
Lightweight Formal Verification in Real World,

A Case Study

Andrea Atzeni, Tao Su, and Teodoro Montanaro

Dip. Automatica e Informatica
Politecnico di Torino, 10129 Torino, Italy

{shocked,tao.su}@polito.it, teodoro.montanaro@studenti.polito.it

Abstract. To security oriented large-scale projects, formal verification
is widely used to assure the satisfaction of claimed security properties.
Although complete formal verification and validation requires a great
amount of time and resources, applying lightweight formal methods to
partial specifications reduces the required efforts to a convenient amount,
while can still uncover sensitive software design problems. This paper
describes our experience of applying lightweight formal verification to
the authentication system of webinos, a substantial cross-device software
infrastructure developed in a large scale EU funded project. The paper
details the approach, the properties analysed, the lessons learned and
concludes with possible recommendations for practitioners and designers
about how to use lightweight formal verification in real world projects.

Keywords: lightweight formal methods, authentication system,
web-based platform, security properties, model checking.

1 Introduction

In computer science, formal methods are used under the expectation that the
mathematical models will help to find out the errors hidden in system design.
However, they are also considered techniques requiring high level expertise. For
this reason, they are mostly considered for strong safety-demanding projects, like
space applications [1], or for sensitive security building blocks, like cryptographic
protocols [2].

In most real world projects, only a few properties are critical, and performing
formal analysis on the complete system is expensive. Lightweight formal methods
are promising solutions to this problem: only partial specifications and focused
properties can be verified, rather than the complete system model.

This paper describes our case study where we applied lightweight formal ver-
ification to the authentication system in the webinos platform [3], which aims
to provide a secured platform for various types of web-enabled devices.

In our study, the experience of generating formal models and the lessons
learned during the formal analysis process are more valuable than the end re-
sult. They can make recommendations to practitioners and designers in similar
situations, in particular the approach of assigning the lightweight formal verifi-
cation work to the testing group as higher-level testing work.

L. Iliadis, M. Papazoglou, and K. Pohl (Eds.): CAiSE 2014 Workshops, LNBIP 178, pp. 335–342, 2014.

c© Springer International Publishing Switzerland 2014

336 A. Atzeni, T. Su, and T. Montanaro

Testing is cost effective, flexible and widely used, but it is inefficient when
dealing with security properties and small probability errors. Thus, we intro-
duced a formal verification process in our work to provide cost-efficient coverage
of the key security domains correctness. As a positive side effect, this process
also brought a deeper understanding of the previous in-place testing procedures.

2 Related Work

Lightweight formal methods are popularly used to analyse critical security-
building blocks as well as strong safety-demanding applications.

Zave [4] applies lightweight formal modelling and analysis techniques to check
the correctness of the Chord protocol, a well known DHT algorithm. She analyses
the ability of the nodes to maintain a single ordered ring given ample time and no
disruptions while it is working. The result shows Chord is not correct: there are
cases where the ring may break and never repair itself. In the paper, the author
claims the usage of lightweight methods increases the quality of specifications
and implementations, taking only a very convenient amount of efforts to detect
most problems. Our work reaches the same conclusion. The main differences lie
on the approach: Zave’s work analyses whether the proposed global invariant is
preserved, while our work checks all paths of the available system states, until
the proposed properties are satisfied or falsified.

Taghdiri and Jackson [5] present how they use lightweight formal methods on
the Pull-Based Asynchronous Rekeying Framework (ARF), a solution proposed
for the scalable group key management problem in secure multicast. They agree
that lightweight formal methods are feasible and economical. During the analysis,
the authors build a model which is less than 100 lines, and check some critical
correctness properties. As a result, they detect several hidden flaws, including a
serious security breach. Compared with our work, Taghdiri and Jackson use the
tick-based modelling idiom, while we use the global-state modelling idiom. They
further generalised their model to a structure that can be reused in checking
a class of secure multicast key management protocols. The report of using the
same structure to validate Iolus protocol can be found in [6].

The researches described above use lightweight formal methods, but do not
answer the question of how to smoothly integrate formal methods into real world
projects without excessive cost. Researches along this vein exists in the industrial
world, where the systems involved are much more complex and only part of the
system is formally analysed. This is consistent with the concept of lightweight
formal methods, so it is sensible to mention approaches tried out to make formal
verification an accepted industrial practice. In this context, the authors of [1]
present a case study of using partial formal models for verifying the requirements
of FDIR system in space station. They proposed to consider formal verification
and validation as intermittent “spot checks” executed by an additional inde-
pendent formal methods experts. They argue this is a viable way to introduce
formal methods into real world projects. With this idea in mind, the authors also
present the case studies for spacecraft fault protection systems [7]. They suggest

Lightweight Formal Verification in Real World, A Case Study 337

that lightweight formal methods can offer an effective way to improve the qual-
ity of specifications, and consequently the end product. While our approach of
considering formal verification as part of abstract level testing work brings both
advantages and disadvantages, it is suitable for projects with limited resources,
i.e. when hiring an additional independent team of experts is not a sustainable
solution. Moreover, “re-using” the testing group during the verification process
allows for a deeper understanding of the specifications and the system, and this
will benefit the future testing work. The drawback comes from the lack of ex-
perience of the testing group, which could have a limited knowledge of formal
methods techniques.

3 The Case Study

The formal verification work started after a comprehensive testing system was
built [8]. The goals were finding the system flaws as well as highlighting the
potential misunderstandings in system specifications [9].

3.1 webinos Platform

The webinos project focuses on constructing a secured platform that can be
accessed by multiple types of web-enabled devices.

The architecture of this platform centres on the concept of Personal Zone,
which is one-to-one correlated with the user. The Personal Zone Hub (PZH) is
the focal point of the zone. The other devices in the zone are called Personal
Zone Proxies (PZPs), which support and expose standard JavaScript APIs for
accessing devices features, such as camera, geolocation, networking etc. The
devices can communicate with each other with or without the PZH after they
pass the challenges of the authentication system.

3.2 Authentication System in webinos

The authentication system consists of user authentication process, device au-
thentication process and third-party authentication process.

Users are primarily authenticated through their OpenID [10] credentials, such
as Google or Yahoo! accounts. This operation only allows a user to connect
through the PZH web interface. Devices are authenticated through the posses-
sion and use of an RSA private key. For devices which are generally used only
by a single user (e.g., smartphone), this credential can be used as an authenti-
cator for many privileged operations. For shared devices (e.g., smart TV), the
PZH needs to check the user’s presence and identity before this credential can
be further used for authentication. Third-party authentication is executed via
OAuth 1.0 [11], which requires an additional trusted developer-provided server to
hold on the developer’s OAuth credentials. This server is accessed by client-side
JavaScript of a webinos application in order to sign OAuth requests and gain
access to third-party resources. In user authentication and device authentication

338 A. Atzeni, T. Su, and T. Montanaro

Fig. 1. Partial webinos user authentication sequence diagram. Reprinted from [9].

processes, there are three isolated sub-processes corresponding to different situ-
ations. For example, in the device authentication process, there is a device-held
private key sub-process detailing how the user can get the RSA key from the
Keystore Manager to authenticate the current device.

In webinos, the workflow of each process is expressed using sequence diagrams,
with some additional explanations written in natural language. For example,
part of the user authentications process diagram is illustrated in Fig. 1, and the
detailed requirements that “OpenID login MUST be requested using the PAPE
extension and set max auth age=0 in order to prevent authentication caching”
are attached in the end. The other processes are expressed in the same way.

The authentication process is further detailed by an incomplete authentication
state machine (i.e. without presence checking state), which helps to understand
the state transitions, and several entity authentication tables outlining how dif-
ferent entities are authenticated by the others.

3.3 Approach

webinos platform is quite complex. A complete formal verification is neither
feasible nor cost-effective with respect to our goals. Our chosen approach is thus
practical and straightforward, as detailed in next steps:

1. clarifying the specifications logic and understanding the sequence diagrams;
2. translating the diagrams into corresponding formal models;
3. selecting the need-to-check properties;
4. analysing the results and finding possible improvements.

We used NuSMV [12] model checker. The principals in the authentication
system were modelled using VAR variables, each operation was presented as a
parameter of the VAR variable. And an additional system status was inserted
to present the snapshot of the system. The transitions between each state of
the VAR variables were assigned with ASSIGN variables based on the switch-
case logic. To be consistent with reality, we added non-determinism into the
models. User interacts with the system, thus we put two additional states, the
send wrong password state and the reject authorisation state into user’s status

Lightweight Formal Verification in Real World, A Case Study 339

representing the unexpected user behaviour. Availability is another concern, with
the potential occurrence of DoS attack. Thus the busy state was inserted into
the models, representing the situation where the module stops working after it
finishes its previous work. An example of state transitions of the User Agent
module is shown in Fig. 2. In any transition, with half probability either the
module proceeds to the next work or it enters the busy state.

i n i t (u s e r ag en t s t a tu s):= i d l e ;
next (u s e r ag en t s t a tu s):= case

sy s t em statu s = l o g i n r e q u e s t & u s e r ag en t s t a tu s = i d l e :
{ send auth req , busy } ;

sy s t em statu s = load au th u r l & u s e r ag en t s t a tu s = i d l e :
{ s e n d i d e n t i t y p r o v i d e r u r l r e q , busy } ;

TRUE : i d l e ;
esac ;

Fig. 2. An example, partial state transitions setting of User Agent

The need-to-check properties were defined using SPEC variables, which fell
into the following classifications:

– completeness : it is always true that the final state of the system will be the
correct one with the corresponding initial state.

– correctness : it is always true that the correct final state of the system can
be achieved with the corresponding initial state.

– security properties : the user who sends too many wrong credentials will be
stopped; the user who fails to pass authentication challenges will be blocked
for privileged operations; the affect of unexpected situations will be deleted
or mitigated by corresponding countermeasures.

3.4 Results

This study formally analysed the authentication system with 18 pages specifica-
tions, and built 5 models for the isolated processes. The total effort amount was
approximate to 1.5 person months. The efforts mainly came from the translation
from sequence diagrams to formal models, and the work of learning how to use
NuSMV. During the verification process, the following issues were reported:

– ambiguities and inconsistencies : although the specifications are mainly ex-
pressed in sequence diagrams, minor ambiguities and inconsistencies still
exist. For example, in the “entity authentication tables”, the term “PZPs”
refers to the devices in the third table, but in the sixth table, “PZPs” is
used to refer to the personal zone proxies.

340 A. Atzeni, T. Su, and T. Montanaro

– incompleteness : the specifications lack several key factors, resulting mislead-
ing for the implementation. For example, there are no details of how many
requests each module can take in the authentication system, and how they
will react with multiple requests. This issue leads to an ultimate challenge
to build a “perfect” model which shows the exact properties of the authen-
tication system. The method we chose to solve this problem was by adding
a second request which is concurrent with the first one, and setting that the
modules to work only when they are in IDLE state. This solution is a better
approximation of real behaviour, but has a very poor scalability.

– missing assumptions : the system designers only assume all the modules will
work as established, without considering unexpected situations. This error
is found in the model checking results, in which the checker reports the com-
pleteness property cannot be satisfied because of the unexpected situations
introduced in the models.

4 Discussion

During our work of applying lightweight formal verification to the webinos au-
thentication system, we strictly followed the pragmatic principle: we only mod-
elled a high-level abstraction of the system, without considering the other parts
of the platform. Still, some important problems were found. Several lessons wor-
thy sharing have been learned, which can give practitioners recommendations
on how to introduce lightweight formal methods into real world projects.

4.1 Lesson 1: Choose the Right Tool

The expensive requirement of expertise is the main obstacle between the formal
methods and real world projects. A suitable tool can greatly reduce this expense.
In our case, NuSMV is a fairly easy-to-use tool with respect to state exploration.

However, one major flaw of NuSMV was found in the verification process. If
user sends a wrong password, OpenID scheme will redirect the browser back to
the login webpage. NuSMV thinks this operation is a loop, and it raises an error.
The same happened when the user rejects the authorisation request.

From another point of view, when a user sends too many wrong credentials,
it is likely impersonated by a machine that is trying to perform a brute force
attack. OpenID scheme has already adopted the CAPTCHA [13] technique as
the countermeasure for this attack. So, in the model, a threshold was added to
limit the number of times a user can send the credentials to the OpenID server.
Hence, the problem was circumvented with strict consistency to reality.

4.2 Lesson 2: Assign the Verification Work to the Testing Group

Another important question is, who should perform formal verification work
to bring greater benefits with less costs? Our answer is: to the testing group.
Compared with hiring an independent formal verification experts team, assigning

Lightweight Formal Verification in Real World, A Case Study 341

the verification work to the testing group is cost friendly. Moreover, the testing
group already has a deep knowledge of the system, so the errors in the formal
models can be directly correlated to the system, even to the specific code points.
As a positive effect, this would make more robust traceability between the models
and the system. Since the testing group is experienced with errors, another
important issue of prioritising the errors is also solved by this approach. Finally,
the experience in verification improves the testing group capacity to generate
test cases, since it brings a deeper understanding of the system

4.3 Lesson 3: Focus Only on Crucial Properties

Focusing on crucial properties is a key argument in lightweight formal methods.
In our case, the authentication system consists of distributed modules and

uses different authentication methods for different resources, it is thus rather
complex with respect to the need-to-check properties. However, since the con-
nections are established on top of secure channels, we only analyse the system
in an abstract level, i.e. the properties relative to message content are not con-
sidered. For this reason, only the properties listed in 3.3 are concerned, which
are strictly related to the system functionality. These properties are shared by
many authentication schemes, thus our models can be generalised and applied
to different authentication systems.

4.4 Lesson 4: Adopt OpenID over a Self-developed Module

In the case of building an authentication system for the web-related software,
OpenID is more thorough and secure than a “re-invented wheel”.

In our case, the designers of the authentication system did not consider user’s
misbehaviour. As stated in Subsection 4.1, lacking CAPTCHA technique will
leave space for brute force attacks. Furthermore, at present the open-source
OpenID server implementation is available, allowing for organization-specific
configurations, thus the scheme can be used even in case of specific requirements.

5 Conclusion and Future Work

Lightweight formal verification technique minimises the gap between formal
methods and real world projects. In our work, several major issues were found
with very limited resources. Another important aspect is that this verification
work was done by the testing group of the project, allowing for positive feedback
in the development of a refined testing suite.

However, to make formal verification an accepted industrial practice, there
is still a lot of work ahead. This method should be tested to a broader range
of security properties and on other security-critical domains in the platform.
Also, the most effective formal model should be identified. We plan to analyse
the same system with different formal languages, to assess which language and
specifically which language capability is optimal in the concept of lightweight
formal methods.

342 A. Atzeni, T. Su, and T. Montanaro

Acknowledgements. The research described in this paper was funded by the
EU FP7 webinos project (FP7-ICT-2009-05 Objective 1.2).

References

1. Easterbrook, S., Callahan, J.: Formal methods for verification and validation of
partial specifications: A case study. Journal of Systems and Software 40(3), 199–
210 (1998)

2. Mundra, P., Shukla, S., Sharma, M., Pai, R.M., Singh, S.: Modeling and Verifica-
tion of Kerberos Protocol Using Symbolic Model Verifier. In: 2011 International
Conference on Communication Systems and Network Technologies, pp. 651–654.
IEEE (June 2011)

3. Fuhrhop, C., Lyle, J., Faily, S.: The webinos project. In: Proceedings of the 21st
International Conference Companion on World Wide Web - WWW 2012, p. 259.
ACM Press, New York (2012)

4. Zave, P.: Using lightweight modeling to understand chord. ACM SIGCOMM Com-
puter Communication Review 42(2), 49 (2012)

5. Taghdiri, M., Jackson, D.: A lightweight formal analysis of a multicast key man-
agement scheme. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS,
vol. 2767, pp. 240–256. Springer, Heidelberg (2003)

6. Taghdiri, M.: Lightweight modelling and automatic analysis of multicast key man-
agement schemes. Master’s thesis. MIT (2002)

7. Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.: Expe-
riences using lightweight formal methods for requirements modeling. IEEE Trans-
actions on Software Engineering 24(1), 4–14 (1998)

8. Su, T., Lyle, J., Atzeni, A., Faily, S., Virji, H., Ntanos, C., Botsikas, C.: Continuous
integration for web-based software infrastructures: Lessons learned on the webinos
project. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 145–150.
Springer, Heidelberg (2013)

9. webinos group: webinos authentication system specifications (2012),
http://www.webinos.org/content/html/D033/Authentication.htm

10. Recordon, D., Reed, D.: OpenID 2.0. In: Proceedings of the second ACM workshop
on Digital identity management - DIM 2006, p. 11. ACM Press, New York (2006)

11. Hammer-Lahav, E.: The OAuth 1.0 Protocol (2010),
http://tools.ietf.org/html/rfc5849

12. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A reimplementation
of SMV. In: Proc. STTT 1998, pp. 25–31 (1998)

13. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003)

http://www.webinos.org/content/html/D033/Authentication.htm
http://tools.ietf.org/html/rfc5849

	Lightweight Formal Verification in Real World,
A Case Study

	1 Introduction
	2 Related Work
	3 The Case Study
	3.1 webinos Platform

	3.2 Authentication System in webinos

	3.3 Approach
	3.4 Results

	4 Discussion
	4.1 Lesson 1: Choose the Right Tool
	4.2 Lesson 2: Assign the Verification Work to the Testing Group
	4.3 Lesson 3: Focus Only on Crucial Properties
	4.4 Lesson 4: Adopt OpenID over a Self-developed Module

	5 Conclusion and Future Work
	References

