
Chapter 7

An Introduction
to Manifolds

This chapter contains a brief introduction to the classical theory of
differential geometry. The fundamental notions presented here deal
with differentiable manifolds, tangent space, vector fields, differen-
tiable maps, 1-forms, tensors, linear connections, Riemannian man-
ifolds, and the Levi–Civita connection. The material of this chapter
forms the basis for next chapters.

7.1 The Concept of Manifold

Amanifold is a multidimensional geometric object that can be consid-
ered as a space which is locally similar to the Euclidean space. Since
differentiation is a locally defined property, then the differentiation
can be defined on a manifold in a similar way as it is defined on the
Euclidean space. A point on a manifold can be described by several
sets of parameters, which are regarded as local coordinate systems.

The advantage of working on a manifold is that one can con-
sider and study those geometric concepts (functions, invariants, vec-
tor fields, tensor fields, connections, etc.) that make sense globally
and can also be described quantitatively in local coordinate systems.
This property initially made sense in Physics and Relativity Theory,
where each coordinate system corresponds to a system of reference.
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192 Chapter 7. An Introduction to Manifolds

Therefore, the main objects of study in that case are velocity, accel-
eration, force, matter fields, momenta, etc., i.e., objects that remain
invariant under a change of the system of reference. This means that
while these objects make sense globally, they can be described quan-
titatively in terms of local coordinates.

The earth’s surface is one of the most suggestive examples of
manifolds. One is aware of this manifold only locally, where it resem-
bles a piece of plane. A local observer situated on earth’s surface can
measure coordinates at any point by choosing an origin and a unit
of measure, the result of this work being a local map of the region.
Even if drawn at different scales, any two maps of overlapping regions
are correlated, in the sense that one can “understand” their relation-
ship. If these maps constitute an entire cartography1 of the planet,
then they form an atlas. Nowadays people are more familiar with the
googlemaps system. The maps can be transformed by translation,
contraction, or dilation, which move from one map to another, the
transformation being smooth and assuring the correlation between
maps. The local knowledge of the earth surface contained in an atlas
forms the notion of manifold.

Consider now the system of artificial satellites rotating around the
earth. Each satellite can cover a certain region of the earth surface.
All satellites are supposed to cover the entire earth surface, with some
overlap. The information retrieved from the satellites forms an atlas
and the manifold notion emerges again.

Suppose now that a certain country is monitored by a grid of
cellular phone towers, each tower servicing a specific region. This is an
example that can be considered as a manifold again, each tower region
being considered as a local chart. In general, the manifold notion
emerges when we can describe only locally an entire global object.
The word “local” in this case describes a region one can encompass
with the eye, or an area which can be covered by the local cellular
phone tower.“Global” describes either an entire country or continent
or even the whole earth surface.

There are two distinct points of view when studying a manifold.
One is the intrinsic point of view of a local observer, situated on
the manifold, whose knowledge is bound to a local chart, or system
of reference. For instance, digging a ditch or measuring the distance
between a house and a nearby tree is an intrinsic activity. The other

1Cartography is the study and practice of making maps.
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point of view is called extrinsic. The extrinsic knowledge is acquired
by an observer while elevating himself above the manifold and looking
at it from outside. The information about the earth surface obtained
by a monkey climbing an eucalypt tree that grows on the earth sur-
face, is extrinsic, while the point of view of a microorganism living
on the ground is intrinsic. The notions of intrinsic and extrinsic can
be described geometrically by considering either only the metric of
the manifold, or taking into account also the normal vector to the
manifold. There are some geometrical notions that can be described
exclusively in an extrinsic way. Since the round shape of the earth was
recently fully mapped by satellites, understanding the shape of the
earth is an extrinsic feature. However, this should not be mistaken
with curvature, which can be described intrinsically in terms of the
local metric (Gauss’ Egregium Theorem).

A useful tool used in describing some geometric objects on a man-
ifold is the concept of tensor. Many physical quantities, such as force,
velocity, acceleration, work, etc., can be described successfully as ten-
sors. Their main feature of a tensor is that it can be described quan-
titatively in a local chart, and its coordinates transform by a matrix
multiplication when changing charts. Therefore, if a tensor vanishes
in one chart, then it vanishes in all charts. Since it turns out that the
difference of two tensors is also a tensor, the last two features allow
for a very powerful method of proving relations between tensors by
checking them in a suitable local chart. The work in local coordi-
nates used to prove global relations has been proved extremely useful
and has been developed into the so-called tensorial formalism. For
instance, if one needs to show that the tensors T and P are equal,
it suffices to only show that their components are equal in a chart,
Tij = Pij .

Many geometrical objects studied in differential geometry are ten-
sors; however, they are called by distinct names, such as metric, vector
field, 1-form, volume form, curvature, etc. All these are objects in-
dependent of the system of coordinates and can be defined globally
but may be written locally in a local system of coordinates using lo-
cal components. For example, a vector field is an object that may be

written in local coordinates as V =
∑
V i ∂

∂xi , where
{

∂
∂xi

}

i=1,...,n
is

a basis of the local system of coordinates chosen. This means that
its components measured in this system of reference are given by
V 1, . . . , V n. Similarly, a 1-form is an object that can be written in
local coordinates as ω =

∑
ωidx

i, where {dxi}i=1,...,n is a basis of
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the 1-forms of the local system of coordinates chosen. A metric is a
tensor written as g =

∑
gijdx

i ⊗ dxj , where ⊗ is an operation called
tensorial product.

7.2 Manifold Definition

This section presents the precise definition of manifolds. All manifolds
considered in this book are real, i.e., the local model is the Euclidean
space R

n.
The construction of a manifold starts with a metric space (the

underlying structure of the manifold), i.e., a space on which is defined
a distance function.

Definition 7.2.1 Let M be a set of points. A distance function is a
mapping d :M ×M → [0,∞) with the following properties:

(i) non-degenerate: d(x, y) = 0 if and only if x = y;

(ii) symmetric: d(x, y) = d(y, x), for all x, y ∈M ;

(iii) satisfies the triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for
all x, y, z ∈M .

The pair (M,d) is called a metric space.

Example 7.2.2 Let M = R
n and consider x, y ∈ M , with x =

(x1, . . . , xn), y = (y1, . . . , yn). Then the Euclidean distance is given

by dE(x, y) =
[ n∑

k=1

(xk − yk)2
]1/2

. The metric space (M,dE) is called

the Euclidean space.

Example 7.2.3 The mapping dT : R
n × R

n → [0,∞) given by

dT (x, y) =
n∑

k=1

|xk − yk| is called the taxi-cab distance. It bears its

name after the distance followed by a cab in a city with perpendicular
and equidistant streets such as New York city.

Definition 7.2.4 Let (M,d) be a metric space. Consider x ∈M and
r > 0. The ball of radius r and centered at x is the set Br(x) = {y ∈
M ; d(x, y) < r}. A subset U of M is called open if for any x ∈ U ,
there is a r > 0 such that Br(x) ⊂ U .
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The equivalence of the definitions of functions continuity in the
framework of metric spaces is stated as in the following.

Proposition 7.2.5 Let f : (M,dM ) → (N, dN ) be a mapping be-
tween two metric spaces. The following are equivalent:

(a) For any open set V in N , the pullback f−1(V ) = {x ∈M ; f(x) ∈
V } is an open set in M .

(b) For any convergent sequence xn → x in M , (i.e., dM (xn, x) →
0, n → ∞) we have f(xn) → f(x) in N , (i.e., dN

(
f(xn), f(x)

)

→ 0, n→ ∞).

A function f : M → N is called continuous if any of the foregoing
parts (a) or (b) holds true. If f is invertible and both f and f−1 are
continuous, then f is called a homeomorphism between M and N .

Definition 7.2.6 Let U ⊂M be an open set. Then the pair (U, φ) is
called a chart (coordinate system) on M , if φ : U → φ(U) ⊂ R

n is
a homeomorphism of the open set U in M onto an open set φ(U) of
R
n. The coordinate functions on U are defined as xj : U → R, and

φ(p) = (x1(p), . . . , xn(p)), namely xj = uj ◦ φ, where uj : Rn → R,
uj(a1, . . . , an) = aj is the jth projection.

The integer n is the dimension of the coordinate system. Roughly
speaking, the dimension is the number of coordinates needed to de-
scribe the position of a point in M .

Definition 7.2.7 An atlas A of dimension n associated with the
metric space M is a collection of charts {(Uα, φα)}α such that

1) Uα ⊂M , ∀α,
⋃

α Uα =M (i.e., Uα covers M),

2) if Uα ∩ Uβ �= Ø, the restriction to φα(Uα ∩ Uβ) of the map

Fαβ = φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is differentiable from R
n to R

n (i.e., the systems of coordinates
overlap smoothly), see Fig. 7.1.

There might be several atlases on a given metric spaceM . Two atlases
A and A′ are called compatible if their union is an atlas on M . The
set of compatible atlases with a given atlas A can be partially ordered
by inclusion. Its maximal element is called the complete atlas A. This
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Figure 7.1: Correlated charts on a differential manifold

atlas contains all the charts that overlap smoothly with the charts of
the given atlas A. The dimension n of the space R

n, which models
the manifold structure, is called the dimension of the atlas A.

Definition 7.2.8 A differentiable manifold M is a metric space en-
dowed with a complete atlas. The dimension n of the atlas is called
the dimension of the manifold.

We owe a remark about the completeness of an atlas. The com-
pleteness feature is required to assure for maximum chartographic
information, in the sense that any considered chart is already filed in
the atlas; equivalently, no new charts can be considered besides the
ones that are already part of the atlas.

However, in practice it suffices to supply an arbitrary atlas (usu-
ally not the maximal one), the maximal atlas resulting from the com-
bination of all atlases.

7.3 Examples of Manifolds

In this section we supply a few examples of useful manifolds.
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1) The simplest differentiable manifold is the Euclidean space it-
self, Rn. In this case the atlas has only one chart, the identity
map, Id : Rn → R

n, Id(x) = x.

2) Any open set U of Rn is a differential manifold, with only one
chart, (U, Id).

3) Any non-intersecting curve c : (a, b) → R
n, with ċ(t) �= 0, is a

one-dimensional manifold. In this case M = c
(
(a, b)

)
and the

atlas consists of only one chart (U, φ), with U = c
(
(a, b)

)
, and

φ : U → (a, b), φ = c−1
|U .

4) The sphere S2 = {x = (x1, x2, x3) ∈ R
3 ; (x1)2+(x2)2+(x3)2 =

1} is a differentiable manifold of dimension 2. We shall supply
in the following two atlases. The first atlas contains six charts,
being given by A = {Ui, φi}i=1,3 ∪ {Vi, ψi}i=1,3, where

U1 = {x ; x1 > 0} , φ1 : U1 → R
2 , φ1(x) = (x2, x3),

V1 = {x ; x1 < 0}, ψ1 : V1 → R
2, ψ1(x) = (x2, x3),

U2 = {x ; x2 > 0} , φ2 : U2 → R
2 , φ2(x) = (x1, x3),

V2 = {x ; x2 < 0}, ψ2 : V2 → R
2, ψ2(x) = (x1, x3),

U3 = {x ; x3 > 0} , φ3 : U3 → R
2 , φ3(x) = (x1, x2),

V3 = {x ; x3 < 0}, ψ3 : V3 → R
2, ψ3(x) = (x1, x2).

The second atlas is A′ = {(U, φN ), (V, φS)}, where U = S
2\

{(0, 0, 1)}, V = S
2\{(0, 0,−1)}, and the stereographic projec-

tions φN : U → R
2, φS : V → R

2, see Fig. 7.2, are given by

φN (x1, x2, x3) =
( 2x1

1− x3
,

2x2

1− x3

)
,

φS(x
1, x2, x3) =

( 2x1

1 + x3
,

2x2

1 + x3

)
.

It can be shown as an exercise that the atlases A and A′ are
compatible, so they can be extended to the same complete atlas,
i.e., the differential manifold structures induced by A and A′

are the same.
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Figure 7.2: The stereographic projection from the north pole

5) Let M = GL(n,R) be the set al all nonsingular n×n matrices.
M is a metric space with the metric

d(A,B) =
[ n∑

i,j

(aij − bij)
2
]1/2

, ∀A,B ∈M,

where A = (aij) and B = (bij). Then M becomes a differ-
ential manifold with an atlas consisting of one chart, namely
φ :M → R

n2
,

φ(A) = (a11, a12, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann).

We note that φ(M) is open in R
n2
. This follows from considering

the continuous mapping ρ : Rn2 → R given by ρ(a11, . . . , ann) =
detA. Write φ(M) = ρ−1(R\{0}) for the pre-image of ρ for all
nonzero real numbers. Using Proposition 7.2.5, part (a), implies
φ(M) open in R

n2
.

6) If M , N are differentiable manifolds of dimensions m and n,
respectively, then M × N can be endowed with a structure of
differentiable manifold, called the product manifold. If AM and
AN are atlases on M and N , respectively, then an atlas AM×N

on M ×N can be constructed by considering the charts
(
U ×

V,Ψ
)
, with Ψ : U × V → R

n+m, Ψ(x, y) =
(
φ(x), ψ(y)

)
, where

(U, φ) ∈ AM and (V, ψ) ∈ AN .
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Figure 7.3: By the Implicit Functions Theorem xi = g(x̂) for any
x ∈W

The torus T
2 = S

1 × S
1 and the cylinder S

1 × (0, 1) are two
usual examples of product manifolds.

7) Consider the set M = f−1(0) = {x ∈ R
n+1; f(x) = 0}, where

f : Rn+1 → R is a C∞-differentiable function (i.e., a function
for which the partial derivatives exist for any order), such that

(grad f)(x) =
( ∂f

∂x1
(x), . . . ,

∂f

∂xn+1
(x)

)
�= 0, ∀x ∈M.

Then M is a differentiable manifold of dimension n, called the
hypersurface defined by f .

The charts in this manifold are constructed as in the following.
Consider a point x0 ∈ M . Since (grad f)(x0) �= 0, there is an

i ∈ {1, . . . , n + 1} such that
∂f

∂xi
(x0) �= 0. By the Implicit Function

Theorem, there is an open set V around x0 such that the equation
f(x1, . . . , xn+1) = 0 can be solved uniquely for xi as xi = g(x̂), where
x̂ = (x1, . . . , xi−1, xi+1, . . . , xn+1) and g : V̂ → R is a differentiable
function, see Fig. 7.3. Let U = V ∩M , and consider φ : I → R

n given
by φ(x) = x̂. Then (U, φ) is a chart about the point x0. The set of
all charts of this type produces an atlas on M . The compatibility
between these charts is left as an exercise to the reader.

This is an effective and practical way of constructing differentiable
manifolds. For instance, if consider f(x1, . . . , xn+1) =

∑n
k=1(x

k)2−1,
then Sn = f−1(0) is the n-dimensional sphere of radius 1.
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Figure 7.4: The cone is not a differentiable manifold

It is worth noting that the regularity condition (grad f)(x) �=
0, for all x ∈ M , in general cannot be waived. For instance, if
f(x1, x2, x3) = (x1)2 + (x2)2 − (x3)2, then C = f−1(0) is a cone in
R
3. We have that (grad f)(x) = (2x1, 2x2,−2x3) vanishes for x = 0.

As a consequence, the cone C = {(x1)2 + (x2)2 = (x3)2} is not nec-
essarily differentiable manifold. We investigate this by considering a
chart (U, φ) around the origin (0, 0, 0). Then V = U\(0, 0, 0) has two
connected components, while φ(V ) = φ(U)\φ(0, 0, 0) has only one
component, fact that leads to a contradiction, see Fig. 7.4. Hence the
cone C is not a differentiable manifold.

7.4 Tangent Space

Before defining the concept of tangent vector, we need to introduce
the notion of differentiable function on a manifold. We assume well-
known from Calculus the concept of a differentiable function on R

n.
Since the differentiability has a local character, in the case of differ-
entiable manifolds the function is required to be differentiable in a
local chart.

Definition 7.4.1 A function f : M → R is said to be differentiable
if for any chart (U, φ) on M the function f ◦ φ−1 : φ(U) → R is
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differentiable. The set of all differentiable functions on the manifold
M will be denoted by F(M).

The notion of “differentiable” is not made too precise on the degree
of smoothness. It can mean C∞ or just Ck-differentiable, for some
k ≥ 1, which depends on the nature of the problem.

Since a vector on R
n at a point can serve as a directional derivative

of functions in F(Rn), a similar idea can be used when defining the
tangent vector on a manifold.

Definition 7.4.2 A tangent vector of M at a point p ∈ M is a
function Xp : F(M) → R such that

i) Xp is R-linear

Xp(af + bg) = aXp(f) + bXp(g), ∀a, b ∈ R, ∀f, g ∈ F(M);

ii) the Leibniz rule is satisfied

Xp(fg) = Xp(f)g(p) + f(p)Xp(g), ∀f, g ∈ F(M). (7.4.1)

Definition 7.4.3 Consider a differentiable curve γ : (−ε, ε) → M
on the manifold M , with γ(0) = p. The tangent vector

Xp(f) =
d(f ◦ γ)
dt

(0), ∀f ∈ F(M) (7.4.2)

is called the tangent vector to γ(−ε, ε) at p = γ(0) and is denoted
by γ̇(0).

We note that the derivative in formula (7.4.2) is the usual derivative
of the real-valued function f ◦ γ : (−ε, ε) → R. Also, Xp satisfies
the conditions from the definition of the tangent vector. Condition i)
follows from the linearity of the derivative d/dt, while condition ii)
is an application of the product rule. Sometimes, the vector γ̇(0) is
called the velocity vector of γ at p.

Now consider the particular case of the ith coordinate curve γ.
This means there is a chart (U, φ) around p = γ(0) in which φ

(
γ(t)

)
=

(x10, . . . , x
i, . . . , xn0 ), where φ(p) = (x10, . . . , x

i
0, . . . , x

n
0 ). Then the tan-

gent vector to γ

γ̇(0) =
∂

∂xi

∣
∣
∣
p



202 Chapter 7. An Introduction to Manifolds

Figure 7.5: The geometric interpretation of the coordinate vector field
∂

∂xi |p

is called a coordinate tangent vector at p, see Fig. 7.5. This can be
defined equivalently as a derivation

∂

∂xi

∣
∣
∣
p
(f) =

∂(f ◦ φ−1)

∂ui
(φ(p)), ∀f ∈ F(M), (7.4.3)

where φ = (x1, . . . , xn) is a system of coordinates around p and
u1, . . . , un are the coordinate functions on R

n.

Definition 7.4.4 The set of all tangent vectors at p to M is called
the tangent space of M at p, and is denoted by TpM .

TpM is a vectorial space of dimension n with a basis given by the

coordinate tangent vectors
{ ∂

∂x1

∣
∣
∣
p
, . . . ,

∂

∂xn

∣
∣
∣
p

}
. For a detailed proof

of this fact the reader can consult, for instance, Millman and Parker
[58]. The tangent space TpM can be also visualized geometrically as
the set of velocities at p along all curves passing through this point.

Using the aforementioned basis any vector V ∈ TpM can be written
locally as V =

∑
i V

i ∂
∂xi

∣
∣
p
, where V i = V (xi) ∈ R are called the com-

ponents of V with respect to the system of coordinates (x1, . . . , xn).
It is worth noting that if the vector V is written with respect to a

new system of coordinates (x̄1, . . . , x̄n) as V =
∑

i V̄
i ∂
∂x̄i

∣
∣
p
, then the

components in the two coordinates systems are related by

V̄ k =
n∑

i=1

∂x̄k

∂xi
V i. (7.4.4)
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It is also worthy to note that the change of coordinates matrix
(∂x̄k

∂xi

)

i,k
is nonsingular, fact implied by the nonvanishing Jacobian2

of a diffeomorphism, as stated by the Inverse Function Theorem.
The tangent vector Xp acts on differentiable functions f on M as

Xpf =
n∑

i=1

Xi(p)
∂f

∂xi |p
.

Definition 7.4.5 A vector field X on M is a smooth map X that as-
signs to each point p ∈M a vector Xp in TpM . For any function f ∈
F(M) we define the real-valued function (Xf)p = Xpf . By “smooth”
we mean the following: for each f ∈ F(M) then Xf ∈ F(M).

Vector fields can be visualized as fields of forces on velocities for
ocean currents, air currents, or convection currents, or river flows.
They are important geometric objects used to model the dynamics
on a manifold.
The set of all vector fields on M will be denoted by X (M). In a local

system of coordinates a vector field is given by X =
∑

Xi ∂

∂xi
, where

the components Xi ∈ F(M) because they are given by Xi = X(xi),
1 ≤ i ≤ n, where xi is the ith coordinate function of the chart.

We show next that to each vector field we can associate a family of
non-intersecting curves. Given a vector field X, consider the ordinary
differential equations system

dck

dt
(t) = Xk

c(t), 1 ≤ k ≤ n. (7.4.5)

Standard theorems of existence and uniqueness of ODEs imply that
the system (7.4.5) can be solved locally around any point x0 = c(0).

Theorem 7.4.6 Given x0 ∈ M and a nonzero vector field X on an
open set U ⊂M , then there is an ε > 0 such that the system (7.4.5)
has a unique solution c : [0, ε) → U satisfying c(0) = x0.

The solution t → c(t) is called the integral curve associated with
the vector field X through the point x0. The integral curves play

2If φ(x) = (φ1(x), . . . , φn(x)) is a function of n variables x1, . . . , xn, the Jaco-

bian is the determinant of the matrix
(∂φj

∂xk

)
jk
.
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an important role in describing the evolution of a dynamical system
modeled on the manifold. An effective description of the evolution
of a dynamical system is usually done using conservation laws, i.e.,
relations whose value remains invariant along the integral curves of
a vector field.

Definition 7.4.7 A function f ∈ F(M) is called a first integral of
motion for the vector field X if it remains constant along the integral
curves of X, i.e,

f
(
c(t)

)
= constant, 0 ≤ t ≤ ε,

where c(t) verifies (7.4.5).

Proposition 7.4.8 Let f ∈ F(M), with M differentiable manifold.
Then f is a first integral of motion for the vector field X if and only
if Xc(t)(f) = 0.

Proof: Consider a local system of coordinates (x1, . . . , xn) in which
the vector field writes as X =

∑
kX

k ∂
∂xk . Then

Xc(t)(f) =
∑

k

Xk
c(t)

∂f

∂xk
=

∑

k

dck

dt
(t)

∂f

∂xk

=
d

dt
f
(
c(t)

)
.

Then Xc(t)(f) = 0 if and only if d
dtf

(
c(t)

)
= 0, which is equivalent to

f
(
c(t)

)
= constant, 0 ≤ t ≤ ε, with ε small enough such that c((0, ε))

is included in the initially considered chart.

7.5 Lie Bracket

This section deals with an important operation on vector fields, called
the Lie bracket, which is given by [ , ] : X (M)×X (M) → X (M),

[X,Y ]pf = Xp(Y f)− Yp(Xf), ∀f ∈ F(M), p ∈M. (7.5.6)

The Lie bracket will be used in later sections of the chapter to
define the concepts of torsion and curvature of a linear connection,
as well as the differential of a 1-form.

The vector fields X and Y commute if [X,Y ] = 0. The Lie bracket
[X,Y ], which at first sight looks to be a differential operator of second
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degree, turns out to be a vector field (a first order differential opera-
tor), which measures the noncommutativity between vector fields. In
local coordinates, the Lie bracket takes the form (see Problem 7.3.)

[X,Y ] =
n∑

i,j=1

(∂Y i

∂xj
Xj − ∂Xi

∂xj
Y j

) ∂

∂xi
. (7.5.7)

The bracket satisfies the following properties

1) R-bilinearity:

[aX + bY, Z] = a[X,Z] + b[Y, Z],

[Z, aX + bY ] = a[Z,X] + b[Z, Y ], ∀a, b ∈ R;

2) Skew-symmetry:

[X,Y ] = −[Y,X];

3) The cyclic sum is zero (Jacobi identity):

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0;

4) The Lie bracket is not F(M)-linear, because [fX, gY ] �=
fg[X,Y ]. We have instead

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X , ∀f, g ∈ F(M).

Example 7.5.1 Consider on R
2 the vector fields X = ∂x1, Y =

x1∂x2, called the Grushin vector fields. Then [X,Y ] = ∂x2 �= 0, and
hence X and Y do not commute.

7.6 Differentiable Maps

The concept of differentiability on a manifold is defined locally with
respect to charts.

Definition 7.6.1 A map F :M → N between two manifolds M and
N is differentiable about p ∈ M if for any charts (U, φ) on M about
p and (V, ψ) ∈ N about F (p), the map ψ ◦ F ◦ φ−1 is differentiable
from φ(U) ⊂ R

m to ψ(V ) ⊂ R
n, see Fig. 7.6.
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Figure 7.6: The diagram of a differentiable function

Definition 7.6.2 Let F :M → N be a differentiable map. For every
p ∈M , the differential map dF at p is defined by

dFp : TpM → TF (p)N

(dFp)(v)(f) = v(f ◦ F ) , ∀v ∈ TpM , ∀f ∈ F(N). (7.6.8)

The picture can be seen in Fig. 7.7. A few important properties of the
differential of a map at a point, dFp, are given in the following:

1) dFp is an R-linear application between the tangent spaces TpM
and TF (p)N :

dFp(v + w) = dFp(v) + dFp(w), ∀v, w ∈ TpM ;

dFp(λv) = λdFp(v), ∀v ∈ TpM, ∀λ ∈ R.

2) Let
{

∂
∂xj

∣
∣p

}
and

{
∂

∂yj
∣
∣F (p)

}
be bases associated with the tan-

gent spaces TpM and TF (p)N . Consider the function

F=(F 1, . . . , Fn) and denote by Jkj =
∂Fk

∂xj the Jacobian matrix
of F with respect to the charts (x1, . . . xm) and (y1, . . . , yn) on
M and N , respectively. Then dFp can be represented locally by

dFp

( ∂

∂xj |p

)
=

n∑

k=1

Jkj(p)
∂

∂yk |F (p)

. (7.6.9)
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Figure 7.7: The differential of a map

3) Assume dimM = dimN = n. Then the following conditions
are equivalent:

(i) dFp : TpM → TF (p)N is an isomorphism of vectorial spaces;

(ii) F is a local diffeomorphism in a neighborhood of p;

(iii) There are two charts (x1, . . . , xn) and (y1, . . . , yn) on M
around p and on N around F (p), respectively, such that
the associated Jacobian is non-degenerate, i.e. det Jkj(p)
�= 0.

The foregoing assertion is usually called the Inverse Func-
tion Theorem on manifolds. For a proof the reader can
consult the comprehensive book of Spivak [77].

4) Let F : M → N be a differentiable map. Then the differential
dF commutes with the Lie bracket

dFp[v, w] = [dFp(v), dFp(w)], ∀v, w ∈ TpM.

7.7 1-Forms

The differential of a function f ∈ F(M) is defined at any point p by
(df)p : TpM → R,

(df)p(v) = v(f) ∀v ∈ TpM. (7.7.10)
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In local coordinates (x1, . . . , xn) this takes the form df =
∑

i
∂f
∂xidx

i,

where {dxi} is the dual basis of { ∂
∂xi } of TpM , i.e.

dxi
( ∂

∂xj

)
= δij ,

where δij denotes the Kronecker symbol. The space spanned by

{dx1, . . . , dxn} is called the cotangent space ofM at p, and is denoted
by T ∗

pM . The elements of T ∗
pM are called covectors. The differential

df is an example of 1-form.
In general, a one form ω on the manifold M is a mapping which

assigns to each point p ∈M an element ωp ∈ T ∗
pM . A 1-form can be

written in local coordinates as

ω =
n∑

i=1

ωi dx
i, (7.7.11)

where ωi = ω( ∂
∂xi ) is the ith coordinate of the form with respect to

the basis {dxi}. The set of all 1-forms on the manifold M will be
denoted by X ∗(M).

The interested reader can find more details about differential
forms in DoCarmo [36].

7.8 Tensors

Let TpM and T ∗
pM be the tangent and the cotangent spaces of M at

p. We adopt the following useful notations

(T ∗
pM)r = T ∗

pM × · · · × T ∗
pM

︸ ︷︷ ︸
r times

, (TpM)s = TpM × · · · × TpM
︸ ︷︷ ︸

s times

.

Definition 7.8.1 A tensor of type (r, s) at p ∈M is an F(M)-multi-
linear function T : (T ∗

pM)r × (TpM)s → R.
A tensor field T of type (r, s) is a differential map, which assigns to
each point p ∈M an (r, s)−tensor Tp on M at the point p.

Since {dxj1 ⊗ · · · ⊗ dxjr}j1<···<jr and { ∂
∂xi1

⊗ · · · ⊗ ∂
∂xis }i1<···<is

are bases in the vectorial spaces (T ∗
pM)r and (TpM)s, respectively,

the tensor field T can be written using local coordinates as (with
summation over repeated indices)

T = T i1i2...ir
j1j2...js

dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
, (7.8.12)
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where “⊗” stands for the usual tensorial product. This means that
T acts on r 1-forms and s vector fields as

T (ω1, . . . , ωr, X1, . . . , Xs)

= T i1i2...ir
j1j2...js

dxj1(X1)⊗ · · · ⊗ dxjs(Xs)⊗
∂

∂xi1
(ω1)⊗ . . .⊗ ∂

∂xir
(ωr)

= T i1...ir
j1...js

Xj1
1 . . . Xjs

s ω
1
i1 . . . ω

r
ir .

We say the tensor T is s covariant and r contravariant. It is worth
noting the following particular examples of tensors:

1. Any 1-form ω is a tensor of type (0, 1). For any vector field X

ω(X) = ωidx
i(X) = ωidx

i(Xj ∂

∂xj
) = ωiX

i,

with summation in the repeated index. In particular, the dif-
ferential of a function, df , is a (0, 1)-tensor.

2. Any vector field X is a (1, 0)-tensor on M , with

X(ω) = ω(X) = ωiX
i, ∀ω.

3. An s-differentiable form is a skew-symmetric tensor of type
(0, s). In particular, a 2-form is a 2-covariant tensor Ω whose
coordinates satisfy Ωij = −Ωji

4. A volume form on an n-dimensional manifold is an n-form, i.e.,
a skew-symmetric tensor of type (0, n).

In order to show that T is a tensor, in practice we check the
F(M)-linearity in each argument. For instance, if T is 2-covariant,
then we need to show that for any f1, f2 ∈ F(M) and vector fields
X1, X2, Y1, Y2 we have

T (f1X1, f2X2) = f1f2T (X1, X2)

T (X1 + Y1, X2) = T (X1, X2) + T (Y1, X2)

T (X1, X2 + Y2) = T (X1, X2) + T (X1, Y2).

In the case of a symmetric tensor, T (X,Y ) = T (Y,X), it suffices to
show the previous relations only in the first argument.

If we like to show that a tensor, or a tensorial expression vanishes,
then in the virtue of the previous properties it suffices to show that
it vanishes in just one system of coordinates.
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7.9 Riemannian Manifolds

A Riemannian manifold is a manifold on which one is able to measure
distances between points, angles between vectors, length of curves and
volumes. Roughly speaking, it is a manifold endowed with a metric
structure. The precise definitions are stated in the following.

Definition 7.9.1 A Riemannian metric g on a differentiable mani-
fold M is a symmetric, positive definite 2-covariant tensor field.
A Riemannian manifold is a differentiable manifold M endowed with
a Riemannian metric g.

A Riemannian manifold will be denoted from now on by the pair
(M, g). The Riemannian metric g can be considered as a positive def-
inite scalar product gp : TpM ×TpM → R that depends differentially
on the point p ∈M . In local coordinates we write

g = gij dx
idxj , (7.9.13)

with gij = gji = g(∂i, ∂j). The Riemannian metric g acts on a pair of
vector fields as g(X,Y ) = gijX

iY j , where we assume the summation
convention over the repeated indices.

The most obvious example of Riemannian manifold is the n-
dimensional Euclidean space En = (Rn, δij), which induces the scalar
product 〈X,Y 〉 =

∑
iX

iY i.

It can be proved that any differentiable manifold has a Rieman-
nian metric structure. The idea of this construction is that a Rieman-
nian manifold can be seen as a collection of local charts that resemble
the Euclidean space E

n. Using methods of global analysis, one can
unify this local metrics into a global defined metric tensor, see, for
instance, Auslander and MacKenzie [9].

A metric g induces a natural bijective correspondence between 1-
forms and vector fields on a Riemannian manifoldM . If X is a vector
field, then one may associate with it the 1-form ω such that

ω(Y ) = g(Y,X), ∀Y ∈ X (M). (7.9.14)

In local coordinates this becomes ωk = gjkX
j , where ω = ωidx

i and
X = Xj ∂

∂xj .
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7.10 Linear Connections

A linear connection allows differentiation of a function, a vector field,
or, in general, a tensor with respect to a given vector field. It can be
seen as an extension of the directional derivative from the Euclidean
case. The precise definition follows. Recall that X (M) denotes the set
of vector fields on M .

Definition 7.10.1 A linear connection ∇ on a differentiable man-
ifold M is a map ∇ : X (M) × X (M) → X (M) with the following
properties:

1) ∇XY is F(M)-linear in X;

2) ∇XY is R-linear in Y ;

3) it satisfies the Leibniz rule:

∇X(fY ) = (Xf)Y + f ∇XY, ∀f ∈ F(M).

For fixed vector fields X and Y , the object ∇XY is also a vector field
on M , which measures the vector rate change of Y in the direction
of X. In a local coordinates system (x1, . . . , xn) we can write

∇∂i∂j = Γk
ij∂k,

where Γk
ij are the coordinates of the connection with respect to the

local base {∂i}, where ∂i =
∂

∂xi
. If X = Xi∂i and Y = Y j∂j , then a

straightforward computation provides the formula

∇XY = (∇XY )k∂k,

where (∇XY )k = Xi
(
∂iY

k + Y jΓk
ij

)
, with summation over i and j.

An example of a linear connection on the Euclidean space R
n is

given by ∇XY = X(Y j)ej , where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth
basis vector on R

n and Y = (Y 1, . . . , Y n) = Y jej . The coordinates

of this connection are zero, Γ
k
ij = 0.

A connection can be also used to differentiate tensors. If T is an
r-covariant tensor field, we may differentiate it along a vector field X
with respect to the linear connection ∇ as

(∇XT )(Y1, . . . , Yr) = X T (Y1, . . . , Yr)−
n∑

i=1

T (Y1, . . . ,∇XYi, . . . , Yr).

(7.10.15)
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In particular, we have the following concept:

Definition 7.10.2 Let g be the Riemannian metric tensor. A linear
connection ∇ is called metric connection if g is parallel with respect
to ∇, i.e.,

∇Z g = 0, ∀Z ∈ X (M). (7.10.16)

This can be stated equivalently as

Z g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ), ∀X,Y, Z ∈ X (M).
(7.10.17)

Let X = ∂i, Y = Y j∂j and Z = Zk∂k. Choosing X =
∂

∂xi
, Y =

∂

∂xj
,

and Z =
∂

∂xk
, a straightforward computation transforms (7.10.17)

into

∂kgij = Γp
kigpj + Γr

kjgir. (7.10.18)

It is worth noting that given the metric coefficients gij , there are
n2(n+1)

2 linear equations in Γp
ki of type (7.10.18). The total number

of unknowns Γp
ki is n3, where n is the dimension of the manifold.

The excess ε(n) = n3 − n2(n+1)
2 = n2(n−1)

2 represents the number
of arbitrary functions the family of linear connections depends on.
For instance, on a curve there is only one linear connection, because
ε(1) = 0, but on a surface, the family of linear connections depends
on ε(2) = 2 arbitrary functions.

A linear connection is described by two other tensors, the torsion
and curvature, which are defined shortly.

Definition 7.10.3 Let ∇ be a linear connection. The torsion is de-
fined as

T : X (M)× X (M) → X (M)

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (7.10.19)

The torsion measures the noncommutativity of the derivation with
respect to two vector fields. The last term, [X,Y ], is necessary because
it confers tensorial properties to T (·, ·):

T (fX, hY ) = fhT (X,Y ), ∀X,Y, Z ∈ X (M), ∀f, h ∈ F(M)

T (X,Y + Z) = T (X,Y ) + T (X,Z).
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Since T (X,Y ) = −T (Y,X), then T is a 2-covariant skew-symmetric
tensor. Since in local coordinates we have

Tij = T (∂i, ∂j) = ∇∂i∂j −∇∂j∂i − [∂i, ∂j ]
︸ ︷︷ ︸

=0

=
(
Γk
ij − Γk

ji

)
∂k,

it follows that the torsion coordinates are given by T k
ij = Γk

ij − Γk
ji.

A connection ∇ is called torsion-free if T = 0. This can be described
equivalently as Γk

ij = Γk
ji, which is a symmetry relation for the con-

nection coefficients. This is the reason why these type of connections

are also called symmetric. There are exactly n2(n−1)
2 equations of type

T k
ij = T k

ji, which is exactly the excess ε(n). If these are considered as
constraints applied to the linear system of equations (7.10.18), it fol-
lows that there is only one solution to this system. This leads to a
unique linear connection, which is both symmetric and metric. We
shall get in more detail regarding this issue later, when discussing the
Levi–Civita connection.

Definition 7.10.4 The curvature of the linear connection ∇ is
given by

R : X (M)×X (M)×X (M) → X (M)

R(X,Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (7.10.20)

If we write the curvature as

R(X,Y, Z) =
(
[∇X ,∇Y ]−∇[X,Y ]

)
Z,

it follows that R is a measure of the noncommutativity of the con-
nections with respect to X and Y . It can be shown that R satisfies
the following properties

R(f1X, f2Y, f3Z) = f1f2f3R(X,Y, Z)

R(X1 +X2, Y, Z) = R(X1, Y, Z) +R(X2, Y, Z)

R(X,Y1 + Y2, Z) = R(X,Y1, Z) +R(X,Y2, Z)

R(X,Y, Z1 + Z2) = R(X,Y, Z1) +R(X,Y, Z2),

for all fi ∈ F(M) and Xi, Yj , Zk ∈ X (M), so that R becomes a 3-
covariant tensor field. The tensor R is skew-symmetric in the first
pair of arguments, i.e., R(X,Y, Z) = −R(Y,X,Z). Since the first
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pair is more special, the curvature tensor is sometimes denoted by
R(X,Y )Z. In a local system of coordinates we write

R
( ∂

∂xi
,
∂

∂xj

) ∂

∂xk
= Rp

ijk

∂

∂xp
.

Definition 7.10.5 The Ricci curvature associated with the linear
connection ∇ is given by

Ric : X (M)×X (M) → F(M),

Ric(Y, Z) = Trace
(
X → R(X,Y )Z

)
.

This means that if {E1, . . . En} is an orthonormal set of tangent vec-
tors at p, then Ric(X,Y )p =

∑n
j=1 g

(
R(Ej , X, Y ), Ej

)
. In local co-

ordinates we write Rij = Ric(∂i, ∂j). We can show that Rij = Rk
ikj ,

with summation over k, see Problem 7.14. It is worth noting that Ric
is a 2-covariant tensor. It will play an important role in the study of
equiaffine connections in Chap. 9.

7.11 Levi–Civita Connection

One of the most remarkable facts of Riemannian geometry is the
existence and uniqueness of a metric connection that has zero torsion.
This is called the Levi–Civita connection of the Riemannian manifold
(M, g), see, for instance, O’Neill [66]. Sometimes this is also called the
Riemannian connection and will be denoted throughout the book by
∇(0). For the purpose of this section we shall keep the notation ∇.

The next theorem, also known as the fundamental lemma of Rie-
mannian geometry, provides the Levi–Civita connection as an explicit
expression in terms of the Riemannian metric g. This is an useful re-
sult that allows to eliminate the connection from a formula and write
it in terms of the Riemannian metric only.

Theorem 7.11.1 On a Riemannian manifold there is a unique
torsion-free, metric connection ∇. Furthermore, ∇ is given by the
following Koszul formula

2g(∇XY, Z) = X g(Y, Z) + Y g(X,Z)− Z g(X,Y )

+g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X).

(7.11.21)
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Proof: The proof has two parts, the existence and uniqueness.

Existence: We shall show that connection ∇ defined by formula
(7.11.21) is a metric and torsion-free connection.

First we need to show that ∇ is a linear connection. Using the
properties of vector fields and Lie brackets we can show by a direct
computation that

2g(∇fXY, Z) = 2fg(∇XY, Z), ∀Z ∈ X (M),

so ∇fXY = f∇XY , ∀X,Y ∈ X (M), i.e., ∇ is F(M)-linear in the
first argument. Next we check the second property of connections:

2g(∇X(fY ), Z) = X g(fY, Z) + fY g(X,Z)− Z g(X, fY )

+g([X, fY ], Z)− g([X,Z], fY )− g([fY, Z], X)

= X(f)g(Y, Z) + fXg(Y, Z) + fY g(X,Z)

−Z(f)g(X,Y )− fZg(X,Y )

+fg([X,Y ], Z) +X(f)g(Y, Z)− fg([X,Z], Y )

−fg([Y, Z], X) + Z(f)g(Y,X)

= 2f g(∇XY, Z) + 2X(f)g(Y, Z)

= 2g(f∇XY +X(f)Y, Z).

Dropping the Z-argument yields Leibniz formula. Therefore, ∇ is a
linear connection.

The next computation verifies that the connection is torsion-free.
Using (7.11.21) yields

2g(T (X,Y ), Z)) = 2g(∇XY, Z)− 2g(∇YX,Z)− 2g([X,Y ], Z)

= Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

+g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X)

−Y g(X,Z)−Xg(Y, Z) + Zg(Y,X)

−g([Y,X], Z) + g([Y, Z], X) + g([X,Z], Y )

−2g([X,Y ], Z)

= g(2[X,Y ]− 2[X,Y ], Z) = 0, ∀Z ∈ X (M).

Dropping the vector field Z and using that g(·, ·) is non-degenerate
yields T (X,Y ) = 0, for all X,Y ∈ X (M).
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Applying formula (7.11.21) twice and then cancelling in pairs, we
have

2g(∇ZX,Y ) + 2g(X,∇ZY )

= Z g(X,Y ) +X g(Z, Y )− Y g(Z,X) + g([Z,X], Y )

−g([Z, Y ], X)− g([X,Y ], Z)

+Z g(Y,X) + Y g(Z,X)−X g(Z, Y ) + g([Z, Y ], X)

−g([Z,X], Y )− g([Y,X], Z)

= 2Zg(X,Y ).

Therefore g(∇ZX,Y ) + g(X,∇ZY ) = Zg(X,Y ), i.e., ∇ is a metric
connection.

Uniqueness:We need to prove that any metric and symmetric connec-
tion ∇ is given by formula (7.11.21). It suffices to do the verification
in a local system of coordinates (x1, . . . , xn). Let X = ∂i, Y = ∂j ,
Z = ∂k. Using Γk

ij = g(∇∂i∂j , ∂k) and gij = g(∂i, ∂j), then formula
(7.11.21) becomes

2Γp
ijgpk = ∂igjk + ∂jgik − ∂kgij . (7.11.22)

Writing that ∇ is a metric connection in three different ways, using
cyclic permutation of indices, see formula (7.10.18), we have

∂igjk = Γp
ijgpk + Γr

ikgjr

∂jgki = Γp
jkgpi + Γr

jigkr

∂kgij = Γp
kigpj + Γr

kjgir.

Adding the first two equations and subtracting the last, using the
symmetry Γk

ij = Γk
ji, yields exactly the Eq. (7.11.22). This ends the

proof of uniqueness.

Solving for the connection coefficient in (7.11.22) we obtain

Γp
ij =

1

2
gpk

(
∂igjk + ∂jgik − ∂kgij

)
, (7.11.23)

where (gpk) denotes the inverse matrix of (gij). The coordinates Γp
ij

of the Levi–Civita connection, see (7.11.23), are called the Christof-
fel symbols of second kind. The Christoffel symbols of first kind are
obtained lowering the indices

Γij,k = Γp
ijgpk.
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Conversely, if the coordinates of a linear connection on a Riemannian
manifold (M, g) are given by formula (7.11.23), then the connection
has to be the Levi–Civita connection.

The curvature tensor of type (1, 3) associated with the Levi–Civita
connection by formula (7.10.20) is called the Riemann curvature ten-
sor of type (1, 3). If in local coordinates we have R(∂i, ∂j)∂k = Rp

ijk∂p,

then the coordinate RP
ijk can be expressed in terms of Christoffel sym-

bols as
Rr

ijk = ∂iΓ
r
jk − ∂jΓ

r
ik + Γr

ihΓ
h
jk − Γr

jhΓ
h
ik.

In Riemannian geometry the following (0, 4)-type curvature tensor is
also useful

R : X (M)× X (M)×X (M)×X (M) → F(M),

R(X,Y, Z,W ) = g(R(X,Y, Z),W ).

If in local coordinates we write R(∂i, ∂j , ∂k, ∂l) = Rijkl, then we have
Rijkl = Rp

ijkgpl. The coordinates Rijkl satisfy several relations, the
most useful being provided in the following:

1. Skew symmetry in the first and second pair:

Rijkl = −Rjikl = −Rijlk.

2. Interchange symmetry between pairs: Rijkl = Rklij .

3. First Bianchi identity: Rijkl +Riklj +Riljk = 0.

Another important 2-covariant tensor is the Ricci tensor, which
is defined by the contraction

Ric(X,Y ) = Trace
(
V → R(X,V, Y )

)
=Trace

(
V → R(V,X, Y )

)
.

It can be shown that the Ricci tensor associated with the Levi–Civita
connection is symmetric, R(X,Y ) = R(Y,X).

For more details about Calculus and Differential Geometry on
differentiable manifolds the reader may consult Spivak [77, 78], and
doCarmo [34, 35].
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7.12 Problems

7.1. Let p ∈M be a point on the differentiable manifoldM , and let
Vp be a neighborhood of p. Show that there is a differentiable
function f ∈ F(M) such that f(p) = 1 and f(x) = 0 if x /∈ Vp.

7.2. Let p be a point on the differentiable manifoldM . If f ∈ F(M)
has a local extremum at p, then Xp(f) = 0, for any tangent
vector Xp at p.

7.3. (a) Let X,Y ∈ X (M) be two vector fields on the differen-
tiable manifold M . Prove that the Lie bracket [X,Y ] is
a vector field on M , which in local coordinates can be
written as

[X,Y ] =
n∑

i,j=1

(∂Y i

∂xj
Xj − ∂Xi

∂xj
Y j

) ∂

∂xi
,

where X =
∑

iX
i ∂
∂xi and Y =

∑
i Y

i ∂
∂xi .

(b) Let M = R
2 and consider the vector fields X = x1x2 ∂

∂x1

and Y = x2 ∂
∂x2 . Show that [X,Y ] = −x1x2 ∂

∂x1 .

7.4. Let (M, g) be a Riemannian manifold. If ω = ωidx
i is a 1-form,

define the vector filed ω# = ωk∂xk , where ωkgkr = ωr. Show
that g(ω#, X) = ω(X), ∀X ∈ X (M).

7.5. Show that the following properties of tangent vectors, Xp ∈
TpM , hold:

(i) Xp(c) = 0, for any constant c;

(ii) Xp(f
2) = 2fXp(f), ∀f ∈ F(M);

(iii) If f, g ∈ F(M) such that f(p) = g(p) = 0, then Xp(fg)=0;

7.6. Let M � R
n2

be the manifold of square n × n-matrices, and
Xa(x) = a · x, Ya(x) = a · x − x · a be two vector fields on it,
where a, x ∈M .

(a) Compute the flow of the field Va. Find first integrals for
this flow.

(b) Compute the commutator [Xa, Xb] for two vector fields Xa

and Xb, defined by two matrices a, b ∈M .
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(c) The same questions relative to the vector field Va(x).

7.7. A vector field X on a manifold M is called complete, if any
of its trajectory can be infinitely continued forward and back-
ward.

(a) Prove that on a compact manifold any vector field is com-
plete.

(b) Show that on any manifold M and any vector field X on
it, there exists a positive function f ∈ C1(M) such that
the vector field fX is complete.

7.8. Let (M, g) be a Riemannian manifold and the corresponding
volume form ω ∈ Λn(M). Prove that for any 2n vector fields
X1, · · · , Xn, Y1, · · · , Yn, we have

ω(X1, · · · , Xn) · ω(Y1, · · · , Yn) = det[g(Xi, Yj)].

7.9. (Hessian of Rosenbrok’s banana function) Let us consider the
Riemannian manifold (R2, g), with the metric

g(x1, x2) =

(
1 + 4(x1)2 −2x1

−2x1 1

)

.

Show that the Hessian of the Rosenbrok’s banana function

f : R2 → R, f(x1, x2) = 100(x2 − (x1)2) + (1− x1)2

is a Riemannian metric.

7.10. Let f : Rn → R be a C3-function such that its HessianHess(f)
is positive definite. From the Euclidean space (Rn, δij) we pass
to the Riemannian manifold (R2, Hess(f)). Show that the
equations of geodesics in this new manifold are

2
∂2f

∂xi∂xk
(x(t)) ẍi(t) +

∂3f

∂xi∂xj∂xk
(x(t)) ẋi(t) ẋj(t) = 0.

7.11. (a) Find the Christoffel coefficients on the Riemannian mani-

fold (R2
+, g), where g = diag

(
1

x2
,
1

y2

)

.
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(b) Compute the Hessian of the function

f : R2
+ → R, f(x, y) =

1

x
+
√
x+

1

y
+
√
y,

with respect to g.

(c) Find the geodesics of the Riemannian manifold (R2
+,

Hessg(f)).

7.12. Find the geodesics of the Riemannian manifold

(R2
+, g(x, y)),

when g is a posinomial metric

g(x, y) =

(
a11x

α11yβ11 a12x
α12yβ12

a12x
α12yβ12 a22x

α22yβ22

)

.

7.13. Let (M, g) be a Riemannian manifold.

(a) Show that Rr
ijk = −Rr

jik.

(b) Assume dimM = 1. Show that M is flat, i.e., R = 0.

7.14. Let Rij = Ric(∂i, ∂j) be the components of the Ricci tensor
in local coordinates. Show that Rij = Rk

ikj , with summation
over k.

7.13 Historical Remarks

Differential Geometry started with the study of curves since around
1700s. Among the first mathematicians who had investigated the the-
ory of curves were Euler, Monge, Venant, Serret, and Darboux. In
1827 Gauss published his celebrated work Disquisitiones generales
circa superficies curvas, where he introduced the first and the sec-
ond fundamental forms on surfaces in R

3 and had shown that they
characterize the surface up to a rigid motion. Gauss proved that the
curvature is an intrinsic invariant of the surface, result that is called
Theorema Egregium. The name emphasizes its profound philosophical
implications, since the curvature is usually perceived as an extrinsic
object.

Gauss’ ideas of intrinsic geometry of a surface influenced his pupil,
Riemann, who at only 28, presents his Ph.D. dissertation Ueber die



7.13. Historical Remarks 221

Hypothesen welche der Geometrie zu Grunde liegen at Göttingen in
1954. Riemann associated a metric with each hypersurface, fact that
led to the concept of Riemannian manifold later. These results flour-
ished into an elegant theory, which generalized Gauss’ results on man-
ifolds.

However, this theory requires laborious computations, fact that
needed the construction of the tensorial formalism. Ricci developed
the tensorial calculus on manifolds and Levi–Civita introduced the
linear connection with the same name in 1900s.

Differential geometry has important consequences and applica-
tions. First, it closed the celebrated problem of the 5th postulate of
Euclid. This was accomplished by finding examples of non-Euclidean
spaces among Riemannian manifolds.

Another application is the use of differential geometry to Gen-
eral Theory of Relativity. Einstein’s theory published in 1917 used
tensorial calculus to write the equations of space-time invariantly.
This way, the concept of inertial system from Newtonian mechanics
is generalized and the new theory was able to explain the Mercury’s
perihelion advance and the light deflection about sun.

If Lorentz geometry, which is the geometry of a manifold endowed
with a space-time type metric, is a good environment for relativ-
ity theory, then Riemannian geometry was proved to be suited for
the Classical Mechanics, see Abraham and Marsden [1] or Calin and
Chang [22]. The conservation laws of Newtonian Physics can be writ-
ten in an elegant way in terms of the Riemannian Geometry language.

Another direction where Differential Geometry has recently been
applied is the geometric theory of differential equations. Each differ-
ential operator is associated with a principal symbol, which can be
considered as a Hamiltonian. This defines a metric on an associated
manifold. The study of heat kernels and fundamental solutions can
be geometrically based on the study of geodesics on the associated
Riemannian manifold. The interested reader can consult this topic in
Calin et al. [23] and [24]. For convex functions and optimization meth-
ods on Riemannian manifolds the reader is referred to Udriste [81].

Another related branch of Riemannian Geometry has been de-
veloped over the last several decades. It is known under the names
of SubRiemannian Geometry, Non-holonomic geometry, or Carnot-
Carathéodory geometry. It is related with Quantum Mechanics be-
havior of particles and Thermodynamics, see Calin and Chang [23].
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The goal of the present book is to deal with one of the branches
of Differential Geometry which applies to Information Theory, Prob-
ability and Statistics. This is known under the name of Information
Geometry. Its main object of study is the statistical manifold, which
is a Riemannian manifold that holds a dualistic structure and studies
the relationship between dual geometric objects. All the next chap-
ters deal with notions which culminate with the study of statistical
manifolds.
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