
Mining Predictive Process Models

out of Low-level Multidimensional Logs

Francesco Folino, Massimo Guarascio, and Luigi Pontieri

National Research Council of Italy (CNR),
via Pietro Bucci 41C, I87036 Rende (CS), Italy
{ffolino,guarascio,pontieri}@icar.cnr.it

Abstract. Process Mining techniques have been gaining attention, es-
pecially as concerns the discovery of predictive process models. Tradi-
tionally focused on workflows, they usually assume that process tasks
are clearly specified, and referred to in the logs. This limits however
their application to many real-life BPM environments (e.g. issue track-
ing systems) where the traced events do not match any predefined task,
but yet keep lots of context data. In order to make the usage of predictive
process mining to such logs more effective and easier, we devise a new ap-
proach, combining the discovery of different execution scenarios with the
automatic abstraction of log events. The approach has been integrated
in a prototype system, supporting the discovery, evaluation and reuse of
predictive process models. Tests on real-life data show that the approach
achieves compelling prediction accuracy w.r.t. state-of-the-art methods,
and finds interesting activities’ and process variants’ descriptions.

Keywords: Business Process Analysis, Data Mining, Prediction.

1 Introduction

Process Mining techniques aim at extracting useful information from historical
process logs, possibly in the form of descriptive or predictive process models,
which can support the analysis, design, and improvement of business processes.
An emerging research stream [1,9,4] concerns the induction of models for pre-
dicting a given performance measure for new cases at run time.

Originally focused on workflow systems, Process Mining research has been
moving towards less structured processes, possibly featuring a wide variety of
behaviors and many low-level tasks. This calls for enhancing classical approaches
with the capability to capture diverse execution scenarios (a.k.a. “process vari-
ants”), and to map log events to high-level activity concepts [3], in order to
prevent the construction of useless models giving a cumbersome and undergen-
eralized view of process behavior.

The need of providing expressive process views is also witnessed by the prolif-
eration of works on activity abstraction [12,11,7] and on log clustering [14,9,4],
as well as by recent efforts to model different process variants and their link to

M. Jarke et al. (Eds.): CAiSE 2014, LNCS 8484, pp. 533–547, 2014.
c© Springer International Publishing Switzerland 2014



534 F. Folino, M. Guarascio, and L. Pontieri

ê1

ê2

ê3 ê4

ê5

ê6 ê7

ê8

ê9

Fig. 1. A simplified Incident Management scenario: unknown high-level tasks (top),
low-level event log (bottom), and data-driven event classes (middle)

environmental factors [13]. Some works also tried to combine trace clustering and
activity abstraction, in order to build expressive process models, with different
process variants represented via high-level tasks (or sub-processes, at different
levels of aggregation/abstraction) [10,8,6].

Unfortunately, most of these methods assume that the log events are mapped
to well defined process tasks, which is not true in many real-life collaborative
work environments (such as issue tracking systems, or transaction systems),
where lots of data are yet stored (in the form of event/case attributes) that
might well help model/predict system behaviour.

Example 1. As an example scenario, consider the simplified version of the ITIL’s
“Incident Management” process (inspired to [3]) at the top of Figure 1. Assume
that none of the high-level process tasks appear in the execution traces (like those
at the bottom of the figure), where each event just stores low-level information as
a triple 〈op, org, role〉. Specifically, attribute op, which encodes rather generically
the operation performed, can take one of the following values: A (allocating the
incident to someone), C (classifying the incident), D (describing the incident
or its solution), CI (associating the incident with a configuration item) and
CL (closing the incident). Attribute org tells which organizational entity the
executor belongs to: 1L (early intervention) and 2L (second level team). Finally,
the stored executor role can be either O (operator) or T (technician). �

In the log of lowly structured processes, like those above, none of the event
attributes fully capture the semantics of all performed actions. In such a case,
abstracting each event as a fixed combination of multiple attributes is likely to
yield overfitting models, seeing as a very high number of distinct state/activity
representations may be produced, most of which just cover a bunch of log events.



Mining Expressive Performance Models 535

Conversely, simple event abstraction strategies (consisting in replacing each log
event with the associated task or executor or them both) tend to be adopted in
the area of predictive process mining, where the combination of model induction
and automated activity abstraction has not been investigated so far.

Contribution To overcome the above limitations, we state the prediction of pro-
cess performances as the search for an enhanced kind of performance model,
consisting of three components: (a) an event classification function, for abstract-
ing each low-level event into an event class, regarded as a distinct activity type
(rather than as a subprocess or macro-activity, as in [12,11,7]); (b) a trace clas-
sification function, for discriminating among different process variants, based on
case data; and (c) a collection of state-aware predictors, each associated with
one process variant. The event classification function is meant to partition all
(low-level) log events into clusters, like those in the middle layer of Figure 1, each
associated with a classification rule (over event attributes). Analogous rules (over
case attributes) can be found to partition all process traces into execution classes.
Such a model supports the forecast of the analyzed performance measure on an
ongoing process case τ via three logical steps: (i) each τ ’s event is abstracted by
the event classification function; (ii) the obtained abstract trace is assigned to a
process variant through the trace classification function and (iii) the predictor
of the selected variant is eventually used to predict the performance of τ .

A discovery algorithm is presented in the paper for inducing both classification
functions by way of a co-clustering scheme (extending the logics-based framework
of predictive clustering [5]), prior to building a local predictor for each trace
cluster. Besides enjoying compelling prediction accuracy (w.r.t. current methods,
combined with usual log abstractions), in real-life application cases the approach
managed to recognize relevant activity patterns at the right abstraction level.
Moreover, the descriptive nature of the discovered classification rules (expressed
in terms of event/trace data) can help comprehend process behaviors, and how
its performances depend on both context factors and activity patterns.

Organization. The rest of the paper is structured as follows. After introducing
some preliminary concepts in Section 2, we present, in Section 3, our solution
approach and a prototype system implementing it. An empirical analysis on
two real-life case studies is then discussed in Section 4, before drawing some
concluding remarks and future work directions.

2 Preliminaries

Let us denote by E and T the universes of all possible events and (both fully un-
folded and partial) traces, respectively, for the process under analysis – as usual,
we assume that a trace is recorded for each process instance (a.k.a “case”), en-
coding the sequence of events happened during its enactment. For our purposes,
an event e ∈ E is regarded as a tuple storing a case identifier and a timestamp,
denoted by case(e) and time(e), as well as a vector prop(e) of data properties,



536 F. Folino, M. Guarascio, and L. Pontieri

in some given space of event attributes. For example, in structured process man-
agement settings (like those handled by WfMSs), any event keeps information
on both the task performed and the executor. However, as discussed above, this
does not happen in many flexible BPM environments (e.g., issue/project man-
agement systems), where the tasks are not precisely conceptualized, or they just
represent generic operations (e.g., update a document or exchange a message).

For each trace τ ∈ T , let τ [i] be the i-th event of τ , and let τ(i] ∈ T be
the prefix trace consisting of its first i events, for i = 1 .. len(τ), where len(τ)
is the number of events stored in τ . Moreover, let prop(τ) be a vector of data
properties associated with any trace τ ∈ T , possibly including “environmental”
variables characterizing the state of the BPM system (as proposed in [9]).

A log L (over T ) is a finite subset of T , while the prefix set of L, denoted
by P(L), is the set of all prefix traces that can be extracted from L. Finally,
events(L) indicates the set of all events stored in (some trace of) L.

Let us denote by λ : T → R the (unknown) performance measure (targeted
by our predictive analysis) that virtually assigns a performance value to any
(possibly partial) trace – for the sake of concreteness, and w.l.o.g., λ is assumed
to range over real numbers. Two examples of such a measure are the remaining
processing time and steps of a trace, i.e. the time and steps, respectively, needed
to complete the respective process enactment.

A (predictive) Process Performance Model (PPM) is a model estimating the
performance value of any process instance, based only on its current trace. Such
a model can be viewed as a function λ̃ : T → R that approximates λ all over
the trace universe — including the prefix traces of unfinished enactments. Dis-
covering such a model is an induction problem, where a given log L is used as a
training set, and the λ is known for each (sub-)trace τ ∈ P(L).

In order to focus on relevant facets of events, current approaches rely all on
some abstraction functions such as those defined below (similarly to [1,9]).

Definition 1 (Event/Trace Abstraction). Let T be a trace universe, and
E be its associated event universe. Let Ê = {ê1, . . . , êk} be a given set of ab-
stract event representations. An event abstraction function E : E → Ê is a
function mapping each event e ∈ E to E(e) ∈ Ê, based on e’s properties.
Moreover, the trace abstraction function absE : T → N

n is defined as fol-
lows: absE(τ) = 〈 count(ê1, τ), . . . , count(êk, τ) 〉, where count(êi, τ) = |{ i ∈
{1, . . . , len(τ)} | E(τ [i]) = êi }|, for any trace τ ∈ T . �
For example, let τ1 be the complete trace associated with the first case (Case 1)
in the log of Figure 1, and let Eop be an event abstraction function that replaces
each event with its first field op. Then, by applying function absEop to the (prefix)
traces τ1(1], τ1(2], τ1(3] and τ1(4], four tuples are obtained, which encode the
multi-sets [A], [A, C], [A, C, CI], and [A2, C, CI], respectively.

More expressive trace abstraction schemes can be defined, as in [1], which take
account for the ordering of events, and possibly discard less recent ones (accord-
ing to a horizon threshold). However, such an issue is not considered in this
work, which mainly aims at studying how a given (even simple) trace abstrac-
tion scheme can be enhanced through ad-hoc event/trace clustering methods.



Mining Expressive Performance Models 537

Based on such trace abstractions, an annotated finite state machine (“AFSM”)
can be derived as in [1], where each node corresponds to one abstract trace
representation (produced by absE) and stores an estimate for the target measure,
while each transition is labelled with an event abstraction (produced by E).
Alternatively, classic regression methods can be used to extract a PPM from a
propositional encoding of the log, like that in Definition 1.

Basic PPM learning methods were recently hybridized with Predictive Clus-
tering techniques [5], which partition a data set into clusters, while assuming
that all data instances own two kinds of features: target attributes (to be pre-
dicted), and descriptive attributes (used to define logical splits). Specifically, such
a clustering procedure was combined with the AFSM method [9] and standard
regression methods [4], with context data used as descriptive trace attributes.

3 Approach and Implementation

Clearly, the effectiveness of current performance mining approaches strongly de-
pends on the capability of the event abstraction function E to focus on those
properties of log events that are really connected with the behavior (and per-
formances) of the process at hand. Unfortunately, the common solution of ab-
stracting each event into a task’s and/or an executor’s label does not fit the
case of logs storing fine grain records (corresponding to low-level and generic
operations), where none of the event properties is suitable for making an effec-
tive event abstraction. For instance, in the case of Example 1, considering just
the kind of operation performed leads to excessive information loss. Conversely,
defining abstract activities as the mere combination of multiple properties (e.g.,
regarding each distinct triple in Example 1 as an activity) may yield a cumber-
some and ineffective representation of process states (as proven empirically in
our experimentation). On the other hand, many real-life tracing systems keep
lots of context information for each process case, which may be used to build
precise and articulated performance prediction models like those in [9].

In order to fully exploit the variety of (events’ and cases’) data stored in a
process log, we try to build an expressive performance model for the process,
hinging on two interrelated classification models: one allowing to grasp the right
level of abstraction over log events, and the other encoding the business rules
that determine each variant. A precise definition of such a model is given below.

Definition 2 (CCPM). Let L be a log, over an event (resp., trace) universe E
(resp., T ). Then, a Co-Clustering Performance Model (CCPM) for L is a triple of
the form M = 〈CE , CT , Λ〉, where: (i) CE : E → N is a partitioning function over
E; (ii) CT : T → N is a partitioning function over T ; and (iii) Λ = 〈λ1, . . . , λq〉
is a list of PPMs, all using CE as event abstraction function, such that q is the
number of clusters produced by CT , and λi is the model of the i-th cluster, for
i ∈ {1, . . . , q}. The overall prediction function encoded by M (denoted by the
same symbol M , for shortness) is: M(τ) = λj(τ), where j=CT (τ). �
Conceptually, a forecast for any new process instance τ can be made with the
help of such a model, in three steps: (i) an abstract representation of τ is obtained



538 F. Folino, M. Guarascio, and L. Pontieri

Input: A log L (over some trace universe T ) with an associated target measure λ,
max. iterations’ number maxIter ∈ N, min. (relative) loss reduction γ ∈ (0, 1],
max. number maxClE,maxClT ∈ N∪{∞} of (events’, resp. traces’) clusters,
min. cluster coverages σ ∈ (0, 1] (for both events and traces).

Output: A CCPM model for L (fully encoding λ all over T ).
Method: Perform the following steps:

1 set C(0)
T := {L}; C(0)

E := {events(L)}; Err(0) := ∞; k := 0;
2 do
3 k := k+1;

4 EV := VE(L, C(k−1)
T ); // build an e-view for L w.r.t. C(k−1)

T (cf. Def. 4)

5 C(k)
E := minePCM(EV, σ,maxClE) ; // induce a novel event clustering model

6 TV := VT (L, C(k)
E ); // build a t-view for L w.r.t. C(k)

E (cf. Def. 3)

7 C(k)
T := minePCM(TV, σ,maxClT ) ; // induce a novel trace clustering model

8 let Err(k) = Loss(C(k)
E , C(k)

T , L); // estimate current prediction error

9 improved := Err(k−1) − Err(k) ≤ γ(k) ×Err(k−1);
10 while k ≤ maxIter and improved;

11 if improved then CT := C(k)
T ; CE := C(k)

E ;

12 else CT := C(k−1)
T ; CE := C(k−1)

E ;
13 let TC = 〈t̂1, . . . , t̂q〉 be the list of trace clusters produced by CT on P(L);

14 for each t̂i in TC do
15 λi := minePPM(t̂i, CE);
16 end
17 return 〈CE, CT , 〈λ1, . . . , λq〉〉

Fig. 2. Algorithm CCD

in the form of a vector (as specified in Definition 1) that summarizes both its
context data and structure, with each event abstracted into an event class via
CE ; (ii) τ is assigned to a trace cluster (representing a particular execution
scenario for the process) via function CT ; (iii) the predictor of the chosen cluster
is used to make a forecast for τ , by providing it with absCE (τ). The functions
CE and CT , encoding two different classification models (defined over descriptive
attributes), are hence exploited to abstract raw log events into high-level classes,
and to discriminate among different process variants, respectively.

3.1 Solution Algorithm

In principle, one might seek an optimal CCPM for a given log L by trying to
minimize some suitable loss measure (comparing the actual performance of each
trace with the corresponding estimate). By contrast, in order to avoid prohibitive
computation times across such a large search space, we rephrase the discovery
problem into two simpler ones: (1) find a locally optimal pair of classification
functions CE and CT , and (2) derive a collection of cluster-wise PPM predictors.

Our solution approach is summarized in Figure 2 as an algorithm, named
CCD (“Co-Clustering based Discovery”). Since the quality of the trace clustering
model CT strongly depends on the chosen abstraction function CE , and vice versa,



Mining Expressive Performance Models 539

we regard the first subproblem as a co-clustering one, were an optimal partition
must be found for both traces and events. This problem is approached via an
iterative alternate-optimization scheme, where, at each iteration k, updated ver-

sions of the two partitioning functions are computed, denoted by C(k)
E and C(k)

T ,
until no satisfactory loss reduction (w.r.t. the previous iteration) is achieved.
Notice that, for efficiency reasons, any loss Err(k) is measured by accounting for
the distribution of performances in each “co-cluster” as follows: Loss(CT , CE, L)=∑

τ∈P(L) [λ(τ )−avg({λ(τ ′′) | CT (τ
′′)=CT (τ ) and CE(τ

′′[len(τ ′′)])=CE(τ [len(τ )])})]2.
Each model C(k)

E is induced, via function minePCM, from an “event-oriented”
view (e-view) EV of the input log, which encodes both event data and a series
of performance measurements, computed on current trace clusters. The discov-

ered event clustering C(k)
E is then used, as a novel event abstraction method, to

provide minePCM with a “trace-oriented” view (t-view) TV of the log, in order

to eventually induce an updated trace partitioning C(k)
T . In this way, any novel

trace clustering takes advantage of the most recent definition of event classes,
and vice versa, according to a reinforcement learning scheme. Both kinds of views
are formally defined below.

Definition 3 (T-View). Let L be a log, and CE be a partitioning function
defined over events(L). Then, a t-view for L w.r.t. CE , denoted by VT (L, CE), is
a relation containing, for each trace τ ∈ P(L), a tuple zτ = prop(τ) ⊕ absCE(τ) ⊕
〈λ(τ)〉, where ⊕ stands for tuple concatenation. For any such tuple zτ , prop(τ)
and absCE(τ) are considered as descriptive features, while λ(τ) is the associated
(unidimensional) target. �
Definition 4 (E-View). Let L be a log, CT be a (trace) partitioning func-
tion over P(L), and {t̂1, . . . , t̂q} be the clusters which CT ranges over (with
t̂i = {τ ∈ P(L) | CT (τ) = i} for i ∈ {1 . . . q}). Then, an e-view for L w.r.t.
CT , denoted by VE(L, CT ), is a relation consisting of a tuple ze = prop(e) ⊕
〈val(e, t̂1), . . . , val(e, t̂q)〉 for each e ∈ events(L), where ⊕ still denotes tuple
concatenation, and, for any i ∈ {1, . . . , q}, it is:

val(e, t̂i) =

{
NULL, if � τ ∈ t̂i s.t. prop(τ [len(τ)]) = prop(e);

avg({λ(τ) | τ ∈ t̂i and prop(τ [len(τ)]) = prop(e) }), otherwise.

For any tuple ze, all the fields in prop(e) are regarded as descriptive attributes,
and 〈val(e, t̂1), . . . , val(e, t̂q)〉 as its associated (multidimensional) target. �
Provided with such propositional views, function minePCM is meant to induce a
logics-based partitioning function, by applying some predictive clustering proce-
dure to the given (target and descriptive) data. Details on how this function was
implemented in our prototype system can be found in the following subsection.

Once an (locally) optimal pair of event and trace clusterings has been found,
each cluster predictor λi, for ∈ {1, . . . , n}, is eventually computed by providing
function minePPM with all the traces assigned to the cluster, and with the event
abstraction function CE . To this end, the function converts t̂i in its t-view w.r.t.
CE , prior to applying some suitable regression method to it.



540 F. Folino, M. Guarascio, and L. Pontieri

Fig. 3. Conceptual architecture of the developed prototype system

Notice that the auxiliary parameters of algorithm CCD are meant to give the
analyst some control on both computation times (maxIter, γ) and the com-
plexity of the discovered model (maxClE , maxClT ). However, whatever setting
is used, the algorithm is guaranteed to terminate, since the loss measure must
decrease at each iteration (γ > 0), and the number of event/trace classification
functions is finite. Notably, in a wide series of tests, the computation naturally
finished in a few steps (less than maxIter), by just fixing γ = 0.

3.2 Implementation Issues and Prototype System

Functions minePPM and minePCM The current implementation of minePPM fol-
lows the method proposed in [5] for inducing a PCT (Predictive Clustering Tree),
a logics-based predictive clustering model where the cluster assignment function
is encoded in terms of decision rules (over descriptive attributes). Basically, such
a model is built via a top-down partitioning scheme, where the log is split re-
cursively, while selecting each time a descriptive attribute that locally minimizes
the (weighted) average of the variances of the newly generated clusters — i.e.
the 2-norm distances between the centroid of each new cluster and all instances
in it. To curb the growth of the tree, an F-test based stopping criterion is used,
possibly combined with a user-given upper bound to the total number clusters.

The current implementation of function minePCM just relies applying one of
the two following standard regression methods to a propositional log view like
that in Definition 1): the regression-tree induction algorithm RepTree and the
k-NN procedure IB-k, both available in the popular Weka library [15].

System Prototype. The approach has been integrated into a prototype system,
featuring the conceptual architecture in Figure 3, whose two lower layers leverage
some core functionalities of the Process Mining framework ProM [2].

Basically, the bottommost layer is responsible for storing both historical pro-
cess logs, and the different kinds of views extracted from them, as well as the
different kinds of models composing each discovered CCPM models. All data min-
ing and transformation mechanisms used in our approach are implemented in



Mining Expressive Performance Models 541

Table 1. Summary features of the two application scenarios (including the associated
event/trace attributes used in the tests)

Scenario #events #cases Event Attributes Trace Attributes Target

Harbor 21484 5336

movType, shift,
area from, area to,
vehicleType,
block from, block to

service in, service out, imo,
line in, line out, size, height,
vessel in, containerType, reefer,
carrierType in, carrierType out,
prevCall, nextCall, outOfGauge,
prevCountry, nextCountry

remaining
time

Bug 8661 2283

assignee, blocks,
component, hardware,
priority, product,
resolution, os,
severity, status

comments, votes, severity, QA,
classification, component, URL,
reporter, keywords, resolution,
product, assignee, priority,
status, hardware, flags

remaining
steps

the Knowledge Discovery layer, which supports the discovery of a new CCPM, in
a interactive and iterative manner, based on the computation scheme of algo-
rithm CCD. In particular, the Predictive Clustering and PPM Learning modules
implement the functions minePCM and minePPM functions, respectively.

All models discovered out of a process log (i.e., traces’ and events’ clustering
models, and the PPM models of each trace cluster) are made available to the
Model Evaluation and Reuse Layer, which, in particular, provides the user with
an easily-readable report, including the error metrics considered in our tests. The
OLAP Gateway module is meant to reorganize historical log data into different
aggregated views, in order to possibly support OLAP-like analyses.

Thanks to its predictive nature, each discovered CCPM can be used to configure
a forecasting service for the process it was discovered for, to estimate (at run time
and step-by-step) the performance outcome of any new instance of the process.
Besides pure performance prediction, the Advanced Monitoring module supports
the anticipated notification of Service Level Agreement (SLA) violations, when-
ever a process instance is estimated to fail a given quality requirement, previously
established for one of the performance measures associated with the process.

4 Experiments

In order to assess the validity our approach, we conducted a series of tests on
the logs of two real process management systems: the operational system of
a maritime hub, and bug-tracking system. For readability purposes, Table 1
summarizes some features of both scenarios, indicated hereinafter as harbor and
bug, respectively. Notice that a few trace attributes (e.g., comments and votes,
in the Bug scenario) are not really known at the very beginning of a case. Clearly,
such properties can be used to dynamically (re-)assign a process case to a trace
cluster only if they have already taken a value. Anyway, as any trace clustering
returned by our approach is ensured to cover the entire universe of traces at any
step of its unfolding, each process instance falls into one of the trace clusters.



542 F. Folino, M. Guarascio, and L. Pontieri

Three variants of the CCD algorithm were studied in our tests, which differ
in the implementation of function minePPM: CCD-RT, using the regression-tree
induction algorithm RepTree [15]; CCD-IBK, based on the IB-k procedure imple-
mented in Weka [15]; and CCD-AVG, where each cluster predictor just returns the
average performance in the cluster — the last method just serves as a baseline
and quantifies co-clustering loss. In all cases, a fixed setting was used for the aux-
iliary parameters:maxIter=20, γ=0, σ=1%, andmaxClE=maxClT=50. Notice
that we bounded the number of event/traces to have handier process models and
speed up the computation, at the cost of low precision loss (at least for CCD-RT
and CCD-IBK), with respect the default setting maxClE=maxClT=∞.

For the sake of comparison, besides using the two base regressors mentioned
above (denoted by RT and IBK) as baselines, we tested the FSM-based method
in [1] (here named AFSM), the CATP algorithm of [9] (which reuses AFSM), and
two variants of the approach in [4], denoted by as AATP-IBK and AATP-RT, using
IBK and RepTree, respectively, as base learners. We remark that all competitors
lack automated mechanisms for abstracting log events (into activity/action enti-
ties), and hence need the application of some a-priori event abstraction function.
Conversely, all of the tested methods but AFSM can take advantage of case data.

Three standard error metrics have been used to evaluate prediction accuracy:
root mean squared error (rmse), mean absolute error (mae), and mean absolute
percentage error (mape). For the sake of significance, all the error results reported
next were computed via 10 fold cross-validation and averaged over 10 trials.
Moreover, a statistical test was applied to check whether the methods performed
really different. Specifically, for each error metrics, we used a paired two-tail
Student’s t -test to compare the outcomes of each method with those of the most
precise one (i.e. the one achieving the lowest average error on that metric), at
two different confidence levels: 95% and 99%. We then considered a method as
almost equivalent to (resp., substantially worse than) the best performer if it did
not differ at the 95% level (resp., it did differ at the 99% level) from the latter.

4.1 Tests on the Harbor Scenario

This scenario pertains the handling of containers in a maritime terminal, where
a series of logistic activities are performed and traced for each container passing
through the harbor. As mentioned in Example 1, each log event stores, by way
of event attributes, different aspects of the logistics (move) actions performed
on a container, including the followings: (i) the source and destination position
it was moved between, in terms of yard’s blocks (block from and block to,
respectively) and areas (area from and area to, respectively) (ii) the kind of
operation performed (movType), ranging over MOVe, DRive to Bring, DRrive

to Get, LOAD, DIScharge, SHuFfle, OUT; (iii) the type of instrument used
(vehicleType), ranging from cranes to straddle-carriers and multi-trailers.

Trace attributes convey instead different properties of the handled container,
ranging from the previous and next ports (prevCall and nextCall), and their
associated countries (prevCountry and nextCountry), to several physical fea-
tures (e.g., size and height). Like in [9], for each container, we also considered,



Mining Expressive Performance Models 543

Table 2. Prediction results on the harbor scenario: errors made (over remaining times)
by CCD and several competitors. For each metrics, the best outcome is reported in bold
and underlined, while all methods nearly equivalent to the best one, and those neatly
worse than it (according to T-test) are shown in bold and in italics, respectively.

Predictors Error Measures
Approach Methods rmse mae mape (%)

Algorithm CCD (Fig. 2)
CCD-IBK 26.57±8.11 5.39±8.11 15.00±11.34
CCD-RT 25.39±8.38 5.95±0.91 10.17±10.61
CCD-AVG 28.58±11.44 8.27±1.44 38.10±15.86

Competitors with the
given (1-attribute)

event abstraction EA1

AATP-IBK [4] 31.93±12.50 7.04±1.20 63.62±5.65
AATP-RT [4] 29.95±9.67 8.76±1.31 66.32±14.80
AFSM [1] 80.46±11.93 30.74±1.40 279.15±26.72
CATP [9] 31.53±8.33 8.35±0.60 58.26±26.96
IBK [15] 33.66±9.37 7.64±0.89 72.50±9.85
RT [15] 30.28±8.91 8.36±0.77 69.67±8.70

Competitors with the
given (5-attribute)

event abstraction EA2

AATP-IBK [4] 54.38±7.98 16.66±2.00 288.55±44.82
AATP-RT [4] 43.84±8.08 16.58±1.08 144.19±46.31
AFSM [1] 75.31±16.68 25.27±2.77 53.95±20.27
CATP [9] 56.21±11.68 20.25±1.73 85.56±34.64
IBK [15] 54.02±5.97 16.50±1.42 290.54±28.76
RT [15] 43.33±6.04 15.59±0.76 205.06±48.89

as a sort of environmental variables, the hour (resp., week-day, month) when
it arrived, and the total number of containers (“workload”) in the port at that
time. The list of all events’ and traces’ attributes can be found in Table 1.

While our approach doesn’t need any preliminary event abstraction/labelling,
and it can deal with raw (multi-dimensional) event tuples, an event abstraction
criterion must be defined prior to applying any other method. Two different so-
lutions were used to this purpose in our tests: (EA1) abstracting each container-
handling event with just the associated move type (namely, MOV, DRB, etc.); and
(EA2) using the combination of the former five event attributes in Table 1.

Prediction Accuracy Results. Table 2 reports the (average and standard devi-
ation for the) errors made by our methods and the competitors/baseline ones,
when trying to predict the remaining processing time over a sample of 5336 con-
tainers, all exchanged with ports of the Mediterranean sea in the first third of
2006. Clearly, when faced with the challenge of dealing with complex events, ac-
cording to setting S2, all competitors exhibit a neat worsening of results, w.r.t.
the case where they were just made focus on the kinds of moves performed
(setting S1 ). In fact, we verified empirically that this is the best possible single-
attribute event abstraction for the given log — i.e. worse results are obtained
by previous methods when abstracting the events via any other single attribute.
Moreover, all base learners IBK, RT and AFSM seem to improve when embed-
ded in a trace clustering scheme (see AAPT-IB, AAPT-RT and CATP, respectively).
However, the best achievements are clearly obtained by our methods CCD-IBK

and CCD-RT. Besides confirming the ability of our approach to find an effective
abstraction over raw events, these results show its superiority to the two-phase
(i.e. event abstraction, followed by model induction) strategy commonly used in
the field of process mining, often relying on manually defined activities.



544 F. Folino, M. Guarascio, and L. Pontieri

Table 3. Some event clusters (left) and trace clusters (right) returned by running
CCD-RT on the harbor scenario with σ = 0.01, and maxClE = maxClT = 50. Inci-
dentally, in this specific test the algorithm discovered 12 event clusters and 48 trace
clusters. Cluster sizes are expressed as percentages (of all log events/traces).

id condition size

ê1
area to ∈ {C,BFS,SR} ∧
area from ∈ {A-NEW,T,B-NEW,. . .} 12%

ê2
area to ∈ {C,BFS,SR} ∧
area from ∈ {C,CR,A,. . .} 5%

ê3 area to ∈ {CR,BITTE} 17%
ê4 area to ∈ {MTR,T,GT,. . .} 13%

12.7%

ê9

area to ∈ {A-NEW,A,B-NEW,. . .} ∧
movType = MOV ∧
area from ∈ {A-NEW,A,BITTE,. . .}

11%

ê12

area to ∈ {A-NEW,A,B-NEW,. . .} ∧
movType ∈ {OUT,DRG,LOAD,DRB,

DIS,SHF} ∧
area from ∈ {A-NEW,A,BITTE,. . .}

6%

id condition size

t̂20

count(ê1) ≤ 0 ∧ count(ê3) ≤ 0 ∧
count(ê4) ≤ 0 ∧ count(ê9) > 0 ∧
nextCountry ∈ {BG,BE,KR,. . .} ∧
service OUT ∈ {ME3,GBX, . . .}

6%

t̂33

count(ê1) ≤ 0 ∧ count(ê2) ≤ 0 ∧
count(ê3) ≤ 0 ∧ count(ê4) ≤ 0 ∧
count(ê9) ≤ 0 ∧ count(ê12) ≤ 0 ∧
nextCountry ∈ {GE,HR,TN,. . .} ∧
service OUT ∈ {AEC,GAX,. . .} ∧
line OUT ∈ {CPP,CPS,SEN,. . .}

4%

t̂44

count(ê1) ≤ 0 ∧ count(ê3) ≤ 0 ∧
count(ê4) ≤ 0 ∧ count(ê9) ≤ 0 ∧
nextCountry ∈ {GR,ES,AE,. . .} ∧
service OUT ∈ {EEX,BSS, . . .} ∧
line OUT ∈ {MSK,APL,HLL,. . .} ∧
prevCountry ∈ {LB,SY,BE,EG,DZ}

2%

Qualitative Results. Table 3 summarizes some of the classification (i.e. partition-
ing) rules appearing in both clustering functions discovered with our approach
(precisely, with CCD-RT) on the harbor scenario. Notice that these rules are quite
easy to interpret and validate, and provide the analyst with a useful description
of process behavior (besides supporting accurate predictions). In particular, the
event clusters in the table confirm that performance-relevant activity patterns
cannot be captured by just one of the event properties, nor by a fixed combi-
nation of them. Interestingly, indeed, while some event clusters just correspond
to a subset of destination areas, some others also depend on the source area, or
even further on the kind of move performed. On the other hand, the descrip-
tions of trace clusters let us reckon the presence of different execution scenarios,
linked to both context factors (e.g., the country of the previous/next port, or
the line/service planned to bring the container) and to some of the discovered
event clusters (hence playing as high-level activity patterns).

4.2 Tests on the Bug Scenario

As a second testing scenario, we analyzed the Eclipse project’s bug repository,
developed with the Bugzilla bug-tracking system (see http://www.bugzilla.org).

Essentially, each bug in the repository is associated with several fields (here
regarded as trace attributes), which keep information, e.g., on: who reported
the bug (reporter); who it has been allocated to (assignee); the affected
software module (component, product, version, hardware); its severity and
priority levels; its status and resolution. the number of comments written
about the bug (comments). Almost all these fields can be updated as long as
a bug evolves. In particular, the status of a bug can take one of the following
values: unconfirmed, new, assigned, resolved, verified, reopened, and closed.



Mining Expressive Performance Models 545

Table 4. Prediction results on the bug scenario: errors made (over remaining steps)
by CCD and several competitors. The best result is in bold and underlined, methods
nearly equivalent to the best one are in bold, those neatly worse than it in italics.

Predictors Error Measures
Approach Methods rmse mae mape (%)

Algorithm CCD (Fig. 2)
CCD-IBK 1.369±0.666 0.448±0.111 0.167±0.010
CCD-RT 1.345±0.658 0.496±0.101 0.210±0.008
CCD-AVG 1.440±0.666 0.578±0.118 0.197±0.005

Competitors, provided
with ad-hoc defined

activity labels

AATP-IBK [4] 1.369±0.446 0.472±0.143 0.176±0.020
AATP-RT [4] 1.381±0.723 0.566±0.128 0.767±0.134
AFSM [1] 1.463±0.818 0.590±0.164 0.779±0.035
CATP [9] 1.404±0.839 0.578±0.175 0.684±0.041
IBK [15] 1.392±0.848 0.484±0.164 0.555±0.041
RT [15] 1.499±0.787 0.637±0.154 0.873±0.020

The resolution of a resolved bug can be: fixed, duplicate, works-for-me, in-
valid, or won’t-fix.

As to log events, the history of a bug is kept in Bugzilla as by way of update
records, possibly grouped in “bug activities”, each of which gathers all changes
made within a single access session. In order to let our propositional mining
methods capture “simultaneous” updates, we encoded each bug activity a into
an event having as many attributes as the number of (modifiable) bug fields, such
that each attribute stores either (i) the new value assigned to the corresponding
field, if it was really modified in a, or (ii) null, otherwise.

In order to provide the competitors with abstracted events, we tried different
combinations of bug fields as possible activity labels, and empirically found that
the best solution for them consists in only focusing on the changes made to the
status (and to the resolution field, if modified “contemporaneously”), or to
the assignee. In the former case, the activity label just encoded the new value
assigned, without keeping any information about the person to whom a bug was
(re-)assigned. The resulting abstract events look like the following activity labels:
status:=new, status:=resolved + resolution:=fixed, status:=verified, etc.,
Δassignee (simply indicating a generic change to the assignee field).

Prediction results. The tests were performed on a subset of the bugs created from
January 1st, 2012 to April 1st, 2013, such that they were fixed at least once,
but not opened and closed in the same day. Moreover, we filtered out all events
(i.e. bug activities) that did not refer any of the fields status, resolution,
and assignee. The resulting log consists of 2283 traces, with lengths (i.e. nr.
of events) ranging from 2 to 25. Prediction errors on the bug scenario are re-
ported in Table 4. Despite the fact that it was not provided with any suggestion
on how events should be abstracted, our approach reached excellent prediction
results (except when using the näıve regressor CCD-AVG), neatly better than all
competitors, with the exception of AATP and, partially, of IBK.

Qualitative results. The models in Table 5 confirm that our approach really
managed to automatically extract a suitable abstract representation for the given
log events, which looks indeed very similar to the one defined for optimally



546 F. Folino, M. Guarascio, and L. Pontieri

Table 5. All event clusters (left) and some of the 50 trace clusters (right) found by
algorithm CCD on the bug scenario, with σ = 0.01, and maxClE = maxClT = 50

id condition size
ê1 status = closed 47%
ê2 status = verified 2%

ê3
status ∈ {resolved,new} ∧
resolution = fixed

38%

ê4
status ∈ {resolved,new} ∧
resolution ∈ {worksforme,invalid} 1%

ê5 status = assigned 8%
ê6 status = reopened 4%

id condition size

t̂1
count(ê1) > 0 ∧ comments > 6 ∧
component ∈ {build, foundation,. . .} 1%

t̂22

count(ê1) ≤ 0 ∧ 5 <comments ≤ 15 ∧
count(ê2) ≤ 0 ∧ count(ê3) > 0
component ∈ {DBWS, Graphiti,. . .} 4%

t̂47

count(ê1) ≤ 0 ∧ count(ê3) ≤ 0 ∧
count(ê5) ≤ 0 ∧ comments ≤ 10 ∧
product ∈ {Xtend, Aether, Jetty,. . .} ∧
component ∈ {Xpand, Debugger, . . .}

3%

applying the competitors, Indeed, the status and resolution attributes have
been fully exploited for discriminating among event classes. Trace clusters seem
to depend mainly on the number of comments associated with bugs, and on the
component and/or product affected — as well as on some of the discovered event
classes, here playing as high-level performance-relevant activity patterns.

5 Discussion and Conclusions

The method proposed in this paper enhances current process mining approaches
for the analysis of business process performances in different respects. First of
all, it removes the common assumption that all traced event logs refer explicitly
(or can be easily mapped to) well defined process tasks, and allows to automat-
ically replace the formers with high-level activity types, capturing performance
behaviors at the right level of abstraction.

Empirical findings from two real application scenarios proved that the ap-
proach can achieve compelling prediction accuracy with respect to state-of-the-
art process-mining methods, even when these latter are provided with a manual
definition of process activities, carefully specified by an expert. We believe that
prediction accuracy could be improved further by resorting to more powerful
regression methods for inducing cluster-wise PPMs, in place of the straightfor-
ward ones used in our current implementation. Moreover, the descriptive power
of logical event/trace partitioning rules, beside allowing for a quick validation
and evaluation of the discovered models, can really help the analyst better com-
prehend the behavior of the process, and the way its performances depend on
both context factors and activity patterns.

As to efficiency, the approach seems to work well in practice. Indeed, in the
two scenarios discussed above, at most 6 co-clustering iterations were needed to
find a solution (with σ=1% and maxClE=maxClT=50), and our approach only
took 3.6 times longer than the quickest among the competitors — excluding IBK,
which performs no real learning task. This ratio only became 5.4 when no finite
upper bound was set for the numbers of clusters.

As future work, we plan to extend the expressive power of our event/trace
classification models, and to integrate advanced regression methods for learning



Mining Expressive Performance Models 547

cluster predictors, as well as to implement our discovery approach as a ProM [2]’s
plugin, and to refine the OLAP-oriented capabilities of our prototype system.

Acknowledgments. The work was partially supported by the Italian Ministry
of Education, Universities and Research (MIUR), under project FRAME.

References

1. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information Systems 36(2), 450–475 (2011)

2. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W(E.), Weijters,
A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: A new era in process
mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

3. Baier, T., Mendling, J.: Bridging abstraction layers in process mining by automated
matching of events and activities. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM
2013. LNCS, vol. 8094, pp. 17–32. Springer, Heidelberg (2013)

4. Bevacqua, A., Carnuccio, M., Folino, F., Guarascio, M., Pontieri, L.: A data-driven
prediction framework for analyzing and monitoring business process performances.
In: ICEIS 2013, Revised Selected Papers (to appear)

5. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1-2), 285–297 (1998)

6. Bose, R.P.J.C., Verbeek, H.M.W., van der Aalst, W.M.P.: Discovering hierarchical
process models using prom. In: CAiSE Forum (Selected Papers), pp. 33–48 (2011)

7. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process
mining: A taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A.
(eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)

8. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Slice, mine and
dice: Complexity-aware automated discovery of business process models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer,
Heidelberg (2013)

9. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012,
Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)

10. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data &
Knowledge Engineering 67(1), 74–102 (2008)

11. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010)

12. Liu, D., Shen, M.: Workflow modeling for virtual processes: an order-preserving
process-view approach. Information Systems 28, 505–532 (2003)

13. Milani, F., Dumas, M., Matulevičius, R.: Decomposition driven consolidation of
process models. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS,
vol. 7908, pp. 193–207. Springer, Heidelberg (2013)

14. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP,
vol. 17, pp. 109–120. Springer, Heidelberg (2009)

15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Kaufmann Publishers Inc. (2005)


	Mining Predictive Process Models
out of Low-level Multidimensional Logs

	1 Introduction
	2 Preliminaries
	3 Approach and Implementation
	3.1 Solution Algorithm
	3.2 Implementation Issues and Prototype System

	4 Experiments
	4.1 Tests on the Harbor Scenario
	4.2 Tests on the Bug Scenario

	5 Discussion and Conclusions
	References




