Chapter 14
Uncertain Frequent Pattern Mining

Carson Kai-Sang Leung

Abstract Frequent pattern mining aims to discover implicit, previously unknown and
potentially useful knowledge—in the form of frequently occurring sets of items—that
are embedded in data. Many of the models and algorithms developed in the early days
mine frequent patterns from traditional transaction databases of precise data such as
shopper market basket data, in which the contents of databases are known. However,
we are living in an uncertain world, in which uncertain data can be found in various
real-life applications. Hence, in recent years, researchers have paid more attention
to frequent pattern mining from probabilistic datasets of uncertain data. This chapter
covers key models, algorithms and topics about uncertain frequent pattern mining.

Keywords Data mining - Knowledge discovery from uncertain data - Associa-
tion rule mining - Frequent patterns - Frequent itemsets - Probabilistic approach -
Uncertain data

1 Introduction

As an important data mining task, frequent pattern mining [8, 12] aims to discover
implicit, previously unknown and potentially useful knowledge—revealing patterns
on collections of frequently co-occurring items, objects or events—that are em-
bedded in data. Nowadays, frequent pattern mining is commonly used in various
real-life business, government, and science applications (e.g., banking, bioinformat-
ics, environmental modeling, epidemiology, finance, marketing, medical diagnosis,
meteorological data analysis). Uncertain data are present in many of these appli-
cations. Uncertainty can be caused by (i) our limited perception or understanding
of reality; (ii) limitations of the observation equipment; or (iii) limitations of avail-
able resources for the collection, storage, transformation, or analysis of data. It
can also be inherent in nature (say, due to prejudice). Data collected by acoustic,
chemical, electromagnetic, mechanical, optical radiation, thermal sensors [6] in en-
vironment surveillance, security, and manufacturing systems can be noisy. Dynamic

C. Kai-Sang Leung (D<)
University of Manitoba, Winnipeg, MB, Canada
e-mail: kleung@cs.umanitoba.ca

C. C. Aggarwal, J. Han (eds.), Frequent Pattern Mining, 339
DOI 10.1007/978-3-319-07821-2_14, © Springer International Publishing Switzerland 2014

340 C. Kai-Sang Leung

errors—such as (i) inherited measurement inaccuracies, (ii) sampling frequency of
the sensors, (iii) deviation caused by arapid change (e.g., drift, noise) of the measured
property over time, (iv) wireless transmission errors, or (v) network latencies—also
introduce uncertainty into the data reported by these sensors. Moreover, there is also
uncertainty in survey data (e.g., number “0” vs. symbol “o” vs. letter “O” or “0”;
similarly, number “1” vs. upper case letter “I”’ vs. lower case letter “I”’) and uncer-
tainty due to data granularity (e.g., city, province) in taxonomy. Disguised missing
data, which are not explicitly represented as such but instead appear as potentially
valid data values, also introduce uncertainty. Furthermore, in privacy-preserving
applications [10], sensitive data may be intentionally blurred via aggregation or per-
turbation so as to preserve data anonymity. All these sources of uncertainty lead to
huge amounts of uncertain data in real-life applications [48, 52].

Many key models and algorithms have been developed over the past few years for
various uncertain data mining tasks [3, 11]. These include (i) clustering uncertain
data [2, 7, 25], (ii) classifying uncertain data [47, 53] and (iii) detecting outliers
from uncertain data [5, 9]. In this chapter, we examine another data mining task—
namely, uncertain frequent pattern mining. To mine frequent patterns from uncertain
data, different methodologies (e.g., fuzzy set theory, rough set theory) can be appli-
cable. Among them, probability theory is more popular and widely used by many
researchers.

In this chapter, we focus on uncertain frequent pattern mining in a probabilistic set-
ting. The remainder of this chapter is organized as follows. The next section describes
a key model for uncertain frequent pattern mining: the probabilistic model. Then, we
present those key uncertain frequent pattern mining algorithms based on (i) the can-
didate generate-and-test paradigm, (ii) the frequent pattern growth paradigm with
hyperlinked structures, and (iii) the frequent pattern growth para-digm with tree
structures in Sects. 3, 4 and 5, respectively. Sections 6, 7 and 8 describe key algo-
rithms for uncertain frequent pattern mining (i) with constraints, (ii) from Big data,
and (iii) from data streams, respectively. Section 9 examines key algorithms for min-
ing uncertain data that are in vertical representation. We briefly discuss and compare
these algorithms in Sect. 10. While Sects. 2 to 10 focus on (expected support based)
frequent patterns, Sect. 11 focuses on the probabilistic frequent patterns. Finally,
Sect. 12 gives conclusions.

2 The Probabilistic Model for Mining Expected Support-Based
Frequent Patterns from Uncertain Data

As a building block for association rule mining [12] (which helps reveal associative
relationships embedded in data), frequent pattern mining aims to discover frequently
occurring sets of items, objects or events (e.g., frequently purchased merchandise
items in shopper market baskets, bundles of popular books, popular courses taken
by students, events that are frequently collocated). In the early days, most frequent

14 Uncertain Frequent Pattern Mining 341

Table 14.1 An example of a

traditional database D; of Transaction ID Set of items
precise data I {a,b,c}
%) {a,b,c,d}
t3 {a,b,d, e}
1y {a,b,c,e}

Table 14.2 An example of a

e Transaction ID Set of items with existential probability
probabilistic dataset D, of

uncertain data h {a:0.2, 0:0.9, c:0.4}
th {a:0.6, b:0.6, c:0.6, d:0.9}
f {a:0.6, b:0.5, d:0.5, ¢:0.7)
1 {a:0.9, 5:0.2, ¢:0.8, :0.3}

pattern mining algorithms searched traditional databases of precise data (e.g., Ta-
ble 14.1) such as shopper market basket data, in which the contents of databases are
known. However, we are living in an uncertain world. Uncertain data can be found in
various real-life applications, in which users may not be certain about the presence or
absence of an item x in a transaction #; in a probabilistic dataset D of uncertain data
(e.g., Table 14.2). Users may suspect, but cannot guarantee, that x is present in ¢;.
The uncertainty of such suspicion can be expressed in terms of existential probability
P(x,t;), which indicates the likelihood of x being present in #; in D. The existential
probability P(x,t;) ranges from a positive value close to O (indicating that x has
an insignificantly low chance to be present in D) to a value of 1 (indicating that x
is definitely present). With this notion, each item in any transaction in traditional
databases of precise data (e.g., shopper market basket data) can be viewed as an item
with a 100 % likelihood of being present in such a transaction.

The probabilistic model [1, 23] is a key model that commonly used for uncertain
frequent pattern mining. When using the “possible world” interpretation of uncertain
data, there are two possible worlds for an item x in a transaction ¢;:

(i) apossible world W; where x is presentin ¢; (i.e., x € t;)
and
(i1) another possible world W, where x is absent from #; (i.e., x & 1;).

Although it is uncertain which of these two worlds is the true world, the probability
of W to be the true world is P(x, t;) and the probability of W, to be the true world is
1 — P(x,t;). To a further extent, there are multiple items in each of many transactions
in a probabilistic dataset D of uncertain data. In a domain of m distinct items, when
there are a total of g independent items (which include multiple occurrences of
some of the m domain items, where m < ¢) in all transactions of D, there are
O(2?) possible worlds. The expected support of a pattern X in D—denoted as
expSup(X, D)—can then be computed by summing the support sup(X, W;) of X
in possible world W; (while taking into account the probability Prob(W;) of W; to

342 C. Kai-Sang Leung

Table 14.3 Possible worlds for the probabilistic dataset D, of uncertain data
Possible world W; Prob(W;) Transactions

Wi 6.349x 1073 {t1={a,b,c},
t,={a,b,c,d},
t={a,b,d, e},
t4={a,b,c,e}}

W, 1.481x10~* {r={a,b,c},
t={a,b,c,d},
t3={a,b,d, e},
ty={a,b,c }}

Ws 1.587x1073 {ti={a, b, c},
t,={a,b,c,d},
t3={a,b,d, e},
ty={a,b, e}}

Wizrer 1.769%107 (=0 =0, 15=(). ts={e})
W68 4.129x10°7 {n={}, =0}, 5=}, ta=(}}
> Prob(W;) =1

be the true world) over all possible worlds, i.e.,

expSup(X, D) = Z [sup(X,W;) x Prob(W))], (14.1)
J
where sup(X, W;) counts the occurrences of X (i.e., the number of transactions
containing all the items within X) and Prob(W;) can be computed by the following
equation:

|D|

ProbWy =[]| [] Pxwyx] a-Pu.uw|. (14.2)

i=1 | xet; inW; Yt in W;

Table 14.3 shows all “possible worlds” of the probabilistic dataset D, in Table 14.2.
When items within the pattern X are independent, Eq. (14.1) can be simplified [32]
to become the following equation:

|D|
expSup(X,D) = (]‘[P(x,t,-))) (14.3)

i=1 \xeX

In other words, the expected support of X in D can be computed as a sum (over
all | D| transactions) of the product of existential probabilities of all items within X.
Then, we can define the research problem of uncertain frequent pattern mining in
terms of expSup(X, D) as follows.

Definition 14.1 Given (i) a probabilistic dataset D of uncertain data and (ii) a user-
specified support threshold minsup, the research problem of uncertain frequent
pattern mining from a probabilistic dataset D of uncertain data is to find every
pattern X having expSup(X, D) > minsup. Such a pattern X is called an expected
support-based frequent pattern or just frequent pattern for short.

14 Uncertain Frequent Pattern Mining 343

3 Candidate Generate-and-Test Based Uncertain Frequent
Pattern Mining

One way to mine frequent patterns from uncertain data is to apply the candidate
generate-and-test paradigm. For example, Chui et al. [19] proposed the U-Apriori
algorithm, which mines frequent patterns from uncertain data in a levelwise breadth-
first bottom-up fashion. Specifically, U-Apriori first computes the expected support
of all domain items. Those items with expected supports > minsup become ev-
ery frequent pattern consisting of 1 item (i.e., frequent 1-itemset). Afterwards, the
U-Apriori algorithm repeatedly applies the candidate generate-and-test process to
generate candidate (k+1)-itemsets from frequent k-itemsets and test if they are
frequent (k+1)-itemsets. Like its counterpart for mining precise data (the Apriori
algorithm [8]), U-Apriori also relies on the Apriori property (which is also known as
the anti-monotonic property or the downward closure property) that all subsets of a
frequent pattern must also be frequent. Equivalently, all supersets of any infrequent
pattern are also infrequent.

U-Apriori improves its efficiency by incorporating the LGS-trimming strategy
(which includes local trimming, global pruning, and single-pass patch up) [19]. This
strategy trims away every item with an existential probability below the user-specified
trimming threshold (which is local to each item) from the original probabilistic
dataset D of uncertain data and then mines frequent patterns from the resulting
trimmed dataset Dp,,. On the one hand, if a pattern X is frequent in Dy, then X
must be frequent in D. On the other hand, a pattern Y is infrequent in D if

expSup(Y, Dpyim) + e(Y) < minsup,

where e(Y) is an upper bound of estimated error for expSup(Y, Dzi). Such an
infrequent pattern Y can be pruned. Moreover, a pattern Z is potentially frequent in
D if

expSup(Z, Dyyip) < minsup < expSup(Z, Dyyin) + e(Z).

To patch up, U-Apriori recovers the missing frequent patterns by verifying expected
supports of potentially frequent patterns with an additional single-pass scan of D.
Although the LGS strategy improves the efficiency of U-Apriori, the algorithm still
suffers from the following problems: (i) there is an overhead in creating Dz,
(ii) only a subset of all the frequent patterns can be mined from Dy, and there is
overhead to patch up, (iii) the efficiency of the algorithm is sensitive to the percent-
age of items having low existential probabilities, and (iv) it is not easy to find an
appropriate value for the user-specified trimming threshold.

Chui and Kao [18] applied the decremental pruning technique to further improve
the efficiency of U-Apriori. The technique helps reduce the number of candidate
patterns by progressively estimating the upper bounds of expected support of candi-
date patterns after each transaction is processed. If the estimated upper bound of a
candidate pattern X falls below minsup, then X is immediately pruned.

344 C. Kai-Sang Leung

Item a b c d e
Expected support | 2.3 | 2.2 | 1.8 | 1.4 | 1.0
Link

5l

0.9 c |04

a |02
|
I—: a | 0.6 | b |06 c | 0.6 d |09
a |06
|
a | 0.9

|: b | 0.5 d |05 e |07
|: b 0.2 c |08 e |03

Fig. 14.1 The UH-struct for the probabilistic dataset D, of uncertain data

4 Hyperlinked Structure-Based Uncertain Frequent Pattern
Mining

An alternative to candidate generate-and-test based mining is pattern-growth mining,
which avoids generating a large number of candidates. Commonly used pattern-
growth mining paradigms are mostly based on (i) hyperlinked structures or (ii) tree
structures. In this section, let us focus on hyperlinked structure-based uncertain
frequent pattern mining. As hyperlinked structure based mining employs a pattern-
growth mining paradigm, the candidate generate-and-test mining paradigm of U-
Apriori is avoided. In general, hyperlinked structure based algorithms capture the
contents of datasets in a hyperlinked structure, from which frequent patterns are
mined in a depth-first divide-and-conquer fashion.

Aggarwal et al. [13] proposed a hyperlinked structure based algorithm called
UH-mine to mine frequent patterns from uncertain data. This algorithm captures
the contents of a probabilistic dataset D of uncertain data in a hyperlinked structure
called UH-struct. See Fig. 14.1. Like the H-struct for mining precise data, each row
in the UH-struct represents a transaction #; in D. Unlike the H-struct, the UH-struct
captures the existential probability of items. In other words, for each item x € ¢,
the UH-struct maintains (i) x, (ii) its existential probability P(x,#;), and (iii) its
hyperlink. Once the UH-struct is built, the corresponding UH-mine algorithm mines
frequent patterns by recursively extending every frequent pattern X and adjusting its
hyperlinks in the UH-struct.

As a preview, when compared with tree-based uncertain frequent pattern mining
(i.e., another type of mining that relies on the pattern-growth mining paradigm),
the UH-structure is not as compact as the tree structure used in tree-based mining.
However, on the positive side, the UH-mine algorithm keeps only one UH-struct
and adjusts the hyperlinks in it. In contrast, due to their recursive nature, tree-
based mining algorithms usually keep multiple tree structures. Moreover, UH-mine

14 Uncertain Frequent Pattern Mining 345

computes the expected support of frequent patterns on-the-fly so as to reduce the
space requirement.

5 Tree-Based Uncertain Frequent Pattern Mining

Recall that (i) candidate generate-and-test based mining algorithms (e.g., the U-
Apriori algorithm) use a levelwise bottom-up breadth-first mining paradigm and
(i) hyperlinked structure based algorithms (e.g., the UH-mine algorithm) recursively
adjust the hyperlinks in the hyperlinked structure (e.g., UH-struct) to find frequent
patterns from uncertain data in a depth-first fashion. As an alternative to Apriori-based
and hyperlinked structure based mining, tree-based mining avoids generating many
candidates and avoids recursively adjusting many hyperlinks. Tree-based algorithms
use a depth-first divide-and-conquer approach to mine frequent patterns from a tree
structure that captures the contents of the probabilistic dataset.

5.1 UF-growth

To mine frequent patterns from probabilistic datasets of uncertain data, Leung et al.
[42] proposed a tree-based mining algorithm called UF-growth. Similar to its coun-
terpart for mining precise data (the FP-growth algorithm [24]), UF-growth also
constructs a tree structure to capture the contents of the datasets. However, it does
not use the FP-tree (as in FP-growth) because each node in the FP-tree only main-
tains (i) an item and (ii) its occurrence count in the tree path. When mining precise
data, the actual support of an pattern X depends solely on the occurrence counts
of items within X. However, when mining uncertain data, the expected support of
X is the sum of the product of the occurrence count and existential probability of
every item within X. Hence, each node in the UF-tree (the tree structure for UF-
growth) consists of three components: (i) an item, (ii) its existential probability, and
(iii) its occurrence count in the path. See Fig. 14.2. Such a UF-tree is constructed in
a similar fashion as the construction of the FP-tree, except that a new transaction is
merged with a child node only if the same item and the same existential probability
exist in both the transaction and the child node. As such, it may lead to a lower
compression ratio than the original FP-tree. Fortunately, the number of nodes in a
UF-tree is bounded above by the sum of the number of items in all transactions in
the probabilistic dataset of uncertain data.

To reduce the memory consumption, UF-growth incorporates two improvement
techniques [42]. The first technique is to discretize the existential probability of
each node (e.g., round the existential probability to k decimal places such as k=2
decimal places), which reduces the potentially infinite number of possible existential
probability values to a maximum of 10* possible values. The second improvement
technique is to limit the construction of UF-trees to only the first two levels (i.e., only
construct the global UF-tree for the original probabilistic dataset D and a UF-tree for

346 C. Kai-Sang Leung

Item | Expected support
a 23
b 2.2
c 1.8
d 1.4
e 1.0

Fig. 14.2 The UF-tree for the probabilistic dataset D, of uncertain data

each frequent item—i.e., each singleton pattern) and to enumerate frequent patterns
for higher levels (by traversing the tree paths and decrementing the occurrence counts)
during the mining process.

On the one hand, as paths in a UF-tree are shared only if they have the same item
and the same existential probability, the UF-tree accurately captures the contents
(especially, the existential probabilities) of the probabilistic datasets of uncertain
data so that frequent patterns can be mined without producing false positives or false
negatives. On the other hand, the UF-tree may be large and may not be as compact
as its counterpart for precise data (i.e., FP-tree).

5.2 UFP-growth

To make the tree more compact by reducing the tree size (via a reduction in the
number of tree nodes), Aggarwal et al. [13] proposed the UFP-growth algorithm.
Like UF-growth, the UFP-growth algorithm also scans the probabilistic dataset of
uncertain data twice and builds a UFP-tree. As nodes for item x having similar
existential probability values are clustered into a mega-node, the resulting mega-
node in the UFP-tree captures (i) an item x, (ii) the maximum existential probability
value (among all nodes within the cluster), and (iii) its occurrence count (i.e., the
number of nodes within the cluster). Tree paths are shared if the nodes on these paths
share the same item but similar existential probability values. In other words, the
path sharing condition is less restrictive than that of the UF-tree. See Fig. 14.3. By
extracting appropriate tree paths and constructing UFP-trees for subsequent projected
databases, UFP-growth finds all truly frequent patterns at the end of the second
scan of the probabilistic dataset of uncertain data. At the same time, due to the
approximate nature (e.g., caused by the use of the maximum existential probability
value among all the nodes clustered into a mega-node) of UFP-growth, UFP-growth
also finds some infrequent patterns (i.e., some false positives) in addition to those
truly frequent patterns (i.e., true positives). Hence, a third scan of the probabilistic
dataset of uncertain data is then required to remove these false positives.

14 Uncertain Frequent Pattern Mining 347

Item | Expected support
a 2.3
b 2.2
c 1.8
d 1.4
e 1.0

Fig. 14.3 The UFP-tree for the probabilistic dataset D, of uncertain data

Table 14.4 Transaction caps for the probabilistic dataset D, of uncertain data

Transaction ID Set of items with existential probability Transaction cap
t {a:0.2,5:0.9, c:0.4} 0.36
1) {a:0.6, b:0.6, c:0.6, d:0.9} 0.54
I8 {a:0.6, b:0.5, d:0.5, €:0.7} 0.42
14 {a:0.9, b:0.2, c:0.8, €:0.3} 0.72

5.3 CUF-growth

To further reduce the tree size (by reducing the number of tree nodes), Leung and
Tanbeer [39] proposed an uncertain frequent pattern mining algorithm called CUF-
growth, which builds a new tree structure called CUF-tree. Specifically, for each
transaction t;, CUF-growth computes a transaction cap which is defined as follows.

Definition 14.2 The transaction cap, denoted by cap(t;), of a transaction ¢; is
defined as the product of the two highest existential probability values of items
within transaction #;. Let

(i) h = |;| represent the length of 7;,
(11) M, = maxqe[l,h]P(xq, 1), and
(ii)) My = max,e(1,n), rggPXrs 1i)-

Then,

My x M, if|t;| > 1
cap(ti) = {P(xl,ti) i1t = 1 (et = (x1) (14.4)
Table 14.4 shows the transaction cap for each transaction in a probabilistic dataset
D, of uncertain data. The CUF-growth algorithm captures the transaction cap in the
CUF-tree. Unlike the UF-tree (which captures an item, its existential probability and
its occurrence count in each tree node), CUF-tree only capture (i) an item and (ii) its
transaction cap. Paths in a CUF-tree are shared if the nodes on these paths share
the same item. By doing so, the CUF-tree (for capturing uncertain data) can be as

348 C. Kai-Sang Leung

Fig. 14.4 The CUF-tree for tem | Expected support

the probabilistic dataset D; of @

uncertain data a 23
b 2.2
d 1.4

Fig. 14.5 The FP-tree for the

. It Actual rt

traditional database D of em e supeo @

a 4

precise data

[T
N N WS

compact as the FP-tree (for capturing precise data). See Fig. 14.4, which shows the
CUF-tree for probabilistic dataset D, of uncertain data. Note that this CUF-tree is as
compact as an FP-tree (ref. Fig. 14.5) for the traditional database D, of precise data.

Like UFP-growth, the CUF-growth algorithm also takes three scans of the prob-
abilistic dataset of uncertain data to mine frequent patterns. CUF-growth first scans
the dataset to compute the transaction caps, and it then scans the dataset the second
time to build the CUF-tree. The header table associated with the CUF-tree gives the
expected support of frequent 1-itemsets (i.e., frequent singletons or frequent items).
The CUF-tree stores transaction caps, which provide upper bounds to the expected
support of frequent k-itemsets (for k > 2). For any k-itemset X, if the upper bound
to its expected support is less than minsup, then X can be safely pruned.

By extracting appropriate tree paths and constructing CUF-trees for subsequent
projected databases, CUF-growth finds all potentially frequent patterns at the end of
the second scan of the probabilistic dataset of uncertain data. As these potentially
frequent patterns include all truly frequent patterns and some infrequent patterns
(i.e., some false positives), CUF-growth then quickly scans the dataset the third time
to check each of them to verify whether or not they are truly frequent (i.e., prune
false positives).

14 Uncertain Frequent Pattern Mining 349

Table 14.5 Prefixed item caps for the probabilistic dataset D, of uncertain data

Transaction ID Set of items w/existential probability (& prefixed item cap)
1 {a:0.2 (0.2), :0.9 (0.18), c:0.4 (0.36)}

t {a:0.6 (0.6), b:0.6 (0.36), c:0.6 (0.36), d:0.9 (0.54)}

t3 {a:0.6 (0.6), :0.5 (0.30), d:0.5 (0.30), €:0.7 (0.42)}

7 {a:0.9 (0.9), :0.2 (0.18), ¢:0.8 (0.72), €:0.3 (0.27)}

5.4 PUF-growth

Along this direction, Leung and Tanbeer [40] observed that (i) the transaction cap pro-
vides CUF-growth with an upper bound to expected support of patterns and (ii) such
an upper bound can be tightened in a tree-based environment. They introduced the
concept of a prefixed item cap, which can be defined as follows.

Definition 14.3 The prefixed item cap—denoted by 1°%’(x,,t;)—of an item x,
in a transaction ; = {xy,...,X,,..., X5}, where 1 < r < h (i.e., h=|t;| represent
the length of ¢;), is defined as the product of P(x,,f;) and the highest existential
probability value M of items from x; to x,_; in #; (i.e., in the proper prefix of x, in
t;). More formally,

PGty x M if |t > 1

P(xy,1) lf|ll| =1 (i.e., ti={x1}) (14.5)

Plcap(x,,t;) = {

where M = maxqe[lqr_l]P(xq,ti).

Assume that items are arranged in the order (a, b, ¢, d, e) from the root to leaves.
Then, Table 14.5 shows the prefixed item cap for every item in a transaction in
a probabilistic dataset D, of uncertain data. See Fig. 14.6 for how these prefixed
item caps are captured in a new tree structure called PUF-tree, from which the
corresponding algorithm called PUF-growth mines uncertain frequent patterns.

Like UFP-growth and CUF-growth, the PUF-growth algorithm also takes three
scans of the probabilistic dataset of uncertain data to mine frequent patterns. With the
first scan, PUF-growth computes the prefixed item caps. With the second scan, PUF-
growth builds a PUF-tree to capture (i) an item and (ii) its corresponding prefixed
item cap. Like those in CUF-tree, paths in the PUF-tree are shared if the nodes on
these paths share the same item. Hence, the resulting PUF-tree is of the same size
as the CUF-tree (also for capturing uncertain data), which can be as compact as the
FP-tree (for capturing precise data). The header table associated with the PUF-tree
gives the expected support of frequent 1-itemsets (i.e., singleton patterns or frequent
items). The prefixed item caps in the PUF-tree provide upper bounds to the expected
support of k-itemsets (for k > 2). For any k-itemset X, if the upper bound to its
expected support is less than minsup, then X can be safely pruned.

By extracting appropriate tree paths and constructing PUF-trees for subsequent
projected databases, PUF-growth finds all potentially frequent patterns at the end of
the second scan of the probabilistic dataset of uncertain data. As these potentially
frequent patterns include all truly frequent patterns and some infrequent patterns

350 C. Kai-Sang Leung

Fig. 14.6 The PUF-tree for

e . Item | Expected support
the probabilistic dataset D, of i PP @

uncertain data a 2.3
b 2.2
d 1.4

(i.e., some false positives), PUF-growth then quickly scans the dataset a third time
to check each of them to verify whether or not they are truly frequent (i.e., prune
false positives). As illustrated by Table 14.6, the prefixed item caps tighten the upper
bound to the expected support of non-singleton patterns (when compared with the
transaction caps in the CUF-tree). Consequently, the number of false positives that
need to be examined by PUF-growth during the third scans of the probabilistic dataset
of uncertain data is usually smaller than that by CUF-growth. Hence, PUF-growth
runs faster than CUF-growth.

6 Constrained Uncertain Frequent Pattern Mining

Recall from Sect. 5 that the UF-growth, UFP-growth, CUF-growth and PUF-growth
algorithms are useful in finding all the frequent patterns from probabilistic datasets of
uncertain data in many situations. However, there are other situations in which users
are interested in only some of the frequent patterns. In these situations, users express
their interest in terms of constraints. This leads to constrained mining [20, 27, 30,
34, 35]. In response, Leung et al. [33, 43] extended the UF-growth algorithm to mine
probabilistic datasets of uncertain data for frequent patterns that satisfy user-specified
constraints. The two resulting algorithms, called U-FPS [33] and U-FIC [43], push
the constraints in the mining process and exploit properties of different kinds of
constraints (instead of a naive approach of first mining all frequent patterns and then
pruning all uninteresting or invalid ones).

U-FPS exploits properties of (two types of) succinct constraints [31]. More specif-
ically, by exploiting that “all patterns satisfying any succinct and anti-monotone
(SAM) constraint Csay must comprise only items that individually satisfy Csanm”,
U-FPS stores only these items in the UF-tree when handling Csay. Similarly, by
exploiting that “all patterns satisfying any succinct but not anti-monotone (SUC)
constraint Csyc consist of at least one item that individually satisfies Csyc and may
contain other items”, U-FPS partitions the domain items into two groups (one group
contains items individually satisfying Csyc and another group contains those not)
and stores items belonging to each group separately in the UF-tree. See Fig. 14.7.

14 Uncertain Frequent Pattern Mining 351

Table 14.6 Sample patterns mined from the probabilistic dataset D,

Upper bound to Upper bound to

Pattern X expSup(X, D) based expSup(X, D) based expSup(X, D;)
on transaction cap on prefixed item cap

{a,c} 1.62 1.44 1.16

{a,d} 0.96 0.84 0.84

{b,d} 0.96 0.96 0.79

{c.d} 0.54 0.54 0.54

{a,c,e} 0.72 0.27 0.22

[tem Expected

support
a 23

Optional
group d 1.4
e 1.0
Mandatory b 22 (b:0.9):1

group c 1.8

Fig. 14.7 The UF-tree for mining constrained frequent patterns from D,

As arranging domain items in decreasing order of their support in the original
FP-tree is just a heuristic, U-FIC exploits properties of (two types of) convertible
constraints [29] and arranges the domain items in the UF-tree according to some
monotonic order of attribute values relevant to the constraints. By doing so, U-FIC
does not need to perform constraint checking against any extensions of patterns satis-
fying any convertible monotone (COM) constraint Cconm because all these extensions
are guaranteed to satisfy Ccowm. Similarly, U-FIC prunes all the patterns that violate
any convertible anti-monotone (CAM) constraint Ccam because these patterns and
their extensions are guaranteed to violate Ccam. By exploiting the user-specified
constraints, computation of both U-FPS and U-FIC is proportional to the selectivity
of the constraints.

7 Uncertain Frequent Pattern Mining from Big Data

As technology advances further, high volumes of valuable data—such as banking, fi-
nancial, and marketing data—are generated in various real-life business applications
in modern organizations and society. This leads us into the new era of Big Data [45].
Intuitively, Big Data are interesting high-velocity, high-value, and/or high-variety
data with volumes beyond the ability of commonly-used software to capture, manage,
and process within a tolerable elapsed time. Hence, new forms of processing data

352 C. Kai-Sang Leung

are needed to enable enhanced decision making, insight, knowledge discovery, and
process optimization. To handle Big Data, researchers proposed the use of a high-
level programming model—called MapReduce—to process high volumes of data
by using parallel and distributed computing [54] on large clusters or grids of nodes
(i.e., commodity machines), which consist of a master node and multiple worker
nodes. As implied by its name, MapReduce involves two key functions: “map” and
“reduce”. An advantage of using the Map-Reduce model is that users only need
to focus on (and specify) these “map” and “reduce” functions—without worrying
about implementation details for (i) partitioning the input data, (ii) scheduling and
executing the program across multiple machines, (iii) handling machine failures, or
(iv) managing inter-machine communication.

To mine frequent patterns from Big probabilistic datasets of uncertain data, Leung
and Hayduk [37] proposed the MR-growth algorithm. The algorithm uses Map-
Reduce—by applying two sets of the “map” and “reduce” functions—in a pattern-
growth environment. Specifically, the master node reads and divides a probabilistic
dataset D of uncertain data into partitions, and then assigns them to different worker
nodes. The worker node corresponding to each partition P; (where D = | ;j Pj)then
outputs a pair consisting of an item x and its existential probability P(x,;)—i.e.,
(x, P(x,t;))—for every item x in transaction t; assigned to P; as intermediate results:

map:(ID of #;in P;, contents of f;)
— listof (x € 1;, P(x,t;)). (14.6)

Afterwards, these (x, P(x,t;)) pairs in the list (i.e., intermediate results) are
shuffled and sorted (e.g., grouped by x). Each worker node then executes the
“reduce” function, which (i) “reduces”—by summing—all the P(x,?;) values for
each item x so as to compute its expected support expSup({x}, D) and (ii) out-
puts ({x},expSup({x}, D)) (representing a frequent 1-itemset {x} and its expected
support) if expSup({x}, D) > minsup:

reduce: (x, list of P(x, t;))

> list of (frequent 1-itemset {x}, expSup({x}, D)), 14.7)

where expSup({x}, D) = sum of P(x,;) in the list for an item x.

Afterwards, MR-growth rereads the datasets to form a {x}-projected database
(i.e., a collection of transactions containing x) for each item x in the list produced
by the first reduce function (i.e., for each frequent 1-itemset {x}). The worker node
corresponding to each projected database then (i) builds appropriate local UF-trees
(based on the projected database assigned to the node) to mine frequent k-itemsets
(for £ > 2) and (ii) outputs (X, expSup(X, D)) (which represents a frequent k-
itemset X and its expected support) if expSup(X, D) > minsup. In other words,
MR-growth executes the second set of “map” and “reduce” functions as follows:

map: (ID of #; in P;, contents of #;)
> list of ({x}, {x}-proj. DB); (14.8)

14 Uncertain Frequent Pattern Mining 353

Table 14.7 Streaming Batch ID

. Set of items with existential probability
uncertain data D3

B {n={r:0.7},
t,={f:0.7, g:0.9, h:0.7,i:0.5},
t:={f:0.7, g:0.9, h:0.8}}

B {ta={ £:0.7, 2:0.9},
15={g:0.6},
t6={8:0.6}}
B, {ty={ £:0.7, g:0.9, h:0.7, i:0.5},

ts={ f:0.7, g:0.9, h:0.8},
t9={f:0.7, £:0.9,i:0.5}}

and

reduce: ({x}, {x}-proj. DB)
> list of (frequent k-itemset X, expSup(X, D)). (14.9)

To recap, by using the above two sets of “map” and “reduce” functions, the MR-
growth (i) first finds all frequent 1-itemsets with their expected support and (ii) then
buids appropriate local UF-trees (for projected databases) to find all frequent k-
itemsets (for k > 2) with their expected support.

8 Streaming Uncertain Frequent Pattern Mining

In addition to static probabilistic datasets of uncertain data, dynamic streams of
uncertain data can also be generated (e.g., by wireless sensors) in many real-life
applications (e.g., environment surveillance). This leads to stream mining [22].

8.1 SUF-growth

To mine frequent patterns from streams of uncertain data, Leung and Hao [36]
extended the UF-growth algorithm (ref. Sect. 5.1) to produce an exact mining al-
gorithm called SUF-growth. During the mining process, the (i) sliding window
model, (ii) time-fading model, or (iii) landmark model is commonly used in pro-
cessing batches of transactions in the data streams. When using a sliding window
model, SUF-growth captures only the contents of streaming data in batches of trans-
actions belonging to the current window (that captures the recent w batches) in a tree
structure called SUF-tree. When the window slides, SUF-growth removes from the
SUF-tree those data belonging to older batches and adds to the SUF-tree those data
belonging to newer batches. Hence, each tree node in the SUF-tree consists of three
components: (i) an item, (ii) its existential probability, and (iii) a list of its w occur-
rence counts in the path. By doing so, when the window slides, the oldest occurrence
counts (representing the oldest streaming data) are replaced by the newest occurrence

354 C. Kai-Sang Leung

Item | Expected support
f 4.9
g 6.6
h 3.0
i 1.5 (9:0.9):[2,1,3]

(h:0.8):[1,0,1] (i:0.5):[0,0,1]

Fig. 14.8 The SUF-tree for streaming uncertain data D3

counts (representing the newest streaming data). The SUF-tree is constructed in a
similar fashion as the construction of the UF-tree, except that the occurrence count
is inserted as the newest entry in the list of occurrence counts. Figure 14.8 shows an
example of a SUF-tree constructed from the streaming uncertain data in Table 14.7.
Once the SUF-tree is constructed, it is always kept up-to-date when the window
slides. As the window continues to slide in the dynamic streams, SUF-growth delays
the mining of frequent patterns from uncertain streaming data until the user requests
for the patterns. At that time, SUF-growth mines the up-to-dated SUF-tree in a fashion
similar to UF-growth with the user-specified minsup to find all frequent patterns.

8.2 UF-streaming for the Sliding Window Model

Besides the SUF-growth algorithm, Leung and Hao [36] also extended the UF-
growth algorithm to produce an approximate algorithm called UF-streaming. Unlike
SUF-growth (which is an exact algorithm but uses a “delayed” mining mode), UF-
streaming is an approximate algorithm that uses an “immediate” mining mode.
Specifically, for every incoming batch of streaming uncertain data, UF-streaming
applies UF-growth (ref. Sect. 5.1) to that batch with a preMinsup threshold (where
preMinsup < minsup) to find “frequent” patterns (or more precisely, sub-frequent
or potentially frequent patterns due to the use of the preMinsup threshold). These
“frequent” patterns having expected support > preMinsup are then stored in a tree
structure called UF-stream. Each tree path represents a “frequent” pattern. Each
tree node stores a list of w expected support values (one for each batch), where the
i-th value indicates the expected support of that “frequent” pattern in the i-th batch.
When a new batch flows in, the window slides, and the algorithm shifts the w ex-
pected support values of each node in the UF-stream structure so as to ensure that
it always captures the “frequent” patterns mined from the w most recent batches of
streaming uncertain data. Figure 14.9 shows an example of a UF-stream structure

14 Uncertain Frequent Pattern Mining 355

—

[{fr:[2.1,0,2.1]] [{g}:[1.8,2.1,2.7]] [{h}:[1.5,0,1.5]] [{i}:[0,0,1.0]]

[{f,g%:[1.26,0,1.89] J[{f.h}:[1.05,0,1.05]][{g,h}:[1.35,0,1.35] } [{g,i}+:[0,0,0.90]]

[{f,g,h}:[0.945,0,0.945]]

Fig. 14.9 The UF-stream structure for streaming uncertain data D3

constructed for the streaming uncertain data in Table 14.7 with preMinsup =0.9 <
1.0 = minsup.

As UF-streaming uses preMinsup, the UF-stream structure may contain some
false positives (i.e., every pattern Y having preMinsup < expSup(Y, D,,) < minsup,
where D,, represents the streaming uncertain data in the current sliding window) in
addition to all truly frequent patterns (i.e., every pattern X having expSup(X, D,,) >
minsup). At the time when the user requests for frequent patterns from uncertain
streaming data, UF-streaming traverses the UF-stream structure and returns only
those truly frequent patterns.

8.3 TUF-streaming for the Time-Fading Model

Besides the sliding window model (used by both SUF-growth and UF-streaming),
there are also other stream processing models such as time-fading and landmark mod-
els. Leung and Jiang [38] proposed the TUF-streaming algorithm to mine frequent
patterns from probabilistic datasets of uncertain data in a fashion similar to UF-
streaming, except that TUF-streaming uses the time-fading model instead of the slid-
ing window model. When using the time-fading model, TUF-streaming puts heavier
weights on recent batches of streaming uncertain data than older batches. Specifi-
cally, like UF-streaming, the TUF-streaming algorithm also uses the “immediate”
mining mode to apply UF-growth (ref. Sect. 5.1) to every incoming batch of stream-
ing uncertain data with a preMinsup threshold to find “frequent” patterns from that
batch. When using the time-fading model, the corresponding TUF-stream structure
(i) captures all “frequent” patterns mined from all batches but weights recent batches
heavier than older batches (i.e., monotonically decreasing weights from recent to
older data). See Fig. 14.10, in which « (where 0 < « < 1) is a time-fading factor.

While TUF-streaming handles batches of streaming uncertain data that come in
order, there are situations where batches may get delayed and thus arrived out of
the desired order. To deal with these situations, Jiang and Leung [26] extended the
TUF-streaming algorithm to mine frequent patterns from these delayed batches when
using the time-fading model.

356 C. Kai-Sang Leung

[{f}:z.la2+2.1] [{g):1.8a2+2.1a+2.7] [{h}:1.5a2+1.5]

[{ﬁg}:l.26a2+1.89] [{ﬁh}:1.05a2+1.05] [{g,h}:1.3502+1.35] [{g,i}:OAQO]

{£.g,h}:0.9450,2+0.945

Fig. 14.10 The TUF-stream structure for streaming uncertain data D

Fig. 14.11 The LUF-stream
structure for streaming

uncertain data D3 4. {g}:6.6 [{h}:3.0]

[{£,.g}:3.15][{£,h}:2.10][{g,h}:2.70][{g,1}:0.90]

8.4 LUF-streaming for the Landmark Model

Moreover, Leung et al. [41] extended the TUF-streaming algorithm to become the
LUF-streaming algorithm, which mines frequent patterns from streaming uncertain
data in a fashion similar to the UF-streaming and TUF-streaming algorithms, except
that LUF-streaming uses the landmark model. When using the landmark model, the
corresponding LUF-stream structure (i) captures all “frequent” patterns mined from
all batches of streaming uncertain data generated from a landmark to the present time
and (ii) treats all batches with the same importance. See Fig. 14.11.

8.5 Hpyperlinked Structure-Based Streaming Uncertain Frequent
Pattern Mining

So far, we have described notable exact and approximate tree-based streaming un-
certain frequent pattern mining algorithms. Besides them, there are also hyperlinked
structure based algorithms. For instance, Nadungodage et al. [46] proposed two
false positive-oriented algorithms called UHS-Stream and TFUHS-Stream. The
UHS-Stream algorithm applies uncertain hyperlinked structure stream mining for
finding all the frequent patterns seen up to the current moment (i.e., with the land-
mark model). Similarly, the TFUHS-Stream algorithm applies uncertain hyperlinked
structure stream mining, but it uses the time-fading model. Hence, the TFUHS-
Stream algorithm puts heavier weights on the recent transactions than historical data
in the stream.

14 Uncertain Frequent Pattern Mining 357

9 Vertical Uncertain Frequent Pattern Mining

The aforementioned candidate generate-and-test based, hyperlinked structure based,
as well as tree-based mining algorithms use horizontal mining, for which a dataset
can be viewed as a collection of transactions. Each transaction is a set of items.
Alternatively, vertical mining can be applied, for which each dataset can be viewed
as a collection of items and their associated lists (or sets or vectors) of transaction IDs
(i.e., tIDs). Each list of tID of an item x represents all the transactions containing
x. With this vertical representation of datasets, the support of a pattern X can be
computed by intersecting the lists of tIDs of items within X.

9.1 U-Eclat: An Approximate Algorithm

To mine frequent patterns using the vertical representation of probabilistic datasets
of uncertain data, Calders et al. [17] instantiated “possible worlds” of the datasets
to get instantiated samples (in which data become precise) and then applied the
Eclat algorithm [55] to each of these samples of instantiated databases. The resulting
algorithm is called U-Eclat. Given a probabilistic dataset D of uncertain data, U-
Eclat generates an independent random number r for each item x in a transaction
t;. If the existential probability P(x,?;) of item x in transaction #; is no less than
such a random number r (i.e., P(x,t;) > r), then x is instantiated and included in a
“precise” sampled database, which is then mined using the original Eclat algorithm.
This sampling and instantiation process is repeated multiple times, and thus generates
multiple sampled “precise” databases. The estimated support of any pattern X is the
average support of X over the multiple sampled databases. Figure 14.12 shows three
sampled databases for probabilistic dataset D,. As a sampling-based algorithm, U-
Eclat gains efficiency but loses accuracy. More instantiations (i.e., more samples)
helps improve accuracy, but it comes at the cost of an increase in execution time.

9.2 UV-Eclat: An Exact Algorithm

Alternatively, to avoid instantiations and to directly mine frequent patterns using the
vertical representation of probabilistic datasets containing uncertain data, Budhia
etal. [16] proposed the UV-Eclat algorithm. When mining uncertain data, in addition
to recording which transactions contain x in the set of tIDs (i.e., #IDsets), it is
also important to capture additional information: If x is likely to be present in a
transaction #;, then its associated existential probability P(x,;)—which expresses
the likelihood of x appearing in transaction #; of the dataset—needs to be captured.

As it would be impractical to build a tIDset for each distinct (domain item, ex-
istential probability value) pair due to the huge number of such pairs, UV-Eclat
builds a tIDset for each domain item x instead. In each set, UV-Eclat augments every
tID (representing #;) with its corresponding existential probability value P(x,t;). In

358 C. Kai-Sang Leung

Probabilistic database D, of uncertain data:

{t,={a:0.2, b:0.9, c:0.4},
t,={a:0.6, b:0.6, c:0.6, d:0.9},
t;={a:0.6, b:0.5, d:0.5, e:0.7},
t,={a:0.9, b:0.2, c:0.8, e:0.3}}

D,=

Samples of instantiated possible worlds for D, containing uncertain data:

Sample 1 Sample 2 Sample 3
Item | a | b c d|e a | b c d|e al| b c d|e
{6, | {ts, [{ty | & [{ta}| | {ty, [{ty, | {ty | {8 | {E3}| | {ty | {ts, | {ty | {2} | {8}
tip |t | &} |t} ty | b | b | ts} t} |t |t}
list t3, t,} t;} t,}
t}
Observations:

* expSup({e},D,) = 1.0 for D, vs. avg(sup({e},Sample S)) = 1.0 over the 3 samples

* expSup({a,c},D,) = 1.16 for D, vs. avg(sup({a,c},Sample S)) = 2.33 over the 3 samples
* expSup({b,d},D,) = 0.79 for D, vs. avg(sup({b,d},Sample S)) = 0.67 over the 3 samples
whereS=1,2,3

Fig. 14.12 Samples of instantiated “possible worlds” for D,

Table 14.8 Augmented
tIDsets for domain items in
the probabilistic dataset D,

Item Augmented tIDset
{11:0.2, £,:0.6, 13:0.6, 14:0.9}

a

b (11:0.9, £2:0.6, £3:0.5, £4:0.2}
¢ {£1:0.4, £,:0.6, 4:0.8}
d
e

{£:0.9, 13:0.5)
{t3:0.7, 4:0.3}

other words, the resulting augmented tIDset for any item x is of the form {#;: P(x, t;)},
which is equivalent to {#;:expSup({x},t;)}. See Table 14.8.

With the use of augmented tIDsets to vertically represent the probabilistic
dataset D of uncertain data, the expected support of any l-itemset {x} in D can
be computed by summing all P(x,z;) values in the augmented tIDset for {x}. The
tIDset of any (k+1)-itemset X = Y U {z} (where Y is a k-pattern and z is an item)
for k > 1 can be formed by intersecting the tIDsets of Y and {z}. Each #; in the in-
tersection result is associated with an expected support value expSup(X, t;), which
is the product of expSup(Y,t;) and P(z,t;).

9.3 U-VIPER: An Exact Algorithm

Vertical representations for a probabilistic dataset D of uncertain data are not confined
to set-based representations (e.g., augmented tIDsets used in UV-Eclat). There are

14 Uncertain Frequent Pattern Mining 359

Table 14.9 Vectors for domain items in the probabilistic dataset D,

Vector for every domain item

02 0.9 0.4 0 0
0.6 ~ |os 0.6 0.9 0
Z=los | T=los |- T=0o || d=|os | m F=[gs
0.9 02 0.8 0 03

other representations. For instance, Leung et al. [44] proposed the U-VIPER algo-
rithm, in which D is vertically represented by a collection of fixed-size vectors—one
for each domain item x. The length of each vector is fixed and is equal to the number
of transactions (i.e., | D| = n) in the probabilistic dataset of uncertain data. When
mining uncertain data, in addition to using a Boolean value (say, O or 1) to denote
whether or not transaction #; contains x in the vector, it is also important to capture
additional information: If x is likely to be present in a transaction #;, then its associ-
ated existential probability P(x, f;)—which expresses the likelihood of x appearing
in transaction #; of the dataset—needs to be captured.

As it would be a waste of space to augment P (x, ;) to the Boolean value “1” for
t; (i.e., the i-th element of the vector for x), U-VIPER replaces the Boolean value
“1” by P(x,1;) as the i-th element of each vector X representing domain item x.
Specifically, the i-th element of X (denoted as X [i]) stores (i) “0” if x is absent
from ¢#; and (ii) P(x,t;) if x is likely to be present in #;:

i-th element of % (i.e., X [i]) = expSup({x}, ;)

_{0 if x €t

P(x,t;) ifx e (14.10)

See Table 14.9. With this vector-based representation, the expected support of any
1-itemset {x} can be computed by summing all non-zero P(x,t;) values in X" (i.e.,
taking the L1-norm of X):

expSup(ix}, D) =Y expSup({x},1;)
i=1

== 1h (14.11)

The i-th element of the vector of any (k+1)-itemset X = Y U {z} (where Y is
a k-itemset and z is an item) for k > 1 can be formed by taking the product of
expSup(Y,t;) and P(z,t;). The expected support of X is then the dot product of
and {z}.

360 C. Kai-Sang Leung

10 Discussion on Uncertain Frequent Pattern Mining

So far, we have described various uncertain frequent pattern mining algorithms. Tong
et al. [50] compared some of these algorithms.

In terms of functionality, the U-Apriori, UH-mine, UF-growth, UFP-growth,
CUF-growth, PUF-growth, MR-growth, U-Eclat, UV-Eclat and U-VIPER algo-
rithms all mine static datasets of uncertain data. Among them, the first seven mine the
datasets horizontally, whereas the remaining three algorithms mine the datasets verti-
cally. In contrast, the SUF-growth, UF-streaming, TUF-streaming, LUF-streaming,
UHS-Stream and TFUHS-Stream algorithms mine dynamic streaming uncertain
data. Unlike these 16 algorithms that find all frequent patterns, both U-FPS and U-FIC
algorithms find only those frequent patterns satisfying the user-specified constraints.

In terms of accuracy, most algorithms return all the patterns with expected sup-
port (over all “possible worlds””) meeting or exceeding the user-specified threshold
minsup. In contrast, U-Eclat returns patterns with estimated support (over only the
sampled “possible worlds”) meeting or exceeding minsup. Hence, U-Eclat may intro-
duce false positives (when the support is overestimated) or false negatives (when the
support is underestimated). More instantiations (i.e., more samples) helps improve
accuracy.

In terms of memory consumption, U-Apriori keeps a list of candidate patterns,
whereas the tree-based and hyperlinked structure based algorithms construct in-
memory structures (e.g., UF-tree and its variants, extended H-struct). On the one
hand, a UF-tree is more compact (i.e., requires less space) than the extended H-struct.
On the other hand, UH-mine keeps only one extended H-struct, whereas tree-based
algorithms usually construct more than one tree. Sizes of the trees may also vary. For
instance, when U-FPS handles a succinct and anti-monotone constraint Cgyyy, the
tree size depends on the selectivity of C g4 because only those items that individually
satisfy Cga) are stored in the UF-tree. Both CUF-tree and PUF-tree (for uncertain
data) can be as compact as a FP-tree (for precise data). When SUF-growth handles
streams, the tree size depends on the size of sliding window (e.g., a window of w
batches) because a list of w occurrence counts is captured in each node of SUF-trees
(cf. only one occurrence count is captured in each node of UF-trees). Moreover, when
items in probabilistic datasets take on a few distinct existential probability values, the
trees contain fewer nodes (cf. the number of distinct existential probability values
does not affect the size of candidate lists or the extended H-struct). Furthermore,
minsup and density also affect memory consumption. For instance, for a sparse
dataset called kosarak, different winners (requiring the least space) have been shown
for different minsup: U-Apriori when minsup < 0.15 %, UH-mine when 0.15 % <
minsup < 0.5 %, and, UF-growth when 0.5 % < minsup; for a dense dataset called
connect4, UH-mine was the winner for 0.2 % < minsup < 0.8 %.

In terms of performance, most algorithms perform well when items in probabilistic
datasets take on low existential probability values because these datasets do not lead
to long frequent patterns. When items in probabilistic datasets take on high existential
probability values, more candidates are generated-and-tested by U-Apriori, more and

14 Uncertain Frequent Pattern Mining 361

bigger UF-trees are constructed by UF-growth, more hyperlinks are adjusted by UH-
mine, and more estimated supports are computed by U-Eclat. Hence, longer runtimes
are required. Similarly, when minsup decreases, more frequent patterns are returned
and longer runtimes are also required. Moreover, the density of datasets also affects
runtimes. For instance, when datasets are dense (e.g., connect4 augmented with
existential probability), UF-trees obtain higher compression ratios and thus require
less time to traverse than sparse datasets (e.g., kosarak augmented with existential
probability). Some experimental results showed the following: (i) datasets with a
low number of distinct existential probabilities led to smaller UF-trees and shorter
runtimes for UF-growth (than U-Apriori); (ii) U-Apriori requires shorter runtimes
than UH-mine when minsup was low (e.g., minsup < 0.3 % for kosarak, minsup <
0.6 % for connect4) but vice versa when minsup was high; (iii) depending on the
number of samples, U-Eclat could take longer or shorter to run than U-Apriori.

11 Extension: Probabilistic Frequent Pattern Mining

The aforementioned algorithms all find (expected support-based) frequent patterns
from uncertain data. These are patterns with expected support meeting or exceed-
ing the user-specified threshold minsup. Note that expected support of a pattern
X provides users with frequency information of X summarized over all “possible
worlds”, but it does not reveal the confidence on the likelihood of X being frequent
(i.e., percentage of “possible worlds” in which X is frequent). However, know-
ing the confidence can be helpful in some applications. Hence, in recent years,
there is also algorithmic development on extending the notion of frequent patterns
based on expected support to useful patterns—such as probabilistic heavy hitters and
probabilistic frequent patterns as described below.

11.1 Mining Probabilistic Heavy Hitters

Although the expected support of an item x (i.e., a singleton pattern {x}) provides
users with an estimate of the frequency of x in many real-life applications, it is also
helpful to know the confidence on the likelihood of x being frequent in the uncertain
data in some other applications. Hence, Zhang et al. [56] formalized the notion of
probabilistic heavy hitters (i.e., probabilistic frequent items, which are also known as
probabilistic frequent singleton patterns) following the “possible world” semantics
[21] for probabilistic datasets of uncertain data.

Definition 14.4 Given (i) a probabilistic dataset D of uncertain data, (ii) a user-
specified support threshold ¢, and (iii) a user-specified frequentness probability
threshold 7, the problem of mining probabilistic heavy hitters from uncertain
data is to find all (¢, v)-probabilistic heavy hitters (PHHs). An item x is a (¢, 7)-
probabilistic heavy hitter (PHH) if P(sup(x, W;) > ¢|W;|) > t (where sup(x, W;)
is the support of x in a random possible world W; and |W;]| is the number of items

362 C. Kai-Sang Leung

Table 14.10 An example of a

probabilistic dataset Dy with Transaction ID ~ Set of items with existential probability

mutually exclusive items t {j1:0.5, j»:0.5}

t {k1:0.1, k2:0.2, k3:0.3, k4:0.4}

13 {j110.3, j220,3, j330.1}
Observation 1: The sum of existential probability of all items in each transaction is bounded above
by 1.

Observation 2: There are 60 “possible worlds” for Dy (cf. 512 “possible worlds” if items in each
transaction were independent (i.e., not mutually exclusive)).

in W;), which represents the probability of x being frequent exceeding the user
expectation.

Equivalently, given (i) a probabilistic dataset D of uncertain data, (ii) a user-
specified support threshold minsup, (iii) a user-specified frequentness probability
threshold minProb, the research problem of mining probabilistic heavy hitters
(PHHSs) from uncertain data is to find every item x that is highly likely to be
frequent—i.e., the probability that x occurs in at least minsup transactions in D is no
less than minProb. In other words, x is a probabilistic heavy hitter if P(sup(x, D) >
minsup) > minProb.

To find these PHHs from a probabilistic dataset of uncertain data where items in
each transaction are mutually inclusive (e.g., D4 in Table 14.10), Zhang et al. [56]
proposed an exact algorithm and an approximate algorithm. The exact algorithm uses
dynamic programming to mine offline uncertain data for PHHs. Such an algorithm
runs in polynomial time when there is sufficient memory. When the memory is
limited, the approximate algorithm uses sampling techniques to mine streaming
uncertain data for approximate PHHs.

11.2 Mining Probabilistic Frequent Patterns

The expected support of a pattern X (that consists of one or more items) provides users
with an estimate of the frequency of X, but it does not take into account the variance
or the probability distribution of the support of X. In some applications, knowing
the confidence on which pattern is highly likely to be frequent helps interpreting
patterns mined from uncertain data. Hence, Bernecker et al. [15] extended the notion
of frequent patterns and introduced the research problem of mining probabilistic
frequent patterns (p-FPs). Figure 14.11 illustrates the differences between expected
support and probabilistic support.

Definition 14.5 Given (i) a probabilistic dataset D of uncertain data, (ii) a user-
specified support threshold minsup, (iii) a user-specified frequentness probability
threshold minProb, the research problem of mining probabilistic frequent patterns
(p-FPs) from uncertain data is to find (i) all patterns that are highly likely to
be frequent and (ii) their support. Here, the support sup(X, D) of any pattern X
is defined by a discrete probability distribution function (pdf) or probability mass

14 Uncertain Frequent Pattern Mining 363

Table 14.11 Frequent pattern vs. probabilistic frequent patterns

Let user-specified minsup =1.0 and minProb=0.90

sup({d}) Set of items Prob(W;) COUNT(W;)
2 (d:0.9)et, A (d:0.5)ets 0.45 8192
(d:09)et; A (d:0.5)¢13 0.45 8192

1 (d:0.9)¢1t, A (d:0.5)et; +0.05 + 8192
=0.50 = 16384

0 (d:0.9)¢1t, A (d:0.5)¢13 0.05 8192

Y., Prob(W;)=1 Y, COUNT (W;) = 32768

As expSup({d}, D>) =(2 x 0.45) + (1 x 0.50) 4 (0 x 0.05) =0.9 4 0.5 = 1.4 > minsup, {d} is
an expected support-based frequent pattern.

As Prob(sup({d}, D) > minsup) =0.45 4 0.50 =0.95 > minProb, {d} is also a probabilistic
frequent pattern.

sup({e}) Set of items Prob(W;) COUNT(W;)
2 (e:0.7)etz A (€:0.3)ety 0.21 8192
(e:0.7)ets A (e:0.3) €1y 0.49 8192

1 (e:0.7)é1t3 A (e:0.3)ety +0.09 + 8192
=0.58 = 16384

0 (e:0.7)é1t3 A (e:0.3)¢14 0.21 8192

Y, Prob(W)=1 Y, COUNT (W;) = 32768

As expSup({e}, D;) = (2 x 0.21) + (1 x 0.58) + (0 x 0.21) = 0.7 4+ 0.3 = 1.0 > minsup, {e} is
an expected support-based frequent pattern.

However, as Prob(sup({e}, D;) > minsup) = 0.21 + 0.58 = 0.79 < minProb, {e} is not a
probabilistic frequent pattern.

function (pmf). A pattern X is highly likely to be frequent (i.e., X is a probabilistic
frequent pattern) if and only if its frequentness probability is no less than minProb,
i.e., P(sup(X, D) > minsup) > minProb. The frequentness probability of X is the
probability that X occurs in at least minsup transactions of D. (Table 14.11)

Note that frequentness probability is anti-monotonic: All subsets of a p-FP are
also p-FPs. Equivalently, if X is not a p-FP, then none of its supersets is a p-FP,
and thus all of them can be pruned. Moreover, when minsup increases, frequentness
probabilities of p-FPs decrease.

Bernecker et al. [15] used a dynamic computation technique in computing the
probability function fx(k) = P(sup(X, D) = k), which returns the probability that
the support of a pattern X equals to k. Summing the values of such a probability
function fx (k) over all k > minsup gives the frequentness probability of X because

|D| |D|
Z Sfx(k) = Z P(sup(X, D) > minsup).
k>minsup k>minsup

Any pattern X having the sum no less than minProb becomes a p-FP.

Sun et al. [49] proposed the top-down inheritance of support probability func-
tion (TODIS) algorithm, which runs in conjunction with a divide-and-conquer (DC)
approach, to mine probabilistic frequent patterns from uncertain data by extracting

364 C. Kai-Sang Leung

patterns that are supersets of p-FPs and deriving p-FPs in a top-down manner (i.e.,
descending cardinality of p-FPs).

To accelerate probabilistic frequent pattern mining, Wang et al. [51] applied
a model-based approach that supports both tuple uncertainty (as in the TODIS
algorithm [49]) and attribute uncertainty (as in the aforementioned dynamic compu-
tation technique [15]). Specifically, they represented the support pmf of a p-FP as
some existing probability models (e.g., Poisson binomial distribution model, normal
distribution). By doing so, Wang et al. quickly found two types of p-FPs: (i) threshold-
based p-FP (i.e., P(sup(X) > minsup) > min Prob) and (ii) rank-based p-FP (e.g.,
top-k p-FP).

In addition to finding p-FPs from static datasets of uncertain data, there are also
algorithms that find p-FPs from dynamic streaming uncertain data. For instance,
Akbarinia and Masseglia [14] proposed an exact algorithm called FMU for fast
mining of streaming uncertain data with the sliding window model.

12 Conclusions

Frequent pattern mining is an important data mining task. It helps discover implicit,
previously unknown and potentially useful knowledge; it also helps reveal sets of
frequently co-occurring items in numerous real-life applications (e.g., bundles of
books that are frequently bought together, collections of courses that are taken in
the same academic terms, events that are often co-located, groups of individuals that
have common interests). Here, it has drawn the attention of many researchers over
the past two decades. The research problem of frequent pattern mining was origi-
nally proposed to analyze shoppers’ market basket transaction databases containing
precise data, in which the contents of transactions in the databases are known. Such
a research problem also plays an important role in other data mining tasks, such
as the mining of interesting or unexpected patterns, sequential mining, associative
classification, as well as outlier detection, in various real-life applications. As we
are living in an uncertain world, data in many real-life applications are uncertain.
Recently, researchers have paid more attention to the mining of frequent patterns
from probabilistic datasets of uncertain data.

In this chapter, we presented some recent works on mining frequent patterns
from probabilistic datasets of uncertain data. These include candidate generate-and-
test based, hyperlinked structure based, tree-based, as well as vertical uncertain
frequent pattern mining algorithms. Among them, the U-Apriori algorithm generates
candidate patterns and tests if their expected support meets or exceeds a user-specified
threshold. To avoid such a candidate generate-and-test approach, both UH-mine
and UF-growth algorithms use a pattern-growth mining approach. The UH-mine
algorithm keeps a UH-struct, from which frequent patterns are mined; the UF-growth
algorithm constructs a UF-tree, from which frequent patterns are mined. The UFP-
growth algorithm applies clustering to help reduce the number of nodes in a UFP-tree.
The PUF-growth and CUF-growth algorithms respectively construct a PUF-tree and

14 Uncertain Frequent Pattern Mining 365

a CUF-tree, which are more compact than the corresponding UF-tree. Instead of
applying horizontal mining, U-Eclat, UV-Eclat and U-VIPER use vertical mining.

Moreover, the UF-growth algorithm has also been extended for constrained min-
ing, Big Data mining, and stream mining. The resulting U-FPS and U-FIC algorithms
exploit properties of the user-specified succinct constraints and convertible con-
straints, respectively, to find all and only those frequent patterns satisfying the
constraints from uncertain data. MR-growth uses the MapReduce model for Big
Data analytics. Both SUF-growth and UF-streaming use the sliding window model
for mining. SUF-growth mines all frequent patterns from a SUF-tree, which captures
the contents of the current few batches of streaming uncertain data. The UF-streaming
algorithm applies UF-growth to each batch and stores the mining results in the UF-
stream structure, from which frequent patterns can be retrieved. The UF-streaming
algorithm was extended to become the TUF-streaming and LUF-streaming algo-
rithms, which use the time-fading and landmark models respectively for (tree-based)
mining. Similarly, the TFUHS-Stream and UHS-Stream algorithms also use the
time-fading and landmark models respectively, but for hyperlinked structure-based
mining.

In addition to expected support-based frequent patterns, there are algorithms that
mine probabilistic heavy hitters as well as probabilistic frequent patterns.

Future research directions include (i) mining frequent patterns from uncertain data
in applications areas such as social network analysis [4, 28], (ii) mining frequent
sequences and frequent graphs from uncertain data, as well as (iii) visual analytics
of uncertain frequent patterns.

References

1. Abiteboul, S., Kanellakis, P., & Grahne, G. 1987. On the representation and querying of sets
of possible worlds. In Proceedings of the ACM SIGMOD 1987, pages 34—48.
. Aggarwal, C.C. 2009. On clustering algorithms for uncertain data. In C.C. Aggarwal (ed.),
Managing and Mining Uncertain Data, pages 389-406. Springer.
. Aggarwal, C.C. (ed.) 2009. Managing and Mining Uncertain Data. Springer.
. Aggarwal, C.C. (ed.) 2011. Social Network Data Analytics. Springer.
. Aggarwal, C.C. 2013. Outlier Analysis. Springer.
. Aggarwal, C.C. (ed.) 2013. Managing and Mining Sensor Data. Springer.
. Aggarwal, C.C. & Reddy, C.K. (eds.), Data Clustering: Algorithms and Applications. CRC
Press.
8. Agrawal, R., & Srikant, R. 1994. Fast algorithms for mining association rules in large databases.
In Proceedings of the VLDB 1994, pages 487-499. Morgan Kaufmann.
9. Aggarwal, C.C., & Yu, P.S. 2008. Outlier detection with uncertain data. In Proceedings of the
SIAM SDM 2008, pages 483-493.
10. Aggarwal, C.C., & Yu, PS. (eds.) 2008. Privacy-Preserving Data Mining: Models and
Algorithms. Springer.
11. Aggarwal, C.C., & Yu, P.S. 2009. A survey of uncertain data algorithms and applications. I[EEE
Transactions on Knowledge and Data Engineering (TKDE), 21(5), pages 609-623.
12. Agrawal, R., Imielifiski, T., & Swami, A. Mining association rules between sets of items in
large databases. In Proceedings of the ACM SIGMOD 1993, pages 207-216.

[\

~N NN kAW

366 C. Kai-Sang Leung

13. Aggarwal, C.C., Li, Y., Wang, J., & Wang, J. 2009. Frequent pattern mining with uncertain
data. In Proceedings of the ACM KDD 2009, pages 29-38.

14. Akbarinia, R., & Masseglia, F. 2012. FMU: fast mining of probabilistic frequent itemsets in
uncertain data streams. In Proceedings of the BDA 2012.

15. Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., & Zuefle, A. 2009. Probabilistic frequent
itemset mining in uncertain databases. In Proceedings of the ACM KDD 2009, pages 119-127.

16. Budhia, B.P., Cuzzocrea, A., & Leung, C.K.-S. 2012. Vertical frequent pattern mining from
uncertain data. In Proceedings of the KES 2012, pages 1273—-1282. IOS Press.

17. Calders, T., Garboni, C., & Goethals, B. 2010. Efficient pattern mining of uncertain data with
sampling. In Proceedings of the PAKDD 2010, Part I, pages 480-487. Springer.

18. Chui, C.-K., & Kao, B. 2008. A decremental approach for mining frequent itemsets from
uncertain data. In Proceedings of the PAKDD 2008, pages 64—75. Springer.

19. Chui, C.-K., Kao, B., & Hung, E. 2007. Mining frequent itemsets from uncertain data. In
Proceedings of the PAKDD 2007, pages 47-58. Springer.

20. Cuzzocrea, A., Leung, C.K.-S., & MacKinnon, R.K. 2014. Mining constrained frequent
itemsets from distributed uncertain data. Future Generation Computer Systems. Elsevier.

21. Dalvi, N., & Suciu, D. 2004. Efficient query evaluation on probabilistic databases. In
Proceedings of the VLDB 2004, pages 864—875. Morgan Kaufmann.

22. Gaber, M.M., Zaslavsky, A.B., & Krishnaswamy, S. Mining data streams: a review. ACM
SIGMOD Record, 34(2), pages 18-26.

23. Green, T., & Tannen, V. 2006. Models for incomplete and probabilistic information. Bulletin of
the Technical Committee on Data Engineering, 29(1), pages 17-24. IEEE Computer Society.

24. Han, J., Pei, J., & Yin, Y. 2000. Mining frequent patterns without candidate generation. In
Proceedings of the ACM SIGMOD 2000, pages 1-12.

25. Jiang, B., Pei, J., Tao, Y., & Lin, X. 2013. Clustering uncertain data based on probability
distribution similarity. [EEE Transactions on Knowledge and Data Engineering (TKDE),25(4),
pages 751-763.

26. Jiang, F., & Leung, C.K.-S. 2013. Stream mining of frequent patterns from delayed batches of
uncertain data. In Proceedings of the DaWaK 2013, pages 209-221. Springer.

27. Lakshmanan, L.V.S., Leung, C.K.-S., & Ng, R.T. 2003. Efficient dynamic mining of
constrained frequent sets. ACM Transactions on Database Systems (TODS), 28(4), pages
337-389.

28. Lee, W,, Leung, C.K.-S., Song, J.J., & Eom, C.S.-H. 2012. A network-flow based influence
propagation model for social networks. In Proceedings of the CGC/SCA 2012, pages 601-608.
IEEE Computer Society (The best paper of SCA 2012).

29. Leung, C.K.-S. 2009. Convertible constraints. In Encyclopedia of Database Systems, pages
494-495. Springer.

30. Leung, C.K.-S. 2009. Frequent itemset mining with constraints. In Encyclopedia of Database
Systems, pages 1179-1183. Springer.

31. Leung, C.K.-S. 2009. Succinct constraints. In Encyclopedia of Database Systems, page 2876.
Springer.

32. Leung, C.K.-S. 2011. Mining uncertain data. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery (WIDM), 1(4), pages 316-329.

33. Leung, C.K.-S., & Brajczuk, D.A. 2009. Efficient algorithms for the mining of constrained
frequent patterns from uncertain data. ACM SIGKDD Explorations, 11(2), pages 123-130.

34. Leung, C.K.-S., & Brajczuk, D.A. 2009. Mining uncertain data for constrained frequent sets.
In Proceedings of the IDEAS 2009, pages 109-120. ACM.

35. Leung, C.K.-S., & Brajczuk, D.A. 2010. uCFS;: an enhanced system that mines uncertain data
for constrained frequent sets. In Proceedings of the IDEAS 2010, pages 32-37. ACM.

36. Leung, C.K.-S., & Hao, B. 2009. Mining of frequent itemsets from streams of uncertain data.
In Proceedings of the IEEE ICDE 2009, pages 1663-1670.

37. Leung, C.K.-S., & Hayduk, Y.2013. Mining frequent patterns from uncertain data with MapRe-
duce for Big Data analytics. In Proceedings of the DASFAA 2013, Part I, pages 440-455.
Springer.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

Uncertain Frequent Pattern Mining 367

Leung, C.K.-S., & Jiang, F. 2011. Frequent pattern mining from time-fading streams of
uncertain data. In Proceedings of the DaWaK 2011, pages 252-264. Springer.

Leung, C.K.-S., & Tanbeer, S.K. 2012. Fast tree-based mining of frequent itemsets from
uncertain data. In Proceedings of the DASFAA 2012, Part I, pages 272-287. Springer.

Leung, C.K.-S., & Tanbeer, S.K. 2013. PUF-tree: a compact tree structure for frequent pattern
mining of uncertain data. In Proceedings of the PAKDD 2013, Part I, pages 13-25. Springer.
Leung, C.K.-S., Cuzzocrea, A., & Jiang, F. 2013. Discovering frequent patterns from uncertain
data streams with time-fading and landmark models. LNCS Transactions on Large-Scale Data-
and Knowledge-Centered Systems (TLDKS) VIII, pages 174—196. Springer.

Leung, C.K.-S., Mateo, M.A.F., & Brajczuk, D.A. 2008. A tree-based approach for frequent
pattern mining from uncertain data. In Proceedings of the PAKDD 2008, 653—-661. Springer.
Leung, C.K.-S., Hao, B., & Brajczuk, D.A. 2010. Mining uncertain data for frequent itemsets
that satisfy aggregate constraints. In Proceedings of the ACM SAC 2010, pages 1034-1038.
Leung, C.K.-S., Tanbeer, S.K., Budhia, B.P., & Zacharias, L.C. 2012. Mining probabilistic
datasets vertically. In Proceedings of the IDEAS 2012, pages 199-204. ACM.

Madden, S. 2012. From databases to big data. IEEE Internet Computing, 16(3), pages 4—6.
Nadungodage, C.H., Xia, Y., Lee, J.J., & Tu, Y. 2013. Hyper-structure mining of frequent
patterns in uncertain data streams. In Knowledge and Information Systems (KAIS), 37(1),
pages 219-244. Springer.

Ren,J., Lee, S.D., Chen, X., Kao, B., Cheng, R., & Cheung, D.2009. Naive Bayes classification
of uncertain data. In Proceedings of the IEEE ICDM 2009, pages 944-949.

Suciu, D. 2009. Probabilistic databases. In Encyclopedia of Database Systems, pages 2150—
2155. Springer.

Sun, L., Cheng, R., Cheung, D.W., & Cheng, J. 2010. Mining uncertain data with probabilistic
guarantees. In Proceedings of the ACM KDD 2010, pages 273-282.

Tong, Y., Chen, L., Cheng, Y., & Yu, P.S. 2012. Mining frequent itemsets over uncertain
databases. In Proceedings of the VLDB Endowment (PVLDB), 5(11), pages 1650-1661.
Wang, L., Cheng, R., Lee, S.D., & Cheung, D.W. 2010. Accelerating probabilistic frequent
itemset mining: a model-based approach. In Proceedings of the ACM CIKM 2010, pages
429-438.

Wasserkrug, S. 2009. Uncertainty in events. In Encyclopedia of Database Systems, pages
3221-3225. Springer.

Xu, L., & Hung, E. 2012. Improving classification accuracy on uncertain data by considering
multiple subclasses. In Proceedings of the Australasian AI 2012, pages 743—754. Springer.
Zaki, ML.J. 1999. Parallel and distributed association mining: a survey. I[EEE Concurrency,
7(4), pages 14-25.

Zaki, M.J., Parthasarathy, S., Ogihara, M., & Li, W. 1997. New algorithms for fast discovery
of association rules. In Proceedings of the ACM KDD 1997, pages 283-286.

Zhang, Q., Li, F.,, & Yi, K. 2008. Finding frequent items in probabilistic data. In Proceedings
of the ACM SIGMOD 2008, pages 819-832.

	Chapter 14 Uncertain Frequent Pattern Mining
	1 Introduction
	2 The Probabilistic Model for Mining Expected Support-Based Frequent Patterns from Uncertain Data
	3 Candidate Generate-and-Test Based Uncertain Frequent Pattern Mining
	4 Hyperlinked Structure-Based Uncertain Frequent Pattern Mining
	5 Tree-Based Uncertain Frequent Pattern Mining
	5.1 UF-growth
	5.2 UFP-growth
	5.3 CUF-growth
	5.4 PUF-growth

	6 Constrained Uncertain Frequent Pattern Mining
	7 Uncertain Frequent Pattern Mining from Big Data
	8 Streaming Uncertain Frequent Pattern Mining
	8.1 SUF-growth
	8.2 UF-streaming for the Sliding Window Model
	8.3 TUF-streaming for the Time-Fading Model
	8.4 LUF-streaming for the Landmark Model
	8.5 Hyperlinked Structure-Based Streaming Uncertain Frequent Pattern Mining

	9 Vertical Uncertain Frequent Pattern Mining
	9.1 U-Eclat: An Approximate Algorithm
	9.2 UV-Eclat: An Exact Algorithm
	9.3 U-VIPER: An Exact Algorithm

	10 Discussion on Uncertain Frequent Pattern Mining
	11 Extension: Probabilistic Frequent Pattern Mining
	11.1 Mining Probabilistic Heavy Hitters
	11.2 Mining Probabilistic Frequent Patterns

	12 Conclusions
	References

