.5 ± 3.9 2.0 [4] 

 
 

 

Fig. 3. Chronological changes in HR during mammography. (Standard deviation values are 
shown in the vertical direction around the mean. 0~30s indicates 0~30 seconds, 31~60s indi-
cates 31~60 seconds, 61~90s indicates 61~90 seconds, 91~120s indicates 91~120 seconds, 
121~150s indicates 121~150 seconds, 151~180s indicates 151~180 seconds.) 
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Fig. 4. Chronological changes of HF and LF/HF during mammography 

4 Effects of a Humorous Video on Reduction of Examinee's 
Burden during Mammography 

In recent years, there have been claims that humor and laughter possess unique  
characteristics to help cope with pain [5]. We thought that humorous video might 
decrease examinee's burden during mammography. Therefore, mammography exami-
nees were shown a humorous video, as a preliminary experiment for decreasing ex-
aminee's burden. Humorous video consists of funny-happening scenes which have 
recorded from television. In the experiment, the degree of pain, experience time, com-
icality and distraction were also assessed using NRS. Two groups ("humor group" 
with 15 females and "neutral group" with 29 females) underwent mammography for 
the MLO view.  

Fig. 5 shows NRS scores of the two groups. NRS scores of humor group on pain 
and experience time were higher than that of neutral group. However, there were no 
significant differences between humor group and neutral group. Although humor may 
be effective at increasing pain tolerance, it was unclear the effectiveness for decreas-
ing examinee's burden in the preliminary study. We have a plan for next additional 
experiment, and consider that individual humorous video should be selected for each 
examinee in the next experiment.  

5 Conclusion 

The physical and psychological burden of mammography examinees have been  
evaluated by measuring the muscle activity and the sympathetic nervous activity. 
Although humor may be effective at increasing pain tolerance, it was unclear the ef-
fectiveness for decreasing mammography examinee's burden in the preliminary study. 

The experiment results will be a help of very unique design when further patient- 
friendly mammographic device is required. The number of subjects was limited in the 
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Fig. 5. Mean values of NRS scores of neutral and humor groups 

experiments. We have to conduct additional experiments in more subjects. The sense 
of humor may be different between countries or individuals. The subject should select 
humorous video in accordance with her sense of humor. Variation of humorous video 
would be important and required in future work. The effect of humorous video on 
reduction of mammography examinee's burden need to be discussed with any changes 
in the physiological measures but this could be for future work. 
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1 Summary 

Current efforts relating to the uptake, evaluation and research into digital medical 
imaging require the large-scale collection of images (both unprocessed and processed) 
and data. This demand has led us to design and implement a flexible mammographic 
image repository, which prospectively collects images and data from multiple screen-
ing sites throughout the UK. The MIDB has been designed and created to provide a 
centralised, fully annotated dataset for research purposes. One of the most important 
features is the inclusion of unprocessed images. In addition to the images and data, 
systems have been created to allow expert radiologists to annotate the images with 
interesting clinical features and provide descriptors of these features. MedXViewer 
(Medical eXtensible Viewer) is an application we have designed to allow worksta-
tion-independent, PACS-less viewing and interaction with anonymised medical im-
ages (e.g. for observer studies). With these integrated tools, the MIDB has become a 
valuable resource for running remote observer studies and providing data and statis-
tics for imaging based-research projects. Previously, studies were run by laborious 
transfers of images to PACS at remote sites and paper-based data manually curated 
into databases. Apart from the inconvenience, these approaches also suffer from a 
lack of accurate location information from the paper-based forms. 

2 Introduction 

There is a need for comprehensive collections of medical images to be made available 
for research. Among many requirements are the need for unprocessed images, fully 
annotated cases and fully representative sets from a variety of disciplines and modali-
ties. Collections of images are required to undertake research and development in 
Computer Aided Detection (CAD), image perception studies, training and quality 
assurance. The collection of large set of medical images with full annotation for  
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research purposes is challenging. When the gathering of unprocessed images is  
required, the difficulties increase massively. The need for accurately curated, compre-
hensive research sets will only increase as the number of new techniques and modali-
ties increases.  

Alongside the need for medical images is the need for more rigorous, consistent 
and timesaving approaches to managing and undertaking image perception studies. 
Many studies have previously been run with laborious transfers of images to PACS at 
remote sites and paper-based data manually curated into databases. Apart from the 
inconvenience, these approaches suffered from a lack of accurate location information 
from the paper-based data. One of the most notable items that is lacking from many 
image perception studies is precise cancer location information. In addition, there are 
many collaborative image-viewing undertakings, which currently require image trans-
fers between PACS and suffer from a lack of ability to centrally annotate cases with 
descriptions and regions of interests (ROIs). There are many situations where it would 
be beneficial to be able to have cases reviewed by experts located at remote sites 
throughout the country, or indeed the world. 

The MIDB systems have been designed to be deployed at multiple remote sites. At 
these sites, it automatically identifies the relevant cases to collect (e.g. screen detected 
breast cancers) and then obtains the processed and unprocessed images from the local 
PACS and associated data from relevant local cancer databases. The images and data 
are then automatically anonymised and transferred to the central storage. In addition 
to the data, software (MedXViewer) has been created to allow expert radiologists to 
annotate the images with interesting clinical features and provide descriptors of these 
features. In order to avoid subsequent manual transfers of images to multiple remote 
PACS, the images are streamed from the central location.  

The MIDB has been created to provide a centralised, fully annotated dataset for re-
search purposes to meet many of the needs outlined above. One of the most important 
features is the inclusion of unprocessed images. The MIDB has become a valuable 
resource with integrated tools for running remote observer studies and providing data 
and statistics for imaging-based research projects. Initially the database was devel-
oped as part of a large research project in digital mammography (OPTIMAM). Hence 
the initial focus has been digital mammography; as a result, much of the work de-
scribed will focus on this field and all the current images and data are mammographic. 

3 Methods 

3.1 Image Database and Collection 

A semi-automated process for identifying which cases to collect has been developed. 
Since we are primarily interested in cancer cases we interrogate local databases of 
patient/case data to identify these among a much larger set of cases. A full description 
of the processes is described in more detail elsewhere1.The processes and systems 
required to allow semi-automated image collection across multiple heterogeneous  
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3.3 MedXViewer 

Various tools enabling interaction with the varying parts of MIDB have been created. 
Notably, this includes an extensible web-enabled software package designed to facili-
tate remote studies, collaborative view sessions and training (MedXViewer). Image 
perception studies and the acquisition of data for research purposes requires the view-
ing and marking of images, the answering of questions throughout the marking 
process and the drawing of regions of interests (ROIs) on the images. MedXViewer 
was initially designed for image perception studies in digital mammography and digi-
tal breast tomosynthesis (DBT) but the software can be extended for use in other 
modalities. One of the key objectives in its development was to allow radiologists to 
review images and participate in observer studies at multiple remote sites.  

MedXViewer was developed in Java and uses the DICOM library Dcm4Che al-
lowing 16-bit images to be created and lookup tables applied. Hence, images can be 
displayed, as they would appear on a commercial PACS system when MedXViewer is 
used with clinical quality displays. 

The choice of Java as the programming language enables MedXViewer to be used 
cross-platform on Mac, Linux and Windows environments with no requirement for 
administrative access or installation. MedXViewer automatically detects the monitor 
setup and location and places the medical images on the predetermined location. 
MedXViewer can integrate with the MIDB, allowing images and software to be 
downloaded from a central store and results to be uploaded to a centralised database. 
Alternatively the software can be run offline with images and results stored locally. A 
user is allocated a username and password and their progress and performance can be 
tracked. The results from MedXViewer can be output in any standard file format 
(CSV, Excel etc.). 

4 Results 

The MIDB has been implemented along with the automated collection procedures, 
anonymisation, associated data gathering, calculated data and expert determined an-
notations. Currently the full collection system is deployed at three sites and other 
partial collection processes are in place at two other sites. The database statistics are 
summarized in Table 1. 

When loading the images into the repository, all relevant DICOM tags are ex-
tracted to allow a searchable index to be produced. Additionally, CAD predictions are 
determined and inserted into the database. Expert-determined ground truths are then 
obtained from our panel of readers (utilising the MedXViewer software) that indicate 
the relevant ROI and other attributes, such as lesion type and conspicuity. Further 
annotations are obtained from associated data sources, such as the NBSS. The quanti-
ty of additional annotations obtained is large, and includes information on screening 
history, previous occurrences of cancer, biopsy results and surgical procedures. 
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5 Conclusions  

A Mammographic Image Database has been created that provides access to a huge 
number of fully-annotated cases with associated data and unprocessed images. These 
annotations are obtained from existing cancer databases and from expert opinions. 
MIDB has already facilitated a number of research projects. The logistics, technology, 
systems and procedures required bringing together these images and data are extreme-
ly difficult to manage and not easily reproduced. We have designed the system to be 
flexible enough to feasibly allow any site to be added to our collection system. This is 
facilitated by the provision of multiple differing collection workflows including direct 
onsite PACS connections. To date we have successfully collected 34,104 2D images 
from 2,623 clients, run three observer from the MIDB 2,3 and facilitated several stu-
dies, including CAD investigations. 

In many fields, the retention of unprocessed images is not commonplace. A distinct 
feature of MIDB is the provision of the unprocessed data that allows certain areas of 
research to take place, which would otherwise be difficult. An excellent example can 
be found in Interval Cancer review sessions for mammography. These can be stored, 
to evaluate whether an abnormality could have been detected on the previous screen-
ing films. The provision of unprocessed data from previous screening would allow the 
comprehensive evaluation of the full raft of factors affecting the reading of images. 
The effect of image processing can be investigated to find if different processing me-
thods would have facilitated the location of the abnormality.  

MedXViewer has been developed which interacts with the MIDB and associated 
study databases for remote image viewing and interaction. Combined, these provide 
the ability to run remote paper-less observer studies, provide a training infrastructure 
or coordinating remote collaborative viewing sessions (e.g. cancer reviews, interest-
ing cases).  
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Abstract. In Digital Breast Tomosynthesis, a 3D representation of the
breast is reconstructed from low-dose projection images acquired over
a limited angular range. Each such image contains high level of noise
which is often counteracted by a projection binning to yield the CNR
desired in clinical applications. However, this approach reduces spatial
resolution and makes imaging of high frequency structures such as micro-
calcifications challenging. In this paper, we describe a Filtered Back Pro-
jection (FBP) reconstruction method optimized to yield improved CNR
without sacrificing spatial resolution. The results from our quantitative
evaluation and clinical reading by experienced radiologists indicate that
the proposed methods can significantly improve contrast and sharpness of
micro-calcifications and reduce noise compared to a baseline FBP method
with standard filter settings.

Keywords: Digital Breast Tomosynthesis, Filtered Back Projection,
Super-resolution, Artifact Reduction.

1 Introduction

In digital mammography, malignancy predictors such as spiculated masses can
be obscured by overlapping tissues especially in dense breasts. Digital Breast
Tomosynthesis (DBT) can overcome this limitation by reconstructing a 3D rep-
resentation of the breast from projection images acquired over a limited angular
range. Since the total radiation dose of a DBT exam is split over a number
of projection views, the acquired images typically contain higher level of im-
age noise than the standard FFDM images. To improve CNR in these images
and in the DBT volume, projection binning is often used. However, this ap-
proach reduces 3D spatial resolution and might blur micro-calcifications. In this
paper, an optimized, high-resolution DBT method� is presented that yields re-
constructions with desired, high CNR without compromising on visibility of
micro-calcifications.

� The concepts and information presented in this paper are based on research and are
not commercially available.

H. Fujita, T. Hara, and C. Muramatsu (Eds.): IWDM 2014, LNCS 8539, pp. 520–527, 2014.
© Springer International Publishing Switzerland 2014
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2 Method

DBT imaging involves acquisition of 25 projection images with the standard
DBT mode of a MAMMOMAT Inspiration system1 (Siemens AG, Erlangen,
Germany). In this standard mode, the final volume is reconstructed into slices
with 1 mm separation, each having an in-plane sampling of 0.085 mm × 0.085
mm which is identical to that of a projection image. The steps of our proposed
reconstruction method are depicted in Fig. 1 and described in more details in
the following sections.

Super–resolution slices 
 Projections 

Collapsed 
slabs  

 

Final volume 
 

SAR 

Sec 2.1 

Collapsing 

Sec 2.2 

Noise filtering 

Sec 2.3 

Fig. 1. Block diagram describing the major steps in optimized high resolution recon-
struction. #»r = (x, y, z)T defines location in 3D.

2.1 Super-Resolution Reconstruction with Statistical Artifact
Reduction (SAR)
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Fig. 2. Basis functions for MTF inversion filter

1 Breast Tomosynthesis with Siemens MAMMOMAT Inspiration is an investigational
practice and is limited by U.S. law to investigational use. It is not commercially
available in the U.S. and its future availability cannot be ensured.
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Filtering step of FBP in Breast Tomosynthesis often consists of MTF inversion
filter, spectral filter and slice thickness filter [1]. MTF inversion filter reduces
the blurring in the final reconstructed volume and spectral filter compensates
the high frequency noise introduced by the MTF inversion filter [1]. Slice thick-
ness filter is a low pass filter in z-direction which will give constant z-resolution
and reduce out-of-plane blurring [1]. In our reconstructions, we used a modified
MTF filter kernel which is generated by the linear combination of several basis
functions (see Fig. 2) as in Eq. 1.

H(ω) = H0(ω) + β1H1(ω) + β2H2(ω) + β3H3(ω) (1)

Instead of using only H0(ω) (normal MTF inversion filter), small but signifi-
cant contributions of other basis functions will enhance the low frequency details
in the reconstructed volume. Thus, better soft tissue contrast can be achieved
without blurring the volume. The weights β1, β2 and β3 are empirically deter-
mined by experienced readers.

We used unbinned projections for filtering to maximize the spatial resolution.
Slice thickness filter is not used to avoid the blurring of micro-calcifications in
the projections with high angle of incidence.

The filtered projections are back projected to produce an initial reconstruction
on a super-resolution grid. Here, super-resolution means that DBT slices are sep-
arated by only < 0.3 mm such that they can nicely capture and represent even
tiny diagnostic structures such as micro-calcifications. The back projection step
involves a model-based artifact reduction scheme that rejects those contributions
which are statistically predicted to degrade image quality. This will reduce out-
of-plane artifacts in the final reconstructed volume [2]. Super-resolution slices are
numerous and still rather noisy. Direct display of these slices is thus impractical in
clinical routine so that they are algorithmically collapsed into fewer thick slabs.

2.2 Collapsing of Super-Resolution Slices

Here, we focus on the adjacent super-resolution slices that will eventually form
a single slab (fc) and generate an average intensity projection (fca) and a max-
imum intensity projection (fcm) from them. Both fca and fcm are obtained in
perspective geometry with the source situated at the central position of the
scan trajectory. Fig. 3 shows the sample collapsing ray in this geometry in
which super-resolution slices are collapsed to compute a sample voxel inten-
sity value fc(

#»r ) in the slab image. fs(
#»r ) is the voxel intensity value at 3D

point #»r = (x, y, z)T in the super-resolution volume. #»a is the location of the
source in the world co-ordinate system which is spanned by orthonormal vectors
#»ex = (1, 0, 0)T , #»ey = (0, 1, 0)T and #»ez = (0, 0, 1)T . #»α = (αx, αy, αz)

T is the
direction of the sample collapsing ray defined by

#»r − #»a
‖ #»r − #»a ‖ . The distance from the

source along the ray is denoted by δ. Δ is the collapsing range which determines
the number of adjacent super-resolution slices and θ is the angle between pro-
jected ray and normal to the slices. The voxel intensity value at #»r in fcm and
fca are given by the Eq. 2 and Eq. 3 respectively
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fcm( #»r , #»a ,Δ) = max
δ

{
fs

(
#»r + δ

#»r − #»a

‖ #»r − #»a ‖
) ∣∣∣∣∣ δ ∈

[
− Δ

2 cos θ
,

Δ

2 cos θ

]}
(2)

fca(
#»r , #»a ,Δ) =

1

Δ

∫ Δ
2 cos θ

− Δ
2 cos θ

f

(
#»r + δ

#»r − #»a

‖ #»r − #»a ‖
)
dδ (3)

cos θ is given by αz .

PROJECTION CENTER  

COLLAPSING RAY  

  

 

 

 

 

Fig. 3. Perspective geometry for collapsing of super-resolution slices

fca yields image with reduced noise while fcm will preserve high attenuation
structures present in the super-resolution slices. A thick slab is then obtained
by combining fcm and fca contributions, according to the following decision rule
that is based on the distribution of the values that lie along the collapsing ray: If
the maximum of these values exceeds their mean by more than a threshold t, we
can assume the presence of a micro-calcification and therefore decide for the fcm
contribution. For all other areas, the fca value will be used in favor for high CNR.
Instead of applying a purely binary decision rule which may cause artificial, high
intensity outliers at random locations, we use a weighted combination fcm and
fca for slab generation according to the Eq. 4.

fc(
#»r ) = k fcm( #»r , #»a ,Δ) + (1− k) fca(

#»r , #»a ,Δ) (4)

The weight k is calculated according to Fig. 4. The value t and w were manually
optimized on clinical data sets to yield better visibility of micro-calcifications.
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Fig. 4. The weight coefficient k for linear combination of fcm( #»r ) and fca(
#»r )

2.3 Micro-calcification Preserving Noise Reduction
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Fig. 5. Smoothing prior functions

In the final step, an iterative, edge and micro-calcification preserving noise fil-
tering scheme is applied on each thick slab to further improve CNR. Eq. 5 and
Eq. 6 describe iterative filtering in image domain in which local gradient in the
slab image is minimized by number of iterations along with the constraints to
preserve local edges and micro-calcifications.

fc(i)
k+1 = fc(i)

k − γ ∇R(fc(i)
k) (5)

∇R(fc(i)
k) =

∑
j∈N

djΔjiH

( |Δji|
σ(i)

)
M(Pi) with Δji = fc(j)

k − fc(i)
k (6)
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fc(i)
k is the voxel intensity value at discrete location i in kth iteration. γ is

the relaxation factor and
|Δji|
σ(i) defines the local Contrast to Noise Ratio (CNR)

around voxel location i with N adjacent neighborhood voxels. dj is the filter
coefficients.

H is the smoothing prior function as depicted in the Fig. 5 (left). Smooth-
ing strength decreases nonlinearly and thus homogeneous regions are smoothed
heavily compared to the the regions with high CNR. Iterative smoothing with
onlyH may deteriorate the CNR of micro-calcifications in tomosynthesis images.
M(Pi) function penalizes the smoothing strength in the regions where micro-
calcifications are present (see Fig. 5 (right)). In order to compute the pixel-wise
likelihood of micro-calcifications (Pi) in the image, homogeneous background
image is created by morphological open operation with a predefined structuring
element s. Subtracting homogeneous image from original image and subsequent
clipping of negative values yields image with probable micro-calcifications (Pi)
as it is expressed in Eq. 7.

P = f − f ◦ s (7)

M(Pi) is used to control the noise reduction. Smoothing is therefore strongest
in homogeneous areas (contrasts lower than p1, see Fig.5 (left)) and practically
nonexistent around micro-calcifications and other structures of interest (con-
trasts greater than p1).

The parameters of the noise reduction filter were manually optimized on clin-
ical data sets to yield better visibility of micro-calcifications while maintaining
minimal noise level.

3 Results
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Fig. 6. Histogram of relative CNR for, left: Micro-calcifications; right: Masses

We used FBP with slice thickness filter in which thick slices of 1 mm sepa-
ration are reconstructed as a baseline reconstruction method. To analyze the
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improvement of CNR in the new reconstruction method, we segmented 214 faint
micro-calcifications in baseline reconstructions of 59 patient images and 25 soft
tissue structures in focus from 25 reconstructed volumes. The relative CNR of
each micro-calcification and soft tissue structure is computed as the ratio of
CNR in images reconstructed with optimized high resolution reconstruction to
their CNR in baseline reconstruction. Fig. 6 shows the histogram of the relative
CNR of all micro-calcifications and soft tissue structures.

CNR is improved for 83% of the calcifications with an average improvement
of 44%(p < 0.001). Fig. 8 presents representative micro-calcifications, clearly
showing the improvement of contrast of calcifications (e.g right image, pointed
by red arrow) and morphology of calcifications (e.g. left image). CNR is improved
for all segmented soft tissue structures with an average improvement of 247%
(p < 0.001). Fig. 7 shows the soft tissue contrast in two reconstructions. The
new reconstruction method has also been evaluated in a clinical study by expe-
rienced readers [3]. Three radiologists evaluated 54 image pairs and compared
optimized high resolution reconstruction with baseline FBP. The clinical study
study validated our quantitative evaluations and confirmed the statistically sig-
nificant improvement of new reconstruction method especially in visibility of
micro-calcifications and soft tissue structures [3].

Fig. 7. Soft tissue structures obtained with, left: Baseline reconstruction; right: Opti-
mized high resolution reconstruction. Images courtesy of Leuven University Hospital,
Belgium.
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Fig. 8. Micro-calcifications obtained with, top: Baseline reconstruction; bottom: Opti-
mized high resolution reconstruction. Images courtesy of Leuven University Hospital,
Belgium.

4 Conclusion

Our results have shown that optimized high resolution reconstructed volumes
preserve micro-calcification at high spatial resolution while maintaining noise
level acceptable for clinical interpretations. Contrast and sharpness of micro-
calcifications have been increased with reduced blurring and thus morphology
of calcification clusters are preserved. Our results also show that the new re-
construction method improved CNR of soft tissue regions while preserving the
details of spiculated masses such as architectural distortions. The results are
validated by a reading study conducted by experienced radiologists.
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Abstract. The development of 3D mass models of different shapes, margins 
and degrees of malignancy may allow more profound and clinically relevant 
testing and optimization of the performance of the newly introduced 3D modali-
ties such as breast tomosynthesis and breast-CT. Three dimensional mass mod-
els had been developed earlier and were validated for the realism of their  
appearance after simulation into 2D and tomosynthesis patient images. Based 
on the feedback of the readers and the results of the simulations of the earlier 
study we initiated the present study in which we investigated the effect of inser-
tion position and background glandular tissue estimation on the appearance of 
these masses. A subset of these masses was re-simulated in another position and 
using a different background estimator. These simulated masses were subse-
quently evaluated by an experienced radiologist on a 5-point scale realism 
score. The results showed that the insertion position of simulated masses is a 
significant factor in the appearance of realism of these masses and careful 
choices should be made. 

Keywords: Digital mammography, breast tomosynthesis, 3D mass models,  
simulation. 

1 Introduction 

Mammography is the standard method for breast cancer screening. However, due to 
the projection of the 3D breast volume into a 2D image, lesions may stay hidden, with 
repercussions on detectability. Diagnostic radiology is embracing 3D modalities such 
as digital breast tomosynthesis (DBT) and breast computer tomography (breast-CT) 
that can overcome the issue of overlapping tissues. Simulation approaches are cur-
rently used to test and optimize the clinical performance of new modalities. They can 
be the basis for virtual clinical trials or for observer studies of patient images with 
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 Investigation of Factors to Optimize the Simulation of 3D Masses 529 

simulated lesions. Due to the 3D nature of these new modalities, the development of 
virtual 3D abnormalities including masses and microcalcification clusters is required.  

A method was presented to simulate 3D mass models with a variety of margins and 
shapes. These masses have been validated for the realism of their appearance when 
inserted into 2D and DBT patient images [1]. This earlier validation study had re-
vealed a more realistic performance of the masses when simulated in 2D than in DBT. 
In this study, we investigated parameters adjusted during the insertion procedure that 
affect the appearance of the masses in DBT without changing the 3D mass models in 
order to further improve the simulations.  

2 Materials and Methods 

2.1 Database of Mass Models 

The previously presented method [1] for developing 3D mass models started from a 
collection of 25 contrast enhanced breast MRI lesions that were manually segmented 
and were further processed to represent high resolution isotropic 3D mass models. 
These models are categorized as “non-spiculated” masses and were then used as nuc-
lei on which spicules were grown following an iterative branching algorithm [2]. We 
generated 30 “spiculated” masses. The realism of the appearance of the 55 models 
was assessed in two separate studies after insertion in 2D digital mammography and 
breast tomosynthesis patient images by means of a validated simulation framework 
[3, 4].  

2.2 The Choice of the Investigated Factors 

The fact that the simulation of masses in DBT versus 2D mammography is more chal-
lenging can be explained. First, DBT shows more details of the margins of the masses 
compared to 2D mammography. Second, the simulation of masses in acquired patient 
images is difficult as the simulation procedure cannot replace the original tissue by a 
mass: in our approach, a mass is simulated using an expected density difference with 
the present background structure. 

Following the feedback of the radiologists who participated in the validation stu-
dies, the main causes for scoring a lesion to be unrealistic included: (1) the higher 
density of some masses compared to the surrounding background tissues; (2) some 
masses looked artificially superimposed and this was especially the case with some 
irregular or spiculated masses that did not integrate well with the background tissue. 
Therefore, we studied two main parameters: (1) the effect of another estimate of the 
glandularity (the percentage of dense glandular tissue) at the insertion position (Vol-
para) [5]; (2) the influence of insertion position presuming that this is determining for 
how the lesion can integrate with the background.  
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2.3 Simulation Framework 

The simulation framework was previously validated [3] and used to simulate 
microcalcification clusters [4]. In this approach, templates of lesions were created  
that maximally account for the polychromatic spectrum, for the tissue into which an 
object is simulated and for detector characteristics. Mass models were ray traced,  
and the contrast of the output templates was adjusted for the x-ray spectrum that  
has been used in the patient image into which the mass has to be simulated.  
The masses were assumed to be 100% glandular tissue and the background  
was assumed to be a composition of adipose and glandular tissues with attenuation 
coefficients as found by Hammerstein et al. [6]. The glandularity of the background  
at the insertion position had been estimated based on the mean pixel value in the  
ROI of insertion in the raw 2D patient image using a method derived from Kaufhold 
et al. [7]. The projections of the masses were further modified to include the 
unsharpness due to focal spot motion blur and scatter. These adjusted templates  
were then multiplied with raw patient images. All hybrid raw projection images were 
then reconstructed using the Siemens software (TomoEngine, Siemens, Erlangen, 
Germany) that is based on the filtered back-projection algorithm (FBP). The 
reconstructed voxel size was 0.085x0.085x1 mm3. All 2D raw images were processed 
using the system’s image processing algorithm (Opview2, Siemens, Erlangen, 
Germany). 

2.4 Observer Study 

In the earlier validation study [1], 55 3D mass models were developed. Of these, the 
best five and the worst fifteen in terms of realistic appearance were selected. Ten were 
non-spiculated masses and the other ten were spiculated ones. Each mass out of the 
20, with the original settings, was re-simulated for two new settings: (1) within the 
same patient at the same insertion position with the glandularity of the background 
estimated using Volpara that gave slightly lower values compared to the originally 
used in-house method in the earlier validation study (settings 1); (2) at an another 
insertion location possibly allowing the lesion to integrate better with the background 
tissue (settings 2). 

Two studies were conducted, one for 2D and the other for DBT, with a total of 80 
masses per modality. Twenty were real masses and the remaining 60 were simulated 
masses: (1) the chosen 20 masses were taken from the earlier study [1], (2) 20 re-
simulated masses based on the first proposed settings, (2) the 20 re-simulated based 
on the second proposed settings. These 80 masses were randomly distributed and read 
by an experienced radiologist who had participated in the earlier validation study. The 
radiologist was asked to score the realism of the mass on a 5-point scale and to score 
the BIRADS [8] of the lesion. 
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The scores of the 2 proposed settings were compared to the original settings in a 
paired analysis using the Wilcoxon signed rank test for both 2D and DBT. The scores  
of the group of masses that had the highest realism score from the three simulated 
groups were then compared to the scores of the real masses by means of the Mann-
Whitney analysis for 2D and DBT. The BIRADS scores were also evaluated for the 
different settings using the Wilcoxon signed rank test per modality. Then the 
BIRADS scores of DBT were compared to the corresponding 2D scores per group of 
masses. P > 0.05 indicates statistically significant difference. 

3 Results 

Table 1 shows the mean and standard deviation of the realism scores in 2D and DBT 
for every mass category: the 20 masses with original settings, the 20 masses re-
simulated following settings 1, the 20 masses re-simulated following settings 2 and 
the 20 real masses. The masses re-simulated with settings 2 had the highest scores in 
both modalities and this group will be used for further analysis. 

Table 1. The mean and standard deviation of the realism scores in 2D and DBT for every mass 
category: the 20 masses with original settings, the 20 masses re-simulated following settings 1, 
the 20 masses re-simulated following settings 2 and the 20 real masses 

Mass Category 
2D realism scores DBT realism scores 

Mean 
Standard 
deviation

Mean 
Standard 
deviation 

Original settings  4.2 ±0.85 3.1 ±0.89 

Settings 1 4.3 ±0.71 3.7 ±0.91 

Settings 2 4.6 ±0.80 4.0 ±0.67 

Real masses 4.6 ±0.74 4.3 ±1.04 

3.1 Results of the 2D Study 

Figures 1 and 2 show an example of a non-spiculated and a spiculated mass respec-
tively simulated into 2D images for the different settings: (a) as originally simulated 
in the earlier study; (b) the mass re-simulated in the original position but using Volpa-
ra as estimator (settings 1); (c) the mass re-simulated at an optimized position (set-
tings 2). Table 2 shows the results of comparing the realism scores, in the 2D study, 
between the different settings. It is clear that no statistically significant difference was 
found between the original simulation settings compared to settings 1 and 2. For the 
comparison of the highest scored settings (settings 2) to the real masses, no statistical-
ly significant difference was found.  
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iterations before deciding that a new position provided a good new candidate lesion 
position. All positions in the present study got a final check by either a radiologist or 
an experienced physicist to reduce the risk of artificially superimposed lesions. Some 
real lesions can have strange appearances and were sometimes considered unrealistic. 
As an example, some lesions appeared isolated within the breast region. We have 
learnt that it was not appropriated to reproduce such rare situations. 

5 Conclusion 

The simulation of 3D mass models is important to allow the investigation and optimi-
zation of the clinical performance of DBT especially when compared to 2D digital 
mammography. In an earlier study, we developed 55 mass models and validated the 
realism of their appearance in 2D and DBT. In this study, we attempted to improve 
their appearance by exploring the limiting factors found in the earlier study such as 
the estimation of the background composition and a better insertion position. The 
results showed that the optimization of positioning improved significantly the realism 
scores in DBT while in 2D the realism scores were unchanged. The BIRADS scores 
also revealed the influence of this optimization in 2D where some masses were less 
visible than before. The choices of insertion positions to simulate masses play an 
important role in the appearance of realism of these masses and should be carried out 
carefully. 
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Abstract. Clinical performance achieved by adding interpretation of Tomosyn-
thesis images to 2D images (hereinafter 2D+Tomo) was studied. 100 cases who 
gave written informed consent (ST mode: angular range ±7.5deg, 50 cases and 
HR mode: ±20deg, 50 cases) were obtained and 7 radiologists interpreted all 
images. In ST, the sensitivity is significantly increased by 15% (P<.01) and 
specificity is equivalent (P=.73). In HR, sensitivity of 2D+Tomo against 2D 
alone is significantly increased by 30% (P<.001) and specificity is significantly 
decreased by 5% (P<.01). ST, which has higher sensitivity and equivalent spe-
cificity, can be used for screening, and HR, which can visualize structures such 
as lesions in details, can be used for diagnosis. Moreover, specificity enhance-
ment due to inhibition of false positive and sensitivity enhancement are con-
firmed by trial for appropriate segmentation in Japanese category classification 
C3. Further detailed clinical performance will be studied such as in ROC analy-
sis with more cases. 

1 Introduction 

Breast cancer is the highest rate of cancer among Japanese women. Early detection 
and therapy would be the best to reduce the cancer mortality rate. The mammography 
process is commonly used for the early detection and diagnosis of cancer. However, it 
is believed that the mammography process may increase the risk of developing cancer 
due to x-ray irradiations.  To prevent this from occurring, processes with lower level 
of x-ray irradiations and high diagnostic skills are in great demand. As such, in recent 
years mammography processes with lower x-ray irradiations level, smaller pixel sizes, 
efficient screening and processing capabilities have been developed [1]. 

On the other hand, there are many cases of breast cancer in Japan due to the high 
percentage of dense breast among Japanese women. In comparison to other countries, 
breast cancer is at its peak in Japan for women from their late 40s to early 50s. It is, 
therefore, vital that measures be taken to overcome this issue and Tomosynthesis is 
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being recommended. Tomosynthesis is a technology capable of reducing superim-
posed structures such as mammary glands.  The Tomosynthesis process is able to 
obtain multiple images from various angles, reconstructs and creates “sliced” images 
in the human body.  In the field of mammography, Tomosynthesis is considered to be 
a technique which improves diagnostic performance [2,3,4,5,6,7], capable of observ-
ing superimposed legions such as tumor and overlapped mammary glands.  This 
would enable easier detection of lesions. 

We would now like to discuss the results of the study of the clinical efficacy using 
the 2-D image of a breast in identical condition as reference and the addition of To-
mosynthesis images. 

2 Methods and Materials 

The study was conducted with the approval of the Institutional Review Board of the 
National Hospital Organization, Nagoya Medical Center in Japan. 

FUJIFILM’s AMULET Innovality equipped with Dual Mode Tomosynthesis func-
tionality was used as the mammography device. The Dual Modes are, ST mode which 
realizes highly efficient workflow and low radiation dose examination with the angu-
lar range of ±7.5°, and HR mode which realizes high image quality and high resolu-
tion with angular range of ±20°. 

The hospital is an institution where patients of breast disease undergo long-term 
follow-ups, thorough examinations and treatments, and it is not a facility where pa-
tients undergo breast screenings. Owing to this, subjects of this study who consented 
to participate have been selected from patients of the hospital for the purpose of breast 
diagnosis. 

A total of 100 cases in 183 breasts collected from August 19th, 2012 were chosen 
as the candidates of this study. Among the 100 cases, 50 cases/100 breasts were ex-
amined with 2D+ST mode and the other 50 cases/100 breasts were examined with 
2D+HR mode. Furthermore, 17 micro-calcifications cases those have less mammary 
gland and no appearance like masses were excluded from the analysis because addi-
tional information could not be obtained though Tomosynthesis image was added to 
2D. 

In all the cases used for the study in interpretation, the cancer cases confirmed by 
pathological diagnosis are classified as malignant, no particular findings and mastopa-
thy cases in integrated diagnosis of MMG and US are categorized as normal, and 
other cases are categorized as benign.  

Details of all the cases from the results of this classification are: 43 normal breasts 
(28 breasts of no particular findings and 15 breasts of mastopathy), 43 benign breasts 
and 7 malignant breasts in ST mode; and 31 normal breasts (17 breasts of no particu-
lar findings and 14 breasts of mastopathy), 50 benign breasts and 9 malignant breasts 
in HR mode.  

Seven radiologists, who are Class A approved radiologists by The Japan Central 
Institute on Quality Assurance of Breast Cancer Screening, interpreted only 2D and 
recorded the position of lesions, findings, category classification for Japan and POM 
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(Probability Of Malignancy). After the interpretation of 2D, the radiologists inter-
preted 2D with Tomosynthesis images and recorded the same information. 

The bases of the category classification for Japan was adapted from BI-RADS 
(Breast Imaging Reporting and Data System) by ACR (American College of Radiolo-
gy) and it was optimised to be used in Japan as shown in Table 1. The category 3 or 
higher needs additional diagnosis such as ultrasound, MRI and biopsy. 

Table 1. Category classification for Japan 

Category Class 
C1 Negative 
C2 Benign 
C3 Benign, but malignancy cannot be ruled out 
C4 Suspicious abnormality 
C5 Highly suggestive of malignancy 

 
POM is a 0 to 100 score assigned by radiologist to each suspicious finding, as their 

perception of the percentage chance that the suspicious finding might be malignant. 
Sensitivities, specificities and AUCs (Area Under the Curve) according to ROC 

(Receiver Operating Characteristic) analysis [8] (DBM MRMC 2.2 [9]) between 2D 
alone and 2D+Tomo were compared from the result of the interpretation. Statistical 
significance tests for the sensitivity and specificity from the results in 2D alone and 
the results in 2D+Tomo were implemented by McNemar's test. 

Discretion flow of positive and negative cases is shown in Figure 1.  
 

 

Fig. 1. Discretion flow of positive and negative cases 

Total 
ST 93breasts 
HR 90breasts 

Cancer case 
ST 7breasts 
HR 9breasts

2D or 2D + Tomo >= C3 
ST 19breasts 
HR 33breasts 

US >= C2 
ST 17breasts 
HR 31breasts

ST 86breasts 
HR 81breasts 

ST 67breasts 
HR 48breasts

Negative 
ST 69breasts 
HR 50breasts 

Positive 
ST 24breasts 
HR 40breasts 
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Mammograpy does not offer a definite diagnosis. Therefore, the purpose of this 
study is to clarify a detection performance for cases which need additional diagnosis 
by 2D+Tomo. Now, therefore in this study, the cases other than ‘normal’ and ‘masto-
pathy’ were considered as Positive, and the rest of the cases were considered as Nega-
tive. However, since AUC was calculated by using a probability of malignancy for 
ROC analysis, only cancer cases were considered as Positive. 

3 Results 

3.1 Sensitivity 

The sensitivity acquired from the result of the interpretations by 2D alone as well as 
2D+Tomo, is shown in Table 2. In the interpretations with 2D+Tomo in ST mode, 
1.15 times as much as the sensitivity of 2D alone was improved. Moreover, in the 
interpretations with 2D+Tomo in HR mode, 1.30 times as much as the sensitivity of 
2D alone was improved.  

Table 2. Sensitivity by all radiologists 

Tomo Mode 2D 2D+Tomo Ratio P - value 
ST mode 64.9% 74.4% 1.15 <.01 
HR mode 52.9% 68.9% 1.30 <.001 

3.2 Specificity 

The specificity acquired from the result of the interpretations by 2D alone as well as 
2D+Tomo, is shown in Table 3. There was no significant difference in specificity 
between the images of the interpretation with 2D+Tomo in ST mode and 2D alone; 
and the interpretation with 2D+Tomo in HR mode was decreased by 0.95 times as 
much as the specificity of 2D alone. 

Table 3. Specificity by all radiologists 

Tomo Mode 2D 2D+Tomo Ratio P - value 
ST mode 89.4% 89.0% 1.00 .73 
HR mode 94.0% 88.9% 0.95 <.01 

3.3 ROC Analysis 

The value for the AUC from the result of the interpretations by 2D alone as well as 
2D+Tomo is shown in Table 4. There was no significant difference between the inter-
pretation with 2D+Tomo (both in ST and HR mode) and 2D alone. 
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Table 4. Area under the pooled ROC curve 

Tomo Mode  2D 2D+Tomo Difference P - value 
ST mode  0.919 0.963 0.044 0.05 
HR mode  0.856 0.875 0.019 0.61 

 
Tomo Mode 95% CI 

ST mode -0.08848 ,  0.00006 
HR mode -0.09642 ,  0.05800 

4 Discussion 

4.1 Clinical Performance of Additional Interpretation with HR Images 

In interpretations with the HR images added, the specificity decreased though the 
sensitivity enhancement rate increased compared with the interpretation of 2D alone. 
This is because the fine lesions such as small tumor and duct ectasis which cannot be 
visualized in 2D, were visualized as shown in Figure 2. In this way, it is suggested 
that the interpretations with 2D+Tomo in HR mode is expected to be used for breast 
diagnosis because it has high sensitivity and structures such as lesion can be visua-
lized in detail. 

4.2 Clinical Performance for Additional Interpretation with ST Images 

On the other hand, In the interpretations with 2D+Tomo in ST mode, the sensitivity 
was higher than the 2D alone and the specificity was equivalent though the sensitivity 
did not increase as much as the interpretation with 2D+Tomo in HR mode. Hence, it 
is suggested that the interpretations with 2D+Tomo in ST mode is expected to be used 
for breast screening.  

4.3 Opinion: Sensitivity of 2D 

Sensitivities acquired from the result of the interpretations of 2D are different be-
tween the group of ST and HR mode. The reasons for the difference are considered to 
be as follows: 

1. Numbers of positive cases are biased. (24 breasts in ST mode and 40 breasts in HR 
mode) 

2. Types of positive cases (such as size and form of tumor) are biased.  

These reasons should be taken in consideration for future studies. 
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Fig. 2. 2D and HR images of small tumor (arrowed parts in the top images) and duct ectasia 
(circled in the bottom images) 

4.4 Trial for Enhancement of Specificity 

In the event the present category classification for Japan of C3 or higher is set as recall, 
specificity decrease cannot be avoided in the interpretations with 2D+Tomo in HR 
mode. Therefore, the category C3 was divided into C3-1 (follow-up) and C3-2 (recall), 
and the sensitivities and specificities of them were compared. The judgment criteria of 
the division was circumscribed margin, low density and scattered distribution of masses 
in small quantity. They are categorized based on the experiences of the radiologists. As 
the result, the specificity, which had been 0.95 times as much as 2D alone in C3, was 
improved to 0.99 times as much as 2D alone by changing the category to C3-2. It re-
sulted in no significant difference with 2D alone. Moreover, the sensitivity became 1.33 

2D HR 

2D HR 
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times as much as 2D in C3-2 from 1.30 times in C3. Furthermore, the specificity did not 
change in the interpretations 2D+Tomo in ST mode compared with 2D alone (1.00 
times both in C3 and C3-2); and the sensitivity increased from 1.15 times as much as 
2D in C3 to 1.27 times in C-3-2. (Table 5)  

Based on the above, it is believed that the specificity which deceased in the inter-
pretation with 2D+Tomo in HR mode could be enhanced with false positive inhibition 
by dividing the category classification for Japan C3 into C3-1 (follow-up) and C3-2 
(recall). In addition, it is believed that the compatibility with the enhancement of sen-
sitivity is also possible. 

Table 5. Sensitivity and specificity when the category classification C3-2 or higher is set as 
recall 

 Sensitivity 
Tomo Mode 2D 2D+Tomo Ratio P - value 

ST mode 43.5% 55.4% 1.27 <.001 
HR mode 30.0% 40.0% 1.33 <.001 

 
 Specificity 
Tomo Mode 2D 2D+Tomo Ratio P - value 

ST mode 94.2% 94.6% 1.00 .64 
HR mode 98.3% 97.2% 0.99 .53 

Note. The reason why the sensitivity is lower when C3-2 or higher is set as recall 
than when C3 or higher is set, is that the number of positive cases between C3 or 
higher and C3-2 or higher are identical. 

4.5 Outlook for Results of ROC Analysis 

The reasons for no significant difference in the AUC between the interpretations with 
2D alone and with 2D+Tomo are likely to be as follow:  

1. The number of cancer cases and total cases are insufficient. (6 positive cases out of 
43 cases in ST mode and 8 positive cases out of 42 cases in HR mode) 

2. The number of cases, which have different results between the interpretation with 
2D alone and 2D+Tomo, are extremely rare. 

As such, the above should be considered for further studies.  

5 Conclusion 

Clinical performance that can be achieved from addition of the interpretation of To-
mosynthesis images to 2D was studied. The result of this study confirmed that the 
interpretation with 2D+Tomo in HR mode could have higher sensitivity and the capa-
bility of visualizing structures such as lesions in more detail as compared to the inter-
pretation of 2D alone. As such, it is possible to use HR images for breast diagnosis.  
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In contrast, the interpretation with 2D+Tomo in ST mode has equivalent specificity 
although it has higher sensitivity compared to the interpretation of 2D alone. There-
fore, it is possible to use ST images for screening. Furthermore, the specificity was 
enhanced due to inhibition of false positive and the sensitivity was enhanced in the 
interpretation with Tomosynthesis images added to the interpretation of 2D alone by 
appropriately dividing the Class C3 of the category classification for Japan. More 
detailed clinical performance studies will be carried out by increasing the number of 
cases in analyses such as ROC analysis. 
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Abstract. Digital Breast Tomosynthesis (DBT) has the potential to replace or 
supplement Digital Mammography (DM). Studies have shown that it takes ra-
diologists more time to read DBT examinations compared with DM. The slice 
separation of image volumes has been set to 1 mm on most systems. By using 
thicker slices review time could be reduced. This paper investigates the possi-
bility of using 2 mm Average Intensity Pixel (AIP) slabs for image review. The 
thicker slabs were created using a method based on statistical artifact reduction 
and super-resolution. Six radiologists were presented with 20 sets of images 
containing 16 tumor masses and 8 micro-calcification clusters. They ranked 2 
mm slabbed sets relative to standard 1 mm. Visibility (P = .0044) of micro-
calcifications improved and there was no significant effect on mass visibility (P 
= .46). The results indicate that it is possible to review DBT-volumes with 2 
mm slabs without compromising image quality. 

1 Introduction 

During recent years, digital breast tomosynthesis, (DBT), has moved from the labora-
tory to the clinic, with many vendors having developed dedicated systems. Several 
studies suggest that DBT has the potential to become an important tool in both screen-
ing- and clinical settings; showing increased detection rates both in combination with 
digital mammography (DM) and on its own [1-6]. However, DBT, as an emerging 
and continuously maturing modality, must adapt and conform to the realities of clini-
cal usage.  

Radiologists, especially in a screening setting, prefer novel technologies that  
decrease, or at least do not increase their workload. If an increase in workload is ba-
lanced by corresponding improvements in e.g. patient care this may well be an  
acceptable tradeoff, but care should be taken to minimize the additional workload 
required. In the case of DBT, a major negative aspect of the new modality compared 
to the gold standard of DM is the increased review time [3,4,6,7]. This is a direct 
consequence of the nature of DBT: sifting through a 3D image volume slice-by-slice 
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takes more time than viewing a single 2D mammogram. This is to some extent un-
avoidable – especially so in set-ups where DBT images is reviewed in addition to DM 
images – but optimization of the reviewing of 3D-volumes is important if DBT is to 
become a screening modality.  

Currently, an arbitrarily chosen slice separation of 1 mm has become widely ac-
cepted. It is possible to reconstruct at other thicknesses, but this would require the 
tailoring of filters and parameters to fit the new thickness [8]. In general, tomosynthe-
sis, due to a limited angular range, suffers from relatively substantial out-of-plane 
artifacts (compared to e.g. CT) which limit the depth resolution, meaning that the size 
and depth of structures is badly defined [9-12].  

This study uses the intuitive method of reducing the amount of images, i.e. using 
thicker slices. This has been shown to reduce review time, but it remains untested if 
image quality is adversely affected, which this study seeks to investigate [13].  

2 Method 

2.1 Slabbing 

Combining, or “slabbing”, a number of reconstructed slices into a thicker slab has 
been investigated and is often a standard option on workstations [13-15]. To create 
slabs, two intuitively simple approaches are standard: average intensity projection 
(AIP) and maximum intensity projection (MIP). AIP-slabbing smooth images in the 
z-direction, reducing noise but also reducing contrast of small structures such as mi-
cro-calcifications. In MIP-slabs, the noise in each constituent slice will be added  
together in the z-direction, which can potentially increase the visibility of micro-
calcifications by combining vertically separated calcifications into the same slab. 
Slabs can also be made overlapping, so that each slice is included in more than one 
slab. This can provide smoother transitions when viewing the volume in a loop or 
scrolling through it, but has a negative impact on depth resolution if slice number is to 
be preserved.  

To make effective slabs of arbitrary thickness, this study employs a method based 
on super-resolution and a statistical artifact reduction scheme [16]. In this paper this 
will be referred to as SRSAR. It bypasses some of the limitations of standard filtered-
back projection (FBP) reconstructions by reconstructing very thin slices (0.1 mm) and 
removes artifacts by an outlier detection algorithm, instead of using a slice-thickness 
filter. This approach in theory provides better depth resolution by suppressing out-of 
plane artifacts, but also increases image noise. SRSAR was suitable for the study as 
the reconstructed thin slices can be collapsed into slabs of suitable thickness, using 
AIP to limit image noise and preserve depth resolution. In the version we employed, 
an additional iterative filter was used to reduce image noise. In theory the SRSAR 
method should yield better soft-tissue contrast and this – along with effective artifact 
reduction – could offset negative impacts on image quality from slabbing, and thus be 
a better alternative than simply slabbing standard FBP volumes.  
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Table 1. Description of grading criteria. All criteria were rated better, equivalent or worse 
compared to the baseline 1 mm FBP images. It was recognized that increased depth definition 
may have a negative impact on the detection of calc clusters, so a rating of better in this case is 
construed to mean more and a rating of worse to mean less. 

2.2 Image Acquisition and Evaluation  

All images used in the study were acquired on a MAMMOMAT Inspiration Tomo 
(Siemens AG, Erlangen, Germany). Unprocessed projection images were extracted 
from the image database and individually reconstructed. Projection images were re-
constructed with standard FBP with 1 mm slice separation, and with SRSAR into 2 
mm slabs using no overlap, i.e. each part of the volume was only included once.  

20 image volumes were selected from a pool of cases of cancers that had been 
missed on DM but detected on BT and an additional set of micro-calcification clus-
ters. These cases were considered likely to be subtle and to highlight any differences 
between 2 mm SRSAR and 1 mm FBP. The images contained a mix of masses – spi-
culated and non-spiculated, circumscribed and diffuse – and micro-calcifications, both 
alone and in conjunction with masses. In total, 16 volumes contained masses (biopsy-
proven cancers) and 8 contained micro-calcification clusters (both associated with 
masses and independent of masses). 

Evaluation of image quality was carried out using relative visual grading, with im-
age volumes with thicker slabs compared with standard image volumes. Two groups 
of relevant structures were used: micro-calcifications and tumor masses. For each 
group three grading criteria were applied (Table 1). Each criterium was graded as 
better, equivalent or worse than the baseline. ViewDEX [17] was run on a Siemens 
Syngo MammoReport workstation to display and grade images side-by-side. 6 breast 
radiologists – all with at least one year of experience of DBT in both clinical and 
screening settings – were employed to grade the images. A researcher was in atten-
dance during review. Each reader was also asked the subjective question of whether 2 
mm SRSAR was, in their opinion, suitable to be used in the clinic. 

Tumor masses  Micro-calcifications  
Visibility; Overall visibility 

of the structure 
Visibility; Overall visibility of 

the structure 
Contrast; Contrast of the 

mass compared 
to immediate 
surrounding 
tissue 

In-plane definition; Definition and 
sharpness of micro-
calcifications and 
separation of indi-
vidual micro-
calcifications in 
clusters  

Border; Definition and 
sharpness of the 
mass border and 
visibility of 
spiculations    

Depth definition; Size and strength of 
out-of-plane arti-
facts and separation 
of clusters into 
individual slices 
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Friedman’s test was used to statistically evaluate the difference between the two 
sets of images. 

3 Results 

For masses, 2mm SRSAR had significantly greater contrast (P < .0001), but showed 
no significant difference in either overall visibility (P = .46) or border definition  
(P = .77). For micro-calcifications there were significant improvements in visibility  
(P = .0044), in-plane definition (P < .0001) and depth definition (P <.0001). Results 
are summarized in Table 2. 

Table 2. Results of image quality grading by criteria. All statistically significant differences 
(according to Friedman’s test) are indicated. 

Tumor masses Micro-calcifications 

 P-value 1 mm 
FBP 

2 mm 
SRSAR 

P-value 1 mm 
FBP 

2 mm 
SRSAR 

Visibility; .46 Equal Equal Visibility; .0044 Worse Better 

Contrast; <.0001 Worse Better In-plane 
definition; 

<.0001 Worse Better 

Border; .77 Equal Equal Depth 
definition; 

<.0001 Worse Better 

 
Five out of six readers agreed that the differences between the two sets of images 

were minor and that the 2 mm SRSAR-images could be used instead of standard 1 
mm FBP without impairing image review.  

4 Discussion  

The SRSAR-images were noted as being somewhat blurred, but with a lower noise 
level. One reader thought that the blurring would have implications on mass detec-
tion. The most notable difference was a perceived greater contrast in the SRSAR vo-
lumes, lending the images an appearance closer to DM images. Readers noted that the 
SRSAR images were more comfortable to read due to both the greater contrast and 
the lower noise level.  

The blurry appearance of masses was noted as a concern by a few radiologists. Al-
though contrast between masses and background was generally improved, especially 
when masses were located in dense tissue, the definition of edge characteristics suf-
fered in some cases. In the case of spiculated lesions, spiculations were noted by some 
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as sharper and better defined on standard 1mm. On the other hand, it was also noted 
that the contrast between spiculations and background was better on 2 mm SRSAR. 
Reviewers were divided as to whether this was an acceptable tradeoff. For circum-
scribed masses, 2 mm SRSAR was considered to show a greater contrast difference 
between mass and fibroglandular tissue, with edges more clearly differentiable from 
the background. Overall, the only statistically significant difference between the two 
reconstructions is the increased contrast of SRSAR, but there was as noted no statis-
tical differences in either border characteristics or most crucially visibility, meaning 
that any negative or positive effects on the detection of masses is probably minor.  

Calcifications were significantly more visible and better defined on SRSAR, which 
was reflected in reviewer opinion, with noticeable differences in contrast and sharp-
ness. The radiologists did not view the improved depth definition as advantageous in 
the detection of calcifications, as clusters were split into separate slices and single 
calcifications appeared in fewer slices. The exact effects of this on detection is hard to 
gauge without further investigation. One can either contend that having the structure 
visible in a large number of slices gives the reader more time to detect it or speculate 
that having it visible in a single slice will aid detection by a sudden pop-up effect 
when combined with the higher contrast in SRSAR-images.  

Some radiologists noted that very small calcifications seemed to lose contrast on 
SRSAR compared to FBP though this effect was only present in very small and faint 
calcifications; other calcifications, as noted, improved in both contrast and definition. 
The explanation could be that such small structures are interpreted as artifacts and 
suppressed, or it could be that they are smoothed by the AIP-slabbing.  

Our previous work shows that viewing screening volumes at 2 mm rather than 1 
mm reduces review times by 20% on normal images [13]. There was no significant 
change in review time of true positive cases, i.e. cancer. However, as malignant tu-
mors make up only a tiny fraction of the total number of cases, this has little influence 
on overall workload. As long as there is a non-inferiority in cancer detection between 
the 2 mm method and the 1 mm method, it is therefore desirable to employ 2mm slic-
es in order to reduce workload.   

Five of the six radiologists believed that it would be possible to use 2 mm SRSAR 
images in screening situations, rating them as either equivalent or superior to 1 mm 
FBP, while one radiologist believed the new images to be unsuitable due to blurring. 

A limitation of the study is that only thick-slice SRSAR was used, and therefore our 
results cannot separate the effects of SRSAR vs. FBP from 1 mm vs. 2 mm slices. It is 
plausible that the use of 1 mm SRSAR could provide better detection of lesions, and it 
is also possible that 2 mm FBP slices or slabs could be non-inferior to 1 mm FBP.    

In conclusion, our results support that 2 mm SRSAR images compare well with 1 
mm FBP, with a notable improvement in overall image contrast. Contrast and defini-
tion of microcalcifications were seen as advantageous for detection, while the overall 
visibility of masses remained at the same level. In the interest of saving reading time, 
it would therefore be possible to use 2 mm slices as standard.  

Acknowledgments. The authors would like to acknowledge Shiras Abdurahman, 
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Abstract. We have applied novel computational image analysis algorithms to 
detect malignant masses in mammograms. Our analysis focuses on spiculated 
lesions, which are particularly challenging for computer-aided detection  
methods. The algorithm uses the principle of locally-normalised correlation 
coefficients to identify patterns of motifs representing a spiculated feature. A 
combination of correlation maps indicating the maximum correlation of the mo-
tif at each position relative to the mammogram, and of the pattern of angles for 
which this maximum is observed, are used to locate spiculated lesions in a veri-
fied test dataset. The test set of images has been annotated by an expert reader, 
and allows objective evaluation of computer-aided detection procedures. In a 
blind test using an automated procedure our method identified 54% of the le-
sion locations in the set of test images. This initial blind testing and comparison 
with expert annotated images, representing a ground truth, indicates feasibility 
for our approach. Optimisation of the procedure is expected to yield improved 
performance. 

Keywords: Spiculated lesion, mammogram, breast cancer, local correlation. 

1 Introduction 

Breast cancer represents the most common cancer in women over the age of 50, and 
in the UK a national mammographic screening programme is in operation for women 
between the ages of 47 and 73. X-ray mammograms are exceptionally difficult im-
ages to interpret owing to the high degree of variability between individuals’ breasts, 
the nature of the projection images, and the variability and subtlety of signs of early 
cancer. Images are therefore read by two human experts. It has been proposed that 
should a reliable computer-aided detection (CAD) system be available, it could be 
used to replace one of the expert reads, thus freeing radiologists for alternative tasks 
[1]. Current CAD systems do not perform sufficiently well for this at present.  



 Detection of Spiculated Lesions in Digital Mammograms 551 

Previously, we developed new pattern-recognition techniques to detect molecular 
structures in transmission electron cryo-microscopy (cryoEM) images. Radiographs 
and cryoEM images of biological samples share characteristics which make them 
challenging for image analysis. This is mainly due to the inherent restrictions pre-
sented by the imaging of radiation-sensitive structures, where the radiation dose used 
to produce the images must be limited, resulting in low contrast and poor signal-to-
noise ratio. In this work we describe the application of locally-normalised correlation 
analysis –– a technique developed for cryoEM image analysis –– to mammographic  
imaging.   

2 Method 

We focus on the detection of spiculated lesions, which have been identified as one of 
the most challenging types of abnormality for computer-aided detection methods.   

The algorithm uses the principle of locally-normalised correlation coefficients to 
identify patterns of motifs representing a spiculated feature. The local normalisation 
procedure effectively rescales the motif and the data to minimise the squared differ-
ences between equivalent pixels [2,3]. Local normalisation implies that the calcula-
tion is performed solely in the region defined by the motif. The calculated correlation 
coefficient is related to an optimum least squares residual, where the images have 
been scaled linearly to minimise that residual. This linear scaling optimises two pa-
rameters, namely a gain or multiplicative factor, and a constant offset. This allows the 
procedure to adapt to the arbitrary scaling of the projection images, in which density 
variations are recorded, but are not calibrated in terms of an absolute mass detected in 
the path of the imaging beam. The procedure operates in two stages. First, the correla-
tion maps are calculated. The second set of steps consists of identifying peaks in the 
correlation maps, followed by reliably identifying patterns and peaks located as spicu-
lated lesions. 

2.1 Locally Normalised Correlation Coefficients and Correlation Maps 

In order to calculate the locally-normalised correlation map, correlation coefficients be-
tween a template object and the locally masked area of the mammogram image are de-
termined. An example template is shown in figure 1. A binary mask defines the boundary 
of the template. Only those points defined by the mask are used in the calculation.  
 

 
Fig. 1. Left to right: Template image, binary mask, outline of the binary mask on template 
image indicated by dashed line 
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The template (and the associated binary mask) is scanned across the images and a 
normalised correlation coefficient is calculated between the template and the masked 
image at each position. In order to detect spiculated features in all orientations, the 
template is rotated through 360 degrees, using a step size of two degrees. The highest 
correlation coefficient for each position and rotation of the template is stored in a 
correlation map image. The corresponding angle of rotation of the template at each 
position is recorded and stored in an image denoted as the omega map. The images 
were sampled at 94.1 µm per pixel. 

2.2 Analysis of Omega Maps 

In regions where spiculated features are found, a peak feature is present indicating the 
radiating nature of the spiculated mass (e.g. figure 2e). This peak appears as geome-
tric sectors ordered around a central origin. This motif resembles a shadowed moun-
tain peak in an aerial photograph. Figure 2f shows one such peak extracted from one 
of the analysed images. In these regions, when the angles in annuli centred on the 
peak in the omega map are plotted, they range from 0 to 358 degrees relatively 
smoothly. Ideally, the relative orientation of the located spiculated features should 
correspond to a radial progression of orientations which circumscribe the centre of the 
peak. The slope of a fitted line should be approximately one. In order to reduce noise, 
a circular trace centred on each point is computed by averaging over several annuli. In 
order to achieve this, a box drawn around each evaluated peak position is extracted 
and converted to polar coordinates. Then, radii from 20 to 45 pixels are averaged in 
order to obtain the trace of the relative rotation of the motif observed, as a function of 
the orientation around the point. A least square residual was used to score the fit of a 
line of slope 1 to the points in this calculated profile. The residuals were stored in 
image maps.  

2.3 Lesion Identification 

A procedure was devised to calculate a score for the position of identified lesions 
from the correlation maps and derivatives calculated as described above. The correla-
tion maps were smoothed by convolution with a 2-dimensional Gaussian function 
with a standard deviation of 10 pixels, and a threshold applied. The residual maps 
computed from the omega maps (as described in section 2.2) were also thresholded at  
a set value. Threshold values were determined by optimisation of performance on the 
training set. Values below the threshold were set to zero. The two thresholded scores 
were multiplied to obtain scores for positions of lesions. Features in low density re-
gions were removed by multiplication with a third mask. To create this mask, the 
mammogram image was convoluted with a Gaussian function, as above, to integrate 
relative density, and a threshold applied at half the maximum value. 
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2.4 Evaluation of the Procedure  

A set of 50 anonymised digital screening mammograms was obtained from the UK 
National Health Service Breast Screening Programme. These had previously been 
reviewed by an expert radiologist who marked the positions of all biopsy-proven ma-
lignant lesions and verified that no further lesions were present by inspection of sub-
sequent mammograms. 25 of these were classified as spiculated. Ground truth masks 
identifying the positions of the lesions, as indicated by the clinician, were used in an 
automated procedure to evaluate the accuracy of lesion detection by our procedure. In 
the evaluation process the final image indicating the detected peaks is multiplied by 
the ground truth mask. Peaks are detected and compared to the list obtained before 
applying the mask. Peaks that match are true positives. Any additional peaks observed 
which were not within the masked area are false positives.  Lack of detection of a 
peak within the masked area is considered a false negative. The SPIDER[4] image 
processing suite was used to implement the procedures in section 2.2 and 2.3. 

3 Results and Discussion 

We tested our method to locate spiculated lesions in craniocaudal (CC) views in this 
expert-verified test dataset. Figures 2, 3 and 4 illustrate our procedure and show some 
preliminary results. Correlation maps were computed with the images shown, using 
the template detailed in figure 1. Two of the 25 images were rejected from the analy-
sis: one because no ground truth was available for the CC image, and one because the 
lesion was on the very edge. After initial evaluation on a training set of 10 images, 
blind testing was performed using a further 13 unseen images.  

In the first example, figure 2, the lesion appears as a dense mass and is well-
defined. A peak in the correlation map clearly indicates its location. The omega map 
shows a characteristic peak at the identical position, indicative of the detection of 
radial features. At those locations where the lesion is not present, features in the ome-
ga map are less defined and are not as symmetrical.  

In the second example, the mass is not as well defined (figure 3). It is not the most 
dense feature in the image, and there are a number of other regions of high density. 
Nevertheless, the correlation map indicates a defined peak which coincides with the 
known lesion position. A distinct peak in the omega map also coincides with this 
location, and supports this peak detection. The other strong features in the image do 
not produce well defined peaks in either the correlation map or the omega map. Taken 
together, these calculations are proving to represent reliable indicators which may be 
used to detect anomalous masses in the mammogram images. 
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Fig. 2. a. Mammogram processed for display; b. the correlation map of the image with the 
template (as shown in figure 1) shown as an insert, at 2 times relative scale, bottom left. This 
map shows the best locally-normalised correlation coefficient at each position, for every orien-
tation of the template.  The boxed region identifies a potential hit. The side of the box is 22 
mm; c. enlargement of the boxed region shown in b. The peak consists of a ring of high intensi-
ty correlation, neither solid nor of Gaussian distribution in form. It is composed of a ring of 
higher correlation, with a weaker centre, since the template is designed to match features on the 
periphery of the lesions; d. a mammogram, as in a, with a circle indicating the location of the 
lesion; e. an image representing the angle of rotation of the template at each position, corres-
ponding to the highest correlation coefficient—the omega map. Rotations in the range 0 to 358 
degrees are represented by a scale of black to white. Regions of interest look like mountain 
peaks, with sectors radiating from a central point; f. an enlarged view of the peak indicated by 
the square box; g. an enlarged view of the region indicated by the rectangular box (not the 
lesion region), which contains a less well-defined peak. Enlarged regions are magnified three-
fold.  
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Fig. 3. Left to right: Mammogram, correlation map (lesion indicated by arrow), omega map, 
enlargement of omega map region indicated by the square box, enlargement of omega map 
region indicated by the rectangular box. (The rectangular region does not contain the lesion). 
Enlargements are threefold. 

In figure 4 we show the results of the procedure to identify and locate the “moun-
tain peak” motifs introduced in figures 2 and 3. When the map of peak locations (cal-
culated from the minimum residuals, section 2.2) is overlaid on the mammogram, it 
can been seen that the centres of the peaks identified coincide with globular textured 
regions. This map is used in conjunction with the correlation maps to identify the 
cancerous spiculated lesions. 

We initially tested our procedure on a set of 10 images in a training stage, and 
chose suitable values for the thresholds and filters. Evaluation was then performed 
blindly on a set of 13 unseen images. In this blind test five lesions were identified  
in images, with zero or one false positive hits. Two more lesions were identified,  
with four or five false positive hits in addition. For five images the lesion was not 
detected, but between zero and six false positives (FPs) were returned. No hits were 
identified in one image. This gives a detection rate of 54%, with a moderately low 
false positive rate. These initial results demonstrate a proof of principle for our ap-
proach. Our procedure is in an early stage of development, and there is potential to 
improve it by adding additional filters to identify the correct peaks from noise. The 
parameter settings used here were chosen to yield a relatively low FP rate, however it 
would be possible to detect a higher number of lesions at the expense of increased 
FPs, which could then be reduced by further analysis of the properties of the detected 
regions. 
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Fig. 4. The peak detection results for one of the omega maps. The map of residuals calculated 
from the omega map is overlaid on the omega map (left), and on the mammogram image 
(right). The peaks found in the polar residual analysis are located centrally on the “mountain 
peak” motifs. The two main peaks are indicated with solid arrows. A few smaller peaks are 
present, which are more easily seen in the right hand image (indicated by broken line arrows).  
Simple thresholding to 60% of the maximum peak height eliminated all but the two main peaks 
indicated by the solid arrows. The correlation map (not shown) is also used to identify the 
spiculated regions. A threshold is applied to the correlation map and the resultant image is used 
as a mask to eliminate regions with lower correlation values. This procedure selected only the 
left hand peak indicated by the long arrow in the images above, which coincides with the re-
gion demarcated by the clinician as a spiculated lesion. Two peaks in the background of the 
image can been seen near the top (indicated by a rectangle on the left panel). Features in re-
gions such as these, outside the breast area, were excluded when the other criteria were applied. 

4 Concluding Remarks 

We have developed a novel method for detecting spiculated mammographic abnor-
malities, which in our initial evaluation is robust to other mammographic features. 
These results are encouraging given that we have not extensively optimised the selec-
tion criteria and thresholds. Therefore this preliminary blind testing and comparison 
with expert annotated images, representing the ground truth, has indicated favourable 
results. In the future we will optimise the parameters and test our procedure on a larg-
er unseen test set.  
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Abstract. We present a novel method to detect asymmetry in mam-
mograms based upon bilateral analysis of the spatial distribution of den-
sity within paired mammographic strips. Various differential measures
of spatial correlation of gray-scale values were computed with reference
to the position of the nipple for a set of 128 pairs of mammograms from
the Digital Database for Screening Mammography (DDSM). Features
were selected by stepwise logistic regression and the leave-one-patient-
out method was used for cross-validation of results. An area under the
receiver operating characteristic curve of 0.87 (SE = 0.08) was achieved
by using an artificial neural network classifier with radial basis functions.

Keywords: breast cancer, bilateral asymmetry, computer-aided detec-
tion, mammography, spatial correlation.

1 Asymmetric Findings in Mammograms

Periodic examination of asymptomatic women via mammographic screening is
aimed at early diagnosis of breast cancer and consequent improvement in the
prognosis for the patient [1]. Radiologists perform comparative studies of the left
and right mammograms of the same patient to prevent missing signs of breast
disease. When a greater area of tissue with fibroglandular density is detected in a
mammogram relative to the corresponding region in the controlateral breast, it is
reported as an asymmetric finding, either local or global [2]. Asymmetric findings
on mammograms may indicate a developing or underlying mass. They can be
subtle in presentation and hence overlooked or misinterpreted by radiologists.

Several studies have shown the association between mammographic fibroglan-
dular density and the risk of developing breast cancer [3] and substantial effort
has been directed to develop methods for quantification of breast density in
mammograms [4,5]. In addition to the presence of fibroglandular density, asym-
metric fibroglandular findings, which are detected via comparison of the two
mammograms of the patient, have proved to be an indicator of increased risk of
developing breast cancer [6–8].
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The development of automated methods for quantification of asymmetry as
part of a computer-aided detection (CADe) system can facilitate more accurate
interpretation of mammograms and assist radiologists in the reporting process,
so that the efficacy of breast cancer screening and prevention programs can
be improved. The complexity of detecting asymmetry in mammograms lies in
finding accurate matches between anatomical structures to be compared and in
designing measures capable of distinguishing structural asymmetry from physi-
ological or positioning differences between the two breasts of the same patient.
Analysis of previous work suggests that automatic detection of asymmetry in
mammograms can be achieved [9–15, 18, 19]. However, more effort is needed to
devise new methods to increase the performance level and to progress towards
clinical application.

2 Dataset of Images

A set of 128 digitized screen-filmmammograms, including craniocaudal (CC) and
mediolateral-oblique (MLO) projections of the two breasts of each subject, was
selected from the Digital Database for Screening Mammography (DDSM) [16].
The images have spatial resolution of 42.5, 43, or 50 μm, and pixel depth of 12
or 16 bits/pixels (bpp). All the asymmetric cases available with proven ground
truth, consisting of 16 pairs of focal asymmetry and 16 pairs of global asymmetry,
have been included in this study. An additional set of 32 pairs of normal mammo-
grams was randomly selected for the inclusion of control cases [see Figures 1(a)
and (c)].

3 Methods for Bilateral Analysis of Spatial Correlation

Bilateral analysis of mammograms was performed via accurate matching of cor-
responding mammographic strips, and subsequent quantification of differences
in the spatial distribution of gray-scale levels, as follows.

1. Each image was downsampled to 600 μm/pixel. Reference anatomical struc-
tures, including the breast-skin line, the nipple, and the pectoral muscle
(only for MLO views) were extracted by using previously developed meth-
ods [17, 20].

2. Two automatic masking procedures were applied to the breast regions of
each pair of mammograms: medial and retroglandular for CC views, and
milky and retroareolar for MLO views [20, 21], yielding eight paired strips
for each masking procedure, as shown in the examples in Figures 1(b) and
(d).

3. For each strip, measures of spatial correlation, Sc, were computed with ref-
erence to the position of the nipple by comparing a matrix of differences of
gray-scale, Δfij , with a matrix of distances, Δdij , as follows:

Sc =
2

n(n− 1)

n∑
i=1

n∑
j=1

Δfij Δdij , (1)
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where n is the number of pixels within each strip. Radial correlation was
estimated by assigning Δdij = |di − dj |, with di, i = 1, 2, . . . , n, equal to the
length of the ith pixel’s position vector from the nipple. Angular correlation
was quantified by assigning Δdij = sin θij , where θij is the angle between
the position vectors of the ith and the jth pixels. Given the gray-scale level,
fi, of the ith pixel, based on different formulations of Δfij in Eq. 1, four
differential spatial correlation features for both angular and radial correlation
were defined as follows:

• ΔSc1 = |Scdx − Scsn| with Δfij = |fi − fj |,
• ΔSc2 = |Scdx − Scsn| with Δfij = |fi − fj |/(maxk fk +mink fk),

• ΔSc3 = |Scdx − Scsn| with Δfij =
(|fi − fj | − f̄

)
/σf ,

• ΔSc4 = |Scdx − Scsn|/(Scdx + Scsn) with Δfij = |fi − fj |,
where dx and sn indicate the right and left mammograms, and f̄ and σf

are the mean and standard deviation of gray-scale values within each strip,
respectively. The differential features obtained for each of the eight pairs of

(a) (b)

(c) (d)

Fig. 1. Pairs of normal CC (a,b) and malignant asymmetric MLO (c,d) views from
the DDSM [16] database. (a,c) Original images. (b,d) Bilateral mammographic strips
obtained via medial (b) and retroareolar (d) masking procedures.
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strips of a given masking procedure were summed, resulting in 32 features
for every patient.

4. A threshold of 0.6 on the area under the receiver operating (ROC) char-
acteristic curve, Az, of the individual features, followed by stepwise logistic
regression was applied to the training set of each leave-one-patient-out ex-
periment for automatic selection of features.

5. Three classifiers —linear discriminant analysis (LDA), quadratic discrimi-
nant analysis (QDA), and an artificial neural network with radial basis func-
tions (ANN-RBF)— were used for classification of mammograms as normal
or asymmetric pairs.

4 Results and Discussion

The results of performance analysis of the individual features are presented in
Table 1. The Az values are reported for the two mammographic projections
and the four related masking procedures. The Az values obtained when the
whole breast regions were used for computation of features without using any
masking procedure are also reported. The highest Az of 0.75 was obtained with
the ΔSc3 correlation measure and medial masking of CC views. The results
obtained with MLO views are poorer as compared to the results achieved with
CC views. Overall, the masking procedures improve the discriminating ability of
the features. The combination of features from both CC and MLO views using
LDA, QDA, and ANN-RBF classifiers along with automatic feature selection
and the leave-one-patient-out cross-validation provided, respectively, Az (SE) of
0.83 (0.07), 0.72 (0.09), and 0.87 (0.08). The best classification accuracy obtained
was 91%, with sensitivity of 1.0 and specificity of 0.81, using the ANN-RBF
classifier.

The results achieved in this study are compared in Table 2 with the other
results reported in the literature [10,12–15] and in our previous work on detection
of asymmetric findings in mammograms [19]. Note that only works with accuracy
results and/or ROC analysis are listed. The performance statistics of the selected

Table 1. Classification performance of individual features for spatial pattern analysis
of mammograms. Results are given in terms of Az. Cases with Az > 0.7 are shown in
bold.

View Masking
Radial correlation Angular correlation

ΔSc1 ΔSc2 ΔSc3 ΔSc4 ΔSc1 ΔSc2 ΔSc3 ΔSc4

CC
Medial 0.67 0.69 0.75 0.55 0.60 0.61 0.57 0.68
Retroglandular 0.59 0.47 0.52 0.68 0.47 0.39 0.47 0.54
None 0.41 0.62 0.72 0.43 0.46 0.41 0.50 0.57

MLO
Milky 0.36 0.49 0.50 0.45 0.54 0.63 0.57 0.57
Retroareolar 0.61 0.61 0.65 0.58 0.55 0.59 0.48 0.57
None 0.55 0.55 0.50 0.54 0.56 0.47 0.52 0.58
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methods show that the results obtained in the present work using, for the first
time, all of the available asymmetric cases in DDSM [16], are better than the
others reported in the literature. This study indicates that the differences in the
spatial distribution of pixel values within paired mammographic strips computed

Table 2. Performance statistics of selected methods for the analysis of asymmetric
findings in mammograms. Only works with accuracy results and/or ROC analysis are
listed.

Authors Dataset Summary of Methods and Results

Miller and Astley [10] A set of 150 MLO and medio-
lateral (ML) mammograms in-
cluding 47 normal and 28
asymmetric pairs.

Six shape, brightness, and topology de-
scriptors from manually marked regions
of the fibroglandular components of the
breast; LDA classifier and leave-one-out
cross-validation: accuracy of 76%.

Ferrari et al. [12] 80 MLO mammograms in-
cluding 20 normal cases, 14
asymmetric cases, and six
architectural distortion cases
from the mini-MIAS [22]
database.

Gabor wavelets, Karhunen-Loéve transform,
Otsu’s method, rose diagrams, and three
statistical features; Bayesian linear classi-
fier, exhaustive combination technique, and
leave-one-out cross-validation: accuracy of
74%.

Rangayyan et al. [13] 88 MLO mammograms in-
cluding 22 normal cases, 14
asymmetric cases, and eight
architectural distortion cases
from the mini-MIAS [22]
database.

Alignment of the phase responses of Ga-
bor wavelets with reference to the cor-
responding pectoral muscle edges, 16 di-
rectional, morphological, and density fea-
tures; quadratic Bayesian classifier, exhaus-
tive combination technique, and leave-one-
out cross-validation: accuracy rate of 84%.

Tzikopoulos et al. [14] 322 MLO mammograms from
the miniMIAS database [22]
including 15 asymmetric
cases; all the remaining cases
treated as symmetric.

Minimum cross-entropy thresholding, 114
differential first-order statistical features;
support vector machines, t-test for selec-
tion of 18 features, and leave-one-out cross-
validation: accuracy of 85%.

Wang et al. [15] 800 full-field digital mam-
mograms, including CC and
MLO views of 100 normal
cases and 100 verified positive
cases for developing breast
cancer 6 to 18 months later.

20 features including statistical, textural,
and density features from automatically se-
lected regions of interest and the entire
segmented breast areas; genetic algorithms,
ANN classifier, and leave-one-patient-out
cross-validation: area under the ROC curve
of 0.78.

Casti et al. [19] 128 images of CC and MLO
mammographic projections
from the DDSM [16] in-
cluding 16 pairs of focal
asymmetry, 16 pairs of global
asymmetry, and 32 randomly
selected pairs of normal
mammograms.

Multidirectional Gabor filters, automatic
masking procedures, rose diagrams, and
Moran-like measures of angular similarity;
Fisher-LDA, features selection based on AZ ,
and leave-one-patient-out cross-validation:
AZ = 0.84.

The present study 128 images of CC and MLO
mammographic projections
from the DDSM [16] in-
cluding 16 pairs of focal
asymmetry, 16 pairs of global
asymmetry, and 32 randomly
selected pairs of normal
mammograms.

Automatic masking procedures, 24 differen-
tial measures of spatial correlation of gray-
scale values with reference to the position
of the nipple; stepwise logistic regression,
ANN-RBF classifier, and leave-one-patient-
out cross-validation: AZ = 0.87, accuracy of
91%.
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with reference to the position of the nipple can be used for detection of bilateral
asymmetry.

5 Conclusion and Future Work

Novel methods for the analysis of asymmetry in mammograms have been de-
scribed in this work that correlate the gray-scale values with relative distances
from the nipple in paired strips of bilateral mammograms. Further study will
investigate the use of structure functions (e.g., the semivariogram) to character-
ize the correlation of pixels as a function of distance. The proposed techniques
will lead to the development of a robust and comprehensive method to detect
asymmetry in mammograms, which may be used as an indicator of increased
risk of breast cancer.
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Abstract. Higher-order texture features from 100 mammographic im-
ages with known cancer were compared to texture features from 100 im-
ages from women with no known cancer. Texture features from images
of the same breasts from screening rounds two and four years previously
were also compared. The Az score for classifying cancer images from
non-cancer images was 0.749. The Az score for classification two years
previous to detection of cancer was 0.674 and the score for four years
previous was 0.601. There was no signicant difference between classify-
ing images from the round in which cancer was actually detected and
the screening rounds two and four years previous. Similar results were
obtained if the breast with no known cancer (contralateral breast) was
used instead the breast with cancer, leading to the conclusion that tex-
ture alone has moderate predictive power regarding breast cancer risk
and that this predictive value is roughly constant in the four years prior
to mammographically apparent cancer.

Keywords: Temporal, Breast cancer, Risk assessment, Higher-order tex-
tons, Texture independent of density.

1 Introduction

Texture analysis plays an important role in image classification. Commonly used
texture analysis methods include co-occurrence matrices, run-length statistics,
Fourier transforms, Laws texture analysis, fractal dimension analysis, filter banks
and so on. Textons were proposed as prototype texture features calculated from
the the co-occurrence of filter bank outputs [4]. Textons based on image inten-
sities in N ×N neighborhoods were proposed to replace textons based on filter
banks [12]. In breast cancer risk assessment, texture analysis was initially used
to classify mammography appearance as in [10].

More recently, breast images were classified into risk groups directly accord-
ing to different criteria of “true risk”. Li et al. [5] computed texture features
using co-occurrence matrices, gray-level histograms, fractal analysis, edge fre-
quency analysis and Frourier analysis from central ROIs behind the nipple to
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classify high risk group ROIs (BRCA1/BRCA2 gene-mutation carriers) from low
risk group ROIs (non BRCA1/BRCA2 carriers). They achieved an Az score of
0.88. Karamore et al. classified cancer images stratified by estrogen receptor sta-
tus (high risk) and age-matched control images (low risk) with texture features
representing the orientation and heterogeneity of the parenchymal tissues and
obtained an Az score of 0.71 [3]. Keller et al. extracted features from breast
metrics such as density features, morphometry features and volumetric features
to classify unaffected breast images of cancer cases (high risk) and non-cancer
breast images of age-matched control cases (low risk) and achieved a best Az

score of 0.7. Ting et al. studied breast cancer risk associated with longitudinal
change in mammographic density in temporal sequences of mammograms [11].
In their study, the time difference between two consecutive screening mammo-
grams for the same woman was around one year and they found that breast
cancer risk was associated with increasing density over time for both ipsilateral
and contralateral breasts.

The correlation between breast cancer risk and breast density is well-known.
The degree to which image texture anomalies correlate to breast cancer risk is
less clear. In addition, little is known about changes in texture prior to cancers
becoming discernible mammographically. Neither is it clear if changes in texture
are restricted to the breast in which cancer will eventually appear or if the
changes are bilateral.

Here a temporal study is presented on estimating risk of breast cancer based
on higher-order texton texture features which are independent of breast density.
Estimates of risk are obtained separately for the breast with cancer and the
contralateral breast.

2 Methods

2.1 Data Set

Film mammograms were obtained from the archives of BreastScreen SA (Ade-
laide, South Australia) and were digitized at 57.0 μm spatial resolution and 12
bit depth. Only CC views were used because previous work found that methods
similar to the ones used in this study to classify cases into BI-RADS classes per-
formed better on CC views than on MLO views or the combination of both [7].
Images were collected from three consecutive screening visits, nominally spaced
two years apart and with the most recent visit being in 2005 or 2006. Here,
a “case” will refer to the collection of images from one woman over all three
visits. Cases were designated as cancer if anomalies found at screening during
the 2005/6 round were confirmed as cancer by histopathology but no evidence
of cancer had been found in previous rounds. Cases were designated as normal
if no cancer had been found in any round including at least one screening visit
post 2005/6. Evidence of risk was tracked separately in the breast with cancer,
referred to as the ipsilateral breast, and the breast without cancer, referred to
as the contralateral breast. Thus the study comprised 900 CC images; for each
of the three time periods (current, two year previous and four year previous),
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Table 1. Illustration of the structure of the data set. n is the number of images in
each experimental group for every time period.

2005, 2006 2003, 2004 2001, 2002
breast current 2 year previous 4 year previous
with ipsilateral ipsilateral ipsilater

cancer high risk high risk high risk
cancer n = 100 n = 100 n = 100
cases breast current 2 year previous 4 year previous

without contralateral contralateral contralateral
cancer high risk high risk high risk

n = 100 n = 100 n = 100

normal random current 2 year previous 4 year previous
cases breast low risk low risk low risk

n = 100 n = 100 n = 100

there were 100 images in each of the three experimental groups (ipsilateral high
risk group, contralateral high risk group, and the low risk group) (Table 1).

For each time period and each experimental group, the 100 available images
were divided into two sets of 50 images each; one set of the 50 was used for train-
ing and the remaining set was reserved for testing. The 50 cases for each group
were selected so as to represent wide mammographic appearance. This was done
by informally assigning images to BI-RADS classes and selecting approximately
half the images from each BI-RADS class for training.

2.2 Preprocessing

For every image, the breast boundary was drawn manually using ImageJ soft-
ware to remove the non-breast objects such as the labels and the pectoral muscle.
Next, an image template was generated according to the breast boundary. The
image template was further processed by erosion with 50 pixel radius circular
structure element to remove the extreme boundary of the breast. This is neces-
sary because texture properties at the edge of the breast are inconsistent with
the rest of the breast due to the geometry of image acquisition.

Images were normalized locally by methods described previously [6] in order
to preserve texture and remove background intensity. This was done to separate
texture from density before feature extraction and so allow estimates of the
potential contribution to risk assessment of pure texture features independent
of density. The image template constructed previously was then applied to the
normalized images to remove the non-breast objects.

2.3 Experiment Details

Methods similar to these proposed in [8] were used to compute first, second
and third-order textons for current, two year previous and four year previous
images. However, a variation of the method for generating higher-order textons
was applied as follows.



568 X.-Z. Li et al.

For each pixel, the image intensities of the eight immediate neighbors were
used to construct a feature vector of length eight. The total number of these
feature vectors was reduced by subsampling by 5 × 5 → 1 so that every square
breast tissue patch of 25 pixels was represented by a single feature vector of
length 8.

The feature vectors from the 50 training images in the current ipsilatoral
high risk group were accumulated into a feature space. K-means clustering with
with K = 10 was used to determine cluster centers representing the texture
patterns of the ipsilateral high risk group at the current period. The resulting
clusters centers are the first-order textons for current ipsilateral high risk group.
Similarly, the feature vectors from the 50 training images in the current low risk
group were used to determine a separate set of 10 first-order textons for this
group. Pixels in each current training and testing image were replaced by the
index of the texton that was nearest (among the 20 textons learnt from the two
groups) to the first-order feature vector of the pixel according to the Euclidean
norm. The resulting images are the first-order texton maps. For each image, the
histogram of texton labels of the first-order texton map is the first-order texton
representation of the image.

Second-order textons are textons based on the first-order texton map instead
of the original image. However, the process for computing second-order textons
cannot be exactly the same because the texton map consists of texton labels,
which carry no rank information. Consequently, arithmetic operations cannot
be applied to the textons labels. Instead, the feature vector associated with a
pixel was taken to be the histogram of first-order texton occurrences in the
3 × 3 neighborhood of the pixel (This step is different from generating feature
vectors in [8]). Thus the feature vector associated with each pixel was of length
20, one component representing each of the possible first-order textons. Aside
from this change, the process follows that for first-order textons. Feature vectors
from 50 training first-order texton maps in the current ipsilateral high risk group
and 50 training first-order texton maps in the current low risk group were used
to determine a set of 10 second-order textons, respectively. Each pixel in the
current training and testing images from these two groups was replaced by a the
index of a second-order texton nearest (among the 20 textons learnt from the
two groups) to the second-order feature vector of the pixel. Resulting images
are second-order texton maps and the histogram of second-order texton labels
is the second-order texton representation of the image. Third-order textons, the
third-order texton map and the third-order representation of each image were
computed exactly the same as their second-order analogs but were based on the
second-order texton maps. Together, each image in the current ipsilateral high
risk or low risk group was represented by a combined texton histogram of 60
features for classification.

To determine the best feature combination for classifying current ipsilateral
high risk from low risk mammograms, sequential feature selection was applied
with the Az score (area under the ROC curve) as the optimisation criterion.
The maximum number of features was set at eight. The feature set identified by
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this process was used to estimate classifier performance on unseen data by using
five-fold cross validation (recommended by [2]) on the 100 testing images from
the two groups. The average Az score from the cross validation will be referred
to as the current ipsilateral Az score.

The steps described above were repeated for the 200 two year previous ipsi-
lateral high risk and low risk group images and again for the 200 images from
the four year previous period to obtain the previous two year ipsilateral Az score
and the previous four year ipsilateral Az score.

Finally, the entire process was repeated with the contralateral high risk and
low risk group images in current, two and four year previous periods.

All the parameters used in these procedures including the choice of 3 × 3
neighborhood instead of larger ones, the subsampling factor and the choice of
K = 10 in K-means clustering were based on previous studies by the authors
and other groups [7,8,9,12,1].

3 Results

Table 2. (a) Temporal testing Az scores of risk classification using 5-fold cross valida-
tion; (b) Temporal testing Az scores of risk classification using 5-fold cross validation
with higher-order textons learnt from the current year. In both cases, ± one standard
deviation (SD) is shown.

(a)
Az scores current year 2 year previous 4 year previous

ipsilateral Vs normal 0.749±0.124 0.674±0.106 0.601±0.154
contralateral Vs normal 0.591±0.128 0.650±0.130 0.682±0.071

(b)
Az scores current year 2 year previous 4 year previous

ipsilateral Vs normal 0.749±0.124 0.655±0.066 0.551±0.076
contralateral Vs normal 0.591±0.128 0.601±0.129 0.664±0.059

Classification results for temporal risk assessment using five-fold cross validation
are presented in Table 2 (a) and Figure 1. For ipsilateral versus normal, although
there was a decrease in classification performance as a function of time prior to
the detection of cancer, there was no significant difference between two year
previous and current images (p = 0.2056, n = 5) or between four year previous
and current images (p = 0.0705, n = 5). For contralateral versus normal, again
there was no significant difference between two year previous and current images
(p = 0.5363, n = 5) or between four year previous and current images (p =
0.2855, n = 5) although there was a slight increase in classification performance
as a function of time prior to the detection of cancer.
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Fig. 1. Temporal Az scores of risk classification: three dark color bars were the Az

scores of the classification of ipsilateral high risk Vs low risk in current year, previous
two years and previous four years; three light color bars were the general Az scores of
the classification of contralateral high risk Vs low risk in the current year, previous two
years and previous four years. The error bars show one SD.

In addition, there were no significant differences of classification performance
between ipsilateral vs normal and contralateral vs normal Az scores for current
(p = 0.07257, n = 5), two year previous (p = 0.7951, n = 5) and four year
previous (p = 0.1135, n = 5) periods.

4 Discussion and Conclusion

Because the focus was on testing the “in principle” information content relevant
to breast cancer risk, separate textons and optimal feature sets were found for
each time period (current, two year previous and four year previous). This does
not yield a practical method for assessing risk clinically since a separate test
would be required for estimating risk for different times in the future. Interpret-
ing results would be difficult if, for example, a woman was found to have a high
risk of developing cancer in two years time, but a low risk of developing cancer
in four years time.

A more practical method would use a single test to estimate risk. This was
considered by running a minor variation of the experiments described in Section
2.3. In this variation, the textons and optimal features found using the current
images were computed and tested on the images in the two year previous period
and the four year previous period. The results (Table 2 (b) and Figure 2) were
not substantially different from the original experiment (Table 2 (a) and Figure
1). Accordingly, the methods described here could, in principle, contribute to a
clinically useful scheme for estimating breast cancer risk.
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Fig. 2. Temporal Az scores of risk classification with higher-order textons learnt from
the current year. Every single bar represents the same details as in Figure 1.

The results reported here use only texture information and were not combined
with other mammographic information such as density or clinical information to
provide a comprehensive estimate of breast cancer risk. Thus, it is not yet clear
if texture provides information that is complementary to other measures or if
it largely reproduces existing measures. This will be the objective for a future
study.

The Az scores for the different groups and times (Table 2 (a) and Figure
1) indicate some trends, but none of the differences are statistically significant.
Hence we conclude that texture information relevant to breast cancer risk is
not restricted to, or significantly stronger in, the breast destined to develop
cancer. Similarly, texture information relevant to breast cancer risk is present at
least four years previous to the emergence of mammographically apparent signs
of cancer at levels not significantly different from those at the time cancer is
detected.

Acknowledgements. We thank BreastScreen SA for providing images for this
study.
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Invariant Features for Discriminating Cysts

from Solid Lesions in Mammography
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Abstract. Feature extraction is an integral of all Computer Aided Di-
agnosis (CAD) systems. Due to the presence of fibroglandular tissue how-
ever, measurements are perturbed by unwanted influences and therefore,
the same descriptor will yield different values for different amounts of oc-
cluding structures. To aid the statistical learning used for classification,
we need to design features that are invariant to unwanted influences. In
this paper, we propose a simple model of the tumour and its surround-
ing tissue and show how this model can be used to derive descriptors
that are invariant to obscuring tissue, rather than heuristically defining
a set of descriptors, which is common practice in many CAD papers. We
tailor the descriptors to optimally discriminate between tumours and
cysts, by assuming a parametric form of the lesions. Results show a sig-
nificant discriminative improvement over simple, more commonly used
contrast features and we obtained an AUC of 0.77 using both CC and
MLO images.

1 Introduction

Research on Computer Aided Detection and diagnosis (CAD) for screening mam-
mography has been fruitful in the past years and as a result systems operating
at high sensitivity are ubiquitous. Many CAD systems operate in a two-stage
fashion where in the first stage, candidate lesions are detected on a pixel level
and in a second stage, the lesions are segmented and new region-based features
are computed. The second feature space is subsequently fed to a statistical learn-
ing machine, which is expected to give a more accurate estimate of the lesion’s
nature. The contrast, i.e., the relation between the segmented lesion and its sur-
rounding tissue can tell us something about the disease and is often used as
a feature in this stage. Due to the presence of fibroglandular tissue however,
measurements are perturbed by unwanted influences and therefore, the same
descriptor will yield different values for different amounts of occluding tissue.
Given enough training data, we could expect the classification machine to gen-
eralise to a sufficient extent. Unfortunately, data is still scarce and therefore we
need to aid the learner and design features that are invariant [1,2] to unwanted
influences, yet covary with the factor we are interested in, i.e., we want descrip-
tors that yield the same value regardless of obscuring structures, yet reliably
characterise the nature of the lesion.

H. Fujita, T. Hara, and C. Muramatsu (Eds.): IWDM 2014, LNCS 8539, pp. 573–580, 2014.
c© Springer International Publishing Switzerland 2014
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In the first part of this paper, we propose a simple model of the tumour and
its surrounding tissue by making some assumptions on the tumour growth and
segmentation and show how to this model can be used to derive descriptors that
are invariant to unwanted influences, rather than heuristically defining a set of
descriptors, which is common practice in many CAD papers. In the second part,
we tailor the descriptors to optimally discriminate between different geometrical
entities, by assuming a parametric form. We apply the descriptors to the problem
of discriminating between tumours and cysts: benign fluid-filled sacks exhibiting
similar image characteristics to tumours in a mammogram. Experiments are
done on simulated lesions, placed in a standard mammography background and
on a database of clinical cases with a representative sample of cysts and masses.
Results on both sets show a significant discriminative improvement over simple,
more commonly used contrast features.

The rest of this paper is organised as follows. In section two, we will describe
our model and preprocessing methods, followed by a brief derivation of the fea-
tures in section 3 and details on the normalisation in section 4. We will present
our experiments and discuss results in section 5, followed by a conclusion in
section 6.

2 Lesion Model

In order to derive invariant descriptors, we first need a proper definition of invari-
ance. We will call a descriptor D of some signal s invariant to a transformation
T if it holds that:

D(T (s))) = D(s)

In our setting this means that we want to find a descriptor of a tumour (s) is such
a way that if the same tumour is found in two different women with different
amounts of occluding tissue (T ), the descriptor will give the same value. A trivial
way to make a descriptor invariant is to simply assign 1 to every exposition of the
signal. This however, obliterates all discriminative power and we should therefore
aim for an optimum in the trade-off between descriptiveness and invariance.

The first step in our method is to compute a dense tissue map of the image
[4], which is acquired be means of a physics based image model derived in pre-
vious work. We assume the breast is composed of dense and fatty tissue, with
corresponding attenuation coefficients. Using empirical data from literature, we
get an estimate of the amount of dense and fatty tissue at each pixel, where
the former is used in our method. To subsequently derive our descriptors, we
propose the following simple model of the lesion f :

I(x, y) =

{
Fz(x, y) + ε if (x, y) lies inside the 2D projection of f
ε else

(1)

where I(x, y) indicates the image value at location (x, y), ε ∼ P (ε) is the integral
along the z-axis of the nuisance term we are trying to ignore, coming from some
undefined distribution and Fz(x, y) =

∫
f(x, y, z)dz the z-integral of the lesion
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f we are trying to describe. The z-axis is chosen to be parallel to the direction
of x-ray quanta. This model assumes that the 2D segmentation of the projected
lesion is correct and that the tumour grows in such a way that the distribution of
tissue in the surrounding region is the same as above and below it. An illustration
is provided in figure 1. Using this model, we can not infer anything about the

Fig. 1. Illustration of a lateral view of a lesion and its z-integral on the image plane.
Here ε indicates the tissue in the breast and ε the integral of ε appearing on the image.

exact spatial layout of f , due to the noise term ε. However, by looking at the
descriptive statistics of the values inside the segmented region (Fz + ε) and the
values in the surroundings of the region (ε), we can still derive descriptors of its
shape that are invariant to nuisance ε.

3 Moment Invariants

Under the definition of invariance and lesion model we proposed, a descriptor of
the mean, invariant to nuisance signal ε is given by:

E[Fz ] = E[Fz + ε]− E[ε] (2)

Similar to the mean, the variance will give us an indication of the shape of the
z-integral. The sum of variance to two correlated random variables is given by:

V ar[Fz + ε] = V ar[Fz ] + V ar[ε] + 2Cov[Fz , ε] (3)

We can observe V ar[Fz+ε] and V ar[ε] in our image and are interested in V ar[Fz ].
Unfortunately, we can not observe Cov[Fz , ε]. However, by looking at the covari-
ance of Fz + ε and ε, we can find an expression for V ar[Fz ]. We can show that
the covariance of two correlated random variables X and Y can be written as (a
proof of this is left out for brevity)

Cov[X,Y ] = Cov[X + Y, Y ]− V ar[Y ]
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Plugging this into equation (3) and rearranging terms, we have that

V ar[Fz ] = V ar[Fz + ε] + V ar[ε]− 2Cov[Fz + ε, ε] (4)

These two features are general descriptors of the z-integral of any geometric body,
though in not all situations they may provide useful, discriminative information.
We will now consider the problem of discriminating tumours from cysts, by
assuming a parametric form and tailor the descriptors to optimally differentiate
between these entities. Most tumours are relatively hard, solid objects that are
not easily compressible, whereas cysts are softer and therefore more likely to
change shape. If we assume both are initially spherical, we can expect the tumour
to retain shape, but the cyst to transform to an ellipsoidal form, due to the
compression of the breast in the recording of the mammogram. Under these
assumptions, we can further refine the descriptor and normalise for scale.

4 Scale Normalisation

Simply increasing the size of a spherical body, will yield a varying feature re-
sponse. This makes it possible for ellipsoidal and spherical objects to reach
similar descriptors, in spite of their apparent disparity. We therefore want to
normalise with respect to scale in order to discriminate properly between the
two. To this end, we propose the following normalisations. By looking at the
z-integral of a sphere

Fz = 2
√(

r2 − x2 − y2
)

we can see that the expected value as a function of radius r is given by:

E[Fz ; r] =
1

A(r)

∫ r

−r

∫ r

−r

2
√(

r2 − x2 − y2
)
dx dy

where A(r) indicates the area of the projection of the sphere as a function of its
radius. The integral is simply the volume of the sphere, so therefore:

E[Fz ; r] =
V (r)

A(r)
=

1

πr2
4

3
πr3 = r

4

3

Normalisation by r evidently results in a constant. Using a similar procedure for
the second moment descriptor, we will find that a normalisation by r2 will yield
a constant value. The derivation is left out here for brevity. The scale normalised
descriptors Ê[Fz ] and ˆV ar[Fz] are now given by:

Ê[Fz ] =
E[Fz + ε]− E[ε]

r
(5)

and

ˆV ar[Fz] =
V ar[Fz + ε] + V ar[ε]− 2Cov[Fz + ε, ε]

r2
(6)
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The following section will present our experimental setup and results acquired
when applying this method.

5 Experiments

The experiments are set up to show that each normalisation and both the first
and second moment are contributors to the discriminative power of the features.
In a first test, we investigated how our model holds in a more or less ideal sit-
uation. This way we can see to what extent the assumptions in our model are
violated when subsequently testing on real data. We placed masses (z-integrals
of spheres) and cysts (z-integrals of ellipsoidal shapes) at random in a mam-
mography background. The parameters of the spheres and ellipsoids were varied
at random and the mix between z-integral and mammographic background was
also varied randomly, resulting in some clear lesion and some very subtle ones.
Examples of simulated lesions are given in 2. In a second test, we applied the

Fig. 2. Illustration of simulated lesions. The left two represent masses and the right
two cysts.

methods to real data. Regions were segmented using a dynamic programming
algorithm, that has previously been shown to be successful for this task [3]. The
data was collected locally from symptomatic women and high risk screening.
We removed lesions that were on or close to the pectoralis, because our density
algorithm does not support reliable density estimates on the pectoralis yet. A
similar thing was done for lesions on or close to the image edge, because we
can not reasonably assume to get accurate contrast information from here. Fu-
ture work will revolve around finding new methods for this. During annotation,
all lesions were given a subtlety score by an independent annotator and we re-
move lesions with extreme subtlety. This left 94 cysts and 173 masses. Images
were recorded using a GE mammography machine. Samples were classified by
means of a linear logistic regression model, trained using iteratively reweighted
least-squares (IRLS). To estimate test performance, we split the train and test
data 100 times, resulting in 100 estimates of the ROC and AUC, over which we
compute analytical statistics.
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5.1 Implementation Details

The computation of covariance assumes an ordered set of pairs and therefore, the
use of covariance in (6) requires some elaboration. Considering the fact that the
noise we are interested in (the occluding tissue) has some spatial coherence, i.e.,
the noise between surrounding pixels is strongly correlated, it seems reasonable
to assume that points on each side of the acquired segmentation boundary will
have roughly the same noise value. Using this intuition, we construct a set of
points by taking values along the fitting region on each side of the border and
compute the covariance from this set.

The radius parameter we have described before, assumes a circular fitting
region, which is in practice never the case. We therefore take the radius as half
the maximum diameter of the fitted region. Lastly, the size of the surrounding
border (ε) is chosen in such a way that the amount of pixels in the lesion and
surrounding area are approximately similar if the particular image allows this.

Table 1. Comparison of different feature sets in simulation

Estimate of mean Estimate of Variance AUC
P-value against
normalised features

E[Fz + ε]− E[ε] V ar[Fz + ε] 0.55± 0.01 � 0.001
E[Fz + ε]− E[ε] V ar[Fz + ε]− V ar[ε] 0.58± 0.02 � 0.001
E[Fz + ε]− E[ε]

r
V ar[Fz + ε]− V ar[ε] 0.86± 0.07 � 0.001

E[Fz + ε]− E[ε]

r

V ar[Fz + ε]− V ar[ε]

r2
0.93± 0.00 � 0.001

5.2 Results

On simulated data, our normalised features as described in (5) and (6) gave an
average AUC = 0.95± 0.004. Table 1 shows the results of a comparison between
these and several feature sets that are increasingly similar to our descriptors,
thereby proving the value of each step in our methods. The first and second
column show the estimate of the first and second moment, the third column the
acquired average AUC and the fourth column the P-value tested against our
reference features. Significance estimates were acquired by means of a Kruskal-
Wallis rank test. On real data, our normalised features as described in (5) and (6)
obtained an average AUC of 0.65 +/- 0.07. Table 2 shows results of several other
feature sets, in increasing complexity. Again, P-values were computed using a
Kruskal-Wallis test.
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Table 2. Comparison of different feature sets on our dataset

Estimate of mean Estimate of Variance AUC
P-value against
normalised features

E[Fz + ε]− E[ε] V ar[Fz + ε] 0.52± 0.07 � 0.001
E[Fz + ε]− E[ε] V ar[Fz + ε]− V ar[ε] 0.54± 0.01 � 0.001
E[Fz + ε]− E[ε]

r
V ar[Fz + ε]− V ar[ε] 0.63± 0.08 0.006

E[Fz + ε]− E[ε]

r

V ar[Fz + ε]− V ar[ε]

r2
0.62± 0.07 0.019

In a third experiment, we averaged the feature output of lesions in CC and
MLO images in order to reduce measuring errors. In this setting, our normalised
features obtained an AUC of 0.77 ± 0.09, compared to an AUC of 0.66 ± 0.12
using a CC/MLO average of the feature described in the last row of table 1.
This was found significant using a Kruskal-Wallis test (p 
 0.001). Ilustrations
of the final feature spaces of the reference and normalised features are given in
figure 3.
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Fig. 3. Illustration of the Feature Space for Real Data, Averaged between CC and
MLO

5.3 Discussion

In an ideal setting, we can see our descriptors fare well and vastly outperform
the simple, commonly applied descriptors, described in the first row of table 1.
Even though the classification performance on real data is still relatively poor
using a single image, we can clearly see an improvement using the proposed
descriptors, as is seen from table 2. The progression to more complex descriptors
as is presented in the tables, suggests that both a normalisation with respect to
the surrounding region and a normalisation with respect to scale are contributors
to the improvement and that not only the proposed estimate of the mean, but
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also the estimate of variance yields useful discriminative information. This can
also be seen from the plot of the feature space in figure 3, where two clearer
clusters appear in the right image.

To make the estimates less susceptible to outliers, we have tried to replace
the regular estimates of location and scale with robust estimates. We tried using
the median and winsorising to replace the standard estimate of location and we
used the inter quartile range, median absolute difference and Minimum Discrim-
inant Covariance algorithm to generate a robust estimate of the (co)variance.
In the case of location, this yielded no difference and in the case of scale, this
performed significantly worse. Apart from applying the methods in the density
image, we have also tried our method on raw FFDM data, but both methods
proved substantially worse in this setting, reaching a classification performance
only slightly above what one would expect from a random assignment of labels.

6 Conclusion

In this paper, we showed that by assuming a simple model of a tumour and
its surrounding area, lesion features can be derived that in the first place are
invariant to tissue occluding the lesion and by assuming a parametric form of
the lesion, invariant to scale. We showed our model-derived features outperform
several simple, heuristically chosen features, typically applied in other systems.
This is our first step on deriving model based descriptors. The model we use, as-
sumes the tumour grows in a specific, highly simplified way and has a simplified
shape. In the data we observed so far, the growth seems to hold. However the tu-
mours in our database seem to have a very sharp gradient around the edges, but
the centre of the lesion appears flattened. In future work, it may be worthwhile
to investigate different parametric forms in the derivation of features. It can be
shown that for spherical and ellipsoidal z-integrals, the skewness and kurtosis
is exactly the same (and invariant to scale) and therefore for our test problem
not useful. For other structures however, these can still prove useful, although
derivation is quite cumbersome.
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Abstract. Mammographic image analysis plays an important role in
computer-aided breast cancer diagnosis. To improve the existing knowl-
edge, this paper proposes a new efficient pixel-based methodology for
tumor vs non-tumor classification. The proposed method firstly com-
putes a Gabor feature pool from the mammogram. This feature set is
calculated through multi-sized evaluation windows applied to the prob-
abilistic distribution moments, in order to improve the accuracy of the
whole system. To deal with a high dimensional data space and a large
amount of features, we apply both a linear and non-linear pixel classifica-
tion stage by using Support Vector Machines (SVMs). The randomness
is encoded when training each SVM using randomly sample sets and, in
consequence, randomly selected features from the whole feature bank ob-
tained in the first stage. The proposed method has been validated using
real mammographic images from well-known databases and its effective-
ness is demonstrated in the experimental section.

Keywords: Texture feature extraction, Gabor filters, Support Vector
Machine, mammographic images, pixel-based classification.

1 Introduction

Breast cancer among middle aged women is a significant public health problem in
the world. At present, there are no effective ways to prevent it, because its cause
is not yet fully known. Early detection is the key for improving cancer prognosis
since the death rate can be significantly reduced. Mammography has been one
of the most reliable methods for detecting breast carcinomas [1, 2], in its earliest
and most treatable stage, so it continues to be the primary imaging modality
for breast cancer screening and diagnosis. In addition, it allows the detection of
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other pathologies and may suggest the tumor nature such as normal, benign or
malignant.

Nowadays, reading mammograms is a very demanding job for radiologists,
who visually examine the images for the presence of deformities that can be
associated as cancerous changes. Mammograms are hard to interpret because
of the complex tissue morphology of the breast and the number of imaging pa-
rameters that affect its acquisition. For this reason, the radiologists judgments
depend on their training, experience and subjective criteria. There are several le-
sions that are characteristics of breast cancer such as microcalcifications, masses,
architectural distortions and bilateral asymmetry. Since some lesions are often
indistinguishable, because they have similar features to normal mammary tissue,
automated detection and classification is even more difficult.

Furthermore, some other diseases have similar patterns to the breast cancer,
which challenges the diagnosis. Manual readings may result misdiagnosis due to
human errors caused by visual fatigue. To improve accuracy and efficiency of
screening mammography, computer aided techniques are introduced. Therefore,
CAD systems have been shown to be a helpful tool [3]. They can provide an
important contribution for breast cancer control by marking suspicious regions
and detecting abnormalities, to decrease the death rate among women with this
disease.

This paper presents a framework for tumor vs non-tumor identification founded
on a pixel-based texture classification approach, which is broadly divided in two
stages. In the first stage, texture features are extracted from both tumor and nor-
mal regions by using a Gabor filter bank. In the second stage, a pixel-based texture
classification strategy by using SVMs is applied [4], which provides the probability
of each pixel in the mammogram to belong to a tumor region.

The rest of the paper is organized as follows. In Section 2, we present the
proposed methodology. First, we describe the feature extraction step and then,
the pixel-based classification algorithm. Experiments are shown and discussed
in Section 3. Finally, conclusions and further tasks are given in Section 4.

2 Proposed Methodology

The texture classification methodology proposed in this work is as follows. Dur-
ing an initial training stage, a set of prototype features is computed at every
texture pattern of interest (normal/tumor). The training images associated with
each pattern are first filtered by applying a multichannel Gabor filter bank,
obtaining a cloud of texture feature vectors for every pattern [5–7]. A set of pro-
totypes is then extracted in order to represent that cloud. During the evaluation
stage of the classifier, a given test image is processed in order to identify the
texture pattern corresponding to each of its pixels. This is done by first applying
the multichannel Gabor filter bank to the test image. A feature vector is thus
obtained for every pixel. Each vector is classified into one of the given texture
patterns by a SVM-based classifier fed with the prototypes extracted during the
training stage. The stages involved in this scheme are detailed below.
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2.1 Texture Feature Extraction

Textural properties in an image can be used to detect different types of infor-
mation such as edges, lines, spots, flat areas and other local patterns. Some of
these properties can be observed in mammograms at different scales and orien-
tations. For this reason, we define a Gabor filter bank in order to capture texture
patterns in mammograms, as it has been shown to be optimal in the sense of
minimizing the joint two-dimensional uncertainty in space and frequency.

Gabor Filters. A wide variety of texture feature extraction methods have
been proposed in the literature. Among them, multichannel filtering techniques
based on Gabor filters have received considerable attention. The texture feature
extraction stage of this work is based on the optimized multichannel Gabor
wavelet filters. The next paragraphs give a brief overview about them.

Gabor filters are biologically motivated convolution kernels that have enjoyed
wide usage in a myriad of applications in the field of computer vision and image
processing. In order to extract local spatial textural micro-patterns in mammo-
gram ROIs, Gabor filters can be tuned with different orientations and scales,
and thus provide powerful statistics which could be very useful for breast cancer
detection.

A two-dimensional Gabor filter defined as a Gaussian kernel modulated by an
oriented complex sinusoidal wave can be described as follows [5, 8, 6]:

g(x, y) =
1

2πσxσy
exp

− 1
2 (

x̃2

σ2
x
+ ỹ2

σ2
y
)
exp2πjWx̃ (1)

x̃ = x · cos θ + y · sin θ and ỹ = −x · sin θ + y · cos θ (2)

where σx and σy are the scaling parameters of the filter and describe the
neighborhood of a pixel where weighted summation takes place, W is the central
frequency of the complex sinusoidal and θ ∈ [0, π) is the orientation of the normal
to the parallel stripes of the Gabor function.

Evaluation of Texture Methods over Multisized Windows. The texture
features that characterize each pixel and its surrounding neighborhood (window)
are both the mean and standard deviation of the module of the Gabor wavelet
coefficients. The Gabor filter bank has been configured with four scales and six
orientations, and a range of frequencies between 0.05 and 0.4. The orientations
and frequencies for a bank are calculated using the following equations:

orientation(i) =
(i− 1)π

m
where i = 1, 2, ...,m (3)

frequency(i) =
fmax=0.4

(
√
2
i−1

)
where i = 1, 2, ..., n (4)
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where m is the total number of orientations and n is the total number of fre-
quencies. Therefore, every feature vector is composed by a total of 48 dimensions:
6(scales)× 4(orientations)× 2(mean, stdev).

The means and stdevs mentioned above are computed for W different window
sizes. W is set to 3 in this case: 1×1, 33×33 and 51×51. Thus, W sets of feature
vectors are generated for each pixel of the given texture patterns during the
training stage, as well as for each pixel of the test image during the classification
stage.

2.2 Supervised Pixel-Based Classification

Once the features characterizing both normal and tumor tissue have been ex-
tracted, the goal of this stage is to classify the pixels of an input test mammogram
into one of the two patterns of interest (normal/tumor).

Support Vector Machine-Based Classifier. A classification problem en-
compasses the assignment of an unseen pattern to a predefined class, according
to the characteristics of the pattern, presented in the form of a feature vector.
However, a classifier needs to be trained in order to perform this task.

A way to efficiently summarize and learn all the available information obtained
from the training set is through SVMs, since they are the most advanced ones,
generally, designed to solve binary classification problems. SVM formulation is
based on statistical learning theory [9, 10] and has attractive generalization
capabilities in linear and non-linear decision problems. The classifier maps an
M -dimensional data point into a class label based on an aggregating decision
function. A supervised classification task involves separating data into training
and test sets. Each instance in the training set contains the class label and the
features. The goal of the SVM is to produce a model, based on the training data,
which predicts the target values of the test data given only the test data features.
Given a training set of instance-label pairs (xi, yi) , i = 1, ..., l, where xi ∈ Rn

and y ∈ {1,−1}l, the SVM casts the classification problem into an optimization
problem. The training vectors xi are mapped into a higher or infinite dimensional
space. The SVM finds a linear separating hyperplane with the maximal margin
in this higher dimensional space by using what is called the kernel trick.

The four basic kernel functions are linear, polynomial, sigmoid and radial,
from which we only use two of them (linear and radial). For linearly separable
problems, kernel function is simply the dot product of the two given points in
the input space:

k(xi, x) = xi · x (5)

However, for non-linear problems, the original input space is mapped through
a non-linear function, possibly making the data linearly separable, using different
suitable kernels (for computational efficiency). In our experiments, RBF (radial
basis function) kernel is used as given by:
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k(xi, x) = exp(−γ‖xi−x‖2), γ > 0 (6)

There are two parameters now tied with the RBF kernel: γ that represents the
width of the kernel function, and C (a regularization parameter) who controls
the trade-off between error of SVM and margin maximization [9].

2.3 Breast Masses Identification System

The block diagram of the breast cancer identification system is detailed below (see
Fig. 1). The proposed system is composed of four main stages: pre-processing, fea-
ture extraction, feature selection and classification. Various existing approaches
differ in the choice of techniques for these stages. Our proposed approach for fea-
ture extraction is robust against noise (this method has been described in detail
in subsection 2.1). Then, we apply a significant selection of the features extracted.
In the training mode we choose all the pixels inside the tumor region, by contrast,
when the classifier is in the prediction phase, a random selection is applied in or-
der to choose both some normal pixels and also pixels affected by the disease. In
this way, the next step will use both types of information.

Fig. 1. Breast Masses Detection System

3 Experimentation

This section describes the materials used for the development and validation of
the proposed technique, as well as the experimental results obtained through the
application of the proposed methodology to a well-known mammogram database.

3.1 Materials

The algorithm proposed in this paper has been evaluated on the mammograms
of the mini-MIAS database [11] that comprises 322 images of 1024× 1024 pixels
(e.g., Fig. 2, 1st column). Every image includes information about the existing



586 J. Torrents-Barrena et al.

anomalies: it comprises the location of the lesion and the radius of the circle
that roughly delimits the lesion (e.g., Fig. 2, 3rd column). We randomly selected
several cases from this database which contain true and false masses (but with
suspicious tissues). These ROIs are used for training and testing.

Fig. 2. Classification example: original test image (1st column), region of interest (2nd
column), ground-truth: a red circle delimits the tumor region (3rd column), tumor
pixels identification (4th column)

Our method has been implemented in Matlab by taking advantage of its
high performance to develop computer vision and image processing software. In
addition, the LibSVM library [4] has been used to implement the SMO algorithm
for kernelized SVMs, supporting classification and regression.

3.2 Experimental Results

The convenient values of the SVM parameters to reach good accuracy ratios for
discrimination between tumor and normal regions were found by means of an
iterative procedure. Furthermore, our algorithm removes the background regions
in the mammogram and focusses the tumor search in the breast region (e.g.,
Fig. 2, 2nd column). Finally, each pixel in the test mammogram is classified as
belonging to tumor or normal region (e.g., grey pixels have been classified as
belonging to a tumor in Fig. 2, 4th column).

Commonly used evaluation measures of the predictive ability of the breast
cancer detection systems are sensitivity (a measure of true positive rate) and
specificity (a measure of true negative rate) under ROC curve. In addition, the
F1 score also helps to determinate the effectiveness of our pixel-based classifier.
We adopt these performance measures to evaluate the proposed system.
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First of all, F1 score can measure the discrimination capability of the classifier
between the cancerous and normal regions (the closer the F1 to 1, the better the
tumor identification). The F1 score is defined as: F1 = 2TP/2TP + FN + FP ,
where TP, FN and FP are the number of true positives, false negatives and
false positives respectively. The average results corresponding to the mini-MIAS
database [11] classification are shown in Table 1. Notice that, especially the
SVM classifier based on the radial kernel produces good identification ratios for
the tumor pixels (TP ratio), and relatively low false detections (FP ratio).

A second analysis is based on the ROC curve and a complete sensitiv-
ity/specificity report, a fundamental tool for diagnostic test evaluation. Fig. 3
shows the ROC curves corresponding to both SVM classifiers, where the true
positive rate (Sensitivity) is plotted in function of the false positive rate (Speci-
ficity) for different cut-off points of a parameter. Each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a particular decision
threshold. The area under the ROC curve (AUC) is a measure of how well a
parameter can distinguish between two diagnostic groups (tumor/non-tumor).

Table 1. Quality scores corresponding to different configurations of the SVM classifier.
All the ratios are shown between 0 and 1.

Classifier Window-size TP FP TN FN F1 Overall Accuracy

SVM (linear)
1x1 0.88 0.66 0.34 0.12 0.66 0.80

33x33 0.83 0.66 0.34 0.17 0.57 0.77

51x51 0.76 0.67 0.33 0.24 0.54 0.73

SVM (radial)
1x1 0.91 0.56 0.44 0.09 0.59 0.79

33x33 0.89 0.59 0.40 0.11 0.58 0.79

51x51 0.93 0.33 0.67 0.07 0.33 0.72

Fig. 3. ROC curves for the different configurations of the SVM classifier
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4 Conclusions

This paper proposes a new pixel-based texture classification method for tumor
region identification in mammograms. The proposed method firstly computes
Gabor based features from the mammograms by means of multi-sized evaluation
windows applied to the probabilistic distribution moments. Then, the identifi-
cation of tumor regions is performed through a pixel-based classification scheme
by using SVMs, which is able to deal with a high dimensional data space and a
large amount of features. Promising results have been obtained for the identifica-
tion of tumor regions on the mammograms of the mini-MIAS database. Further
work will consist of combining new statistical texture features extracted from
the Gabor filters and applying optimization methods to determine the optimal
parameters of the SVM.
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Abstract. For the automatic detection of malignant microcalcification
clusters in screening mammograms a computer aided detection (CADe)
system has been developed. The most frequent false positives of this sys-
tem are breast arterial calcifications (BACs). The purpose of this study
was to construct a method for selecting cases with BACs in mammo-
graphic screening data as part of a procedure to reduce false positives
of the CADe system. To automatically select cases containing BACs, a
GentleBoost classifier was trained. For composing the training set, the
CADe system was applied on 10,000 normal cases. From these cases,
400 cases with the most significant false positives were included in the
training set and an additional 200 cases with less obvious false positives.
For testing, an independent test set was created by cluster detection of
1,000 normal cases and 95 malignant cases. After cluster detection 342
normal cases contained false positives and in 93 malignant cases true pos-
itive clusters were detected. In the training set, 244 cases showed signs
of BACs and in the test set 95 cases. A total of 102 case-based features
were calculated to train the classifier. A ROC curve was calculated of the
classification of the test set bootstrapped 5000 times. The area under the
curve of the ROC was 0.92 and already 44% of the cases with BACs were
detected without any false positives. Furthermore, 90% of the cases with
BACs were detected at a false positive rate of 20%. The performance of
the proposed selection method implies a good feasibility to classify cases
with BACs at high specificity. By using this selection we will be able to
apply dedicated methods for false positive reduction due to BACs.

Keywords: Mammography, calcifications, arterial, pattern recognition,
computer aided detection.

1 Introduction

Microcalcification clusters in the breast are a biomarker for breast cancer. For the
purpose of automatic detection of these malignant clusters a computer aided de-
tection (CADe) system has been developed. However, not all microcalcifications
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in the breast are malignant as benign calcifications can be observed in mammo-
grams as well. The most frequent benign calcification clusters that are marked
with a high malignancy likelihood by the current CADe system are breast ar-
terial calcifications (BACs) (example shown in Figure 1). Therefore, by adding
an additional false positive removal classification to our CADe system, specified
on detecting BACs, might improve the system. Selecting cases with BACs and
removal of false positive clusters in only these cases can prevent the removal of
malignant clusters and ultimately lead to a more specific system for the detection
of malignant microcalcification clusters. Therefore, the purpose of this study was
to construct a method for selecting cases with BACs in mammographic screening
data.

Fig. 1. Example of microcalcification cluster detection in 2 mammograms containing
BACs, macrocalcifications and a malignant microcalcification cluster. The malignant
cluster is denoted with the solid arrow. A false positive due to a macrocalcification is
denoted with the dashed arrow. All other annotations are false positives due to BACs.

2 Methods

The framework for the selection of cases with BACs consists of four stages. The
first stage is the selection of the microcalcification candidates in raw screening
mammograms with a cascade classification scheme. In the next stage, the selected
microcalcification candidates are clustered. And in the third stage, false positive
clusters are removed with a trained classifier. The last stage consists of a case-
based approach for the selection of cases with BACs. The first three stages are
based on the work of Bria et al[1]. Therefore, these stages will only be touched
very briefly in the next section. The fourth stage will be discussed in more detail
in the subsequent section. A full flowchart of the framework is visualized in
Figure 2.
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Fig. 2. Flowchart of the whole framework. There are 4 main stages: i) microcalcification
candidate selection, ii) clustering, iii) false positive cluster removal, and iv) classification
of cases with BACs. Type of classification is denoted in italic and (intermediate) results
are underlined.

2.1 Microcalcification Cluster Detection

For the detection of microcalcifications in raw mammograms, a cascade classifier
is trained[13]. After preprocessing,for each pixel in the mammogram a patch is
made with a dimensions of 13 x 13 pixels where the pixel lies in the center of
the patch. This patch goes through 4 stages where in each stage the patch is
classified by a GentleBoost classifier[11]. Features for each stage are determined
during training from a total of 8 groups of Haar-like features[8]. These feature
groups are be scaled and translated within the patch. Examples of these groups
are shown in Figure 3. Patches classified as negative in one of the first three
stages are removed and the remaining patches obtain a probability score in the
last classification stage. For the four stages 3, 6, 11, and 51 haar-like features
were calculated, respectively.

Microcalcification candidate classification in a mammogram leads to an image
where each pixel corresponds to a probability score or zero if the patch is removed
in an early stage of the cascade classifier. In these probability images, microcalci-

Fig. 3. Examples of the haar-like features groups
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fications are segmented with connected component analysis. Macrocalcifications,
calcifications larger than 1mm, are removed as well as microcalcifications that
lie within 2 pixels from a macrocalcification. Furthermore, a microcalcification
is kept when at least 2 pixels have a probability above a preset threshold. Clus-
ters are made of microcalcifications within a distance of 10mm to each other.
Clusters containing less than 3 microcalcifications are discarded.

To remove false positives, a GentleBoost classifier is trained. For each clus-
ter, features are calculated on the microcalcifications within the cluster and the
cluster itself. These features ware based on shape, topology, probability, and
texture. The GentleBoost classifier was trained on 100 regression stumps. As a
result each detected cluster obtains a likelihood score.

2.2 Selection of Cases with BACs

To determine cases with BACs, a multi-view classification procedure is carried
out. In this procedure, all views of a case are analyzed, i.e. medio-lateral oblique
and cranio-caudal views of the right and left breast. In these views, the micro-
calcification cluster detection is performed resulting in detected clusters with
a likelihood score. For the multi-view analysis only likelihood scores above a
specified threshold are considered. This threshold is set a the highest case-based
sensitivity for malignant cases in the microcalcification cluster detection (100%
detection rate at 33% false positive rate).

Features are calculated on a case level. These features are based on shape,
topology, probability, texture, and vesselness[7]. For each cluster in each view a
total of 24 cluster features are calculated. For each case (containing 2 or 4 views)
the mean, standard deviation, maximum and minimum of all cluster features in
each view are taken. Additionally, 6 case-based features are calculated based on
the number of clusters in each view and the number of views. This leads to a
total of 102 features per case. Table 1 shows the whole list of features for training
of the classifier. On these features a GentleBoost classifier is trained using 50
regression stumps as weak learners. The output of the classifier is a probability
score for the presence of BACs in the case.

2.3 Performance Evaluation

Several datasets were obtained from the Dutch Breast Cancer Screening Program
(Bevolkings Onderzoek Midden-West, The Netherlands). For the microcalcifica-
tion candidate selection and cluster detection, 2 datasets were composed. One
dataset where individual microcalcification centers were annotated containing
129 abnormal cases (70 benign and 59 malignant). The second dataset contained
cases where the contour was annotated of microcalcification clusters. This set
included 186 abnormal cases (134 benign and 52 malignant) and 315 normal
cases. The first dataset was used for training the classifier for microcalcification
selection and the second dataset for training of the cluster classifier.

Two datasets were composed for the selection of cases with BACs. For the
training set, cluster classification was carried out on 10,000 normal cases. From
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Table 1. Features for classifier training for the case-based selection of cases with BACs

Cluster features

cls Area The area of the cluster.

cls Eccentricity
Ixx+Iyy−

√
(Ixx−Iyy)2+4I2xy

Ixx+Iyy+
√

(Ixx−Iyy)2+4I2xy

where Ixx, Iyy and Ixy are the mo-

ments of inertia.

cls Ellipse The ratio between the long axis and the short axis of a fitted
ellipse.

cls Number The number of microcalcifications in the cluster.

cls Coverage
∑n

i=1

AmCi
Acls

where AmCi is the area of the microcalcification
i, n the number of microcalcifications within Acls, the cluster
area.

cls Density 2|E|
n(n−1)

where E is the number of edges of the graph.

cls Orientation The orientation of the cluster with respect to the xy-plane.

cls Distance to skin/air The distance of the center of the cluster to the skin air
boundary.

cls Probability Cluster probability from the cluster detection.

cls Hessian (5) The Hessian-based vesselness filtered image at varying scale
(0.2 ≤ σ ≤ 1.0, steps of 0.2)

cls Tubeness (5) kline(λ1, λ2) = λ2−λ1
λ2

where λ1 ≤ λ2, the absolute eigen-
values calculated at varying scale (0.2 ≤ σ ≤ 1.0, steps of
0.2)

cls Lambda (5) The highest absolute eigenvalue λ2 at varying scale (0.2 ≤ σ
≤ 1.0, steps of 0.2)

Case features

Case total cls The number of clusters in the case.

Case cls per view (4) The number of clusters per view. (Mean, standard deviation,
maximum and minimum)

Case number of views The number of views.

these cases a group of 400 normal cases with the most significant false positives
and a group of 200 normal cases with less obvious false positives were included.
In this training set, a researcher experienced in reading mammograms labeled
each case if it contained BACs. The test set consisted of 1,000 normal and 95
malignant cases. In this set, cases with BACs were labeled by a resident of the
radiology department. The normal cases in the training and test set were ran-
domly selected from a database containing over 50,000 normal cases.

To evaluate the performance of the selection of cases with BACs, the trained
classifier, trained on the training set, was tested on the test set. After classifica-
tion, each case obtained a probability score. Of the classified dataset a Receiver
Operating Characteristic (ROC) curve was made. The sensitivity is calculated
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by determining the number of cases with BACs labeled as positive divided by
the total number of cases with BACs. The specificity is calculated by dividing
the number of cases without BACs labeled as negative by the total number cases
without BACs. The ROC curve was generated by bootstrapping the test set 5000
times.

3 Results

In the training set, 208 of the 400 cases with the most significant false positives
showed signs of BACs and 36 cases in 200 cases with less obvious false positives.
The test set contained 10 malignant and 98 normal cases with BACs. And after
cluster detection, 342 normal cases were left over in the test set of which 87
cases contained BACs. From the 95 malignant cases in the test set 93 cases were
detected of which 8 cases contained BACs.

Figure 4 shows the ROC curve of the selection of cases with BACs plotted
with 95% confidence intervals. The area under the curve of the ROC was 0.92.
Furthermore, these results show that a sensitivity 0.44 is reached with no false
positives up to a sensitivity of 0.90 at a specificity of 0.80.

Fig. 4. ROC curve of the classification of cases with BACs, bootstrapped 5000 times.
95% confidence intervals are plotted with the dashed lines.

4 Discussion

The percentage of cases with BACs found by the resident in the test set (9.7%)
corresponds with the percentages found in literature[6,9,12]. Although BACs are
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of no interest in breast cancer screening, the presence of BACs is associated with
atherosclerosis and cardiovascular disease[3,5,10]. Selection of these cases with
the proposed method can also be used for the detection of diseases other than
breast cancer.

Analysis of the 400 selected cases with the most significant false positives in
the training set resulted in 32 cases (8%) with true false positives (e.g. obvious
detection errors), 109 cases with calcifications (27%), 51 cases with macrocalci-
fications (13%), and 208 cases with BACs (52%). Showing that BACs are the
most frequent false positives in our CADe system.

Several studies are done on automatic detection of vascular calcifications in the
breast[2,4]. However, these studies are evaluated on the individually detecteded
BAC clusters. While the proposed method is based on the case-based selection
method. This makes it difficult to compare the different methods. Nonetheless,
false positive reduction in the cases with BACs, selected by the proposed system,
still has to be done as a future work. An example of the flowchart for future work
is shown in Figure 5.

Fig. 5. Flowchart of the framework for future work. The solid blocks and arrows are
proposed in this study, The dashed blocks and arrows will be done in future studies.

The proposed framework shows a good performance for the selection of cases
with breast arterial calcifications. By using this selection we will be able to apply
dedicated methods for false positive reduction due to BACs while minimizing
the risk of removing relevant true positive microcalcification clusters.
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Abstract. Segmentation is typically the first step in computer-aided-detection 
(CADe). The second step is false positive reduction which usually involves 
computing a large number of features with thresholds set by training over ex-
cessive data set. The number of false positives can, in principle, be reduced by 
extensive noise removal and other forms of image enhancement prior to seg-
mentation. However, this can drastically affect the true positive results and their 
boundaries. We present a post-segmentation method to reduce the number of 
false positives by using a diffusion scale space. The method is illustrated using 
Integral Invariant scale space, though this is not a requirement. It is quite gener-
al, does not require any prior information, is fast and easy to compute, and gives 
very encouraging results. Experiments are performed both on intensity mam-
mograms as well as on Volpara® density maps.  

Keywords: False positive reduction, mammograms, mammographic density 
maps, Integral Invariants, scale space, Fast Marching Algorithm. 

1 Introduction 

Breast cancer is the most common type of cancers, with over 55000 cases reported 
annually and over 12000 deaths in the UK alone. In most cases, mammography is the 
first step towards diagnosing breast cancer where a radiologist tries to find abnormali-
ties, which are mostly masses, microcalcification, architectural dissertation or breast 
asymmetry, in an x-ray mammogram.  A number of approaches have been proposed 
over the past decade to detect masses in mammograms. Nevertheless, the high num-
ber of false positives poses a major challenge for relying on the segmentation accura-
cy, in clinical use and thus robustness of these computers aided detection (CADe) 
systems [1].  However, its use can significantly reduce the false negative errors and 
could improve individual performance of the radiologist to potentially eliminate  
the need of double reading [2]. False positive reduction (FPR) methods try to improve 
CADe performance by purging the number of candidate regions which may be suspi-
cious of abnormality. Various approaches exist in literature, ranging from texture 
features [3] to shape [4], from simple thresholding [5] to expensive computational  
methods [6], [7]. Here we propose a simple and robust method based on Integral  
Invariant kernel [8], [9] to detect masses in mammograms, while highlighting a few 
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potential candidates. Additionally, it can suggest their ordering in a mammogram for 
likelihood to be a mass.  It should be noted that this is not a classification method to 
detect cancers, but in essence, it reduces the pool of candidate regions post-
segmentation.  

Here, we have applied Integral Invariants scale space [9] to reduce the number of 
false positives in mammograms. Integral invariants have been previously applied to 
mammograms for mass detection, segmentation and feature enhancement [9]–[13]. As 
the integral invariants retain causality at increasing scales for salient regions in 2D 
shapes; they also retain causality when applied to a surface, which is a 3D embedding 
of a 2D image. An x-ray image is an example of such an embedding in which ‘inter-
esting regions’ appear brighter (and denser) than normal breast tissue and form causal 
peaks. These peaks maintain causality in response to integral invariant diffusion. 
Here, we show that this could be applied to the scale space of segmented regions in 
order to evaluate their saliency, and consequently to reduce the number of false posi-
tives in mammograms.  Most of the mass segmentation algorithms segments three 
types of regions inside a breast, which are: 1) a masses 2) fibro-glandular tissues or 
stroma and 3) regions of light intensity and homogeneous texture surrounded by high-
er intensity and heterogeneous textures. The number of false positives could be re-
duced by extensive noise removal; linear/non-linear filtering, however, this drastically 
affects the true positive results and its boundaries. We have devised a mechanism to 
restrict the selection of fibro-glandular tissues and lighter homogeneous regions. Si-
mulations are performed on synthetic images and density & intensity mammograms.  

2 Methodology  

Suppose that a region  in a mammogram has an intensity/density profile  ex-
tracted across it at  spatial scales, such that       1, . . , ;   1, . . , , and ,  . Here  is the Integral Invariant function at the pixel 
location ,  in a diffused domain  at  scale for the region  . However, we 
contend that the saliency of region should also depend upon the overall density of the 
breast. For example, a dense region of a certain volumetric density that is certainly 
salient in a fatty breast may not be regarded as evidently salient or suspicious inside a 
very dense breast. As explained in Fig 1, we define a cost function  to determine the 
saliency of the region    in a Volpara® density map [14] by: ∑         (1) 

 is the average volumetric density of a region   ,  and  is the overall volumetric 
density of the breast. For intensity images it will be the ratio of average intensity in 
the region versus the maximum intensity inside the breast. The other point is that the 
height of density/intensity profile for a mass is greater (almost double) than that of the 
fibroglandular tissue or locally low intensity homogeneous regions. This means that a 
mass will have a relatively higher peak than that of the ‘non-interesting’ regions. This 
is one of the reasons to include the difference between the peaks of maximum and 
minimum intensity/density scale profile, as illustrated in Fig 1.  
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Fig. 1. Intensity profile scale space of a region 

With this in mind, we modify the cost function as follows:  ∑           (2)  

  abs  max   min   ;  1, . . ,  

 is negative for low intensity locally homogeneous regions.  Regions may be 
ranked on the basis of their costs to provide likelihood ordering for being a mass. We 
have found that a true mass will yield a tight and regular pattern of intensity/density 
profile from the Integral Invariant scale space, dissected along it.  Conversely, it will 
be more distributed and haphazard for false positives.  This can be seen in the Fig 3. 
The intensity/density profile is extracted using the gradient descent method on dis-
tance maps generated by the Fast Marching Algorithm (FMA) as in Fig 2. To under-
stand how the method works, we simulated a surface which has peaks and dips of 
various amplitudes, as shown in the Fig 4. The surface given in Fig 4 is segmented in 
Fig 5, and FPR is applied to it.  

 

  
A mammographic region Distance map using FMA Dissected path  

Fig. 2. Dissection of a mammographic region to extract intensity/density profile. The path is 
labelled in yellow figure, approaching from green to red spot in the rightmost images. The 
distance map is calculated using FMA in the middle figure, whereas the dissected path is com-
puted using gradient decent method.  



600 F. Janan, M. Brady, and R. Highnam 

 

 

 

 

Fig. 3. Various mammographic regions along with the corresponding II scale space. The mass 
in the top left gives a high value of T for compact intensity profiles across all given scales. 

It can be seen that both, less bright and all dark regions, are eliminated by this 
process. Based on the  values, the method can grade regions based on the probability 
of its likelihood of being of interest. This grading and selection of very bright to less 
bright regions is dependent on the threshold, which is user defined and is application 
specific.   
 
 

 
Fig. 4. A simulation surface in a false colour model 
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Fig. 5. (Top) segmented regions from Fig 4, final results from FPR method (bottom) 

3 Results 

The method has been applied to both Volpara® density maps and intensity images 
from USF database, with very encouraging results. The ground truth for the  
USF database was crudely delineated to highlight location of abnormality rather  
than its precise boundary, whereas only laterality was known for Volpara® density 
maps.  

For Volpara® images, the method has also been applied to density maps  
obtained from ‘Manchester 50/50 dataset’, which includes 50 screen detected  
cancers and an equal number of normals, anonymised, each with LCC, LMLO,  
RCC and RMLO views. These comprise FFDM raw images from a GE Senographe 
Essential system. FPR was applied to all segmented regions in mammograms  
and regions of interest were identified. 100% accuracy for true positives was  
noticed where a grading scheme was applied to grade candidate regions with  
a  beyond a certain threshold. If a false positive is counted for all those mammo-
grams where true positives did not get the highest score after applying  
FPR method for likelihood of being a mass, despite those true positives survived  
it, the false positive rate is 0.24 per image. Fig 6 shows a mammogram where  
false positives are removed and the true positive is retained well within accurate  
margins.  

T = 4 , Grade: B T = 2 , Grade: D
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Fig. 6. A segmented mammogram on the left, whereas the ground truth and the segmented 
boundary of ROI on the right 

 

 

 

Fig. 7. Examples of segmented mammograms from USF database using the illustrated FPR 
method 

Fig 7 and Fig 8 shows a few examples of segmented masses in intensity and densi-
ty images from USF and Manchester 50/50 database respectively. 
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Fig. 8. Cancers retained on the density maps. Regions highlighted in red ( ) are most 

likely to be masses, followed by yellow ( ) and blue (  ) respectively 
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4 Discussion  

We have presented a false positives reduction method to detect regions of interests in 
mammograms. FPR typically involves the processing of a large pool of features in a 
computational training framework or by extensive noise removal. However, aggres-
sive denoising can adversely affect the true positive results. We have developed a 
method using diffusion scale space, with Integral Invariants as an example, to reduce 
post-segmentation candidate regions. The method is based on the premise that diffu-
sion scale space of a mass yields a high peaked compact set of density/intensity 
|profile over a range of scales, unlike false positives. The method is applied to both 
density and intensity images with very encouraging results. The major limitation is 
threshold selection, which is not unique to this method, and can be estimated empiri-
cally. Setting up a criterion for dynamic thresholding for this method will highly  
improve its effectiveness. 
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Abstract. Architectural distortion in mammography is the most missing finding 
for radiologists, despite high malignancy. Many research groups have 
developed methods for automated detection of architectural distortion. 
However, improvement of their detection performance is desired. In this study, 
we developed a novel method for automated detection of architectural distortion 
in mammograms. To detect the mammary gland structure, we used an adaptive 
Gabor filter, whichconsists of three Gabor filters created by changing the 
combination of parameters. The filter that is best matched to the mammary 
gland structure pixel by pixel in the mammogram is selected. After detecting 
the mammary gland, enhancement of the concentrated region and false positive 
reduction are performed. In the experiments, we verified the detection 
performance of our method using 50 mammograms. The true positive rate was 
found to be 82.45%, and the number of false positive per image was 1.06. 
These results are similar to or better than those of existing methods. Therefore, 
the proposed method may be useful for detecting architectural distortion in 
mammograms. 

Keywords: Mammography, CAD, architectural distortion, Gabor filter. 

1 Introduction 

Mammography screening is carried out for detecting breast cancer early. The findings 
obtained from mammography are mass, micro-calcification, and architectural 
distortion. Among them, architectural distortion is the most elusive finding for 
doctors. Moreover, it is classified as having a high malignancy in breast cancer. 
Therefore, it is important to detect and treat architectural distortion at an early stage. 
Many research groups have developed automated detection methods for architectural 
distortion[1–3]subsequent to two other findings [4,5].However, conventional methods 
failed to produce acceptably low false positive and high true positive rates [1–3]. 
Therefore, further improvement of the detection rate is desired. In order to improve 
the detection performance, it is essential to analyze the mammary gland structure 
more accurately. In this study, we propose an improved detection method for 
architectural distortion using an adaptive Gabor filter, which uses three Gabor filters, 
and we evaluated its detection performance. 
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2 Methods 

The proposed method consists of 6 steps: pre-processing, detection of mammary 
gland structure, extraction of primary mammary glands, calculation of the degree of 
concentration, segmentation, and false positive reduction. 

2.1 Pre-processing 

Images of the breast area are extracted by automated thresholding and labeling. In 
order to emphasize the line patterns, trend removal using a top-hat filter and gamma 
correction is performed. 

2.2 Detection of Mammary Gland Structure 

In order to detect the mammary gland structure, a Gabor filter[6] is introduced. A 
Gabor filter [Fig. 1;Eqs.(1) and (2)] is a type of line detection filter. The maximum 
value of h(x,y) is obtained at an angle that line structures of mammary gland andfilter 
shape is matched. 

 

 

Fig. 1. Gabor filter function 

 
 , (1) 

 g x, y) = exp ２

２
cos 2 , (2) 

 x′= xcosθ + ysinθ,y′= −xsinθ+ ycosθ, (3) 
 

where λ is the wavelength of the filter function, γ is the aspect ratio, σ is the deviation 
of the Gaussian factor that determines the effective size of filtering, φ is the phase, 
and θ represents an direction of Gabor filter. 

In this study, mammary gland structure is extracted using the adaptive Gabor filter as 
shown in Fig.2 [7].  
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Abstract. Image registration is increasingly being used to help radiol-
ogists when comparing temporal mammograms for lesion detection and
classification. This paper evaluates the use of image and deformation
features extracted from image registration results in order to detect ab-
normal cases with masses. Using a dataset of 264 mammographic images
from 66 patients (33 normals and 33 with masses) results show that the
use of a non-rigid registration method clearly improves detection results
compared to no registration (AUC: 0.76 compared to 0.69). Moreover,
feature combination using left and right breasts further improves the
performance (AUC to 0.88) compared to single image features.

1 Introduction

The detection of abnormalities in mammographic images is an important re-
search topic in breast image analysis. Initial approaches found in the literature [1]
were based on the analysis of individual images alone in order to detect (CADe)
and classifiy (CADx) microcalcificacions and masses. While microcalcification
detection has achieved a sufficient maturity for clinical (and commercial) CAD
systems, mass detection still has to improve in terms of specificity and sensitivity.
This is mainly due to a larger shape variability and the intensity inhomogeneity
of the lesion itself but also of the surrounding tissue which often hinders the
detection and segmentation steps.

A way of improving abnormality detection performance is the use of various
images from the same patient, similar to radiologists when reading mammo-
graphic cases. This has already been approached using contralateral (comparing
left and right breasts), ipsilateral (CC and MLO) [2] or temporal [3,4] (same
view at different time intervals) studies. Common approaches to compare var-
ious images are based on image registration to spatially correlate the images
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or to extract and match image features (i.e. nipple position, principal axes or
salient regions). This paper belongs to the former set of approaches. The aim of
this work is to investigate whether image registration results can be used for the
detection of malignant cases in temporal images of the same patient. Temporal
comparison has been chosen rather than contralateral or ipsilateral assuming
that radiological findings are better detected by analysing breast evolution over
time. Note that the aim is not to obtain a particular lesion detection or segmen-
tation but to classify cases as normal or abnormal using solely image registration
results. This is of particular interest for CAD systems as a pre-sorting step (clas-
sification of normal and abnormal cases) or as prior information for subsequent
processing.

The image registration algorithm used in this paper is similar to the work
in [5]. The algorithm is based on combining an affine transformation maximising
a mutual information similarity measure with a non-rigid point correspondence
approach based on a robust point matching algorithm. Intensity and deforma-
tion based features obtained from the registration are subsequently used in a
machine learning framework to detect abnormal cases with lesions. The contri-
bution of the paper is two-fold: the application of a non-rigid point based image
registration algorithm to temporal full-field digital mammographic (FFDM) im-
ages, and the use of a machine learning framework with features extracted from
the registration results for evaluating detection of malignant cases in temporal
images.

2 Image Database

A total of 264 full-field digital (FFD) mammograms were used from 66 differ-
ent women randomly chosen from a screening population. From those, 33 were
normal, while 33 suffered from breast cancer with a visible malignant mass in
one of the breasts. Mass area size ranged from 8 to 356 mm2 with a median
area of 64.12 mm2. Each woman had two mammographic studies (acquired 1-2
years apart) and each study contained two medio-lateral oblique images. Cranio-
caudal views were also available but were not used in this study (will be used
in future work). Mammograms were acquired using a Selenia FFD mammogra-
phy system, with resolution 70 micron per pixel, size 4096x3328 or 2560x3328,
and 12-bit depth. As the aim is the temporal comparison of mammograms, each
mammogram image was registered to its homonymous mammogram from the
posterior studies, performing 132 registrations. The presence of masses was an-
notated by expert radiologists. This allowed us to distinguish between those
registration instances containing masses from those not containing them. Hence,
for a woman diagnosed with breast cancer we had a registration of the breast
with the mass, referred to as Abnormal with Lesion (AL), and the registration
of the breast without the lesion (healthy breast), referred to as Abnormal (A).
For a normal case, both registrations were considered as Normal (N).
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3 Methodology

The main goal here is to investigate whether image registration results can pro-
vide significant information in order to help detecting abnormal cases. The over-
all methodology includes an initial image pre-processing step, registration of
temporal images, and mammogram (or patient) classification based on features
extracted from the registration results. Figure 1 shows the general framework of
the methodology used, while the following subsections provide more details on
each step.
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Fig. 1. Overview of the proposed methodology

3.1 Image Pre-processing

Image pre-processing is performed to minimise mammogram and breast variabil-
ity and to facilitate the subsequent registration step. In that sense, the breast
area is automatically segmented using simple thresholding and the pectoral mus-
cle is removed [6]. In addition, a peripheral enhancement method is applied to
compensate thickness variations in the breast periphery based on Tortajada et
al. [7]. The method automatically restores the overexposed area by equalising the
image using information from the intensity of non-overexposed neighbour pixels.
The correction is based on a multiplicative model and on the computation of
the distance map from the breast boundary. Finally, images are downsampled to
half the size using bilinear interpolation in order to reduce computational cost.
Figure 2 shows an example of the pre-processing steps described.

3.2 Image Registration

The registration methodology is based on robustly matching interest points in
two mammographic images of the same view type. After an initial affine regis-
tration maximised by a mutual information metric, the registration algorithm
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(a) (b) (c)

Fig. 2. Pre-processing: (a) Original mammogram (b) pectoral muscle removal, and (c)
peripheral enhancement

extracts interest points found in the boundary and applies a robust point match-
ing approach obtaining a non-linear transformation [5]. Salient points are defined
by computing a maximal local curvature measure in the breast boundary. The
point matching approach used here is based on the work of Zheng et al. [8], which
uses shape contexts as the measure of point similarity and a graph matching for-
mulation followed by relaxation labelling for obtaining the final point matches.

Point Matching. The robust point correspondence method is based on an it-
erative graph matching process in order to minimise correspondence errors [8].
Those errors are related to a cost matrix (Cij) which describes the cost of match-
ing one point i in one image (row i) with a point j in the second image (column
j). The elements of this cost matrix are obtained using shape contexts [9]. Re-
laxation labelling is applied to the cost matrix in order to minimise ambiguous
matchings. The optimal assignment of the points in the cost matrix is obtained
using the Hungarian method, as in [9]. At the end of each iteration, the matched
points are used for transforming one point set (p) in order to match the other (q).
This transformation is based on a Thin-Plate Splines (TPS) transform, obtain-
ing a smooth transformation between matched points. The transformed points p
and q are used for building the cost matrix for the next iteration. The stopping
criteria of the iterative process is usually stated in terms of a maximum number
of iterations or when the number of matches does not change with respect to
the last iteration.

Figure 3 shows an example of image registration of a normal and abnormal
case, with the transformed moving image, the difference image and the defor-
mation field magnitude. While differences in the deformation field are difficult
to appreciate, structural dissimilarities in the difference image are highlighted,
including the lesion in the abnormal case.
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(a) (b) (c) (d)

Fig. 3. Image Registration: (a) Fixed and (b) transformed moving mammograms, (c)
image difference and (d) deformation field magnitude (brighter areas denote larger
deformation). Top row shows a normal mammogram and bottom a mammogram with
a lesion (white circle).

3.3 Image Features

From the registration results we extract three sets of features which are then used
to classify a patient into normal or abnormal. The first feature set is computed
from the difference image while the second set is extracted from the deforma-
tion field (the displacement experienced by each pixel normalised by the image
size). In these two sets (difference image and deformation field) the features
computed are the first five statistical moments of the intensity or deformation
distribution. Finally, the third set of features is composed of various similar-
ity measures commonly used in image registration computed between the fixed
and moving images: root mean squared error, cross-correlation, entropy of the
difference image and mutual information [10], having a total of 14 features.

Feature Combination. The above described features are computed for each
single temporal registration. As we are registering left and right temporal mam-
mograms of the same patient independently, we also study the effect of combin-
ing the features hence obtaining a unique feature vector for each woman. The
hypothesis is that this combination can help towards the classification as in nor-
mal cases those features are likely to be more stable compared to abnormal cases
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due to the development of breast cancer. Various simple combinations have been
tested: mean, signed and absolute differences, and minimum and maximum. Ex-
perimental results evaluating the different combination approaches have shown
that combining using the maximum value obtained the best results.

3.4 Classification

Features have been used in a Random Forest (RF) classifier in order to differ-
entiate between normal and abnormal cases containing a mass. The parameters
were experimentally set to 500 decision trees and a feature subset size of 3
features for each tree. Although other classifiers (such as SVM, Adaboost and
KNN) and feature selection methods have been tested, RF obtained the best
results overall. PRTools software has been used for the implementation [11]. All
features have been normalised to a zero mean and unit standard deviation. A
leave-one-woman-out validation approach has been used for testing.

4 Results

Figure 4 and Table 1 show classification results in terms of ROC curve (true
positive rate (TPR) against false positive rate (FPR)) and area under the curve
(AUC) when using the proposed algorithm (robust point matching (RPM)) com-
pared to no registration (No Reg), and affine transformation using mutual in-
formation (Aff). Features are computed for two cases: for a single registration
(Single) or combining left and right temporal features using the maximum of
both features (Combined). For the single case, only one mammogram is used for
feature extraction: the one with the mass for abnormal cases and left or right
randomly selected for normal ones.
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Fig. 4. Abnormal classification ROC curves using features from robust point matching
of the boundary points (RPM) and Affine algorithms also compared to no registration.
(a) Single features; (b) combination using the maximum operation
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Table 1. AUC for classification of abnormal cases. Features used in the classifier are
obtained after no registration (No Reg), affine registration (Aff) or robust point match-
ing of the boundary points (RPM). Single features are compared to their combination
using the maximum operation.

No Reg RPM Aff

Single 0.69 0.76 0.71
Combined 0.76 0.88 0.84

Regarding the ROC curves with single features, the use of RPM shows a clear
improvement compared to no registration or even affine registration. This is also
reflected in the AUC values (0.69 and 0.71 for No Reg and Aff compared to 0.76
for the RPM).

Regarding feature combination, it is also clear that results improve in all cases,
including the no registration case. Differences are relevant with respect to the
use of registration algorithms compared to no registration, although between
Aff and RPM (0.84 vs 0.88) this difference is not that evident. This indicates
that non-rigid registration improves classification results, however, further inves-
tigation should be carried out including other non-rigid algorithms. Regarding
feature analysis it has been observed that features based on the intensity sim-
ilarity (moments of the difference image and mutual information) show better
discriminant properties than the rest of the features. However, with the inclusion
of other registration algorithms this could change in favour of other features such
as the deformation field.

5 Conclusions

A framework for classifying mammograms into normal and abnormal cases has
been presented based on using image based features from temporal non-rigid
image registration results. Feature combination between left and right breast
has been shown to obtain better results in terms of ROC analysis compared to
using single features alone. This indicates that combining features obtained in
this fashion with other views such as CC has the potential of further improving
the results. This combination will be part of the future work, as well as the
evaluation of additional registration algorithms specially those based on intensity
metric maximisation (i.e. B-splines and diffeomorphic demons) or the use of a
larger and multi-center dataset of images.

Acknowledgements. The research leading to these results has been supported
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Abstract. In mammographic images, the presence of microcalcification
clusters is a primary indicator of breast cancer. However, not all microcal-
cification clusters are malignant and it is difficult and time consuming for
radiologists to discriminate between malignant and benign microcalcifi-
cation clusters. In this paper, a novel method for classifying microcalcifi-
cation clusters in mammograms is presented. The topology/connectivity
of microcalcification clusters is analysed by representing their topologi-
cal structure over a range of scales in graphical form. Graph theoretical
features are extracted from microcalcification graphs to constitute the
topological feature space of microcalcification clusters. This idea is dis-
tinct from existing approaches that tend to concentrate on the morphol-
ogy of individual microcalcifications and/or global (statistical) cluster
features. The validity of the proposed method is evaluated using two
well-known digitised datasets (MIAS and DDSM) and a full-field digital
dataset. High classification accuracies (up to 96%) and good ROC results
(area under the ROC curve up to 0.96) are achieved. In addition, a full
comparison with state-of-the-art methods is provided.

1 Introduction

Microcalcifications are small deposits of calcium in breast tissue that appear
as small bright spots in mammograms [1–4]. The presence of microcalcification
clusters is a primary sign of breast cancer. The radiological definition of micro-
calcification clusters is that at least three microcalcifications are present within
a 1 cm2 region [4, 5]. The spatial resolution of mammography is very high (nor-
mally in the range of 40−100μm per pixel) and therefore mammography enables
the detection of microcalcifications at an early stage. However, not all microcal-
cification clusters necessarily indicate the presence of cancer, only certain kinds

� This work is partially funded by Science & Research Project of Liaoning Province
Eduction Deparatment, China (No. L2013225).
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of microcalcifications are associated with a high probability of malignancy [6, 7].
In clinical practice, it is difficult and time consuming for radiologists to interpret
mammograms and distinguish malignant from benign microcalcifications. This
results in a high rate of unnecessary biopsy examinations [3, 5]. To improve di-
agnosis accuracy of radiologists, computer-aided diagnosis (CAD) systems have
been applied to reduce the false positive rate while maintaining sensitivity [3, 8].

Various automatic approaches have been proposed to characterise and classify
microcalcifications into malignant and benign [3, 9]. These methods use such fea-
tures as shape, morphology, cluster based features, intensity and texture [3, 9].
Many of these methods describe the shape and morphology of individual micro-
calcifications [1, 4], however, there are a range of techniques that concentrate on
global (statistical) features of microcalcification clusters [2, 8, 11, 13]. In addition,
a variety of classifiers, such as k-Nearest Neighbours (kNN) [1, 5, 11], Artificial
Neural Networks [2, 12–16] and Support Vector Machines (SVM) [8, 15, 17],
have been employed to build classifier models using the extracted feature sets.
The performance of ANN and SVM in classifying malignant and benign micro-
calcifiation clusters was compared in [15]. For the classification of malignant and
benign microcalcifications, the values of the area under the ROC curve achieved
by all of the discussed publications range from 0.74 to 0.98.

However, most of existing approaches have their own disadvantages. Firstly,
for the approaches based on the shape/morphology of individual microcalcifica-
tions, informative features cannot be attained when microcalcifications are very
small (occupying only a few pixels). Secondly, microcalcifications may have very
low contrast with respect to the surrounding tissue especially when microcalcifi-
cations form within dense tissue which has high and homogeneous intensity, and
as such the performance of the approaches based on the intensity variations and
texture features may be affected. In addition, for the approaches describing the
spatial distribution of microcalcifications within a cluster, the global cluster fea-
tures were computed based on a fixed resolution and the distance-based features
rely on the original spatial resolution of mammography. This results in a lack of
robustness and adaptiveness to different spatial resolutions of mammograms in
particular screen-film mammograms acquired by different digitisers.

According to some studies on the evaluation of breast microcalcifications, ma-
lignant microcalcifications tend to be small, numerous (> 5 per focus within 1
cm2) and densely distributed because they lie within the milk ducts and associ-
ated structures in the breast and follow the ductal anatomy [6, 7, 18]. However,
benign microcalcifications are generally larger, smaller in number (< 4 − 5 per
1 cm2) and more diffusely distributed as these microcalcifications arise within
the breast stroma, benign cysts or benign masses [6, 7, 18]. These differences re-
sult in variations in the distribution and closeness of microcalcifications within
the clusters and provide radiologists with information which enables decisions
regarding the need for further assessment and possible breast biopsy. Hence, we
propose a novel method for modelling and classifying microcalcification clusters
in mammograms based on their topological properties. The topology of microcal-
cification clusters is analysed at multiple scales using a graphical representation
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Fig. 1. Methodology workflow for topology based modelling and classifying malignant
and benign microcalcification clusters in mammograms

of their topological structure. This method is distinct from existing cluster-based
analysis approaches that compute the distance-based cluster features at a fixed
scale. In this method, a set of topological features are extracted from microcal-
cification graphs at multiple scales and a multiscale topological feature vector is
subsequently generated to discriminate between malignant and benign cases.

2 Data and Method

The data used in the experiments consists of three datasets. The first dataset
was taken from the Mammographic Image Analysis Society (MIAS) database,
containing 20 image patches with the same size of 512× 512 pixels. The spatial
resolution is 50μm×50μm per pixel. The second dataset was extracted from the
Digital Database for Screening Mammography (DDSM) database, containing
80 image patches with varied sizes (the average size of these image patches is
487× 447 pixels). The mammograms in DDSM were digitised by four scanners
and the spatial resolution ranges from 42 to 50 microns per pixel. In contrast to
the first two datasets, the third dataset contains 25 full-field digital image patches
extracted from a non-public mammographic database. These mammograms were
acquired using a Hologic Selenia mammography unit, with a resolution of 70
microns per pixel. The average size is 352× 301 pixels. All image patches were
taken from different mammograms, each containing a microcalcification cluster.
The diagnostic gold standard (benign or malignant) of all microcalcification
clusters in this study has been provided by biopsy: there are 9 malignant and 11
benign clusters in the MIAS dataset, 36 malignant and 44 benign clusters in the
DDSM dataset, and 14 malignant and 11 benign clusters in the Digital dataset.

The proposed method works on binary microcalcifications which were de-
tected using an automatic detection approach developed in [19]. Fig. 1 illus-
trates the workflow of our methodology. Firstly, we estimate the connectivity
between microcalcifications within a cluster using morphological dilation, which



Analysis of Mammographic Microcalcification Clusters 623

Fig. 2. Example microcalcification clusters: malignant (top row) and benign (bottom
row). First column: binary microcalcifications (cluster region is zoomed and microcal-
cification No. 12 for benign falls outside the displayed region); second column: dilated
microcalcifications at scale 8; third column: microcalcification graphs.

is performed on each individual microcalcification using a disk-shaped structur-
ing element over a range of scales. Here, the scale corresponds to the radius of
the structuring element measured in pixels. The dilation results of two example
clusters are shown in Fig. 2. The boundaries of dilated microcalcifications are
displayed using different colours and each individual microcalcification is labelled
with a sequential number which is ordered according to the spatial location of
the corresponding microcalcification in the image patch.

We represent the topology of microcalcification clusters in the form of graphs.
A microcalcification graph is generated based on the spatial connectivity rela-
tionship between microcalcifications within a cluster, where each node represents
an individual microcalcification and an edge between two nodes is created if the
two corresponding microcalcifications are connected or overlap in the 2D im-
age plane. The microcalcification graphs corresponding to the two examples of
malignant and benign clusters are shown in the third column of Fig. 2. The
node locations in the two graphs are in accordance with the original spatial
distribution of microcalcifications within the two clusters.

For each microcalcification cluster, we generate a series of microcalcification
graphs over a range of scales and extract a set of graph theoretical features.
These features constitute the topological feature space for the classification of
malignant and benign clusters. Here, we use G(V,E) to represent a graph where
V is the vertex set andE is the edge set, and use |V | (the cardinality of V ) and |E|
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(the cardinality of E) to denote the number of vertices and the number of edges
in G, respectively. The following graph metrics are extracted from the generated
microcalcification graphs and are concatenated to form a feature vector, termed
as the multiscale topological feature vector.

1. Number of Subgraphs. The number of subgraphs of a graph G(V,E) is
the number of connected components in G, computed by counting the multiplic-
ity of the eigenvalue 0 of the normalised Laplacian matrix L, which describes
the number of connected components within a microcalcification cluster.

2. Average Vertex Degree. The average vertex degree of a graph G(V,E)
is the average degree of all vertices in G, computed by

∑
i∈V d(i)/|V |, which

describes the average connectedness between a microcalcification and its sur-
roundings within a cluster.

3. Maximum Vertex Degree. The maximum vertex degree of a graph
G(V,E) is the maximum degree of all vertices in G, computed by maxi∈V d(i),
which describes the maximum connectedness between a microcalcification and
its surroundings within a cluster.

4. Average Vertex Eccentricity. The average vertex eccentricity of a
graph G(V,E) is the average eccentricity of all vertices in G, computed by∑

i∈V e(i)/|V |, which represents the average longest distance of a microcalci-
fication to other reachable microcalcifications in a connected component.

5. Diameter. The diameter of a graph G(V,E) is the maximum eccentric-
ity of all vertices in G, computed by maxi∈V e(i), which indicates the longest
distance between two microcalcifications in a connected component.

6. Average Clustering Coefficient. The average clustering coefficient of
a graph G(V,E) is the average clustering coefficient of all vertices in G, com-
puted by

∑
i∈V c(i)/|V |, which indicates how concentrated a microcalcification’s

neighbourhood is and how close it is from being a clique.
7. Giant Connected Component Ratio. The giant connected component

of a graphG(V,E) is the largest set of vertices that are reachable from each other.
The giant connected component ratio is the ratio of the number of vertices in
the giant connected component to the number of vertices in G, which shows
the percentage of microcalcifications in the largest connected component with
respect to all microcalcifications in a cluster.

8. Percentage of Isolated Points. The percentage of isolated points of a
graph G(V,E) is the ratio of the number of isolated points (vertices with degree
equal to 0) to the number of vertices in G, which provides the percentage of
isolated microcalcifications in a cluster.

After generating the multiscale topological features, a k-Nearest Neighbours
based classifier is used for classifying microcalcification clusters into malignant
and benign. The kNN classification is based on a simple majority vote, unless
equal class probability is indicated, in which case a Euclidean weighted approach
is adopted. A range of values for k are employed when generating the experi-
mental results which are documented in the following section.
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Table 1. Our results and a comparison with those achieved by related work

Method Database Case Feature Classifier Result

[1] unknown 18 shape kNN CA = 100%
[4] DDSM 183 shape thresholding Az = 0.96
[2] unknown 191 texture&cluster ANN Az = 0.86
[8] MIAS 25 cluster SVM Az = 0.81
[12] unknown 54 texture ANN Az = 0.88
[5] Nijmegen 103 multiwavelet kNN Az = 0.89
[11] Liverpool 38 shape/cluster kNN Az = 0.79, Az = 0.84
[13] University of Chicago Hospitals 49 morphology ANN Az = 0.80
[17] University of Chicago 104 cluster&morphology Ada-/Cas-SVM Az = 0.81, Az = 0.82
[14] DDSM 150 varied features ANN Az = 0.98
[15] DDSM 150 varied features ANN/SVM Az = 0.93, Az = 0.94

Ours MIAS 20 topology kNN CA = 95%, Az = 0.96
Ours Digital 25 topology kNN CA = 96%, Az = 0.96
Ours DDSM 80 topology kNN CA = 95%, Az = 0.96

3 Experimental Set-Up and Results

To evaluate the performance of the classifier models built by using the multiscale
topological features, a leave-one-out cross-validation scheme was employed for all
datasets. Two evaluation metrics were used for this work. The first was overall
classification accuracy (CA), which provides a summary of the performance for
balanced datasets (such as the datasets used here). ROC analysis was employed
as the second evaluation approach to assess the predictive ability of a classifier
by using the area under the ROC curve denoted by Az. The details about the
construction of the ROC curve by defining a malignancy measure based on the
kNN classifier can be found in [10].

We investigated a range of scales up to 64 and as such the dimensionality
of the multiscale topological feature space was up to 8 × 65 = 520 (8 graph
based features were extracted at each scale and scale 0 was included as well).
The bottom part of Table 1 shows the best classification results achieved over 65
scales for the three datasets. The number of scales used for generating the results
shown in Table 1 was 9, 43 and 12 for MIAS, DDSM and Digital, respectively.
Fig. 3 shows the classification results with respect to variation in the value of k
for the three datasets. As shown in Fig. 3, small variations in k provided similar
results in most cases. For the two smaller datasets, MIAS and Digital, the kNN
classifier produced slightly better performance when using smaller k values; while
for DDSM, relatively stable results were indicated for larger k values.

4 Discussion and Conclusions

As described above, good classification results have been obtained for all the
three datasets. The Digital dataset provided slightly better results than those
of MIAS and DDSM, which might be due to the more accurate detection of
microcalcifications using digital mammography. As stated in [19], the detection
approach indicates the best performance when using the Digital dataset. In addi-
tion, we compared our method with state-of-the-art approaches in the literature.
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Fig. 3. The classification results with respect to different k values for the three datasets.
Note that some curves for different datasets are overlapped.

A summary of the comparison is also provided in Table 1. It should be noted
that the various approaches in Table 1 use different images taken from different
databases, and therefore it is a qualitative comparison. As shown in Table 1, our
method produced comparable results to the various approaches.

One inherent limitation of the developed method is that it cannot provide a
reliable classification for the case where the cluster is structureless or few micro-
calcifications are segmented within the cluster. Another concern of the proposed
method is that its performance might depend on the performance of the previ-
ous microcalcification detection approach. False negatives or false positives may
affect the global topology/connectivity of microcalcification clusters. However,
the experimental results demonstrate the robustness and effectiveness of the
developed method when combined with automatic microcalcification detection.
This indicates its potential application in conjunction with automatic detection
approaches in CAD systems.

In summary, we have presented a novel approach to analyse microcalcifica-
tions in terms of the connectivity and topology for classifying malignant and
benign clusters. Unlike most features (e.g. shape/morphological features) in pre-
vious publications extracted at a single scale, a graphical representation of mi-
crocalcification clusters describing the multiscale topological characteristics was
developed in this paper. Eight graph metrics were extracted and constituted the
multiscale topological feature vector, which has been used to classify microcal-
cification clusters into malignant and benign. The proposed method has been
evaluated using three datasets: MIAS, DDSM and Digital. Good classification
results have been obtained for all the datasets. This demonstrates the capability
of our method in dealing with two categories of mammograms, which allows it to
be applied in both film and digital mammography. Future work will concentrate
on evaluating the stability of the proposed method against the size of the evalu-
ation dataset. In addition, the most significant microcalcification graph metrics
for malignancy analysis will be investigated by performing feature selection.
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Abstract. Texture information of breast masses may be useful in differentiating 
malignant from benign masses on digital mammograms. Our previous mass 
classification scheme relied on shape and margin features based on manual con-
tours of masses. In this study, we investigated the texture features that were de-
termined in regions automatically selected from square regions of interest 
(ROIs) including masses. As a preliminary investigation, 149 ROIs including 
91 malignant and 58 benign masses were used for evaluation by a leave-one-out 
cross validation. The local ternary pattern and local variance were determined 
in sub regions with the high contrast and a core region. Using an artificial neur-
al network, the classification performance of 0.848 in terms of the area under 
the receiver operating characteristic curve was obtained. 

Keywords: Breast masses, mammograms, computer-aided diagnosis, classifica-
tion, texture feature, local ternary pattern. 

1 Introduction 

Distinction between benign and malignant lesions on mammograms can be difficult. 
We have been investigating a computerized image analysis method for assisting radi-
ologists’ diagnosis of breast images. In our previous studies [1-4], determination of 
similarity measures was investigated for retrieval of reference images that are similar 
to a new case to be diagnosed. Some characteristics of breast masses that radiologists 
may consider during the mammography reading include the mass shapes, e.g., round 
or irregular, the margin characteristics, e.g., circumscribed or spiculated, and the den-
sity, whether it is higher than that of the surrounding fibrograndular tissue or iso-
dense. The image features determined for the similarity measures included such fea-
tures characterizing the shape, density and margin. However, in our previous me-
thods, it has been found that the shape and margin features are predominantly useful, 
and the density features, such as the contrast and standard deviation in pixel values, 
were considered not very useful. This fact indicates that the characteristics that radi-
ologists find for diagnosis might not be fully reflected in our previous features. Other 
features such as textural features may represent mass density characteristic and be 
useful in the distinction between benign and malignant masses. 
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In addition, the shape and margin features were determined on the basis of the ma-
nual outline of a mass in our previous study. However, obtaining the detailed contour 
of a mass from practitioners is not practical, and automatic delineation is not easy. In 
this study, we investigated new textural features, namely, modified local ternary pat-
terns (LTP) [5], determined in regions automatically selected from a square region of 
interest (ROI) including masses for classification between benign and malignant 
masses. 

2 Materials and Methods 

2.1 Database 

Digital mammograms used in this study were obtained at Nagoya Medical Center, 
Nagoya, Japan, with either the phase contrast mammography (PCM) units (Merma-
id/Pureview, Konica Minolta, Inc.) or computer radiography (CR) system (Mammo-
mat 3000, Siemens and C-Plate, Konica Minolta). This study was approved by the 
institutional review board. The pixel sizes of the images are 25 (PCM) and 43.75 
(CR) microns and the gray level is 12 bits. For image processing, the pixel size and 
gray scale were unified to 50 microns and 10 bits by linear interpolation. All the 
mammograms were retrospectively reviewed by one of two radiologists with the di-
agnostic report and the corresponding ultrasonography images, if available, and the 
square ROIs including masses were obtained. In this study, 149 ROIs, including 91 
malignant and 58 benign masses were used. The malignant masses were confirmed by 
biopsy or surgery, while benign masses were diagnosed by biopsy or follow-ups with 
other image modalities. The average and standard deviation of mass diameters are 35
±18 mm, and the size of ROIs ranged from 250 x 250 to 1758 x 1758 pixels. 

2.2 Methods 

Modified Local Ternary Pattern. Local ternary pattern (LTP) [5] is a variant of the 
local binary pattern (LBP) [6], which is a sequence of binarized information of the 
pixels surrounding the pixel of interest. Assuming there is a slope or an edge around 
the pixel of interest, such as in Fig. 1(a), the surrounding pixels are compared with the 
pixel of interest and binarized to have 1 or 0 depending on the superiority of the pixel 
value, as in Fig. 1(b). LBP takes the parameters of R and P, which are the radius and 
the number, respectively, of the surrounding pixels for comparison and 1 and 8, re-
spectively, for the above example. Starting arbitrarily from the pixel on the right in 
clockwise, the pattern for this pixel of interest will be 00011110. For an ROI, the 
histogram of patterns is built and used for the subsequent process of classification. 

Because actual images include some noise, LTP was proposed to include a margin 
on the threshold, and the output became three values as -1, 0, and 1, corresponding to 
the surrounding pixel values smaller than that of the pixel of interest minus a thre-
shold, within the threshold, and larger than that plus threshold, respectively. If we set 
the threshold to 3 in the same example above, the output becomes as in Fig. 1(c). 
These values can be separated by the positive and negative values to two binary  
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patterns of 00011100 and 11000001 and handled as the regular LBP. The histograms 
of the positive and negative patterns are concatenated.  

In LBP with P=8, the number of possible patterns, which is also the number of his-
togram bins, will be 28 = 256. Ojala et al. [6] found that the majority of the meaning-
ful patterns can be represented by the basic patterns and, therefore, proposed the “uni-
form” patterns, which include at most two transitions between 0 and 1. All the other 
patterns are grouped into the non-uniform pattern. The pattern in Fig. 1(b) is the uni-
form pattern. This reduces the number of patterns to 59. In addition, they proposed the 
rotation invariance by disregarding the directionality of the patterns. As a result, the 
number of patterns could be further reduced to 10 for P=8. 

In the classification of benign and malignant masses, however, the direction of the 
edges at margin is an important characteristic. Therefore, we employed the uniform 
patterns but also considered the direction of the patterns. Instead of the regular rota-
tion variant patterns, we rotated the patterns with reference to the direction of mass 
center. By assuming the center of ROI as the center of a mass, the patterns are rotated 
so that the binary sequence always starts from the pixel closest to the center of an 
ROI. In order to reduce the number of bins, we summed the fractions of patterns cor-
responding to the positive and negative patterns. 
 

 

Fig. 1. An example of LBP and LTP determination. (a) The pixel of interest (shaded) and the 
surrounding pixels, (b) LBP values, (c) LTP values with the threshold set to 3. 

Overall Classification Method. For determination of the LTP, the images were first 
down sized to ¼ (by half in each direction) by pixel averaging, and the gray scale was 
reduced to 8 bits. From the square ROIs, most descriptive sub-ROIs of 50 x 50 pixels 
in size based on the histogram were selected. The histograms of sub-ROIs were ob-
tained for all pixels, except the ones on edges, by scanning the 50 x 50 pixel window. 
The sub-ROIs with the largest histogram widths were consecutively selected without 
allowing the overlap. The maximum number of sub-ROIs was varied on the basis of 
the size of the original square ROIs. Figure 2 shows the locations of the selected sub-
ROIs for a malignant ROI and a benign ROI. The squares in the figure are 10 x 10 
pixels and not the actual size of sub-ROIs (50 x 50 pixels). Note that the contrast of 
the original images was lowered in this figure for presentation purpose. The LTP was 
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determined at each pixel in these sub-ROIs and the combined histogram was obtained 
for the case. 

By selecting the sub-ROIs with the high contrast, the regions around the margin of 
a mass are likely selected as in Fig. 2. However, the texture characteristic of the core 
region is also important. In addition to the high contrast sub-ROIs, an LTP histogram 
for a core sub-ROI of 50 x 50 pixels placed in the center of the square ROI was also 
obtained. For the core ROI, the rotation invariant LTP was determined. In this study, 
the threshold for LTP was set to 5 and the R and P parameters were set to 2 and 8, 
respectively. As the supplemental information, the histograms of variances in pixel 
values were obtained in both selected sub-ROIs and the core sub-ROI [6]. The va-
riance for each pixel was determined in the 7 x 7 pixel area, and the number of bins 
was set to 10. Therefore, the total number of the features (concatenated histogram 
bins) was 89.  

For classification of benign and malignant ROIs, an artificial neural network 
(ANN) was used. The feed forward ANN with a backpropagation algorithm was em-
ployed. The ANN was trained and evaluated by a leave-one-out cross validation me-
thod. Because of the large number of features relative to the number of training cases, 
the feature reduction was performed by a forward feature selection. The result was 
evaluated by the area under the receiver operating characteristic curve (AUC). The 
parameters of ANN were selected experimentally on the basis of the AUC. 

 

Fig. 2. Locations of selected sub-ROIs specified by small squares. (a) A malignant ROI of 392 
x 392 pixels, and (b) a benign ROI of 276 x 276 pixels. 

3 Results  

With the forward feature selection, 6 features were selected. Four were from the radial 
LTP in the selected sub-ROIs and two were from the rotation invariant LTP in the 
core ROI. No feature was selected from the variance histograms in this study. Figure 
3 shows the change in classification performance in terms of AUC with the number of 
features selected. For each number of features, at least 3 different numbers of hidden 
units were tested. The selected numbers of hidden units and training iterations were 5 
and 200, respectively. The classification performance was 0.848 in terms of AUC.  
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Fig. 3. Change in AUC with the number of features selected 

4 Discussion 

For evaluation of the effectiveness of the radial LTP to the regular LTP and the ef-
fects of image size and grayscale reductions, F-statistics were determined. For these 
evaluations, the scores obtained by the linear discriminant analysis (LDA) using all 
features were employed. The F-statistic in this study is defined as the ratio of the 
inter-class and intra-class variances by 
 · , 

 
where n is the number of cases and m and σ are the mean and the standard deviation, 
respectively, of  LDA scores for each class.  

The F-statistic of the proposed method with the reduced image size and grayscale 
was 1.73, whereas those with original size and grayscale were 1.56 and 1.39, respec-
tively. These results indicate that the effects of the image size and grayscale  
reductions are small. The F-statistic of the regular LTP was 1.12, indicating the effec-
tiveness of the radial LTP. 

In this study, descriptive sub-ROIs were selected automatically on the basis of the 
histogram of pixel values. In the previous studies for classification of textural pat-
terns, LBP or LTP was determined at all pixels within the images to be classified. 
However, for the classification of lesions like breast masses, unrelated information 
could be included by using all pixels which might affect the classification. On the 
other hand, by automatically selecting sub-ROIs, some were placed at regions unre-
lated to the mass, such as at the breast margin, as shown in Fig. 4. Sampling method 
should be investigated further in the future.  

For reducing the number of features, a forward selection method was employed in 
this study. Liao et al. [7] proposed the selection of dominant patterns for reduction of 
the numbers of bins. Nanni et al. [8] selected the useful patterns on the basis of the 
variances of the training cases. The number of features was further reduced by the 
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principal component analysis. They applied the method for classification of benign 
and malignant masses and obtained the high classification performance. Although the 
performances of their method and our proposed method cannot be directly compared 
because of the different databases used, it is possible that some useful information 
may have been lost by selecting a small number of features. The feature reduction 
method must be investigated in the future study. 

In this study, we investigated the usefulness of texture features, i.e., modified LTP, 
for classification between benign and malignant masses on mammograms. The LTP 
was determined in sub-ROIs that were automatically selected from a square ROI  
including a mass so that no precise segmentation of the mass was required. As a pre-
liminary investigation, the classification performance was relatively well using only 
texture features without using contour information. 

 

Fig. 4. Selected sub-ROIs at the breast margin 
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Abstract. In this paper, we propose a statistical temporal change
scheme for early breast cancer detection. Temporal mammographic data
have been found useful to detect changes in the breasts of women. Many
temporal analysis approaches require temporal image registration. Vari-
ations in patient positioning, changes in the field of view and natural
changes in the breasts over time pose significant challenges. Our pro-
posed scheme, on the other hand, does not depend on image registration.
Instead, the temporal statistical region merging technqiue was used to
find homogeneous breast regions over time. Changes identified are then
assessed for abnormality by a rule-based classifier. Using a small tempo-
ral dataset of 10 women (5 cancerous and 5 normal), the detection rate
was found to be 100% with a 0.1 false positive per case (that is, only one
false positive was found in the entire dataset of 10 cases). These prelimi-
nary results show that the proposed temporal changes detection scheme
has a great potential in providing clinical assistance in early breast can-
cer detection. The results, however, need to be further verified with a
larger dataset.

Keywords: temporal analysis, temporal change detection, statistical re-
gion merging, computer-aided detection, mammography.

1 Aim and Background

Mammograms are commonly used for breast cancer screening and detection.
The application of computer algorithms to aid the detection of breast cancer in
mammograms and other breast imaging modalities is an important and ongoing
research area (see [5,24,8,7,11,10] for example). In order for a computer algorithm
to be of any clinical use, not only the detection rate needs to be high, but also
the number of false positive needs to be low. The literature shows that many
computer-aided detection (CAD) schemes enjoy high detection rates but the
number of false positives remains a challenge. In order to improve the accuracy
of computer-aided detection and diagnosis systems, attention has been drawn to
the use of multiple mammograms (as opposed to single mammogram). Bilateral
comparison techniques compare the left and right mammograms acquired in
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the same mammographic examination/screening round. A significant asymetry
in the left and right breasts may be a key mammographic finding towards the
detection of breast cancer. Temporal mammographic analysis reveals changes
in the breast over time. It identifies the development of lesions in the current
mammograms with respect to the previously taken mammograms for the same
women.

When processing multiple mammographic images (bilateral compar-
ison or temporal analysis), image registration is typically required
[24,25,17,19,20,8,4,23,14,12]. Studies show that CAD systems using
multiple-images perform better than those employing single-image only
[24,25,19,20,26,21]. The techniques of medical image registration has been
reviewed in a number of publications (see [13,16,18,27] for example). In
particular, [6] reviews image registration techniques related to the inter- and
intra-modality breast images including mammogram-to-mammogram while [22]
reviews four methods specifically for mammogram registration. The matching of
multiple mammographic images is not trivial. Variations in patient positioning,
changes in the field of view, and differences in x-ray exposure observed from
one mammogram to another make the registration of mammographic data
challenging. In addition, natural changes in the composition of the breast over
time further complicate the matter.

This study focuses on temporal mammographic data analysis. Temporal mam-
mographic data have been found useful in literature to detect changes in women‘s
breasts but a moderate success in the image registration pre-processing step can
limit the success in the overall temporal analysis. In this paper, we propose a
statistical temporal change detection scheme for breast cancer detection. The
scheme detects temporal changes in (statistical) homogeneous local breast re-
gions in screening mammograms. A key feature of this method is that rigorous
image registration was not required although general good practice in patient
positioning was assumed.

2 Dataset

Temporal mammographic images retrieved from the archives of BreastScreen SA
were used in this retrospective study. Criteria for case inclusion were as follow.
For cancer cases: (1) malignant mass was found at current screening and was
verified by histopathology, and (2) mammograms from two immediate previous
screening rounds were available and were found normal. For normal cases: (1)
the result of the current screening was found normal, (2) mammograms from two
immediate previous screening rounds were available and were also found normal.

Ten sets of temporal screening mammograms were selected from the archives
randomly. Each set contained mammograms pertaining to the same woman ac-
quired from three consecutive screening rounds at a two year interval. Of the
ten women, five of them were diagnosed with breast cancer in the most recent
(current) screening round while the other five were normal. Each cancer case
contained only one lesion, located in either the right or the left breast. Sizes of
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the lesions ranged from 7mm to 20mm (7mm, 20mm, 7mm, 10mm and 11mm).
The lesions were observed in both the craniocaudal and the mediolateral views.
The average age of the women in the cancer group at the time of diagnosis was
62 (65, 57, 65, 64 and 57, respectively). For the normal group, the average age
at current screening round was 60 (60, 63, 59, 61 and 58).

The selected film-screen mammograms were digitized at 48 μm spatial reso-
lution and 12 bit depth using a Vidar Diagnostic Pro Advantage film digitizer.
The digitized screening mammograms were then annotated by an experienced
radiologist specializing in mammography.

3 Method

In the pre-processing stage, the breast region was first extracted in each mam-
mogram. The extracted breast regions were then standardized, cropped and
subsampled to a size of about 250 × 350 (depending on the original size of the
breast). No rigorous temporal image registration was required. However, general
good practice in patient positioning was assumed.

3.1 Statistical Region Merging

The statistical region merging (SRM) technique by Nock and Nielsen [15] was
originally proposed for the segmentation of natural scene images. We had pre-
viously applied the technique in medical image segmentation with satisfactory
results [3,9,1,2]. The technique is based on probability theory and comprises of
two components: a merging predicate and the order of testing the predicate for
growing regions. Considering two regions R and R′ in an image I, based on the
concentration theory, the probability of

∣∣(R̄ − R̄′)− E(R̄ − R̄′)
∣∣ ≥ g

√
1

2Q

(
1

|R| +
1

|R′|
)
ln

2

δ
, (1)

is smaller than δ (0 < δ ≤ 1) where R̄ denotes the average intensity across
the region R, R̄′ denotes the average intensity across the region R′, g denotes
the gray scale of the image, E(·) denotes the expectation operator, | · | denotes
cardinality, and Q denotes the number of random variables that each image pixel
is modeled with.

For regions R,R′ to be merged, E(R̄− R̄′) = 0, hence formula (1) yields the
merging predicate

P (R,R′) =

{
true if |R̄− R̄′| ≤ √

b2(R) + b2(R′)
false otherwise

(2)

where

b(R) = g

√
1

2Q|R| ln
2

δ
. (3)
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The order of testing the predicate is based on the function

f(p, p′) = |I(p)− I(p′)|, (4)

where p and p′ are image pixels, I(.) is the intensity function, and | · | is the
absolute value function.

Based on the above, a mammogram can be segmented into statistically homo-
geneous regions. Our implementation of the SRM algorithm was graph-based.
That is, an image was transformed into a four-connected graph G = (V,E) such
that each pixel in the image was associated with a vertex in the graph. The gray
value associated with an image pixel was considered as an attribute of a vertex.

3.2 Temporal SRM

The SRM technique, described in Section 3.1, applies to a single mammogram.
The image pixels that have the same expected intensity are grouped together as
homogeneous regions. For temporal analysis of the breast, a sequence of mam-
mograms over time was considered. Image pixels of all available mammograms
in the sequence were considered simulteneously. Our graph-based implementa-
tion of the SRM in Section 3.1 was extended to temporal SRM. Grouping of the
image pixels into homogeneous regions was based on the same predicate. The
constructed graph had a connectivity of 6 for temporal SRM. In this setting, to
alleviate the influence of noise, intensities of pixels in equation (4) were replaced

Fig. 1. An example of temporal mammographic data of a cancer case (c1462rc). The
images shown are (from left) current screening mammogram on which cancer was
detected and previous screening mammogram from 2 and 4 years ago. The images
were subsampled by 10 for illustration purpose.
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Fig. 2. Temporal cancer detection (cancer case c1462rc) : (Top panel) Temporal screen-
ing mammograms (enhanced, standardised and subsampled pre-processed) of a woman.
(From left) Current screening mammogram (mammogram of interest for cancer detec-
tion); screening mammogram obtained 2 years prior (normal with no call back); 4
years prior (normal with no call back). The cancer lesion is circled in red in the current
mammogram. (Bottom panel) Mammograms processed with the temporal statistical
region merging algorithm (from left) current; 2years prior; 4 years prior. Statistical
homogeneous breast regions over time are marked with the same (false) color in the
bottom three images.
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by a moving average over a region defining a neighbourhood around the pixel.
That is,

f(p, p′) = |N̄p,p′ − N̄p′,p|, (5)

where I(.) is the intensity function and N̄p,p′ indicates the average pixel value
over the region defined by the pixels that are within Euclidean distance ≤ 2r
(for some integer r ≥ 0) and that are closer to p′ than to p. Note that the
equation (5) reduces to (4) for r = 0. In this study r = 5 was found adequate
experimentally.

Image pixels/regions in the current mammogram that were not part of a
homogeneous region involving the immediate previous mammogram were scruti-
nized. Abnormality analysis was then performed by a rule-based classifier based
on a number of measurements including image intensity, contrast, size and geo-
metrical properties. Temporal changes were then identified. Figure 1 depicts the
temporal mammographic data of a cancer case (c1462rc). Figure 2 illustrates
the detection of the cancer lesion using the temporal SRM algorithm.

4 Experiment and Results

As each cancer case contained only one lesion, mammograms of only one breast
(i.e. the diseased breast which may be left or right) were of interest in the cancer
group. Furthermore, the lesions were visible in both views, thus, only one of
the two views is necessary for an independent dataset. The craniocaudal view
was chosen. For the normal cases, again, for an independent dataset, only one
breast per woman was used and the left breast (craniocaudal view) was randomly
chosen.

Of the ten temporal cases (5 cancerous and 5 normal), our proposed scheme
achieved a detection rate of 100% (5 of 5) at a false positive of 0.1 per case (1
false positive in the entire dataset of 10 cases).

5 Conclusion

Temporal mammographic data have been found useful for breast cancer detec-
tion but robust temporal image registration poses a challenge. The proposed
statistical temporal change detection scheme tracks homogenous local breast
tissues over time without the need for rigorous temporal image registration. To-
gether with a rule-based classifier, the scheme achieved superior results of 100
percent detection with just one false positive among the entire dataset set of
10 cases. These preliminary findings are very promising. However, more studies
with larger datasets would be needed to verify the method robustness.
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Abstract. Previous studies have compared the performance of human observers 
to the performance of human observers using CAD. Here we compare the per-
formance of human observers to Hologic’s ImageChecker CAD system using a 
set of 162 images with simulated calcification clusters. The quality of the im-
ages was reduced to create four other image sets at different image qualities. 
These were analysed by the CAD system and the relevant information from the 
resulting DICOM structured reports was parsed. At the highest image quality 
level the figure of merit for the CAD was 0.82 and 0.84 for the humans. At the 
lowest image quality level the figure of merit for the CAD and humans were 
0.62 and 0.55 respectively. At each image quality level there was no significant 
difference (p>0.05). The effect of changes in image quality on calcification de-
tection was similar for human observers and the CAD system. 

Keywords: CAD, JAFROC, Image Perception, Python. 

1 Introduction 

The aim of this study was to compare the performance of the Hologic (Hologic Inc, 
Bedford) ImageChecker CAD system to the performance of human readers detecting 
calcification clusters in digital mammograms at different image quality levels. There 
have been comparisons of the performance of human observers using CAD to human 
observers without CAD [1]. However, relatively little previous work has compared 
CAD to human observers, as performed in this work. Since CAD systems are devel-
oped using images from particular systems operating at specific image quality levels 
it was expected that CAD may be sensitive to changes in image quality. 

2 Method 

2.1 Human Observer Study and Image Sets 

A previous study investigated whether detector type, dose level or image processing 
significantly affected the detection of calcification clusters by expert mammographers 
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[2]. In that study 162 cases, read as normal, were collected from a Hologic Selenia 
digital mammography system. Patients aged 47-73 years had been referred for a 
mammography examination as they were either symptomatic or high risk.  Women 
with mammograms containing extensive vascular or benign calcification (over large 
portions of the breast) were excluded from the study.  A single view (CC or MLO) 
from a single breast (left or right) was randomly selected from each case. The average 
glandular dose for a 50-60mm breast was 2.09mGy.  Between one and three simulated 
calcification clusters were inserted into 81 of the 162 images using a published and 
validated method [3].      

These images were transformed to produce four other sets of 162 images at differ-
ent levels of image quality: CR images at the same dose level as the normal dose DR 
images (“normal dose CR”) and at half this dose level (“half dose CR”), and DR im-
ages at half and quarter the original dose level (“half dose DR” and “quarter dose 
DR,” respectively).  Seven observers viewed the images on calibrated 5 megapixel 
monitors (BARCO Model: MDMG-5121) and were asked to mark regions they sus-
pected to be a calcification cluster.  They were asked to ignore single calcification or 
vascular calcification.  The observers marked the location of the suspected cluster and 
assigned a score from 1-5 according to their confidence that the suspicious region was 
a cluster (5 being highest confidence).   

Image quality was measured for each image set using the CDMAM test object (Ar-
tinis, Netherlands) in terms of threshold gold thickness for different detail diameters. 
The results of this previous study using human observers are compared to the CAD 
output on the same image sets.  

2.2 CAD Analysis 

The human observers had been shown processed images, however CAD operates on 
the unprocessed (raw) digital data.  The 810 unprocessed images were sent to the 
Hologic R2Server and the CAD results were received as a DICOM structured report 
at a DICOM SCP created using DCM4CHE 2.7. Using the Python DICOM library 
PyDICOM [4] scripts and modules were written to decode the structured reports. A 
graphical user interface was created using the user interface libraries PyQT and QT to 
display the structured report and processed images with the CAD marks overlying 
(figure 1) [5]. Visual inspection of the structured reports allowed automated Python 
scripts to be developed to process the structure reports.  

ImageChecker provides three types of CAD marks – Calc (indicates a cluster of 
calcifications), Mass (indicates a mass or an architectural distortion) and Malc  
(indicates a region where a mass and one or more clusters of calcifications are 
present). Since, in this study, we are only concerned with calcifications we restricted 
our attention to CAD marks of type Calc and Malc. Each CAD mark has a ‘certainty 
of finding’ item in the structured report. The certainty of finding is a value between 
zero and one hundred and was used as the confidence level in the JAFROC analysis. 
In our analysis the CAD system acts as another observer. The observers in the observ-
er study were asked to mark a single point in the centre of the suspected cluster.   
Hence, we use the centre point of the calcification cluster in our statistical analysis 
and do not use the outline of the cluster. In the case of a Calc CAD mark the centre of 
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Fig. 1. Sample image with a correctly located calcification cluster (TP) and a calcification 
cluster that was not located by the CAD system. The CAD mark is shown with the dashed 
black line and the ground truth location is the solid black rectangle. The observers correctly 
localised both clusters.  At normal dose DR image quality the cluster on the left was marked by 
6 out of 7 observers and the cluster on the right was marked by all 7 observers.  
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the cluster is provided in a field in the structured report.  However, in the case of Malc 
CAD marks, the centre of each calcification rather than the whole cluster is provided 
in the structured report. Therefore for Malc CAD marks the centre of the cluster was 
computed by taking the geometric mean of the centres of the calcifications marked in 
the cluster.  

2.3 Statistical Analysis 

The same ground truth location of the simulated calcification clusters was used in the 
analysis of the observer and CAD marks.  This consisted of the smallest rectangular 
bounding box around the cluster.  The performance of the observers and CAD was 
compared to the ground truth and was recorded as being correct (lesion localization 
LL) if the centre of the cluster as marked by the CAD or an observer lay within 
ground truth. Otherwise the mark was recorded as incorrect (non-lesion localization 
NL). The performance of each observer and the CAD system inspecting each image 
quality was calculated as the JAFROC (performed using JAFROC 4.2 software) fig-
ure of merit [6]. The comparison of the performance of the CAD system to the aver-
age observer’s performance was made using a t-test. A list of pseudo-values for the 
Wilcoxon statistic was calculated by jackknifing over each case and reader. Similarly 
a list of pseudo-values was calculated for the CAD system. A t-test was then applied 
to compare these lists of pseudo-values. A p-value of less than 0.05 was required for 
significance. 

3 Results 

The CAD system failed to operate on 27 out of the 810 images. All of the images 
were included in the final analysis. Of these, 22 were quarter dose DR images, two 
were half dose DR images, two were normal dose DR images and one was a half dose 
CR image. The CAD system identified one cluster that none of the human observers 
identified in normal dose and half dose DR. The CAD and average observer AFROC 
curves are shown for the normal dose DR quality in figure 2 and the half dose DR 
quality in figure 3.   

The difference in the JAFROC figure of merit between the average observer and 
CAD is given in Table 1. For all of the image qualities there was no significant differ-
ence in calcification detection between the CAD and the human observers (p>0.05).   

The reader-averaged JAFROC figure of merit and the JAFROC figure of merit of 
the CAD system are shown in Table 2.  Although not statistically significant the 
JAFROC figure of merit was greater for the average human observer than the CAD 
system at normal dose DR. At all other dose levels the JAFROC figure of merit of the 
CAD system was greater than the average human observer.  Therefore, it appears that 
the area under the curve decreases at a greater rate for the human observers than the 
CAD system with change in detector and dose. The threshold gold thickness had a 
negative correlation with both human (R2=0.86) and CAD (R2=0.92) figures of merit 
since higher thresholds indicate poorer image quality (figure 4).  
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Fig. 2. AFROC curves of human and CAD system at normal dose DR. The reader average 
AFROC curve (dashed line) and the CAD AFROC curve (solid line) are shown. The operating 
points of the CAD system are shown by the points labeled lines labeled ‘0’, ‘1’ and ‘2’. The 
individual reader results are also shown. 

 

 

Fig. 3. AFROC curves of human and CAD system at half dose DR. The reader average 
AFROC curve (dashed line) and the CAD AFROC curve (solid line) are shown. The operating 
points of the CAD system are shown by the points labeled lines labeled ‘0’, ‘1’ and ‘2’. The 
individual reader results are also shown.  
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Table 1. Difference in JAFROC figure of merit between CAD and the average observer.  The 
95% confidence intervals were calculated by jack-knifing over cases and observers. 

Image Quality Difference in 
JAFROC figure 

of merit 

95% confidence 
interval 

p-value 

Normal dose DR -0.03 (-0.08,0.03) 0.70 
Half dose DR 0.02 (-0.07,0.11) 0.88 
Quarter dose  DR 0.09 (-0.05,0.24) 0.63 
Normal dose CR 0.04 (-0.04,0.12) 0.73 
Half dose CR 0.07 (-0.07,0.20) 0.72 

Table 2. JAFROC figures of merit and image quality in terms of threshold gold thickness 

 

 

Fig. 4. The figure of merit of the average reader and CAD are plotted against the threshold gold 
thickness for the 0.25mm detail found from a CDMAM. The error in the FOM is taken from the 
95% confidence interval and the error in the threshold gold thickness is taken to be twice the 
standard error in the mean. 
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4 Discussion and Conclusions 

We have compared the performance of a CAD system to human observers. Our anal-
ysis has shown that for the particular set of mammography images used in this study 
there was no significant difference in calcification detection between the CAD algo-
rithm and the performance of the human observers. Thus changes in image quality 
due to dose and detector design had a similar effect on the performance of the human 
observers and the CAD system. Both degraded rapidly with a reduction in image 
quality. If anything there was a tendency for the CAD system to be less affected by 
the changes in image quality than the human observers. This suggests that the CAD 
algorithm was relatively robust for the large differences in image quality used in this 
study. This result gives reassurance that the wide range in doses and image qualities 
encountered in screening programs is not more of a problem for CAD systems than 
human observers at least in terms of calcification detection. However maintaining 
high image quality is important for both CAD and human observers. 
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Abstract. During breast screening it is necessary and essential to com-
press the breast with a compression paddle, in order to obtain a clear
mammographic image. The quality of the image has a direct correlation
with the accuracy of mammogram reading, which in turn could affect ra-
diologist’s interpretation. Clinical observation has indicated that breast
compression may have a side effect on image quality during the image ac-
quisition and can result in unexpected variations in texture and intensity
appearances, between breast tissue near the skinline and the rest of the
breast. Within computer aided mammography, such variations increase
the difficulty in breast tissue modelling and can be detrimental to im-
age analysis, leading to incorrect prompts which can have an impact on
sensitivity and specificity of screening mammography. We present an au-
tomatic image enhancement approach, in which both Cranio Caudal and
Medio-Lateral Oblique views are utilised. We estimate the relative breast
thickness ratio at a given projection location in order to alter/correct
an inconsistent intensity distribution as a means of improving mammo-
graphic image quality. Our dataset consists of 360 full field digital mam-
mographic images was used in a quantitative and qualitative evaluation.
Visual assessment indicated good and consistent intensity variation over
the processed images, whilst texture information (breast parenchymal
patterns) was preserved and/or enhanced. By improving the consistency
of the intensity distribution on the mammographic images, the developed
method has demonstrated a potential benefit in density based mammo-
graphic segmentation and risk assessment. This in turn can be found
useful in computer aided mammography, and is beneficial in a clinical
setting by aiding screening radiologists in the process of decision making.

Keywords: digital mammography, peripheral enhancement, compres-
sion paddle.
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1 Introduction

According to the American College of Radiology’s Breast Imaging Reporting
and Data System (Birads) [1], the mammographic breast composition is cat-
egorised into four patterns: 1) Birads I, the breast is almost entirely fat (<
25% glandular); 2) Birads II, the breast has scattered fibroglandular densities
(25%− 50%); 3) Birads III, the breast consists of heterogeneously dense breast
tissue (51% − 75%); and 4) Birads IV, the breast is extremely dense (> 75%
glandular).

During screening a breast is subjected to compression, which can affect the
image quality across the mammogram. Clinical observations have shown that
the peripheral area may not be compressed due to reduce of breast thickness,
and cause a breast tissue bulge with possible air gaps above and under the bulge.
This may lead to x-ray scattering which can affect image quality and limits the
quantitative usefulness of the image [2]. For a breast, the attenuation difference
between glandular and adipose (fatty) tissue is not large and relatively small
residual scatter signals can cause large errors when estimating tissue thickness
[2]. Therefore, it is necessary to develop an image processing method to improve
the visibility of the peripheral uncompressed area and reduce variations in the
compressed area of the projected breast, which facilities presentation and can
be beneficial to follow up analysis [3]. Enhancement methods developed to deal
with issues related to uneven breast thickness can be categorised into two groups
as parametric [3, 4] and non-parametric [5].

Byng et al. [3] developed an non-parametric filter based algorithm to tackle
uneven breast thickness related effect as seen in the peripheral areas of the mam-
mograms. To identify the large change in digital signal and equalise the inten-
sity change, the mammographic image is isotropically blurred to represent tissue
thickness with smoother variations, instead of using tissue density to achieve the
similar results directly. The average intensity of a small region around the bor-
der pixels is calculated for each row, and the value is used in a conventional
threshold process to separate the peripheral area from the rest of the breast.
The equalised image is obtained by multiplying the pixel values in the periphery
by a correction function. The method is only applied in the peripheral area; it
is simple and can be effective. However, breast parencyma can be very different
from case to case with intricate texture, whilst the isotropic filter may overly blur
structures at certain orientations, leading to less desirable results. Snoeren and
Karssemeijer [4] investigated an anisotropic filtering approach (direction parallel
to the skin edge), the processed images show ‘hidden’ details behind the nipple
which may not be perceived on the original mammograms. The method processes
the entire breast within the interior part; breast parenchyma remain unchanged
but may display higher contrast after correction. This is due to the thickness
variations are much stronger in the direction perpendicular to the sinkline, and
the thickness decreases from the chest wall outwards. Prior to the correction, a
breast is segmented into fatty and dense areas using an interactive method. Then
a linear interpolation is used to replace all the dense tissue with nearby fatty
tissue. Binary Otsu thresholding [6] is employed to better identify the peripheral
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area. The enhancement is performed by adding correction terms to pixel values in
the peripheral area. This approach has improved peripheral texture appearances
for those structural texture with orientations (e.g. blood vessels). However, the
interactive dense tissue segmentation and fatty tissue replacement via interpola-
tion can potentially compound errors through the process, leading to incorrect
enhancement. At the same time, it can be time consuming and subjective.

As a non-parametric peripheral enhancement method, Snoeren and Karsse-
meijer [5] proposed a technique that can only be applied to unprocessed digital
mammograms (before logarithmic transformation) with a linear relationship be-
tween exposure and grey value. A geometric model of the three-dimensional
shape of the breast is used for correction, instead of using filtered images. The
interior (fully/mostly compressed area without air gaps) is modelled by two non-
parametric planes which requires three degrees of freedom, one for the onset and
two for the slops. The exterior (not fully compressed breast periphery with air
gaps) is modelled by bands of semi-circles and determined by the breast outline.
Once the parameters of the geometric model are obtained, the correction process
is performed similar to [4] where dense tissue is separated and interpolated with
fatty tissue. After the dense tissue replacement, the grey values of a breast that
only consists of fatty tissue is then modelled. The process assumes a linear rela-
tionship between tissue thickness and log-exposure (Beer’s law of attenuation).
Both methods (i.e. [4] and [5]) are critically depends on accurate segmentation of
the breast, and [5] is limited to unprocessed digital mammograms. In the case of
large cysts deposited in the peripheral areas, the correction process may distort
the tissue appearances; this also applies to dense abnormalities (e.g. tumours).

This paper presents a parametric based enhancement method, which esti-
mates/approximates the breast thickness ratios using both Mediolateral Oblique
(MLO) and Cranio-Caudal (CC) views, without using an interactive dense tis-
sue segmentation nor fatty tissue interpolation [5]. The correction process is
partially similar to the processes in [7, 8], with additional features to balance
intensity not only in peripheral areas but also in breast interiors. An automatic
selection method is incorporated in order to better target those mammograms
requiring enhancement in a systematic way.

2 Data and Method

The dataset consists of 360 mammographic images processed for optimal visual
appearance to radiologists, in which a total of 56, 120, 120 and 64 images are
associated with Birads density categories I to IV, respectively. The number of
images which do and do not require enhancement are 148 and 212, respectively.
Note that the images were assessed visually. Despite that the categorisation was
performed subjectively, the problematic images were easy to identify and in-
between cases are relatively small. However, an objective method would be good
to use and is considered as future work.

The developed methodology starts off with an automatic image selection,
and the main process can be broken down into four steps: 1) x-ray penetration
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weighting map generation, 2) intensity balancing, 3) intensity ratio propagation,
and 4) boundary stitching.

It is assumed that the automatic calibrated parameters, i.e. compression force
(CF ), breast thickness (BT ) and peak kilovoltage (KVP), follow a normal distri-
bution; see Table 1 shows the statistical values calculated for all three calibrated
parameters. Based on our experimental observations, a mammographic image
should be processed if its calibrated parameters are less than the mean values.
The robustness of using the calibrated parameters as constrains was limited due
to large breast tissue density, composition and size variations and additional
conditions based on prior knowledge were incorporated. Specifically, the Otsu
algorithm was used to generate a binary image separating the peripheral area
(PA) and breast interior (BI ). Three properties were calculated: total periph-
eral area (TPA), vertical peripheral area coverage (VPAC ) in image rows and
pectoral coverage (PC ) in image rows. Note that the PA may extend to the BI
after the binary segmentation. Therefore, a mammographic image (img) needs
to be processed if CFimg <= CF & BTimg <= BT & KV Pimg <= KV P &
15% < TPAimg < 50% & V PACimg > 75% & PCimg < 30%; the threshold
values were empirically defined through trail and error. It should be noted that
not all the mammographic images need to be enhanced, some of them are of
superb quality; such as soft and/or median size breasts which have automatic
calibration parameters in line with optimum settings for the optimum photon
energy (e.g. ∼30 kVp). Therefore, the automatic selection method is only applied
to problematic mammographic images.

Table 1. Statistical values calculated for all three calibrated parameters

Maximum Minimum Median Standard deviation

CF 249.1 44.5 103.5 34.5

BT 104.0 29.0 61.7 14.8

KVP 35.0 24.0 30.3 2.2

The x-ray penetration probability has a direct correlation with breast thick-
ness (e.g. the thicker the breast the harder to penetrate it). In principle, there are
many attributes (e.g. dosage, filter, anode) which should be taken into account
when modelling the x-ray penetration probability. However, due to physical com-
plexity (e.g. unknown combination factors in x-ray bean spectrum and breast
tissue composition), the x-ray penetration probability was modelled in a simpli-
fied way, by wrapping up all other elements in a “black box” and only consider
it as inversely proportional to the breast thickness. Note that the developed
methodology does not require the absolute correct measurement for the breast
thickness. A x-ray penetration probability weighting map was generated for each
image, by calculating and propagating the relative breast thickness ratios based
on the CC/MLO pair; e.g. to a CC view the relative breast thickness ratio (r)
can be estimated based on the projected physical contour of the compressed
breast as seen on MLO view; in particular, the skinline was firstly extracted
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from the MLO view, and split in two at the furthest pixel to the chest wall to
form the upper and lower skinlines (e.g. blue and green lines in Fig. 1 (c)). For
each pixel on the top skinline, a corresponding pixel was sought on the lower
skinline, to form a parallel line (p-line) (e.g. red line in Fig. 1 (d)) to the chest
wall by linking the two pixels. This process was repeated for all the pixels on the
top skinline, and resulting in a series of parallel lines (e.g. Fig. 1 (d)(e)). In the
CC view, the r at a given point (p) (e.g. ‘A’ in Fig. 1 (a)) is calculated based on
the boundary pixel (pbase) (e.g. ‘B’ in Fig. 1 (a)) which separates PA and BI as

r =
p− line(p)

p− line(pbase)
, (1)

where both pixels are on the thickest projected section (e.g. blue lines in Fig.
1 (a)(b)) in the CC view. The x-ray penetration probability weighting map for
the CC view was completed, by assigning the rest of the pixels on the thickest
projected section with the estimated breast thickness ratios in the same way,
and propagating the calculated ratios to the pixels have the same distance to
the skinline (e.g. pixels on the yellow lines in Fig. 1 (a)(b)) .

To reduce the intensity distribution variation, a base weight (wbase) was firstly
calculated as

wbase =

∑N
i=0 Wi(x, y)

N
, ∀ Wi(x, y) ∈ S, (2)

where W and S denote the weighting map and the boundary between PA and
BI. For each pixel within the BI, the intensity value P(x, y) was altered to

P ′(x, y) =
wbase

W (x, y)
P (x, y). (3)

After the intensity balancing, the local intensity ratio was propagated as a
means of improving tissue appearance in PA (similar to the process described
in [8]). From pixels at the boundary S to the skinline within the PA, the intensity
value was altered by calculating the propagation ratio (pr) for each pixel P(x, y)
with distance to the skinline D(x, y) and within an empirically defined 17 × 17
neighbourhood (see Section 3 for the effects of using different neighbourhood
sizes) as

IavgP1 =

∑M
j=0 Pj(x, y)

M
, ∀ Pj(x, y) = D(x, y) + 1,

IavgP2 =

∑N
i=0 Pi(x, y)

N
, ∀ Pi(x, y) = D(x, y) + 2,

pr =
IavgP2

IavgP1

,

P ′(x, y) = pr × P (x, y);

(4)

where D(x, y) + 1 and D(x, y) + 2 are pixel distances to skinline 1 and 2 steps
further away from the observed pixel.
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(a) (b) (c) (d) (e)

Fig. 1. Image illustration, from left to right, a CC view, its distance map, the paired
MLO view, parallel lines near the pectoral muscle and near the nipple

Finally, boundary stitching (local normalisation) was applied to seamlessly
normalise pixels intensity within the boundary S, thickened to a 5 pixels band,
in order to gradually smooth the transition from BI to PA. The maximum and
minimum intensity values were determined within an empirically defined 7 ×
7 neighbourhood (see Section 3 for the effects of using different neighbourhood
sizes).

3 Results and Discussion

The automatic image selection achieved 86.5% and 93.9% accuracies in choosing
images which do and do not require enhancement, respectively.

Visual assessment was conducted to assess the images quality after enhance-
ment. For the majority of the cases, the processed images have shown improve-
ment in texture appearances and contrast in the peripheral areas. However, in-
tensity within BI can be over or under balanced if PA and BI were not separated
correctly, or the breast thickness ratios were wrongly estimated. Experimental
results indicated that a larger neighbourhood may result in unwanted artefacts,
due to incorrect local intensity alternation which affects texture appearance and
can be perceived as artefacts, but the processed images seem to have minimum
texture distortion, and were suitable for the follow up image analysis. It should
be noted that the enhanced mammographic images are currently used as pre-
processed images prior to further analysis, and not for presentation purpose
which would require additional validations (e.g. in a clinical environment) which
is outside the scope of the current study, but it is considered as future work.

To assess the usefulness of the developed method as a form of pre-processing,
a k-means clustering based mammographic segmentation was conducted. The

hypothesis is that the average percent density (pd =
∑n

img=0 pdi

n where n denote
the number of Birads I/II/III/IV images) derived from the segmented processed
images should be better in line or closer to Birads density models, compared
to the pd derived from the segmented original images. Only the pixel intensity
was considered in the feature space, in order to focus on the intensity aspect
and to eliminate statistical variations when incorporating other features (e.g.
texture and geometric features). Each mammographic image was segmented into
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three classes (k = 3 in the k-means), ‘non-dense’, ‘semi-dense’ and ‘dense’; the
later two were considered ‘dense tissue’. Fig. 2 shows segmentation examples.
Note that segmentation based on two classes (e.g. ‘non-dense’ and ‘dense’) was
performed; however, the obtained results were less satisfactory when compared
to the segmentation based on three classes. Visual assessment indicated that
the segmentation for the processed images are anatomically more accurate and
consistent over the breast parenchyma. Table 2 shows the derived pd after the
segmentation; the pd increases consistently as breast density increases when
using the processed data, except Birads IV; whilst the pd fluctuates when using
the original data. For Birads I, the derived pd are much closer to the density
model when using the processed data; for Birads II and III, the pd are within or in
line with the density models when using the processed data, whilst the results for
the original images are less accurate; and for Birads IV, it is difficult to determine
the impact due to the lack of samples, but visual assessment indicated that the
developed method may cause more harm to the image segmentation quality in
Birads IV, leading to incorrect segmentation and percent density measurement.

Fig. 2. From left to right, the original image, its segmentation, the processed image,
and its segmentation. The processed data shows more segmented blood vessels in the
peripheral areas, glandular tissue segmentation are realistic as they are grouped towards
the centre or nipple areas, and more correctly identified fatty tissue.

Table 2. Average percent density derived after the segmentation based on all the im-
ages in the dataset. ‘O’ and ‘P’ denote the original and processed data, respectively.
‘Automatic’, ‘Manual’ and ‘All’ indicate the processed images were selected automati-
cally, manually and using the entire dataset, respectively.

Automatic Manual All

Birads O P O P O P

I < 25% 60.0%±4% 40.3%±7% 60.0%±6 40.2%±7 60.2%±7 40.9%±9
II 25% − 50% 59.6%±13% 47.1%±11% 59.2%±12 46.2%±11 56.6%±11 47.9%±10
III 50% − 75% 53.8%±3% 50.8%±6% 54.6%±2 51.5%±3 52.7%±11 49.4%±9
IV > 75% 52.8%±0% 49.2%±3% 45.4%±0 57.0%±0 56.2%±7 42.5%±6
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4 Conclusions

The developed mammographic image enhancement can be used to improve im-
age appearance and is robust in dealing with inter and intra class variation. The
segmentation results for the processed images are anatomically more accurate
and consistent over the breast parenchyma. Clear improvements can be seen in
the derived average percent density in all Birads density categories, except in
Birads IV. The developed methodology can be used as a form of pre-processing
before mammographic segmentation. Such a method can be found useful in quan-
tification of change of relative proportion of dense tissue, as a means of aiding
radiologists’ estimation in mammographic risk assessment.
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Abstract. Mammographic texture has been reported as a biomarker of cancer 
risk.  Recent publications also suggest correlation between the topology of the 
breast ductal network and risk of cancer.  The ductal network can be visualized 
by galactography, the preferred imaging technique for nipple discharge.  We 
present current results about the correlation between topological and textural 
properties of clinical breast images.  This correlation was assessed for 41 ga-
lactograms and 56 mammograms from 13 patients.  Topology was character-
ized using feature extraction techniques arising from text-mining, validated 
previously in the classification of normal, benign, and malignant galactograms.  
In addition, we calculated 26 texture descriptors using an automated breast im-
age analysis pipeline.  Regression analysis was performed between texture and 
topological descriptors averaged over all images of the same patient.  These 
data demonstrate a correlation between topology and a subset of texture features 
with borderline statistical significance due to the limited sample size. 

Keywords: Texture analysis, topology descriptors, galactograms, mammo-
grams. 

1 Introduction 

Previously, we analysed the topological properties of the branching network of breast 
ducts as visualized by galactography, an x-ray imaging procedure of the contrast-
enhanced breast ductal network (1-3).  That analysis suggested a correlation between 
cancer risk and ductal network topology; this correlation also has been supported by 
evidence from murine cancer models (4).  Clinical visualization of breast ducts is, 
however, not routinely performed; galactography is indicated infrequently, and it 
mostly commonly reveals benign findings (5, 6).   
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On the other hand, texture descriptors of breast parenchyma are known to correlate 
with cancer risk (7-9).  Our work is motivated by a desire to determine whether there 
is an association between parenchymal texture descriptors and ductal topology.  Such 
an analysis would lead to improved models of breast anatomy, and may lead to a bet-
ter understanding of breast cancer risk.  Currently, breast cancer risk is estimated 
using patient demographic information and parenchymal texture features extracted 
from 2D mammograms.  The spatial arrangement of breast tissue is, however, three-
dimensional, stressing the need to understand the relationship between parenchymal 
structure and image texture.  

The UPenn X-ray Physics Lab has extensive experience with the simulation of 
breast anatomy and imaging (10, 11).  The development of the UPenn breast phan-
tom is predicated upon a set of anatomically justified elements.  To that end, we have 
chosen not to model the parenchymal texture by a random field with statistical proper-
ties similar to clinical data.  This development process has been incremental, and 
continues to this day.  For example, we have just recently begun to model the hierar-
chical organization of Cooper’s ligaments seen in breast histology slices.  A prelimi-
nary validation of a model of this small scale tissue detail, published separately in this 
proceedings, indicates good agreement with clinically estimated texture (12).   

This paper presents our current results about the correlation between the ductal to-
pology of clinical galactograms and the parenchymal textural properties of clinical 
mammograms from the same group of women.  Understanding the relationship be-
tween mammographic texture and spatial distribution of breast anatomy will help 
optimize and extend our fully automated software pipeline for breast anatomy and 
imaging simulation; ultimately, we would like to be able to simulate specific cohorts 
of women, stratified by age, risk, and other factors. 

2 Methods 

2.1 Topological Analysis of Galactograms 

In this paper, we analysed images of existing, anonymized clinical galactograms of 49 
women, obtained from Virginia Commonwealth University.  The data collection was 
performed after IRB review and was HIPAA compliant.  Clinical galactograms were 
digitized from film, and categorized based upon the visibility of the ductal network.  
Ductal trees were traced manually from galactograms, followed by Prufer encoding of 
the breadth-first labelled ductal tree nodes (3).  Then tf-idf significance weighting 
(3), originally used in text mining, was performed on the traced and encoded ductal 
trees.  After manually tracing the ductal networks, a subset of 41 galactograms from 
13 patients with well-defined ductal trees was selected for further processing and 
testing.   

2.2 Texture Analysis of Mammograms 

We measured 26 texture features in 56 digitized mammograms from the 13 selected 
patients imaged at Virginia Commonwealth University. Texture analysis was performed 
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using a fully automated software pipeline which extracted a large set of image features 
from the digitized mammograms (13). The pipeline calculates texture feature maps at 
points on a regular spatial lattice, determined by two parameters: the window size and 
the lattice distance.  Here we use a window size of 63 pixels, and a lattice distance of 31 
pixels.  The analysed features are organized into three groups, including (i) descrip-
tors of grey-level histograms, (ii) co-occurrence features, and (iii) run length features.  
These texture features have been used previously in breast cancer risk assessment 
studies (9).  For the correlation analysis, the texture feature maps were averaged over 
the whole breast region (excluding the pectoral muscle and air). 

2.3 Hypothesis Testing 

We tested the hypothesis that there is a correlation between mammographic texture 
features and ductal topology descriptors.  To that end, we have calculated the linear 
regression (14).  The goal was to predict values of texture features averaged over all 
mammograms of the same patient as a function of the topological properties estimated 
from the corresponding manually-traced ductal networks, averaged over all galacto-
grams of the same patient.  Prior to the regression analysis, we combined the tf-idf 
topological descriptors via principal component analysis (PCA).  The regression 
model considered the first 13 PCA components and the 26 texture features.  

2.4 Power Calculations 

It can be demonstrated that a small sample size (in this case 13 patients), could lead to 
large estimated p-values and hence rejection of valid linear regression models (large 
Type II error). To demonstrate the effect of sample size, we simulated an augmented 
dataset by bootstrapping (15).  The bootstrapping was performed by replicating data 
records, with added Gaussian noise, for each PCA attribute and response variable.  
The standard deviation of the noise was 50% of the estimated standard deviation of 
the attributes or response variables. 

3 Results and Discussion 

Fig. 1 shows an example of a clinical galactogram used in this study (Fig. 1(a)), and 
the corresponding manually-traced ductal tree (Fig. 1(b)).  The Prufer encoding and 
the tf-idf weights corresponding to the traced tree is also given (Fig. 1(c-d)).  The 
example shown illustrates a breast with a malignant finding.  Fig. 2 shows an exam-
ple of a clinical mammogram from the same woman (Fig. 2(a)) and the corresponding 
texture feature map (Fig. 2(b)).  Shown in this example, is a map of the entropy  
texture feature.   
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(a) (b) 

[ 1  1  3  4  6 10 10  6 11 16 16 11 17 24 24 17 25 34  
 34 47 50 50 47 25  4  7 12 18 26 26 18 27 38 38 49 49  
 27 12  7 13 20 28 28 20 29 29 13 21 30 30 21  3  5  5] 

(c) 

[0.00 0.11 0.45 0.36 0.40 0.50 0.71 0.00 0.50 0.77 
 1.04 0.77 0.97 1.11 0.83 0.00 0.00 1.04 1.55 1.27 
 1.45 1.19 0.00 0.00 1.27 0.00 0.00 0.00 0.00 0.00 
 0.00 1.27 0.00 0.00 1.66 1.55 0.00 0.00 1.55 0.00 
 0.00 1.45 0.00 2.04 2.19 1.66 0.00 1.90 0.00 0.00 
 2.19 0.00 0.00 0.00 0.00 1.55 0.00 0.00 0.00 3.36] 

(d) 

Fig. 1. Illustration of the topological descriptors of the breast ductal network. Shown are:  
(a) a clinical galactogram with malignant finding; (b) the corresponding manually-traced ductal 
tree; (c) the Prufer encoding; and (d) the tf-idf weights corresponding to the ductal tree.  
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Fig. 2. The clinical mammogram of the patient from Fig. 1 (left) and the corresponding map of 
the entropy texture feature (right) 

Fig. 3 shows the regression analysis results.  A borderline statistical significance 
was observed for three texture features (features 9-11, p-values between 0.05 and 
0.1); three additional features (features 17, 20, 24) had p-values between 0.1 and 0.15.  
It is likely that statistical significance was not achieved due to the limited sample size; 
thus, we are prevented from drawing a definitive conclusion about the correlation 
between texture and topology.  The observed results, however, suggest a possible 
correlation between topological descriptors and several texture features.  The boot-
strap analysis of a hypothetically enlarged dataset with a sample size of 26 suggests 
that a statistically significant regression (at a significance level of 0.05) could be 
achieved between various texture features and topological descriptors.  Fig. 3 shows 
the p-values from the bootstrap analysis.  

The potential for inter-correlation between individual texture features was ac-
counted for by applying PCA before performing the regression analysis, as PCA uses 
orthogonal transformations to convert the original data into a set of linearly uncorre-
lated variables.  The bootstrap analysis performed in this paper to estimate the effect 
of sample size, assumed the noise in the enlarged data set to have a standard deviation 
equal to 50% of the standard deviation in individual sample data. 

The results presented in this paper are based upon an initial analysis of 13 patients.  
We are currently analysing a larger set of clinical breast images; we expect to double 
the sample size in the near future.  If the linear dependence between the texture and 
topology is confirmed (as suggested from our initial analysis and supported by boot-
strapping), texture descriptors could be used as a proxy for topology, since the ductal 
network is not routinely visible in clinical images.  Identifying texture features, or 
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combinations of texture features, which have the strongest correlation with topology 
could improve the understanding of texture-based risk biomarkers.   

If, however, the increased sample size does not confirm the correlation between to-
pology and texture, it could suggest that topology may carry risk-related information 
independent from texture descriptors.  This could potentially lead to an improvement 
in the accuracy of breast cancer risk estimation techniques, assuming a clinically fea-
sible method for the visualization and characterization of breast ducts (e.g., MRI or 
tomosynthesis) is available. 

 

 

Fig. 3. p‐value for the regression of individual texture features (averaged over all mammograms 
of the same patient) as a function of principal component analysis (PCA) components for the 
topological descriptors (tf‐idf weights, averaged of all the traced ductal networks of the same 
patient). Shown are the results of the initial analysis of 13 patients, as well as the bootstrap 
results modelling a dataset of 26 cases. 

It is worth noting the limitations of the current study.  First, the ductal trees ana-
lysed in this paper were manually-traced from digitized galactograms.  The manual 
tracing was performed by one person (a third-year medical student with experience in 
breast imaging).  We believe that manual tracing did not compromise the analysis.  
In our previous study of ductal topology, we observed relatively low variations (a 
root-mean-square fractional error on the order of 2%) in estimated topological fea-
tures due to manual tracing (2).   
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Additional potential limitations include the use of average texture descriptors, and 
the inter-correlation between individual descriptors of texture (or topology). In this 
paper, the regression analysis was performed using texture features averaged over  
the breast region in each mammographic image. These average values may suppress 
the differences in feature histograms calculated over mammographic images. In the 
future, we may repeat the analysis based upon other histogram moments, or using  
the full histogram as the texture descriptor.   

4 Conclusion 

We have performed a regression analysis between topological descriptors of the 
breast ductal network extracted from previously acquired, anonymized clinical galac-
tograms, and texture descriptors estimated from corresponding clinical mammograms.  
Ductal networks were extracted from galactograms by manual tracing. The texture 
features were estimated using a fully automated image analysis pipeline. Initial analy-
sis of clinical images from 13 women suggests correlation with borderline signifi-
cance for a subset of texture descriptors. The identified subset of texture descriptors 
could hypothetically be used as proxy for ductal topological properties. Analysis of a 
larger number of clinical cases is ongoing. 
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Abstract. The automated measurement of breast volume has applica-
tions both in facilitating the decisions made by surgeons prior to breast
reconstruction and in improving density estimation. We describe a novel
approach to volume measurement for surgical planning, using a games
console input device - the Microsoft Kinect. We have explored the abil-
ity of the device to measure surface depth for a range of distances and
angles, demonstrating a mean depth error of below 1.5mm for a distance
range of interest (0.5 - 0.8m). We have also validated the use of the sys-
tem for volume measurement using a full-sized model female torso. The
Kinect-based result is in good agreement with the volume measured by
filling a mould of the breast with water (225.5± 8.7ml, 229.4 ± 9.7 ml
respectively). The method has the potential to provide convenient, cost-
and time-effective measurement of breast volume in clinical practice.

Keywords: breast volume, breast surgery, breast density, Microsoft Kinect.

1 Introduction

Measuring breast volume is crucial for planning breast surgery - whether to
predict the cosmetic outcome or to choose an appropriate surgical strategy [1].
Knowledge of the shape and the volume of the breast can also contribute to more
accurate assessment of breast density (measured as the proportion of dense glan-
dular tissue in the breast volume). Nevertheless there is no standard method for
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measuring breast volume [2]. When measuring breast density, the use of two-
dimensional mammographic images to derive volume measurement suffers from
the ambiguity of estimating a three-dimensional (3D) shape from its planar rep-
resentation [3]. Techniques used for surgical planning include anthropomorphic
(anatomic) measurements, moulding, the Grossmann device and measurements
based on Archimedes principle. None of these is well established clinically due to
lack of reliability or inconvenience [1, 4]. More recent techniques like stereopho-
togrammetry (using a stereo camera array) [5], laser scanning [2] breast CT or
MRI describe the 3D shape of the breast accurately but their use is restricted
by high complexity and cost. Those automated or semi-automated methods use
complex imaging equipment, which needs stationary installation, maintenance
and trained staff. This paper proposes the use of a games console input device
for automated measurement of breast volume.

It is aimed to provide a convenient, fast and inexpensive method that al-
lows non-contact measurement and uses small, transportable equipment which
is ready for use without time and labour intense installation and calibration.
The definition of the region of interest, the portion of the breast for calculating
the volume can be indicated by markings on the patients skin and is therefore
flexible and adaptable to different tasks.

The Microsoft Kinect for Xbox 360 input device (Kinect) is a relatively cheap,
small sensor based on infra-red light triangulation. It is an optical device, which
projects a speckle pattern onto a scene within its field of view and evaluates
how this pattern is distorted by the objects in the scene. By comparing the
original to the distorted pattern it measures the location and shape of objects
without contact, working at ambient indoor light conditions [6]. It was originally
designed for computer gaming and human interaction in a virtual environment,
but has found wide application in research including medical applications such
as patient size measurement [7] and respiratory motion tracking [8]. Recently
published papers have demonstrated the feasibility of using the Kinect for breast
imaging. In one application, two Kinect sensors were used to map the breast
surface [9, 10] whereas others use a single Kinect to assess the aesthetic aspects
of breast-conserving cancer treatment [11] or breast surgery in general [12].

2 Methods

The Kinect sensor has two outputs: a depth image, generated with the help of
laser triangulation and an RGB image of the field of view. The depth image is
presented as a cloud of points representing the location of objects within the
sensor field of view. All experiments were performed using the KinectFusion
mode, which sums multiple frames and combines them independently of sensor
movement [13]. This mode was chosen as the field of view of the sensor can be
enlarged and parts of the breast, which can not be evaluated in a ”single shot”
can be resolved by slow movement of the sensor. Also blank spots in the depth
image e.g. due to reflection can be covered by a slightly different viewing angle.

In the following section two experiments are described. A feasibility study
evaluating the suitability of the sensor using a simple index card model was
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performed before using the Kinect for automated measurement of breast volume
and validating this method.

Feasibility Study: The Effect of Distance and Angle on Performance.
The suitability of the Kinect to capture the shape of the female breast with
adequate precision is demonstrated using a simple index card model. In contrast
to other studies [6, 8, 14], our experiments focus on distances appropriate for
imaging the human body. Due to the curved nature of the breast, and the fact
that not all portions of skin directly face the sensor, the performance of the
method was evaluated at a range of angles.

A plain index card (7.5 cm x 12.5 cm) was mounted on an optical rail in the
centre of the Kinect’s field of view at distances of 0.5 (nearest distance assess-
able with the Kinect), 0.6, 0.8, 1.0 and 1.2meters, facing directly towards the
Kinect (0 degrees) and at 15, 30, 45 and 60 degrees from the Kinect. In total 25
configurations were evaluated (see Fig. 1a). The Kinect remained static during
image acquisition.

Depth images were stored and close measurement points (less than 0.1mm
apart) were merged using Meshlab. As sharp edges cannot be well resolved by
the Kinect [14], points at the edges of the index card were excluded from the
measurements (see Fig. 1b). However this weakness is not relevant for the ap-
plication in breast imaging as the curved shape of the breast does not exhibit
such behaviour. It is therefore feasible to limit the assessment of performance to
a central 5 cm x5 cm region covering about 2000 measurement points.

The ground truth for the evaluation of measurement accuracy was the distance
of the cards from the sensor which was determined to a mm using the optical
rail. For the assessment of precision it was assumed that the index cards are flat
and can be described by a plane.

A plane was fitted onto the resulting point cloud. Precision was evaluated
by calculating the point-to-plane error using Matlab. To evaluate accuracy the
measured mean distances were normalized to the 0.5 meter distance, as the exact
location of the focus point within the sensor is not known.

Feasibility Study: Automated Measurement of Breast Volume. In order
to assess the feasibility of the method to measure breast volume, we performed an
experiment using a model female torso, comparing breast volume measured with
Kinect against breast volume calculated from a mould of the breast. Three small
beads were attached to the torso, one below the nipple at the inframammary
fold, one on the sternum between the two nipples, and one at the lateral border;
these were used to define the chest wall and orient the mould. To acquire Kinect
images, the torso was placed on a level surface; the Kinect was slowly turned
and tilted to obtain a point cloud without gaps describing the entire breast
surface. The resulting point cloud was preprocessed using Meshlab merging all
measurement points closer than 0.1mm.
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Fig. 1. (a): Feasibility study: Index cards are placed at the indicated locations and
angles; (b): one of the point clouds showing the index card on top of the sledge of the
optical rail, 5 cm x 5 cm region evaluated for the study highlighted

Fig. 2a shows the depth image with the underlying point cloud obtained from
the Kinect sensor. The beads can be seen in Fig. 2b in which RGB colour data
from the Kinect are displayed in conjunction with the Kinect depth image.

The volume calculation was performed using Matlab. In order to separate the
breast volume from the torso, a plane was fitted onto the chest wall as defined
by the position of the three beads. The point cloud was rotated and translated
to align the chest wall plane with the global coordinate system (Fig. 3a). The
volume enclosed by the x-y plane of the coordinate system and the point cloud
was calculated by double integration (Fig. 3b).

The ground truth against which the Kinect-based volume was assessed was
obtained by filling a clay mould of the breast with liquid (Fig. 2d). The results
were also compared to anthropomorphic (anatomic) measurement of the breast
using the formula proposed by Qiao [15] (Fig. 2c):

V = 1/3×Π ×MP 2 × (MR+ LR+ IR−MP )

For all three methods, measurements were repeated ten times to assess the as-
sociated error.

3 Results

Feasibility Study: The Effect of Distance and Angle on Performance.
For measurement accuracy the point clouds of the cards directly facing the sensor
were evaluated. For all cards the mean distance from the sensor is within the
accuracy of distance measurement on the optical rail.

The precision of depth measurement is influenced by the distance of the object
from the sensor and the angle to the sensor. For the shorter distances evaluated
(0.5, 0.6 and 0.8m) at the complete angular range the mean point-to-plane error
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Fig. 2. (a): Depth image with underlying point cloud obtained from the Kinect sensor;
(b): Detail of the same image conjoined with RGB colour; (c): Distances used for
anthropomorphic measurement and placements of the beads: MR - distance between
nipple and medial border, IR -distance between nipple and inframammary fold, LR -
distance between nipple and lateral border, MP - mammary projection; (d): Mould of
the breast of the torso

Fig. 3. (a): Point cloud of the torso, rotated and translated so that the chest wall plane
aligns with the x-y plane of the global coordinate system; (b): Resulting point cloud
above the x-y plane for calculating the breast volume

was below 1.5mm as depicted in table 1. Even the challenging configurations
featuring large angles of 45 degrees or above can be resolved with adequate
precision. In contrast to this, for objects located further from the sensor (at 1.0
and 1.2m), larger angles showed a mean point-to-plane error above 1.5mm.

For the more favourable, nearer distances (0.5, 0.6 and 0.8m), all card posi-
tions yielded a point-to-plane-error of less than 2mm for over 80% of the eval-
uated points (Fig. 5). Small angles towards the sensor resulted in a higher pro-
portion of points less than 2mm from the fitted plane.
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Table 1. Mean point-to-plane error (in mm) dependent on distance to object (in m)
and angle (degrees)

distance angle facing the sensor
from the sensor 0 15 30 45 60

0.5 0.45 ±0.37 0.54 ±0.41 0.49 ±0.38 0.58 ±0.67 0.71 ±0.56
0.6 0.44 ±0.38 0.47 ±0.33 0.46 ±0.33 0.87 ±1.15 0.81 ±0.74
0.8 0.68 ±0.51 0.67 ±0.48 0.71 ±0.50 1.06 ±1.07 1.39 ±1.41
1.0 1.64 ±1.06 1.19 ±1.14 1.20 ±0.84 1.93 ±2.25 1.57 ±1.35
1.2 1.10 ±0.88 2.19 ±2.27 1.31 ±1.58 2.91 ±2.65 3.73 ±2.21

Fig. 4. Relationship of distance, angle and mean point-to-plane error

Feasibility Study: Automated Measurement of Breast Volume. The
markers placed on the torso were clearly visible in both the Kinect image and
within the mould. Therefore it was possible to automatically align a plane which
separates the breast from the chest wall (Fig. 3a). Results obtained using the
three different measurement methods are depicted in table 2.

Table 2. Measured volume (in ml) using the Kinect approach, mould filling and an
anthropometric formula

Measured volume
mean standard standard

deviation error

Kinect method 225.5 8.7 2.8
Mould filling 229.4 9.7 3.0
Anthropomorphic formula 136.6 7.3 2.3

The volumemeasured using theKinect approach lieswithin of our validation ap-
proach using the mould. The anthropomorphic measurement resulted in a smaller
volume. The absence of folds around the breast for a non-ptotic breast complicates
the localisation of characteristic anatomical landmarks. For example, Longo et al.



672 S.T.L. Pöhlmann et al.

Fig. 5. Point-to-plane error of all points evaluated for distance 0.5meter (left),
0.6meter (middle) and 0.8 meter(right)

[16] published a novel formula only for use in ptotic or pseudoptotic breasts. They
claim an absolute error of approximately 90 g (ml respectively) for their formula.
This limitation might also apply to the formula published by Qiao et al. [15], al-
though this was not explicitly stated. The result gainedwith the Kinect andmould
method are within the stated range of 90 g given by Longo et al.

4 Discussion

We have shown that automated breast volume measurement using the Kinect is
feasible and a relevant work-flow could be established.

The performance of depth measurement was shown using plain index cards at
know positions on a optical rail. To evaluate precision the point-to-plane error
was evaluated. Within a distance window of 0.5 to 0.8m, the Kinect allows depth
measurements with a mean error of less than 1.5mm.

Angles up to 60 degrees can still be evaluated without limitations. This shows
the suitability of the Kinect for breast imaging.

The presented method has the potential to provide convenient, cost/time-
effective measurement of breast volume in clinical practice. Its reliability was
validated with the help of a water filled mould. Volume obtained with anthro-
pomorphic measurement does not back up the gained results but might be less
appropriate in the absence of ptotic breasts.
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References

[1] Kayar, R., Civelek, S., Cobanoglu, M., Gungor, O., Catal, H., Emiroglu, M.: Five
methods of breast volume measurement: A comparative study of measurements
of specimen volume in 30 mastectomy cases. Breast Cancer: Basic and Clinical
Research 5, 43–52 (2011)



Breast Volume Measurement 673

[2] Kovacs, L., Eder, M., Hollweck, R., Zimmermann, A., Settles, M., Schneider, A.,
Endlich, M., Mueller, A., Schwenzer-Zimmerer, K., Papadopulos, N.A., Biemer,
E.: Comparison between breast volume measurement using 3D surface imaging
and classical techniques. Breast 16(2), 137–145 (2007)

[3] Katariya, R., Forrest, A., Gravelle, I.: Breast volumes in cancer of the breast.
British Journal of Cancer 975, 270–273 (1974)

[4] Bulstrode, N., Bellamy, E., Shrotria, S.: Breast volume assessment: Comparing
five different techniques. Breast 10(2), 117–123 (2001)

[5] Henseler, H., Smith, J., Bowman, A., Khambay, B.S., Ju, X., Ayoub, A., Ray, A.K.:
Investigation into variation and errors of a three-dimensional breast imaging sys-
tem using multiple stereo cameras. Journal of Plastic, Reconstructive & Aesthetic
Surgery: JPRAS 65(12), 332–337 (2012)

[6] Khoshelham, K., Elberink, S.O.: Accuracy and resolution of Kinect depth data
for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)

[7] Cook, T.S., Couch, G., Couch, T.J., Kim, W., Boonn, W.W.: Using the Microsoft
Kinect for patient size estimation and radiation dose normalization: Proof of con-
cept and initial validation. Journal of Digital Imaging 26(4), 657–662 (2013)

[8] Alnowami, M., Alnwaimi, B., Tahavori, F., Copland, M., Wells, K.: A quantita-
tive assessment of using the Kinect for Xbox360 for respiratory surface motion
tracking. In: Proceedings of SPIE: Medical Imaging 2012, vol. 8316, pp. 1T1–10
(2012)

[9] Choppin, S.B., Probst, H., Goyal, A., Clarkson, S., Wheat, J., Hospitals, D.: Breast
volume calculation using a low-cost scanning system. In: 4th International Con-
ference Exhibition on 3D Body Scanning, pp. 11–14 (2013)

[10] Wheat, J., Choppin, S., Goyal, A.: Development and assessment of a Microsoft
Kinect based system for imaging the breast in three dimensions. Medical Engi-
neering & Physics (in press, February 2014)
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Abstract. Radiological in-vivo imaging, such as X-ray mammography
and Magnetic Resonance Imaging (MRI), is used for tumour detection,
diagnosis and size determination. After tumour excision, histopatholog-
ical imaging of the stained specimen is used as the gold standard for
characterisation of the tumour and surrounding tissue. Relating the in-
formation available at the micro and macroscopic scales could lead to a
better understanding of the in-vivo radiological imaging. This in turn has
potential to improve therapeutic decision making and, ultimately, patient
prognosis and treatment outcomes. Accurate alignment of data, neces-
sary to maximise information retrieval from the different scales, can be
problematic however, due to the large deformation that the breast tissue
undergoes after surgery. In this work we present a methodology to re-
construct a 3D volume from multiple X-ray breast specimen images. The
reconstructed volume can be used to bridge the gap between histopatho-
logical and in-vivo radiological images. We demonstrate the use of this
algorithm on four mastectomy samples. For one of these cases, a speci-
men MRI was also available and was used to provide an assessment of
the performance of the reconstruction technique.

Keywords: breast histology-radiology registration, 3D volume recon-
struction.

1 Introduction

Radiological images (for example X-ray mammography, DCE-MRI and ultra-
sound) are routinely used for detection, diagnosis, tumour size determination,
therapy planning and treatment monitoring. The image resolution is limited how-
ever, ranging from approximately 0.1 mm for X-ray mammography to 1 mm for
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MRI. Histopathological analysis of excised tissue provides high resolution images
(less than 1 μm) and is used as the gold standard for tumour characterisation:
for example to differentiate between benign and malignant lesions, to define
the tumour grade and to determine whether all the cancerous tissue has been
successfully removed at surgery. Establishing spatial correspondences between
histopathological and radiological images could improve our understanding of
the relationship between these types of images. Accurate alignment of the tis-
sue microstructure to the in-vivo imaging could potentially be used to predict
tumour invasiveness and indicate whether any features extracted from clinical
images are linked to pathological outcomes.

There are various techniques that have been proposed in the literature to
align histological slides to in-vivo imaging. These are mainly focused on animal
brain and human prostate data, for which the deformation after excision is less
than that exhibited by mastectomy and breast lumpectomy samples. Existing
approaches often require either manual interaction [1,2] or the acquisition of ad-
ditional images of the whole ex-vivo specimens before cutting and further slicing
with the microtome; such as a specimen MRI [3,4] or block-face photographs of
the sectioning process [3,5].

As breast is a highly deformable organ, aligning the in-vivo to specimen imag-
ing is a difficult task. Firstly, the breast positioning varies between different radi-
ological acquisitions and surgery. In addition, after excision the breast undergoes
further complex deformations due to slicing, cutting, fixing and sectioning with
the microtome. A reconstructed volume from whole-mount serial breast section
images was previously proposed [6], where pair-wise manual registrations were
employed for an initial alignment between slices and point-based linear affine
registrations followed for refinement. Another attempt to align breast histologi-
cal to radiological images was proposed for the interpretation of ultrasound (US)
elastography images [7], where the pathology slides were warped to the US image
based on manually defined landmarks on the boundaries of a tumour.

This work describes a 3D volume reconstruction methodology that can be used
to compose a 3D specimen image of the breast, from multiple X-ray images of
specimen slices. The methodology employs two automated approaches that were
previously proposed for the 3D volume reconstruction of brain images [8,9]. This
volume can be used as an intermediate image in order to bridge the gap between
histological and in-vivo radiological images. To demonstrate the methodology
we have reconstructed 3D volumes from four mastectomy cases. For one case,
a specimen MRI was also used in order to visually assess the quality of the
reconstructed volume and demonstrate that this could be useful for mapping to
the in-vivo MRI of the patient.

2 Methodology

2.1 Data Acquisition Protocol

The data used in this work were acquired in the Radboud University Medi-
cal Centre, where the specimen handling is as follows: the excised mastectomy
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specimens are inked, vacuum-packed and refrigerated to preserve and stiffen the
tissue. Then, the specimen is sliced axially using a meat slicing machine in 4-
5 mm thick slices. Digital X-ray images of the slices are acquired and the tissue is
later sampled, put into cassettes and further processed into paraffin blocks. The
approximate position of the tissue parts, that are sampled for further processing
and staining, is annotated on the digital X-ray images of the slices. Details of
the complete protocol can be found in [10].

The goal of this work is to produce a 3D volume reconstructed from the X-ray
images of the specimen slices. The link between this volume and the histology
slides can be provided via the annotations on the digital X-ray specimen slice
images, while the link to pre-operative imaging (such as MRI) could be achieved
via a 3D registration algorithm between in-vivo and ex-vivo imaging.

2.2 Pre-processing

The slices obtained from a given specimen appear in sequence, in a number of X-
ray images, with each image typically comprising 3 to 6 slices. Before registration,
the slices are segmented from the background using thresholding and a hole
filling algorithm. Manual interaction is required for cases when the slices are
touching with no clear boundary between them. A histogrammatching technique
is used for intensity normalisation of the segmented slices, as intensity ranges
vary between different X-ray acquisitions. For this task, the slice in the middle
of the stack is used as a reference image.

2.3 3D Volume Reconstruction

Pair-wise registrations To reconstruct a 3D volume, the individual slices are ini-
tially registered using pair-wise registrations of the serial slices. For this task we
use an intensity-based approach with a rigid-body block-matching transforma-
tion [8] that was first proposed for the registration of serial histological sections
from animal brain data. The advantage of the block-matching technique is that
it only assumes local similarities between sequential slices, rather than assuming
that the anatomy is related across the whole image. Local rigid transformations
are initially computed across local areas (blocks) and the final transformation is
estimated using the most closely matching block-pairs.

In our experiments, we use an implementation with a multi-resolution scheme
consisting of six levels. As in the original reference [8] the similarity measure is
the correlation coefficient and the final transformation is computed using the L1

estimator, rather than least squares regression. As in the pre-processing step,
the slice in the middle of the stack is used as a reference image.

Global energy optimisation. To avoid the propagation of registration errors
across slices and the dependency of the registration result on the chosen ref-
erence slice, we add a second, subsequent registration scheme, where each slice
Ii is simultaneously aligned to both neighbouring images Ii−1 and Ii+1. This
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approach was initially proposed for a 3D volume reconstruction from serial au-
toradiographic sections of a rat’s brain [9].

For N slices, the parameters that are estimated are:

Θ = {Θ1, ..., Θr−1, Θr+1, ..., ΘN}, (1)

where Ir is the reference image and Θi = {tix, tiy, θi} for a 2D rigid transforma-
tion. Considering the similarity, S, across all slices, the optimisation problem of
the global energy function E(Θ) can be defined as:

Θ = argmax
Θ

(E(Θ)) =

N−1∑
i=1

Ei(Θi) =

N−1∑
i=1

∑
j∈Ri

(S(Tθi(Ii(x)), Tθj (Ij(x))) : x ∈ Ω)

(2)
where Ri is the neighbourhood of, i.e. adjacent slices to, image Ii. Instead of
optimising the global energy directly across all images, the local energy Ei is
optimised sequentially for all the slices. We use two neighbouring slices in our
implementation (Ri = [i−1, i+1]), as their thickness is 4-5 mm and are therefore
less likely to influence the registration of slices that are further away.

The similarity measure that we use for this registration step is normalised
cross correlation and the optimisation scheme is gradient descent.

3 Experiments

To demonstrate the quality of the reconstructed volumes, we have applied the
proposed method to four mastectomy samples. The number of slices was 39-43
per case and their thickness was 4 mm. Figures 1 and 2 show examples for three
of the reconstructed volumes.

(a) p1 (b) p1, X axis alignment (before reg.) (c) p1, after reg.

Fig. 1. Results of the reconstructed volume for patient 1. (a) Axial plane (this is the
high resolution image where annotations of the tissue sampling are made), (b) coronal
and sagittal planes using an alignment of the X axis according to centres of mass of
the slices (initial position before registration) and (c) after registration.
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(a) p2, after reg. (b) p3, after reg.

Fig. 2. Results of the reconstructed volumes for patients 2 and 3. From left to right:
axial, coronal and sagittal planes after registration for (a) patient 2 and (b) patient 3.

(a) p4, specimen MRI (b) p4, reconstructed volume after reg.

Fig. 3. Patient 4, from left to right: axial, coronal and sagittal planes of (a) the speci-
men MRI and (b) the registered reconstructed volume

For one of the cases, there was a specimen T1-weighted MRI acquired us-
ing a clinical breast scanner, although this is not typically part of the clinical
protocol. We have applied a 3D rigid block-matching registration [8] between
the reconstructed volume and the specimen MRI, in order to illustrate that
the reconstructed volume produces a reasonable result and can subsequently be
mapped, initially to the specimen MRI, and in future to the in-vivo MRI of the
patient. The registration result is shown in Figure 3.

4 Conclusion

We have presented a registration framework to produce a 3D volume recon-
structed from multiple X-ray breast specimen images. The proposed algorithm
was applied to four mastectomy cases. For one case this volume was subsequently
registered to a specimen MRI. The results show that this technique produces 3D
volumes, where the anatomical structures appear to have continuity across slices.
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Also, corresponding structures can be seen between the reconstructed volume
and the specimen MRI.

This framework can be used in future work to provide a link between the
histopathology slides and the in-vivo MRI of the patient. The clinical protocol
described here [10] is particularly suited for this purpose, as the slicing process
produces slices of approximately the same thickness, due to the specimen being
cooled and sliced with a meat slicer. Moreover, the annotation protocol on the
digitally acquired X-ray images that identifies the approximate position of the
histology slide, is invaluable for the link to histology. For the link to radiological
imaging, a challenging registration task between the specimen and the in-vivo
MRI will need to be tackled.

Further developments include the use of a more flexible transformation model
than the rigid transformation used here, that would be better able to capture
the complex transformation that the slices undergo. Finally, the reconstructed
volume will be tested for subsequent mapping of histological features to in-vivo
radiological imaging using the process described above.
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Abstract. Texture is a powerful cue for describing structures that show
a high degree of similarity in their image intensity patterns. This paper
describes the use of Self-Invariant Feature Transform (SIFT), both as
low-level and high-level descriptors, applied to differentiate the tissues
present in breast US images. For the low-level texture descriptors case,
SIFT descriptors are extracted from a regular grid. The high-level tex-
ture descriptor is build as a Bag-of-Features (BoF) of SIFT descriptors.
Experimental results are provided showing the validity of the proposed
approach for describing the tissues in breast US images.

Keywords: breast cancer, ultrasound, texture, SIFT.

1 Introduction

Breast cancer is the second most common cancer (1.4 million cases per year,
10.9% of diagnosed cancers) after lung cancer, followed by colorectal, stomach,
prostate and liver cancers. In terms of mortality, breast cancer is the fifth most
common cause of cancer death. However, it places as the leading cause of cancer
death among females both in western countries and in economically developing
countries [3].

Medical imaging plays an important role in breast cancer mortality reduction,
contributing to its early detection through screening, diagnosis, image-guided
biopsy, treatment follow-up and suchlike procedures [5]. Despite Digital Mam-
mography (DM) still remains as the image modality of reference for diagnose
purposes, Ultra-Sound (US) offers useful complementary diagnose information
due to its capabilities for differentiating between solid lesions that are benign or

� This work was partially supported by the Spanish Science and Innovation grant nb.
TIN2012-37171-C02-01 and TTIN2012-37171-C02-02 and the Regional Council of
Burgundy.

H. Fujita, T. Hara, and C. Muramatsu (Eds.): IWDM 2014, LNCS 8539, pp. 681–688, 2014.
c© Springer International Publishing Switzerland 2014



682 J. Massich et al.

malignant [6]. It is estimated that between 65 ∼ 85% of the biopsies prescribed
using only mammography imaging could be avoided if US information had been
taken into account while issuing the diagnose [7].

In US images, texture is a major characteristic to distinguish between different
breast tissues, which also allows assessing of the lesion’s pathology [6]. Thus,
the importance of incorporating texture data from US images into Computer
Aided Diagnosis (CAD) systems. A comprehensive list of texture descriptors
used for detection, segmentation or diagnose tasks applied to US breast images
is given in Cheng et al. [1], where most of the descriptors are ad-hoc descriptors or
based on well-known texture descriptors such as co-occurrence matrices, wavelet
coefficients or Gray-Level Difference Method (GLDM).

This article explores the usage of Self-Invariant Feature Transform (SIFT)
descriptors for encoding the US characteristic texture produced by the speckle
noise present within the images. Its performance is evaluated using a multi-label
annotated dataset.

2 Material and Methods

In order to develop segmentation methodologies applied to delineate breast le-
sions in US data, a set of 700 US images was acquired at the UDIAT Diagnostic
Centre of Parc Tauĺı in Sabadell (Catalunya), between 2010 and 2012. All the
images were provided with accompanying Ground Truth (GT) delineation of the
lesions present in the image. From this image database, a reduced dataset of 16
images corresponding to different patients was selected and complemented with
multi-label GT in order to evaluate the texture description of the observable
tissues in the breast.

Figure 1 illustrates a breast image from the dataset with its associated GT.

3 Using SIFT as a Low-level Texture Descriptor in Order
to Differentiate the Tissues Present in Breast US
Images

Self-Invariant Feature Transform (SIFT) [4] transforms key-points into scale and
rotation invariant coordinates relative to local features. The SIFT descriptor at

Chest wall

Rib

Skin layers

Lesion

Boundary

Air or lungs

Pectoral muscle

Fibro-glandular tissue

Adipose tissue

Background

Fig. 1. Dataset sample. From left to right: image sample, accompanying multi-label
GT, tissue label GT color-coding.
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(a) (b) (c)

Fig. 2. Low level SIFT descriptor example. (a) Arbitrary coloring of the projected
SIFT space. (b) Original image. (c) Recoding of the extracted SIFT descriptors using
the color coding in (a).

a particular key-point, samples the magnitude and orientation of the gradients
surrounding this key-point to generate a 128-element feature. When setting up
SIFT as a texture descriptor, the key-points are considered to be a regular grid
in order to generate evenly sparse SIFT descriptors.

The usage of SIFT descriptor brings invariability to scale, rotation and minor
affine transformations along with robustness to illumination changes [4], which
allows to characterize the tissues despite the variability from US acquisition.

In order to analyze the US images, a SIFT descriptor is extracted at every
pixel position and them mapped into the SIFT space. The 128-dimension feature
is projected into a two dimensional space using Principal Component Analysis
(PCA). When combining features using PCA is convenient to know the ratio
known as explained variation, which in this case is given by λ1+λ2∑128

i=1 λi
= 21.6%.

For the remaining of the article all the calculations are carried out directly
in the projected space. However, it should be assumed that in a higher space
with greater explained variation, better separability could be achieved. Figure 2
offers a visual interpretation of a breast US image in terms of low-level SIFT
descriptors, where the extracted SIFT descriptors from all the images in the
dataset have been projected into the 2D principal component space (Figure 2a).
These SIFT descriptors have been arbitrary colored in order to visually assess
the descriptors (the more similar the colors, the closer the SIFT descriptors).

Thus, the analysis of the tissue distribution is performed in the texture space
defined by the SIFT descriptors by means of the Maximum A Posteriori (MAP)
estimator, as described in equation 1.

P (ω|x̄a) =
P (x̄a|ω) · P (ω)

P (x̄a)
(1)

Where P (ω|x̄a) is the probability that the sample a belongs to class ω ∈ W
(see fig. 1b as a reminder of the GT available classes) where x̄a is the feature
vector representing the sample a, such that xi

a is the ith feature. P (x̄a|ω) cor-
responds to the Maximum Likelihood (ML) of the feature distribution for a
particular class ω, while P (ω) and P (x̄a) are the priors for the class and feature
respectively.
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(a) (b) (c)

Fig. 3. SIFT space. (a) Projected space colored according to GT tissue labeling. (b)
P (x̄a). (c) P (ω)

Background Air or lungs Chest wall Rib

Fibro-glandular Adipose tissue Skin layers Lesion

Fig. 4. Distribution of the SIFT descriptors for some classes in the GT

Figure 3 uses the entire dataset to illustrate the underlying problem and the
priors extracted from the same dataset. Fig. 3a shows a scatter plot where every
sample has been colored according to its GT. Fig. 3b shows an occurrence study
of the samples carried out in a discretization of the SIFT space. Fig. 3c illustrates
the class prior P (ω) corresponding to the proportion of samples present in the
dataset for each class.

Figure 4 shows the feature distribution study for every class, corresponding
to the P (x̄a|ω) in eq. 1. Similarities and dissimilarities between classes can be
observed through the tendencies within the features representing each class. To
illustrate that, it can be observed in figure 1 that the adipose tissue class contains
Cooper’s ligaments which are highly dense fibers, and fibro-glandular tissue is
made of dense fibers and unstructured fat. Or, the difficulty to produce accurate
GT delineations, which often happens for those regions where the structures are
not clear enough to the user (i.e. the background class in fig. 1).
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Fig. 5. Qualitative evaluation of the MAP labeling of the feature space

Equation 2 illustrates how to produce the preferred labeling of the space, as
is illustrated in fig. 5a. On it, the marginals P (ωi|xj) where j ∈ {1, 2} are also
represented to obtain a deeper understanding of the MAP.

labeling(x̄) = argmax
i

P (ωi|x̄) where i ∈ [1..|W |] (2)

For comparison purposes, the labeling process has been carried out on the
SIFT space as well as on the intensity space to analyze the tissue characteri-
zation. Figure 5 shows the qualitative evaluation of the MAP labeling for both
spaces. From this results, the SIFT feature space is preferred since when using
intensity some of the classes has no mode.

In order to generate cross-validated quantitative results, the descriptors have
been randomly sampled as follows: (10.000 samples×10 classes)×5 folds. At each
round 4 folds have been used for training the ML term in eq. 1 (P (x̄a|ω)) and
the remaining fold has been used for testing. The labeling results are provided in
figure 6 as boxplots representing the confusion matrices distribution across the
folds. In the figure, the samples are grouped by the actual class of the sample
and distributed by the predicted classes. The top label represents the samples’
actual class, whereas the predicted class is color coded at the bottom. Boxplots
in blue represent the results of classifying the samples using intensity, whereas
the bloxpots in red represent the results obtained when using SIFT. The lack of
variability within the boxplots illustrates a repeatability of the results across the
samples, which gets accentuated when using SIFT. The results show that the
preferred labels which cover larger portion of the feature space achieve better
results than the other classes. This is more clear for the intensity case since
there are classes with no mode and therefore all the samples of this class are
misclassified (see fig. 5). The sensitivity or True-Positive Ratio (TPR) allows
to obtain a general sense of performance across all the labels. The TPR value
obtained for the intensity case is 16.6 ± 27.5%, whereas for the SIFT case is
18.8±17.2% which show that both feature spaces produce similar results. Notice
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Fig. 6. Confusion matrices results distribution represented as boxplots. The results are
grouped by actual class of the samples and distributed by the predicted label.
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Fig. 7. SIFT-BoF descriptors qualitative analysis. (Left) image example. (Right) Dic-
tionary representation colored using the location of the keypoint location in fig. 3a
space. (1-8) Occurrence of the dictionary’s key-points associated to each region high-
lighted in the original image.

that the large variability reported is due to missclassification of the labels with
no mode, as can be observed in figure 5.
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4 High-Level Texture Descriptor Using Bag-of-Features
(BoF) and SIFT Descriptors

Texture is an area property related to spatial repetition of structures, similar sta-
tistical properties of the area or both. A technique to embed statistical properties
of a low level descriptor is Bag-of-Features (BoF) which analyses the occurrence
of a set of keywords (or key-points) within a particular region [2].

In our proposal, the words or features representing the images are SIFT de-
scriptors. In order to determine the words forming the dictionary or codebook
needed to generate the BoF descriptors, the space of SIFT descriptors is clus-
tered in order to produce a hard quantification of this space. In this case, a
k-means procedure with k = 36 is used to generate the codebook. To generate
the BoF-SIFT feature, all the SIFT descriptors are substituted for the closest
SIFT descriptor in the codebook. Finally the texture description from a partic-
ular area is expressed as the keywords’ occurrence in this area. The descriptor
is normalized so that the sum of all the occurrences is 1.

In our application, the areas used for extracting BoF descriptors are deter-
mined by using Quick-Shift (QS) super-pixels, as is shown in figure 7. The figure
shows a codebook partitioning the feature space into 36 groups along with the
BoF descriptors for the 8 highlighted super-pixels. For the visualization of the
BoF features a heat color coding has been used to represent the occurrence of
each word within the codebook.

In order to quantitatively assess the performance of SIFT embedded within
a high-level feature descriptor such as BoF, a dataset of super-pixels with its
associated GT and BoF-SIFT descriptor has been build up. At this point a super-
pixel is eligible if it is larger than 50 pixels and is fully contained within the same
GT label. This second constrain has been relaxed for skin and rib classes allowing
super-pixels with 75% label contained to be eligible. The study has been carried
out only for all the tissue classes, thus excluding background and boundary
classes. To perform the evaluation 20 folds of 8 super-pixels (one per class) have
been selected forming a set of 152 samples for training and 8 samples for testing
at each round. The experiments have been repeated under the same conditions
with 3 different codebooks in order to take into account the variability introduced
by the codebook building. Again, for comparison purposes the experiment has
been repeated using both intensity and SIFT. The classification has been carried
out using Support Vector Machine (SVM). The TPR results achieved are 29 ±
3.6% for the case of intensity and 33.5 ± 2.3% for the case of SIFT, showing
their similar performance and the improvement from using high-level texture
descriptor over the low-level texture descriptor.

5 Conclusions

The present study was designed to explore the usage of SIFT feature space as
a texture for characterizing the different tissues present in a breast US image.
During the study, SIFT information have been used both as a low-level texture
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descriptor and encoded within a high-level texture descriptor using BoF. Perfor-
mance of using the SIFT space has been evaluated by comparison with intensity.
The results show that both performances are equivalent.

One of the limitaitons of this work is that all the calculations have been
performed using the 2D PCA projected space which does not include all the
variability of the data.

Despite these limitations, SIFT and intensity spaces produce similar results,
which encourage further studies on using SIFT texture descriptors characterizing
breast tissues in US images.
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Abstract. The use of prior studies to complement the information in
Breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging
(DCE-MRI) can help to reduce the currently high false positive ratios.
Registration is a fundamental part of this process, as registration algo-
rithms provide automatic correspondences between current and prior stud-
ies. The deformable nature of the breast and differences in acquisition
protocols make this a particularly challenging problem. In this paper we
study three registration algorithms (Affine, SyN and Demons) applied to
DCE-MRI images obtained from clinical practice. The methodology fol-
lowed for this study included using segmentation algorithms in order to
focus on the area of the breast. Anatomical landmarks were also added by
an expert for evaluation purposes. This allowed us to use an anatomical-
landmark-based measure in order to evaluate the quality of registration.
Additionally, an image metric was also used for the same purpose. Results,
shown to be statistically significant indicate how SyN obtains the best re-
sults in terms of the two measures considered.

1 Introduction

Breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI)
is recommended for breast cancer screening in women with cumulative lifetime
breast cancer risk of more than 20-25% (US and EU guidelines [5]). This modal-
ity presents high sensitivity and low to moderate specificity, which can lead to
a substantial amount of false positives. Having prior studies taken into account
by clinicians during the assessment of new exams can help to circumvent this
problem. Direct comparison of breast DCE-MRI scans taken over time is re-
quired in clinical practice but is often time consuming and lacks accuracy due
to limitations of commercially available viewers.

A novel software work-flow to compare current and prior exams should provide
automatic linkage of findings in prior and current images, extract clinically as-
sessable parameters maps [6] and offer user friendly informative viewing solutions
for reading these images and maps. In order to perform these tasks, temporal
registration is required to align current and prior studies of the same patient.
However, registration of breast DCE-MRI exams acquired at different times is
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Fig. 1. These two axial slices acquired with one year difference from the same patient
exemplify the difficulties registration algorithms may encounter in this registration
scenario: Positioning problems (supine versus prone), technical problems (breast coil
versus body phased array) and physiological changes (cysts of different sizes).

a challenging problem. Differences on breast compression and positioning have
a strong influence on images due to the deformable nature of the breast as well
as variability of breast tissue due to cycle and external effects (see example of
Fig. 1). Moreover, image acquisition protocols may also vary producing different
signal intensity values and different field of views.

In this work we evaluate three registration algorithms available in literature to
align and compensate deformations between current and prior DCE-MRI stud-
ies: Affine, SyN [1] and Demons [8] registration. Distances between anatomical
landmarks placed by an expert as well as global image metrics are used to eval-
uate the results.

2 Materials and Methods

2.1 Study Dataset

18 breast T1-weighted DCE-MRI studies from 9 patients were collected in the
Radboud University Nijmegen Medical Centre. For each patient, a pair of DCE-
MRI studies was available: a DCE-MRI exam acquired in 2011 (current) and a
DCE-MRI exam acquired in 2010 (prior). Breast MRI examinations were per-
formed in coronal or transverse orientation on either a 1.5 or 3 Tesla Siemens
scanner (Magnetom Avanto, Magnetom Skyra or Magnetom Trio).

2.2 Preprocessing

Before being able to use the images for registration certain preprocessing steps
are necessary. We provide some details in this section and Figure 2 presents an
overview of all the steps (preprocessing, registration and evaluation) used in this
study.

The involuntary motions and muscle relaxation during the image acquisition
of DCE-MRI result in motion artifacts, which need to be corrected for better
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lesion reading. The first post-contrast image is commonly chosen as the reference
image. The pre-contrast and other post-contrast images are then registered to
the reference. Thus, only the registration between two pre-contrast images in
the current and prior DCE-MRI studies is necessary in the follow-up temporal
registration task. In this work, we used the method proposed by Böehler et al.
to compensate motions in each DCE-MRI study [2].

In order to focus on breast structures, a breast segmentation algorithm was
run on all patients. The method used for this [9] used a dedicated Hessian-based
sheetness filter to enhance and segment the pectoralis muscle and breast-air
boundaries simultaneously. Subsequently, the algorithm extracts a binary mask
indicating breast regions. Consequently, for each patient we obtained two images
(for left and right breast) per study which were registered independently.

For evaluation purposes, landmarks were placed in all pairs of DCE-MRI vol-
umes by a radiologist with expertise in breast imaging. Each annotation consisted
of two corresponding points, each of which was placed on each of the volumes
composing the DCE-MRI pair. Notice how correspondence of landmarks is a key
factor, so if a particular anatomical structure was only visible in one of the scans
it was not used for landmark placement. Annotations were manually performed
by comparing time points, subtracted and MIPS images and were visually val-
idated on axial, sagittal and coronal planes. This process already yielded some
insight in the difficulties faced by registration methods. For example, differences
in the position of patients during image acquisition (prone or supine) made the
placing of landmarks challenging. Technical differences in the acquisition pro-
cess or physiological changes also added to these problems. See figure 1 for an
example. Concerning the anatomical landmarks used for landmark placement,
nipples were marked in all cases. Vessels and fat/glandular tissue margins were
also placed whenever possible. A total of 10 pairs of corresponding landmarks
were set for each DCE-MRI pair.

2.3 Registration Methods

Three registration methods were evaluated in this work. First of all, we con-
sidered Affine registration. This method provides comparison grounds for other
registration results and is also used as an initialization step by the two non-rigid
methods evaluated. This method was implemented using the Insight Toolkit
(ITK) libraries1. Affine (and in some cases Rigid) registration methods are used
because they are fast and produce images that are artifact-free [3]. Although
these methods are very convenient for some applications, they are global in
nature (a single affine motion is applied to the whole of the image). This char-
acteristic makes it difficult for them to account for local variations [4].

The second registration method studied in this work is SyN, which is part
of the Advanced Normalization Tools (ANTs) package2 and uses bi-directional

1 Insight Segmentation and Registration Toolkit webpage, http://www.itk.org/.
2 Advanced Normalization Tools webpage,
http://www.picsl.upenn.edu/ANTS/download.php.

http://www.itk.org/
http://www.picsl.upenn.edu/ANTS/download.php
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Fig. 2. Overview of the validation of process for current-to-prior registration in breast
DCE-MRI: (1) landmark annotation on current and prior studies, (2) segmentation of
left and right breasts, (3) current-to-prior registration for each breast and (4) evalu-
ation based on Normalized Mutual Information (NMI) metric and distances between
landmarks

diffeomorphism [1]. These bidirectional diffeomorphisms do not need to distin-
guish between target and source images thus enhancing their application scenar-
ios. The third evaluated registration algorithm was Demons registration method
based on Thirion’s demons 3 [8]. All registration algorithms were independently
applied to each breast using automatic breast segmentation masks.

2.4 Evaluation

Evaluating the quality of a registration method is a challenging problem. Even
assessing how much two given images resemble each other is still an open prob-
lem. Image metrics exist, and play an important role in registration methods.
Registration is often viewed as an optimization process and these measures are
used to drive this optimization. Additionally, these metrics are also used to eval-
uate the performance of image registration. This is done under the assumption
that an improvement in the similarity metric between images after registration
means better alignment. However, this is not always the case. Specifically some
studies showed how some registration results, although better in terms of Mutual
Information, were deemed as “unrealistic and containing many image artifacts”
by experts [3]. Furthermore, Rohlfing [7] showed that it is possible to design a
method that obtains the best results in terms of image metrics while making

3 We used an ITK implementations see ”the itk programming guide”
(http://www.itk.org/ItkSoftwareGuide.pdf) for details on how to download the
code for classical itk demons.

http://www.itk.org/ItkSoftwareGuide.pdf
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absolutely no sense in medical terms. Hence, although we consider that image
metric results have to be reported due to their role in optimization part of reg-
istration, alternative evaluation strategies must be prioritized.

Consequently, we computed Root-Mean-Square (RMS) distance between land-
marks points of each DCE-MRI pair before and after registration. This type of
measure agrees with recent trends on evaluation of registration algorithms [7]
and is the main quality criterion used in this work. Additionally, results on Nor-
malised Mutual Information (NMI) are also reported. NMI is chosen assuming a
non fully linear intensity relationship between images. Concerning the statistical
significance of results, Kolmogorov-Smirnov tests were run in order to ensure
the normality of data. After that, one-tailed difference of means Student t-tests
(α = 0.05) were computed to see whether significant improvements in means
were observed.

3 Results

Figure 3 summarises the obtained results. Two boxplots are presented corre-
sponding to (a) RMS landmark-based metric (in mm) and (b) NMI image met-
ric. Affine registration yielded (mean±stdev) 95.73±60.32 mm and 1.11±0.04,
for RMS and NMI respectively. Values of RMS and NMI were, for the SyN
algorithm, 72.89 ± 36.77 mm and 1.21 ± 0.04. Demons registration obtained
91.82±52.07 mm and 1.12±0.07, respectively. Improvements respect to the state
prior to registration were observed to be statistically significant for all methods
and criteria. Concerning results after registration, non-rigid methods performed
better than Affine registration for the NMI criterion. For the landmark distance
criterion, a statistically significant difference was only observed when compar-
ing Affine and SyN (p-value = 0.025). Figure 4 shows visual examples for two
registration cases. Note how the second row presents a more challenging case
where SyN registration (Figure 4 (d) ) is able to produce a noticeably better
registration.

4 Discussion

In this work, we compared three registration methods to align and compensate
deformations between current and prior DCE-MRI exams of the same patient.
Temporal registration is the basis of a clinical software workflow to compare
current and prior exams and reduce the number of false positive findings in
DCE-MRI screening. Landmark-based and image-based metrics were used as
evaluation measures.

Best results overall were obtained with SyN registration for the two measures
studied. These results were shown to be statistically significant. Visual inspection
of individual results showed that cases perceived to be more difficult (due to the
differences in acquisition making the images less similar) coincided with those
were higher landmark-based errors were observed.



694 Y. Dı́ez et al.

BEF AFF SyN DEM

50
10

0
15

0
20

0

R
M

S
D

(m
m

)

BEF AFF SyN DEM

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

N
M

I

(a) (b)

Fig. 3. Evaluation of prior-to-current breast DCE-MRI registration: (a) landmark-
based (RMS) and (b) image-based (NMI) metric results before (BEF) and after Affine
(AFF), SyN (SyN) and Demons (DEM) registration. Note that, for NMI, high positive
values represent better registration results.

(a) (b) (c) (d) (e)

Fig. 4. Two registration examples. First row registration of a left breast, second row,
registration of a right breast. Columns: (a) target and (b) source images and output
images using (c) Affine, (d) SyN and (e) Demons algorithms.

In future work, we will increase the number of DCE-MRI studies in the dataset
and more non-rigid registration algorithms will be evaluated. We will also focus
on clinical application of registration. Specifically, parameter maps including
morphology and kinetic information will be calculated and compared.
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Abstract. Within computer aided mammography, there are many im-
age analysis methods have been developed for mammographic image clas-
sification. Some of these were developed and validated using well known
publicly available databases, and others may have chosen to use inde-
pendent/private databases for their investigations. Often, despite the
promising results described in the literature, it is not unusual to see
when adapting an established method with the recommended configura-
tions for a different database, the obtained results are not in line with
expectation. This paper presents results of a study with respect to the
implications of mammographic image classification using different clas-
sifiers trained with variations, such as differences in parameter settings,
classifiers, using single databases, combined and across databases. The
results indicated that it is unlikely to have an universal parameter set-
tings and classifiers, which can be used to achieve the best classification
without tuning. Additional databases used at the training stages do not
necessarily lead to more accurate density classifications; whilst classi-
fiers trained with images obtained using one type of image acquisition
are not ideal for classifying images obtained using different image acqui-
sition. The related issues of optimal parameter configuration, classifier
selection, and utilising single or multiple databases at the training stage
are discussed.

Keywords: Birads, computer aided mammography, mammographic den-
sity classification.

1 Introduction

Computer-aided diagnosis/detection (CAD) has been widely used in clinical
practices to aid radiologists in interpretation of screening mammograms. Within
computer aided mammography, the likelihood of a woman developing breast can-
cer can be determined through mammoraphic risk assessment [1]. To standardise
mammography reporting and reduce confusion in breast imaging interpretations,
Birads (American College of Radiology’s Breast Imaging Reporting and Data
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System) [2] was developed as a quality assurance tool and covers the significant
relationship between increased breast density and decreased mammographic sen-
sitivity in detecting cancer [3]. Each mammography report starts with a breast
density description which is used to inform the clinician about the possible effect
on the sensitivity of the examination due to the mammographic density of the
patient [4]. Mammographic breast composition is categorised into four classes:
Birads 1, the breast is almost entirely fat (< 25% glandular); Birads 2, the breast
has scattered fibroglandular densities (25%− 50%); Birads 3, the breast consists
of heterogeneously dense breast tissue (51%− 75%); and Birads 4, the breast is
extremely dense (> 75% glandular). Such a quantitative measure suggests the
use of an accurate and repeatable computational method to perform automatic
mammographic density classification. There are many image analysis methods
suitable and/or have been purposely developed for mammographic density clas-
sification. Some of the methods were developed and validated using publicly
available databases and others may have used independent/private databases
for their investigations. It is not unusual to see when adapting an established
method with the recommended configurations for a different database, that the
obtained results are not in line with expectation; despite the promising results
described in the literature.

The conducted study investigated the implications of applying a well known
texture analysis method to mammographic density classification, using mod-
els and classifiers trained with variations in the parameter settings and use of
databases (i.e. single, multiple and across databases). The aim and objective
of the study is to find out: 1) whether there is an universal parameter setting
and classifier to achieve consistent classification results, and 2) how does the use
of different databases effect the discrimination power of the trained classifiers
and subsequent results. This paper presents the study findings, issues of optimal
parameter configuration, classifier selection, and utilising multi-databases at the
training stage are discussed.

2 Data and Method

Two publicly available databases were used in the study, one is the Mammo-
graphic Image Analysis Society (MIAS) database, and the other is the Digital
Database for Screening Mammography (DDSM) database; the image acquisi-
tion methods used for the two databases were distinctively different. The MIAS
database consists of 322 images, only 320 are usable (files mdb296rl and mdb295ll
are excluded due to historical reasons); with respect to Birads (‘B’) density cat-
egories, the numbers of B1 to B4 images are 87, 103, 94 and 37, respectively. The
second database used is a subset of the full DDSM database which consists of
831 images and has been used in other publications (e.g. [5, 6]); the numbers of
B1 to B4 images are 106, 336, 255 and 134, respectively. It should be noted that
currently there is no publicly available full-field digital mammography database;
therefore only digitised databases were used; so further experiments could be
directly compared with our findings. To keep the image resolutions more or less
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consistent, each of the images from the MIAS and DDSM was resized to 500 pix-
els across, and the orthogonal size was adjusted accordingly based on the original
image size; see Fig. 1 for examples. Ground truth for both databases were ob-
tained as consensus ground truth based on three independent radiologists with
different mammographic reading experience.

Fig. 1. Example mammographic image from MIAS (top row) and DDSM (bottom
row) databases; images from left to right represent Birads density categories from low
to high (i.e. Birads 1 to 4). Note that different pectoral/background segmentation
methods were used for the databases.

Each database was split (randomly with an equal distribution in Birads den-
sities) into three subsets, for training (40%), validation (20%) and evaluation
(40%). Noted that the random image selection based experiment was performed
five times. A well established multi-resolution grey-scale and rotation invariant
local binary pattern (LBP) was employed [7] in the study. Each of the experi-
ments consists of three stages: 1) generating mammographic image LBP repre-
sentation, 2) optimal parameter and classifier selection, and 3) mammograhpic
density classification.
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LBP is computational simple yet an efficient approach to texture analysis for
its uniformity, non-parametric discrimination of samples and prototype distribu-
tion [7]. It is assumed that breast parenchymal patterns associated with Birads
densities can be modelled using LBP distributions. A generalised grey-scale and
rotation invariant operator LBPP,R was used to detect ‘uniform’ patterns, in a
circular symmetric neighbourhood P of any quantisation of the angular space,
and at any spatial resolution which was determined by a circle of radius R [7].
The operator responses are expected to be independent in multi-resolution anal-
ysis, and the responses over different resolutions can be combined with a rotation
invariant variance measure V ARP,R (characterises local texture contrast). The
joint distribution LBPP,R/V ARP,R is assumed to be able to incorporate both
breast parenchymal texture (e.g. orientation and coarseness) and density vari-
ations in the derived feature vectors, which can be used to train a classifier
for mammographic density classification. The reader is referred to [7] for the
methodology details.

For mammographic images associated with the same Birads density category
and with similar texture appearance, it is expected that the joint distributions
(feature vectors) are correlated and closely clustered in the feature space. Dif-
ferent LBP parameter configurations result in the joint distributions for a mam-
mograhic image with different feature dimensions. Therefore a classifier trained
using a particular LBP configuration can be used for a breast density classifi-
cation, and the resultant classification accuracy can be used as an indicator, to
determine the discriminative power of the derived feature vectors with respect
to the used LBP configuration. An automatic parameter selection scheme was
employed to choose the optimal parameters (i.e. P and R) for the LBP approach.
A set of neighbourhoods (i.e. {7, 17, 27, 37, 47, 57, 67}) and corresponding radii
(i.e. {2, 4, 7, 9, 12, 14, 18}) covering small to large breast anatomical structures
were predefined. The total number of combinations (C(n, r) = n! / (r!(n− r)!),
where n = 7, r ={1, 2, ..., 7}) for the multi-resolution configuration is 127. A col-
lection of 57 classifiers available in Weka [8] (e.g. trees (12), bayes (6), functions
(5), lazy (1), meta (25), misc (1) and rules (7)) was used. Each classifier was
trained using the 127 sets of feature vectors derived from the randomly selected
training set for each Birads density class, and the classifier was validated using
the validation set. It is expected that different classifiers behave differently, and
the optimal LBP configuration varies from one classifier to another. Therefore,
the optimal parameter configuration reflects the discriminative power and sta-
tistical variations of the feature vectors, and was determined based on a total of
57 (classifiers) × 127 (combinations) = 7239 tests. Note that the time complex-
ity and number of resolutions used were assessed, and the choices were made
in favour of configurations that used less time to process and less resolutions
needed.

All the images from the remaining evaluation sets were used in the risk classi-
fication, with the optimal parameter configuration and associated classifier. The
density classifications were performed in the Weka environment which includes:
1) base line density classification (i.e. training and testing images are from the
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same database), 2) classification using the classifier trained with a native and an
additional different database (e.g. training using MIAS + DDSM and testing on
MIAS), and 3) classification using the classifier trained with a different database
(e.g. training using MIAS and testing on DDSM).

3 Results and Discussion

Table 1 shows the density classification accuracies are the same or marginally
improved when using an additional database at the training stages; the classifi-
cation accuracies are significantly reduced when only using a different databases
at the training stages. Through thousands of tests, SMO (sequential minimal
optimisation) seems to produce more best classification cases in different test
categories. Table 1 indicates that it is essential to cover anatomical structures
at all sizes, in order to achieve good risk classification results; however, the best
combination seems to vary from case to case. In addition, when not taking the
rotation invariant variance measure V ARP,R into account to characterise local
texture contrast, for 67% of the cases, there is on average 2.4% decrease in the
density classification accuracies, and 1.9% increase in the density classification
accuracies for the rest of 33% of the cases. This indicates that overall it is benefi-
cial to use rotation invariant variance measure, but the effects are not consistent
for all the cases. The average standard deviation for the classification accuracies
is ± 3.7% for the random image selection based experiment (repeated five times);
alternative cross-validation based evaluations are considered as future work. In

Table 1. Birads density classification accuracies (the best in the five repeated exper-
iments) when using different training schemes; SMO, LMT, NNge, LADTree denote
sequential minimal optimisation, logistic model trees, non-nested generalised exemplars
and decision trees with LogitBoost strategy, respectively.

Training Testing Accuracy Best classifier Neighbourhoods (windows)

MIAS MIAS 79% SMO 27 37 47

MIAS+DDSM MIAS 81% LMT 7 27 47 57 67

DDSM MIAS 69% NNge 7 17 27 37 47 57

DDSM DDSM 63% SMO 7 17 27 47 67

MIAS+DDSM DDSM 63% SMO 7 37 57 67

MIAS DDSM 53% LADTree 7 17 37 57

terms of the use of a multi-resolution approach, the results indicate that it does
not seem to have an universal setting, even when the image resolutions are more
or less the same; the best parameter settings seem to vary based on the clas-
sifiers used. Therefore, it may be beneficial to perform similar validation tests
before applying a methodology to novel experiments (e.g. mammographic image
modelling and density classification using other databases), in order to achieve
the best classification results with the optimal pair of parameter setting and
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classifier. The experimental results also indicate that there is not much value
for adding an additional database at the training stage, when the mammograhic
images were obtained using (very) different image acquisition methods; unless
the images need to be classified were obtained using the same methods. It should
be noted that when image normalisation was used as a means of pre-processing,
the obtained results indicated similar findings with lower density classification
results. It appears that the standard normalisation technique used may alter
breast parenchymal appearances (e.g. intensity distribution), which can signifi-
cantly affect the density based image classification and should be used carefully.

4 Conclusions

The conducted novel experiment used two publicly available databases and a well
known texture analysis method from the literature. Based on the results, it is
concluded that: 1) optimal parameter and classifier selection can be beneficial in
adapting a methodology to mammographic image analysis, 2) using an additional
database at the training stage does not necessarily show great improvements in
the density classification, and 3) it may not be ideal to train a classifier using
mammographic images obtained under one type of image acquisition, and use
for classifying images obtained under a different acquisition process.
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Abstract. In the interpretation of digital mammography, intuitive recognition of 
the spatial location of a lesion projected on the images requires considerable 
experience for radiologist or radiological technologist. In order to support  
radiologists and radiological technologists to reading mammography, we have 
developed a computerized scheme to produce a simulated three-dimensional 
(3D) display of lesion locations by using craniocaudal (CC) and mediolateral-
oblique (MLO) views of digital mammography. In the preliminary results ob-
tained from 20 cases with lesions, 100% of lesions were correctly displayed on 
the simulated 3D image in which locations were verified by the certificated 
breast radiological technologist.  

Keywords: digital mammography, three-dimension, simulation. 

1 Introduction 

In the interpretation of digital mammography, because of two-dimensional nature of 
craniocaudal (CC) and mediolateral-oblique (MLO) views of digital mammography, 
intuitive recognition of the spatial location of a lesion projected on the images re-
quires considerable experience for radiologist or radiological technologist.  In case of 
ultrasound examination following to mammography, identification of spatial location 
of lesions on the mammography is important for accurate and prompt procedure.  
Therefore, if the lesion location is displayed on the three-dimensional (3D) image, it 
would be useful for radiologists and/or radiological technologists to identifying le-
sions intuitively. 

The purpose of this study is to display a spatial location of the lesion on the simu-
lated 3D breast image which is produced by using CC and MLO views of digital 
mammography. 
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Abstract. To improve image quality of low-dose mammography images, we 
study a new approach of removing Poisson noise from a degraded image in 
shearlet domain. We first transform Poisson noise into a near Gaussian noise by a 
shearlet-based multiply variance stabilizing transform (VST). Second, the initial 
positions of ideal shearlet coefficients are found by thresholding Gaussian noise 
coefficients. Third, an iterative scheme is proposed to estimate non-noise coef-
ficients from the found initial ideal shearlet coefficients. Finally, the reduced 
noise image is obtained by the inverse shearlet transform on the estimated coef-
ficients. The main contribution is to combine thresholding and the iterative 
scheme. A range of experiments demonstrate that the proposed method outper-
forms the traditional shearlet-based method.  

Keywords: Low-dose mammography, De-noising, Shearlet Transform, Multiply 
VST, Poisson noise.  

1 Introduction 

Mammography is the first line to defense against breast cancers. Low dose mammo-
graphy scanning has been gradually used to lower the radiation exposure for care of 
patients. However, down scaling the radiation intensities results in increased quantum 
noise, affecting diagnostic accuracy [1]. The quantum noise can be simulated by 
Poisson processes [2]. Therefore, our research purpose is to eliminate the Poisson noise 
from the low-dose mammography images.  

Wavelet transform is a powerful tool for image denoising [3, 4]. However, most of 
the previously developed wavelet-based denoising algorithms assume a Gaussian noise 
for the data and estimate the local statistics of image pixels, which is not valid for the 
low-dose mammography images. Recent years, some algorithms have been proposed 
for denoising Poisson count data [5, 6]. The main scheme is first to turn Poisson noise 
to a near Gaussian noise using Variance stabilization transform (VST). Second, the 
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noise is removed using a conventional denoising algorithm for Gaussian noise. Then, 
the reduced noise image is obtained using an inverse transformation. For example, 
B.Zhang et al. proposed to combine VST with Wavelet, Ridgelet and Curvelet, leading 
to MS-VST, which has good performance in low-count situation [5]. Markku Mäkitalo 
et al. proposed the optimal inversion of the anscombe transformation and have dem-
onstrated that the proposed method is a very efficient filtering solution compared to 
with some of the best existing methods for Poisson image denoising [6], Moreover, 
some studies have shown that the traditional wavelets are not very effective in dealing 
with multidimensional signals containing distributed discontinuities.  

Shearlets have been mathematically proven to represent distributed discontinuities 
such as edges better than the traditional wavelets [7]. In this paper, a shearlet-based 
method to reduce Poisson noise is presented. A shearlet-based multiply VST is pro-
posed to transform Poisson noise to Gaussian distribution. Then, we estimate non-noise 
coefficients by combining thresholding and the iterative scheme developed. Finally, the 
reduced noise image is obtained by the inverse shearlet transform on the estimated 
coefficients. The computer simulations were performed to show the potential of the 
presented method for reduction of Poisson noise in low-dose mammography images. 

2 A Shearlet-Based Multiply VST 

In this section, we present a shearlet-based multiply variance stabilizing transform 
(SMVST) by combining Nonsubsampled Shearlet Transform (NSST) [8] with VST. As 
shown in Fig1, the SMVST can be described as following:  

Firstly, we calculate the stabilized coefficients at scale j using Equation (1) 

Where, j
af denotes the approximation at level j , ( j =0,1,2). 0

af denotes the input 

image. jc is calculated using Equation (2). 
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21 ,i is the length of jH , 

jH ↑ and jG ↑ denote the low pass filter and the high pass filter at level j ,  

respectively. 

Secondly, NSST is performed to decompose the image into next level 
The NSST includes two parts: multiscale decomposition and the localization of direc-
tion. We choose the Nonsubsampled Laplacian pyramid scheme for multiscale  

decomposition. By this method, )( j
aj fZ can be decomposed into the approxima-
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tion 1+j
af and the high frequency components 1+j

df at level 1+j .Then, we implement 

the localization of direction on 1+j
df to generate k directional sub-bands at level 1+j : 

1,1+j
df , 2,1+j

df ,…… kj
df ,1+ . 

1+j
df

1+j
af

jZj
af kj

df
,1+

jH↑

jG↑

 

Fig. 1. The flow diagram of the shearlet-based multiply VST 

Using SMVST, Poisson noise can be transformed into a near Gaussian process with 
asymptotic constant variance in shearlet domain. Then, we can estimate the threshold 
using the designed method for Gaussian noise. 

3 Proposed Method 

A shearlet-based method for denoising Poisson noise is developed in the following 
manner. There are five steps. 

Step1: Decomposing the noisy image to some sub-band images using SMVST 
Choosing k =16 at level j =1and k =8 at level j =2, respectively, we decompose the 
noisy image to the approximation and the details in 24 orientations using the above 
description SMVST. 

Step2: Find the initial position of ideal shearlet coefficients 
For each orientation, we calculated the threshold [9] at the corresponding sub-band and 

select the position of ideal coefficients kjM
,

using Equation (3) and Equation (4), 

respectively.  

 NT ln2σ=  (3) 

 }{ TyxfyxM kj
dkj ≥= ),(),( ,

,  (4) 

Where, N is the size of the image,
 

6745.0)( ,kj
dfMedian≈σ is the estimated  

noise variance.  

Step 3: Apply NSST to noisy mammography image 

Choosing k =16 at level j =1and k =8 at level j =2, respectively, we decompose the 

noisy image to the approximation af and the details in 24 orientations using the above 

description NSST.  
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Step4: Estimate non-noise coefficients using the iterative algorithm 
We construct a iterative algorithm shown in Equation (5). 

 )sgn( ,
,

,
,

1,
,

kj
ndMn

kj
ndM

kj
nd fPbfPf −=+  (5) 

Where,
kj

ndf ,
, denotes the detail at level j , direction k , and n time iteration 

( n =1,2,3).
kj

df ,
1, is the obtained detail at any orientation in step3. The same process 

applied to every one of 24 orientations at n time iteration is shown below: 

(1) Selection of ideal coefficient  

Select ideal coefficients from the detail
kj

ndf ,
, according to the index of the found 

kjM , by the description method in step2. MP denotes the operator of selection of ideal 

coefficients at every iteration.  

(2) Shrinkage of coefficients  

We apply threshold method to coefficients
kj

ndM fP ,
,  by soft threshold as shown in 

Equation (5). )1()( −−⋅= NnNb nn σ is threshold, 6745.0)( ,
,

kj
ndn fMedian≈σ is the 

estimated variance of 
kj

ndf ,
, . This step adopted to smooth the selected ideal coefficients 

removes artificial noise caused by MP .  

Step5: Apply inverse NSST 

We reconstruct the final reduced noise image with
kj

df ,
4, at each orientation and af in 

step3 by inverse NSST. 

4 Experiment and Results 

To validate the efficiency of the proposed method, the experiments were conducted on 
the real 25 mammography images come from the First Affiliated Hospital of 
Zhengzhou University and 8 mammography images with different amount of Poisson 
noise. Both visual and quantitative evaluations are presented with implementation of 
the proposed method in a series of mammography images. 

4.1 Visual Evaluation 

In this subsection, the experiments are conducted on real low-dose mammography 
images. The obtained experiment results are shown in Fig.2. Fig.2 (a) shows the ex-
ample of standard-dose mammography image using the tube voltage (29 kVp), the tube 
current (61 mAs), and the exposure time (1143 mAs). Fig.2 (b) shows the example of 
reduced-dose mammography image using the tube voltage (25 kVp), the tube current 
(62 mAs), and the exposure time (402 mAs). Fig.2 (c) and Fig.2 (d) are the region of 
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interest (ROI) chosen from Fig.2 (a) and Fig.2 (b). The processed images by literature 
method and proposed method are shown in Fig.2 (e) and Fig.2 (f), respectively. 

Even if the x- ray dose reduced by 30% as shown in Fig.2 (b), the visual quality of 
the processed image using the proposed method is improved clearly in comparison with 
the literature method [10] and is almost the same as the standard-dose image. 

    

(a)The standard-dose image(5.8680mGy)  (b)The reduced-dose image(1.3240mGy) 

    

 (c) ROI in image (a)   (d) ROI in image (b)   (e)Literature method  (f)Proposed method 

Fig. 2. The obtained experiment results 

4.2 Quantitative Evaluation 

The Signal to Noise Ratio (SNR) of an image and a Mean Structure Similarity 
(MSSIM) between the reference X and the processed imagesY are measured for image 
quality assessment. The MSSIM [11] is defined using Equation (6) and (7). 

 
=

=
M

j
jj yxSSIM

M
YXMSSIM

1

),(
1

),(  (6) 

Where, jx and jy  are the image contents at the thj −  local window and M is the 
number of local windows in the image. 
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 [ ] [ ] [ ]γβα ),(),(),(),( yxsyxcyxlyxSSIM ⋅⋅=  (7) 

x and y are the reference and the reduced noise image. The three compo-
nents ),( yxl , ),( yxc and ),( yxs denote the luminance comparison function, the 
contrast comparison function and the structure comparison function, respectively. 

βα , andγ are parameters used to adjust the relative importance of the three compo-
nents. In this paper, we use a 1111× circular-symmetric Gaussian weighting window 
scanning the image and set 1=== γβα . 

We also perform a series of denoising experiments using images with controlled 
noise amounts. The proposed method is compared with literature method [10]. Fig.3 
(a), (b), (c) (d) and (e) show the original image, ROI in Fig.3 (a), the noisy image 
(MSSIM=0.7195, SNR=7.8186dB), the reduced noise image by the literature method 
(MSSIM=0.8050, SNR= 9.6706dB), and the reduced noise image by proposed method 
(MSSIM= 0.8417,SNR= 9.9668 dB), respectively. Results of quantitative evaluations 
are presented in Table.1. 

From Table.1 and the Fig3, it is obvious that the proposed method has higher SNR 
and MSSIM than the literature method. 

  

(a)The original image 

    

(b)ROI in image (a)    (c)Noisy image       (d)Literature method   (e)Proposed method 

Fig. 3. Noise reduced result of ROI in mammography image 
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Table 1. The quantitative evaluation of noise remove for ROI images 

Image 
Noise  Image Literature Method Proposed method 

MSSIM SNR/dB MSSIM SNR/dB MSSIM SNR/dB 
1 0.7195 7.8186 0.8050 9.6706 0.8417 9.9668 
2 0.7695 8.7110 0.8126 10.0157 0.8571 10.4645 
3 0.8388 12.0709 0.8245 12.8045 0.8818 14.1780 
4 0.6970 6.1969 0.7934 7.5354 0.8279 7.7103 
5 0.7846 8.6281 0.8121 9.5984 0.8606 10.0920 
6 0.8364 8.7589 0.8137 8.9315 0.8713 9.4700 
7 0.7981 9.2574 0.8531 10.6499 0.8707 10.7503 
8 0.8467 9.3846 0.8564 9.8965 0.8869 10.1838 

5 Conclusions 

In this paper, a shearlet-based filter for removal of Poisson noise is proposed. Expe-
rimental results show that the proposed method not only has a higher SNR than the 
literature method , but also the Mean Structure Similarity of reduced noise image 
obtained by the proposed method increased by 5% compared to the literature method. 
In the future work, we will study the adaptive algorithm for accurately separating the 
high-frequency of image and noise.  
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Abstract. Model observers which can serve as surrogates for human observers 
could be valuable for the assessment of image quality. For this purpose, a good 
correlation between human and model observer is a prerequisite. The nonprew-
hitening model observer with eye filter (NPWE) is an example of such a model 
observer. The eye filter is a mathematical approximation of the human contrast 
sensitivity function (CSF) and is included to correct for the response of the hu-
man eye. In the literature several approximations of the human CSF were 
found. In this study the relation between human and NPWE observer perfor-
mance using seven eye filters is evaluated in two-alternative-forced-choice (2-
AFC) detection experiments involving disks of varying diameter and signal 
energy and two background types. The results show that the shape of the CSF 
has an impact on the correlation between human and model observer. The in-
clusion of a CSF may indeed improve the relation between human and model 
observer. However, we did not find an eye filter which is optimal in both back-
grounds.  

Keywords: model observers, image quality, NPWE, eye filter, contrast sensitivity.  

1 Introduction 

In general, image quality analysis and system optimization studies in full field digital 
mammography (FFDM) are performed using contrast detail analysis or linear system 
metrics like DQE and NEQ. The limitations of both approaches is the use of uniform 
backgrounds where quantum noise is dominating. Furthermore the pixel values must 
have a known relationship with entrance air kerma on the image receptor (like in un-
processed images), whereas for clinical images this relation might not be known due 
to (non-linear) processing. Furthermore, the radiological task is often dominated by 
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anatomical structures rather than quantum noise. Statistical anthropomorphic model 
observers (model observers acting as human observers) use the image statistics to 
determine the detectability without the assumption of linearity or the assumption that 
quantum noise is dominating. Therefore statistical anthropomorphic model observers 
might be used for the assessment of image quality in clinical images.  

Acceptance of anthropomorphic model observers for image quality assessment 
strongly depends on the relation between model and human observer. Rolland and 
Barrett [1] have investigated this using two different model observers: a pre- and a 
nonprewhitening matched filter (PW and NPW) and concluded that the NPW model 
observer fails to predict human observer performance in lumpy backgrounds. Burgess 
et al [2] subsequently demonstrated that the NPW model observer can predict the 
human response if a spatial frequency filter is included which mimics the contrast 
sensitivity function (CSF) of the human eye. This was followed by several studies 
where the NPWE (NPW eye) model observer was applied. In the literature several 
approximations of the human CSF can be found. The origin of these approximations 
varied from fitting experimental data to applied research in the field of human vision. 
The aim of this paper is to investigate the detection of a NPWE model observer using 
different eye filters compared with the detection of human observers. This has been 
studied by performing a two-alternative-forced-choice experiment (2-AFC) using 
simulated white noise backgrounds (WN), representing an ideal quantum noise li-
mited system and clustered lumpy backgrounds (CLB), simulating clinical breast 
structures [3]. 

2 Method 

The NPWE model observer correlates the signal template and the image after convo-
lution with an eye filter. This means that the NPWE model observer only takes the 
signal template into account and does not incorporate background statistics. For an 
image gn (with n = 1 (object absent) or 2 (object present)) the decision variable (T) of 
the NPWE model observer can be estimated using: · · Β · ·     (1) 

where t is the matrix transpose, B the imaging system blur, s2 the signal template and 
E the eye filter which is defined in the spatial frequency domain and is assumed to be 
radially symmetric. The decision variable (T) is subsequently used to estimate a  
detectability index d' by: 

                              (2) 

where T is the mean and σ the standard deviation of the decision variable T. In a  
2-AFC experiment with normally distributed test statistics, d' is related to the fraction 
of correct response in the experiment (proportion correct, PC) by: 
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·                                  (3) 

where erf is the Gaussian error function: erf √ · . 

In 1994 Burgess [2] argued that the human CSF could be mathematically expressed 
using the following formula (eye filter 1) in equation 4: . ·                                     (4) 

where f is the spatial frequency (lp/degree) and b is chosen to obtain Emax at 4 
lp/degree. In his study images of 128x128 pixels (54 mm2) were displayed on a moni-
tor with a mean luminance of 60 cd/m2 with an average viewing distance of 0.5 m. In 
two subsequent papers of Burgess [4-5] a simple approximation of the Barten model 
of human contrast sensitivity was used to mathematically express the human CSF [6] 
(eye filter 2) in equation 5:  ·                                        (5) 

where f is the spatial frequency (lp/degree) and b is chosen to obtain Emax at 4 
lp/degree. For these experiments images were evaluated at several viewing distances 
between 0.5 and 2.5 m and a mean luminance of 150 cd/m2. In addition to the eye 
filters used in the work of Burgess, two other eye filters were found in combination 
with the NPWE model observer [7-8] (eye filters 3 and 4) in equations 6 and 7: . · .

                                     (6) 0.605 · .                        (7) 

where equation 6 is the result of a fit to experimental data from the field of natural 
imaging. In this study images were displayed on a monitor with a mean luminance 
between 12 and 30 cd/m2 with an average viewing distance of 2.0 m [9]. Equation 7 is 
the result of a best fit from experiments conducted in the field of human vision by 
Kelly [10] in which the visibility of sine-wave gratings were scored. This equation 
was subsequently used for the evaluation of image quality of flat panel detectors used 
in radiography. The images were evaluated on a monitor with a mean luminance of 
180 cd/m2 and a viewing distance of 0.4 m.  

With the purpose of evaluating the perceived image quality on monitor display  
devices, Barten proposed the following equation [6] (eye filter 5) in equation 8: · 1 0.06 ·                              (8) 

where, 
· . .

·  , 0.3 · 1 100 .
, L is the luminance in cd/m2 

and w the angular display size in degrees. In subsequent work, Barten [11] developed 
a model of the human CSF which was implemented as a filter for the evaluation of the 
image quality using a channelized Hotelling observer by Park [12] (eye filter 6) which 
is given in equation 9:  
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· · · · ·                      (9) 

Explanation of the parameters can be found in the work by Park et al [12].  
In work by Watson and Ahumada [13] a standard method for foveal contrast detec-

tion was proposed which includes the following specific CSF formula (eye filter 7) in 
equation 10: ·     (10) 

where f is again the spatial frequency and f0=4.3469, f1=1.4476, a=0.8514 and 
p=0.7929. It must be noted that this CSF was part of the model proposed for foveal 
contrast detection and will be implemented in this study as an eye filter on its own. 
The parameters used in this formula were based on the best fit for their experiments. 
In these experiments monochrome images with different stimuli were viewed with a 
total angular span of 2.133 degrees and a mean luminance of 30 cd/m2.  

 

Fig. 1. The eye-filters (normalized to their peak frequency) used in this study. For eye filters 5 
and 6 a mean luminance of 80 cd/m2 is used for display purposes. 

The seven different eye filters described above are shown in fig. 1. In our study the 
impact of the eye filter on the human-model comparison has been investigated. To 
evaluate the correlation between the NPWE model observer and human observer a 2-
AFC experiment was conducted using computer generated WN and CLB images [3]. 
For each 2-AFC test a set of paired images with 256x256 pixels was generated, one 
image with and one without a disk shaped object. The objects were generated from a 
high resolution disk which was down scaled to 6, 12, 18, 30 and 60 pixels in diameter. 
For each diameter three signal energies (SE) were chosen such that human observers 
were expected to score 65 to 95 percent correctly. Since the CLB images were opti-
mized to simulate mammographic backgrounds as obtained from a GE FFDM unit 
[3], objects used for the CLB images were blurred using the system MTF of a GE 
Essential X-ray unit.  

Four human observers (physicists who are trained in image quality aspects in 
mammography) were asked to score 300 images for each background, object SE and 
diameter. The images were scored in a clinical reading environment using a DICOM 
calibrated 5 MP mammography monitor with a pixel size of 165 µm. The images 
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were displayed 1-to-1 and zooming and leveling were not allowed. The observers 
were asked to keep their viewing distance constant at approximately 0.4 m. All sets 
were scored by human and model observers whereby the signal present and signal 
absent images were shown to the human observers as pairs. For some eye filters 
monitor luminance needs to be known. For these eye-filters the mean luminance is 
estimated based on the distribution of pixel values in the image resulting in a mean 
luminance of 20-180 cd/m2 for CLB images and 40-80 cd/m2 for the WN images.  

To investigate the significance of the eye filter used on the human-model compari-
son a trend analysis is performed by fitting a straight line between human and model 
observer detectability (d’) using mixed effect models to estimate the population mean 
and to include random effects for the individual observers. For each eye filter the 
goodness of fit was evaluated by comparing r2 [14] and the residuals, difference  
between measured and predicted d', for each diameter.  

3 Results 

In fig. 2 and fig. 3 the resulting eye filter with the largest r2 are shown. In fig. 2a-d the 
d'human versus d'NPWE graphs for eye filter 4 with CLB images are shown for each ob-
server with the resulting fit for the population (solid line) and the individual observers 
(dashed line). In fig. 2e the residuals to the population are shown. In fig. 3 similar 
plots can be found for WN images in combination with eye filter 6. For each eye filter 
and background the same set of graphs were evaluated. Findings for all eye filters and 
both backgrounds are summarized in table 1.  

 

Fig. 2. a-d: d'human versus d'model observer for the four observers scoring WN images with differ-
ent object diameters (eye-filter 4). e: residuals to the population fit. The error bars of both hu-
man and model d’ represent 95% confidence intervals (CI) based on 10.000 bootstraps. 
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Comparing the data of each observer (fig. 2 and 3) a large spread in performance 
between observers is noted. Nevertheless, individual observer performance can be 
predicted using the simple linear model. From the residual plots of the population it is 
observed that there is no strong correlation for either diameter or d'NPWE for CLB im-
ages while there might be a small dependence with diameter for WN images. By 
comparing all residuals with and without eye filter, it is suggest that inclusion of an 
eye filter may result in a smaller diameter dependency for CLB however this change 
in diameter dependency is not that obvious for WN images.  

 

Fig. 3. a-d: d'human versus d'model observer for the four observers scoring WN images with differ-
ent object diameters with eye-filter 6. e: residuals to the population fit. The error bars of both 
human and model d’ represent 95% confidence intervals (CI) based on 10.000 bootstraps. 

Table 1. Slope and r2 for the eye filters and the different backgrounds 

 CLB WN 
 r2 slope offset r2 slope offset 
Filter 1 0.58  1.40 -0.80 0.28  0.84 0.12 
Filter 2 0.32  1.79 -0.53 0.41  0.83 -0.22 
Filter 3 0.48  2.02 -0.94 0.40 0.81 -0.13 
Filter 4 0.60  1.37 -0.69 0.29 0.81 0.12 
Filter 5 0.55  1.77 -1.02 0.32  0.82 0.03 
Filter 6 0.45  2.67 0.04 0.42  0.75 -0.07 
Filter 7 0.11  1.17 0.28 0.39  0.86 -0.31 
No filter 0.56  7.18 -1.00 0.36  0.63 -0.22 

Table 1 shows that on average the NPWE model observer has a better correlation 
with the human observer using CLB images (higher r2). Furthermore, it is found that 
the slope is steeper for CLB images which means that the human observer read these 
images better. This might be caused by the fact that the human observer can, to some 
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extent, prewhiten the structures of the noise. Moreover it is found that for most eye 
filters and both backgrounds the offset is close to or smaller than zero, meaning that 
the threshold SE at which d' starts increasing is smaller for model observers compared 
to human observers. This is desirable if d’ predicted for human observer is estimated 
from the model observer d’.  

For CLB images the NPWE model observer with eye filters 1 and 4 improves the 
relation between human and model performance in comparison with the NPW model 
observer (without eye filter). For WN images this was achieved with eye filters 2, 3, 6 
and 7.  

4 Discussion and Conclusions 

The aim of this study was to evaluate different eye filters for the NPWE model ob-
server in relation to human performance. In the literature several eye filters were re-
ported with different behavior in the frequency domain. In this study it is shown that 
the eye filter has an impact on the response of the NPWE model observer. Further-
more it was found that some eye filters in combination with the NPWE model observ-
er may improve the relation between model and human observers, especially for CLB 
images. For these backgrounds it was suggested that the dependency with diameter is 
reduced. This is in agreement with previous work of Burgess [4]. However, due to the 
different responses in the frequency domain the residuals might still show a depen-
dence on diameter with some eye filters. For the evaluation of the eye filter we should 
therefore consider both r2 and the residuals. In addition this study shows that the  
observer variability is substantial and therefore the eye filter which shows best 
agreement with humans might be observer dependent. However, for quality control 
procedures it is desirable to predict the impact to a population rather than an individu-
al observer. Therefore we did not investigate the individual relations. Some eye filters 
need the mean display luminance as input, since the luminance has an impact on the 
shape of the human CSF. However, the models that include display luminance did not 
show a better performance. A possible explanation for this might be that the human 
CSF is determined for an ideal response and that the background variability needs to 
be taken into account as well.  

For quality control procedures a methodology is needed which is sensitive to 
changes in image quality. Ideally the selected eye filter should match human and 
model performance for all diameters and be independent of the type of background. 
Since the NPWE model observer is a simple model observer that does not take into 
account noise correlations it is expected that this will never be achieved. Neverthe-
less, it is demonstrated that the NPWE model observer is capable of predicting human 
observer performance for a given task. In this study, only the impact of the selection 
of eye filters on the human model performance using two image backgrounds has 
been assessed. Since the eye filter that was most appropriate depended on the back-
ground, it is questionable whether a relation between human and model performance 
using the NPWE model observer would be valid if for example the color of the noise 
is changed. Further work regarding the implementation of model observers for quality 
control and their statistical validation is required to determine the impact of possible 
changes in image quality on the human model relation. In addition, the impact of 
background structures for the different tasks needs to be investigated.   
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Abstract. Within the framework of a virtual clinical trial for breast imaging, we 
aim to develop numerical observers that follow the same detection performance 
trends as those of a typical human observer. In our prior work, we showed that 
by including spatio-temporal contrast sensitivity function (stCSF) of human 
visual system (HVS) in a multi-slice channelized Hotelling observer (msCHO), 
we can correctly predict trends of a typical human observer performance with 
the viewing parameters of browsing speed, viewing distance and contrast. In 
this work we further improve our numerical observer by modeling contrast 
masking. After stCSF, contrast masking is the second most prominent property 
of HVS and it refers to the fact that the presence of one signal affects the visi-
bility threshold for another signal. Our results indicate that the improved  
numerical observer better predicts changes in detection performance with back-
ground complexity.  

Keywords: contrast masking effect, spatio-temporal contrast sensitivity func-
tion, channelized Hotelling observer, human visual system, virtual clinical trial, 
and psychometric function. 

1 Purpose 

Commonly used numerical observers cannot necessarily predict the behavior of a 
typical human observer in all observation scenarios. This is due to the fact that they 
are modeled after ideal observers (i.e., maximizing some detection performance me-
tric) with some concessions for tractability (e.g., channelization). For example, a  
multi-slice channelized Hotelling observer (msCHO), without correct application of 
spatio-temporal contrast sensitivity function (stCSF), is unable to predict the  
fundamental effect of display contrast on detection of lesions in digital breast  
tomosynthesis (DBT) [1, 2]. 

Our goal is to enhance a numerical observer by making it perform more similarly 
to a human observer. Our approach towards this goal is to integrate important proper-
ties of the human visual system (HVS) as a pre-processing step to a commonly used 
numerical observer (msCHO). In other words, as the result of HVS modeling,  
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“perceived” 3D image stacks are fed to msCHO. Previously we have reported on the 
benefits of integrating the HVS property of stCSF with msCHO [1, 2, 3]. 

In this work, we study the effect of modeling the contrast masking property of 
HVS in our numerical observer. Contrast masking refers to the phenomenon that the 
presence of a signal (“masker”) makes detection of another signal (“maskee”) more 
difficult. 

1.1 Prior Work 

Zhang et al channelized the input image in orientation and (spatial) frequency [4]. In 
the most sophisticated model used, an inhibitory component (denominator of Eq. 13 
therein) is used to factor in the contrast masking effect. 

Early channelization of the data in [4] is undesirable in our methodology. By post-
poning channelization to CHO (i.e., HVS simulation followed by a traditional numer-
ical observer at the backend), one can replace msCHO by a more sophisticated  
observer to upgrade the pipeline. In other words, early channelization discards data 
that may be useful to the detection task to be performed at the backend. Also, the 
perception model in [4] is parametric and is unusable without a calibration to  
(psychophysical) experimental results. 

Krupinski et al developed a perceptual numerical observer as follows [5]. Using a 
perceptual image quality metric, JNDmetrix, a lesion image (signal + background) is 
compared to the corresponding healthy image (background only). Lesion detectability 
is assumed to be correlated to the metric value which is an indication of the perceived 
difference between the two images. Contrast masking is one of the effects considered 
in the derivation of perceptual difference. 

The perceptual observer proposed in [5] is double-ended. Our current pipeline is 
single-ended. This is an advantage in our application since unlike a double-ended 
observer, a single-ended observer does not require having both a version with and 
without lesion for every image stack.  

Our current pipeline is designed for DBT (three dimensional, 2D space and 1D 
time; may be used for other 3D modalities, though not tested) and is able, for exam-
ple, to show a peak in detection performance with slice browsing speed [2].  
Numerical observers in above mentioned papers are spatial-only (2D). 

2 Methods 

2.1 Simulation Platforms and Preparation of Datasets 

In this work, synthetic breast images were generated using the breast anatomy and 
imaging simulation pipeline developed at the University of Pennsylvania (UPenn). 
Normal breast anatomy is simulated by a recursive partitioning algorithm using oc-
trees [10]. Phantom deformation due to clinical breast positioning and compression is 
simulated using a finite element model [11]. DBT image acquisition is simulated by 
ray tracing projections through the phantoms, assuming a polyenergetic x-ray beam 
without scatter, and an ideal detector model. Reconstructed breast images are obtained 
using the Real-Time Tomography image reconstruction and processing method [12].  
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Fig. 1. Block diagram of the display and virtual observer simulation. The methods proposed in 
this paper are used in the dotted block. 

The display and virtual observer simulation (Fig. 1) is implemented in MEVIC 
(Medical Virtual Imaging Chain) [13], an extensible C++ platform developed for 
medical image processing and visualization at Barco. DBT stack datasets (volumes of 
interest) with and without simulated lesions, generated using the UPenn pipeline, are 
input to the display and virtual observer simulation pipeline. For the experiments with 
numerical observer that are reported here, the “simple background” dataset (see next 
paragraph for details) consists of 3296 reconstructed 64x64x32 DBT image stacks, 
half with lesions and half without. Each stack is first decomposed into its spatiotem-
poral frequency components using a 3D fast Fourier transform (FFT). The stCSF [1, 
2], contrast masking (Section 2.2), and psychometric function [1, 2] are modeled in 
the dotted block in Fig. 1 to determine the perceived amplitude of each frequency 
component. Then, an inverse 3D FFT is applied to the perceived amplitudes to trans-
form the perceived stack into the space-time domain. Finally, the results are fed to a 
multi-slice channelized Hotelling observer (msCHO) developed by Platiša et al [14]. 
For further details of the simulation see [2]. 

 

Fig. 2. From left to right: Slices #16 from the same image stack in datasets with background 
complexity level of 0 (simple background), 1, 2, 3, and 4. The insertion contrast for these im-
ages is increased to make the lesion (the bright spot in the center of each slice) visible for the 
purposes of publication. 

To create datasets with varying background complexity, spatiotemporal low-pass 
Gaussian noise with four different levels of energy was added to the dataset from 
UPenn phantom. Slices #16 from a sample image stack in five datasets are shown in 
Fig. 2. 
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2.2 Experiments with Numerical Observers 

The following section describes how we modeled HVS contrast masking property in 
the numerical observer. According to Winkler, we can disregard temporal contrast 
masking effect since there is no abrupt change in average luminance (Section 9.2 of 
[6]). This does assume a continuous browsing in viewing DBT stacks. 

To account for spatial contrast masking, we use Barten’s model (Chapter 6 of [7]), 
with the following considerations. Barten addressed the masking of a single spatial 
tone (single-frequency signal) by a band-pass noise. We assume each frequency com-
ponent as masker for all other frequency components in a neighborhood determined 
by masker-maskee difference in frequency and orientation. This is done for every 
slice in the image stack and the result is used to adjust the CSF-only visibility thre-
shold calculated for each spatio-temporal component of the image stack as follows 
(Eq.  2.50 in [7]): 

,     (1) 

where  is the visibility threshold with masking,  is the CSF-only visibility 
threshold,  is the masker power, and k is Crozier coefficient. The rest of 
processing is the same as the CSF-only pipeline with psychometric non-linearity de-
scribed in our prior work [1, 2]. 

To find , , the masker power for a component with spatial frequency (u, v), 
we first approximate S, the spatial spectrum of the image stack, as follows. , ∑ | , , |     (2) 

I is 3D DFT of the image stack. w denotes the temporal frequency. By generalizing 
Eq. 6.2 of [7] for 2D spatial frequencies, we derive the following formula for the 
masker power. 

  , ∑ , , ,, ,,  ∑ , , ,, ,   0 or 0,             (3) 

   0,0 0.  
 
The function , , ,  allows a higher weight for nearby components in  
(spatial) frequency and orientation and is given by 
 

, , , 0,                                                        | | 5°
. ,         | | 5°    (4) 

 
where  is the angle between ,  and , . This weighting function above is 
derived by generalizing Eq. 6.4 of [7] for 2D spatial frequencies, and considering the 
fact that only excitations close in orientation mask one another (Eq. 5.18 in [8]). 
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Simulation parameters are the same as those used for human observer experiments 
(Section 2.3). For calculation of stCSF and the perceived amplitudes, see [2]. 

2.3 Experiments with Human Observers 

The following section describes how we have established human observer detection 
performance in three levels of background complexity. From the same datasets used 
for experiments with numerical observer, 35 image stacks are randomly chosen for 
each of the six conditions. The set of conditions is the Cartesian product of {lesion, 
healthy} (i.e., lesion present or absent) and {0, 2, 4} level of background complexity 
(see Fig. 2), simulated by the image stacks without addition of noise, and the image 
stacks with medium and high energy noise added (the noise spectrum remained the 
same) respectively. 

The total of 210 image stacks were presented to the human observer in a random 
order on a DICOM-calibrated BARCO MDMG-5221 medical display which is opti-
mized and cleared by FDA for reading of DBT images and is equipped with Rapid-
Frame temporal response compensation technology. Each image stack was displayed 
in cine mode at a constant browsing speed of 10 slice/sec twice. The recommended 
viewing distance from the display was about 40 cm (translates to a spatial sample rate 
of 18 pixel/degree) but was not strictly enforced for the observer’s comfort. The max-
imum luminance of display (Lmax) was set to 850 cd/m2. In our viewing environment, 
the black point luminance of the display (i.e., the level of luminance associated with 
drive level of zero) was measured at Lmin = 1.75 cd/m2, using a Minolta CS-100A. 
Therefore, the effective contrast given by Lmax/Lmin, was 486. 

The observer could repeat the presentation of an image stack (as described above) 
as many times as desired, or score the presence of a lesion in the spatiotemporal cen-
ter of the stack. No temporal or spatial clue was provided for the location of lesion. 
That was because, given our presentation scenario, we found such clues unnecessary 
and even distracting from the lesion detection task in our pilot experiments. Scoring 
an image stack consisted of entering one number from the set {0, 1, 2, 3} meaning 
{certainly no lesion, probably no lesion, probably lesion, certainly lesion} respective-
ly. When an image stack was scored, the process above was repeated for the next 
image stack. We considered the detection performance as the percentage of correctly 
identified (i.e., scored 2 or 3) lesion image stacks. 

To have more stable results, the same set of image stacks that were randomly cho-
sen for the first human observer was used for the experiments with other human  
observers as well. 

The observers were required to have normal vision and pass a 10-minute training 
session to become familiar with the experiment and their task. The observers were not 
radiologist. This is justified considering the fact that the location of the lesion, if 
present, is always known (and constant), hence the detection task is simply reduced to 
recognizing a bright spot in a background with various levels of complexity. 
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3 Results and Discussion 

The results of experiments with two human observers are given in Table 1. As ex-
pected, the detection performance for human observers falls with increasing back-
ground complexity. It is conceivable that with more experience, human observers who 
are aware of lesion prevalence rate (50% in our experiments) reach the chance  
performance (0.5) even in high background complexity. 

Table 1. Percentage of correctly identified lesion stacks (of total) in three background 
complexity levels 

Background 
Complexity Low Medium High 

Observer A 0. 9714 0. 7714 0. 2571 
Observer B 0. 8000 0. 7143 0. 3429 

 

 

Fig. 3. Detection performance (in AUC) for datasets at various background complexity levels 
(Section 2.1) 

Simulation results from modeling HVS with stCSF only, and stCSF plus contrast 
masking are compared in Fig. 3. In each case, three methods of calculating the per-
ceived amplitudes using the visibility threshold are simulated: Monte Carlo (MC), 
probability map (PM), and linear filtering (LF). While both methods PM & MC use a 
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nonlinear psychometric function, PM is deterministic and MC is not. For more  
information on calculation of the perceived amplitudes, see [2]. 

The inclusion of contrast masking makes the numerical observer more closely re-
semble the human observer performance, in the sense that it removes some of the over 
performance of numerical observer. Among the six graphs in Fig. 3, the one showing 
the results of modeling HVS with stCSF plus contrast masking using the PM method 
for perceived amplitude calculation demonstrates the most significant drop in detec-
tion performance with increasing background complexity. Even this graph, however, 
cannot match the fast drop of detection performance of human observers as listed in 
Table 1. 

4 Conclusion 

Our results indicate that by modeling the HVS contrast masking property, lesion de-
tection becomes more difficult in a busier background, as expected from a typical 
human observer. 

This is a work in progress. We plan to continue our work on this project in the fol-
lowing avenues. (i) Experiments are conducted with more human observers and the 
scores will be aggregated with one-shot multi-reader multi-case ROC analysis [9]. (ii) 
A more realistic model of background complexity including anatomical and quantum 
noise using our software phantom will be used to prepare the datasets. (iii) We will 
explore the extent of our claims for a variety of lesion sizes and types. 
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Abstract. Variations in the performance of breast readers are well reported, but 
key lesion and reader parameters explaining such variations are not fully ex-
plored.  This large study aims to: 1) measure diagnostic accuracy of breast radi-
ologists, 2) identify parameters linked to higher levels of performance, and 3) 
establish the key morphological descriptors that impact detection of breast can-
cer. Methods: Sixty cases, 20 containing cancer, were shown to 129 radiolo-
gists.  Each reader was asked to locate any malignancies and provide a confi-
dence rating using a scale of 1-5. Details were obtained from each radiologist 
regarding experience and training and were correlated with jackknifing free re-
sponse operating characteristic (JAFROC) figure of merit. Cancers were ranked 
according to the “detectability rating” that is, the number of readers who accu-
rately detected and located the lesion divided by the total number of readers, 
and this was correlated with various mathematical lesion descriptors. Results: 
Higher reader performance was positively correlated with number of years 
reading mammograms (r=0.24, p=0.01), number of mammogram readings per 
year (r=0.28, p=0.001), and hours reading mammogram per week (r=0.19, 
p=0.04). For image features and lesion descriptors there was correlation be-
tween “detectability rating” and lesion size (r=0.65, p=0.005), breast density 
(r=-0.64, p=0.007), perimeter (r=0.66, p=0.0004), eccentricity (r= 0.49, 
p=0.02), and solidity (r=0.78, p< 0.0001). Radiologist experience and lesion 
morphology may contribute significantly to reduce cancer detection.  

Keywords: Digital mammography, radiologist performance, lesion characteris-
tics, lesion assessment, missed cancers. 

1 Introduction 

Early detection of breast cancer reduces the mortality rate, leads to more effective 
treatments [1] and is therefore a global health priority when developing national strat-
egies for controlling breast cancer. Screening by mammography is currently the most 
effective method for the early detection of breast cancer, however, the sensitivity of 
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mammography is in the 68–92% range [2-3]. The high incidence of breast cancer 
together with the rate of misdiagnosis highlights the need to direct efforts towards a 
better understanding of why lesions are being unreported.  

Even though perception errors may be considered a principle reason for missing 
cancers in mammography [4], previous findings suggest that a comprehensive inves-
tigation of other features is required [5]. Bird et al. [5] found that missed cancers on 
mammograms commonly occur in denser breasts, were often present as developing 
densities, and were most likely to be located in the retroglandular regions. Other au-
thors found that the missed cancers were significantly lower in density, were more 
often visible on only one of two views and were smaller in size [6]. It has been shown 
that masses, rather than calcifications, are more commonly undetected [6], which is of 
concern since a large number of lesions present as palpable, non-calcified tumors [7]. 
However, few data exist on the impact of other image and lesion appearances like 
shape and texture.  

The accuracy of mammographic image reading among breast readers is highly va-
riable and clinical experience and training can affect readers’ performance [8]. Pre-
vious work, focused on mammograms, has investigated the effect of training and 
clinical experience on interpretive performance and have produced conflicting results, 
even when same populations of breast readers was compered [8,9]. This may be due 
to limited number of radiologists and mammographic cases along with the varying 
measures used to define characteristics such as clinical experience in the published 
studies. This highlights the need for a more detailed analysis of the impact of radiolo-
gists’ experience and training on performance using a large number of expert readers. 

If we are to understand why specific lesion types are being missed on screening 
mammograms and how detection can be improved, it is necessary to explore expe-
rience and training factors that can impact upon performance. In addition, accurate 
measurements of a number of lesion features are required along with an appreciation 
of how these features affect lesion detectability.   

2 Methodology 

Ethics review board approval was received from the participating institutions. A test 
set of mammograms was developed comprising of 60 digital cases, with each case 
consisting of four images: a caudal-cranial (CC) and medio-lateral oblique (MLO) 
projection for each breast. All images were collected by the State Radiologist, 
BreastScreen New South Wales. There were 20 abnormal cases, each having a biopsy 
proven malignant lesion. Examples of discrete masses (n=15), asymmetric density (n 
= 6), and architectural distortions (n = 3) were included and there were no microcalci-
fications because the focus of this study was mass lesion detection. To ensure that the 
cases were at least of reasonable difficulty, each malignant lesion had been missed 
previously by one reader in the course of a normal screen-read session (in Australia, 
regular clinical practice dictates that each mammogram is double read, with a third 
reader being used in case of disagreement). The other 40 cases were normal and con-
firmed by two independent normal screen reads, review of the cases by two expert 
readers and a follow-up negative screening mammogram two years later.  
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129 readers were asked to detect and localize the presence of cancer, and their  
levels of confidence were scored on a scale of 1-5 with 1 representing complete con-
fidence that the case was normal and 5 representing complete confidence that a ma-
lignant lesion was present. For a controlled viewing environment, all readings took 
place in a specialized reading room with an ambient lighting within 12-20 lux at the 
position of the reader, measured with a calibrated photometer (Model Konica Minolta 
CL-200, Ramsey, NJ). All images were displayed using two Sectra and two Hologic 
workstations each driving 5MP reporting monitors.  The Sectra workstation was 
linked to Barco MFGD 5621 monitors (8500 Kortrijk, Belgium) driven by a Bar-
coMed 5MP 2FH video card and the Hologic displayed images using Eizo Radiforce 
G51 (Ishikawa 924-8566 Japan) with a Matrox MED5MP-DVI video card. All moni-
tors were calibrated to the Digital Imaging and Communication in Medicine Greys-
cale Standard Display Function (DICOM GSDF) using the Verilum software and 
luminance pod (IMAGE Smiths Inc., Germantown, Maryland) and the calibrated 
photometer described above. Details were obtained from each reader regarding read-
ing experience, qualification, breast reading activities and demographic characteris-
tics, and these were considered with jackknifing free response operating characteristic 
(JAFROC) figure of merit, location sensitivity and specificity using Spearman  
correlation.   

A lesion was considered correctly detected when it received a confidence scores 
between 3 – 5 and the location was correctly marked by reader within 2 cm from the 
center of the lesion, as determined by an expert radiologist who did not participate as 
a reader in this study. In addition, each lesion was given a “detectability rating” that 
was calculated by dividing the number of observers who correctly detected and lo-
cated the lesion by the total number of observers (n=129). Moreover, cancers were 
ranked according to the detection rate, and this was correlated with following  
quantities: 

(1) Breast density: Each mammogram was categorized using the Breast Imaging 
Reporting and Data system BI-RADS [10] by a state radiologist (WL) with 20 
years’ experience reporting mammograms and was independently confirmed by 
other two expert readers 

(2) Mean lesion size: Mean lesion sizes were calculated from three expert readers’ 
measurements. 

(3) Lesion shape: All lesions were manually segmented and a number of shape and 
texture features was then obtained and analyzed using Matlab (version 7.13 by 
math work). These shape and texture features are summarized here [11]: 
• Perimeter: Circumferential distance around lesion boundary. 
• Eccentricity: The ratio of the major axis to minor axis of the best fit ellipse 

which outlines the lesion. 
• Solidity: The extent to which the external shape is smooth, calculated by the 

overall area divided by the convex area (an inverse indicator of the level of 
spiculation). 

(4) Lesion Contrast: Represents the ratio of the signal intensity of the lesion to its 
background. Contrast was calculated for both local and global background areas 
as [12]: 
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• Local: (mean grey level value of lesion - mean grey level value of local 
background that compromised a region of 1 diameter immediately outside 
the lesion)/ √((standard deviation of the lesion)2 + (standard deviation of the 
local background)2 ). 

•  Global: (mean grey level value of lesion - mean grey level value of whole 
breast without pectoralis muscle)/ √((standard deviation of the lesion)2 + 
(standard deviation of the global background)2 ). 

All data were analyzed using SPSS 21.0 for Windows (SPSS Inc, Chicago, IL, 
USA), and statistical significance was established at p<0.05. 

3 Results 

Median JAFROC figure of merit, location sensitivity and specificity scores across all 
129 readers are shown in Table 1 along with 1st and lower 3rd quartile for median.  

Table 1. Performance of readers 

Score type  Median  1st quartile  3rd Quartile  

JAFROC 
Sensitivity  
Loc sensitivity 
Specificity  

0.81 
0.85 
0.61 
0.73 

0.72 
0.75 
0.58 
0.62 

0.87 
0.95 
0.83 
0.83 

Table 2. Spearman correlation Analysis of  the jack-knife free-response receiver operating 
characteristic (JAFROC), location sensitivity and specificity value with reader parameters.  r 
values are shown in the table and p values are given in parentheses. Values shown in bold font 
are statistically significant. 

Parameters Investigated 

Values measured 

JAFROC Location  
sensitivity 

Specificity 

Age 0.02 (0.73) -0.1 (0.12) 0.06 (0.78) 

Years of qualification 0.18 (0.05) -0.16 (0.8) 0.08 (0.35) 

Years of mammogram reading 0.24 (0.01)  0.6 (0.06) 0.09 (0.17) 

Mammograms read per year 0.28 (0.001) 0.25 (0.003) 0.18 (0.03) 

Hours reading mammograms  
per week 

0.19 (0.04) 0.03 (0.6) 0.07 (0.4) 
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As might be expected, higher reader performance was positively correlated with 
number of years reading mammograms (r=0.24, p=0.01); number of mammogram 
readings per year (r=0.28, p=0.001); and hours reading mammogram per week  
(r= 0.19, p=0.04) (Table 2). 

The “detectability rating” varied from 33% to 95% with mean 60%. For image 
features, there was a positive correlation between “detectability rating” with lesion 
size (r= 0.65; p= 0.005) and a negative correlation with breast density (r= -0.64,  
p= 0.007). In terms of lesion features, there was a significant positive correlation be-
tween the “detectability rating” and lesion perimeter (r= 0.66, p= 0.0004) lesion  
eccentricity (r= 0.49, p= 0.02) and lesion solidity (r= 0.78, p< 0.0001)(Table 3). 

Table 3. Details on lesion features and the correlation between the  “detectability rating” and 
the lesion features 

Feature Mean  Min  Max r value p value   

Breast density  2.56  2 4 -0.64 0.007 
Size ( mm) 11.44  6 25 0.65  0.005 

Perimeter  477.6 255 966 0.66 0.0004 

Eccentricity 0.82 0.43 0.98 0.49 0.02 
Solidity 0.67 0.41 0.98 0.78 0.0001 
Local contrast  5.82 0.25 14.75 -0.29 0.18 
Global contrast  0.87 0.07 3.69 -0.33 0.11 

4 Discussion and Conclusions 

Improved reader performance due to reader training and experience was found for 
years of experience reading mammogram, mammograms read per year and hours 
reading mammogram per week. In addition, the analyses performed here determined 
that breast density, lesion size and shape are the key image and lesion categories that 
affect detection accuracy.  Breast density is well studied in the literature and once 
more highlights the obscuring potential of greater levels of fibroglandular tissue.  Size 
is hardly a surprise but looking at the r and p values in Table 3, it is interesting to note 
that if a single descriptor of size is to be used, the widest diameter, simply defined by 
the radiologist using a basic post-processing tool is at least as effective as more pro-
cedurally or technically more challenging measures.  With regard to shape, an array of 
key features were shown to improve detection, namely the level of perimeter, eccen-
tricity and solidity.  Overall these features imply that the more irregular the perimeter, 
the more likely radiologists are to miss the cancer. 

In conclusion, the current work demonstrates key radiologist and lesion character-
istics affecting diagnostic efficacy in mammography.  The data should help the devel-
opment of effective radiology training programmes and the design of future CAD 
algorithms.  
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Abstract. The independent sub-pixel driving (ISD) technology, which utilizes  
sub-pixels  included in each normal pixel for image rendering, had been devel-
oped for monochrome displays for mammography to improve their resolution 
and over–all noise properties, and displays with ISD technology has been used 
for the diagnostic reading on mammography in many institutions. The purpose 
of this preliminary study was to investigate a possibility of applying the ISD 
technology to medical color displays on mammography using quantitative reso-
lution and noise evaluations and a visual comparison. A prototype 5 mega-pixel 
(MP) color display and a 5MP monochrome display were employed. To reduce 
the micro level color shifts caused by applying the existing ISD driver software 
to color displays, we implemented an additional low-pass filtering process to 
the driver software. The quantitative over-all resolution and noise properties for 
a magnification ratio of 0.4 which is routinely used in diagnostic initial reading 
of our hospital was measured for three conditions which included two condi-
tions for the color display: Color with ISD (Color-ISD) and color without ISD 
(Color-normal) and one condition for the monochrome display: Monochrome-
normal. Two radiologist visually compared Color-ISD with Monochrome-
normal for resolution, noise and color shift using an ACR156 phantom image. 
Both over-all resolution and noise properties of ISD-color were superior to 
those of the others. In the visual comparison, Color ISD presented the similar 
resolution and superior noise properties as compared with Monochrome-
normal. The color shift was visually ignorable in the phantom image displaying. 

Keywords: color display, Independent sub-pixel driving (ISD), resolution.  

1 Introduction 

Color displays are increasingly used for diagnostic image readings, and recently some 
medical color displays for mammography with higher resolutions and maximum lumin-
ance have been commercially available and passed the Food and Drug Administration 
(FDA) clearances. On the other hand, for conventional 5 mega-pixel monochrome dis-
plays for mammography, a resolution enhancement technology by the Independent Sub-
pixel Driving (ISD) has been developed, and several papers have demonstrated its  
performances of resolution enhancement and over-all noise reduction [1-5]. The ISD 
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technology for monochrome displays enables rendering high resolution images by allo-
cating an original image data to sub-pixels according to the sub-pixel pitch which is one 
third of the normal pixel pitch. By utilizing the sub-pixels for image rendering, an en-
hanced resolution with tripled Nyquist frequency is achieved in the sub-pixel direction 
[1]. Moreover, in shrunk (reduced) image displaying, the overall noise property is im-
proved while maintaining the resolution because the aliasing noise contamination is 
reduce by the finer sampling pitch of the sub-pixel [3,5,6].   

The purpose of this preliminary study was to investigate a possibility of applying 
the ISD technology to medical color displays for mammography using quantitative 
resolution and noise evaluations and a visual comparison. 

2 Methods and Materials 

2.1 Sub-pixel Rendering for Color Displays 

When the driver software is applied to a color display, micro level color shifts were 
appeared, and the color shifts impair the quality of displayed image, while maintain-
ing the original macro level white balance of the display. To reduce the color shifts, 
we implemented an additional low-pass filtering (LPF) by a three-point weighted 
average in the sub-pixel direction before the original sub-pixel rendering step in the 
ISD driver software. In the adjustment of the strength of LPF, we visually inspected 
displayed clinical mammography images of 20 cases with micro calcifications, and 
determined a strength by which the micro level color shifts became negligible and 
resolution degradation by LPF became minimal. The use of clinical mammography 
data was approved by the institutional ethics committees. 

2.2 Displays and Measurements 

A 5 mega-pixel (MP) monochrome display, MS51i2 (Totoku, Japan) and a 5MP pro-
totype medical color display provided by Totoku both calibrated at a maximum  
luminance of 500 cd/m2 were employed. We compared three display conditions which 
consisted of two conditions for the color display: color with ISD (Color-ISD) and 
color without ISD (Color-normal), and one condition for the monochrome display: 
Monochrome without ISD (Monochrome-normal). The bi-linear interpolation, one of 
the popular resampling technique for image displaying (image shrinking and magini-
fication), was used in the image rendering for three conditions. 

A bar-pattern test image which consisted of five bar-patterns with bar widths of  
1, 2, 3, 4, and 6 pixels (Fig. 1a) was displayed with each condition for the resolution 
measurement. The magnification ratio was set to 0.4 (pixel by pixel: 1.0) which is 
routinely used in the diagnostic mammography reading of our university hospital. The 
displayed bar-pattern images were acquired with a high-resolution digital camera 
(D90, Nikon, Japan), and then the raw image data was analyzed using a dedicated 
software based on a previously published method for the modulation transfer function 
(MTF) of displays [7]. 
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To measure overall noise properties, an X-ray image of an ACR156 mammography 
phantom, which was acquired by a full-field mammography system (Micro Dose 
Mammography L30, Sectra, Sweden), was used. The averaged glandular dose (AGD) 
of the image was 0.8 mGy. The phantom image was displayed with each condition 
with the magnification ration of 0.4. A flat area without any simulated objects in each 
displayed phantom image was acquired with D90 as shown in Fig. 1b, and then ana-
lyzed using a dedicated software based on a previously published method for the 
noise power spectrum (NPS) for displays [8]. 
 
 

(a)                                              (b) 

Fig. 1. (a) Bar-pattern test image for resolution measurement. (b)  experimental setup for over-
all noise measurement. 

2.3 Visual Comparison 

Two radiologists who had 18 and 33 years experiences visually compared the resolu-
tion and noise of the ACR156 phantom images displayed on the color display with 
Color-ISD and on the monochrome display with Monochrome-normal. The displays 
were placed side-by-side, and the observers evaluated Color-ISD compared with Mo-
nochrome-normal using a five-point scale (+2 = very good, +1 = good, 0 = fair, -1 = 
poor, +2 = very poor). Magnification ratios on both displays were 0.4. In addition, the 
observer evaluated the color shift in the displayed image of Color ISD using another 
five-point scale (1: no change, 2: negligible, 3: acceptable, 4: partly unacceptable, 5: 
unacceptable). 

3 Results 

Figure 2 shows MTF results in the sub-pixel direction for three conditions we ex-
amined. Color ISD presented a significantly higher MTF than those of the other  
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conditions. Though the higher MTF was indicated by the sub-pixel rendering of ISD, 
conspicuous micro level color shifts occurred at edges of the bars was problematic. 
MTF of Color-normal was a little higher than that of Monochrome normal. This was 
caused by the sharp (triangle like) profile of each pixel, which was formed by the 
arrangement of red, green and blue sub-pixels in which the green has the highest lu-
minance. 

Figure 3 shows NPS results for three conditions. Color ISD indicated lower NPS 
values compared to the others in the frequency region less than 8.0 cycles/mm. This 
was due to the aliasing noise reduction caused by the oversampling with the sub-pixel 
pitch in ISD and the low-pass filtering implemented to reduce the micro level color 
shift. 

In the visual comparison, both radiologists evaluated that ColorISD had similar 
resolution (scores = 0) and less noise (sores = +1) as compared with Monochrome-
normal. For the color shift, both answers were 2 (negligible). It was suspected that the 
ignorable color shift was because there were no objects with sharp edges like  
bar-patterns in the phantom image, which make the color shifts visible.  

Figures 4 and 5 shows displayed images of simulated micro calcifications with  
a size of 0.5 mm and a mass with a thickness of 2.0 mm, respectively. Noise was  
significantly reduced in displayed images of Color-ISD.   
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Fig. 2. MTF results of Color-ISD, Color-normal and Monochrome-normal in sub-pixel direc-
tion. Color ISD presented a significantly higher MTF than those of the other conditions, while 
conspicuous micro level color shifts occurred at edges of the bars in the bar-pattern test image.  
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Fig. 3. NPS results of  Color-ISD, Color-normal and Monochrome-normal in sub-pixel direc-
tion. Color ISD indicated lower NPS values compared to the others in the frequency region less 
than 8.0 cycles/mm.  

 
 

Monochrome-normal Color-ISD

 

Fig. 4. Comparison of displayed images of simulated micro calcifications with a size of 0.5 mm 
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Monochrome-normal Color-ISD

 

Fig. 5. Comparison of displayed images of a simulated mass with the thickness of 2.0 mm 

4 Discussion 

Each pixel on a color display is actually composed of individual red, green, and blue 
sub-pixels. Between them, the green sub-pixel has the highest luminance, followed by 
the red and blue sub-pixels. The luminance of blue sub-pixel is one sixth and one 
third of those of green and red sub-pixels in monochrome image displaying, respec-
tively. Thus, the green and red sub-pixels are dominant for resolution rendering, and it 
is possible that the green and red sub-pixels contribute to the resolution enhancement 
when the sub-pixels are independently driven for the ISD display. However, the unba-
lanced sub-pixel drive levels cause a chromaticity change of the pixel, and the dis-
played monochrome image is contaminated by unnatural patterns with color-shifted 
(green or red weighted) pixels. This is because the ISD technique has not been applied 
to the color displays. In this study, we applied a LPF process to data for the sub-pixel 
driving, aiming to reduce the color shifts. Though this LPF of course reduced the 
resolution enhancement effect of ISD, the image contamination was effectively im-
proved. This is because the visual evaluation results of resolution were “fair” for both 
radiologists. By using ISD, since the Nyquist frequency in the sub-pixel direction is 
tripled, the resolution enhancement effect of ISD is remarkable [1]. Therefore, even 
though the effect was reduced by the LPF process, some of the effect remained. In 
general, RGB sub-pixels appear as a single color to the human eye due to insufficient 
resolution of the human eye to resolve each sub-pixel. From this reason, it was 
thought that the fine color shifts which remain after the LPF process became visually 
negligible and simultaneously the remained resolution enhancement effect could not 
also be recognized. 

Another preferable feature of ISD is overall noise (aliasing noise) reduction effect 
due to over sampling with the fine sub-pixel pitch [3,5,6]. The effect was fortunately 
enhanced by the LPF process, the overall noise property, when the phantom image 
was displayed, was significantly improved as shown in Fig. 4 and 5, and obtained 
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evaluation scores of “good” from both radiologists. Since most of mammography 
images include noise depending on their radiation doses, it was suspected that this 
overall noise reduction would contribute the image quality improvement. In regards to 
question “Which display is preferable for mammography reading between these mo-
nochrome and color 5MP displays?”, both radiologists answered “Color display” with 
additional comments that admired the lower black level of the color display. Though 
only the reduced display condition (magnification ratio = 0.4) was examined in this 
study, the ISD process did not cause any resolution change and color shifts for pixel 
by pixel or magnification conditions.  

5 Conclusion 

By applying the modified ISD driver software to the prototype 5MP color display, the 
resolution and the overall noise properties were improved as compared with the mo-
nochrome 5MP display for the reduced display condition which is routinely used for the 
initial display in diagnostic reading. Though the micro level color shift caused by the 
sub-pixel rendering was problematic for the test pattern image displaying, it was visual-
ly negligible in the phantom image displaying. Further investigations using clinical 
images would be needed to evaluate the effectiveness of ISD for color displays. 
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Abstract. Color LCD use is increasing in medical imaging especially in appli-
cations like telepathology. Standardized methods for calibrating, characterizing 
and profiling color displays have not been created. We used a validated calibra-
tion, characterization and profiling protocol for color medical imaging applica-
tions to determine if it impacts performance accuracy and interpretation time. 
250 breast biopsy whole slide image (WSI) areas (half malignant, half benign) 
were displayed to 6 pathologists. In one condition the calibration protocol was 
used and in the other the same display was un-calibrated. Receiver Operating 
Characteristic area under the curve (Az) with the calibrated display was 0.8570 
and with the un-calibrated one was 0.8488 (p = 0.4112). For interpretation time, 
the mean with the calibrated display was 4.895 sec and with the un-calibrated 
display was 6.304 sec (p = 0.0460). There is an advantage diagnostically using 
a properly calibrated and color-managed display and a significant advantage for 
potentially improving workflow via reduced viewing times.  

Keywords: Color displays, diagnostic accuracy, color calibration, color man-
agement, pathology.  

1 Introduction 

There has been a lot of research on how to calibrate medical-grade and non-medical 
grade displays for radiology, but for the most part radiology uses monochrome dis-
plays and grayscale images, so the methods are not applicable to color. Color displays 
are needed in other diagnostic imaging applications such as pathology, ophthalmology 
and telemedicine, but the available displays and images vary in size, contrast,  
resolution, luminance, color primaries, color gamut, and white point.  

Some standards exist for image acquisition [1-2], but guidance on display calibration 
lacks consensus [3-6]. There is no single validated color display calibration protocol in 
place for medical color image applications. A key barrier in adoption of whole slide 
imaging (WSI) in pathology is the display. To address this, we developed a  
calibration, characterization and profiling protocol for color-critical medical imaging 
applications [7]. 
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2 Methods and Materials 

The color calibration protocol details are in [7], with a complete description of the 
black-level correction methodology compatible with the color profile structure speci-
fied by the International Color Consortium (ICC) methods for color management.  

In sum, the process is a multi-step one that begins with calibrating a display using 
the manufacturer’s software, internal LUTs and a standard luminance monitor. Am-
bient illumination is set at 35 lux. The X,Y,Z of the white point and R,G,B primaries 
are measured; then the values are normalized to Y (luminance) of the white point. The 
tone reproduction curves (TRCs) are then measured and a Chromatic Adaptation  
Matrix (Chad) is computed and applied.  

In the next step, the TRCs are interpolated to 256 levels via cubic spline interpola-
tion and the TRC values are normalized between 0 and 1. A black level correction  
is then applied. The ICC profile (V2/V4) is then generated and finally a color  
reproduction accuracy analysis is carried out.  

Measuring and accounting for the display black level is important for color  
reproduction since the liquid crystal panel serves as an array of filtered light valves 
that modulate illumination from a backlight module that constantly emits light (i.e., 
there is always some light leakage even in the pixel off state). Physical characteriza-
tion of displays calibrated with and without the protocol demonstrates that high color 
reproduction accuracy can be achieved. 

Regions of interest from WSI stained breast biopsy specimens were selected from a 
set of 93 uncompressed WSIs (see Figure 1) as being those that contain diagnostic 
information. They were acquired with the DMetrix ultra-rapid WSI scanner that uses 
an array microscope for imaging and produces 1.5 x 1.5-cm virtual slides in less than 
1 minute (0.47 μm per pixel resolution). Diagnoses were verified by the original  
report and a second confirmatory review by a Board Certified pathologist not partici-
pating in the study.  

 

 
Fig. 1. Typical ROI from a case on a calibrated (left) and un-calibrated (right) display 
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Regions (512 x 512) were selected as those containing relevant diagnostic informa-
tion for deciding if a case was benign or malignant. The ROIs were chosen to have 
good quality in terms of no blurring due to the scanning process, and no excess tissue 
material irrelevant to the task (e.g., blood cells). A total of 250 ROIs (half benign, half 
malignant) were selected.  

Six pathologists participated in two sessions (counterbalanced and separated by a 
few weeks to promote forgetting of the cases). There were 2 Board certified patholo-
gists, one senior Fellow, and 3 senior level pathology residents in the study. All of 
them had some experience with WSI.  

One of the sessions used a calibrated/color managed NEC 2690 LCD (1920 x 1200; 
Lmax = 320 cd/m2; contrast ratio = 1000:1; wide gamut) and the other session used a 
matched, non-medical grade, un-calibrated NEC 2690 LCD without color management. 
Images were shown at full resolution using a dedicated interface we developed for this 
study. They were not allowed to zoom/pan or adjust any of the viewing parameters (so 
as not to confound the main aspect of the study – the color rendering).  

The pathologists were instructed to determine for each WSI if the tissue was benign 
or malignant and report their decision confidence using a 6-point scale (1 = benign, 
definite; 6 = malignant definite). Decision times were also recorded as a measure of 
diagnostic efficiency. Three of the subjects viewed the images on the color ma-
naged/calibrated display first then about 3 weeks later on the un-calibrated display; 
while the other three viewed the images in the opposite order. The room lights were 
set to 25 lux. Each subject was given Ishihara’s Test for Color Deficiency (Kanehara 
Trading, Inc. Tokyo, Japan) and all passed. 

3 Results 

Multi-Reader Multi-Case Receiver Operating Characteristic (MRMC ROC) was used 
to generate Az (area under the curve) values [8]. Analysis of Variance (ANOVA) was 
used to test for significant differences. ROC Az for the calibrated display was 0.8570; 
and for the un-calibrated display it was 0.8488 (F = 0.71, p = 0.4112). Five of  
six readers had higher performance with the calibrated than un-calibrated display (see 
Figure 2).  
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Fig. 2. Individual and mean ROC Az values for un-calibrated vs calibrated displays  
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For interpretation speed (see Table 1), the mean calibrated total viewing time was 
4.90 sec; and the mean total viewing time for the un-calibrated display was 6.30 sec 
which was statistically significant (p = 0.0460). 

Table 1. Viewing times for calibrated and un-calibrated displays 

Reader Calibrated (sec) Un-calibrated (sec) 
1 7.1 11.9 
2 4.0 4.1 
3 5.8 4.2 
4 2.8 7.0 
5 3.1 8.0 
6 2.0 1.7 

Mean 4.90 6.30 

4 Discussion 

This work represents one of the first studies to assess whether calibrating color dis-
plays for breast biopsy WSI impacts observer accuracy and efficiency and may have 
significant implications for how pathologists carry out quality control measures in 
digital reading rooms. 

We did not observe a significant impact on accuracy with the color ma-
naged/calibrated display but there was a trend for performance being better with the 
calibrated display. We did observe a significant impact on efficiency. Times to view 
the WSI with the un-calibrated display were about 1 sec longer than with the cali-
brated display.  

Recall that the images we used were small ROIs and not the whole version. If the 
whole images were used, the difference would likely increase and cumulatively could 
lead to significantly longer viewing times when viewing large numbers of cases over 
an extended period of time. There are other variables that impact viewing time, but if 
proper calibration of a display (which is a fairly simple thing to do) could reduce just 
this one factor it could increase overall efficiency and possible even greater use and 
acceptance of WSI. 

With respect to why there was no significant difference in diagnostic accuracy, it 
may be that although color is important there are many other diagnostic features pa-
thologists use when interpreting cases. Sophisticated color rendering and calibration 
just may not be as important as you would think. Features like the configuration of 
cells and cell structures are very important as well when determining whether a spe-
cimen is benign or malignant or what stage for example a cancer may be at. Color 
might help the pathologist visualize structures, but it may be that the physical confi-
guration and relationship between the structures is more informative and important for 
diagnoses.  

It also may be that un-calibrated non-medical grade displays are already really 
good in accurately reproducing and rendering color information. The improvements 
seen in physical characterizations with more sophisticated calibration methods may be 
dramatic but are only marginally important visually. It also may be that other types of 
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pathology images with different stains, different diagnostic features etc. may require 
accurate color rending while breast biopsy specimens with the H&E stain may not.  

Finally, the images we used may not be that dependent on the color information for 
their interpretation as another set might have been. There are often very distinct and 
significant differences in the appearance of different specimen samples depending on 
the organ, the disease, and the type of staining. Maybe breast biopsy specimens are 
not dependent on color information but other specimens may be. We need to conduct 
more research in this area and include other types of specimens and staining  
techniques. 

5 Conclusions 

We observed a marginal impact on diagnostic accuracy for breast biopsy WSI inter-
pretation as a function of using a formally color managed/calibrated display - there 
was a trend for performance being better with the calibrated display. There was a 
significant impact on interpretation speed with the calibrated display yielding shorter 
viewing times. Further study is warranted since we only used one display and one 
specimen type.  

Using eye-position recording might also reveal some interesting findings in terms 
of why search and thus viewing times are shorter with calibrated displays. For exam-
ple, does it take less time to find relevant cells to view and make a decision? Further 
research is needed.  

Acknowledgement. This work was supported in part by NIH/ARRA Grant 
1R01EB007311-01A2.  
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