
Chapter 17
Supervised Pattern Mining and Applications
to Classification

Albrecht Zimmermann and Siegfried Nijssen

Abstract In this chapter we describe the use of patterns in the analysis of supervised
data. We survey the different settings for finding patterns as well as sets of patterns.
The pattern mining settings are categorized according to whether they include class
labels as attributes in the data or whether they partition the data based on these labels.
The pattern set mining settings are categorized along several dimensions, including
whether they perform iterative mining or post-processing, operate globally or locally,
and whether they use patterns directly or indirectly for prediction.
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1 Introduction

Although early constrained pattern mining in the form of frequent itemset mining
(FIM) focused on an unsupervised setting, a natural extension is to apply these tech-
niques in a supervised context as well. In the supervised context, one attribute (or
sometimes a small set of attributes) is considered to be special, and we are only inter-
ested in finding relationships between this attribute and the other attributes. Whereas
this limits the patterns that will be found, it makes the analysis more targeted and
in many cases more useful. Consider for instance the context of customer defection
(churn), where one wishes to find relationships between the loyalty of customers and
other characteristics of the customers; or consider applications in cheminformatics,
where one wishes to find relationships between molecular structures and their activ-
ity: in all these cases, a targeted analysis with respect to the indicated target attribute
is likely to produce the most valuable results.
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Fig. 17.1 The process of classifier construction via supervised pattern mining

In this chapter, we will provide an overview of pattern mining techniques that
can be used in such a supervised context. The patterns found by these techniques
can often be interpreted as rules: the conditions of the rule identify examples for
which a certain property in the target attribute holds. The techniques are hence
related to Machine Learning: many traditional Machine Learning algorithms are
rule-based as well. A natural question is how to link these two fields to each other,
in particular given that the focus of both areas is complementary: most traditional
machine learning techniques deal with the large search space of potential rules by
adopting heuristics; pattern mining methods, on the other hand, offer more efficient
methods for traversing a search space exhaustively, promising to find better rules
than those found by traditional rule learners. We will address this as well.

The earliest techniques that integrated both areas mirrored the FIM techniques
closely, using support and confidence to constrain itemsets and rules, and support’s
anti-monotonicity to prune the search space. In addition to new challenges, super-
vised pattern mining also offers new opportunities, however, since the supervision
allows to use additional quality measures and prune based on the properties of con-
straints based on these measures. By now, the field has developed far from its origins,
encompassing other representations, incorporating approaches and quality measures
developed in the context of Machine Learning, and paying much attention to pattern
set mining.

The latter topic is not limited to supervised pattern mining but is of particular
importance there: when constructing classifiers, rule lists or sets, but also decision
trees, or non-symbolic classifiers, redundancy among or irrelevance of patterns is
often detrimental to the classifier’s performance.

We have given a unifying perspective on pattern-based classification in the past
[9] in which we focused on two dimensions. The first concerned pattern set mining,
specifically whether techniques performed post-processing, selecting some patterns
out of the result set of a single pattern mining step, or whether they iterated pattern
mining. The second dimension focused on whether they let the pattern mining and
selection process be guided by a particular model or not. While these distinctions
still stand, in our opinion, we have decided to structure this chapter differently,
discussing each of the three steps shown in Fig. 17.1 separately: pattern mining,
pattern set mining, and finally classifier construction, and surveying the different,
sometimes numerous, options available.
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2 Supervised Pattern Mining

The majority of texts in this book deal with different unsupervised pattern mining
settings. We will quickly repeat the relevant definitions here to clarify which setting
we discuss:

Definition 2.1 Given a data language LD which describes the syntax of potential
transactions in the data, a transactional data set D ⊆ LD is of the form D =
{d1, . . . , dn}, di ∈ LD. Given a pattern language Lπ , we define a function match :
Lπ × LD �→ {0, 1}, which decides whether a pattern occurs in a transaction or not.
The set of transactions from a data set D matched by a pattern π are referred to
as its cover: covD(π ) = {d ∈ D | match(π , d) = 1}, and the size of the cover is
referred to as π ’s (absolute) support: suppD(π ) = |covD(π )|.

The easiest instantiation of this definition is the case of itemset databases: given
a set of items I, Lπ = LD = 2I , and match(π , d) = 1 ⇔ π ⊆ d. For other types
of data, such as for instance graph data or sequential data, alternative definitions for
LD, Lπ and match can be used, and most ideas presented in the rest of this paper
can be applied immediately for these alternative definitions.

The biggest difference between unsupervised and supervised pattern mining is
the presence of a variable of interest. This variable is often the class variable that can
take on one out of several nominal class labels.

Definition 2.2 Given a data language LD, and a set of class labels C = {C1,
. . . , Ck}, a labeled data set DC is of the form DC = {(d1, c1), . . . , (dn, cn)}, di ∈
LD, ci ∈ C.

The most common setting is that of classification, in which the task is to learn
a mechanism to predict the class label for unseen data based on rules or patterns.
Alternatively, the target for prediction can also be numerical, requiring a regression
model.

However, another popular setting is that of subgroup discovery, which can be
generalized to exceptional model mining when the target attribute is not a single
categorical attribute [24].

Instead of prediction, the goal in this setting is the characterization of subsets
of the data, i.e. subgroups. The mined rules are therefore not means to the end of
prediction but the end themselves, and users are expected to inspect them to gain a
deeper understanding of the data. In other words, classification is concerned with
outcomes on future data, subgroup discovery with descriptions of current data.

As a result of this, the quality criteria and heuristics used are sometimes different.
However, many of the techniques used are also shared, and for reasons of clarity
of presentation, we will mainly focus on classification in this chapter, and make
differences to the other settings explicit when appropriate.
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2.1 Explicit Class Labels

A first, straight-forward interpretation considers class labels just additional items
in the transactional data, i.e. I ′ = I ∪ C, and imposes a syntactical constraint on
itemsets being mined from it: each itemset has to include exactly one of those class-
label items. This has the tremendous advantage that existing techniques for FIM can
be used directly, e.g. Apriori [2], Eclat [40], or FPGrowh [20].

The typical FIM mining approach identifies interesting itemsets by using a min-
imum support threshold that itemsets’ support has to exceed, and chooses relevant
rules by using a minimum confidence threshold. Since specializations of patterns,
e.g. extensions of an itemset with additional items, will have less than or equal sup-
port as the pattern itself, the search space can be pruned, allowing for exhaustive
enumeration.

This can be adapted by using class labels explicitly as items. It allows to treat
settings with more than two classes in a straightforward way:

• For all class labels C:
1. Mine all itemsets including C that exceed the minimum support threshold
2. Retain all association rules r → C that exceed the minimum confidence

threshold

The resulting association rules are referred to as class association rules (cars) and
are restricted to having only the class item as their right-hand side. Their quality is
usually evaluated using confidence as in the case of general association rules:

Definition 2.3 Given a set of items I and a set of class labels C, a class association
rule is of the form r → c, r ⊆ I, c ∈ C. r is called its left-hand side (LHS), an-
tecedent, or rule body, c its right-hand side, consequent, or rule head. Its confidence
is defined as conf (r → c) = suppD(r∪c)

suppD(r) .
Prominent examples of classification learners that build upon class association

rules are the CBA [27] and CMAR [25] algorithms. The Harmony algorithm, in-
troduced by [38], also takes this view of class labels, as does the ART technique
[17]. As a direct application of FIM techniques, these methods are somewhat limited
by typically using only a single minimum support and confidence threshold, which
might be inappropriate in the case of skewed class distributions. They can, however,
benefit from all developments in FIM research, such as better rule quality measures
(replacing confidence), and the development of more efficient algorithms.

2.2 Classes as Data Subsets

A second interpretation of different classes in the data is to consider each class a
separate data set and a whole database the union of those subsets:

Definition 2.4 Given a labeled data set DC , and a set of class labels C, the subsets
∀Ci ∈ C : Di = {(d, Ci) ∈ DC} are called classes.
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Each of these classes can be treated like a distinct data set—the ARC-BC algo-
rithm by [3], for instance, mines cars from each class separately, using a single
relative support threshold that is used as a constraint on each class in turn. Using this
interpretation also opens up several new possibilities.

The first, and potentially most important one, is that this opens up the supervised
pattern mining setting to all possible pattern languages: whether itemsets, sequences,
trees, or graph-structured data and patterns, the techniques that we describe in this
section are applicable to all of them.

Second, there are new ways of using significance and quality measures.

Multiple Support Thresholds There is the possibility of using support thresholds.
The XRules classifier [41], for instance, uses a separate minimum support threshold
for each class. It is also a first example of supervised pattern mining in a different
pattern domain than itemsets, producing predictive rules the rule body of which
consists of tree fragments, called structural rules in the work.

Instead of minimum support constraints, it is also natural to use maximum support
constraints: a rule which is specific for one class should after all not cover many
examples in other classes than the class it is predicting. The technique introduced
by [22], for instance, exploits this observation by finding patterns that are frequent
within one class, but infrequent in the other. It exploits a relationship with version
space theory from machine learning.

The CCCS classifier [4] even relies only on a maximum support constraint and
removes the minimum support constraint entirely. It is argued that infrequent patterns
in a class can be found by enumerating small subsets of transactions in this class.

The problem that remains in each of these cases is a similar one as for single sup-
port thresholds: how to set the parameters. A pattern that occurs in 50 % of one class,
and 15 % of the other, could be considered a valuable predictive pattern, as might be a
pattern that occurs in 80 % of the first and 30 % of the second. Support constraints that
accommodate both patterns, however, e.g. suppmin = 0.5, suppmax = 0.3 would
allow results of questionable usefulness.

To address this, the Fitcare classifier proposed by [10] takes this idea further and
uses a much larger parameter set: given k classes, each class is mined separately,
parametrized by a minimum support constraint and k − 1 maximum support con-
straints on all other classes. To make this manageable, the support constraints are
dynamically adjusted during mining.

Statistical Measures A popular alternative approach is the use of constraints on
measures specifically designed for supervised data. These measures typically serve as
a replacement for confidence in selecting relevant predictive patterns; the underlying
patterns are still found using a minimum support threshold on the complete data.

As a straightforward example, consider the accuracy measure:

Definition 2.5 Given two classes D+, D−, pattern r . The accuracy of r is defined

as acc(r) = suppD+ (r)+(|D−|−suppD− (r))
|D| .

In general, most measures for evaluating the predictive power of a rule can be
expressed as functions from the values in the contingency table:
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An arrangement in a contingency table invites the use of well-established measures
such as Information Gain or χ2 to mine correlating [29], contrast [6], or discriminat-
ing patterns [11]. Similarly, the growth rate can be used to mine emerging patterns
[14, 26, 37]. It divides the support in one class by the support in the other one.

A measure that is often used in subgroup discovery is Weighted Relative Accuracy
[23]:

Definition 2.6 Given a rule r → C+, its Weighted Relative Accuracy is defined as

WRAcc(r → C+) = suppD(r)
|D|

(
suppD+ (r)
suppD(r) − |D+|

|D|
)

.

It is instructive to compare accuracy and WRAcc to gain a better understanding
of the conceptual differences between classification and subgroup discovery.

Since the final goal is to find rules with good predictive accuracy, accuracy treats
covering one negative instance less as equal to covering one positive instance more.
Consider a data set consisting of 60 instances in D+, and 40 in D−, and a rule covering
40 positive and 15 negative instances. Its accuracy is 0.65, and rules that covered 5
positive instances more, or 5 negative instances less, would both achieve a (better)
accuracy of 0.7. In the case of WRAcc, the situation is different: the original rule
would have a score of 0.07 and while covering 5 negative instances less improves it
to 1.0, covering 5 positive instances more yields a smaller improvement (to 0.09).

Since subgroup discovery aims to characterize differences, this behavior makes
perfect sense: the positive class is overrepresented in the entire data and coverage of
this class has to increase more strongly to be interesting. Given a heavily skewed data
set (e.g. |D+| = 0.9|D|), a rule predicting all transactions to belong to the majority
class might be acceptable for a classifier but would be unattractive for subgroup
discovery.

WRAcc also includes a normalizing factor that weights a rule’s score by its effect
size but this is in fact not particular to subgroup discovery. When it comes to nor-
malization, the difference between classification and subgroup discovery measures
lies in the motivation: classification wants assurance that mined rules will work on
unseen data, subgroup discovery wants rules to be representative of the data they
have been mined from.

In combination with a minimum support constraint, WRAcc can be used in a class
association rule miner instead of confidence [21]. This idea can be generalized to
other subgroup discovery measures (and the measures listed above), replacing the
confidence measure in class association rule miners by numerous other functions as
proposed by [5]. CMAR, for instance, filters cars using a χ2 minimum threshold in
addition to the minimum confidence threshold.

That the differences between different types of supervised patterns mainly come
down to a change in quality function has been shown in detail by [32], the authors of
which coined the term “supervised descriptive rule discovery” for such approaches
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and has been leveraged by [44] to use one type of mining technique to address
different tasks: classification, subgroup discovery, and conceptual clustering.

Eliminating Minimum Support The above settings essentially apply statistical
measures in addition to minimum support. The minimum support parameter remains
a parameter that needs to be set. Several approaches have successfully eliminated
this parameter.

The main observation is that thresholds on quality measures can be translated
into support thresholds; hence, if a support threshold is not given, it is possible to
automatically determine an additional support threshold for use in a pattern mining
algorithm.

Returning to the accuracy measure, we can set a minimum threshold on it:
acc(r) ≥ θacc. This can be transformed into p + (N − n) ≥ θacc · |D|, and fur-
ther into p ≥ θacc · |D| − N + n ≥ θacc · |D| − N . So we derive support constraints
based on the threshold on the quality measure itself [31].

For measures that are convex, which includes the ones mentioned above but also
many others, a similar argument is possible: convex functions take their maxima at
extreme points, i.e. points with p = 0 or n = 0. Thus, based on a threshold on the
minimal acceptable values for a statistical scoring function, thresholds on a pattern’s
p and n can be derived and enforced during mining. This makes it effective to use
the quality measure to prune during rule mining [6, 7, 11, 12, 15, 19, 29, 31, 35, 39,
43–45].

Thus far we have discussed approaches that use thresholds and exhaustively mine
all patterns that satisfy the thresholds. An even easier and often more effective ap-
proach is to perform top-k mining instead. In top-k mining, one is interested in
finding only those patterns which have the k highest scores; the only parameter that
needs to be specified is k. This has been leveraged by [7, 11, 12, 15, 35, 42, 45]. The
nature of this mining process means that the threshold(s) increase during mining,
pruning more and more candidate patterns as the search progresses. To achieve a
quick increase of the threshold, it can be useful to perform a best-first search during
which it is always the rule with the highest upper bound that is specialized.

2.3 Numerical Target Values

As opposed to the setting discussed in the preceding sections, in which each transac-
tion is labeled with one out of a set of discrete labels, a numerical variable of interest
can have potentially infinitely many values. As a result of this, each transaction in the
data may have a different target value, and learning a predictor for particular values,
or partitioning the data into subsets consisting of transactions with the same target
value, are strategies that are unlikely to be successful. Nevertheless, there exist a
number of techniques for discretizing numerical values, in which case the problem
can be reduced to the classification setting.
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Alternatively, one can either attempt to mine patterns that partition the data into
transactions that have approximately the same numerical value, or those that can be
used as elements of a regression function that outputs a numerical result based on
their appearance in a transaction. An interestingness measure that can be used in the
former case is interclass variance:

Definition 2.7 Given a data set with numerical labels of the form DY = {(d1, y1),
. . . , (dn, yn)}, yi ∈ R, pattern π , the average y in a subset D⊆ of that data set is:

avg(D⊆) =
∑

(di ,yi )∈D⊆ yi

|D⊆|
The interclass variance of π is defined as:

var(π ) = |cov(π )| (avg(cov(π )) − avg(DY ))2

+|DY \ cov(π )| (avg(DY \ cov(π )) − avg(DY ))2

Interclass variance is convex, which means that thresholds on its value can be trans-
lated into thresholds on support values, and thresholded or top-k mining used in the
same manner as for discrete target values.

In the latter case, works such as [13, 33, 34] have chosen linear regression func-
tions that weight the contributions of individual patterns. Based on these weights, the
authors define a quality function for individual patterns, and derive upper bounds that
they use to perform top-k mining for component patterns of the regression model.

3 Supervised Pattern Set Mining

The result of a supervised pattern mining operation, as so often in pattern mining set-
tings, is typically a very large set of redundant and contradictory patterns. Even when
mining only the top-k patterns, many of those will cover (almost) the same instances.
As we mentioned in the introduction, when constructing classifiers, redundant pat-
terns or patterns that are irrelevant in the presence of others can be undesirable. If
the classifier takes the form of an unordered rule set, for instance, which we will
describe in Sect. 4, certain rules could strongly boost each other, far in excess of
their actual relevance and usefulness.

Hence many techniques in the literature include a mechanism for mining or
selecting a subset of the result set. Where the techniques for supervised pattern
mining intended to improve on Machine Learning techniques, replacing heuris-
tics with exhaustive search, the methods for supervised pattern set mining are
strongly inspired by Machine Learning techniques. In particular, both sequential
(covering/re-weighting) or separate-and-conquer, and decision tree like divide-and-
conquer techniques can be found time and again in works on supervised pattern
mining.

There are two wide-spread approaches to pattern set mining. One is post-
processing:
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1. Mine a set of supervised patterns satisfying certain constraints
2. Select some patterns out of this set following certain criteria

and iterative pattern are derived set mining:

1. Mine a (set of) supervised pattern(s) satisfying certain constraints
2. Modify the constraints or data
3. Return to 1.

The main argument in favor of the post-processing approach is its efficiency. It allows
to run a pattern mining algorithm only once and hence avoids the possibly time
consuming repeated execution of pattern mining algorithms. The main arguments
in favor of iterative mining algorithms are their potentially higher accuracy and
their potential to use parameter-free pattern mining algorithms; in many of these
algorithms, it is not necessary to define a minimum support threshold in advance.

Both separate-and-conquer and divide-and-conquer techniques have been used
within either of these categories.

Most of these techniques can be understood in terms of the partition that a set
of patterns induces on the data. We therefore first need to introduce the concept of
equivalence relations and partitions:

Definition 3.1 An equivalence relation on D is a binary relation ∼ such that for
all d1, d2, d3 ∈ D, the relation is:

1. Reflexive: d1 ∼ d1.
2. Symmetric: d1 ∼ d2 ⇒ d2 ∼ d1.
3. Transitive: d1 ∼ d2 ∧ d2 ∼ d3 ⇒ d1 ∼ d3.

The equivalence relation partitions D into disjunct subsets called equivalence classes
or blocks. The equivalence class of an element d ∈ D is given as [d] = {d ′ ∈ D |
d ∼ d ′}. The set of blocks is called partition or quotient set, and is denoted by D/ ∼.

Intuitively, transactions are in an equivalence class if they can not be distinguished
from each other. We can use patterns to create a new database, in which each trans-
action is described by a list of patterns present in it. We consider two transactions
equivalent in this new representation if they are described using the same lists of
patterns.

More formally, an individual pattern r induces an equivalence relation ∀d1, d2 ∈
D, d1 ∼r d2 ⇔ match(r , d1) = match(r , d2), and so does a set of patterns P:
∀d1, d2 ∈ D, d1 ∼P d2 ⇔ (∀r ∈ P : match(r , d1) = match(r , d2)).

In fact, the partitioning of a data set into classes that we defined in Definition 2.3
is induced by an equivalence relation based on the class labels.

In a supervised setting, it are derived is important to distinguish blocks which are
pure and which are not pure. A block is pure if all examples in it have the same class
label. Within a supervised setting it is important that the partition induced by a set
of patterns contains mostly pure blocks: if two examples with different class labels
contain exactly the same set of patterns, it will be impossible for a deterministic
algorithm to predict both correctly.

Most pattern set mining techniques can be summarized in the following manner:
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1. Mine or evaluate a (set of) pattern(s), possibly only on parts of the data
2. Based on result of 1, modify the partition, for instance by removing one block or

several blocks, or by partitioning them further
3. Return to 1, unless a stopping criterion is met

The differences lie mainly in the blocks on which patterns are evaluated, and in the
choice of blocks that are modified.

3.1 Local Evaluation, Local Modification

The first, and largest, class of techniques evaluates or mines patterns locally, i.e.
only on some of the blocks of a partition, and then also modifies only some of those
blocks, typically only those blocks from which the patterns have been mined. This
includes in particular those techniques that draw more or less directly on machine
learning forebears.

Separate-and-Conquer Sequential “local-local” techniques owe much to the se-
quential covering paradigm of early rule learners. They start from the full database
and iteratively remove examples from the dataset, as follows:

1. Find the best rule on the currently remaining data
2. Remove all data covered by that rule
3. Return to 1.

This approach falls squarely into the “local-local” category. Each pattern splits the
data that it has been mined on into two blocks (the local modification) and its successor
pattern is only mined on one of these, the uncovered one (the local evaluation).
Several early algorithms have used this approach for post-processing, for instance
CBA, ARC-BC, and CMAR, whose authors refer to it as database coverage.

Separate-and-conquer can be applied both in the post-processing setting and in
the iterative mining setting.

Post-processing can be done in two ways: (1) considering the complete set of
previously mined patterns in each iteration of the sequential covering algorithm, or
(2) fixing the order in which patterns are considered and only search for the best
rule among those rules that have not been considered in the order yet. The latter
means that (a) each pattern is only considered once—if it is rejected, it will never
be evaluated again, and (b) the decision which patterns are “best” given certain data
is effectively made before pattern set mining. In return, however, the complexity of
the learning algorithm is lower.

The algorithms mentioned above (CBA,ARC-BC, CMAR) proceed by fixed order.
CMAR differs from the other algorithms in removing data instances only after they
have been covered by several rules, guided by a user-supplied parameter. CorClass
also uses sequential covering with a fixed order as post-processing. Another variation
was proposed by [1] in the context of string classification; here, the rules are processed
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in order of confidence, but only those instances are removed which are classified
correctly by the rule under consideration.

The ART algorithm [17] learns several best cars, splits their respective coverage
off, and re-iterates on the uncovered data. DDPMine by [12] is perhaps the algorithm
that stays truest to the original sequential covering idea: it mines a highest-scoring
pattern, removes all covered instances from the data, and recurs.

Divide-and-Conquer Techniques The second type of “local-local” techniques
takes its cues from decision tree induction:

1. Find the best splitting criterion on a subset of the data
2. Split the data into two blocks corresponding to covered and uncovered instances
3. Recur on the new blocks

A potential advantage of this type of technique is that all mistakes by one pattern can
be corrected by other patterns, since all data are reused in later instances to derive
additional patterns. In addition, patterns that might not appear interesting on the
whole data might become relevant as soon as parts of the data are removed.

This technique is most commonly used in an iterative mining setting, in which the
best pattern is searched for using a branch-and-bound top-1 pattern mining algorithm.
Examples are Tree2, proposed by [7], and MbT [15].

A post-processing approach can also be used. For instance, [18] developed a
setting in which δ-free patterns are first mined, and then combined for use as tests in
a decision tree.

3.2 Global Evaluation, Global Modification

Alternatively, patterns can be mined or evaluated on the entire data set, and all blocks
in the partition are modified. While this means that mining (or selecting) patterns is
done using the maximal amount of information, this usually has to be paid for by
increased computational complexity, as in each iteration the complete data needs to
be traversed. Additionally, the semantics of patterns’ relationships are less easy to
understand than in the case of “local-local” approaches.

Such techniques necessarily proceed sequentially, either post-processing or min-
ing patterns one after another. The Picker∗ algorithm by [8] performs post-processing
in this manner, picking the pattern that creates the most balanced partition, and
splitting all blocks accordingly. It proceeds according to the first option for post-
processing described above, considering all promising patterns. The fCork [35]
technique uses a measure based on correspondences:

Definition 3.2 Given an equivalence relation ∼P on a labeled data set DC =
D+ ∪D−, the number of correspondences in this partition is calculated as occ(P) =∑

[d]∈DC/∼P
|[d] ∩ D+| · |[d] ∩ D−|.

and uses this measure both to post-process mined patterns, and to iteratively mine
patterns that reduce correspondences the most. This criterion, as well as that used
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by the Picker∗ algorithm, is sub-modular, allowing to give a bound on the quality of
greedy approximation to the optimal solution.

There are other “global-global” techniques that differ in that they do not manip-
ulate the data explicitly: the technique introduced by [11] post-processes patterns
by rewarding them for class correlation on the full data and penalizing overlap on
data already covered by selected patterns. The Krimp technique, described by [36],
also falls into this category since it evaluates for each pattern how much it adds to
the overall, i.e. global, compression of the data, post-processing a fixed order on
patterns.

Instead of removing examples, a reasonable alternative is to attach a weight to
examples and modify the weights based on the current composition of a rule set, as
in the following generic approach:

1. Find the best rule on the current weighted data
2. Modify the weights of the examples in the data
3. Return to 1.

A reason to give a lower weight to an example may for instance be that we already
have many rules that predict this example correctly, and we would like to focus on
finding rules for examples that are predicted incorrectly.

This setting performs global evaluation as each new pattern is evaluated on the
complete dataset and in principle the weights of all examples can be modified.

Examples of approaches within this setting were proposed by [13, 33, 34, 44];
they can be used either in iterative mining or in post-processing. In the first work,
transaction weights are adjusted directly in a subgroup discovery setting. Since sub-
group discovery is more concerned with mining good descriptions of statistically
different subgroups than with accurate prediction, the removal of covered instances
is undesirable. The other works, comprising the gPLS and gBoost algorithms, and a
Bayesian linear regression technique, derive the transaction weights indirectly from
weights for patterns involved in a linear classification or regression function and
mine patterns iteratively. Since pin point prediction of a numerical value is difficult,
reweighting instances based on the current performance of the function is superior
to removing instances.

The upshot of these techniques is that the increased computational complexity
pays off in a pattern set of smaller cardinality than for “local-local” approaches,
typically of comparable or even better quality.

3.3 Local Evaluation, Global Modification

Given the faster running times yet larger pattern sets of “local-local” approaches,
and the more expensive operation yet smaller, high-quality sets of “global-global”
techniques, the development of “local-global” algorithms should be obvious:

1. Find a best pattern on a subset of the data
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2. Based on all patterns, manipulate the entire data
3. Recur on the new blocks

Notwithstanding this statement, the ReMine algorithm proposed by [45] so far is
the only one to proceed in this way to iteratively mine supervised patterns.

3.4 Data Instance-Based Selection

In addition to the partition-based techniques, there is another paradigm, which selects
patterns based on individual instances. The Harmony algorithm retains for each
training instance the highest-confidence rule, as does CCCS, whereas the technique
described by [28], called Large Bayes (LB), selects patterns based on the instances
whose labels are to be predicted. This is similar to DeEP, described by [26], and
LAC, proposed by [37], which only generate patterns that match the instances to be
predicted by projecting the data on the items contained in the unlabeled instance.

4 Classifier Construction

After supervised patterns have been mined, and suitable subsets have been selected,
the remaining question is how to employ them for predictive purposes. The solutions
that have been found fall into two main categories: (1) direct use of patterns as rules to
predict the label of an unseen class—the techniques following this paradigm borrow
heavily from rule learning approaches in machine learning, or (2) indirect use of
patterns in a model; here patterns are typically treated as features that are used in
well-established machine learning methods.

4.1 Direct Classification

There are two main methods in rule learning when it comes to making predictions.
In decision lists, rules are ordered according to some criterion and the first rule
that matches the unseen instance makes the prediction. For such classifiers to work
requires rules with high accuracy that at the same time do not overfit the training data.
This means that certain approaches to optimizing quality measures will work better
than others: given that maximizing information gain or χ2 trades off correlation
with effect size, maximizing confidence or WRAcc will be more suitable for such
classifiers. CBA follows this first approach, ordering the rule list by confidence
(descending), support (descending) and length (ascending), as does LAC, ordering
by information gain (descending).

The second method consists of various voting mechanisms that collect all rules
that match the unseen instance and has each class “gather votes” from them. This
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approach places less importance on the prediction of individual rules and is related
to the ensembles idea from machine learning: if predictors’ errors are uncorrelated,
using several of them should remove many non-systematic errors.

A straightforward method consists of majority voting, in which the predicted
class label is that predicted by the majority of rules. Alternatively, rules’ votes can
be weighted, by their accuracy, strength, or support in a given class, for instance,
and the class with the strongest vote is predicted. Many pattern-based classifiers
use this scheme: CMAR performs weighted voting, discounting rules’ vote by their
deviation from their potentially maximal χ2-score, whereas FitCare simply adds
up rules relative support per class, as does ARC-BC. CAEP sums up patterns’growth
rate multiplied by their relative support in a class, and DeEP takes the proportion of
instances in a class that contain any of the voting patterns as the weight of the vote
for that class. Harmony includes three voting options: either the highest-confidence
rule, or all, or the top-k rules vote for a particular class, similar to XRules, which
also uses different rule strength measures.

CTC has used different options: the decision list, majority vote, and two weighted
voting strategies, as has CorClass.

The analogy with machine learning is exploited most in the gBoost algorithm
[34]. In gBoost, an analogy is observed between weak learners and patterns. This
analogy is exploited by modifying the LPBoost boosting algorithm, developed in
the machine learning literature, to iteratively search for patterns instead of weak
learners. It can be shown that under certain conditions this algorithm finds optimal
linear classification and regression models, where patterns are used as features in the
linear models. The boosting algorithm operates by iteratively modifying the weights
of examples based on the outcome of a linear program.

A particular feature of some sets of rules is that they represent decision trees.
Essentially, every path from the root of a decision tree to a leaf of a tree can be seen
as a rule that predicts the label of that leaf. All the rules cover disjoint parts of the
data. It is hence not surprising that patterns can also be used to represent paths in
decision trees. This observation was exploited in the DL8 approach by [30], which
showed that by post-processing a set of patterns found under constraints, a decision
tree can be constructed that is optimal under certain conditions. The approach differs
from Tree2 (see below) in that each pattern represents a path in the tree, while in
Tree2 each pattern represents a node.

4.2 Indirect Classification

Indirect classification comes in several flavors. First, there are the techniques that
partition the data, sort unseen instances into a certain block, and use the majority label
of the block’s instances in the training data to make the prediction, like decision trees.
The Tree2 and MbT build this kind of classifier. Other machine learning formalisms
can also be adopted to work with supervised patterns—the LB algorithm uses a Naïve
Bayes-like formulation to derive predictions from the support of patterns in different
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classes—different classes have different products of probabilities and the class with
the highest probability is predicted.

This is somewhat similar to the Krimp algorithm: in this technique, coding tables
are created for each class separately, and an unseen instance’s label is predicted based
on the coding table that compresses it best.

These approaches are arguably still limited by what the pattern themselves can
do, although the upshot is that their models are somewhat more understandable. The
alternative is to mine patterns as features for use in sophisticated machine learning
techniques that can add modeling and generalization capabilities that are missing
from symbolic patterns themselves. This is the second big group of techniques: the
technique proposed by [22] belongs to it, as does DDPMine, the method introduced
by [12], Picker∗, fCork, and ReMine.

5 Summary

In this chapter, we have given a high level overview of supervised pattern mining
and its application to prediction, specifically classification. We have abstracted from
the pattern languages used and structured the chapter along the three main steps
involved in building a classifier from class-labeled data: supervised pattern mining,
supervised pattern set mining, and classifier construction.

Regarding the first step, we have laid out that many techniques view different
classes as separate subsets of the data and evaluate patterns’ co-occurrence with one
of these subsets. In our opinion, this view clarifies that different quality measures
will lead to similar semantical information of patterns, and that different mining
approaches can be taken to find patterns that score highly with any of these measures.

Regarding the second step, we have pointed out the similarities to approaches that
have been pioneered in machine learning in the context of rule learning, decision
tree induction, and instance-based learning. We have interpreted the former two
approaches in terms of partitions to show the similarities of existing techniques,
and also identified two types of approaches that always manipulate the entire data.
Although some pattern set mining techniques, in particular iterative ones, make
certain demands on the pattern mining step, most of them can still be combined
relatively freely with different pattern mining techniques.

Finally, when it comes to classifier building, we have made the distinction between
direct and indirect classification, with the former paralleling rule-based classification
in machine learning, and the latter comprising quite a few approaches that mine
patterns as features for use in propositional learners. As a comparison of references
shows, different classifiers also do not track closely with particular pattern or pattern
set mining approaches.

In general, in surveying the field we find that many solutions to the three phases
have been developed, most of which can be mixed-and-matched rather freely. The
field is larger than the algorithms we have mentioned here yet many techniques are
arguably variations of the approaches that we have contrasted.
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