
Chapter 2
Frequent Pattern Mining Algorithms: A Survey

Charu C. Aggarwal, Mansurul A. Bhuiyan and Mohammad Al Hasan

Abstract This chapter will provide a detailed survey of frequent pattern mining
algorithms. A wide variety of algorithms will be covered starting from Apriori.
Many algorithms such as Eclat, TreeProjection, and FP-growth will be discussed.
In addition a discussion of several maximal and closed frequent pattern mining
algorithms will be provided. Thus, this chapter will provide one of most detailed
surveys of frequent pattern mining algorithms available in the literature.

Keywords Frequent pattern mining algorithms · Apriori · TreeProjection ·
FP-growth

1 Introduction

In data mining, frequent pattern mining (FPM) is one of the most intensively inves-
tigated problems in terms of computational and algorithmic development. Over the
last two decades, numerous algorithms have been proposed to solve frequent pattern
mining or some of its variants, and the interest in this problem still persists [45, 75].
Different frameworks have been defined for frequent pattern mining. The most com-
mon one is the support-based framework, in which itemsets with frequency above
a given threshold are found. However, such itemsets may sometimes not represent
interesting positive correlations between items because they do not normalize for
the absolute frequencies of the items. Consequently, alternative measures for inter-
estingness have been defined in the literature [7, 11, 16, 63]. This chapter will focus
on the support-based framework because the algorithms based on the interestingness

C. C. Aggarwal (�)
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
e-mail: charu@us.ibm.com

M. A. Bhuiyan · M. A. Hasan
Indiana University–Purdue University, Indianapolis, IN, USA
e-mail: mbhuiyan@cs.iupui.edu

M. A. Hasan
e-mail: alhasan@cs.iupui.edu

C. C. Aggarwal, J. Han (eds.), Frequent Pattern Mining, 19
DOI 10.1007/978-3-319-07821-2_2, © Springer International Publishing Switzerland 2014

20 C. C. Aggarwal et al.

Fig. 2.1 A generic frequent pattern mining algorithm

framework are provided in a different chapter. Surveys on frequent pattern mining
may be found in [26, 33].

One of the main reasons for the high level of interest in frequent pattern mining
algorithms is due to the computational challenge of the task. Even for a moderate
sized dataset, the search space of FPM is enormous, which is exponential to the
length of the transactions in the dataset. This naturally creates challenges for itemset
generation, when the support levels are low. In fact, in most practical scenarios, the
support levels at which one can mine the corresponding itemsets are limited (bounded
below) by the memory and computational constraints. Therefore, it is critical to be
able to perform the analysis in a space- and time-efficient way. During the first few
years of research in this area, the primary focus of work was to find FPM algorithms
with better computational efficiency.

Several classes of algorithms have been developed for frequent pattern mining,
many of which are closely related to one another. In fact, the execution tree of all the
algorithms is mostly different in terms of the order in which the patterns are explored,
and whether the counting work done for different candidates is independent of one
another. To explain this point, we introduce a primitive “baseline” algorithm that
forms the heart of most frequent pattern mining algorithms.

Figure 2.1 presents the pseudocode for a very simple “baseline” frequent pattern
mining algorithm. The algorithm takes the transaction database T and a user-defined
support value s as input. It first populates all length-one frequent patterns in a frequent
pattern data-store, FP . Then it generates a candidate pattern and computes its support
in the database. If the support of the candidate pattern is equal or higher than the
minimum support threshold the pattern is stored in FP . The process continues until
all the frequent patterns from the database are found.

In the aforementioned algorithm, candidate patterns are generated from the previ-
ously generated frequent patterns. Then, the transaction database is used to determine
which of the candidates are truly frequent patterns. The key issues of computa-
tional efficiency arise in terms of generating the candidate patterns in an orderly and
carefully designed fashion, pruning irrelevant and duplicate candidates, and using
well chosen tricks to minimize the work in counting the candidates. Clearly, the

2 Frequent Pattern Mining Algorithms: A Survey 21

effectiveness of these different strategies depend on each other. For example, the
effectiveness of a pruning strategy may be dependent on the order of exploration of
the candidates (level-wise vs. depth first), and the effectiveness of counting is also
dependent on the order of exploration because the work done for counting at the
higher levels (shorter itemsets) can be reused at the lower levels (longer itemsets)
with certain strategies, such as those explored in TreeProjection and FP-growth.
Surprising as it might seem, virtually all frequent pattern mining algorithms can be
considered complex variations of this simple baseline pseudocode. The major chal-
lenge of all of these methods is that the number of frequent patterns and candidate
patterns can sometimes be large. This is a fundamental problem of frequent pattern
mining although it is possible to speed up the counting of the different candidate
patterns with the use of various tricks such as database projections. An analysis on
the number of candidate patterns may be found in [25].

The candidate generation process of the earliest algorithms used joins. The original
Apriori algorithm belongs to this category [1]. Although Apriori is presented as a join-
based algorithm, it can be shown that the algorithm is a breadth first exploration of a
structured arrangement of the itemsets, known as a lexicographic tree or enumeration
tree. Therefore, later classes of algorithms explicitly discuss tree-based enumeration
[4, 5]. The algorithms assume a lexicographic tree (or enumeration tree) of candidate
patterns and explore the tree using breadth-first or depth-first strategies. The use of
the enumeration tree forms the basis for understanding search space decomposition,
as in the case of the TreeProjection algorithm [5]. The enumeration tree concept is
very useful because it provides an understanding of how the search space of candidate
patterns may be explored in a systematic and non-redundant way. Frequent pattern
mining algorithms typically need to evaluate the support of frequent portions of
the enumeration tree, and also rule out an additional layer of infrequent extensions
of the frequent nodes in the enumeration tree. This makes the candidate space of
all frequent pattern mining algorithms virtually invariant unless one is interested in
particular types of patterns such as maximal patterns.

The enumeration tree is defined on the prefixes of frequent itemsets, and will
be introduced later in this chapter. Later algorithms such as FP-growth perform
suffix-based recursive exploration of the search space. In other words, the frequent
patterns with a particular pattern as a suffix are explored at one time. This is because
FP-growth uses the opposite item ordering convention as most enumeration tree
algorithms though the recursive exploration order of FP-growth is similar to an
enumeration tree.

Note that all classes of algorithms, implicitly or explicitly, explore the search
space of patterns defined by an enumeration tree of frequent patterns with different
strategies such as joins, prefix-based depth-first exploration, or suffix-based depth-
first exploration. However, there are significant differences in terms of the order in
which the search space is explored, the pruning methods used, and how the counting
is performed. In particular, certain projection-based methods help in reusing the
counting work for k-itemsets for (k + 1)-itemsets with the use of the notion of
projected databases. Many algorithms such as TreeProjection and FP-growth are
able to achieve this goal.

22 C. C. Aggarwal et al.

Table 2.1 Toy transaction
database and frequent items
of each transaction for a
minimum support of 3

tid Items Sorted frequent items

2 a,b,c,d,f,h a,b,c,d,f
3 a,f,g a,f
4 b,e,f,g b,f,e
5 a,b,c,d,e,h a,b,c,d,e

This chapter is organized as follows. The remainder of this chapter discusses notations
and definitions relevant to frequent pattern mining. Section 2 discusses join-based
algorithms. Section 3 discusses tree-based algorithms. All the algorithms discussed
in Sects. 2 and 3 extend prefixes of itemsets to generated frequent patterns. A number
of methods that extend suffixes of frequent patterns are discussed in Sect. 4. Variants
of frequent pattern mining, such as closed and maximal frequent pattern mining, are
discussed in Sect. 5. Other optimized variations of frequent pattern mining algorithms
are discussed in Sect. 6. Methods for reducing the number of passes, with the use of
sampling and aggregation are proposed in Sect. 7. Finally, Sect. 8 concludes chapter
with an overall summary.

1.1 Definitions

In this section, we define several key concepts of frequent pattern mining (FPM) that
we will use in the remaining part of the chapter.

Let, T = {T1, T2, . . . , Tn} be a transaction database, where each Ti ∈ T , ∀i =
{1 . . . n} consists of a set of items, say Ti = {x1, x2, x3, . . . xl}. A set P ⊆ Ti is called
an itemset. The size of an itemset is defined by the number of items it contains.
We will refer an itemset as l-itemset (or l-pattern), if its size is l. The number of
transactions containing P is referred to as the support of P . A pattern P is defined
to be frequent if its support is at least equal to the the minimum threshold.

Table 2.1 depicts a toy database with 5 transactions (T1, T2 T3, T4 and T5). The
second column shows the items in each transaction. In the third column, we show
the set of items that are frequent in the corresponding transaction for a minimum
support value of 3. For example, the item h in transaction with tid value of 2 is
an infrequent item with a support value of 2. Therefore, it is not listed in the third
column of the corresponding row. Similarly, the pattern {a, b} (or, ab in abbreviated
form) is frequent because it has a support value of 3.

The frequent patterns are often used to generate association rules. Consider the
rule X ⇒ Y , where X and Y are sets of items. The confidence of the rule X ⇒ Y

is the equal to the ratio of the support of X ∪ Y to that of the support of X. In other
words, it can be viewed as the conditional probability that Y occurs, given that X

has occurred. The support of the rule is equal to the support of X ∪ Y . Association
rule-generation is a two-phase process. The first phase determines all the frequent
patterns at a given minimum support level. The second phase extracts all the rules
from these patterns. The second phase is fairly trivial and with limited sophistication.
Therefore, most of the algorithmic work in frequent pattern mining focusses on the

2 Frequent Pattern Mining Algorithms: A Survey 23

Fig. 2.2 The lattice of
itemsets Null

FREQUENT ITEMSETS

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd
INFREQUENT ITEMSETS

BORDER BETWEEN
FREQUENT AND

INFREQUENT ITEMSETS

first phase. This chapter will also focus on the first phase of frequent pattern mining,
which is generally considered more important and non-trivial.

Frequent patterns satisfy a downward closure property, according to which every
subset of a frequent pattern is also frequent. This is because if a pattern P is a
subset of a transaction, then every pattern P ′ ⊆ P will also be a subset of T .
Therefore, the support of P ′ can be no less than that of P . The space of exploration
of frequent patterns can be arranged as a lattice, in which every node is one of the 2d

possible itemsets, and an edge represents an immediate subset relationship between
these itemsets. An example of a lattice of possible itemsets for a universe of items
corresponding to {a, b, c, d} is illustrated in Fig. 2.2. The lattice represents the search
of frequent patterns, and all frequent pattern mining algorithms must, in one way or
another, traverse this lattice to identify the frequent nodes of this lattice. The lattice is
separated into a frequent and an infrequent part with the use of a border. An example
of a border is illustrated in Fig. 2.2. This border must satisfy the downward closure
property.

The lattice can be traversed with a variety of strategies such as breadth-first or
depth-first methods. Furthermore, candidate nodes of the lattice may be generated
in many ways, such as using joins, or using lexicographic tree-based extensions.
Many of these methods are conceptually equivalent to one another. The following
discussion will provide an overview of the different strategies that are commonly
used.

2 Join-Based Algorithms

Join-based algorithms generate (k + 1)-candidates from frequent k-patterns with the
use of joins. These candidates are then validated against the transaction database.
The Apriori method uses joins to create candidates from frequent patterns, and is
one of the earliest algorithms for frequent pattern mining.

24 C. C. Aggarwal et al.

2.1 Apriori Method

The most basic join-based algorithm is the Apriori method [1]. The Apriori approach
uses a level-wise approach in which all frequent itemsets of length k are generated
before those of length (k + 1). The main observation which is used for the Apriori
algorithm is that every subset of a frequent pattern is also frequent. Therefore, can-
didates for frequent patterns of length (k + 1) can be generated from known frequent
patterns of length k with the use of joins. A join is defined by pairs of frequent k-
patterns that have at least (k − 1) items in common. Specifically, consider a frequent
pattern {i1, i2, i3, i4} that is frequent, but has not yet been discovered because only
itemsets of length 3 have been discovered so far. In this case, because the patterns
{i1, i2, i3} and {i1, i2, i4} are frequent, they will be present in the set F3 of all frequent
patterns with length k = 3. Note that this particular pair also has k − 1 = 2 items in
common. By performing a join on this pair, it is possible to create the candidate pat-
tern {i1, i2, i3, i4}. This pattern is referred to as a candidate because it might possibly
be frequent, and one most either rule it in or rule it out by support counting. There-
fore, this candidate is then validated against the transaction database by counting its
support. Clearly, the design of an efficient support counting method plays a critical
role in the overall efficiency of the process. Furthermore, it is important to note that
the same candidate can be produced by joining multiple frequent patterns. For ex-
ample, one might join {i1, i2, i3} and {i2, i3, i4} to achieve the same result. Therefore,
in order to avoid duplication in candidate generation, two itemsets are joined only
whether first (k − 1) items are the same, based on a lexicographic ordering imposed
on the items. This provides all the (k + 1)-candidates in a non-redundant way.

It should be pointed out that some candidates can be pruned out in an efficient way,
without validating them against the transaction database. For any (k+1)-candidates,
it is checked whether all its k subsets are frequent. Although it is already known that
two of its subsets contributing to the join are frequent, it is not known whether its
remaining subsets are frequent. If all its subsets are not frequent, then the candidate
can be pruned from consideration because of the downward closure property. This is
known as the Apriori pruning trick. For example, in the previous case, if the itemset
{i1, i3, i4} does not exist in the set of frequent 3-itemsets which have already been
found, then the candidate itemset {i1, i2, i3, i4} can be pruned from consideration with
no further computational effort. This greatly speeds up the overall algorithm. The
generation of 1-itemsets and 2-itemsets is usually performed in a specialized way
with more efficient techniques.

Therefore, the basic Apriori algorithm can be described recursively in level-wise
fashion. the overall algorithm comprises of three steps that are repeated over and
over again, for different values of k, where k is the length of the pattern generated in
the current iteration. The four steps are those of (i) generation of candidate patterns
Ck+1 by using joins on the patterns in Fk , (ii) the pruning of candidates from Ck+1,
for which all subsets to not lie in Fk , and (iii) the validation of the patterns in Ck+1

against the transaction database T , to determine the subset of Ck+1 which is truly
frequent. The algorithm is terminated, when the set of frequent k-patterns Fk in a
given iteration is empty. The pseudo-code of the overall procedure is presented in
Fig. 2.3.

2 Frequent Pattern Mining Algorithms: A Survey 25

Fig. 2.3 The Apriori
algorithm

The computationally intensive procedure in this case is the counting of the candi-
dates in Ck+1 with respect to the transaction database T . Therefore, a number of
optimizations and data structures have been proposed in [1] (and also the subsequent
literature) to speed up the counting process. The data structure proposed in [1] is
that of constructing a hash-tree to maintain the candidate patterns. A leaf node of the
hash-tree contains a list of itemsets, whereas an interior node contains a hash-table.
An itemset is mapped to a leaf node of the tree by defining a path from the root to the
leaf node with the use of the hash function. At a node of level i, a hash function is
applied to the ith item to decide which branch to follow. The itemsets in the leaf node
are stored in sorted order. The tree is constructed recursively in top–down fashion,
and a minimum threshold is imposed on the number of candidates in the leaf node.

To perform the counting, all possible k-itemsets which are subsets of a transaction
are discovered in a single exploration of the hash-tree. To achieve this goal all possible
paths in the hash tree that could correspond to subsets of the transaction, are followed
in recursive fashion, to determine which leaf nodes are relevant to that transaction.
After the leaf nodes have been discovered, the itemsets at these leaf nodes that are
subsets of that transaction are isolated and their count is incremented. The actual
selection of the relevant leaf nodes is performed by recursive traversal as follows. At
the root node, all branches are followed such that any of the items in the transaction
hash to one of branches.At a given interior node, if the ith item of the transaction was
last hashed, then all items following it in the transaction are hashed to determine the
possible children to follow. Thus, by following all these paths, the relevant leaf nodes
in the tree are determined. The candidates in the leaf node are stored in sorted order,
and can be compared efficiently to the hashed sequence of items in the transaction to
determine whether they are relevant. This provides a count of the itemsets relevant
to the transaction. This process is repeated for each transaction to determine the final
support count for each itemset. It should be pointed out that the reason for using
a hash function at the intermediate nodes is to reduce the branching factor of the
hash tree. However, if desired, a trie can be used explicitly, in which the degree of a

26 C. C. Aggarwal et al.

Fig. 2.4 Execution tree of Apriori algorithm

node is potentially of the order of the total number of items. An example of such an
implementation is provided in [12], and it seems to work quite well. An algorithm
that shares some similarities to the Apriori method, was independently proposed in
[44], and subsequently a combined work was published in [3].

Figure 2.4 illustrates the execution tree of the join-based Apriori algorithm over
the toy transaction database mentioned in Table 2.1 for minimum support value 3.
As mentioned in the pseudocode of Apriori, a candidate k-patterns are generated
by joining two frequent itemset of size (k − 1). For example, at level 3, the pattern
{a, b, c} is generated by joining {a, b} and {a, c}. After generating the candidate
patterns, the support of the patterns is computed by scanning every transaction in
the database and determining the frequent ones. In Fig. 2.4, a candidate patterns is
shown in a box along with its support value. A frequent candidate is shown in a solid
box, and an infrequent candidate is shown in a dotted box. An edge represents the
join relationship between a candidate pattern of size k and a frequent pattern of size
(k−1) such that the latter is used to generate the earlier. The figure also illustrates the
fact that a pair of frequent patterns are used to generate a candidate pattern, whereas
no candidates are generated from an infrequent pattern.

2.1.1 Apriori Optimizations

Numerous optimizations were proposed for the Apriori algorithm [1] that are referred
to as AprioriTid and AprioriHybrid respectively. In the AprioriTid algorithm, each
transaction is replaced by a shorter transaction or null transaction) during the kth
phase. Let the set of k + 1-candidates in Ck+1 that are contained in transaction T be
denoted by R(T , Ck+1). This set R(T , Ck+1) is added to a newly created transaction
database T ′

k . If the set R(T , Ck+1) is null, then clearly, a number of different tradeoffs
exist with the use of such an approach.

2 Frequent Pattern Mining Algorithms: A Survey 27

• Because each newly created transaction in T ′
k is much shorter, this makes

subsequent support counting more efficient.
• In some cases, no candidate may be a subset of the transaction. Such a transaction

can be dropped from the database because it does not contribute to the counting
of support values.

• In other cases, more than one candidate may be a subset of the transaction, which
will actually increase the overhead of the algorithm. Clearly, this is not a desirable
scenario.

Thus, the first two factors improve the efficiency of the new representation, whereas
the last factor worsens it. Typically, the impact of the last factor is greater in the early
iterations, whereas the impact of the first two factors is greater in the later iterations.
Therefore, to maximize the overall efficiency, a natural approach would be to not
use this optimization in the early iterations, and apply it only in the later iterations.
This variation is referred to as the AprioriHybrid algorithm [1]. Another optimization
proposed in [9] is that the support of many patterns can be inferred from those of
key patterns in the data. This is used to significantly enhance the efficiency of the
approach.

Numerous other techniques have been proposed that use different techniques to
optimize the original implementation of the Apriori algorithm. As an example, the
method in [1] and [44] share a number of similarities but are somewhat different at
the implementation level. A work that combines the ideas from these different pieces
of work is presented in [3].

2.2 DHP Algorithm

The DHP algorithm, also known as the Direct Hashing and Pruning method [50],
was proposed soon after the Apriori method. It proposes two main optimizations to
speed up the algorithm. The first optimization is to prune the candidate itemsets in
each iteration, and the second optimization is to trim the transactions to make the
support-counting process more efficient.

To prune the itemsets, the algorithm tracks partial information about candidate
(k+1)-itemsets, while explicitly counting the support of candidate k-itemsets. During
the counting of candidate k-itemsets, all (k + 1) subsets of the transaction are found
and hashed into a table that maintains the counts of the number of subsets hashed
into each entry. During the phase of counting (k +1)-itemsets, the counts in the hash
table are retrieved for each itemset. Clearly, these counts are overestimates because
of possible collisions in the hash table. Those itemsets for which the counts are below
the user-specified support level are then pruned from consideration.

A second optimization proposed in DHP is that of transaction trimming. A key
observation here is that if an item does not appear in at least k frequent itemsets in
Fk , then no frequent itemset in Fk+1 will contain that item. This follows from the fact
that there should be at least k (immediate) subsets of each frequent pattern in Fk+1

28 C. C. Aggarwal et al.

containing a particular item that also occur in Fk and also contain that item. This
implies that if an item does not appear in at least k frequent itemsets in Fk , then that
item is no longer relevant to further support counting for finding frequent patterns.
Therefore, that item can be trimmed from the transaction. This reduces the width of
the transaction, and increases the efficiency of processing. The overhead from the
data structures is significant, and most of the advantages are obtained for patterns of
smaller length such as 2-itemsets. It was pointed out in later work [46, 47, 60] that
the use of triangular arrays for support counting of 2-itemsets in the context of the
Apriori method is even more efficient than such an approach.

2.3 Special Tricks for 2-Itemset Counting

A number of special tricks can be used to improve the effectiveness of 2-itemset
counting. The case of 2-itemset counting is special and is often similar for the case
of join-based and tree-based algorithms. As mentioned above, one approach is to
use a triangular array that maintains the counts of the k-patterns explicitly. For each
transaction, a nested loop can be used to explore all pairs of items in the transaction
and increment the corresponding counts in the triangular array. A number of caching
tricks can be used [5] to improve data locality access during the counting process.
However, if the number of possible items are very large, this will still be a very
significant overhead because it is needed to maintain an entry for each pair of items.
This is also very wasteful, if many of the 1-items are not frequent, or some of the
2-item counts are zero. Therefore, a possible approach would be to first prune out all
the 1-items which are not frequent. It is simply not necessary to count the support
of a 2-itemset unless both of its constituent items are frequent. A hash table can
then be used to maintain the frequency counts of the corresponding 2-itemsets. As
before, the transactions are explored in a double nested loops, and all pairs of items
are hashed into the table, with the caveat, that each of the individual items must be
frequent. The set of itemsets which satisfy the support requirements are reported.

2.4 Pruning by Support Lower Bounding

Most of the pruning tricks discussed earlier prune itemsets when they are guaranteed
not meet the required support threshold. It is also possible to skip the counting process
for an itemset if the itemset is guaranteed to meet the support threshold. Of course,
the caveat here is that the exact support of that itemset will not be available, beyond
the knowledge that it meets the minimum threshold. This is sufficient in the case of
many applications.

Consider two k-itemsets A and B that have k − 1 items A ∩ B in common. Then,
the union of the items in A and B, denoted by A ∪ B will have exactly k + 1 items.
Then, if sup(·) represent the support of an itemset, then the support of A ∪ B can

2 Frequent Pattern Mining Algorithms: A Survey 29

be lower bounded as follows:

sup(A ∪ B) ≥ sup(A) + sup(B) − sup(A ∩ B) (2.1)

This condition follows directly from set-theoretic considerations. Thus, the support
of (k+1)-candidates can be lower bounded in terms of the (already computed) support
values of itemsets of length k or less. If the computed value on the right-hand side
is greater than the required minimum support, then the counting of the candidate
does not need to be performed explicitly, and therefore considerable savings can be
achieved. An example of a method which uses this kind of pruning is the Apriori_LB
method [10].

Another interesting rule is that if the support of an itemset X is the same as that
of X ∪ Y , then for any superset X′ ⊇ X, it is the case that the support of the itemset
X′ is the same as that of X′ ∪Y . This rule can be shown directly as a corollary of the
equation above. This is very useful in a variety of frequent pattern mining algorithms.
For example, once the support of X ∪ {i} has been shown to be the same as that of
X, then, for any superset X′ of X, it is no longer necessary to explicitly compute
the support of X′ ∪ {i}, after the support of X′ has already been computed. Such
optimizations have been shown to be quite effective in the context of many frequent
pattern mining algorithms [13, 51, 17]. As discussed later, this trick is not exclusive
to join-based algorithms, and is often used effectively in tree-based algorithms such
as MaxMiner, and MAFIA.

2.5 Hypercube Decomposition

One feasible way to reduce the computation cost of support counting is to find support
of multiple frequent patterns at one time. LCM [66] devise a technique referred to as
hypercube decomposition in this purpose. The multiple itemsets obtained at one time,
comprise a hypercube in the itemset lattice. Suppose that P is a frequent pattern,
t idset(P) contains the transactions that P is part of, and tail(P) denotes the latest
item extension to the itemset P . H (P) is the set of items e satisfying e > tail(P)
and t idset(P) = t idset(P ∪ e). The set H (P) is referred to as the hypercube set.
Then, for any P ′ ⊆ H (P), t idset(P ∪ P ′) = t idset(P) is true, and P ∪ P ′
is frequent. The work in [66] uses this property in the candidate generation phase.
For two itemsets P and P ∪ P ′, we say that P

′′
is between P and P ∪ P ′ if

P ⊆ P
′′ ⊆ P ∪ P ′. In the phase with respect to P , we output all P

′′
between P

and P ∪ H (P). This technique saves significant time in counting.

3 Tree-Based Algorithms

The tree-based algorithm is based on set-enumeration concepts. The candidates can
be explored with the use of a subgraph of the lattice of itemsets (see Fig. 2.2), which
is also referred to as the lexicographic tree or enumeration tree [5]. These terms will,

30 C. C. Aggarwal et al.

acdf Level 4

Null Level 0

fba ec Level 1d

Level 2bc bd cd cf dfab ac ad af

Level 3abc abd acd acf cd cdfad�

Fig. 2.5 The lexicographic tree (also known as enumeration tree)

therefore, be used interchangeably. Thus, the problem of frequent itemset generation
is equivalent to that of constructing the enumeration tree. The tree can be grown
in a wide variety of ways such as breadth-first or depth-first order. Because most
of the discussion in this section will use this structure as a base for algorithmic
development, this concept will be discussed in detail here. The main characteristic
of tree-based algorithms is that the enumeration tree (or lexicographic tree) provides
a certain order of exploration that can be extremely useful in many scenarios.

It is assumed that a lexicographic ordering exists among the items in the database.
This lexicographic ordering is essential for efficient set enumeration without rep-
etition. To indicate that an item i occurs lexicographically earlier than j , we will
use the notation i ≤L j . The lexicographic tree is an abstract representation of the
large itemsets with respect to this ordering. The lexicographic tree is defined in the
following way:

• A node exists in the tree corresponding to each large itemset. The root of the tree
corresponds to the null itemset.

• Let I = {i1, . . . ik} be a large itemset, where i1, i2 . . . ik are listed in lexicographic
order. The parent of the node I is the itemset {i1, . . . ik−1}.

This definition of ancestral relationship naturally defines a tree structure on the nodes
that is rooted at the null node. A frequent 1-extension of an itemset such that the
last item is the contributor to the extension will be called a frequent lexicographic
tree extension, or simply a tree extension. Thus, each edge in the lexicographic tree
corresponds to an item which is the frequent lexicographic tree extension to a node.
The frequent lexicographic extensions of node P are denoted by E(P). An example
of the lexicographic tree is illustrated in Fig. 2.5. In this example, the frequent
lexicographic extensions of node a are b, c, d , and f .

2 Frequent Pattern Mining Algorithms: A Survey 31

Let Q be the immediate ancestor of the itemset P in the lexicographic tree.
The set of prospective branches of a node P is defined to be those items in E(Q)
which occur lexicographically after the node P . These are the possible frequent
lexicographic extensions of P . We denote this set by F (P). Thus, we have the
following relationship: E(P) ⊆ F (P) ⊂ E(Q). The value of E(P) in Fig. 2.5, when
P = ab is {c, d}. The value of F (P) for P = ab is {c, d, f }, and for P = af , F (P)
is empty.

It is important to point out that virtually all non-maximal and maximal algorithms,
starting from Apriori, can be considered enumeration-tree methods. In fact, there are
few frequent pattern mining algorithms which do not use the enumeration tree, or a
subset thereof (in maximal pattern mining) for frequent itemset generation. However,
the order of exploration of the different algorithms of the lexicographic tree is quite
different. For example, Apriori uses a breadth-first strategy, whereas other algorithms
discussed later in this chapter use a depth-first strategy. Some methods are explicit
about the relationship about the candidate generation process with the enumeration
tree, whereas others, such as Apriori, are not. For example, by examining Fig. 2.4, it
is evident that Apriori candidates can be generated by joining two frequent siblings of
a lexicographic tree. In fact, all candidates can be generated in an exhaustive and non-
redundant way by joining frequent siblings. For example, the two itemsets acdf h

and acdfg are siblings, because they are children of the node acdf . By joining
them, one obtains the candidate pattern acdfgh. Thus, while the Apriori algorithm
is a join-based algorithm, it can also be explained in terms of the enumeration tree.

Parts of the enumeration tree may be removed by some of the algorithms by
pruning methods. For example, the Apriori algorithm uses a levelwise pruning trick.
For maximal pattern mining the advantages gained from pruning tricks can be very
significant. Therefore, the number of candidates in the execution tree of different
algorithms is different only because of pruning optimization tricks. However, some
methods are able to achieve better counting strategies by using the structure of the
enumeration tree to avoid re-doing the counting work already done for k-candidates
to (k+1)-candidates. Therefore, explicitly introducing the enumeration tree is helpful
because it allows a more flexible way to visualize candidate exploration strategies
than join-based methods. The explicit introduction of the enumeration tree also helps
in understanding whether the gains in different algorithms arise as a result of fewer
number of candidates, or whether they arise as a result of better counting strategies.

3.1 AIS Algorithm

The original AIS algorithm [2] is a simple version of the lexicographic-tree algorithm,
though it is not directly presented as such. In this approach, the tree is constructed
in levelwise fashion and the corresponding itemsets at a given level are counted
with the use of the transaction database. The algorithm does not use any specific
optimizations to improve the efficiency of the counting process. As will be discussed
later, a variety of methods can be used to further improve the efficiency of tree-based
algorithms. Thus, this is a primitive approach that explores the entire search space
with no optimization.

32 C. C. Aggarwal et al.

3.2 TreeProjection Algorithms

Two variants of an algorithm which use recursive projections of the transactions
down the lexicographic tree structure are proposed in [5] and [4], respectively. The
goal of using these recursive projections is to reuse the counting work down at a given
level for lower levels of the tree. This reduces the counting work at the lower levels
by orders of magnitude, as long as it is possible to successfully manage the memory
requirements of the projected transactions. The main difference between the different
versions of TreeProjection is the exploration strategy used. TreeProjection can be
viewed as a generic framework that advocates the notion of database projection, in
the context of several different strategies for constructing the enumeration tree, such
as a breadth-first, depth-first, or a combination of the two. The depth-first version,
described in detail in [4], also incorporates maximal pruning, though the disabling of
the pruning options can also materialize all the patterns. The breadth-first and depth-
first algorithms have different advantages. The former allows level-wise pruning
which is not possible in depth-first methods though it is often not used in projection-
based methods. The depth-first version allows better memory management. The
depth-first approach works best when the itemsets are very long, and it is desirable
to quickly discover maximal patterns, so that portions of the lexicographic tree can
be pruned off quickly during exploration and it can also be used for discovering
all patterns including non-maximal ones. When all patterns are required, including
non-maximal ones, the primary difference between different strategies is not one
of the size of the candidate space, but that of effective memory management of the
projected transactions. This is because the size of the candidate space is defined by
the size of the enumeration tree, which is fixed, and is agnostic to the strategy used for
tree exploration. On the other hand, memory management of projected transactions
is easier with the depth-first strategy because one only needs to maintain a small
number of projected transaction sets along the depth of the tree. The notion of
database projection is common to TreeProjection and FP-growth, and helps reduce
the counting work by restricting the size of the database used for support counting.
TreeProjection was developed independently from FP-growth. While the FP-growth
paper provides a brief discussion of TreeProjection, this chapter will provide a more
detailed discussion of the similarities and differences between the two methods. One
major difference between the two methods is that the internal representation of the
corresponding projected databases is different in the two cases.

The basic database projection approach is very similar in both cases of TreeProjec-
tion and FP-growth. An important observation is that if a transaction is not relevant
for counting at a given node in the enumeration tree, then it will not be relevant
for counting in any descendent of that node. Therefore, only those transactions are
retained that contain all items in P for counting at the node P in the projected trans-
actions. Note that this set strictly reduces as we move to lower levels of the tree, and
the set of relevant transactions at the lower level of the enumeration tree is a subset of
the set at a higher level. Furthermore, only the presence of items corresponding to the
candidate extensions of a node are relevant for counting at any of the subtrees rooted

2 Frequent Pattern Mining Algorithms: A Survey 33

Fig. 2.6 Enumeration tree
exploration

at that node. Therefore, the database is also projected in terms of attributes, in which
only items which are candidate extensions at a node are retained. The candidate set
F (P) of item extensions of node P is a very small subset of the universe of items
at lower levels of the enumeration tree. In fact, even the items in the node P need
not be retained explicitly in the transaction, because they are known to always be
present in all the selected transactions based on the first condition. This projection
process is performed recursively in top–down fashion down the enumeration tree
for counting purposes, where lower level nodes inherit the projections from higher
level nodes and add one additional item to the projection at each level. The idea of
this inheritance-based approach is that the projected database remembers the count-
ing work done at higher levels of the enumeration tree by (successively) removing
irrelevant transactions and irrelevant items at each level of the projection. Such an
approach works efficiently because it never repeats the counting work which has
already been done at the higher levels. Thus, the primary savings in the strategy arise
from avoiding repetitive and wasteful counting.

A bare-bones depth-first version of TreeProjection, that is similar to DepthProject,
but without maximal pruning, is described in Fig. 2.6. A more detailed descrip-
tion with maximal pruning and other optimizations is provided later in this chapter.
Because the algorithm is described recursively, the current prefix P (node of the
lexicographic tree) being extended is one of the arguments to the algorithm. In the
initial call, the value of P is null because one intends to determine all frequent de-
scendants at the root of the lexicographic tree. This algorithm recursively extends
frequent prefixes and maintains only the transaction database relevant to the prefix.
The frequent prefixes are extended by determining the items i that are frequent in
T . Then the itemset P ∪ {i} is reported. The extension of the frequent prefix can
be viewed as a recursive call at a node of the enumeration tree. Thus, at a given
enumeration tree node, one now has a completely independent problem of extending
the prefix with the projected database that is relevant to all descendants of that node.
The conditional database Ti refers to the subset of the original transaction database
T corresponding to transactions containing item i. Furthermore, the item i and any
item occurring lexicographically earlier to it is not retained in the database because

34 C. C. Aggarwal et al.

these items are not relevant to counting the extensions of P ∪ {i}. This independent
problem is similar in structure to the original problem, and can be solved recursively.
Although it is natural to use recursion for the depth-first versions of TreeProjection,
the breadth-first versions are not defined recursively. Nevertheless, the breadth-first
versions explore a pattern space of the same size as the depth-first versions, and are
no different either in terms of the tree size or the counting work done over the en-
tire algorithm. The major challenge in the breadth-first version is in maintaining the
projected transactions along the breadth of the tree, which is storage-intensive. It is
shown in [5], how many of these issues can be resolved with the use of a combination
of exploration strategies for tree growth and counting. Furthermore, it is also shown
in [5] how breadth-first and depth-first methods may be combined.

Note that this concept of database projection is common between TreeProjection
and FP-growth although there are some differences in the internal representation of
the projected databases. The aforementioned description is designed for discovering
all patterns, and does not incorporate maximal pattern pruning. When generating
all the itemsets, the main advantage of the depth-first strategy over the breadth-
first strategy is that it is less memory intensive. This is because one does not have
to simultaneously handle the large number of candidates along the breadth of the
enumeration tree at any point in the course of algorithm execution when combined
with counting data structures. The overall size of the candidate space is fixed, and
defined by the size of the enumeration tree. Therefore, over the entire execution of
the algorithm, there is no difference between the two strategies in terms of search
space size, beyond memory optimization.

Projection-based algorithms, such as TreeProjection, can be implemented either
recursively or non-recursively. Depth-first variations of projection strategies, such
as DepthProject and FP-growth, are generally implemented recursively in which
a particular prefix (or suffix) of frequent items is grown recursively (see Fig. 2.6).
For recursive variations, the structure and size of the recursion tree is the same as
the enumeration tree. Non-recursive variations of TreeProjection methods directly
present the projection-based algorithms in terms of the enumeration tree by storing
projected transactions at the nodes in the enumeration tree. Describing projection
strategies directly in terms of the enumeration tree is helpful, because one can use
the enumeration tree explicitly to optimize the projection. For example, one does
not need to project at every node of the enumeration tree, but project only when
the size of the database reduces by a particular factor with respect to the nearest
ancestor node where the last projection was stored. Such optimizations can reduce
the space-overhead of repeated elements in the projected databases at different levels
of the enumeration (recursion) tree. It has been shown how to use this optimization
in different variations of TreeProjection. Furthermore, breadth-first variations of the
strategy are naturally defined non-recursively in terms of the enumeration tree. The
recursive depth-first versions may be viewed either as divide-and-conquer strategies
(because they recursively solve a set of smaller subproblems), or as projection-based
counting reuse strategies. The notion of projection-based counting reuse clearly
describes how computational savings are achieved in both versions of the algorithm.

2 Frequent Pattern Mining Algorithms: A Survey 35

When generating maximal patterns, the depth-first strategy has clear advantages
in terms of pruning as well. We refer the reader to a detailed description of the
DepthProject algorithm, described later in this chapter. This description describes
how several specialized pruning techniques are enabled by the depth-first strategy for
maximal pattern mining. The TreeProjection algorithm has also been generalized to
sequential pattern mining [31]. There are many different types of data structures that
may be used in projection-style algorithms. The choice of data structure is sensitive
to the data set. Two common choices that are used with TreeProjection family of
algorithms are as follows:

1. Arrays: In this case, the projected database is maintained as 2-dimensional array.
One of the dimensions of the array is equal to the number of relevant transactions
and the other dimension is equal to the number of relevant items in the projected
database. Both dimensions of the projected database reduce from top level to
lower levels of the enumeration tree with successive projection.

2. BitStrings: In this case, the projected database is maintained as a 0–1 bit string
whose width is fixed to the total number of frequent 1-items, but the number
of projected transactions reduces with successive projection. Such an approach
loses the power of item-wise projection, but this is balanced by the fact that the
bit-strings can be used more efficiently for counting operations.
Assume that each transaction T contains n bits, and can therefore be expressed
in the form of �n/8� bytes. Each byte of the transaction contains the information
about the presence or absence of eight items, and the integer value of the corre-
sponding bitstring can take on any value from 0 to 28−1 = 255. Correspondingly,
for each byte of the (projected) transaction at a node, 256 counters are maintained
and a value of 1 is added to the counter corresponding to the integer value of that
transaction byte. This process is repeated for each transaction in the projected
database at node P . Therefore, at the end of this process, one has 256 ∗ �d/8�
counts for the d different items. At this point, a postprocessing phase is initi-
ated in which the support of an item is determined by adding the counts of the
256/2 = 128 counters which take on the value of 1 for that bit. Thus, the second
phase requires 128 ∗ d operations only, and is independent of database size. The
first phase, (which is the bottleneck) is the improvement over the naive counting
method because it performs only one operation for each byte in the transaction,
which contains eight items. Thus, the method would be a factor of eight faster
than the naive counting technique, which would need to scan the entire bitstring.
Projection is also very efficient in the bitstring representation with simple AND
operations.

The major problem with fixed width bitstrings is that they are not efficient repre-
sentations at lower levels of the enumeration tree at which only a small number of
items are relevant, and therefore most entries in these bitstrings are 0. One approach
to speed this up is to perform the item-wise projection only at selected nodes in
the tree, when the reduction in the number of items from the last ancestor at which
the item-wise projection was performed is at particular multiplicative factor. At this
point, a shorter bit string is used for representation for the descendants at that node,

36 C. C. Aggarwal et al.

Table 2.2 Vertical
representation of transactions.
Note that the support of
itemset ab can be computed
as the length of the
intersection of the t idlists of
a and b

Item tidlist

a 1, 2, 3, 5
b 1, 2, 4, 5
c 1, 2, 5
d 1, 2, 5
e 1, 4, 5
f 2, 3, 4
g 3, 4
h 2, 5

until the width of the bitstring is reduced even further by the same multiplicative
factor. This ensures that the bit strings representations are not sparse and wasteful.

The key issue here is that different representations provide different tradeoffs in
terms of memory management and efficiency. Later in this chapter, an approach
called FP-growth will be discussed which uses the trie data structure to achieve
compression of projected transactions for better memory management.

3.3 Vertical Mining Algorithms

The vertical pattern mining algorithms use a vertical representation of the transaction
database to enable more efficient counting. The basic idea of the vertical represen-
tation is that one can express the transaction database as an inverted list. In other
words, for each transaction identifiers, one can have a list of items that are contained
in it. This is referred to as a tidset or tidlist. An example of a vertical representation
of the transactions in Table 2.1 is illustrated in Table 2.2.

The key idea in vertical pattern mining algorithms is that the support of k-patterns
can be computed by intersection of the underlying t idlists. There are two different
ways in which this can be done.

• The support of a k-itemset can be computed as a k-way set intersection of the lists
of the individual items.

• The support of a k-itemset can be computed as an intersection of the t idlists two
(k − 1)-itemsets that join to that k-itemset.

The latter approach is more efficient. The credit for both the notion of vertical tidlists
and the advantages of recursive intersection of tidlists is shared by the Monet [56]
and the Partition algorithms [57]. Not all vertical pattern mining algorithms use an
enumeration tree concept to describe the algorithm. Many of the algorithms directly
use joins to generate a (k + 1)-candidate pattern from a frequent k-pattern, though
even a join-based algorithm, such as Apriori, can be explained in terms of an enumer-
ation tree. Many of the later variations of vertical methods use an enumeration tree
concept to explore the lattice of itemsets more carefully and realize the full power of
the vertical approach. The indvidual ensemble component of Savasere et al.’s [57]
Partition algorithm is the progenitor of all vertical pattern mining algorithms today,
and the original Eclat algorithm is a memory-optimized and candidate partitioned
version of this Apriori-like algorithm.

2 Frequent Pattern Mining Algorithms: A Survey 37

3.3.1 Eclat

Eclat uses a breadth-first approach like Savasere et al.’s algorithm [57] on lattice
partitions, after partitioning the candidate set into disjoint groups, using a candidate
partitioning approach similar to earlier parallel versions of the Apriori algorithm.
The Eclat [71] algorithm is best described with the concept of an enumeration tree
because of the wide variation in the different strategies used by the algorithm. An
important contribution of Eclat [71] is to recognize the earlier pioneering work of
the Monet and Partition algorithms [56, 57] on recursive intersection of tid lists, and
propose many efficient variants of this paradigm.

Different variations of Eclat explore the candidates in different strategies. The
earliest description of Eclat may be found in [74]. A journal paper exploring differ-
ent aspects of Eclat may be found in [71]. In the earliest versions of the work [74], a
breadth-first strategy is used. The journal version in [71] also presents experimental
results for only the breadth-first strategy, although the possibility of a depth-first
strategy is mentioned in the paper. Therefore, the original Eclat algorithm should be
considered a breadth-first algorithm. More recent depth-first versions of Eclat, such
as dEclat, use recursive tidlist intersection with differencing [72], and realize the full
benefit of the depth-first approach. The Eclat algorithm, as presented in [74], uses a
levelwise strategy in which all (k +1)-candidates within a lattice partition are gener-
ated from frequent k-patterns in level-wise fashion, as in Apriori. The tidlists are used
to perform support counting. The frequent patterns are determined from these tidlists.
At this point, a new levelwise phase is initiated for frequent patterns of size (k + 1).

Other variations and depth-first exploration strategies of Eclat, along with exper-
imental results, are presented in later work such as dEclat [72]. The dEclat work in
[72] presents some additional enhancements such as diffsets to improve counting. In
this chapter, we present a simplified pseudo-code of this version of Eclat. The algo-
rithm is presented in Fig. 2.8. The algorithm is structured as a recursive algorithm. A
pattern set FP is part of the input, and is set to the set of all frequent 1-items at the
top level call. Therefore, it may be assumed that, at the top level, the set of frequent
1-items and t idlists have already been computed, though this computation is not
shown in the pseudocode. In each recursive call of Eclat, a new set of candidates
FP i is generated for every pattern (itemset) Pi , which extends the itemset by one
unit. The support of a candidate is determined with the use of tidlist intersection.
Finally, if Pi is frequent, it is added to a pattern set FP i for the next level.

Figure 2.7 illustrates the itemset generation tree with support computation by
tidlist intersection for the sample database from Table 2.1. The corresponding tidlists
in the tree are also illustrated. All infrequent itemsets in each level are denoted by dot-
ted, and bordered rectangles. For example, an itemset ab is generated by joining b to
a. The tidlist of (a) is {1, 2, 3, 5}, and the tidlist of b is {1, 2, 4, 5}. We can determine the
support of ab by intersecting the two tidlists to obtain the tidlist {1, 2, 5} of these can-
didates. Therefore, the support of ab is given by the length of this tidlist, which is 3.

Further gains may be obtained with the use of the notion of diffsets [72]. This
approach realizes the true power of vertical pattern mining. The basic idea, in diffsets
is to maintain only the portion of the tidlists at a node, that correspond to the change in
the inverted list from the parent node. Thus, the tidlists at a node can be reconstructed
by examining the tidlists at the ancestors of a node in the tree. The major advantage

38 C. C. Aggarwal et al.

Fig. 2.7 Execution of Eclat

Fig. 2.8 The Eclat algorithm

of diffsets is that they save significant storage in requirements in terms of the size of
the data structure required (Fig. 2.8).

2 Frequent Pattern Mining Algorithms: A Survey 39

Fig. 2.9 Suffix-based pattern
exploration

3.3.2 VIPER

The VIPER algorithm [58] uses a vertical approach to mining frequent patterns.
The basic idea in the VIPER algorithm is ro represent the vertical database in the
form of compressed bit vectors that are also referred to as snakes. These snakes are
then used for efficient counting of the frequent patterns. The different compressed
representation of the tidlists provide a number of optimization advantages that are
leveraged by the algorithm. Intrinsically, VIPER is not very different from Eclat
in terms of the basic counting approach. The major difference is in terms of the
choice of the compressed bit vector representation, and the efficient handling of this
representation. Details may be found in [58].

4 Recursive Suffix-Based Growth

In these algorithms recursive suffix-based exploration of the patterns is performed.
Note that in most frequent pattern mining algorithms, the enumeration tree (execution
tree) of patterns explores the patterns in the form of a lexicographic tree of itemsets
built on the prefixes. Suffix-based methods use a different convention in which the
suffixes of frequent patterns are extended. As in all projection-based methods, one
only needs to use the transaction database containing itemset P in order to count
itemsets that have the suffix P . Itemsets are extended from the suffix backwards. In
each iteration, the conditional transaction database (or projected database) of trans-
actions containing the current suffix P being explored is an input to the algorithm.
Furthermore, it is assumed that the conditional database contains only frequent ex-
tensions of P . For the top-level call, the value of P is null, and the frequent items are
determined using a single preprocessing pass that is not shown in the pseudo-code.
Because each item is already known to be frequent, the frequent patterns {i} ∪ P

can be immediately generated for each item i ∈ T . The database is projected further
to include only transactions containing i, and a recursive call is initiated with the
pattern {i} ∪ P . The projected database Ti corresponding to transactions containing
{i} ∪ P is determined. Infrequent items are removed from Ti . Thus, the transactions
are recursively projected to reflect the addition of an item in the suffix. Thus, this is a

40 C. C. Aggarwal et al.

smaller subproblem that can be solved recursively. The FP-growth approach uses the
suffix-based pattern exploration, as illustrated in Fig. 2.9. In addition, the FP-growth
approach uses an efficient data structure, known as the FP-Tree to represent the con-
ditional transaction database Ti with the use of compressed prefixes. The FP-Tree
will be discussed in more detail in a later section. The suffix in the top level call to
the algorithm is the null itemset.

Recursive suffix-based exploration of the pattern space is, in principle, no different
from prefix-based exploration of the enumeration tree space with the ordering of the
items reversed. In other words, by using a reverse ordering of items, suffix-based
recursive pattern space exploration can be simulated with prefix-based enumeration
tree exploration. Indeed, as discussed in the last section, prefix-based enumeration
tree methods order items from the least frequent to the most frequent, whereas the
suffix-based methods of this section order items from the most frequent to the least
frequent, to account for this difference. Thus, suffix-based recursive growth has an
execution tree that is identical in structure to a prefix-based enumeration tree. This
is a difference only of convention, but it does not affect the pattern space that is
explored.

It is instructive to compare the suffix-based exploration with the pseudocode of
the prefix-based TreeProjection algorithm in Fig. 2.6. The two pseudocodes are
structured differently because the initial pre-processing pass of removing frequent
items is not assumed in the TreeProjection algorithm. Therefore, in each recursive
call of the prefix-based TreeProjection, frequent itemsets must be counted before they
are reported. In suffix-based exploration, this step is done as a preprocessing step
(for the top-level call) and just before the recursive call for deeper calls. Therefore,
each recursive call always starts with a database of frequent items. This is, of course,
a difference in terms of how the recursive calls are structured but is not different
in terms of the basic search strategy, or the amount of overall computational work
required, because infrequent items need to be removed in either case. A few other
key differences are evident:

• TreeProjection uses database projections on top of a prefix-based enumeration
tree. Suffix-based recursive methods have a recursion tree whose structure is
similar to an enumeration tree on the frequent suffixes instead of the prefixes. The
removal of infrequent items from Ti in FP-growth is similar to determining which
branches of the enumeration tree to extend further.

• The use of suffix-based exploration is a difference only of convention from
prefix-based exploration. For example, after reversing the item order, one might
implement FP-growth by growing patterns on the prefixes, but constructing a
compressed FP-Tree on1 the suffixes. The resulting exploration order and execu-
tion in the two different implementations of FP-growth will be identical, but the
latter can be more easily related to traditional enumeration tree methods.

1 The resulting FP-Tree will be a suffix-based trie.

2 Frequent Pattern Mining Algorithms: A Survey 41

• Various database projection methods are different in terms of the specific data
structures used for the projected database. The different variations of TreeProjec-
tion use arrays and bit strings to represent the projected database. The FP-growth
method uses an FP-Tree. The FP-Tree will be discussed in the next section. Later
variations of FP-Tree also use combinations of arrays and pointers to represent
the projected database. Some variations, such as OpportuneProject [38], combine
different data structures in an optimized way to obtain the best result.

• Suffix-based recursive growth is inherently defined as a depth-first strategy. On
the other hand, as is evident from the discussion in [5], the specific choice of ex-
ploration strategy on the enumeration tree is orthogonal to the process of database
projection. The overall size of the enumeration tree is the same, no matter how it is
explored, unless maximal pattern pruning is used. Thus, TreeProjection explores
a variety of strategies such as breadth-first and depth-first strategies, with no dif-
ference to the (overall) work required for counting. The major challenge with the
breadth-first strategy is the simultaneous maintenance of projected transaction
sets along the breadth of the tree. The issue of effective memory management of
breadth-first strategies is discussed in [5], which shows how certain optimizations
such as cache-blocking can improve the effectiveness in this case. Breadth-first
strategies also allow certain kinds of pruning such as level-wise pruning.

• The major advantages of depth-first strategies arise in the context of maximal pat-
tern mining. This is because a depth-first strategy discovers the maximal patterns
very early, which can be used to prune the smaller non-maximal patterns. In this
case, the size of the search space explored truly reduces because of a depth-first
strategy. This issue is discussed in the section on maximal pattern mining. The
advantages for maximal pattern mining were first proposed in the context of the
DepthProject algorithm [4].

Next, we will describe the FP-Tree data structure that uses compressed representa-
tions of the transaction database for more efficient counting.

4.1 The FP-Growth Approach

The FP-growth approach combines suffix-based pattern exploration with a com-
pressed representation of the projected database for more efficient counting. The
prefix-based FP-Tree is a compressed representation of the database which is built
by considering a fixed order among the items in an itemset [32]. This tree is used to
represent the conditional transaction sets T and Ti of Fig. 2.9. An FP-Tree may be
viewed as a prefix-based trie data structure of the transaction database of frequent
items. Just as each node in a trie is labeled with a symbol, a node in the FP-Tree is
labeled with an item. In addition, the node holds the support of the itemset defined
by the items of the nodes that are on the path from the root to u. By consolidating the
prefixes, one obtains compression. This is useful for effective memory management.
On the other hand, the maintenance of counts and pointers with the prefixes is an

42 C. C. Aggarwal et al.

{}

ADD 1st
TRANSACTION

a,b,c,d,e

{}

ADD 2nd
TRANSACTION

a,b,c,f,d

{}

ADD 3rd
TRANSACTION

a,f

{}

ADD 4th
TRANSACTION

b,f,e

{}

ADD 5th
TRANSACTION

a,b,c,d,e

a:1

b:1

a:2

b:2

a:3

b:2 f:1

a:3

b:2

b:1

f:1

a:4

b:3 f

b:1

f

c:1

d:1

c:2

d:1 f:1

c:2

d:1 f

f

c:2

d:1 f:1

e:1 c:3

d:2 f:1

f:1 f:1

e:1

e:1 e:1 d:1 e:1 d:1 e:1 d:1 e:2 d:1

ADD POINTERS

{}

a:4 b:1

c:3

b:3 f:1 f:1

e:1

d:2

e:2

f:1

d:1

f:1

Fig. 2.10 FP-Tree construction

additional overhead. This results in a different set of trade-offs as compared to the
array representation.

The initial FP-Tree is constructed as follows. We start with the empty FP-Tree
FPT . Before constructing the FP-Tree, the database is scanned and infrequent items
are removed. The frequent items are sorted in decreasing order of support. The initial
construction of FP-Tree is straightforward, and similar to how one might insert a
string in a trie. For every insertion, the counts of the relevant nodes that are affected
by the insertion are incremented by 1. If there has been any sharing of prefix between
the current transaction t being inserted, and a previously inserted transaction then
t will be in the same path until the common prefix. Beyond this common prefix,
new nodes are inserted in the tree for the remaining items in t , with support count
initialized to 1. The above procedure ends when all transactions have been inserted.

To store the items in the final FP-Tree, a list structure called header table is
maintained. A chain of pointers threads through the occurrence of the item in the
FP-Tree. Thus, this chain of pointers need to be constructed in addition to the trie
data structure. Each entry in this table stores the item label and pointers to the
node representing the leftmost occurrence of the item in the FP-Tree (first item in
the pointer chain). The reason for maintaining these pointers is that it is possible
to determine the conditional FP-Tree for an item by chasing the pointers for that
item. An example of the initial construction of the FP-Tree data structure from a

2 Frequent Pattern Mining Algorithms: A Survey 43

Fig. 2.11 The FP-growth
algorithm

database of five transactions is illustrated in Fig. 2.10. The ordering of the items is
a, b, c, d, e, f . It is clear that a trie data structure is created, and the node counts are
updated by the insertion of each transaction in the FP-Tree. Figure 2.10 also shows
all the pointers between the different items. The sum of the counts on the items
on this pointer path is the support of the item. This support is always larger than
the minimum support because a full constructed FP-Tree (with pointers) contains
only frequent items. The actual counting of the support of item-extensions and the
removal of infrequent items must be done during conditional transaction database
(and the relevant FP-Tree) creation. The pointer paths are not available during the
FP-Tree creation process. For example, the item e has two nodes on this pointer path,
corresponding to e : 2 and e : 1. By summing up these counts, a total count of three
for the item e is obtained. It is not difficult to verify that three transactions contain
the item e.

With this new compressed representation of the conditional transaction database
of frequent items, one can directly extract the frequent patterns. The pseudo-code of
the FP-growth algorithm is presented in Fig. 2.11. Although this pseudo-code looks
much more complex to understand than the earlier pseudocode of Fig. 2.9, the main
difference is that more details of the data structure (FP-Tree), used to represent the
conditional transaction sets, have been added.

The algorithm accepts a FP-Tree FPT , current itemset suffix P and user defined
minimum support s as input. The additional suffix P has been added to the parameter
set P to facilitate the recursive description. At the top level call made by the user, the
value of P is φ. Furthermore, the conditional FP-Tree is constructed on a database of
frequent items rather than all the items. This property is maintained across different
recursive calls.

For an FP-Tree FPT , the conditional FP-Trees are built for each item i in FPT

(which is already known to be frequent). The conditional FP-Trees are constructed
by chasing pointers for each item in the FP-Tree. This yields all the conditional prefix

44 C. C. Aggarwal et al.

{} {} {}

a:4

b:3 f:1

b:1

f:1

a:4

b:3

b:1

f:1

a:4

b:3

b:1

f:1
POINTER
CHASING

OF e
REMOVAL

OF e
c:3

d:2 f:1

e:1 c:3

d:2

e:1 c:3

d:2

e:2 d:1 e:2

ORIGINAL FP-TREE CONDITIONAL FP-TREE
WITH SUFFIX ITEM e

Fig. 2.12 Generating a conditional FP-Tree by pointer chasing

paths for the item i. The infrequent nodes from these paths are removed, and they are
put together to create a conditional FP-Tree FPTi . Because the infrequent items have
already been removed from FPTi the new conditional FP-Tree also contains only
frequent items. Therefore, in the next level recursive call, any item from FPTi can be
appended to Pi to generate another pattern. The supports of those patterns can also be
reconstructed via pointer chasing during the process of reporting the patterns. Thus,
the current pattern suffix P is extended with the frequent item i appended to the front
of P . This extended suffix is denoted by Pi . The pattern Pi also needs to be reported
as frequent. The resulting conditional FP-Tree FPTi is the compressed database
representation of Ti of Fig. 2.9 in the previous section. Thus, FPTi is a smaller
conditional tree that contains information relevant only to the extraction of various
prefix paths relevant to different items that will extend the suffix Pi further in the
backwards direction. Note that infrequent items are removed from FPTi during this
step, which requires the support counting of all items in FPTi . Because the pointers
have not yet been constructed for FPTi , the support of each item-extension of {i}∪P

corresponding to the items in FPTi must be explicitly determined by locating each
instance of an item in FPTi . This is the primary computational bottleneck step. The
removal of infrequent items from FPTi may result in a different structure of the
FP-Tree in the next step.

Finally, if the conditional FP-Tree FPTi is not empty, the FP-growth method is
called recursively with parameters corresponding to the conditional FP-Tree FPTi ,
extended suffix Pi , and minimum support s. Note that successive projected trans-
action databases (and corresponding conditional FP-Trees) in the recursion will be
smaller because of the recursive projection. The base case of the recursion occurs
when the entire FP-Tree is a single path. This is likely to occur when the projected
transaction database becomes small enough. In that case, FP-growth determines all
combinations of nodes on this path, appends the suffix P to them, and reports them.

An example of how the conditional FP-Tree is created for a minimum support of
1 unit, is illustrated in Fig. 2.12. Note that if the minimum support were 2, then the
right branch (nodes b and f) would not be included in the conditional FP-Tree. In this
case, the pointers for item e are chased in the FP-Tree to create the conditional prefix
paths of the relevant conditional transaction database. This represents all transactions

2 Frequent Pattern Mining Algorithms: A Survey 45

containing e. The counts on the prefix paths are re-adjusted because many branches
are pruned. The removal of infrequent items and that of the item e might lead to a
conditional FP-Tree that looks very different from the conditional prefix-paths. These
kinds of conditional FP-trees need to be generated for each conditional frequent item,
although only a single item has been shown for the sake of simplicity. Note that, in
general, the pointers may need to be recreated every time a conditional FP-Tree is
created.

4.2 Variations

As the database grows larger, the construction of the FP-Tree become challenging
both from runtime and space complexity. There have been many works [8, 24, 27, 29,
30, 36, 39, 55, 59, 61, 62] to tackle these challenges. These variations of FP-growth
method can be classified into two categories. Methods belonging to the first category
design memory-based mining process using a memory-resident data structure that
holds partitioned database. Methods belonging to the second category improve the
efficiency of the FP-Tree representation. In this subsection, we will present these
approaches briefly.

4.2.1 Memory-Resident Variations

In the following, a number of different memory-resident variations of the basic
FP-growth idea will be described.

CT-PRO Algorithm In this work [62], the authors introduced a new FP-Tree like
data structure called Compact FP-Tree (CFP-Tree) that holds the same information
as FP-Tree but with 50 % less storage. They also designed a mining algorithm called
CT-PRO which follows a non-recursive procedure unlike FP-growth. As discussed
earlier, during the mining process, FP-growth constructs many conditional FP-Trees,
which becomes an overhead as the patterns get longer or the support gets lower. To
overcome this problem, the CT-PRO algorithm divides the database into several
disjoint projections where each projection is represented as a CFP-Tree. Then a non-
recursive mining process is executed over each projection independently. Significant
modifications were made to the header Table 4.1 data structure. In the original FP-
Tree, the nodes store the support and item label. However, in the CFP-Tree, item
labels are mapped to an increasing sequence of integers that is actually the index of
the header table. The header table of CFP-Tree stores the support of each item. To
compress the original FP-Tree, all identical subtrees are removed by accumulating
them and storing the relevant information in the leftmost branch. The header table
contains a pointer to each node on the leftmost branch of the CFP-Tree, as these
nodes are roots of subtrees starting with different items.

The mining process starts from the pointers of the least frequent items in the header
table. This prunes a large number of nodes at an early stage and shrinks the tree

46 C. C. Aggarwal et al.

structure. By following the pointers to the same item, a projection of all transactions
ending with the corresponding item is built. This projection is also represented as a
CFP-Tree called local CFP-Tree. The local CFP-Tree is then traversed to extract the
frequent patterns in the projection.

H-Mine Algorithm The authors in [54] proposed an efficient algorithm called H-
Mine. It uses a memory efficient hyper-structure called H-Struct. The fundamental
strategy of H-Mine is to partition the database and mine each partition in the memory.
Finally, the results from different partitions are consolidated into global frequent
patterns. An intelligent module of H-Mine is that it can identify whether the database
is dense or sparse, and it is able to make dynamic choices between different data
structures based on this identification. More details may be found in Chap. 3 on
pattern-growth methods.

4.2.2 Improved Data Structure Variations

In this section, several variations of the basic algorithm by improving the underlying
data structure will be described.

UsingArrays A significant part of the mining time in FP-growth is spent on travers-
ing the tree. To reduce this time, the authors in [29] designed an array based
implementation of FP-growth, named FP-growth* which drastically reduces the
traversal time of the mining algorithm. It uses the FP-Tree data structure in com-
bination with an array-like data structure and it incorporates various optimization
schemes. It should be pointed out that the TreeProjection family of algorithms also
uses arrays, though the optimizations used are quite different.

When the input database is sparse, the array based technique performs well be-
cause the array saves the traversal time for all the items; moreover the initialization
of the next level of FP-Trees is easier using an array. But in case of dense database,
the tree base representation is more compact. To deal with the situation, FP-growth*
devises a mechanism to identify whether the database is sparse or not. To do so, FP-
growth* counts the number of nodes in each level of the tree. Based on experiments,
they found that if the upper quarter of the tree contains less than 15%̇ of the total
number of nodes, then the database is most likely dense. Otherwise, it is sparse. If
the database turns out to be sparse, FP-growth* allocates an array for each FP-Tree
in the next level of mining.

The nonordfp Approach This work [55] presented an improved implementation of
the well known FP-growth algorithm using an efficient FP-Tree like data structure
that allows faster allocation, traversal and optional projection. The tree nodes do
not store their labels (item identifiers). There is no concept of header table. The
data structure stores less administrative information in the tree node which allow the
recursive step of mining without rebuilding the tree.

2 Frequent Pattern Mining Algorithms: A Survey 47

Fig. 2.13 Frequent, maximal and closed itemsets

5 Maximal and Closed Frequent Itemsets

One of the major challenges of frequent itemset mining is that, most of the itemsets
mined are subset of the set of single length frequent items. Therefore, a signifi-
cant amount of time is spent on counting redundant itemsets. One solution to this
problem is to discover condensed representations of the frequent itemsets. It will be
such representations that synopsizes the property of the set of itemsets completely
or partially. The compact representation not only save computational and memory
resource but also paved a much easier way towards knowledge discovery stage after
mining. Another interesting observation by [53] was that, instead of mining the com-
plete set of frequent itemsets and their associations, association mining only needs
to find frequent closed itemsets and their corresponding rules. So, mining frequent
closed itemset can fulfill the objectives of mining all frequent itemsets but with less
redundancy and better efficiency and effectiveness in mining. In this section, we
will discuss two types of condensed representation of itemset: maximal and closed
frequent itemset.

5.1 Definitions

Maximal Frequent Itemset Suppose, T is the transaction database, I is the set of
all items in the database and F is the set of all frequent itemsets. A frequent itemset
P ∈ F is called maximal if it has no frequent superset. let M be the set of all frequent
maximal itemsets, which is denoted by

M = {P | P ∈ F and � Q ⊃ P , such that Q ∈ F }

48 C. C. Aggarwal et al.

For the toy transaction database in Table 2.1 the frequent maximal itemsets at min-
imum support 3 are abcd, e, f , as illustrated in Fig. 2.13. All the rectangles filled
with grey color represent maximal frequent patterns. As we can see in Fig. 2.4, that
there are no frequent supersets of abcd, e or f .

Closed Frequent Itemset The closure operator γ induces an equivalence relation
on the power set of items partitioning it into disjoint subsets called equivalence
classes. The largest element with respect to the number of items in each equivalence
class is called a closed itemset. A frequent itemset P is closed if γ (P) = P . From
the closure property it can be said that both γ (P) and P have the same tidset. In
simpler terms, an itemset is closed if it does not have any frequent superset with the
same support. A closed itemset C can be written as:

C = {P | P ∈ F and � Q ⊃ P , such that support(Q) = support(P) }

Because maximal itemsets have no frequent superset, they are vacuously closed
frequent itemsets. Thus, all maximal patterns are closed. However, there is a key
difference between mining maximal itemsets and closed itemsets. Mining maximal
itemsets loses information about the support of the underlying itemsets. On the
other hand, mining closed itemsets does not lose any information about the support.
The support of the missing subsets can be derived from the closed frequent pattern
database. One way of viewing closed frequent patterns is as the maximal patterns
from each equi-support group of frequent patterns. Closed frequent itemsets are a
condensed representation of frequent itemsets that is lossless.

For the toy transaction database of Table 2.1 the frequent closed patterns are
a, b, abcd , be for minimum support value of 3, as illustrated in Fig. 2.13. All
the rectangles with dotted border represent closed frequent patterns. The remaining
nodes in the tree (not filled and dotted border) represent frequent itemsets.

5.2 Frequent Maximal Itemset Mining Algorithms

In this subsection, we will discuss some of maximal frequent itemset mining
algorithms.

5.2.1 MaxMiner Algorithm

The MaxMiner algorithm was the first algorithm that used a variety of optimizations
to improve the effectiveness of tree explorations [10]. This algorithm is generally
focussed on determining maximal patterns rather than all patterns. The author of [10]
observed that it is usually sufficient to only report maximal patterns, when frequent
patterns are long. This is because of the combinatorial explosion in examining all
subsets of patterns. Although the exploration of the tree is still done in breadth-first
fashion, a number of optimizations are used to improve the efficiency of exploration:

2 Frequent Pattern Mining Algorithms: A Survey 49

• The concept of lookaheads is defined. Let F (P) be the set of candidate items
that might extend node P . Before counting, it is checked whether F ∪ F (P) is
a subset of any of the frequent patterns found so far. If such is indeed the case,
then it is known that the entire subtree rooted at P is frequent, and can be pruned
from consideration (for maximal pattern mining). During counting the support of
individual item extensions of P , the support of P ∪ F (P) is also determined. If
the set P ∪F (P) is frequent, then it is known that all itemsets in the entire subset
rooted at that node are frequent. Therefore, the tree does not need to be explored
further, and can be pruned.

• The support lower bounding trick discussed earlier can be used to quickly de-
termine patterns which are frequent without explicit counting. The counts of
extensions of nodes can be determined without counting in many cases, where
the count does not change by extending an item.

It has been shown in [10], that these simple optimizations can improve over the
original Apriori algorithm by orders of magnitude.

5.2.2 DepthProject Algorithm

The DepthProject algorithm is based on the notion of the lexicographic tree, defined
in [5]. Unlike TreeProjection, the approach aggressively explores the candidates
in a depth-first strategy both to ensure better pruning and faster counting. As in
TreeProjection, the database is recursively projected down the lexicographic tree to
ensure more efficient counting. This kind of projection ensures that the counting
information for k-candidates is reused for (k + 1)-candidates, as in the case of
FP-growth.

For the case of the DepthProject method [4], the lexicographic tree is explored in
depth-first order to maximize the advantage of lookaheads in which entire subtrees
can be pruned because it is known that all patterns in them are frequent. The overall
pseudocode for the depth-first strategy is illustrated in Fig. 2.14. The pseudocodes for
candidate generation and counting are not provided because they are similar to the
previously discussed algorithms. However, one important distinction in counting is
that projected databases are used for counting. This is similar to the FP-growth class
of algorithms. Note that the recursive transaction projection is particularly effective
with a depth-first strategy because a smaller number of projected databases need to
be stored along a path in the tree, as compared to the breadth of the tree.

To reduce the overhead of counting long patterns, the notion of lookaheads are
used. At any node P of the tree, let F (P) be its possible (candidate) item extensions.
Then, it is checked whether P ∪ F (P) is frequent in two ways:

1. Before counting the support of the individual extensions of P (i.e., {P ∪ {i} :
∀i ∈ F (P)}), it is checked whether P ∪ F (P) occurs as subset of a frequent
itemset that has already been discovered earlier during depth-first exploration. If
such is the case, then the entire subtree rooted at P is pruned because it is known

50 C. C. Aggarwal et al.

to be frequent and it is not a maximal pattern. This type of pruning is particularly
effective with a depth-first strategy.

2. During support counting of the item extensions, the support of P ∪ F (P) is also
determined. If after support counting, P ∪F (P) turns out to be frequent, then the
entire subtree rooted at node P can be pruned. Note that the projected database
at node P (as in TreeProjection) is used.

Although lookaheads are also used in the MaxMiner algorithm, it should be pointed
out that the effectiveness of lookaheads is maximized with a depth-first strategy.
This is true of the first of the two aforementioned strategies, in which it is checked
whether P ∪F (P) is a subset of an already existing frequent pattern. This is a because
a depth-first strategy tends to explore the itemsets in dictionary order. In dictionary
order, maximal itemsets are usually explored much earlier than most of their subsets.
For example, for a 10-itemset abcdefghij , only 9 of the 1024 subsets of the itemsets
will be explored before exploring the itemset abscdefghij . These 9 itemsets are the
immediate prefixes of the itemset. When, the longer itemsets are explored early they
become available to prune shorter itemsets.

The following information is stored at each node during the process of construction
of the lexicographic tree:

1. The itemset P at that node.
2. The set of lexicographic tree extensions at that node which are E(P).
3. A pointer to the projected transaction set T (Q), where Q is some ancestor of P

(including itself). The root of the tree points to the entire transaction database.
4. A bitvector containing the information about which transactions contain the item-

set for node P as a subset. The length of this bitvector is equal to the total number
of transactions in T (Q). The value of a bit for a transaction is equal to one, if the
itemset P is a subset of the transaction. Otherwise it is equal to zero. Thus, the
number of 1 bits is equal to the number of transactions in T (Q) which project to
P . The bitvectors are used to make the process of support counting more efficient.

After all the projected transactions at a given node have been identified, then find-
ing the subtree rooted at that node is a completely independent itemset generation
problem with a substantially reduced transaction set. The number of transactions at
a node is proportional to the support at that node.

The description in Fig. 2.14 shows how the depth first creation of the lexicographic
tree is performed. The algorithm is described recursively, so that the call from each
node is a completely independent itemset generation problem that finds all frequent
itemsets that are descendants of a node. There are three parameters to the algorithm,
a pointer to the database T , the itemset node N , and the bitvector B. The bitvector
B contains one bit for each transaction in T ∈ T , and indicates whether or not
the transaction T should be used in finding the frequent extensions of N . A bit for
a transaction T is one, if the itemset at that node is a subset of the corresponding
transaction. The first call to the algorithm is from the null node, the parameter T is
the entire transaction database. Because each transaction in the database is relevant
to perform the counting, the bitvector B consists of all “one ” values. One property

2 Frequent Pattern Mining Algorithms: A Survey 51

Fig. 2.14 The depth first
strategy

of the DepthProject algorithm is that the projection is performed only when the
transaction database reduces by a certain size. This is the ProjectionCondition in
Fig. 2.14.

Most of the nodes in the lexicographic tree correspond to the lower levels. Thus,
the counting times at these levels account for most of the CPU times of the algorithm.
For these levels, a strategy called bucketing can substantially improve the counting
times. The idea is to change the counting technique at a node in the lexicographic
tree, if |E(P)| is less than a certain value. In this case, an upper bound on the number
of distinct projected transactions is 2|E(P)|. Thus, for example, when |E(P)| is nine,
then there are only 512 distinct projected transactions at the node P . Clearly, this is
because the projected database contains several repetitions of the same (projected)

52 C. C. Aggarwal et al.

Fig. 2.15 Aggregating bucket
counts

transaction. The fact that the number of distinct transactions in the projected database
is small can be exploited to yield substantially more efficient counting algorithms.
The aim is to count the support for the entire subtree rooted at P with a quick pass
through the data, and an additional postprocessing phase which is independent of
database size. The process of performing bucket counting consists of two phases:

1. In the first phase, the counts of each distinct transaction present in the projected
database are determined. This can be accomplished easily by maintaining 2|E(P)|
buckets or counters, scanning the transactions one by one, and adding counts to
the buckets. The time for performing this set of operations is linear in the number
of (projected) database transactions.

2. In the second phase, the counts of the 2|E(P)| transaction are used to determine
the aggregate support counts for each itemset. In general, the support count of an
itemset may be obtained by adding the counts of all the supersets of that itemset
to it. A skillful algorithm (from the efficiency perspective) for performing these
operations is illustrated in Fig. 2.15.

Consider a string composed of 0, 1, and ∗ that refers to an itemset in which the
positions with 0 and 1 are fixed to those values (corresponding to presence or absence
of items), while a position with a ∗ is a “don’t care”. Thus, all itemsets can be
expressed in terms of 1 and ∗ because itemsets are traditionally defined with respect
to presence of items. Consider for example, the case when |E(P)| = 4, and there are
four items, numbered {1, 2, 3, 4}. An itemset containing items 2 and 4 is denoted by
∗1∗1. We start off with the information on 24 = 16 bitstrings which are composed of
0 and 1. These represent all possible distinct transactions. The algorithm aggregates
the counts in |E(P)| iterations. The count for a string with a “*” in a particular
position may be obtained by adding the counts for the strings with a 0 and 1 in those
positions. For example, the count for the string *1*1 may be expressed as the sum
of the counts of the strings 01*1 and 11*1.

2 Frequent Pattern Mining Algorithms: A Survey 53

Fig. 2.16 Performing the
second phase of bucketing

The procedure in Fig. 2.15 works by starting with the counts of the 0–1 strings, and
then converts them to strings with 1 and *. The algorithm requires |E(P)| iterations.
In the ith iteration, it increases the counts of all those buckets with a 0 in the ith bit,
so that the count now corresponds to a case when that bucket contains a ∗ in that
position. This can be achieved by adding the counts of the buckets with a 0 in the
ith position to that of the bucket with a 1 in that position, with all other bits having
the same value. For example, the count of the string 0*1* is obtained by adding the
counts of the buckets 001* and 011*. In Fig. 2.15, the process of adding the count
of the bucket j to that of the bucket j + 2i−1 achieves this.

The second phase of the bucketing operation requires |E(P)| iterations, and each
iteration requires 2|E(P)| operations. Therefore, the total time required by the method
is proportional to 2|E(P)| ·|E(P)|. When |E(P)| is sufficiently small, the time required
by the second phase of postprocessing is small compared to the first phase, whereas
the first phase is essentially proportional to reading the database for the current
projection.

We have illustrated the second phase of bucketing by an example in which
|E(P)| = 3. The process illustrated in Fig. 2.16 illustrates how the second phase of
bucketing is efficiently performed. The exact strings and the corresponding counts
in each of the |E(P)| = 3 iterations are illustrated. In the first iteration, all those
bits with 0 in the lowest order position have their counts added with the count of
the bitstring with a 1 in that position. Thus, 2|E(P)|−1 pairwise addition operations

54 C. C. Aggarwal et al.

take place during this step. The same process is repeated two more times with the
second and third order bits. At the end of three passes, each bucket contains the
support count for the appropriate itemset, where the ‘0’ for the itemset is replaced
by a “don’t care” which is represented by a ‘*’. Note that the number of transactions
in this example is 27. This is represented by the entry for the bucket ***. Only two
transactions contain all three items that is represented by the bucket 111.

The projection-based methods were shown to have an order of magnitude im-
provement over the MaxMiner algorithm. The depth-first approach has subsequently
been used in the context of many tree-based algorithms. Other examples of such
algorithms include those in [17, 18, 14]. Among these, the MAFIA algorithm [14]
is discussed in some detail in the next subsection. An approach which varies on
the projection methodology, and uses opportunistic projection is discussed in [38].
This algorithm opportunistically chooses between array-based and tree-based rep-
resentations to represent projected transaction subsets. Such an approach has been
shown to be more efficient than many state of the art methods such as the FP-Growth
method. Other variations of tree-based algorithms have also been proposed [70] that
use different strategies in tree exploration.

5.2.3 MAFIA Algorithm

The MAFIA algorithm proposed in [14] shares a number of similarities to the Depth-
Project approach, though it uses a bitmap based approach for counting, rather than
the use of a projected transaction database. In the bitmap-based approach, a sequence
of bits is maintained for each itemset that corresponds to whether or not that transac-
tion contains that particular item. Sparse representations (such as a list of transaction
identifiers) may also be used, when the fraction of transactions containing the itemset
is small. Note that such an approach may be considered a special case of database
projection [5], in which vertical projection is used but horizontal projection is not.
This has the advantage of requiring less memory, but it reuses a smaller fraction of
the counting information from higher level nodes. A number of other pruning opti-
mizations have also been proposed in this work that further improve the effectiveness
of the algorithm. In particular, it has been pointed out that when the support of the
extension of a node is the same as that of its parent, then that subtree can be pruned
away, because of the counts of all the itemsets in the subtree can be derived from those
of other itemsets in the data. This is the same as the support lower bounding trick
discussed in Sect. 2.4, and also used in MaxMiner for pruning. Thus, the approach
in [14] uses many of the same strategies used in MaxMiner and TreeProjection, but
with in a different combination, and with some variations on specific implementation
details.

2 Frequent Pattern Mining Algorithms: A Survey 55

5.2.4 GenMax

Like MAFIA, GenMax is a uses the vertical representation to speed up counting.
Specifically the tidlists are used by GenMax to speed up the counting approach.
In particular the more recent notion of diffsets [72] was used, and a depth-first
exploration strategy was used. An approach known as successive focussing was
used to further improve the efficiency of the algorithm. The details of the GenMax
approach may be found in [28].

5.3 Frequent Closed Itemset Mining Algorithms

The are several frequent closed itemset mining algorithms [41, 42, 51–53, 64,
66–69, 73] exist to date. Most of the maximal and closed pattern mining algorithms
are based on different variations of the non-maximal pattern mining algorithms. Typ-
ically pruning strategies are incorporated within the non-maximal pattern mining
algorithms to yield more efficient algorithms.

5.3.1 Close

In this algorithm [52] authors apply Apriori based patten generation over the closed
itemset search space. The usages of closed itemset lattice (search space) significantly
reduces the overall search space of the algorithm. Close operates in iterative manner.
Each iteration consists of three phases, . First, the closure function is applied for
obtaining the candidate closed itemsets and their support. Next, the obtained set
of candidate closed itemsets are tested against the minimum support constraint. If
succeed, the candidates are marked as frequent closed itemset. Finally the same
procedure is initiated to generate the next level of candidate closed itemsets. This
process continues until all frequent closed itemsets have been generated.

5.3.2 CHARM

CHARM [73] is a frequent closed itemset mining algorithm, that takes advantage of
the vertical representation of database as in the case of Eclat [71] for efficient closure
checking operation. For punning the search space CHARM uses the following three
properties. Suppose for itemset P and Q, if tidset(P) = tidset(Q), then it replaces
every occurrence of P by P ∪ Q and prune the whole branch under Q. On the
other hand if tidset(P) ⊂ tidset(Q), it replaces every occurrence of P by P ∪ Q,
but does not prune the branch under Q. Finally if, tidset(P)<>tidset(Q), none of
the aforementioned prunings can be applied. The initial call of CHARM accepts
a set(I) of single length frequent item and minimum support as input. As a first
step, it sorts I by the increasing the order of support of the items. For each item P ,

56 C. C. Aggarwal et al.

CHARM tries to extend it by another item Q from the same set and applies three
conditions for pruning. If the newly create itemset by extension is frequent, CHARM
performs closure-checking to identify whether the itemset is closed. CHARM also
updates the set I accordingly. In other words, it replaces P with P ∪ Q, if the
corresponding pruning condition is met. If the set I is the not empty, then CHARM
is called recursively.

5.3.3 CLOSET and CLOSET+

CLOSET [53] and CLOSET+ [69] frequent closed itemset mining algorithms are
inspired by the FP-growth method. The CLOSET algorithm makes use of the prin-
ciples of the FP-Tree data structure to avoid the candidate generation step during
the process of mining frequent closed itemsets. This work introduces a technique,
referred to as single prefix path compression, that quickly assists the mining process.
CLOSET also applies partition-based projection mechanisms for better scalability.
The mining procedure of CLOSET follows the FP-growth algorithm. However, the al-
gorithm is able to extract only the closed patterns by careful book-keeping. CLOSET
treats items appearing in every transaction of the conditional database specially. For
example, if Q is the set of items that appear in every transaction of the P conditional
database then P ∪ Q creates a frequent closed itemset if it is not a proper subset of
any frequent closed itemset with the equal support. CLOSET also prunes the search
space. For example, if P and Q are frequent itemset with the equal support where Q

is also a closed itemset and P ⊂ Q, then it does not mine the conditional database
of P because the latter will not produce any frequent closed itemsets.

CLOSET+ is a follow-up work after CLOSET by the same group of authors.
CLOSET+ attempts to design the most optimized frequent closed itemset mining
algorithm by finding the best trade-off between depth-first search versus breadth-
first search, vertical formats versus horizontal formats, tree structure versus other
data structures, top–down versus bottom–up traversal, and pseudo projection ver-
sus physical projection of the conditional database. CLOSET+ keeps track of the
unpromising prefix itemsets for generating potential closed frequent itemsets and
prunes the search space by deleting them. CLOSET+ also applies “item merging,”
and “sub-itemset” based pruning. To save the memory of the closure checking opera-
tion, CLOSET+ uses the combination of the 2-level hash-indexed tree based method
and the pseudo-projection based upward checking method. Interested readers are
encouraged to refer to [69] for more details.

5.3.4 DCI_CLOSED

DCI_CLOSED [41, 42] uses a bitwise vertical representation of the input database.
DCI_CLOSED can be executed independently on each partition of the database in
any order and, thus, also in parallel. DCI_CLOSED is designed to improve memory-
efficiency by avoiding the storage of duplicate closed itemsets. DCI_CLOSED
designs a novel strategy for searching the lattice that can detect and discard du-
plicate closed patterns on the fly. Using the concept of order-preserving generators

2 Frequent Pattern Mining Algorithms: A Survey 57

of frequent closed itemsets, a new visitation scheme of the search space is intro-
duced. Such a visitation scheme results a disjoint sub division of the search space.
This also facilitates parallelism.DCI_CLOSED applies several optimization tricks
to improve execution time, such as the bitwise intersection of tidsets to compute
support and closure. Where possible, it reuses previously computed intersections to
avoid redundant computations.

6 Other Optimizations and Variations

In this section, a number of other optimizations and variations of frequent pattern
mining algorithms will be discussed. Many of these methods are discussed in detail
in other chapters of this book, and therefore they will be discussed only briefly here.

6.1 Row Enumeration Methods

Not all frequent pattern mining algorithms follow the fundamental steps of baseline
algorithm, there exists a number of special cases, for which specialized frequent
pattern mining algorithms have been designed. An interesting case is that of micro-
array data sets, in which the columns are very long but the number of rows are not
very large. In such cases, a method called row-enumeration is used [22, 23, 40, 48,
49] instead of the usual column enumeration, in which combinations of rows are
examined during the search process. There are two categories of row enumeration
algorithm. One category algorithm perform bottom-up [22, 23, 48] search over
the row enumeration tree whereas other category algorithms perform top-down[40]
search strategy.

Row enumeration algorithms perform mining over the transpose of the transaction
database. In transpose database, each transaction id become item and each item cor-
responds a transaction. Mining over the transposed database is basically the bottom
up search for frequent patterns by enumeration of row sets. However, the bottom-up
search strategy cannot take advantage of user-specified minimum support threshold
to effectively prune the search space, and therefore leads to longer running time
and large memory overhead. As a solution [40] introduce a top-down approach of
mining using a novel row enumeration tree. Their approach can take full advantage
of user-defined minimum support value and prune the search space efficiently hence
lower down the execution time.

Note that, both of the search strategies are applied over the transposed transaction
database. Most of developed algorithm using row enumeration technique concentrate
on mining frequent closed itemset (explained in Sect. 5). The reason behind this
motivation is that due to the nature of micro-array data there exists a large number
of redundancy among the frequent patterns for a minimum support threshold and
closed patterns are capable of summarizing the whole database. These strategies will
be discussed in detail in Chap. 4, and therefore only a brief discussion is provided
here.

58 C. C. Aggarwal et al.

6.2 Other Exploration Strategies

The advantage of tree-enumeration strategies is that they facilitate the exploration
of candidates in the tree in an arbitrary order. A method known as Pincer-Search
is proposed in [37] that combines top-down and bottom-up exploration in “pincer”
fashion to avail of the advantages of both subset and superset pruning. Two primary
observations are used in pincer search:

1. Any subset of a frequent itemset is frequent.
2. Any superset of an infrequent itemset is infrequent.

In pincer-search, top–down and bottom–up exploration are combined and irrelevant
itemsets are pruned using both observations. More details of this approach are dis-
cussed in [37]. Note that, for sparse transaction data, superset pruning is likely to be
inefficient. Other recent methods have been proposed for long pattern mining with
methods such as “leap search.” These methods are discussed in the chapter on long
pattern mining in this book.

7 Reducing the Number of Passes

A major challenge in frequent pattern mining is when the data is disk resident. In such
cases, it is desirable to use level-wise methods to ensure that random accesses to disk
are minimized. This is the reason that most of the available algorithms use level-wise
methods, which ensure that the number of passes over the database are bounded by the
size of the longest pattern. Even so, this can be significant, when many long patterns
are present in the database. Therefore, a number of methods have been proposed in the
literature to reduce the number of passes over the data. These methods could be used
in the context of join-based algorithms, tree-based algorithms, or even other classes
of frequent pattern mining methods. These correspond to combining the level-wise
database passes, using sampling, and using a preprocess-once-query-many paradigm.

7.1 Combining Passes

The earliest work on combining passes was proposed in the original Apriori algorithm
[1]. The key idea in combing passes is that it is possible to use joins to create
candidates of higher order than (k + 1) in a single pass. For example, (k + 2)-
candidates can be created from (k + 1)-candidates before actual validation of the
(k + 1)-candidates over the data. Then, the candidates of size (k + 1) and (k + 2)
can be validated together in a single pass over the data. Although such an approach
reduces the number of passes over the data, it has the downside that the number of
spurious (k +2) candidates will be far larger because the (k +1) candidates were not
confirmed to be frequent before they were joined. Therefore, the saving of database

2 Frequent Pattern Mining Algorithms: A Survey 59

passes comes at an increased computational cost. Therefore, it was proposed in [1]
that the approach should be used for later passes, when the number of candidates
has already reduced significantly. This reduces the likelihood that the number of
candidates blows up too much with this approach.

7.2 Sampling Tricks

A number of sampling tricks can be used to greatly improve the efficiency of the
frequent pattern mining process. Most sampling methods require two passes over
the data, the first of which is used for sampling. An interesting approach that uses
two passes with the use of sampling is discussed in [65]. This method generates the
approximately frequent patterns over the data, using a sample. False negatives can
be reduced by lowering the minimum support level appropriately, so that bounds can
be defined on the likelihood of false negatives. False positives can be removed with
the use of a second pass over the data. The major downside of the approach is that
the reduction in the minimum support level to reduce the number of false negatives
can be significant. This also reduces the computational efficiency of the approach.
The method however requires only two passes over the data, where the first pass is
used to create the sample, and the second pass is used to remove the false positives.

An interesting approach proposed in [57] divides the disk resident database into
smaller memory-resident partitions. For each partition, more efficiency algorithms
can be used, because of the memory-resident nature of the partition. It should be
pointed out that each frequent pattern over the entire database will appear as a fre-
quent pattern in at least one transaction. Therefore, the union of the itemsets over
the different transactions provides a superset of the true frequent patterns. A post-
processing phase is then used to filter out the spurious itemsets, by counting this
candidate set against the transaction database. As long as the partitions are reason-
ably large, the superset found approximates the true frequent patterns very well,
and therefore the additional time spent in counting irrelevant candidates is relatively
small. The main advantage of this approach is it requires only two passes over the
database. Therefore, such an approach is particularly effective when the data is
resident on disk.

The Dynamic Itemset Counting (DIC) algorithm [15] divides the database into
intervals, and generates longer candidates when it is known that the subsets of these
candidates are already frequent. These are then validated over the database. Such
an approach can reduce the number of passes over the data, because it implicitly
combines the process of candidate generation and counting.

60 C. C. Aggarwal et al.

7.3 Online Association Rule Mining

In many applications, a user may wish to query the transaction data to find the asso-
ciation rules or the frequent patterns. In such cases, even at high support levels, it is
often impossible to create the frequent patterns in online time because of the multiple
passes required over a potentially large database. One of the earliest algorithms for
online association rule mining was proposed in [6]. In this approach, an augmented
lexicographic tree is stored either on disk or in main-memory. The lexicographic tree
is augmented with all the edges represented the subset relationships between item-
sets, and is also referred to as the itemset lattice. For any given query, the itemset
lattice may be traversed to determine the association rules. It has been shown in [6],
that such an approach can also be used to determine the non-redundant association
rules in the underlying data. A second method [40] uses a condensed frequent pattern
tree (instead of a lattice) to pre-process and store the itemsets. This structure can be
queried to provide online responses.

A very different approach for online association rule mining has been proposed
in [34], in which the transaction database is processed in real time. In this case, an
incremental approach is used to mine the transaction database. This is a Continuous
Association Rule Mining Algorithm, which is referred to as CARMA. In this case,
transactions are processed as they arrive, and candidate itemsets are generated on
the fly, by examining the subsets of that transaction. Clearly, the downside is that
such an approach is that it will create a lot more candidates than any of the offline
algorithms which use levelwise methods to generate the candidates. This general
characteristic is of course true of any algorithm which tries to reduce the number of
passes with approximate candidate generation. One interesting characteristic of the
CARMA algorithm is that it allows the user to change the minimum support level
during execution. In that case, the algorithm is guaranteed to have generated the
supersets of the true itemsets in the data. If desired, a second pass over the data can
be used to remove the spurious frequent itemsets.

Many streaming methods have also been proposed that use only one pass over the
transaction data [19–21, 35, 43]. It should be pointed out that it is often difficult to find
even 1-itemsets exactly over a data stream because of the one-pass constraint [21],
when the number of distinct items is larger than the main memory availability. This
is often true of k-itemsets as well, especially at low support levels. Furthermore,
if the patterns in the stream change over time, then the frequent k-itemsets will
change significantly as well. These methods therefore have the challenge of finding
the frequent itemsets efficiently, maintaining them, and handling issues involving
evolution of the data stream. Given the numerous challenges of pattern mining in
this scenario, most of these methods find the frequent items approximately. These
issues will be discussed in detail in Chap. 9 on streaming pattern mining algorithms.

2 Frequent Pattern Mining Algorithms: A Survey 61

8 Conclusions and Summary

This chapter provides a survey of different frequent pattern mining algorithms. most
frequent pattern algorithms, implicitly or explicitly, explore the enumeration tree of
itemsets. Algorithms such as Apriori explore the enumeration tree in breadth-first
fashion with join-based candidate generation. Although the notion of an enumeration
tree is not explicitly mentioned by the Apriori algorithm, the execution tree explores
the candidates according to an enumeration tree constructed on the prefixes. Other
algorithms such as TreeProjection and FP-growth use the hierarchical relationships
between the projected databases for patterns of different lengths, and avoid re-doing
the counting work done for the shorter patterns. Maximal and closed versions of
frequent pattern mining algorithms are also able to achieve much better pruning
performance. A number of efficiency-based optimizations of frequent pattern mining
algorithms were also discussed in this chapter.

References

1. R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases,
VLDB Conference, pp. 487–499, 1994.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in
large databases. ACM SIGMOD Conference, 1993.

3. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of
association rules, Advances in Knowledge Discovery and Data Mining, pp. 307–328, 1996.

4. R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth-first Generation of Long Patterns,
ACM KDD Conference, 2000. Also available as IBM Research Report, RC21538, July 1999.

5. R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm for Generation of
Frequent Itemsets, Journal of Parallel and Distributed Computing, 61(3), pp. 350–371, 2001.
Also available as IBM Research Report, RC21341, 1999.

6. C. C. Aggarwal, P. S. Yu. Online Generation of Association Rules, ICDE Conference, 1998.
7. C. C. Aggarwal, P. S. Yu. A New Framework for Itemset Generation, ACM PODS Conference,

1998.
8. E. Azkural and C. Aykanat. A Space Optimization for FP-Growth, FIMI workshop, 2004.
9. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining Frequent Patterns with

Counting Inference. ACM SIGKDD Explorations Newsletter, 2(2), pp. 66–75, 2000.
10. R. J. Bayardo Jr. Efficiently mining long patterns from databases, ACM SIGMOD Conference,

1998.
11. J. Blanchard, F. Guillet, R. Gras, and H. Briand. Using Information-theoretic Measures to

Assess Association Rule Interestingness. ICDM Conference, 2005.
12. C. Borgelt, R. Kruse. Induction of Association Rules: Apriori Implementation, Conference on

Computational Statistics, 2002. http://fuzzy.cs.uni-magdeburg.de/ borgelt/software. html.
13. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A Condensed Representation of

Boolean data for the Approximation of Frequency Queries. Data Mining and Knowledge
Discovery, 7(1), pp. 5–22, 2003.

14. D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Maximal Frequent Itemset Al-
gorithm for Transactional Databases, ICDE Conference, 2000. Implementation URL:
http://himalaya-tools.sourceforge.net/Mafia/.

15. S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication
rules for market basket data. ACM SIGMOD Conference, 1997.

http://fuzzy.cs.uni-magdeburg.de/~borgelt/software. html
http://himalaya-tools.sourceforge.net/Mafia/

62 C. C. Aggarwal et al.

16. S. Brin, R. Motwani, and C. Silverstein. Beyond Market Baskets: Generalizing Association
Rules to Correlations. ACM SIGMOD Conference, 1997.

17. T. Calders, and B. Goethals. Mining all non-derivable frequent itemsets Principles of Data
Mining and Knowledge Discovery, pp. 1–42, 2002.

18. T. Calders, and B. Goethals. Depth-first Non-derivable Itemset Mining, SDM Conference,
2005.

19. T. Calders, N. Dexters, J. Gillis, and B. Goethals. Mining Frequent Itemsets in a Stream,
Informations Systems, to appear, 2013.

20. J. H. Chang, and W. S. Lee. Finding Recent Frequent Itemsets Adaptively over Online Data
Streams, ACM KDD Conference, 2003.

21. M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Streams.
Automata, Languages and Programming, pp. 693–703, 2002.

22. G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J.Yang. FARMER: Finding interesting rule groups
in microarray datasets. ACM SIGMOD Conference, 2004.

23. G. Cong, K.-L. Tan, A. K. H. Tung, X. Xu. Mining Top-k covering Rule Groups for Gene
Expression Data. ACM SIGMOD Conference, 2005.

24. M. El-Hajj and O. Zaiane. COFI-tree Mining: A NewApproach to Pattern Growth with Reduced
Candidacy Generation. FIMI Workshop, 2003.

25. F. Geerts, B. Goethals, J. Bussche. A Tight Upper Bound on the Number of Candidate Patterns,
ICDM Conference, 2001.

26. B. Goethals. Survey on frequent pattern mining, Technical report, University of Helsinki, 2003.
27. R. P. Gopalan and Y. G. Sucahyo. High Performance Frequent Pattern Extraction using Com-

pressed FP-Trees, Proceedings of SIAM International Workshop on High Performance and
Distributed Mining, 2004.

28. K. Gouda, and M. Zaki. Genmax: An efficient algorithm for mining maximal frequent itemsets.
Data Mining and Knowledge Discovery, 11(3), pp. 223–242, 2005.

29. G. Grahne, and J. Zhu. Efficiently Using Prefix-trees in Mining Frequent Itemsets, IEEE ICDM
Workshop on Frequent Itemset Mining, 2004.

30. G. Grahne, and J. Zhu. Fast Algorithms for Frequent Itemset Mining Using FP-Trees. IEEE
Transactions on Knowledge and Data Engineering. 17(10), pp. 1347–1362, 2005, vol. 17, no.
10, pp. 1347–1362, October, 2005.

31. V. Guralnik, and G. Karypis. Parallel tree-projection-based sequence mining algorithms.
Parallel Computing, 30(4): pp. 443–472, April 2004.

32. J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation, ACM
SIGMOD Conference, 2000.

33. J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining: Current Status and Future
Directions, Data Mining and Knowledge Discovery, 15(1), pp. 55–86, 2007.

34. C. Hidber. Online Association Rule Mining, ACM SIGMOD Conference, 1999.
35. R. Jin, and G. Agrawal. An Algorithm for in-core Frequent Itemset Mining on Streaming Data,

ICDM Conference, 2005.
36. Q. Lan, D. Zhang, and B.Wu.A NewAlgorithm For Frequent Itemsets Mining Based OnApriori

And FP-Tree, IEEE International Conference on Global Congress on Intelligent Systems,
pp. 360–364, 2009.

37. D.-I. Lin, and Z. Kedem. Pincer-search: A New Algorithm for Discovering the Maximum
Frequent Set, EDBT Conference, 1998.

38. J. Liu, Y. Pan, K. Wang. Mining Frequent Item Sets by Opportunistic Projection, ACM KDD
Conference, 2002.

39. G. Liu, H. Lu and J. X. Yu. AFOPT:An Efficient Implementation of Pattern Growth Approach,
FIMI Workshop, 2003.

40. H. Liu, J. Han, D. Xin, and Z. Shao. Mining frequent patterns on very high dimensional data:
a top- down row enumeration approach. SDM Conference, 2006.

41. C. Lucchesse, S. Orlando, and R. Perego. DCI-Closed: A fast and memory efficient algorithm
to mine frequent closed itemsets. FIMI Workshop, 2004.

2 Frequent Pattern Mining Algorithms: A Survey 63

42. C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient mining of frequent closed
itemsets. IEEE TKDE Journal, 18(1), pp. 21–36, January 2006.

43. G. Manku, R. Motwani. Approximate Frequency Counts over Data Streams. VLDB Conference,
2002.

44. H. Mannila, H. Toivonen, and A.I. Verkamo. Efficient algorithms for discovering association
rules. Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, pp. 181–192,
1994.

45. B. Negrevergne, T. Guns, A. Dries, and S. Nijssen. Dominance Programming for Itemset
Mining. IEEE ICDM Conference, 2013.

46. S. Orlando, P. Palmerini, R. Perego. Enhancing the a-priori algorithm for frequent set counting,
Third International Conference on Data Warehousing and Knowledge Discovery, 2001.

47. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware mining of
frequent sets. ICDM Conference, 2002.

48. F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki. Finding closed patterns in long
biological datasets. ACM KDD Conference, 2003.

49. F Pan, A. K. H. Tung, G. Cong, X. Xu. COBBLER: Combining column and Row Enumeration
for Closed Pattern Discovery. SSDBM, 2004.

50. J.-S. Park, M. S. Chen, and P. S.Yu. An Effective Hash-basedAlgorithm for MiningAssociation
Rules, ACM SIGMOD Conference, 1995.

51. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. ICDT Conference, 1999.

52. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using
closed itemset lattices. Journal of Information Systems, 24(1), pp. 25–46, 1999.

53. J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed
Itemsets, DMKD Workshop, 2000.

54. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang. H-mine: Hyper-structure mining of frequent
patterns in large databases, ICDM Conference, 2001.

55. B. Racz. nonordfp: An FP-Growth Variation without Rebuilding the FP-Tree, FIMI Workshop,
2004.

56. M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A Perspective on Databases and
Data Mining, ACM KDD Conference, 1995.

57. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules
in large databases. VLDB Conference, 1995.

58. P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, D. Shah. Turbo-charging Vertical
Mining of Large Databases. ACM SIGMOD Conference, pp. 22–33, 2000.

59. Z. Shi, and Q. He. Efficiently Mining Frequent Itemsets with Compact FP-Tree, IFIP
International Federation for Information Processing, V-163, pp. 397–406, 2005.

60. R. Srikant. Fast algorithms for mining association rules and sequential patterns. PhD thesis,
University of Wisconsin, Madison, 1996.

61. Y. G. Sucahyo and R. P. Gopalan. CT-ITL: Efficient Frequent Item Set Mining Using a
Compressed Prefix Tree with PatternGrowth, Proceedings of the 14th Australasian Database
Conference, 2003.

62. Y. G. Sucahyo and R. P. Gopalan. CT-PRO: A Bottom Up Non Recursive Frequent Itemset
Mining Algorithm Using Compressed FP-Tree Data Structures. FIMI Workshop, 2004.

63. P.-N. Tan, V. Kumar, amd J. Srivastava. Selecting the Right Interestingness Measure for
Association Patterns. ACM KDD Conference, 2002.

64. I. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal. Mining Basis for Association Rules using
Closed Sets, ICDE Conference, 2000.

65. H. Toivonen. Sampling large databases for association rules. VLDB Conference, 1996.
66. T. Uno, M. Kiyomi and H.Arimura. Efficient MiningAlgorithms for Frequent/Closed/Maximal

Itemsets, FIMI Workshop, 2004.
67. J. Wang, J. Han. BIDE: Efficient Mining of Frequent Closed Sequences. ICDE Conference,

2004.

64 C. C. Aggarwal et al.

68. J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining top-k frequent
closed itemsets. IEEE Transactions on Knowledge and Data Engineering, 17, pp. 652–664,
2002.

69. J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best strategies for mining frequent
closed itemsets. ACM KDD Conference, 2003.

70. G. I. Webb. Efficient Search for Association Rules, ACM KDD Conference, 2000.
71. M. J. Zaki. Scalable algorithms for association mining, IEEE Transactions on Knowledge and

Data Engineering, 12(3), pp. 372–390, 2000.
72. M. Zaki, and K. Gouda. Fast vertical mining using diffsets. ACM KDD Conference, 2003.
73. M. J. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed association rule mining.

SDM Conference, 2002.
74. M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast Discovery of

Association Rules. KDD Conference, pp. 283–286, 1997.
75. C. Zeng, J. F. Naughton, and JY Cai. On Differentially Private Frequent Itemset Mining. In

Proceedings of 39th International Conference on Very Large data Bases, 2012.

	Chapter 2 Frequent Pattern Mining Algorithms: A Survey
	1 Introduction
	1.1 Definitions

	2 Join-Based Algorithms
	2.1 Apriori Method
	2.1.1 Apriori Optimizations

	2.2 DHP Algorithm
	2.3 Special Tricks for 2-Itemset Counting
	2.4 Pruning by Support Lower Bounding
	2.5 Hypercube Decomposition

	3 Tree-Based Algorithms
	3.1 AIS Algorithm
	3.2 TreeProjection Algorithms
	3.3 Vertical Mining Algorithms
	3.3.1 Eclat
	3.3.2 VIPER

	4 Recursive Suffix-Based Growth
	4.1 The FP-Growth Approach
	4.2 Variations
	4.2.1 Memory-Resident Variations
	4.2.2 Improved Data Structure Variations

	5 Maximal and Closed Frequent Itemsets
	5.1 Definitions
	5.2 Frequent Maximal Itemset Mining Algorithms
	5.2.1 MaxMiner Algorithm
	5.2.2 DepthProject Algorithm
	5.2.3 MAFIA Algorithm
	5.2.4 GenMax

	5.3 Frequent Closed Itemset Mining Algorithms
	5.3.1 Close
	5.3.2 CHARM
	5.3.3 CLOSET and CLOSET+
	5.3.4 DCI_CLOSED

	6 Other Optimizations and Variations
	6.1 Row Enumeration Methods
	6.2 Other Exploration Strategies

	7 Reducing the Number of Passes
	7.1 Combining Passes
	7.2 Sampling Tricks
	7.3 Online Association Rule Mining

	8 Conclusions and Summary
	References

