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Abstract. One of the most fundamental tasks of wireless sensor networks is to
provide coverage of barrier, which focuses on detecting intruders crossing a spe-
cific region. Suppose that all sensors are dropped from an aircraft along a given
line interval, and each sensor has circular coverage range of arbitrary radii. Due
to the environmental factors, the sensors will be distributed along the deployment
line interval with random offsets. We study the barrier coverage problem with
line-based offsets deployments by a set of wireless sensors with adjustable cov-
erage ranges. The objective is to find a range assignment with the minimum cost.
In this paper, we present a constant-approximation algorithm and two fully poly-
nomial time approximation schemes (FPTASes) for the barrier coverage by using
sensors with offsets under a linear cost function on the sensor’s range. We also
show the performance of the approximation algorithms by experiments.

Keywords: Barrier coverage, wireless sensor networks, approximation
algorithm.

1 Introduction

In recent years, there has been increasing development in the field of wireless sensor
networks (WSN). WSN consists of a number of wireless sensor nodes, which are char-
acterized by having limited battery power. One of the most important applications in
WSN is border surveillance and intrusion detection, such as detecting intruders cross-
ing country borders or boundaries of battlefields.

Barrier coverage [1], differing from covering specific points of targets [2] [3] and
entire region [4], focuses on detecting intruders in an attempt to cross a specific region.
The performance of barrier coverage depends on sensor deployment schemes. Placing
sensors one by one regularly on a straight line interval across the region is the best
scheme [1] [5], due to its simplicity and efficiency. However, deploying sensors in a
deterministic way is sometimes difficult, such as monitoring boundaries of battlefields.
A useful alternative way of distribution is to drop sensors from an aircraft along a given
path. Note that the sensors dropping from the air would miss their predetermined posi-
tions influenced by potential environmental factors like the wind. Consequently, these
sensors will be distributed along the deployment line interval with random offsets.
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In this paper, we consider the scenario where sensors with adjustable ranges are
deployed along a line interval, which leads to line-based normal random offset deploy-
ment (LNRO) [5]. Since the power consumed by a sensor is directly related to its range,
a natural question is how to assign the ranges to sensors such that total consumption of
power is minimized while the line interval is fully covered.

2 Preliminaries

Formally, we put n sensors μ1, μ2, ..., μn in the interval [0,m]. Each sensor μi is rep-
resented by a pair of values (xi, hi) where xi is the horizontal distance from the sensor
to the leftmost point of the interval and hi is the vertical distance from the sensor to the
interval. Each sensor μi has a transmission radius ri. We define ri′ as the projection of
ri on the interval and ri = [xi − ri

′, xi + ri
′] as μi’s range. The relationship between

ri and ri
′ is showed in Figure 1. We say a sensor μi is chosen if ri′ > 0. For any point

x in [0,m], we say it is covered by sensor μi if |x− xi| ≤ ri
′.

μi

hi

ri ri

ri
′ ri

′xi

Fig. 1. Each sensor μi is represented by (xi,hi) where ri is the radius of μi and ri
′ is

the projection of ri on the interval

We define R = (r1, r2, ..., rn) as a range assignment of interval [0,m] if the whole
interval [0,m] is covered by R. The cost of an assignment R is defined as C(R) =∑n

i=1 ri
κ where κ is a positive constant. The main task of this paper focuses on the case

when κ = 1. The assignment with the minimum cost is called the optimal assignment
and we use R∗ = (r1

∗, r2∗, ..., rn∗) to denote it.
Due to space limit, we omit some proofs in this version.

3 Related Works

Most of previous studies on WSN coverage assume that each sensor has a fixed-radius
disk coverage. In this setting, the coverage of a specific area can be considered as mon-
itoring a fixed number of targets. The problem Min-Weight Disk Cover attempts to
find a subset of given disks with minimum cost to fully cover all targets. When all
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disks have the same radius normalized to one, the problem Min-Weight Disk Cover
is referred to as Min-Weight Unit-Disk Cover. In the last ten years, a sequence of
incremental improvements over approximation algorithms for the unweighted variant
of Min-Weight Unit-Disk Cover were made in [6] [7] [8]. Then, extensive works
on constant approximation algorithms for Min-Weight Unit-Disk Cover were stud-
ied in [9] [10] [11] [12]. Recently, a PTAS for the unweighted variant and a randomized
2O(log∗ n)-approximation for the weighted variant were developed [3]. Other variants
on disk coverage have been explored in [13] [14] [15].

For the case in which the coverage target is a line segment, it is usually defined as
barrier coverage problem. In this direction, various works have been done. If sensors are
static, Li et al.[16] studied the problem of covering a line interval by wireless sensors
with adjustable ranges, where the sensors were located on the segment, referred to as
Min-Cost Linear Coverage (MCLC). The objective is to find a range assignment with
the minimum cost in two variants (discrete and continuous) of the problem. On the basis
of the algorithm for MCLC, the authors in [17] gave a PTAS with a polynomial cost
function on the disks’ radii.

When the sensors can move, Czyzowicz et al. [18] studied the coverage problem to
minimize the maximum sensor movement. They presented an O(n2) algorithm to com-
pute the optimal movement of sensors with the same sensing range. Later, Chen et al.
[19] improved the complexity to O(n log n) and came up with an O(n2 logn) algorithm
with arbitrary sensing ranges. Czyzowicz et al. [20] considered covering a line interval
with the aim of minimizing the total movement distance. In terms of maximizing the
network lifetime, Bar Noy and Baumer [21] studied the lifetime maximization problem
on a line segment by sensors with adjustable ranges. In a recent paper [22], Bar Noy
et al. studied the problem of maximizing the coverage lifetime of a barrier by mobile
sensors with limited battery powers. They obtained profound theoretical results to max-
imize the network lifetime on two variants of the problem which are distinguished by
whether the sensing radii of sensors can be changed.

Suppose that all sensors are dropped from an aircraft along a given line interval, and
each sensor has circular coverage range of arbitrary radii. Due to the environmental
factors, the sensors will be distributed along the deployment line interval with random
offsets. In this paper, we explore the barrier coverage problem with line-based offsets
deployments by a set of wireless sensors with adjustable coverage ranges. Each cover-
age range of a sensor is a disk centered at that sensor whose radius is decided by the
power the sensor chooses. The objective is to find a range assignment with the minimum
cost. This optimization problem is defined as General Min-Cost Linear Coverage
problem (GMCLC).

4 A Constant-Factor Approximation Algorithm for GMCLC

In this section, we give an approximation algorithm with approximation ratio bounded
by a constant. If the context is clear, we also use R to represent the cost of assignment
R. Hence, the cost of the optimal assignment R∗ is R∗. We also define P and Q as the
leftmost point and rightmost point on the interval, respectively. We assume m = 1 in
this section and all sections after unless the value of m is defined explicitly.
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In the following, we design an algorithm to approximate R∗.
Our algorithm chooses assignments from two groups of assignments. One group

contains all the assignments that only use one sensor to cover the interval. For every
sensor μi, we calculate its distance to P and Q and denote two distances as dist(μi, P )
and dist(μi, Q) respectively. In order to cover the interval, we choose the larger distance
from dist(μi, P ) and dist(μi, Q) as μi’s radius and it is also the cost of the assignment
using μi only. The other group contains all the assignments that only use two sensors
to cover the whole interval. We assume these two sensors are μA and μB where μB is
on the right of μA. If xB − xA ≤ 1

2 , we can cover the line interval by letting sensor
μA cover the line interval on its left and letting sensor μB cover the line interval on its
right. If xB − xA > 1

2 , μA must cover the line interval on its left and μB must cover
the line interval on its right. After that, the “center” of the line interval is still uncovered
and its range is [2xA, 2xB − 1]. This sub-interval must be covered by either μA or μB

or both. The optimal solution occurs when ∠μAY P = ∠μBY Q where Y is a point
within range [2xA, 2xB − 1] if it exists. When ∠μAY P = ∠μBY Q, the sub-interval is
covered by both sensors and we have rA

′
rB ′ =

hA

hB
. If such point does not exist within the

range [2xA, 2xB − 1], the optimal solution occurs when either μA or μB alone covers
the sub-interval. Special cases such as μA or μB is located at the end points of the line
interval can be handled in a similar way. Details can be found in Algorithm 1.

Input: xA, hA, xB, hB

Output: Minimum cost of the range assignment that chooses μA and μB

if xB − xA ≤ 1
2

then
rA

′ = xA

rB
′ = 1− xB

else if hA
xA

> hB
1−xB

and hA
2xB−xA−1

≥ hB
1−xB

then
rA

′ = 2xB − xA − 1
rB

′ = 1− xB

else if hA
xA

≤ hB
1−xB

and hA
xA

< hB
xB−2xA

then
rA

′ = xA

rB
′ = xB − 2xA

else
rA

′ = hA(xB−xA)
hA+hB

rB
′ = hB(xB−xA)

hA+hB

end if
cost =

√
rA′2 + hA

2 +
√

rB ′2 + hB
2

return cost

Algorithm 1. Compute the minimum cost when two sensors are chosen

Among all the assignments using only one or two sensors, we choose the one with
minimum cost as the output of our algorithm and denote it as R′.

In order to show the approximation ratio of R′, we first prove a lemma about our
algorithm.
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Lemma 1. Given two sensors, the result given by Algorithm 1 is the optimal solution if
we only use the sensors given.

Proof. Assume μA and μB are the two sensors given and without loss of generality, we
assume μB is on the right of μA. It is obvious that rA′ ≥ xA, rB ′ ≥ 1− xB and rA

′ +
rB

′ ≥ xB −xA. Therefore, the interval can be covered by the assignment in Algorithm
1. Next, in the optimal assignment R∗, we should have xA + rA

′ = xB − rB
′,which

means the rightmost point covered by μA is also the leftmost point covered by μB . If
xA+rA

′ > xB−rB
′, there must be as least one sensor in μA and μB going beyond the

boundary of the interval. Without loss of generality, we can assume μB is the sensor that
goes beyond the boundary of the interval. We can reduce its radius until the leftmost
point covered by μB is xA + rA

′ or the rightmost point is Q. The cost of assignment
decreases and the interval is fully covered. We can adjust the radius of μA as well in the
same way. Because rA′ + rB

′ ≥ xB − xA, xA + rA
′ = xB − rB

′ finally. Then the cost

function can be written as cost =
√
rA′2 + hA

2 +
√
(xB − xA − rA′)2 + hB

2.The
cost function becomes a function of rA′. In order to get the assignment with minimum
cost, we can take derivative of the cost function and we have cost′ = rA

′√
rA′2+hA

2
−

xB−xA−rA
′√

(xB−xA−rA′)2+hB
2

. When cost′ = 0, rA
′

xB−xA−rA′ = rA
′

rB ′ = hA

hB
. This corresponds

to the fourth situation in Algorithm 1 if r′A ∈ (xA, xB). If such r′A < xA, then the
cost function is always increasing. The minimum value happens when r′A = xA and
it corresponds to the third case in Algorithm 1. Similarly, the minimum value happens
when r′A = xB if the optimal rA′ ≥ xB and this corresponds to the second case in
Algorithm 1.

Therefore, Algorithm 1 returns the optimal solution as long as two sensors are cho-
sen.

Then we can prove the following theorem.

Theorem 1. The range assignment R′ given by Algorithm 1 is a 4
3 -approximation.

5 Two FPTASes for GMCLC with Linear Cost

In this section, two FPTASes will be designed for the GMCLC problem, where the cost
of a sensor with radius r is proportional to rκ for constant κ = 1.

5.1 Based on Radius Division

Choosing a small positive constant ε > 0, we can define a set of radii
Dm = {0, m

Kn ,
2m
Kn , ...,

⌈
rmaxKn

m

⌉
m
Kn}, where rmax indicates the maximum dis-

tance from any sensor to any endpoint of the line interval and K =
⌈
2
ε

⌉
. Using the

discrete radius given by division, there will be Kn · ⌈ rmax

m

⌉
+ 1 possible radii for

each sensor, defining n · (Kn · ⌈ rmax

m

⌉
+ 1) possible radii. We can construct a directed

weighted graph G and find the shortest path as in [16]. The graph G has Kn2
⌈
rmax

m

⌉
+

n + 2 nodes. The running time of the algorithm is O((Kn2
⌈
rmax

m

⌉
+ n + 2)2) =

O((2
⌈
rmax

εm

⌉
n2 + n + 2)2) = O(n4/ε2). We denote this algorithm as Algorithm

RDoff_line.
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Theorem 2. Let R∗ =
∑

i ri
∗ be the sum of radii in an optimal solution. Then, for any

constant number ε > 0, there exists an assignment R′ = (r′1, r
′
2, . . . , r

′
n) which can

cover the whole line interval with r
′
i ∈ Dm and R

′
=

∑
i r

′
i ≤ (1 + ε)R∗.

Proof. We can increase radius r∗i in the optimal solution by at most m
Kn to reach the

closest value r
′
i in Dm. It is easy to see that the new assignment with radius r

′
i for

sensor μi can cover the line interval. Combining with the fact that R∗ ≥ m
2 , we have

R
′
=

∑
i r

′
i ≤ R∗ + n · m

Kn ≤ R∗ + n · mε
2n ≤ (1 + ε)R∗, which proves the theorem.

5.2 Based on Line Interval Division

In this section, before we present another FPTAS for GMCLC, an improved FPTAS
will be designed for the MCLC with sensors located on the line interval.

Choosing a small constant ε > 0, we divide the line interval with length m into 2n
ε

sub-intervals (to make the discussion easier, we assume 2n
ε is an integer), and each sub-

interval Ij = [ (j−1)εm
2n , jεm

2n ). We set L = {0, εm2n , 2εm
2n , ..., kεm2n , ...,m, εm2n +m, 2εm2n +

m, . . . , 2m} and L(k) = kεm
2n . For any value V in interval Ij = [ (j−1)εm

2n , jεm2n ), we de-

fine ‖V ‖ = (j−1)εm
2n . Then, we can use dynamic programming to find an exact optimal

solution in pseudo-polynomial time.
To get the optimal solution, we need to create a table with n rows and (4nε + 1)

columns. Because the rightmost point covered by the last sensor in the optimal solution
may not be the rightmost point of the interval, we calculate the Cost function of the
assignment that can cover the range up to [0, 2m].

Let function Cost(i, L(k)) denote the cost of the optimal assignment that covers
exactly the range [0, L(k)] using the first i sensors only.

In order to find the optimal assignment that covers the range [0, L(k)] with only the
first i sensors, it is equivalent to finding the optimal assignment that at least covers the
range [0, L(k)] with only the i sensors because the rightmost point may not be L(k)
necessarily. In order to cover the range, we can either use sensor μi or do not use sensor
μi. In the first case, since we select μi, we have two options: using μi only or using
μi and some sensors in the first i − 1 sensors. If we use μi only, then Cost will be
max(xi, L(k)−xi). If we use μi and some sensors in the first i−1 sensors, we need to
use μi to cover L(k) because μi is the rightmost sensor. Then the range covered by μi is
[xi−(L(k)−xi), xi+(L(k)−xi)]. And the remaining range [0, xi−(L(k)−xi)] must be
covered by the first i − 1 sensors. The Cost in this case can be divided into two parts,
which is the minimum cost assignment that at least covers the range [0, 2xi − L(k)]
and the cost that μi needs to cover L(k). Each entry in Cost(i, L(k)) table records
the minimum cost that covers the range [0, L(k)]. In order to get minimum cost that
covers at least range [0, L(k)], we can select mink≤j≤4n/ε Cost(i−1, L(j)) because the
possible rightmost point cannot be greater than 2m and must be L(k) at least. Therefore,
the total cost is min 2n‖2xi−L(k)‖

εm ≤j≤4n/ε
Cost(i − 1, L(j)) + (L(k) − xi) + (2xi −

L(k))−‖2xi −L(k)‖. We add (2xi −L(k))−‖2xi −L(k)‖ to guarantee the interval
[‖2xi−L(k)‖, (2xi−L(k))]can be covered. In the second case where we do not select
μi, the cost is just mink≤j≤4n/ε Cost(i − 1, L(j)).
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for k = 1 to 4n
ε

do
if L(k) = 0 then

Cost(1, L(k)) = 0
else if 0 < L(k) ≤ 2x1 then

Cost(1, L(k)) = x1

else
Cost(1, L(k)) = L(k)− x1

end if
end for
for i = 2 to n do

for k = 1 to 4n
ε

do
if L(k) < xi then

Cost(i, L(k)) = mink≤j≤4n/εCost(i− 1, L(j))
else

Cost(i, L(k)) = min{mink≤j≤4n/εCost(i− 1, L(j)),max{xi, L(k)−
xi}, min 2n‖2xi−L(k)‖

εm
≤j≤4n/ε

Cost(i−1, L(j))+(L(k)−xi) + (2xi−L(k))−
‖2xi − L(k)‖)}

end if
end for

end for
return min2n/ε≤j≤4n/εCost(n,L(j))

Algorithm 2. Dynamic programming algorithm DPon_line for MCLC

Therefore we have the dynamic programming algorithm DPon_line as shown in Al-
gorithm 2.

The initial value for Cost(1, L(k)) is defined as follows.

Cost(1, L(k)) =

⎧
⎨

⎩

0, if L(k) ≤ 0
x1, if 0 < L(k) ≤ 2x1

L(k)− xi, if L(k) > 2x1

(1)

The cost of the optimal solution is Cost(n,m). The running time of Algorithm

DPon_line is O(n · (4nε )
2
) = O(n

3

ε2 ).
In each iteration, the solution will be increased by at most (2xi−L(k))−‖2xi−L(k)‖,

which is less than εm
2n as illustrated in Figure 2.

Theorem 3. Let R∗ =
∑

i ri
∗ be the sum of radii in an optimal solution. Then, for any

constant number ε > 0, Algorithm DPon_line is an FPTAS for the MCLC problem with
running time O(n

3

ε2 ) such that R =
∑

i ri ≤ (1 + ε)R∗.

Proof. Suppose that R = (r1, r2, ..., rn) and R∗ = (r∗1 , r
∗
2 , ..., r

∗
n) are the solutions

produced by Algorithm DPon_line and the optimal solution of the original instance,
respectively. Let R =

∑
i ri and R∗ =

∑
i ri

∗. The difference between these two
values are at most n · εm

2n = εm
2 ≤ εR∗.

Hence, we have R ≤ R∗ + n · εm
2n = R∗ + εm

2 ≤ (1 + ε)R∗.
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We can extend AlgorithmDPon_line to AlgorithmDPoff_line for the GMCLC prob-
lem easily with minor changes. The modified version of the recurrence structure is
shown below.

If L(k) > xi,

Cost(i, L(k))=min{min2n/ε≤j≤4n/ε Cost(i−1, L(j)),
√
max{xi, L(k)−xi}2+hi

2,

min 2n‖2xi−L(k)‖
εm ≤j≤4n/ε

Cost(i− 1, L(j)) +
√
(L(k)− xi)2 + hi

2 + (2xi −L(k))−
‖2xi − L(k)‖}.
Otherwise,
Cost(i, L(k)) = mink≤j≤4n/ε Cost(i − 1, L(j))

The initial value for Cost(1, L(k)) is defined as follows.

Cost(1, L(k)) =

⎧
⎪⎨

⎪⎩

0, if L(k) ≤ 0√
h1

2 + x1
2, if 0 < L(k) ≤ 2x1√

h1
2 + (L(k)− x1)

2
, if L(k) > 2x1

(2)

xi2xi − L(k) L(k)

0 m

L(j − 1) L(j)

Fig. 2. For each iteration, the sensor μi locates in the interval [L(j−1), L(j)), the radius
of sensor μi will be enlarged by at most εm

2n to meet the rightmost point L(j − 1). This
will cause at most εm

2n loss for each sensor.

Theorem 4. Let R∗ =
∑

i ri
∗ be the sum of radii in an optimal solution. Then, for any

small constant ε > 0, Algorithm DPoff_line is an FPTAS for the GMCLC with running

time O(n
3

ε2 ) such that R =
∑

i ri ≤ (1 + ε)R∗.

6 Experiments

In this section, we evaluate the performance of our constant-approximation algorithm
with randomly generated sensor positions. Because there is no efficient way to get exact
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optimal solutions since the special case when all the sensors are on the line is proved to
be NP-hard in [23], we compare our constant-approximation algorithm with the results
given by DPoff_line. We use Rε to denote the cost of DPoff_line with approxima-
tion ratio 1 + ε and use R to denote the cost of range assignment obtained by our
4
3 -approximation algorithm. Given each set of sensors with randomly generated posi-
tions, we calculate R, Rε and R

Rε . We run several experiments for different ε values
and maximum sensor height. Let m be the length of the line interval to be covered.
Notice that if the average height of sensors is large, the optimal assignment will tend
to select a small number of sensors since choosing any sensor will waste quite some
cost to cover the vertical distance first. This will make the optimal solution close to our
approximation solution. In order to evaluate the performance of our algorithm, we force
the maximum height to be small. The computer used to run the experiments has a 2.20
GHz Core i7 processor and 8 GB of memory. The operating system used is Windows 8.

6.1 ε = 0.1

In this experiment, we set ε to be 0.1, which means we compare our algorithm with a
1.1-approximation algorithm. The number of sensors varies from 1 to 20. We do not
select a larger sensor number due to the large time complexity of DPoff_line. For every
fixed number of sensors, we generate 1000 cases and the positions of sensors are picked
randomly in each case. The average ratio is recorded in Figure 3 and Figure 4, where
the x-axis represents the number of sensors and the y-axis represents the mean value
of R

R0.1
. Figure 3 shows the result when we force the maximum sensor height to be at

most 1
2m. Figure 4 shows the result when we force the maximum sensor height to be

at most 1
10m. We can find that our 4

3 -approximation algorithm can achieve very simi-
lar performance as DPoff_line even though we set the maximum sensor height to be
small. However, if we take the time complexity into consideration, our approximation
algorithm is much better.

6.2 ε = 0.05

In this experiment, we set ε to be 0.05, which means we compare our algorithm with
a 1.05-approximation algorithm. The number of sensors varies from 1 to 10. We do
not select a larger sensor number due to the large time complexity of DPoff_line.
We choose less number of sensors in this case compared to ε = 0.1 case because
DPoff_line needs more time in the case of ε = 0.05. For every fixed number of sen-
sors, we generate 1000 cases and the positions of sensors are picked randomly in each
case. The average ratio is recorded in Figure 5 and Figure 6, where the x-axis represents
the number of sensors and the y-axis represents the mean value of R

R0.05
. Figure 5 shows

the result when we force the maximum sensor height to be at most 1
2m. Figure 6 shows

the result when we force the maximum sensor height to be at most 1
10m. Even though

we set ε to be 0.05, our approximation algorithm can still achieve good performance.
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ε = 0.1, maximum height≤ 1
2m

The number of sensors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mean(R/R0.1)

1.0

1.1

1.2

1.3

4
3

1 1 0.999
0.999

0.999
0.999

1 1.001
1.001

1 1.001
1.001

1.002
1.001

1.001
1.001

1.001
1.002

1.001
1.002

Approximation Algorithm

Upper bound

Lower bound

Fig. 3. Comparing our 4
3 -approximation algorithm with DPoff_line when ε = 0.1

ε = 0.1, maximum height≤ 1
10m

The number of sensors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mean(R/R0.1)

1.0

1.1

1.2

1.3

4
3

1 1 1 1 1.001
1.003

1.002
1.002

1.002
1.002

1.002
1.002

1.002
1.002

1.001
1.002

1.001
1.001

1.002
1.001

Approximation Algorithm

Upper bound

Lower bound

Fig. 4. Comparing our 4
3 -approximation algorithm with DPoff_line when ε = 0.1
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ε = 0.05, maximum height≤ 1
2m

The number of sensors

0 1 2 3 4 5 6 7 8 9 10

Mean(R/R0.05)

1.0

1.1

1.2

1.3

4
3

1 1 0.999
0.999

0.999
0.999

1 1 1.001
1.001

Approximation Algorithm

Upper bound

Lower bound

Fig. 5. Comparing our 4
3 -approximation

algorithm with DPoff_line when ε =
0.05

ε = 0.05, maximum height≤ 1
10m

The number of sensors

0 1 2 3 4 5 6 7 8 9 10

Mean(R/R0.05)

1.0

1.1

1.2

1.3

4
3

1 1 1.001
1.002

1.003
1.003

1.004
1.003

1.004
1.003

Approximation Algorithm

Upper bound

Lower bound

Fig. 6. Comparing our 4
3 -approximation

algorithm with DPoff_line when ε =
0.05

7 Conclusion

In this paper, we study the barrier coverage problem with line-based offsets deploy-
ments by a set of wireless sensors with adjustable coverage ranges. The objective is to
find a range assignment with the minimum cost. An approximation algorithm with ap-
proximation ratio 4

3 is presented for GMCLC under a linear cost function on the sensor
range. Furthermore, we also designed two FPTASes to solve the optimization problem.
Possible future directions are designing and improving the approximation algorithms
for the problem with an arbitrary cost function on the sensor radius.
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